]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reload.c
alias.c: Use REG_P...
[thirdparty/gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
66647d44 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
6fb5fa3c 4 Free Software Foundation, Inc.
eab89b90 5
1322177d 6This file is part of GCC.
eab89b90 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
eab89b90 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
eab89b90
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
eab89b90 21
eab89b90
RK
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
965ccc5a 30 init_reload actually has to be called earlier anyway.
eab89b90
RK
31
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
38
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
45
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
54
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
57
58NOTE SIDE EFFECTS:
59
60 find_reloads can alter the operands of the instruction it is called on.
61
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
66
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
69
701 happens every time find_reloads is called.
712 happens only when REPLACE is 1, which is only when
72actually doing the reloads, not when just counting them.
73
eab89b90
RK
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
0fa4cb7d
SE
90/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91#undef DEBUG_RELOAD
92
eab89b90 93#include "config.h"
670ee920 94#include "system.h"
4977bab6
ZW
95#include "coretypes.h"
96#include "tm.h"
eab89b90 97#include "rtl.h"
6baf1cc8 98#include "tm_p.h"
eab89b90 99#include "insn-config.h"
e78d8e51
ZW
100#include "expr.h"
101#include "optabs.h"
eab89b90
RK
102#include "recog.h"
103#include "reload.h"
104#include "regs.h"
c4963a0a 105#include "addresses.h"
eab89b90
RK
106#include "hard-reg-set.h"
107#include "flags.h"
108#include "real.h"
8a840ac9 109#include "output.h"
49ad7cfa 110#include "function.h"
10f0ad3d 111#include "toplev.h"
0bcf8261 112#include "params.h"
34208acf 113#include "target.h"
6fb5fa3c 114#include "df.h"
eab89b90 115
34208acf
AO
116/* True if X is a constant that can be forced into the constant pool. */
117#define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
e9840398
AO
121
122/* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124#define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
127
eab89b90 128\f
eceef4c9
BS
129/* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
eab89b90 131int n_reloads;
eceef4c9 132struct reload rld[MAX_RELOADS];
eab89b90
RK
133
134/* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136int n_earlyclobbers;
137rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
138
a8c9daeb
RK
139int reload_n_operands;
140
eab89b90
RK
141/* Replacing reloads.
142
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
147
148/* Nonzero means record the places to replace. */
149static int replace_reloads;
150
151/* Each replacement is recorded with a structure like this. */
152struct replacement
153{
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
159};
160
161static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
162
163/* Number of replacements currently recorded. */
164static int n_replacements;
165
a8c9daeb
RK
166/* Used to track what is modified by an operand. */
167struct decomposition
168{
0f41302f
MS
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 173 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
174};
175
0dadecf6
RK
176#ifdef SECONDARY_MEMORY_NEEDED
177
178/* Save MEMs needed to copy from one class of registers to another. One MEM
05d10675 179 is used per mode, but normally only one or two modes are ever used.
0dadecf6 180
05d10675 181 We keep two versions, before and after register elimination. The one
a8c9daeb
RK
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
0dadecf6
RK
185
186static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 187static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
048b0d2e 188static int secondary_memlocs_elim_used = 0;
0dadecf6
RK
189#endif
190
eab89b90
RK
191/* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193static rtx this_insn;
194
195/* Nonzero if this instruction is a user-specified asm with operands. */
196static int this_insn_is_asm;
197
198/* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201static int hard_regs_live_known;
202
203/* Indexed by hard reg number,
956d6950 204 element is nonnegative if hard reg has been spilled.
eab89b90
RK
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207static short *static_reload_reg_p;
208
209/* Set to 1 in subst_reg_equivs if it changes anything. */
210static int subst_reg_equivs_changed;
211
212/* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214static int output_reloadnum;
215
9ec7078b
RK
216 /* Compare two RTX's. */
217#define MATCHES(x, y) \
f8cfc6aa
JQ
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
9ec7078b
RK
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
221
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224#define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
232
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234#define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
240
47c8cf91
ILT
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243#define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
249
0c20a65f
AJ
250static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
8a99f6f9 252 enum insn_code *, secondary_reload_info *);
e11ab33b
DD
253static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
0c20a65f
AJ
255static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256static void push_replacement (rtx *, int, enum machine_mode);
257static void dup_replacements (rtx *, rtx *);
258static void combine_reloads (void);
259static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264static struct decomposition decompose (rtx);
265static int immune_p (rtx, rtx, struct decomposition);
1f7f6676 266static bool alternative_allows_const_pool_ref (rtx, const char *, int);
0c20a65f
AJ
267static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269static rtx make_memloc (rtx, int);
270static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
271static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
272 int, enum reload_type, int, rtx);
273static rtx subst_reg_equivs (rtx, rtx);
274static rtx subst_indexed_address (rtx);
275static void update_auto_inc_notes (rtx, int, int);
c4963a0a
BS
276static int find_reloads_address_1 (enum machine_mode, rtx, int,
277 enum rtx_code, enum rtx_code, rtx *,
0c20a65f
AJ
278 int, enum reload_type,int, rtx);
279static void find_reloads_address_part (rtx, rtx *, enum reg_class,
280 enum machine_mode, int,
281 enum reload_type, int);
282static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
283 int, rtx);
284static void copy_replacements_1 (rtx *, rtx *, int);
285static int find_inc_amount (rtx, rtx);
10015a27
KH
286static int refers_to_mem_for_reload_p (rtx);
287static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
288 rtx, rtx *);
3f1e3e70
AO
289
290/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
291 list yet. */
292
293static void
294push_reg_equiv_alt_mem (int regno, rtx mem)
295{
296 rtx it;
297
298 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
299 if (rtx_equal_p (XEXP (it, 0), mem))
300 return;
301
302 reg_equiv_alt_mem_list [regno]
303 = alloc_EXPR_LIST (REG_EQUIV, mem,
304 reg_equiv_alt_mem_list [regno]);
305}
eab89b90 306\f
eab89b90 307/* Determine if any secondary reloads are needed for loading (if IN_P is
40f03658 308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
311
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
315
316static int
0c20a65f
AJ
317push_secondary_reload (int in_p, rtx x, int opnum, int optional,
318 enum reg_class reload_class,
319 enum machine_mode reload_mode, enum reload_type type,
8a99f6f9 320 enum insn_code *picode, secondary_reload_info *prev_sri)
eab89b90 321{
55d796da 322 enum reg_class rclass = NO_REGS;
8a99f6f9 323 enum reg_class scratch_class;
eab89b90
RK
324 enum machine_mode mode = reload_mode;
325 enum insn_code icode = CODE_FOR_nothing;
65b4c337 326 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 327 enum reload_type secondary_type;
9ec7078b 328 int s_reload, t_reload = -1;
8a99f6f9
R
329 const char *scratch_constraint;
330 char letter;
331 secondary_reload_info sri;
9ec7078b 332
47c8cf91
ILT
333 if (type == RELOAD_FOR_INPUT_ADDRESS
334 || type == RELOAD_FOR_OUTPUT_ADDRESS
335 || type == RELOAD_FOR_INPADDR_ADDRESS
336 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
337 secondary_type = type;
338 else
339 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
340
9ec7078b 341 *picode = CODE_FOR_nothing;
eab89b90 342
67340b03
RK
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
348 {
349 x = SUBREG_REG (x);
350 reload_mode = GET_MODE (x);
351 }
352
d45cf215
RS
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
358
f8cfc6aa 359 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
d45cf215
RS
360 && reg_equiv_mem[REGNO (x)] != 0)
361 x = reg_equiv_mem[REGNO (x)];
362
8a99f6f9
R
363 sri.icode = CODE_FOR_nothing;
364 sri.prev_sri = prev_sri;
55d796da 365 rclass = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
32e8bb8e 366 icode = (enum insn_code) sri.icode;
eab89b90 367
9ec7078b 368 /* If we don't need any secondary registers, done. */
55d796da 369 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
9ec7078b 370 return -1;
eab89b90 371
55d796da
KG
372 if (rclass != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
8a99f6f9 374 reload_mode, type, &t_icode, &sri);
eab89b90 375
8a99f6f9
R
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
eab89b90
RK
378
379 if (icode != CODE_FOR_nothing)
380 {
40f03658 381 /* If IN_P is nonzero, the reload register will be the output in
eab89b90
RK
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
385
8a99f6f9
R
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
390
391 /* ??? We currently have no way to represent a reload that needs
6416ae7f 392 an icode to reload from an intermediate tertiary reload register.
8a99f6f9
R
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
55d796da 395 gcc_assert (rclass == NO_REGS);
8a99f6f9
R
396
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
58477b5d 405 scratch_constraint));
8a99f6f9 406
55d796da 407 rclass = scratch_class;
8a99f6f9 408 mode = insn_data[(int) icode].operand[2].mode;
eab89b90
RK
409 }
410
9ec7078b
RK
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
416
417 The convention is that secondary input reloads are valid only if the
31989264
RH
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
9ec7078b 421
94aaab7a
RH
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
9ec7078b 424
55d796da 425 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
41374e13 426 || t_icode != CODE_FOR_nothing);
9ec7078b 427
9ec7078b
RK
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
eceef4c9 430 if (rld[s_reload].secondary_p
48c54229
KG
431 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 || reg_class_subset_p (rld[s_reload].rclass, rclass))
eceef4c9
BS
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
55d796da 439 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
eceef4c9
BS
440 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
441 opnum, rld[s_reload].opnum))
9ec7078b
RK
442 {
443 if (in_p)
eceef4c9 444 rld[s_reload].inmode = mode;
9ec7078b 445 if (! in_p)
eceef4c9 446 rld[s_reload].outmode = mode;
9ec7078b 447
48c54229
KG
448 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
449 rld[s_reload].rclass = rclass;
9ec7078b 450
eceef4c9
BS
451 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
452 rld[s_reload].optional &= optional;
453 rld[s_reload].secondary_p = 1;
454 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
455 opnum, rld[s_reload].opnum))
456 rld[s_reload].when_needed = RELOAD_OTHER;
c3be2598
JW
457
458 break;
9ec7078b 459 }
eab89b90 460
9ec7078b
RK
461 if (s_reload == n_reloads)
462 {
e9a25f70
JL
463#ifdef SECONDARY_MEMORY_NEEDED
464 /* If we need a memory location to copy between the two reload regs,
465 set it up now. Note that we do the input case before making
05d10675 466 the reload and the output case after. This is due to the
e9a25f70
JL
467 way reloads are output. */
468
469 if (in_p && icode == CODE_FOR_nothing
55d796da 470 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
6fe8aebc
RH
471 {
472 get_secondary_mem (x, reload_mode, opnum, type);
473
474 /* We may have just added new reloads. Make sure we add
475 the new reload at the end. */
476 s_reload = n_reloads;
477 }
e9a25f70
JL
478#endif
479
9ec7078b 480 /* We need to make a new secondary reload for this register class. */
eceef4c9 481 rld[s_reload].in = rld[s_reload].out = 0;
48c54229 482 rld[s_reload].rclass = rclass;
eceef4c9
BS
483
484 rld[s_reload].inmode = in_p ? mode : VOIDmode;
485 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
486 rld[s_reload].reg_rtx = 0;
487 rld[s_reload].optional = optional;
eceef4c9 488 rld[s_reload].inc = 0;
9ec7078b 489 /* Maybe we could combine these, but it seems too tricky. */
eceef4c9
BS
490 rld[s_reload].nocombine = 1;
491 rld[s_reload].in_reg = 0;
492 rld[s_reload].out_reg = 0;
493 rld[s_reload].opnum = opnum;
494 rld[s_reload].when_needed = secondary_type;
495 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
496 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
497 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
498 rld[s_reload].secondary_out_icode
9ec7078b 499 = ! in_p ? t_icode : CODE_FOR_nothing;
eceef4c9 500 rld[s_reload].secondary_p = 1;
9ec7078b
RK
501
502 n_reloads++;
503
504#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b 505 if (! in_p && icode == CODE_FOR_nothing
55d796da 506 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
f49e4127 507 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
508#endif
509 }
510
511 *picode = icode;
512 return s_reload;
eab89b90 513}
8a99f6f9
R
514
515/* If a secondary reload is needed, return its class. If both an intermediate
516 register and a scratch register is needed, we return the class of the
517 intermediate register. */
518enum reg_class
55d796da 519secondary_reload_class (bool in_p, enum reg_class rclass,
8a99f6f9
R
520 enum machine_mode mode, rtx x)
521{
522 enum insn_code icode;
523 secondary_reload_info sri;
524
525 sri.icode = CODE_FOR_nothing;
526 sri.prev_sri = NULL;
55d796da 527 rclass = targetm.secondary_reload (in_p, x, rclass, mode, &sri);
32e8bb8e 528 icode = (enum insn_code) sri.icode;
8a99f6f9
R
529
530 /* If there are no secondary reloads at all, we return NO_REGS.
531 If an intermediate register is needed, we return its class. */
55d796da
KG
532 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
533 return rclass;
8a99f6f9
R
534
535 /* No intermediate register is needed, but we have a special reload
536 pattern, which we assume for now needs a scratch register. */
537 return scratch_reload_class (icode);
538}
539
540/* ICODE is the insn_code of a reload pattern. Check that it has exactly
541 three operands, verify that operand 2 is an output operand, and return
542 its register class.
543 ??? We'd like to be able to handle any pattern with at least 2 operands,
544 for zero or more scratch registers, but that needs more infrastructure. */
545enum reg_class
546scratch_reload_class (enum insn_code icode)
547{
548 const char *scratch_constraint;
549 char scratch_letter;
55d796da 550 enum reg_class rclass;
8a99f6f9
R
551
552 gcc_assert (insn_data[(int) icode].n_operands == 3);
553 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
554 gcc_assert (*scratch_constraint == '=');
555 scratch_constraint++;
556 if (*scratch_constraint == '&')
557 scratch_constraint++;
558 scratch_letter = *scratch_constraint;
559 if (scratch_letter == 'r')
560 return GENERAL_REGS;
55d796da 561 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
8a99f6f9 562 scratch_constraint);
55d796da
KG
563 gcc_assert (rclass != NO_REGS);
564 return rclass;
8a99f6f9 565}
eab89b90 566\f
0dadecf6
RK
567#ifdef SECONDARY_MEMORY_NEEDED
568
05d10675 569/* Return a memory location that will be used to copy X in mode MODE.
0dadecf6
RK
570 If we haven't already made a location for this mode in this insn,
571 call find_reloads_address on the location being returned. */
572
573rtx
0c20a65f
AJ
574get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
575 int opnum, enum reload_type type)
0dadecf6
RK
576{
577 rtx loc;
578 int mem_valid;
579
64609742
RK
580 /* By default, if MODE is narrower than a word, widen it to a word.
581 This is required because most machines that require these memory
582 locations do not support short load and stores from all registers
583 (e.g., FP registers). */
584
585#ifdef SECONDARY_MEMORY_NEEDED_MODE
586 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
587#else
4f9e0766 588 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
0dadecf6 589 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 590#endif
0dadecf6 591
77545d45
RK
592 /* If we already have made a MEM for this operand in MODE, return it. */
593 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
594 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6 595
05d10675 596 /* If this is the first time we've tried to get a MEM for this mode,
0dadecf6
RK
597 allocate a new one. `something_changed' in reload will get set
598 by noticing that the frame size has changed. */
599
600 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
601 {
602#ifdef SECONDARY_MEMORY_NEEDED_RTX
603 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
604#else
605 secondary_memlocs[(int) mode]
606 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
607#endif
608 }
0dadecf6
RK
609
610 /* Get a version of the address doing any eliminations needed. If that
611 didn't give us a new MEM, make a new one if it isn't valid. */
612
1914f5da 613 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
614 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
615
616 if (! mem_valid && loc == secondary_memlocs[(int) mode])
617 loc = copy_rtx (loc);
618
619 /* The only time the call below will do anything is if the stack
620 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
621 can just pass a zero. Adjust the type to be the address of the
622 corresponding object. If the address was valid, save the eliminated
623 address. If it wasn't valid, we need to make a reload each time, so
624 don't save it. */
0dadecf6 625
a8c9daeb
RK
626 if (! mem_valid)
627 {
628 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
629 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
630 : RELOAD_OTHER);
8d618585 631
57292ec3 632 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 633 opnum, type, 0, 0);
a8c9daeb 634 }
0dadecf6 635
77545d45 636 secondary_memlocs_elim[(int) mode][opnum] = loc;
98e5e087
JH
637 if (secondary_memlocs_elim_used <= (int)mode)
638 secondary_memlocs_elim_used = (int)mode + 1;
0dadecf6
RK
639 return loc;
640}
641
642/* Clear any secondary memory locations we've made. */
643
644void
0c20a65f 645clear_secondary_mem (void)
0dadecf6 646{
703ad42b 647 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
0dadecf6
RK
648}
649#endif /* SECONDARY_MEMORY_NEEDED */
650\f
e11ab33b
DD
651
652/* Find the largest class which has at least one register valid in
653 mode INNER, and which for every such register, that register number
654 plus N is also valid in OUTER (if in range) and is cheap to move
0e61db61 655 into REGNO. Such a class must exist. */
c6716840
RK
656
657static enum reg_class
e11ab33b
DD
658find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
659 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
0c20a65f 660 unsigned int dest_regno ATTRIBUTE_UNUSED)
c6716840 661{
a65dc37d 662 int best_cost = -1;
55d796da 663 int rclass;
c6716840 664 int regno;
f428f252 665 enum reg_class best_class = NO_REGS;
4977bab6 666 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
770ae6cc 667 unsigned int best_size = 0;
b80cb6e2 668 int cost;
c6716840 669
55d796da 670 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
c6716840
RK
671 {
672 int bad = 0;
e11ab33b
DD
673 int good = 0;
674 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
55d796da 675 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
e11ab33b
DD
676 {
677 if (HARD_REGNO_MODE_OK (regno, inner))
678 {
679 good = 1;
55d796da 680 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
e11ab33b
DD
681 || ! HARD_REGNO_MODE_OK (regno + n, outer))
682 bad = 1;
683 }
684 }
c6716840 685
e11ab33b 686 if (bad || !good)
b80cb6e2 687 continue;
bbbbb16a 688 cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass, dest_class);
b80cb6e2 689
55d796da 690 if ((reg_class_size[rclass] > best_size
b80cb6e2
JH
691 && (best_cost < 0 || best_cost >= cost))
692 || best_cost > cost)
a65dc37d 693 {
32e8bb8e 694 best_class = (enum reg_class) rclass;
55d796da 695 best_size = reg_class_size[rclass];
bbbbb16a
ILT
696 best_cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass,
697 dest_class);
a65dc37d 698 }
c6716840
RK
699 }
700
41374e13 701 gcc_assert (best_size != 0);
c6716840
RK
702
703 return best_class;
704}
705\f
121315ea
BS
706/* Return the number of a previously made reload that can be combined with
707 a new one, or n_reloads if none of the existing reloads can be used.
55d796da 708 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
121315ea
BS
709 push_reload, they determine the kind of the new reload that we try to
710 combine. P_IN points to the corresponding value of IN, which can be
711 modified by this function.
712 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
35fb60c4 713
121315ea 714static int
55d796da 715find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
0c20a65f 716 enum reload_type type, int opnum, int dont_share)
121315ea
BS
717{
718 rtx in = *p_in;
719 int i;
720 /* We can't merge two reloads if the output of either one is
721 earlyclobbered. */
722
723 if (earlyclobber_operand_p (out))
724 return n_reloads;
725
726 /* We can use an existing reload if the class is right
727 and at least one of IN and OUT is a match
728 and the other is at worst neutral.
05d10675 729 (A zero compared against anything is neutral.)
121315ea
BS
730
731 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
732 for the same thing since that can cause us to need more reload registers
733 than we otherwise would. */
05d10675 734
121315ea 735 for (i = 0; i < n_reloads; i++)
48c54229
KG
736 if ((reg_class_subset_p (rclass, rld[i].rclass)
737 || reg_class_subset_p (rld[i].rclass, rclass))
121315ea 738 /* If the existing reload has a register, it must fit our class. */
eceef4c9 739 && (rld[i].reg_rtx == 0
55d796da 740 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
eceef4c9
BS
741 true_regnum (rld[i].reg_rtx)))
742 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
743 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
744 || (out != 0 && MATCHES (rld[i].out, out)
745 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
746 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
55d796da 747 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
eceef4c9 748 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
121315ea
BS
749 return i;
750
751 /* Reloading a plain reg for input can match a reload to postincrement
752 that reg, since the postincrement's value is the right value.
753 Likewise, it can match a preincrement reload, since we regard
754 the preincrementation as happening before any ref in this insn
755 to that register. */
756 for (i = 0; i < n_reloads; i++)
48c54229
KG
757 if ((reg_class_subset_p (rclass, rld[i].rclass)
758 || reg_class_subset_p (rld[i].rclass, rclass))
121315ea
BS
759 /* If the existing reload has a register, it must fit our
760 class. */
eceef4c9 761 && (rld[i].reg_rtx == 0
55d796da 762 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
eceef4c9
BS
763 true_regnum (rld[i].reg_rtx)))
764 && out == 0 && rld[i].out == 0 && rld[i].in != 0
f8cfc6aa 765 && ((REG_P (in)
ec8e098d 766 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
eceef4c9 767 && MATCHES (XEXP (rld[i].in, 0), in))
f8cfc6aa 768 || (REG_P (rld[i].in)
ec8e098d 769 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
4b983fdc 770 && MATCHES (XEXP (in, 0), rld[i].in)))
eceef4c9 771 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
55d796da 772 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
eceef4c9
BS
773 && MERGABLE_RELOADS (type, rld[i].when_needed,
774 opnum, rld[i].opnum))
121315ea
BS
775 {
776 /* Make sure reload_in ultimately has the increment,
777 not the plain register. */
f8cfc6aa 778 if (REG_P (in))
eceef4c9 779 *p_in = rld[i].in;
121315ea
BS
780 return i;
781 }
782 return n_reloads;
783}
784
e6ea3b5f
JL
785/* Return nonzero if X is a SUBREG which will require reloading of its
786 SUBREG_REG expression. */
787
788static int
0c20a65f 789reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
e6ea3b5f
JL
790{
791 rtx inner;
792
793 /* Only SUBREGs are problematical. */
794 if (GET_CODE (x) != SUBREG)
795 return 0;
796
797 inner = SUBREG_REG (x);
798
35fb60c4
RK
799 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
800 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
e6ea3b5f
JL
801 return 1;
802
803 /* If INNER is not a hard register, then INNER will not need to
804 be reloaded. */
f8cfc6aa 805 if (!REG_P (inner)
e6ea3b5f
JL
806 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
807 return 0;
808
809 /* If INNER is not ok for MODE, then INNER will need reloading. */
ddef6bc7 810 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
e6ea3b5f
JL
811 return 1;
812
813 /* If the outer part is a word or smaller, INNER larger than a
814 word and the number of regs for INNER is not the same as the
815 number of words in INNER, then INNER will need reloading. */
816 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
4bf1d92e 817 && output
e6ea3b5f
JL
818 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
819 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
66fd46b6 820 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
e6ea3b5f
JL
821}
822
35d6034b
R
823/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
824 requiring an extra reload register. The caller has already found that
825 IN contains some reference to REGNO, so check that we can produce the
826 new value in a single step. E.g. if we have
827 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
828 instruction that adds one to a register, this should succeed.
829 However, if we have something like
830 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
831 needs to be loaded into a register first, we need a separate reload
832 register.
833 Such PLUS reloads are generated by find_reload_address_part.
834 The out-of-range PLUS expressions are usually introduced in the instruction
835 patterns by register elimination and substituting pseudos without a home
836 by their function-invariant equivalences. */
837static int
838can_reload_into (rtx in, int regno, enum machine_mode mode)
839{
840 rtx dst, test_insn;
841 int r = 0;
842 struct recog_data save_recog_data;
843
844 /* For matching constraints, we often get notional input reloads where
845 we want to use the original register as the reload register. I.e.
846 technically this is a non-optional input-output reload, but IN is
847 already a valid register, and has been chosen as the reload register.
848 Speed this up, since it trivially works. */
f8cfc6aa 849 if (REG_P (in))
35d6034b
R
850 return 1;
851
852 /* To test MEMs properly, we'd have to take into account all the reloads
853 that are already scheduled, which can become quite complicated.
854 And since we've already handled address reloads for this MEM, it
855 should always succeed anyway. */
3c0cb5de 856 if (MEM_P (in))
35d6034b
R
857 return 1;
858
859 /* If we can make a simple SET insn that does the job, everything should
860 be fine. */
861 dst = gen_rtx_REG (mode, regno);
862 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
863 save_recog_data = recog_data;
864 if (recog_memoized (test_insn) >= 0)
865 {
866 extract_insn (test_insn);
867 r = constrain_operands (1);
868 }
869 recog_data = save_recog_data;
870 return r;
871}
872
a8c9daeb 873/* Record one reload that needs to be performed.
eab89b90
RK
874 IN is an rtx saying where the data are to be found before this instruction.
875 OUT says where they must be stored after the instruction.
876 (IN is zero for data not read, and OUT is zero for data not written.)
877 INLOC and OUTLOC point to the places in the instructions where
878 IN and OUT were found.
40f03658 879 If IN and OUT are both nonzero, it means the same register must be used
a8c9daeb
RK
880 to reload both IN and OUT.
881
55d796da 882 RCLASS is a register class required for the reloaded data.
eab89b90
RK
883 INMODE is the machine mode that the instruction requires
884 for the reg that replaces IN and OUTMODE is likewise for OUT.
885
886 If IN is zero, then OUT's location and mode should be passed as
887 INLOC and INMODE.
888
889 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
890
891 OPTIONAL nonzero means this reload does not need to be performed:
892 it can be discarded if that is more convenient.
893
a8c9daeb
RK
894 OPNUM and TYPE say what the purpose of this reload is.
895
eab89b90
RK
896 The return value is the reload-number for this reload.
897
898 If both IN and OUT are nonzero, in some rare cases we might
899 want to make two separate reloads. (Actually we never do this now.)
900 Therefore, the reload-number for OUT is stored in
901 output_reloadnum when we return; the return value applies to IN.
902 Usually (presently always), when IN and OUT are nonzero,
903 the two reload-numbers are equal, but the caller should be careful to
904 distinguish them. */
905
aead1ca3 906int
0c20a65f 907push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
55d796da 908 enum reg_class rclass, enum machine_mode inmode,
0c20a65f
AJ
909 enum machine_mode outmode, int strict_low, int optional,
910 int opnum, enum reload_type type)
eab89b90 911{
b3694847 912 int i;
eab89b90 913 int dont_share = 0;
74347d76 914 int dont_remove_subreg = 0;
eab89b90 915 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 916 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
917 enum insn_code secondary_in_icode = CODE_FOR_nothing;
918 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 919
eab89b90
RK
920 /* INMODE and/or OUTMODE could be VOIDmode if no mode
921 has been specified for the operand. In that case,
922 use the operand's mode as the mode to reload. */
923 if (inmode == VOIDmode && in != 0)
924 inmode = GET_MODE (in);
925 if (outmode == VOIDmode && out != 0)
926 outmode = GET_MODE (out);
927
90d12f1f
AK
928 /* If find_reloads and friends until now missed to replace a pseudo
929 with a constant of reg_equiv_constant something went wrong
930 beforehand.
931 Note that it can't simply be done here if we missed it earlier
932 since the constant might need to be pushed into the literal pool
933 and the resulting memref would probably need further
934 reloading. */
f8cfc6aa 935 if (in != 0 && REG_P (in))
eab89b90 936 {
b3694847 937 int regno = REGNO (in);
eab89b90 938
90d12f1f
AK
939 gcc_assert (regno < FIRST_PSEUDO_REGISTER
940 || reg_renumber[regno] >= 0
941 || reg_equiv_constant[regno] == NULL_RTX);
eab89b90
RK
942 }
943
90d12f1f
AK
944 /* reg_equiv_constant only contains constants which are obviously
945 not appropriate as destination. So if we would need to replace
946 the destination pseudo with a constant we are in real
947 trouble. */
f8cfc6aa 948 if (out != 0 && REG_P (out))
eab89b90 949 {
b3694847 950 int regno = REGNO (out);
eab89b90 951
90d12f1f
AK
952 gcc_assert (regno < FIRST_PSEUDO_REGISTER
953 || reg_renumber[regno] >= 0
954 || reg_equiv_constant[regno] == NULL_RTX);
eab89b90
RK
955 }
956
957 /* If we have a read-write operand with an address side-effect,
958 change either IN or OUT so the side-effect happens only once. */
3c0cb5de 959 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
f1ec5147
RK
960 switch (GET_CODE (XEXP (in, 0)))
961 {
962 case POST_INC: case POST_DEC: case POST_MODIFY:
963 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
964 break;
3bdf5ad1 965
f1ec5147
RK
966 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
967 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
968 break;
3bdf5ad1 969
f1ec5147
RK
970 default:
971 break;
f4f4d0f8 972 }
eab89b90 973
a61c98cf 974 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 975 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
976 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
977 a pseudo and hence will become a MEM) with M1 wider than M2 and the
978 register is a pseudo, also reload the inside expression.
f72ccbe6 979 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
980 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
981 M2 is an integral mode that gets extended when loaded.
86c31b2d 982 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
983 either M1 is not valid for R or M2 is wider than a word but we only
984 need one word to store an M2-sized quantity in R.
86c31b2d
RS
985 (However, if OUT is nonzero, we need to reload the reg *and*
986 the subreg, so do nothing here, and let following statement handle it.)
987
eab89b90
RK
988 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
989 we can't handle it here because CONST_INT does not indicate a mode.
990
991 Similarly, we must reload the inside expression if we have a
fa10beec 992 STRICT_LOW_PART (presumably, in == out in this case).
df62f951
RK
993
994 Also reload the inner expression if it does not require a secondary
486d8509
RK
995 reload but the SUBREG does.
996
997 Finally, reload the inner expression if it is a register that is in
998 the class whose registers cannot be referenced in a different size
b4905cba 999 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
d030f4b2 1000 cannot reload just the inside since we might end up with the wrong
ab87f8c8
JL
1001 register class. But if it is inside a STRICT_LOW_PART, we have
1002 no choice, so we hope we do get the right register class there. */
eab89b90 1003
ab87f8c8 1004 if (in != 0 && GET_CODE (in) == SUBREG
b4905cba 1005 && (subreg_lowpart_p (in) || strict_low)
cff9f8d5 1006#ifdef CANNOT_CHANGE_MODE_CLASS
55d796da 1007 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
94bafba7 1008#endif
a61c98cf 1009 && (CONSTANT_P (SUBREG_REG (in))
ca769828 1010 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 1011 || strict_low
f8cfc6aa 1012 || (((REG_P (SUBREG_REG (in))
a61c98cf 1013 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
3c0cb5de 1014 || MEM_P (SUBREG_REG (in)))
03b72c86
RK
1015 && ((GET_MODE_SIZE (inmode)
1016 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 1017#ifdef LOAD_EXTEND_OP
03b72c86
RK
1018 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1019 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1020 <= UNITS_PER_WORD)
1021 && (GET_MODE_SIZE (inmode)
486d8509
RK
1022 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1023 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
f822d252 1024 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
d2c92f5a
R
1025#endif
1026#ifdef WORD_REGISTER_OPERATIONS
1027 || ((GET_MODE_SIZE (inmode)
1028 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1029 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1030 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1031 / UNITS_PER_WORD)))
f72ccbe6 1032#endif
03b72c86 1033 ))
f8cfc6aa 1034 || (REG_P (SUBREG_REG (in))
a61c98cf 1035 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
1036 /* The case where out is nonzero
1037 is handled differently in the following statement. */
b4905cba 1038 && (out == 0 || subreg_lowpart_p (in))
f72ccbe6
RK
1039 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1040 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1041 > UNITS_PER_WORD)
1042 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1043 / UNITS_PER_WORD)
66fd46b6
JH
1044 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1045 [GET_MODE (SUBREG_REG (in))]))
ddef6bc7 1046 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
55d796da
KG
1047 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1048 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
8a99f6f9 1049 SUBREG_REG (in))
df62f951 1050 == NO_REGS))
cff9f8d5 1051#ifdef CANNOT_CHANGE_MODE_CLASS
f8cfc6aa 1052 || (REG_P (SUBREG_REG (in))
486d8509 1053 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
cff9f8d5
AH
1054 && REG_CANNOT_CHANGE_MODE_P
1055 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
df62f951
RK
1056#endif
1057 ))
eab89b90
RK
1058 {
1059 in_subreg_loc = inloc;
1060 inloc = &SUBREG_REG (in);
1061 in = *inloc;
d2c92f5a 1062#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
3c0cb5de 1063 if (MEM_P (in))
eab89b90
RK
1064 /* This is supposed to happen only for paradoxical subregs made by
1065 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
41374e13 1066 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
e05a9da8 1067#endif
eab89b90
RK
1068 inmode = GET_MODE (in);
1069 }
1070
86c31b2d
RS
1071 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1072 either M1 is not valid for R or M2 is wider than a word but we only
1073 need one word to store an M2-sized quantity in R.
1074
1075 However, we must reload the inner reg *as well as* the subreg in
1076 that case. */
1077
6fd5ac08 1078 /* Similar issue for (SUBREG constant ...) if it was not handled by the
ddef6bc7 1079 code above. This can happen if SUBREG_BYTE != 0. */
6fd5ac08 1080
4bf1d92e 1081 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
86c31b2d 1082 {
55d796da 1083 enum reg_class in_class = rclass;
35fb60c4 1084
f8cfc6aa 1085 if (REG_P (SUBREG_REG (in)))
35fb60c4 1086 in_class
e11ab33b 1087 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
35fb60c4
RK
1088 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1089 GET_MODE (SUBREG_REG (in)),
1090 SUBREG_BYTE (in),
a65dc37d
JH
1091 GET_MODE (in)),
1092 REGNO (SUBREG_REG (in)));
35fb60c4 1093
c96d01ab
RK
1094 /* This relies on the fact that emit_reload_insns outputs the
1095 instructions for input reloads of type RELOAD_OTHER in the same
1096 order as the reloads. Thus if the outer reload is also of type
1097 RELOAD_OTHER, we are guaranteed that this inner reload will be
1098 output before the outer reload. */
f4f4d0f8 1099 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
35fb60c4 1100 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 1101 dont_remove_subreg = 1;
86c31b2d
RS
1102 }
1103
eab89b90
RK
1104 /* Similarly for paradoxical and problematical SUBREGs on the output.
1105 Note that there is no reason we need worry about the previous value
1106 of SUBREG_REG (out); even if wider than out,
1107 storing in a subreg is entitled to clobber it all
1108 (except in the case of STRICT_LOW_PART,
1109 and in that case the constraint should label it input-output.) */
ab87f8c8 1110 if (out != 0 && GET_CODE (out) == SUBREG
b4905cba 1111 && (subreg_lowpart_p (out) || strict_low)
cff9f8d5 1112#ifdef CANNOT_CHANGE_MODE_CLASS
55d796da 1113 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
94bafba7 1114#endif
a61c98cf 1115 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 1116 || strict_low
f8cfc6aa 1117 || (((REG_P (SUBREG_REG (out))
a61c98cf 1118 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
3c0cb5de 1119 || MEM_P (SUBREG_REG (out)))
03b72c86 1120 && ((GET_MODE_SIZE (outmode)
1914f5da
RH
1121 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1122#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
1123 || ((GET_MODE_SIZE (outmode)
1124 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1125 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1126 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1127 / UNITS_PER_WORD)))
1914f5da 1128#endif
05d10675 1129 ))
f8cfc6aa 1130 || (REG_P (SUBREG_REG (out))
eab89b90 1131 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
1132 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1133 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1134 > UNITS_PER_WORD)
1135 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1136 / UNITS_PER_WORD)
66fd46b6
JH
1137 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1138 [GET_MODE (SUBREG_REG (out))]))
ddef6bc7 1139 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
55d796da
KG
1140 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1141 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
8a99f6f9 1142 SUBREG_REG (out))
df62f951 1143 == NO_REGS))
cff9f8d5 1144#ifdef CANNOT_CHANGE_MODE_CLASS
f8cfc6aa 1145 || (REG_P (SUBREG_REG (out))
486d8509 1146 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
cff9f8d5 1147 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
0c20a65f 1148 GET_MODE (SUBREG_REG (out)),
cff9f8d5 1149 outmode))
df62f951
RK
1150#endif
1151 ))
eab89b90
RK
1152 {
1153 out_subreg_loc = outloc;
1154 outloc = &SUBREG_REG (out);
05d10675 1155 out = *outloc;
d2c92f5a 1156#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
41374e13
NS
1157 gcc_assert (!MEM_P (out)
1158 || GET_MODE_SIZE (GET_MODE (out))
1159 <= GET_MODE_SIZE (outmode));
e05a9da8 1160#endif
eab89b90
RK
1161 outmode = GET_MODE (out);
1162 }
1163
74347d76
RK
1164 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1165 either M1 is not valid for R or M2 is wider than a word but we only
1166 need one word to store an M2-sized quantity in R.
1167
1168 However, we must reload the inner reg *as well as* the subreg in
1169 that case. In this case, the inner reg is an in-out reload. */
1170
4bf1d92e 1171 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
74347d76 1172 {
c96d01ab
RK
1173 /* This relies on the fact that emit_reload_insns outputs the
1174 instructions for output reloads of type RELOAD_OTHER in reverse
1175 order of the reloads. Thus if the outer reload is also of type
1176 RELOAD_OTHER, we are guaranteed that this inner reload will be
1177 output after the outer reload. */
74347d76
RK
1178 dont_remove_subreg = 1;
1179 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840 1180 &SUBREG_REG (out),
e11ab33b 1181 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
ddef6bc7
JJ
1182 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1183 GET_MODE (SUBREG_REG (out)),
1184 SUBREG_BYTE (out),
a65dc37d
JH
1185 GET_MODE (out)),
1186 REGNO (SUBREG_REG (out))),
c6716840 1187 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1188 opnum, RELOAD_OTHER);
1189 }
1190
eab89b90 1191 /* If IN appears in OUT, we can't share any input-only reload for IN. */
3c0cb5de 1192 if (in != 0 && out != 0 && MEM_P (out)
10050f74 1193 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
bfa30b22 1194 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1195 dont_share = 1;
1196
0dadecf6
RK
1197 /* If IN is a SUBREG of a hard register, make a new REG. This
1198 simplifies some of the cases below. */
1199
f8cfc6aa 1200 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
74347d76
RK
1201 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
ddef6bc7 1203 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
0dadecf6
RK
1204
1205 /* Similarly for OUT. */
1206 if (out != 0 && GET_CODE (out) == SUBREG
f8cfc6aa 1207 && REG_P (SUBREG_REG (out))
74347d76
RK
1208 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
ddef6bc7 1210 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
0dadecf6 1211
eab89b90
RK
1212 /* Narrow down the class of register wanted if that is
1213 desirable on this machine for efficiency. */
b5c82fa1 1214 {
55d796da 1215 enum reg_class preferred_class = rclass;
b5c82fa1
PB
1216
1217 if (in != 0)
55d796da 1218 preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
eab89b90 1219
ac2a9454 1220 /* Output reloads may need analogous treatment, different in detail. */
18a53b78 1221#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
b5c82fa1
PB
1222 if (out != 0)
1223 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
18a53b78
RS
1224#endif
1225
b5c82fa1
PB
1226 /* Discard what the target said if we cannot do it. */
1227 if (preferred_class != NO_REGS
1228 || (optional && type == RELOAD_FOR_OUTPUT))
55d796da 1229 rclass = preferred_class;
b5c82fa1
PB
1230 }
1231
eab89b90
RK
1232 /* Make sure we use a class that can handle the actual pseudo
1233 inside any subreg. For example, on the 386, QImode regs
1234 can appear within SImode subregs. Although GENERAL_REGS
1235 can handle SImode, QImode needs a smaller class. */
1236#ifdef LIMIT_RELOAD_CLASS
1237 if (in_subreg_loc)
55d796da 1238 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
eab89b90 1239 else if (in != 0 && GET_CODE (in) == SUBREG)
55d796da 1240 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
eab89b90
RK
1241
1242 if (out_subreg_loc)
55d796da 1243 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
eab89b90 1244 if (out != 0 && GET_CODE (out) == SUBREG)
55d796da 1245 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
eab89b90
RK
1246#endif
1247
eab89b90
RK
1248 /* Verify that this class is at least possible for the mode that
1249 is specified. */
1250 if (this_insn_is_asm)
1251 {
1252 enum machine_mode mode;
1253 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1254 mode = inmode;
1255 else
1256 mode = outmode;
5488078f
RS
1257 if (mode == VOIDmode)
1258 {
971801ff
JM
1259 error_for_asm (this_insn, "cannot reload integer constant "
1260 "operand in %<asm%>");
5488078f
RS
1261 mode = word_mode;
1262 if (in != 0)
1263 inmode = word_mode;
1264 if (out != 0)
1265 outmode = word_mode;
1266 }
eab89b90
RK
1267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1268 if (HARD_REGNO_MODE_OK (i, mode)
55d796da 1269 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
09e18274 1270 break;
eab89b90
RK
1271 if (i == FIRST_PSEUDO_REGISTER)
1272 {
971801ff
JM
1273 error_for_asm (this_insn, "impossible register constraint "
1274 "in %<asm%>");
71156bcc
JH
1275 /* Avoid further trouble with this insn. */
1276 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1277 /* We used to continue here setting class to ALL_REGS, but it triggers
1278 sanity check on i386 for:
1279 void foo(long double d)
1280 {
1281 asm("" :: "a" (d));
1282 }
1283 Returning zero here ought to be safe as we take care in
1284 find_reloads to not process the reloads when instruction was
1285 replaced by USE. */
1286
1287 return 0;
eab89b90
RK
1288 }
1289 }
1290
cb2afeb3
R
1291 /* Optional output reloads are always OK even if we have no register class,
1292 since the function of these reloads is only to have spill_reg_store etc.
1293 set, so that the storing insn can be deleted later. */
55d796da 1294 gcc_assert (rclass != NO_REGS
41374e13 1295 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
5488078f 1296
55d796da 1297 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
eab89b90
RK
1298
1299 if (i == n_reloads)
1300 {
9ec7078b
RK
1301 /* See if we need a secondary reload register to move between CLASS
1302 and IN or CLASS and OUT. Get the icode and push any required reloads
1303 needed for each of them if so. */
eab89b90 1304
eab89b90 1305 if (in != 0)
9ec7078b 1306 secondary_in_reload
55d796da 1307 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
8a99f6f9 1308 &secondary_in_icode, NULL);
eab89b90 1309 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b 1310 secondary_out_reload
55d796da 1311 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
8a99f6f9 1312 type, &secondary_out_icode, NULL);
eab89b90
RK
1313
1314 /* We found no existing reload suitable for re-use.
1315 So add an additional reload. */
1316
e9a25f70
JL
1317#ifdef SECONDARY_MEMORY_NEEDED
1318 /* If a memory location is needed for the copy, make one. */
71a9b19a
RG
1319 if (in != 0
1320 && (REG_P (in)
1321 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
344b78b8
JH
1322 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1323 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
55d796da 1324 rclass, inmode))
e9a25f70
JL
1325 get_secondary_mem (in, inmode, opnum, type);
1326#endif
1327
9ec7078b 1328 i = n_reloads;
eceef4c9
BS
1329 rld[i].in = in;
1330 rld[i].out = out;
48c54229 1331 rld[i].rclass = rclass;
eceef4c9
BS
1332 rld[i].inmode = inmode;
1333 rld[i].outmode = outmode;
1334 rld[i].reg_rtx = 0;
1335 rld[i].optional = optional;
eceef4c9
BS
1336 rld[i].inc = 0;
1337 rld[i].nocombine = 0;
1338 rld[i].in_reg = inloc ? *inloc : 0;
1339 rld[i].out_reg = outloc ? *outloc : 0;
1340 rld[i].opnum = opnum;
1341 rld[i].when_needed = type;
1342 rld[i].secondary_in_reload = secondary_in_reload;
1343 rld[i].secondary_out_reload = secondary_out_reload;
1344 rld[i].secondary_in_icode = secondary_in_icode;
1345 rld[i].secondary_out_icode = secondary_out_icode;
1346 rld[i].secondary_p = 0;
eab89b90
RK
1347
1348 n_reloads++;
0dadecf6
RK
1349
1350#ifdef SECONDARY_MEMORY_NEEDED
71a9b19a
RG
1351 if (out != 0
1352 && (REG_P (out)
1353 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
344b78b8 1354 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
55d796da 1355 && SECONDARY_MEMORY_NEEDED (rclass,
344b78b8 1356 REGNO_REG_CLASS (reg_or_subregno (out)),
0dadecf6 1357 outmode))
a8c9daeb 1358 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1359#endif
eab89b90
RK
1360 }
1361 else
1362 {
1363 /* We are reusing an existing reload,
1364 but we may have additional information for it.
1365 For example, we may now have both IN and OUT
1366 while the old one may have just one of them. */
1367
6fd5ac08
JW
1368 /* The modes can be different. If they are, we want to reload in
1369 the larger mode, so that the value is valid for both modes. */
1370 if (inmode != VOIDmode
eceef4c9
BS
1371 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1372 rld[i].inmode = inmode;
6fd5ac08 1373 if (outmode != VOIDmode
eceef4c9
BS
1374 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1375 rld[i].outmode = outmode;
eab89b90 1376 if (in != 0)
cb2afeb3 1377 {
506b3b3a 1378 rtx in_reg = inloc ? *inloc : 0;
cb2afeb3
R
1379 /* If we merge reloads for two distinct rtl expressions that
1380 are identical in content, there might be duplicate address
1381 reloads. Remove the extra set now, so that if we later find
1382 that we can inherit this reload, we can get rid of the
b838974e
JL
1383 address reloads altogether.
1384
1385 Do not do this if both reloads are optional since the result
1386 would be an optional reload which could potentially leave
1387 unresolved address replacements.
1388
1389 It is not sufficient to call transfer_replacements since
1390 choose_reload_regs will remove the replacements for address
1391 reloads of inherited reloads which results in the same
1392 problem. */
eceef4c9
BS
1393 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1394 && ! (rld[i].optional && optional))
cb2afeb3
R
1395 {
1396 /* We must keep the address reload with the lower operand
1397 number alive. */
eceef4c9 1398 if (opnum > rld[i].opnum)
cb2afeb3
R
1399 {
1400 remove_address_replacements (in);
eceef4c9
BS
1401 in = rld[i].in;
1402 in_reg = rld[i].in_reg;
cb2afeb3
R
1403 }
1404 else
eceef4c9 1405 remove_address_replacements (rld[i].in);
cb2afeb3 1406 }
46662f25
MM
1407 /* When emitting reloads we don't necessarily look at the in-
1408 and outmode, but also directly at the operands (in and out).
1409 So we can't simply overwrite them with whatever we have found
1410 for this (to-be-merged) reload, we have to "merge" that too.
1411 Reusing another reload already verified that we deal with the
1412 same operands, just possibly in different modes. So we
1413 overwrite the operands only when the new mode is larger.
1414 See also PR33613. */
1415 if (!rld[i].in
1416 || GET_MODE_SIZE (GET_MODE (in))
1417 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1418 rld[i].in = in;
1419 if (!rld[i].in_reg
1420 || (in_reg
1421 && GET_MODE_SIZE (GET_MODE (in_reg))
1422 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1423 rld[i].in_reg = in_reg;
cb2afeb3 1424 }
eab89b90 1425 if (out != 0)
cb2afeb3 1426 {
46662f25
MM
1427 if (!rld[i].out
1428 || (out
1429 && GET_MODE_SIZE (GET_MODE (out))
1430 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1431 rld[i].out = out;
1432 if (outloc
1433 && (!rld[i].out_reg
1434 || GET_MODE_SIZE (GET_MODE (*outloc))
1435 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1436 rld[i].out_reg = *outloc;
cb2afeb3 1437 }
48c54229
KG
1438 if (reg_class_subset_p (rclass, rld[i].rclass))
1439 rld[i].rclass = rclass;
eceef4c9
BS
1440 rld[i].optional &= optional;
1441 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1442 opnum, rld[i].opnum))
1443 rld[i].when_needed = RELOAD_OTHER;
1444 rld[i].opnum = MIN (rld[i].opnum, opnum);
eab89b90
RK
1445 }
1446
e0120d6e 1447 /* If the ostensible rtx being reloaded differs from the rtx found
eab89b90
RK
1448 in the location to substitute, this reload is not safe to combine
1449 because we cannot reliably tell whether it appears in the insn. */
1450
1451 if (in != 0 && in != *inloc)
eceef4c9 1452 rld[i].nocombine = 1;
eab89b90
RK
1453
1454#if 0
1455 /* This was replaced by changes in find_reloads_address_1 and the new
1456 function inc_for_reload, which go with a new meaning of reload_inc. */
1457
1458 /* If this is an IN/OUT reload in an insn that sets the CC,
1459 it must be for an autoincrement. It doesn't work to store
1460 the incremented value after the insn because that would clobber the CC.
1461 So we must do the increment of the value reloaded from,
1462 increment it, store it back, then decrement again. */
1463 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1464 {
1465 out = 0;
eceef4c9
BS
1466 rld[i].out = 0;
1467 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
eab89b90
RK
1468 /* If we did not find a nonzero amount-to-increment-by,
1469 that contradicts the belief that IN is being incremented
1470 in an address in this insn. */
41374e13 1471 gcc_assert (rld[i].inc != 0);
eab89b90
RK
1472 }
1473#endif
1474
1475 /* If we will replace IN and OUT with the reload-reg,
1476 record where they are located so that substitution need
1477 not do a tree walk. */
1478
1479 if (replace_reloads)
1480 {
1481 if (inloc != 0)
1482 {
b3694847 1483 struct replacement *r = &replacements[n_replacements++];
eab89b90
RK
1484 r->what = i;
1485 r->subreg_loc = in_subreg_loc;
1486 r->where = inloc;
1487 r->mode = inmode;
1488 }
1489 if (outloc != 0 && outloc != inloc)
1490 {
b3694847 1491 struct replacement *r = &replacements[n_replacements++];
eab89b90
RK
1492 r->what = i;
1493 r->where = outloc;
1494 r->subreg_loc = out_subreg_loc;
1495 r->mode = outmode;
1496 }
1497 }
1498
1499 /* If this reload is just being introduced and it has both
1500 an incoming quantity and an outgoing quantity that are
1501 supposed to be made to match, see if either one of the two
1502 can serve as the place to reload into.
1503
eceef4c9 1504 If one of them is acceptable, set rld[i].reg_rtx
eab89b90
RK
1505 to that one. */
1506
eceef4c9 1507 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
eab89b90 1508 {
eceef4c9
BS
1509 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1510 inmode, outmode,
48c54229 1511 rld[i].rclass, i,
eceef4c9 1512 earlyclobber_operand_p (out));
eab89b90
RK
1513
1514 /* If the outgoing register already contains the same value
1515 as the incoming one, we can dispense with loading it.
1516 The easiest way to tell the caller that is to give a phony
1517 value for the incoming operand (same as outgoing one). */
eceef4c9 1518 if (rld[i].reg_rtx == out
f8cfc6aa 1519 && (REG_P (in) || CONSTANT_P (in))
bbbbb16a 1520 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
eab89b90 1521 static_reload_reg_p, i, inmode))
eceef4c9 1522 rld[i].in = out;
eab89b90
RK
1523 }
1524
1525 /* If this is an input reload and the operand contains a register that
1526 dies in this insn and is used nowhere else, see if it is the right class
1527 to be used for this reload. Use it if so. (This occurs most commonly
1528 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1529 this if it is also an output reload that mentions the register unless
1530 the output is a SUBREG that clobbers an entire register.
1531
1532 Note that the operand might be one of the spill regs, if it is a
1533 pseudo reg and we are in a block where spilling has not taken place.
1534 But if there is no spilling in this block, that is OK.
1535 An explicitly used hard reg cannot be a spill reg. */
1536
687b527d 1537 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
eab89b90
RK
1538 {
1539 rtx note;
1540 int regno;
d0b6af71
R
1541 enum machine_mode rel_mode = inmode;
1542
1543 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1544 rel_mode = outmode;
eab89b90
RK
1545
1546 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1547 if (REG_NOTE_KIND (note) == REG_DEAD
f8cfc6aa 1548 && REG_P (XEXP (note, 0))
eab89b90
RK
1549 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1550 && reg_mentioned_p (XEXP (note, 0), in)
96cdfb52 1551 /* Check that a former pseudo is valid; see find_dummy_reload. */
687b527d 1552 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
174b3107 1553 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
058e97ec 1554 ORIGINAL_REGNO (XEXP (note, 0)))
96cdfb52 1555 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
eab89b90 1556 && ! refers_to_regno_for_reload_p (regno,
09e18274
RS
1557 end_hard_regno (rel_mode,
1558 regno),
eab89b90 1559 PATTERN (this_insn), inloc)
05b4ec4f
RS
1560 /* If this is also an output reload, IN cannot be used as
1561 the reload register if it is set in this insn unless IN
1562 is also OUT. */
1563 && (out == 0 || in == out
1564 || ! hard_reg_set_here_p (regno,
09e18274 1565 end_hard_regno (rel_mode, regno),
05b4ec4f
RS
1566 PATTERN (this_insn)))
1567 /* ??? Why is this code so different from the previous?
1568 Is there any simple coherent way to describe the two together?
1569 What's going on here. */
eab89b90
RK
1570 && (in != out
1571 || (GET_CODE (in) == SUBREG
1572 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1573 / UNITS_PER_WORD)
1574 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1575 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1576 /* Make sure the operand fits in the reg that dies. */
d0b6af71
R
1577 && (GET_MODE_SIZE (rel_mode)
1578 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
eab89b90 1579 && HARD_REGNO_MODE_OK (regno, inmode)
96b42f4c 1580 && HARD_REGNO_MODE_OK (regno, outmode))
eab89b90 1581 {
db30db99 1582 unsigned int offs;
66fd46b6
JH
1583 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1584 hard_regno_nregs[regno][outmode]);
db30db99 1585
96b42f4c
BS
1586 for (offs = 0; offs < nregs; offs++)
1587 if (fixed_regs[regno + offs]
55d796da 1588 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
96b42f4c
BS
1589 regno + offs))
1590 break;
1591
35d6034b
R
1592 if (offs == nregs
1593 && (! (refers_to_regno_for_reload_p
09e18274 1594 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
35d6034b 1595 || can_reload_into (in, regno, inmode)))
96b42f4c 1596 {
d0b6af71 1597 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
96b42f4c
BS
1598 break;
1599 }
eab89b90
RK
1600 }
1601 }
1602
1603 if (out)
1604 output_reloadnum = i;
1605
1606 return i;
1607}
1608
1609/* Record an additional place we must replace a value
1610 for which we have already recorded a reload.
1611 RELOADNUM is the value returned by push_reload
1612 when the reload was recorded.
1613 This is used in insn patterns that use match_dup. */
1614
1615static void
0c20a65f 1616push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
eab89b90
RK
1617{
1618 if (replace_reloads)
1619 {
b3694847 1620 struct replacement *r = &replacements[n_replacements++];
eab89b90
RK
1621 r->what = reloadnum;
1622 r->where = loc;
1623 r->subreg_loc = 0;
1624 r->mode = mode;
1625 }
1626}
6cabe79e
UW
1627
1628/* Duplicate any replacement we have recorded to apply at
1629 location ORIG_LOC to also be performed at DUP_LOC.
1630 This is used in insn patterns that use match_dup. */
1631
1632static void
0c20a65f 1633dup_replacements (rtx *dup_loc, rtx *orig_loc)
6cabe79e
UW
1634{
1635 int i, n = n_replacements;
1636
1637 for (i = 0; i < n; i++)
1638 {
1639 struct replacement *r = &replacements[i];
1640 if (r->where == orig_loc)
1641 push_replacement (dup_loc, r->what, r->mode);
1642 }
1643}
eab89b90 1644\f
a8c9daeb
RK
1645/* Transfer all replacements that used to be in reload FROM to be in
1646 reload TO. */
1647
1648void
0c20a65f 1649transfer_replacements (int to, int from)
a8c9daeb
RK
1650{
1651 int i;
1652
1653 for (i = 0; i < n_replacements; i++)
1654 if (replacements[i].what == from)
1655 replacements[i].what = to;
1656}
1657\f
cb2afeb3
R
1658/* IN_RTX is the value loaded by a reload that we now decided to inherit,
1659 or a subpart of it. If we have any replacements registered for IN_RTX,
1660 cancel the reloads that were supposed to load them.
40f03658 1661 Return nonzero if we canceled any reloads. */
cb2afeb3 1662int
0c20a65f 1663remove_address_replacements (rtx in_rtx)
029b38ff
R
1664{
1665 int i, j;
cb2afeb3
R
1666 char reload_flags[MAX_RELOADS];
1667 int something_changed = 0;
029b38ff 1668
961192e1 1669 memset (reload_flags, 0, sizeof reload_flags);
029b38ff
R
1670 for (i = 0, j = 0; i < n_replacements; i++)
1671 {
cb2afeb3
R
1672 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1673 reload_flags[replacements[i].what] |= 1;
1674 else
1675 {
1676 replacements[j++] = replacements[i];
1677 reload_flags[replacements[i].what] |= 2;
1678 }
1679 }
1680 /* Note that the following store must be done before the recursive calls. */
1681 n_replacements = j;
1682
1683 for (i = n_reloads - 1; i >= 0; i--)
1684 {
1685 if (reload_flags[i] == 1)
1686 {
1687 deallocate_reload_reg (i);
eceef4c9
BS
1688 remove_address_replacements (rld[i].in);
1689 rld[i].in = 0;
cb2afeb3
R
1690 something_changed = 1;
1691 }
1692 }
1693 return something_changed;
1694}
029b38ff 1695\f
eab89b90
RK
1696/* If there is only one output reload, and it is not for an earlyclobber
1697 operand, try to combine it with a (logically unrelated) input reload
1698 to reduce the number of reload registers needed.
1699
1700 This is safe if the input reload does not appear in
1701 the value being output-reloaded, because this implies
1702 it is not needed any more once the original insn completes.
1703
1704 If that doesn't work, see we can use any of the registers that
1705 die in this insn as a reload register. We can if it is of the right
1706 class and does not appear in the value being output-reloaded. */
1707
1708static void
0c20a65f 1709combine_reloads (void)
eab89b90 1710{
96cdfb52 1711 int i, regno;
eab89b90 1712 int output_reload = -1;
8922eb5b 1713 int secondary_out = -1;
eab89b90
RK
1714 rtx note;
1715
1716 /* Find the output reload; return unless there is exactly one
1717 and that one is mandatory. */
1718
1719 for (i = 0; i < n_reloads; i++)
eceef4c9 1720 if (rld[i].out != 0)
eab89b90
RK
1721 {
1722 if (output_reload >= 0)
1723 return;
1724 output_reload = i;
1725 }
1726
eceef4c9 1727 if (output_reload < 0 || rld[output_reload].optional)
eab89b90
RK
1728 return;
1729
1730 /* An input-output reload isn't combinable. */
1731
eceef4c9 1732 if (rld[output_reload].in != 0)
eab89b90
RK
1733 return;
1734
6dc42e49 1735 /* If this reload is for an earlyclobber operand, we can't do anything. */
eceef4c9 1736 if (earlyclobber_operand_p (rld[output_reload].out))
4644aad4 1737 return;
eab89b90 1738
6b3736a1 1739 /* If there is a reload for part of the address of this operand, we would
9f5ed61a 1740 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
6b3736a1
RK
1741 its life to the point where doing this combine would not lower the
1742 number of spill registers needed. */
1743 for (i = 0; i < n_reloads; i++)
1744 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1745 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1746 && rld[i].opnum == rld[output_reload].opnum)
1747 return;
1748
eab89b90
RK
1749 /* Check each input reload; can we combine it? */
1750
1751 for (i = 0; i < n_reloads; i++)
eceef4c9 1752 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
eab89b90 1753 /* Life span of this reload must not extend past main insn. */
eceef4c9
BS
1754 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1755 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1756 && rld[i].when_needed != RELOAD_OTHER
48c54229
KG
1757 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1758 == CLASS_MAX_NREGS (rld[output_reload].rclass,
eceef4c9
BS
1759 rld[output_reload].outmode))
1760 && rld[i].inc == 0
1761 && rld[i].reg_rtx == 0
a8c9daeb 1762#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1763 /* Don't combine two reloads with different secondary
1764 memory locations. */
eceef4c9
BS
1765 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1766 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1767 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1768 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
a8c9daeb 1769#endif
e9a25f70 1770 && (SMALL_REGISTER_CLASSES
48c54229
KG
1771 ? (rld[i].rclass == rld[output_reload].rclass)
1772 : (reg_class_subset_p (rld[i].rclass,
1773 rld[output_reload].rclass)
1774 || reg_class_subset_p (rld[output_reload].rclass,
1775 rld[i].rclass)))
eceef4c9 1776 && (MATCHES (rld[i].in, rld[output_reload].out)
eab89b90
RK
1777 /* Args reversed because the first arg seems to be
1778 the one that we imagine being modified
1779 while the second is the one that might be affected. */
eceef4c9
BS
1780 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1781 rld[i].in)
eab89b90
RK
1782 /* However, if the input is a register that appears inside
1783 the output, then we also can't share.
1784 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1785 If the same reload reg is used for both reg 69 and the
1786 result to be stored in memory, then that result
1787 will clobber the address of the memory ref. */
f8cfc6aa 1788 && ! (REG_P (rld[i].in)
eceef4c9
BS
1789 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1790 rld[output_reload].out))))
4bf1d92e
JH
1791 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1792 rld[i].when_needed != RELOAD_FOR_INPUT)
48c54229 1793 && (reg_class_size[(int) rld[i].rclass]
e9a25f70 1794 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1795 /* We will allow making things slightly worse by combining an
1796 input and an output, but no worse than that. */
eceef4c9
BS
1797 && (rld[i].when_needed == RELOAD_FOR_INPUT
1798 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
eab89b90
RK
1799 {
1800 int j;
1801
1802 /* We have found a reload to combine with! */
eceef4c9
BS
1803 rld[i].out = rld[output_reload].out;
1804 rld[i].out_reg = rld[output_reload].out_reg;
1805 rld[i].outmode = rld[output_reload].outmode;
eab89b90 1806 /* Mark the old output reload as inoperative. */
eceef4c9 1807 rld[output_reload].out = 0;
eab89b90 1808 /* The combined reload is needed for the entire insn. */
eceef4c9 1809 rld[i].when_needed = RELOAD_OTHER;
0f41302f 1810 /* If the output reload had a secondary reload, copy it. */
eceef4c9 1811 if (rld[output_reload].secondary_out_reload != -1)
9ec7078b 1812 {
eceef4c9
BS
1813 rld[i].secondary_out_reload
1814 = rld[output_reload].secondary_out_reload;
1815 rld[i].secondary_out_icode
1816 = rld[output_reload].secondary_out_icode;
9ec7078b
RK
1817 }
1818
a8c9daeb
RK
1819#ifdef SECONDARY_MEMORY_NEEDED
1820 /* Copy any secondary MEM. */
eceef4c9
BS
1821 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1822 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1823 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
a8c9daeb 1824#endif
0f41302f 1825 /* If required, minimize the register class. */
48c54229
KG
1826 if (reg_class_subset_p (rld[output_reload].rclass,
1827 rld[i].rclass))
1828 rld[i].rclass = rld[output_reload].rclass;
eab89b90
RK
1829
1830 /* Transfer all replacements from the old reload to the combined. */
1831 for (j = 0; j < n_replacements; j++)
1832 if (replacements[j].what == output_reload)
1833 replacements[j].what = i;
1834
1835 return;
1836 }
1837
1838 /* If this insn has only one operand that is modified or written (assumed
1839 to be the first), it must be the one corresponding to this reload. It
1840 is safe to use anything that dies in this insn for that output provided
1841 that it does not occur in the output (we already know it isn't an
1842 earlyclobber. If this is an asm insn, give up. */
1843
1f9a0ec2 1844 if (INSN_CODE (this_insn) == -1)
eab89b90
RK
1845 return;
1846
a995e389
RH
1847 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1848 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1849 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
eab89b90
RK
1850 return;
1851
1852 /* See if some hard register that dies in this insn and is not used in
1853 the output is the right class. Only works if the register we pick
1854 up can fully hold our output reload. */
1855 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1856 if (REG_NOTE_KIND (note) == REG_DEAD
f8cfc6aa 1857 && REG_P (XEXP (note, 0))
96cdfb52
EB
1858 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1859 rld[output_reload].out)
1860 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1861 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
48c54229 1862 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
96cdfb52
EB
1863 regno)
1864 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1865 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
8922eb5b
RK
1866 /* Ensure that a secondary or tertiary reload for this output
1867 won't want this register. */
eceef4c9 1868 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
96cdfb52 1869 || (!(TEST_HARD_REG_BIT
48c54229 1870 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
eceef4c9 1871 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
96cdfb52 1872 || !(TEST_HARD_REG_BIT
48c54229 1873 (reg_class_contents[(int) rld[secondary_out].rclass],
96cdfb52
EB
1874 regno)))))
1875 && !fixed_regs[regno]
1876 /* Check that a former pseudo is valid; see find_dummy_reload. */
c1673e1b 1877 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
96cdfb52
EB
1878 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1879 ORIGINAL_REGNO (XEXP (note, 0)))
1880 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
eab89b90 1881 {
eceef4c9 1882 rld[output_reload].reg_rtx
96cdfb52 1883 = gen_rtx_REG (rld[output_reload].outmode, regno);
eab89b90
RK
1884 return;
1885 }
1886}
1887\f
1888/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1889 See if one of IN and OUT is a register that may be used;
1890 this is desirable since a spill-register won't be needed.
1891 If so, return the register rtx that proves acceptable.
1892
1893 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
55d796da 1894 RCLASS is the register class required for the reload.
eab89b90
RK
1895
1896 If FOR_REAL is >= 0, it is the number of the reload,
1897 and in some cases when it can be discovered that OUT doesn't need
eceef4c9 1898 to be computed, clear out rld[FOR_REAL].out.
eab89b90
RK
1899
1900 If FOR_REAL is -1, this should not be done, because this call
189086f9
RK
1901 is just to see if a register can be found, not to find and install it.
1902
40f03658 1903 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
189086f9
RK
1904 puts an additional constraint on being able to use IN for OUT since
1905 IN must not appear elsewhere in the insn (it is assumed that IN itself
1906 is safe from the earlyclobber). */
eab89b90
RK
1907
1908static rtx
0c20a65f
AJ
1909find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1910 enum machine_mode inmode, enum machine_mode outmode,
55d796da 1911 enum reg_class rclass, int for_real, int earlyclobber)
eab89b90
RK
1912{
1913 rtx in = real_in;
1914 rtx out = real_out;
1915 int in_offset = 0;
1916 int out_offset = 0;
1917 rtx value = 0;
1918
1919 /* If operands exceed a word, we can't use either of them
1920 unless they have the same size. */
36b50568
RS
1921 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1922 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1923 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1924 return 0;
1925
ddef6bc7
JJ
1926 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1927 respectively refers to a hard register. */
1928
eab89b90
RK
1929 /* Find the inside of any subregs. */
1930 while (GET_CODE (out) == SUBREG)
1931 {
f8cfc6aa 1932 if (REG_P (SUBREG_REG (out))
ddef6bc7
JJ
1933 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1934 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1935 GET_MODE (SUBREG_REG (out)),
1936 SUBREG_BYTE (out),
1937 GET_MODE (out));
eab89b90
RK
1938 out = SUBREG_REG (out);
1939 }
1940 while (GET_CODE (in) == SUBREG)
1941 {
f8cfc6aa 1942 if (REG_P (SUBREG_REG (in))
ddef6bc7
JJ
1943 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1944 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1945 GET_MODE (SUBREG_REG (in)),
1946 SUBREG_BYTE (in),
1947 GET_MODE (in));
eab89b90
RK
1948 in = SUBREG_REG (in);
1949 }
1950
1951 /* Narrow down the reg class, the same way push_reload will;
1952 otherwise we might find a dummy now, but push_reload won't. */
b5c82fa1 1953 {
55d796da 1954 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
e17e34d8 1955 if (preferred_class != NO_REGS)
55d796da 1956 rclass = preferred_class;
b5c82fa1 1957 }
eab89b90
RK
1958
1959 /* See if OUT will do. */
f8cfc6aa 1960 if (REG_P (out)
eab89b90
RK
1961 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1962 {
770ae6cc 1963 unsigned int regno = REGNO (out) + out_offset;
66fd46b6 1964 unsigned int nwords = hard_regno_nregs[regno][outmode];
d3b9996a 1965 rtx saved_rtx;
eab89b90
RK
1966
1967 /* When we consider whether the insn uses OUT,
1968 ignore references within IN. They don't prevent us
1969 from copying IN into OUT, because those refs would
1970 move into the insn that reloads IN.
1971
1972 However, we only ignore IN in its role as this reload.
1973 If the insn uses IN elsewhere and it contains OUT,
1974 that counts. We can't be sure it's the "same" operand
1975 so it might not go through this reload. */
d3b9996a 1976 saved_rtx = *inloc;
eab89b90
RK
1977 *inloc = const0_rtx;
1978
1979 if (regno < FIRST_PSEUDO_REGISTER
05fa709d 1980 && HARD_REGNO_MODE_OK (regno, outmode)
eab89b90
RK
1981 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1982 PATTERN (this_insn), outloc))
1983 {
770ae6cc
RK
1984 unsigned int i;
1985
eab89b90 1986 for (i = 0; i < nwords; i++)
55d796da 1987 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
eab89b90
RK
1988 regno + i))
1989 break;
1990
1991 if (i == nwords)
1992 {
f8cfc6aa 1993 if (REG_P (real_out))
eab89b90
RK
1994 value = real_out;
1995 else
38a448ca 1996 value = gen_rtx_REG (outmode, regno);
eab89b90
RK
1997 }
1998 }
1999
d3b9996a 2000 *inloc = saved_rtx;
eab89b90
RK
2001 }
2002
2003 /* Consider using IN if OUT was not acceptable
2004 or if OUT dies in this insn (like the quotient in a divmod insn).
2005 We can't use IN unless it is dies in this insn,
2006 which means we must know accurately which hard regs are live.
189086f9
RK
2007 Also, the result can't go in IN if IN is used within OUT,
2008 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
eab89b90 2009 if (hard_regs_live_known
f8cfc6aa 2010 && REG_P (in)
eab89b90
RK
2011 && REGNO (in) < FIRST_PSEUDO_REGISTER
2012 && (value == 0
2013 || find_reg_note (this_insn, REG_UNUSED, real_out))
2014 && find_reg_note (this_insn, REG_DEAD, real_in)
2015 && !fixed_regs[REGNO (in)]
36b50568
RS
2016 && HARD_REGNO_MODE_OK (REGNO (in),
2017 /* The only case where out and real_out might
2018 have different modes is where real_out
2019 is a subreg, and in that case, out
2020 has a real mode. */
2021 (GET_MODE (out) != VOIDmode
687b527d 2022 ? GET_MODE (out) : outmode))
687b527d 2023 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
96cdfb52
EB
2024 /* However only do this if we can be sure that this input
2025 operand doesn't correspond with an uninitialized pseudo.
2026 global can assign some hardreg to it that is the same as
2027 the one assigned to a different, also live pseudo (as it
2028 can ignore the conflict). We must never introduce writes
2029 to such hardregs, as they would clobber the other live
2030 pseudo. See PR 20973. */
174b3107 2031 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
96cdfb52
EB
2032 ORIGINAL_REGNO (in))
2033 /* Similarly, only do this if we can be sure that the death
2034 note is still valid. global can assign some hardreg to
2035 the pseudo referenced in the note and simultaneously a
2036 subword of this hardreg to a different, also live pseudo,
2037 because only another subword of the hardreg is actually
2038 used in the insn. This cannot happen if the pseudo has
2039 been assigned exactly one hardreg. See PR 33732. */
2040 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
eab89b90 2041 {
770ae6cc 2042 unsigned int regno = REGNO (in) + in_offset;
66fd46b6 2043 unsigned int nwords = hard_regno_nregs[regno][inmode];
eab89b90 2044
f4f4d0f8 2045 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
eab89b90 2046 && ! hard_reg_set_here_p (regno, regno + nwords,
189086f9
RK
2047 PATTERN (this_insn))
2048 && (! earlyclobber
2049 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2050 PATTERN (this_insn), inloc)))
eab89b90 2051 {
770ae6cc
RK
2052 unsigned int i;
2053
eab89b90 2054 for (i = 0; i < nwords; i++)
55d796da 2055 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
eab89b90
RK
2056 regno + i))
2057 break;
2058
2059 if (i == nwords)
2060 {
2061 /* If we were going to use OUT as the reload reg
2062 and changed our mind, it means OUT is a dummy that
2063 dies here. So don't bother copying value to it. */
2064 if (for_real >= 0 && value == real_out)
eceef4c9 2065 rld[for_real].out = 0;
f8cfc6aa 2066 if (REG_P (real_in))
eab89b90
RK
2067 value = real_in;
2068 else
38a448ca 2069 value = gen_rtx_REG (inmode, regno);
eab89b90
RK
2070 }
2071 }
2072 }
2073
2074 return value;
2075}
2076\f
2077/* This page contains subroutines used mainly for determining
2078 whether the IN or an OUT of a reload can serve as the
2079 reload register. */
2080
4644aad4
RK
2081/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2082
09a308fe 2083int
0c20a65f 2084earlyclobber_operand_p (rtx x)
4644aad4
RK
2085{
2086 int i;
2087
2088 for (i = 0; i < n_earlyclobbers; i++)
2089 if (reload_earlyclobbers[i] == x)
2090 return 1;
2091
2092 return 0;
2093}
2094
eab89b90
RK
2095/* Return 1 if expression X alters a hard reg in the range
2096 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2097 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2098 X should be the body of an instruction. */
2099
2100static int
0c20a65f 2101hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
eab89b90
RK
2102{
2103 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2104 {
b3694847 2105 rtx op0 = SET_DEST (x);
770ae6cc 2106
eab89b90
RK
2107 while (GET_CODE (op0) == SUBREG)
2108 op0 = SUBREG_REG (op0);
f8cfc6aa 2109 if (REG_P (op0))
eab89b90 2110 {
770ae6cc
RK
2111 unsigned int r = REGNO (op0);
2112
eab89b90
RK
2113 /* See if this reg overlaps range under consideration. */
2114 if (r < end_regno
09e18274 2115 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
eab89b90
RK
2116 return 1;
2117 }
2118 }
2119 else if (GET_CODE (x) == PARALLEL)
2120 {
b3694847 2121 int i = XVECLEN (x, 0) - 1;
770ae6cc 2122
eab89b90
RK
2123 for (; i >= 0; i--)
2124 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2125 return 1;
2126 }
2127
2128 return 0;
2129}
2130
2131/* Return 1 if ADDR is a valid memory address for mode MODE,
2132 and check that each pseudo reg has the proper kind of
2133 hard reg. */
2134
2135int
0c20a65f 2136strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
eab89b90 2137{
c6c3dba9 2138#ifdef GO_IF_LEGITIMATE_ADDRESS
eab89b90
RK
2139 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2140 return 0;
2141
2142 win:
2143 return 1;
c6c3dba9
PB
2144#else
2145 return targetm.legitimate_address_p (mode, addr, 1);
2146#endif
eab89b90 2147}
eab89b90
RK
2148\f
2149/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2150 if they are the same hard reg, and has special hacks for
2151 autoincrement and autodecrement.
2152 This is specifically intended for find_reloads to use
2153 in determining whether two operands match.
2154 X is the operand whose number is the lower of the two.
2155
2156 The value is 2 if Y contains a pre-increment that matches
2157 a non-incrementing address in X. */
2158
2159/* ??? To be completely correct, we should arrange to pass
2160 for X the output operand and for Y the input operand.
2161 For now, we assume that the output operand has the lower number
2162 because that is natural in (SET output (... input ...)). */
2163
2164int
0c20a65f 2165operands_match_p (rtx x, rtx y)
eab89b90 2166{
b3694847
SS
2167 int i;
2168 RTX_CODE code = GET_CODE (x);
2169 const char *fmt;
eab89b90 2170 int success_2;
05d10675 2171
eab89b90
RK
2172 if (x == y)
2173 return 1;
f8cfc6aa
JQ
2174 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2175 && (REG_P (y) || (GET_CODE (y) == SUBREG
2176 && REG_P (SUBREG_REG (y)))))
eab89b90 2177 {
b3694847 2178 int j;
eab89b90
RK
2179
2180 if (code == SUBREG)
2181 {
2182 i = REGNO (SUBREG_REG (x));
2183 if (i >= FIRST_PSEUDO_REGISTER)
2184 goto slow;
ddef6bc7
JJ
2185 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2186 GET_MODE (SUBREG_REG (x)),
2187 SUBREG_BYTE (x),
2188 GET_MODE (x));
eab89b90
RK
2189 }
2190 else
2191 i = REGNO (x);
2192
2193 if (GET_CODE (y) == SUBREG)
2194 {
2195 j = REGNO (SUBREG_REG (y));
2196 if (j >= FIRST_PSEUDO_REGISTER)
2197 goto slow;
ddef6bc7
JJ
2198 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2199 GET_MODE (SUBREG_REG (y)),
2200 SUBREG_BYTE (y),
2201 GET_MODE (y));
eab89b90
RK
2202 }
2203 else
2204 j = REGNO (y);
2205
dca52d80 2206 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
b436d712
DE
2207 multiple hard register group of scalar integer registers, so that
2208 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2209 register. */
dca52d80 2210 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
b436d712 2211 && SCALAR_INT_MODE_P (GET_MODE (x))
dca52d80 2212 && i < FIRST_PSEUDO_REGISTER)
66fd46b6 2213 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
dca52d80 2214 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
b436d712 2215 && SCALAR_INT_MODE_P (GET_MODE (y))
dca52d80 2216 && j < FIRST_PSEUDO_REGISTER)
66fd46b6 2217 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
dca52d80 2218
eab89b90
RK
2219 return i == j;
2220 }
2221 /* If two operands must match, because they are really a single
2222 operand of an assembler insn, then two postincrements are invalid
2223 because the assembler insn would increment only once.
09da1532 2224 On the other hand, a postincrement matches ordinary indexing
eab89b90 2225 if the postincrement is the output operand. */
4b983fdc 2226 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
eab89b90
RK
2227 return operands_match_p (XEXP (x, 0), y);
2228 /* Two preincrements are invalid
2229 because the assembler insn would increment only once.
09da1532 2230 On the other hand, a preincrement matches ordinary indexing
eab89b90
RK
2231 if the preincrement is the input operand.
2232 In this case, return 2, since some callers need to do special
2233 things when this happens. */
4b983fdc
RH
2234 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2235 || GET_CODE (y) == PRE_MODIFY)
eab89b90
RK
2236 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2237
2238 slow:
2239
37cf6116
RH
2240 /* Now we have disposed of all the cases in which different rtx codes
2241 can match. */
eab89b90
RK
2242 if (code != GET_CODE (y))
2243 return 0;
eab89b90
RK
2244
2245 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
eab89b90
RK
2246 if (GET_MODE (x) != GET_MODE (y))
2247 return 0;
2248
37cf6116
RH
2249 switch (code)
2250 {
2251 case CONST_INT:
2252 case CONST_DOUBLE:
091a3ac7 2253 case CONST_FIXED:
37cf6116
RH
2254 return 0;
2255
2256 case LABEL_REF:
2257 return XEXP (x, 0) == XEXP (y, 0);
2258 case SYMBOL_REF:
2259 return XSTR (x, 0) == XSTR (y, 0);
2260
2261 default:
2262 break;
2263 }
2264
eab89b90
RK
2265 /* Compare the elements. If any pair of corresponding elements
2266 fail to match, return 0 for the whole things. */
2267
2268 success_2 = 0;
2269 fmt = GET_RTX_FORMAT (code);
2270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2271 {
91bb873f 2272 int val, j;
eab89b90
RK
2273 switch (fmt[i])
2274 {
fb3821f7
CH
2275 case 'w':
2276 if (XWINT (x, i) != XWINT (y, i))
2277 return 0;
2278 break;
2279
eab89b90
RK
2280 case 'i':
2281 if (XINT (x, i) != XINT (y, i))
2282 return 0;
2283 break;
2284
2285 case 'e':
2286 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2287 if (val == 0)
2288 return 0;
2289 /* If any subexpression returns 2,
2290 we should return 2 if we are successful. */
2291 if (val == 2)
2292 success_2 = 1;
2293 break;
2294
2295 case '0':
2296 break;
2297
91bb873f
RH
2298 case 'E':
2299 if (XVECLEN (x, i) != XVECLEN (y, i))
2300 return 0;
2301 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2302 {
2303 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2304 if (val == 0)
2305 return 0;
2306 if (val == 2)
2307 success_2 = 1;
2308 }
2309 break;
2310
eab89b90
RK
2311 /* It is believed that rtx's at this level will never
2312 contain anything but integers and other rtx's,
2313 except for within LABEL_REFs and SYMBOL_REFs. */
2314 default:
41374e13 2315 gcc_unreachable ();
eab89b90
RK
2316 }
2317 }
2318 return 1 + success_2;
2319}
2320\f
eab89b90 2321/* Describe the range of registers or memory referenced by X.
05d10675 2322 If X is a register, set REG_FLAG and put the first register
eab89b90 2323 number into START and the last plus one into END.
05d10675 2324 If X is a memory reference, put a base address into BASE
eab89b90 2325 and a range of integer offsets into START and END.
05d10675 2326 If X is pushing on the stack, we can assume it causes no trouble,
eab89b90
RK
2327 so we set the SAFE field. */
2328
2329static struct decomposition
0c20a65f 2330decompose (rtx x)
eab89b90
RK
2331{
2332 struct decomposition val;
2333 int all_const = 0;
2334
6de9cd9a
DN
2335 memset (&val, 0, sizeof (val));
2336
41374e13 2337 switch (GET_CODE (x))
eab89b90 2338 {
41374e13
NS
2339 case MEM:
2340 {
2341 rtx base = NULL_RTX, offset = 0;
2342 rtx addr = XEXP (x, 0);
2343
2344 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2345 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2346 {
2347 val.base = XEXP (addr, 0);
2348 val.start = -GET_MODE_SIZE (GET_MODE (x));
2349 val.end = GET_MODE_SIZE (GET_MODE (x));
2350 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2351 return val;
2352 }
2353
2354 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2355 {
2356 if (GET_CODE (XEXP (addr, 1)) == PLUS
2357 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2358 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2359 {
2360 val.base = XEXP (addr, 0);
2361 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2362 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2363 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2364 return val;
2365 }
2366 }
2367
2368 if (GET_CODE (addr) == CONST)
2369 {
2370 addr = XEXP (addr, 0);
2371 all_const = 1;
2372 }
2373 if (GET_CODE (addr) == PLUS)
2374 {
2375 if (CONSTANT_P (XEXP (addr, 0)))
2376 {
2377 base = XEXP (addr, 1);
2378 offset = XEXP (addr, 0);
2379 }
2380 else if (CONSTANT_P (XEXP (addr, 1)))
2381 {
2382 base = XEXP (addr, 0);
2383 offset = XEXP (addr, 1);
2384 }
2385 }
2386
2387 if (offset == 0)
2388 {
2389 base = addr;
2390 offset = const0_rtx;
2391 }
2392 if (GET_CODE (offset) == CONST)
2393 offset = XEXP (offset, 0);
2394 if (GET_CODE (offset) == PLUS)
2395 {
481683e1 2396 if (CONST_INT_P (XEXP (offset, 0)))
41374e13
NS
2397 {
2398 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2399 offset = XEXP (offset, 0);
2400 }
481683e1 2401 else if (CONST_INT_P (XEXP (offset, 1)))
41374e13
NS
2402 {
2403 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2404 offset = XEXP (offset, 1);
2405 }
2406 else
2407 {
2408 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2409 offset = const0_rtx;
2410 }
2411 }
481683e1 2412 else if (!CONST_INT_P (offset))
41374e13
NS
2413 {
2414 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2415 offset = const0_rtx;
2416 }
2417
2418 if (all_const && GET_CODE (base) == PLUS)
2419 base = gen_rtx_CONST (GET_MODE (base), base);
2420
481683e1 2421 gcc_assert (CONST_INT_P (offset));
41374e13
NS
2422
2423 val.start = INTVAL (offset);
2424 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2425 val.base = base;
2426 }
2427 break;
2428
2429 case REG:
eab89b90 2430 val.reg_flag = 1;
05d10675 2431 val.start = true_regnum (x);
67468e8e 2432 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
eab89b90
RK
2433 {
2434 /* A pseudo with no hard reg. */
2435 val.start = REGNO (x);
2436 val.end = val.start + 1;
2437 }
2438 else
2439 /* A hard reg. */
09e18274 2440 val.end = end_hard_regno (GET_MODE (x), val.start);
41374e13
NS
2441 break;
2442
2443 case SUBREG:
f8cfc6aa 2444 if (!REG_P (SUBREG_REG (x)))
eab89b90
RK
2445 /* This could be more precise, but it's good enough. */
2446 return decompose (SUBREG_REG (x));
2447 val.reg_flag = 1;
05d10675 2448 val.start = true_regnum (x);
67468e8e 2449 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
eab89b90
RK
2450 return decompose (SUBREG_REG (x));
2451 else
2452 /* A hard reg. */
f1f4e530 2453 val.end = val.start + subreg_nregs (x);
41374e13
NS
2454 break;
2455
2456 case SCRATCH:
2457 /* This hasn't been assigned yet, so it can't conflict yet. */
2458 val.safe = 1;
2459 break;
2460
2461 default:
2462 gcc_assert (CONSTANT_P (x));
2463 val.safe = 1;
2464 break;
eab89b90 2465 }
eab89b90
RK
2466 return val;
2467}
2468
2469/* Return 1 if altering Y will not modify the value of X.
2470 Y is also described by YDATA, which should be decompose (Y). */
2471
2472static int
0c20a65f 2473immune_p (rtx x, rtx y, struct decomposition ydata)
eab89b90
RK
2474{
2475 struct decomposition xdata;
2476
2477 if (ydata.reg_flag)
f4f4d0f8 2478 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
eab89b90
RK
2479 if (ydata.safe)
2480 return 1;
2481
41374e13 2482 gcc_assert (MEM_P (y));
eab89b90 2483 /* If Y is memory and X is not, Y can't affect X. */
3c0cb5de 2484 if (!MEM_P (x))
eab89b90
RK
2485 return 1;
2486
4381f7c2 2487 xdata = decompose (x);
eab89b90
RK
2488
2489 if (! rtx_equal_p (xdata.base, ydata.base))
2490 {
2491 /* If bases are distinct symbolic constants, there is no overlap. */
2492 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2493 return 1;
2494 /* Constants and stack slots never overlap. */
2495 if (CONSTANT_P (xdata.base)
2496 && (ydata.base == frame_pointer_rtx
a36d4c62 2497 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2498 || ydata.base == stack_pointer_rtx))
2499 return 1;
2500 if (CONSTANT_P (ydata.base)
2501 && (xdata.base == frame_pointer_rtx
a36d4c62 2502 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2503 || xdata.base == stack_pointer_rtx))
2504 return 1;
2505 /* If either base is variable, we don't know anything. */
2506 return 0;
2507 }
2508
eab89b90
RK
2509 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2510}
44ace968 2511
f72aed24 2512/* Similar, but calls decompose. */
44ace968
JW
2513
2514int
0c20a65f 2515safe_from_earlyclobber (rtx op, rtx clobber)
44ace968
JW
2516{
2517 struct decomposition early_data;
2518
2519 early_data = decompose (clobber);
2520 return immune_p (op, clobber, early_data);
2521}
eab89b90
RK
2522\f
2523/* Main entry point of this file: search the body of INSN
2524 for values that need reloading and record them with push_reload.
2525 REPLACE nonzero means record also where the values occur
2526 so that subst_reloads can be used.
2527
2528 IND_LEVELS says how many levels of indirection are supported by this
2529 machine; a value of zero means that a memory reference is not a valid
2530 memory address.
2531
2532 LIVE_KNOWN says we have valid information about which hard
2533 regs are live at each point in the program; this is true when
2534 we are called from global_alloc but false when stupid register
2535 allocation has been done.
2536
2537 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2538 which is nonnegative if the reg has been commandeered for reloading into.
2539 It is copied into STATIC_RELOAD_REG_P and referenced from there
cb2afeb3 2540 by various subroutines.
eab89b90 2541
cb2afeb3
R
2542 Return TRUE if some operands need to be changed, because of swapping
2543 commutative operands, reg_equiv_address substitution, or whatever. */
2544
2545int
0c20a65f
AJ
2546find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2547 short *reload_reg_p)
eab89b90 2548{
b3694847
SS
2549 int insn_code_number;
2550 int i, j;
eab89b90 2551 int noperands;
eab89b90
RK
2552 /* These start out as the constraints for the insn
2553 and they are chewed up as we consider alternatives. */
7ac28727 2554 const char *constraints[MAX_RECOG_OPERANDS];
eab89b90
RK
2555 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2556 a register. */
2557 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2558 char pref_or_nothing[MAX_RECOG_OPERANDS];
0b540f12
UW
2559 /* Nonzero for a MEM operand whose entire address needs a reload.
2560 May be -1 to indicate the entire address may or may not need a reload. */
eab89b90 2561 int address_reloaded[MAX_RECOG_OPERANDS];
0b540f12
UW
2562 /* Nonzero for an address operand that needs to be completely reloaded.
2563 May be -1 to indicate the entire operand may or may not need a reload. */
9537511b 2564 int address_operand_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2565 /* Value of enum reload_type to use for operand. */
2566 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2567 /* Value of enum reload_type to use within address of operand. */
2568 enum reload_type address_type[MAX_RECOG_OPERANDS];
2569 /* Save the usage of each operand. */
2570 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2571 int no_input_reloads = 0, no_output_reloads = 0;
2572 int n_alternatives;
bbbbb16a 2573 enum reg_class this_alternative[MAX_RECOG_OPERANDS];
69add2a8 2574 char this_alternative_match_win[MAX_RECOG_OPERANDS];
eab89b90
RK
2575 char this_alternative_win[MAX_RECOG_OPERANDS];
2576 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2577 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2578 int this_alternative_matches[MAX_RECOG_OPERANDS];
2579 int swapped;
2580 int goal_alternative[MAX_RECOG_OPERANDS];
2581 int this_alternative_number;
a544cfd2 2582 int goal_alternative_number = 0;
eab89b90
RK
2583 int operand_reloadnum[MAX_RECOG_OPERANDS];
2584 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2585 int goal_alternative_matched[MAX_RECOG_OPERANDS];
69add2a8 2586 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
eab89b90
RK
2587 char goal_alternative_win[MAX_RECOG_OPERANDS];
2588 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2589 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2590 int goal_alternative_swapped;
eab89b90
RK
2591 int best;
2592 int commutative;
2593 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2594 rtx substed_operand[MAX_RECOG_OPERANDS];
2595 rtx body = PATTERN (insn);
2596 rtx set = single_set (insn);
a544cfd2 2597 int goal_earlyclobber = 0, this_earlyclobber;
eab89b90 2598 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
cb2afeb3 2599 int retval = 0;
eab89b90
RK
2600
2601 this_insn = insn;
eab89b90
RK
2602 n_reloads = 0;
2603 n_replacements = 0;
eab89b90
RK
2604 n_earlyclobbers = 0;
2605 replace_reloads = replace;
2606 hard_regs_live_known = live_known;
2607 static_reload_reg_p = reload_reg_p;
2608
2609 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2610 neither are insns that SET cc0. Insns that use CC0 are not allowed
2611 to have any input reloads. */
4b4bf941 2612 if (JUMP_P (insn) || CALL_P (insn))
eab89b90
RK
2613 no_output_reloads = 1;
2614
2615#ifdef HAVE_cc0
2616 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2617 no_input_reloads = 1;
2618 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2619 no_output_reloads = 1;
2620#endif
05d10675 2621
0dadecf6
RK
2622#ifdef SECONDARY_MEMORY_NEEDED
2623 /* The eliminated forms of any secondary memory locations are per-insn, so
2624 clear them out here. */
2625
048b0d2e
JH
2626 if (secondary_memlocs_elim_used)
2627 {
2628 memset (secondary_memlocs_elim, 0,
2629 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2630 secondary_memlocs_elim_used = 0;
2631 }
0dadecf6
RK
2632#endif
2633
0a578fee
BS
2634 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2635 is cheap to move between them. If it is not, there may not be an insn
2636 to do the copy, so we may need a reload. */
2637 if (GET_CODE (body) == SET
f8cfc6aa 2638 && REG_P (SET_DEST (body))
0a578fee 2639 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
f8cfc6aa 2640 && REG_P (SET_SRC (body))
0a578fee 2641 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
e56b4594
AO
2642 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2643 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
0a578fee
BS
2644 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2645 return 0;
eab89b90 2646
0a578fee 2647 extract_insn (insn);
eab89b90 2648
1ccbefce
RH
2649 noperands = reload_n_operands = recog_data.n_operands;
2650 n_alternatives = recog_data.n_alternatives;
eab89b90 2651
0a578fee
BS
2652 /* Just return "no reloads" if insn has no operands with constraints. */
2653 if (noperands == 0 || n_alternatives == 0)
2654 return 0;
eab89b90 2655
0a578fee
BS
2656 insn_code_number = INSN_CODE (insn);
2657 this_insn_is_asm = insn_code_number < 0;
eab89b90 2658
f428f252
KG
2659 memcpy (operand_mode, recog_data.operand_mode,
2660 noperands * sizeof (enum machine_mode));
7ac28727
AK
2661 memcpy (constraints, recog_data.constraints,
2662 noperands * sizeof (const char *));
eab89b90
RK
2663
2664 commutative = -1;
2665
2666 /* If we will need to know, later, whether some pair of operands
2667 are the same, we must compare them now and save the result.
2668 Reloading the base and index registers will clobber them
2669 and afterward they will fail to match. */
2670
2671 for (i = 0; i < noperands; i++)
2672 {
7ac28727 2673 const char *p;
b3694847 2674 int c;
7ac28727 2675 char *end;
eab89b90 2676
1ccbefce 2677 substed_operand[i] = recog_data.operand[i];
eab89b90
RK
2678 p = constraints[i];
2679
a8c9daeb
RK
2680 modified[i] = RELOAD_READ;
2681
05d10675 2682 /* Scan this operand's constraint to see if it is an output operand,
a8c9daeb 2683 an in-out operand, is commutative, or should match another. */
eab89b90 2684
97488870 2685 while ((c = *p))
a8c9daeb 2686 {
97488870 2687 p += CONSTRAINT_LEN (c, p);
f345f21a 2688 switch (c)
a8c9daeb 2689 {
f345f21a
JH
2690 case '=':
2691 modified[i] = RELOAD_WRITE;
2692 break;
2693 case '+':
2694 modified[i] = RELOAD_READ_WRITE;
2695 break;
2696 case '%':
2697 {
2698 /* The last operand should not be marked commutative. */
41374e13 2699 gcc_assert (i != noperands - 1);
f345f21a
JH
2700
2701 /* We currently only support one commutative pair of
2702 operands. Some existing asm code currently uses more
2703 than one pair. Previously, that would usually work,
2704 but sometimes it would crash the compiler. We
2705 continue supporting that case as well as we can by
2706 silently ignoring all but the first pair. In the
2707 future we may handle it correctly. */
2708 if (commutative < 0)
2709 commutative = i;
41374e13
NS
2710 else
2711 gcc_assert (this_insn_is_asm);
f345f21a
JH
2712 }
2713 break;
2714 /* Use of ISDIGIT is tempting here, but it may get expensive because
2715 of locale support we don't want. */
2716 case '0': case '1': case '2': case '3': case '4':
2717 case '5': case '6': case '7': case '8': case '9':
2718 {
7ac28727
AK
2719 c = strtoul (p - 1, &end, 10);
2720 p = end;
f345f21a
JH
2721
2722 operands_match[c][i]
2723 = operands_match_p (recog_data.operand[c],
2724 recog_data.operand[i]);
2725
2726 /* An operand may not match itself. */
41374e13 2727 gcc_assert (c != i);
f345f21a
JH
2728
2729 /* If C can be commuted with C+1, and C might need to match I,
2730 then C+1 might also need to match I. */
2731 if (commutative >= 0)
2732 {
2733 if (c == commutative || c == commutative + 1)
2734 {
2735 int other = c + (c == commutative ? 1 : -1);
2736 operands_match[other][i]
2737 = operands_match_p (recog_data.operand[other],
2738 recog_data.operand[i]);
2739 }
2740 if (i == commutative || i == commutative + 1)
2741 {
2742 int other = i + (i == commutative ? 1 : -1);
2743 operands_match[c][other]
2744 = operands_match_p (recog_data.operand[c],
2745 recog_data.operand[other]);
2746 }
2747 /* Note that C is supposed to be less than I.
2748 No need to consider altering both C and I because in
2749 that case we would alter one into the other. */
2750 }
2751 }
a8c9daeb
RK
2752 }
2753 }
eab89b90
RK
2754 }
2755
2756 /* Examine each operand that is a memory reference or memory address
2757 and reload parts of the addresses into index registers.
eab89b90
RK
2758 Also here any references to pseudo regs that didn't get hard regs
2759 but are equivalent to constants get replaced in the insn itself
05d10675 2760 with those constants. Nobody will ever see them again.
eab89b90
RK
2761
2762 Finally, set up the preferred classes of each operand. */
2763
2764 for (i = 0; i < noperands; i++)
2765 {
b3694847 2766 RTX_CODE code = GET_CODE (recog_data.operand[i]);
a8c9daeb 2767
eab89b90 2768 address_reloaded[i] = 0;
9537511b 2769 address_operand_reloaded[i] = 0;
a8c9daeb
RK
2770 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2771 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2772 : RELOAD_OTHER);
2773 address_type[i]
2774 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2775 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2776 : RELOAD_OTHER);
eab89b90 2777
0d38001f
RS
2778 if (*constraints[i] == 0)
2779 /* Ignore things like match_operator operands. */
2780 ;
ccfc6cc8 2781 else if (constraints[i][0] == 'p'
97488870 2782 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
eab89b90 2783 {
9537511b
UW
2784 address_operand_reloaded[i]
2785 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2786 recog_data.operand[i],
2787 recog_data.operand_loc[i],
2788 i, operand_type[i], ind_levels, insn);
b685dbae 2789
05d10675 2790 /* If we now have a simple operand where we used to have a
b685dbae 2791 PLUS or MULT, re-recognize and try again. */
ec8e098d 2792 if ((OBJECT_P (*recog_data.operand_loc[i])
1ccbefce
RH
2793 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2794 && (GET_CODE (recog_data.operand[i]) == MULT
2795 || GET_CODE (recog_data.operand[i]) == PLUS))
b685dbae
RK
2796 {
2797 INSN_CODE (insn) = -1;
cb2afeb3
R
2798 retval = find_reloads (insn, replace, ind_levels, live_known,
2799 reload_reg_p);
2800 return retval;
b685dbae
RK
2801 }
2802
1ccbefce
RH
2803 recog_data.operand[i] = *recog_data.operand_loc[i];
2804 substed_operand[i] = recog_data.operand[i];
9537511b
UW
2805
2806 /* Address operands are reloaded in their existing mode,
2807 no matter what is specified in the machine description. */
2808 operand_mode[i] = GET_MODE (recog_data.operand[i]);
eab89b90
RK
2809 }
2810 else if (code == MEM)
2811 {
ab87f8c8 2812 address_reloaded[i]
1ccbefce
RH
2813 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2814 recog_data.operand_loc[i],
2815 XEXP (recog_data.operand[i], 0),
2816 &XEXP (recog_data.operand[i], 0),
ab87f8c8 2817 i, address_type[i], ind_levels, insn);
1ccbefce
RH
2818 recog_data.operand[i] = *recog_data.operand_loc[i];
2819 substed_operand[i] = recog_data.operand[i];
eab89b90
RK
2820 }
2821 else if (code == SUBREG)
b60a8416 2822 {
1ccbefce 2823 rtx reg = SUBREG_REG (recog_data.operand[i]);
b60a8416 2824 rtx op
1ccbefce 2825 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
b60a8416
R
2826 ind_levels,
2827 set != 0
1ccbefce 2828 && &SET_DEST (set) == recog_data.operand_loc[i],
9246aadb
AH
2829 insn,
2830 &address_reloaded[i]);
b60a8416
R
2831
2832 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2833 that didn't get a hard register, emit a USE with a REG_EQUAL
2834 note in front so that we might inherit a previous, possibly
2835 wider reload. */
05d10675 2836
cb2afeb3 2837 if (replace
3c0cb5de 2838 && MEM_P (op)
f8cfc6aa 2839 && REG_P (reg)
b60a8416 2840 && (GET_MODE_SIZE (GET_MODE (reg))
c07fdd94
RS
2841 >= GET_MODE_SIZE (GET_MODE (op)))
2842 && reg_equiv_constant[REGNO (reg)] == 0)
3d238248
JJ
2843 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2844 insn),
2845 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
b60a8416 2846
1ccbefce 2847 substed_operand[i] = recog_data.operand[i] = op;
b60a8416 2848 }
ec8e098d 2849 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
ff428c90
ILT
2850 /* We can get a PLUS as an "operand" as a result of register
2851 elimination. See eliminate_regs and gen_reload. We handle
2852 a unary operator by reloading the operand. */
1ccbefce
RH
2853 substed_operand[i] = recog_data.operand[i]
2854 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
9246aadb
AH
2855 ind_levels, 0, insn,
2856 &address_reloaded[i]);
eab89b90
RK
2857 else if (code == REG)
2858 {
2859 /* This is equivalent to calling find_reloads_toplev.
2860 The code is duplicated for speed.
2861 When we find a pseudo always equivalent to a constant,
2862 we replace it by the constant. We must be sure, however,
2863 that we don't try to replace it in the insn in which it
6d2f8887 2864 is being set. */
b3694847 2865 int regno = REGNO (recog_data.operand[i]);
eab89b90 2866 if (reg_equiv_constant[regno] != 0
1ccbefce 2867 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
726e2d54
JW
2868 {
2869 /* Record the existing mode so that the check if constants are
eceef4c9 2870 allowed will work when operand_mode isn't specified. */
726e2d54
JW
2871
2872 if (operand_mode[i] == VOIDmode)
1ccbefce 2873 operand_mode[i] = GET_MODE (recog_data.operand[i]);
726e2d54 2874
1ccbefce 2875 substed_operand[i] = recog_data.operand[i]
05d10675 2876 = reg_equiv_constant[regno];
726e2d54 2877 }
cb2afeb3
R
2878 if (reg_equiv_memory_loc[regno] != 0
2879 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2880 /* We need not give a valid is_set_dest argument since the case
2881 of a constant equivalence was checked above. */
1ccbefce
RH
2882 substed_operand[i] = recog_data.operand[i]
2883 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
9246aadb
AH
2884 ind_levels, 0, insn,
2885 &address_reloaded[i]);
eab89b90 2886 }
aaf9712e
RS
2887 /* If the operand is still a register (we didn't replace it with an
2888 equivalent), get the preferred class to reload it into. */
1ccbefce 2889 code = GET_CODE (recog_data.operand[i]);
aaf9712e 2890 preferred_class[i]
1ccbefce
RH
2891 = ((code == REG && REGNO (recog_data.operand[i])
2892 >= FIRST_PSEUDO_REGISTER)
2893 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2894 : NO_REGS);
aaf9712e 2895 pref_or_nothing[i]
1ccbefce
RH
2896 = (code == REG
2897 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2898 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
eab89b90
RK
2899 }
2900
2901 /* If this is simply a copy from operand 1 to operand 0, merge the
2902 preferred classes for the operands. */
1ccbefce
RH
2903 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2904 && recog_data.operand[1] == SET_SRC (set))
eab89b90
RK
2905 {
2906 preferred_class[0] = preferred_class[1]
2907 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2908 pref_or_nothing[0] |= pref_or_nothing[1];
2909 pref_or_nothing[1] |= pref_or_nothing[0];
2910 }
2911
2912 /* Now see what we need for pseudo-regs that didn't get hard regs
2913 or got the wrong kind of hard reg. For this, we must consider
2914 all the operands together against the register constraints. */
2915
812f2051 2916 best = MAX_RECOG_OPERANDS * 2 + 600;
eab89b90
RK
2917
2918 swapped = 0;
2919 goal_alternative_swapped = 0;
2920 try_swapped:
2921
2922 /* The constraints are made of several alternatives.
2923 Each operand's constraint looks like foo,bar,... with commas
2924 separating the alternatives. The first alternatives for all
2925 operands go together, the second alternatives go together, etc.
2926
2927 First loop over alternatives. */
2928
2929 for (this_alternative_number = 0;
2930 this_alternative_number < n_alternatives;
2931 this_alternative_number++)
2932 {
2933 /* Loop over operands for one constraint alternative. */
2934 /* LOSERS counts those that don't fit this alternative
2935 and would require loading. */
2936 int losers = 0;
2937 /* BAD is set to 1 if it some operand can't fit this alternative
2938 even after reloading. */
2939 int bad = 0;
2940 /* REJECT is a count of how undesirable this alternative says it is
2941 if any reloading is required. If the alternative matches exactly
2942 then REJECT is ignored, but otherwise it gets this much
05d10675 2943 counted against it in addition to the reloading needed. Each
eab89b90
RK
2944 ? counts three times here since we want the disparaging caused by
2945 a bad register class to only count 1/3 as much. */
2946 int reject = 0;
2947
7ac28727
AK
2948 if (!recog_data.alternative_enabled_p[this_alternative_number])
2949 {
2950 int i;
2951
2952 for (i = 0; i < recog_data.n_operands; i++)
2953 constraints[i] = skip_alternative (constraints[i]);
2954
2955 continue;
2956 }
2957
eab89b90
RK
2958 this_earlyclobber = 0;
2959
2960 for (i = 0; i < noperands; i++)
2961 {
7ac28727 2962 const char *p = constraints[i];
97488870
R
2963 char *end;
2964 int len;
b3694847 2965 int win = 0;
69add2a8 2966 int did_match = 0;
82efa2e5 2967 /* 0 => this operand can be reloaded somehow for this alternative. */
eab89b90
RK
2968 int badop = 1;
2969 /* 0 => this operand can be reloaded if the alternative allows regs. */
2970 int winreg = 0;
2971 int c;
97488870 2972 int m;
b3694847 2973 rtx operand = recog_data.operand[i];
eab89b90
RK
2974 int offset = 0;
2975 /* Nonzero means this is a MEM that must be reloaded into a reg
2976 regardless of what the constraint says. */
2977 int force_reload = 0;
2978 int offmemok = 0;
9d926da5
RK
2979 /* Nonzero if a constant forced into memory would be OK for this
2980 operand. */
2981 int constmemok = 0;
eab89b90
RK
2982 int earlyclobber = 0;
2983
ff428c90 2984 /* If the predicate accepts a unary operator, it means that
05d10675 2985 we need to reload the operand, but do not do this for
ad729076 2986 match_operator and friends. */
ec8e098d 2987 if (UNARY_P (operand) && *p != 0)
ff428c90
ILT
2988 operand = XEXP (operand, 0);
2989
eab89b90
RK
2990 /* If the operand is a SUBREG, extract
2991 the REG or MEM (or maybe even a constant) within.
2992 (Constants can occur as a result of reg_equiv_constant.) */
2993
2994 while (GET_CODE (operand) == SUBREG)
2995 {
ddef6bc7
JJ
2996 /* Offset only matters when operand is a REG and
2997 it is a hard reg. This is because it is passed
2998 to reg_fits_class_p if it is a REG and all pseudos
2999 return 0 from that function. */
f8cfc6aa 3000 if (REG_P (SUBREG_REG (operand))
ddef6bc7
JJ
3001 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3002 {
eef302d2
RS
3003 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3004 GET_MODE (SUBREG_REG (operand)),
3005 SUBREG_BYTE (operand),
3006 GET_MODE (operand)) < 0)
3007 force_reload = 1;
ddef6bc7
JJ
3008 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3009 GET_MODE (SUBREG_REG (operand)),
3010 SUBREG_BYTE (operand),
3011 GET_MODE (operand));
3012 }
eab89b90 3013 operand = SUBREG_REG (operand);
38e01259 3014 /* Force reload if this is a constant or PLUS or if there may
a61c98cf
RK
3015 be a problem accessing OPERAND in the outer mode. */
3016 if (CONSTANT_P (operand)
ca769828 3017 || GET_CODE (operand) == PLUS
03b72c86
RK
3018 /* We must force a reload of paradoxical SUBREGs
3019 of a MEM because the alignment of the inner value
beb5a9b8
RK
3020 may not be enough to do the outer reference. On
3021 big-endian machines, it may also reference outside
3022 the object.
03b72c86
RK
3023
3024 On machines that extend byte operations and we have a
486d8509
RK
3025 SUBREG where both the inner and outer modes are no wider
3026 than a word and the inner mode is narrower, is integral,
3027 and gets extended when loaded from memory, combine.c has
3028 made assumptions about the behavior of the machine in such
03b72c86
RK
3029 register access. If the data is, in fact, in memory we
3030 must always load using the size assumed to be in the
05d10675 3031 register and let the insn do the different-sized
5ec105cd
RH
3032 accesses.
3033
05d10675 3034 This is doubly true if WORD_REGISTER_OPERATIONS. In
5ec105cd 3035 this case eliminate_regs has left non-paradoxical
bd235d86 3036 subregs for push_reload to see. Make sure it does
5ec105cd
RH
3037 by forcing the reload.
3038
3039 ??? When is it right at this stage to have a subreg
14b493d6 3040 of a mem that is _not_ to be handled specially? IMO
5ec105cd 3041 those should have been reduced to just a mem. */
3c0cb5de 3042 || ((MEM_P (operand)
f8cfc6aa 3043 || (REG_P (operand)
a61c98cf 3044 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
5ec105cd 3045#ifndef WORD_REGISTER_OPERATIONS
03b72c86
RK
3046 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3047 < BIGGEST_ALIGNMENT)
3048 && (GET_MODE_SIZE (operand_mode[i])
3049 > GET_MODE_SIZE (GET_MODE (operand))))
b605eb59 3050 || BYTES_BIG_ENDIAN
03b72c86
RK
3051#ifdef LOAD_EXTEND_OP
3052 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3053 && (GET_MODE_SIZE (GET_MODE (operand))
3054 <= UNITS_PER_WORD)
3055 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
3056 > GET_MODE_SIZE (GET_MODE (operand)))
3057 && INTEGRAL_MODE_P (GET_MODE (operand))
f822d252 3058 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
46da6b3a 3059#endif
5ec105cd
RH
3060 )
3061#endif
3062 )
ddef6bc7 3063 )
eab89b90
RK
3064 force_reload = 1;
3065 }
3066
bbbbb16a 3067 this_alternative[i] = NO_REGS;
eab89b90 3068 this_alternative_win[i] = 0;
69add2a8 3069 this_alternative_match_win[i] = 0;
eab89b90
RK
3070 this_alternative_offmemok[i] = 0;
3071 this_alternative_earlyclobber[i] = 0;
3072 this_alternative_matches[i] = -1;
3073
3074 /* An empty constraint or empty alternative
3075 allows anything which matched the pattern. */
3076 if (*p == 0 || *p == ',')
3077 win = 1, badop = 0;
3078
3079 /* Scan this alternative's specs for this operand;
3080 set WIN if the operand fits any letter in this alternative.
3081 Otherwise, clear BADOP if this operand could
3082 fit some letter after reloads,
3083 or set WINREG if this operand could fit after reloads
3084 provided the constraint allows some registers. */
3085
97488870
R
3086 do
3087 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
eab89b90 3088 {
97488870
R
3089 case '\0':
3090 len = 0;
3091 break;
3092 case ',':
3093 c = '\0';
3094 break;
3095
c5c76735 3096 case '=': case '+': case '*':
eab89b90
RK
3097 break;
3098
3099 case '%':
7e3aa041
ILT
3100 /* We only support one commutative marker, the first
3101 one. We already set commutative above. */
eab89b90
RK
3102 break;
3103
3104 case '?':
812f2051 3105 reject += 6;
eab89b90
RK
3106 break;
3107
3108 case '!':
812f2051 3109 reject = 600;
eab89b90
RK
3110 break;
3111
3112 case '#':
3113 /* Ignore rest of this alternative as far as
3114 reloading is concerned. */
97488870 3115 do
4381f7c2 3116 p++;
97488870
R
3117 while (*p && *p != ',');
3118 len = 0;
eab89b90
RK
3119 break;
3120
c5c76735
JL
3121 case '0': case '1': case '2': case '3': case '4':
3122 case '5': case '6': case '7': case '8': case '9':
97488870
R
3123 m = strtoul (p, &end, 10);
3124 p = end;
3125 len = 0;
c5c76735 3126
97488870 3127 this_alternative_matches[i] = m;
eab89b90
RK
3128 /* We are supposed to match a previous operand.
3129 If we do, we win if that one did.
3130 If we do not, count both of the operands as losers.
3131 (This is too conservative, since most of the time
3132 only a single reload insn will be needed to make
3133 the two operands win. As a result, this alternative
3134 may be rejected when it is actually desirable.) */
97488870 3135 if ((swapped && (m != commutative || i != commutative + 1))
eab89b90
RK
3136 /* If we are matching as if two operands were swapped,
3137 also pretend that operands_match had been computed
3138 with swapped.
3139 But if I is the second of those and C is the first,
3140 don't exchange them, because operands_match is valid
3141 only on one side of its diagonal. */
3142 ? (operands_match
97488870
R
3143 [(m == commutative || m == commutative + 1)
3144 ? 2 * commutative + 1 - m : m]
05d10675 3145 [(i == commutative || i == commutative + 1)
4381f7c2 3146 ? 2 * commutative + 1 - i : i])
97488870 3147 : operands_match[m][i])
fc79eafe
JW
3148 {
3149 /* If we are matching a non-offsettable address where an
3150 offsettable address was expected, then we must reject
3151 this combination, because we can't reload it. */
97488870 3152 if (this_alternative_offmemok[m]
3c0cb5de 3153 && MEM_P (recog_data.operand[m])
bbbbb16a 3154 && this_alternative[m] == NO_REGS
97488870 3155 && ! this_alternative_win[m])
fc79eafe
JW
3156 bad = 1;
3157
97488870 3158 did_match = this_alternative_win[m];
fc79eafe 3159 }
eab89b90
RK
3160 else
3161 {
3162 /* Operands don't match. */
3163 rtx value;
87cda9d6 3164 int loc1, loc2;
eab89b90
RK
3165 /* Retroactively mark the operand we had to match
3166 as a loser, if it wasn't already. */
97488870 3167 if (this_alternative_win[m])
eab89b90 3168 losers++;
97488870 3169 this_alternative_win[m] = 0;
bbbbb16a 3170 if (this_alternative[m] == NO_REGS)
eab89b90
RK
3171 bad = 1;
3172 /* But count the pair only once in the total badness of
87cda9d6
DJ
3173 this alternative, if the pair can be a dummy reload.
3174 The pointers in operand_loc are not swapped; swap
3175 them by hand if necessary. */
3176 if (swapped && i == commutative)
3177 loc1 = commutative + 1;
3178 else if (swapped && i == commutative + 1)
3179 loc1 = commutative;
3180 else
3181 loc1 = i;
3182 if (swapped && m == commutative)
3183 loc2 = commutative + 1;
3184 else if (swapped && m == commutative + 1)
3185 loc2 = commutative;
3186 else
3187 loc2 = m;
eab89b90 3188 value
1ccbefce 3189 = find_dummy_reload (recog_data.operand[i],
97488870 3190 recog_data.operand[m],
87cda9d6
DJ
3191 recog_data.operand_loc[loc1],
3192 recog_data.operand_loc[loc2],
97488870
R
3193 operand_mode[i], operand_mode[m],
3194 this_alternative[m], -1,
3195 this_alternative_earlyclobber[m]);
eab89b90
RK
3196
3197 if (value != 0)
3198 losers--;
3199 }
3200 /* This can be fixed with reloads if the operand
3201 we are supposed to match can be fixed with reloads. */
3202 badop = 0;
97488870 3203 this_alternative[i] = this_alternative[m];
e64c4f9e
RK
3204
3205 /* If we have to reload this operand and some previous
3206 operand also had to match the same thing as this
3207 operand, we don't know how to do that. So reject this
3208 alternative. */
69add2a8 3209 if (! did_match || force_reload)
e64c4f9e
RK
3210 for (j = 0; j < i; j++)
3211 if (this_alternative_matches[j]
3212 == this_alternative_matches[i])
3213 badop = 1;
eab89b90
RK
3214 break;
3215
3216 case 'p':
3217 /* All necessary reloads for an address_operand
3218 were handled in find_reloads_address. */
bbbbb16a
ILT
3219 this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3220 SCRATCH);
eab89b90 3221 win = 1;
8d53318f 3222 badop = 0;
eab89b90
RK
3223 break;
3224
a4edaf83 3225 case TARGET_MEM_CONSTRAINT:
eab89b90
RK
3226 if (force_reload)
3227 break;
3c0cb5de 3228 if (MEM_P (operand)
f8cfc6aa 3229 || (REG_P (operand)
eab89b90
RK
3230 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3231 && reg_renumber[REGNO (operand)] < 0))
3232 win = 1;
34208acf 3233 if (CONST_POOL_OK_P (operand))
eab89b90 3234 badop = 0;
9d926da5 3235 constmemok = 1;
eab89b90
RK
3236 break;
3237
3238 case '<':
3c0cb5de 3239 if (MEM_P (operand)
eab89b90
RK
3240 && ! address_reloaded[i]
3241 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3242 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3243 win = 1;
3244 break;
3245
3246 case '>':
3c0cb5de 3247 if (MEM_P (operand)
eab89b90
RK
3248 && ! address_reloaded[i]
3249 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3250 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3251 win = 1;
3252 break;
3253
3254 /* Memory operand whose address is not offsettable. */
3255 case 'V':
3256 if (force_reload)
3257 break;
3c0cb5de 3258 if (MEM_P (operand)
eab89b90
RK
3259 && ! (ind_levels ? offsettable_memref_p (operand)
3260 : offsettable_nonstrict_memref_p (operand))
3261 /* Certain mem addresses will become offsettable
3262 after they themselves are reloaded. This is important;
3263 we don't want our own handling of unoffsettables
3264 to override the handling of reg_equiv_address. */
f8cfc6aa 3265 && !(REG_P (XEXP (operand, 0))
eab89b90
RK
3266 && (ind_levels == 0
3267 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3268 win = 1;
3269 break;
3270
3271 /* Memory operand whose address is offsettable. */
3272 case 'o':
3273 if (force_reload)
3274 break;
3c0cb5de 3275 if ((MEM_P (operand)
eab89b90
RK
3276 /* If IND_LEVELS, find_reloads_address won't reload a
3277 pseudo that didn't get a hard reg, so we have to
3278 reject that case. */
ab87f8c8
JL
3279 && ((ind_levels ? offsettable_memref_p (operand)
3280 : offsettable_nonstrict_memref_p (operand))
3281 /* A reloaded address is offsettable because it is now
3282 just a simple register indirect. */
0b540f12 3283 || address_reloaded[i] == 1))
f8cfc6aa 3284 || (REG_P (operand)
eab89b90 3285 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
3286 && reg_renumber[REGNO (operand)] < 0
3287 /* If reg_equiv_address is nonzero, we will be
3288 loading it into a register; hence it will be
3289 offsettable, but we cannot say that reg_equiv_mem
3290 is offsettable without checking. */
3291 && ((reg_equiv_mem[REGNO (operand)] != 0
3292 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3293 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90 3294 win = 1;
34208acf 3295 if (CONST_POOL_OK_P (operand)
3c0cb5de 3296 || MEM_P (operand))
eab89b90 3297 badop = 0;
9d926da5 3298 constmemok = 1;
eab89b90
RK
3299 offmemok = 1;
3300 break;
3301
3302 case '&':
3303 /* Output operand that is stored before the need for the
3304 input operands (and their index registers) is over. */
3305 earlyclobber = 1, this_earlyclobber = 1;
3306 break;
3307
3308 case 'E':
eab89b90 3309 case 'F':
bf7cd754
R
3310 if (GET_CODE (operand) == CONST_DOUBLE
3311 || (GET_CODE (operand) == CONST_VECTOR
3312 && (GET_MODE_CLASS (GET_MODE (operand))
3313 == MODE_VECTOR_FLOAT)))
eab89b90
RK
3314 win = 1;
3315 break;
3316
3317 case 'G':
3318 case 'H':
3319 if (GET_CODE (operand) == CONST_DOUBLE
97488870 3320 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
eab89b90
RK
3321 win = 1;
3322 break;
3323
3324 case 's':
481683e1 3325 if (CONST_INT_P (operand)
eab89b90
RK
3326 || (GET_CODE (operand) == CONST_DOUBLE
3327 && GET_MODE (operand) == VOIDmode))
3328 break;
3329 case 'i':
3330 if (CONSTANT_P (operand)
2e4e72b1 3331 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
eab89b90
RK
3332 win = 1;
3333 break;
3334
3335 case 'n':
481683e1 3336 if (CONST_INT_P (operand)
eab89b90
RK
3337 || (GET_CODE (operand) == CONST_DOUBLE
3338 && GET_MODE (operand) == VOIDmode))
3339 win = 1;
3340 break;
3341
3342 case 'I':
3343 case 'J':
3344 case 'K':
3345 case 'L':
3346 case 'M':
3347 case 'N':
3348 case 'O':
3349 case 'P':
481683e1 3350 if (CONST_INT_P (operand)
97488870 3351 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
eab89b90
RK
3352 win = 1;
3353 break;
3354
3355 case 'X':
6c65d757 3356 force_reload = 0;
eab89b90
RK
3357 win = 1;
3358 break;
3359
3360 case 'g':
3361 if (! force_reload
3362 /* A PLUS is never a valid operand, but reload can make
3363 it from a register when eliminating registers. */
3364 && GET_CODE (operand) != PLUS
3365 /* A SCRATCH is not a valid operand. */
3366 && GET_CODE (operand) != SCRATCH
05d10675
BS
3367 && (! CONSTANT_P (operand)
3368 || ! flag_pic
eab89b90 3369 || LEGITIMATE_PIC_OPERAND_P (operand))
eab89b90 3370 && (GENERAL_REGS == ALL_REGS
f8cfc6aa 3371 || !REG_P (operand)
eab89b90
RK
3372 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3373 && reg_renumber[REGNO (operand)] < 0)))
3374 win = 1;
82efa2e5 3375 /* Drop through into 'r' case. */
eab89b90
RK
3376
3377 case 'r':
3378 this_alternative[i]
bbbbb16a 3379 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
eab89b90
RK
3380 goto reg;
3381
c2cba7a9 3382 default:
97488870 3383 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
c2cba7a9 3384 {
97488870
R
3385#ifdef EXTRA_CONSTRAINT_STR
3386 if (EXTRA_MEMORY_CONSTRAINT (c, p))
ccfc6cc8
UW
3387 {
3388 if (force_reload)
3389 break;
97488870 3390 if (EXTRA_CONSTRAINT_STR (operand, c, p))
ccfc6cc8
UW
3391 win = 1;
3392 /* If the address was already reloaded,
3393 we win as well. */
3c0cb5de 3394 else if (MEM_P (operand)
0b540f12 3395 && address_reloaded[i] == 1)
ccfc6cc8
UW
3396 win = 1;
3397 /* Likewise if the address will be reloaded because
3398 reg_equiv_address is nonzero. For reg_equiv_mem
3399 we have to check. */
f8cfc6aa 3400 else if (REG_P (operand)
3b6c3bb0
JW
3401 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3402 && reg_renumber[REGNO (operand)] < 0
3403 && ((reg_equiv_mem[REGNO (operand)] != 0
3404 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3405 || (reg_equiv_address[REGNO (operand)] != 0)))
ccfc6cc8
UW
3406 win = 1;
3407
3408 /* If we didn't already win, we can reload
3409 constants via force_const_mem, and other
3410 MEMs by reloading the address like for 'o'. */
34208acf 3411 if (CONST_POOL_OK_P (operand)
3c0cb5de 3412 || MEM_P (operand))
ccfc6cc8
UW
3413 badop = 0;
3414 constmemok = 1;
3415 offmemok = 1;
3416 break;
3417 }
97488870 3418 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
ccfc6cc8 3419 {
97488870 3420 if (EXTRA_CONSTRAINT_STR (operand, c, p))
ccfc6cc8
UW
3421 win = 1;
3422
3423 /* If we didn't already win, we can reload
3424 the address into a base register. */
bbbbb16a
ILT
3425 this_alternative[i] = base_reg_class (VOIDmode,
3426 ADDRESS,
3427 SCRATCH);
ccfc6cc8
UW
3428 badop = 0;
3429 break;
3430 }
3431
97488870 3432 if (EXTRA_CONSTRAINT_STR (operand, c, p))
c2cba7a9 3433 win = 1;
eab89b90 3434#endif
c2cba7a9
RH
3435 break;
3436 }
05d10675 3437
eab89b90 3438 this_alternative[i]
bbbbb16a
ILT
3439 = (reg_class_subunion
3440 [this_alternative[i]]
3441 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
eab89b90
RK
3442 reg:
3443 if (GET_MODE (operand) == BLKmode)
3444 break;
3445 winreg = 1;
f8cfc6aa 3446 if (REG_P (operand)
eab89b90 3447 && reg_fits_class_p (operand, this_alternative[i],
1ccbefce 3448 offset, GET_MODE (recog_data.operand[i])))
eab89b90
RK
3449 win = 1;
3450 break;
3451 }
97488870 3452 while ((p += len), c);
eab89b90
RK
3453
3454 constraints[i] = p;
3455
3456 /* If this operand could be handled with a reg,
3457 and some reg is allowed, then this operand can be handled. */
bbbbb16a 3458 if (winreg && this_alternative[i] != NO_REGS)
eab89b90
RK
3459 badop = 0;
3460
3461 /* Record which operands fit this alternative. */
3462 this_alternative_earlyclobber[i] = earlyclobber;
3463 if (win && ! force_reload)
3464 this_alternative_win[i] = 1;
69add2a8
BS
3465 else if (did_match && ! force_reload)
3466 this_alternative_match_win[i] = 1;
eab89b90
RK
3467 else
3468 {
9d926da5
RK
3469 int const_to_mem = 0;
3470
eab89b90
RK
3471 this_alternative_offmemok[i] = offmemok;
3472 losers++;
3473 if (badop)
3474 bad = 1;
3475 /* Alternative loses if it has no regs for a reg operand. */
f8cfc6aa 3476 if (REG_P (operand)
bbbbb16a 3477 && this_alternative[i] == NO_REGS
eab89b90
RK
3478 && this_alternative_matches[i] < 0)
3479 bad = 1;
3480
3a322c50
RK
3481 /* If this is a constant that is reloaded into the desired
3482 class by copying it to memory first, count that as another
3483 reload. This is consistent with other code and is
293166be 3484 required to avoid choosing another alternative when
3a322c50 3485 the constant is moved into memory by this function on
05d10675 3486 an early reload pass. Note that the test here is
3a322c50
RK
3487 precisely the same as in the code below that calls
3488 force_const_mem. */
34208acf 3489 if (CONST_POOL_OK_P (operand)
bbbbb16a 3490 && ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
e5e809f4
JL
3491 == NO_REGS)
3492 || no_input_reloads)
3a322c50 3493 && operand_mode[i] != VOIDmode)
9d926da5
RK
3494 {
3495 const_to_mem = 1;
bbbbb16a 3496 if (this_alternative[i] != NO_REGS)
9d926da5
RK
3497 losers++;
3498 }
3a322c50 3499
e5e809f4
JL
3500 /* Alternative loses if it requires a type of reload not
3501 permitted for this insn. We can always reload SCRATCH
3502 and objects with a REG_UNUSED note. */
b5c82fa1 3503 if (GET_CODE (operand) != SCRATCH
05d10675
BS
3504 && modified[i] != RELOAD_READ && no_output_reloads
3505 && ! find_reg_note (insn, REG_UNUSED, operand))
e5e809f4
JL
3506 bad = 1;
3507 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3508 && ! const_to_mem)
3509 bad = 1;
3510
b5c82fa1
PB
3511 /* If we can't reload this value at all, reject this
3512 alternative. Note that we could also lose due to
3513 LIMIT_RELOAD_CLASS, but we don't check that
3514 here. */
3515
bbbbb16a 3516 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
b5c82fa1 3517 {
bbbbb16a 3518 if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
b5c82fa1
PB
3519 == NO_REGS)
3520 reject = 600;
3521
3522#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3523 if (operand_type[i] == RELOAD_FOR_OUTPUT
bbbbb16a
ILT
3524 && (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
3525 this_alternative[i])
3526 == NO_REGS))
b5c82fa1
PB
3527 reject = 600;
3528#endif
3529 }
3530
eab89b90
RK
3531 /* We prefer to reload pseudos over reloading other things,
3532 since such reloads may be able to be eliminated later.
3533 If we are reloading a SCRATCH, we won't be generating any
05d10675 3534 insns, just using a register, so it is also preferred.
9d926da5
RK
3535 So bump REJECT in other cases. Don't do this in the
3536 case where we are forcing a constant into memory and
3537 it will then win since we don't want to have a different
3538 alternative match then. */
f8cfc6aa 3539 if (! (REG_P (operand)
915bb763 3540 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3541 && GET_CODE (operand) != SCRATCH
3542 && ! (const_to_mem && constmemok))
812f2051
R
3543 reject += 2;
3544
3545 /* Input reloads can be inherited more often than output
3546 reloads can be removed, so penalize output reloads. */
7924156a
JW
3547 if (operand_type[i] != RELOAD_FOR_INPUT
3548 && GET_CODE (operand) != SCRATCH)
eab89b90
RK
3549 reject++;
3550 }
3551
05d10675 3552 /* If this operand is a pseudo register that didn't get a hard
eab89b90
RK
3553 reg and this alternative accepts some register, see if the
3554 class that we want is a subset of the preferred class for this
3555 register. If not, but it intersects that class, use the
3556 preferred class instead. If it does not intersect the preferred
3557 class, show that usage of this alternative should be discouraged;
3558 it will be discouraged more still if the register is `preferred
3559 or nothing'. We do this because it increases the chance of
3560 reusing our spill register in a later insn and avoiding a pair
3561 of memory stores and loads.
3562
3563 Don't bother with this if this alternative will accept this
3564 operand.
3565
a2d353e5
RK
3566 Don't do this for a multiword operand, since it is only a
3567 small win and has the risk of requiring more spill registers,
3568 which could cause a large loss.
5aa14fee 3569
eab89b90
RK
3570 Don't do this if the preferred class has only one register
3571 because we might otherwise exhaust the class. */
3572
69add2a8 3573 if (! win && ! did_match
bbbbb16a 3574 && this_alternative[i] != NO_REGS
5aa14fee 3575 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
e9840398
AO
3576 && reg_class_size [(int) preferred_class[i]] > 0
3577 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
eab89b90
RK
3578 {
3579 if (! reg_class_subset_p (this_alternative[i],
3580 preferred_class[i]))
3581 {
3582 /* Since we don't have a way of forming the intersection,
3583 we just do something special if the preferred class
05d10675 3584 is a subset of the class we have; that's the most
eab89b90
RK
3585 common case anyway. */
3586 if (reg_class_subset_p (preferred_class[i],
3587 this_alternative[i]))
bbbbb16a 3588 this_alternative[i] = preferred_class[i];
eab89b90 3589 else
812f2051 3590 reject += (2 + 2 * pref_or_nothing[i]);
eab89b90
RK
3591 }
3592 }
3593 }
3594
3595 /* Now see if any output operands that are marked "earlyclobber"
3596 in this alternative conflict with any input operands
3597 or any memory addresses. */
3598
3599 for (i = 0; i < noperands; i++)
3600 if (this_alternative_earlyclobber[i]
69add2a8 3601 && (this_alternative_win[i] || this_alternative_match_win[i]))
eab89b90 3602 {
05d10675 3603 struct decomposition early_data;
eab89b90 3604
1ccbefce 3605 early_data = decompose (recog_data.operand[i]);
eab89b90 3606
41374e13 3607 gcc_assert (modified[i] != RELOAD_READ);
05d10675 3608
eab89b90
RK
3609 if (this_alternative[i] == NO_REGS)
3610 {
3611 this_alternative_earlyclobber[i] = 0;
41374e13
NS
3612 gcc_assert (this_insn_is_asm);
3613 error_for_asm (this_insn,
971801ff 3614 "%<&%> constraint used with no register class");
eab89b90
RK
3615 }
3616
3617 for (j = 0; j < noperands; j++)
3618 /* Is this an input operand or a memory ref? */
3c0cb5de 3619 if ((MEM_P (recog_data.operand[j])
eab89b90
RK
3620 || modified[j] != RELOAD_WRITE)
3621 && j != i
3622 /* Ignore things like match_operator operands. */
1ccbefce 3623 && *recog_data.constraints[j] != 0
eab89b90
RK
3624 /* Don't count an input operand that is constrained to match
3625 the early clobber operand. */
3626 && ! (this_alternative_matches[j] == i
1ccbefce
RH
3627 && rtx_equal_p (recog_data.operand[i],
3628 recog_data.operand[j]))
eab89b90 3629 /* Is it altered by storing the earlyclobber operand? */
1ccbefce
RH
3630 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3631 early_data))
eab89b90 3632 {
e9840398 3633 /* If the output is in a non-empty few-regs class,
eab89b90 3634 it's costly to reload it, so reload the input instead. */
e9840398 3635 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
f8cfc6aa 3636 && (REG_P (recog_data.operand[j])
1ccbefce 3637 || GET_CODE (recog_data.operand[j]) == SUBREG))
eab89b90
RK
3638 {
3639 losers++;
3640 this_alternative_win[j] = 0;
69add2a8 3641 this_alternative_match_win[j] = 0;
eab89b90
RK
3642 }
3643 else
3644 break;
3645 }
3646 /* If an earlyclobber operand conflicts with something,
3647 it must be reloaded, so request this and count the cost. */
3648 if (j != noperands)
3649 {
3650 losers++;
3651 this_alternative_win[i] = 0;
69add2a8 3652 this_alternative_match_win[j] = 0;
eab89b90
RK
3653 for (j = 0; j < noperands; j++)
3654 if (this_alternative_matches[j] == i
69add2a8 3655 && this_alternative_match_win[j])
eab89b90
RK
3656 {
3657 this_alternative_win[j] = 0;
69add2a8 3658 this_alternative_match_win[j] = 0;
eab89b90
RK
3659 losers++;
3660 }
3661 }
3662 }
3663
3664 /* If one alternative accepts all the operands, no reload required,
3665 choose that alternative; don't consider the remaining ones. */
3666 if (losers == 0)
3667 {
3668 /* Unswap these so that they are never swapped at `finish'. */
3669 if (commutative >= 0)
3670 {
1ccbefce
RH
3671 recog_data.operand[commutative] = substed_operand[commutative];
3672 recog_data.operand[commutative + 1]
eab89b90
RK
3673 = substed_operand[commutative + 1];
3674 }
3675 for (i = 0; i < noperands; i++)
3676 {
69add2a8
BS
3677 goal_alternative_win[i] = this_alternative_win[i];
3678 goal_alternative_match_win[i] = this_alternative_match_win[i];
eab89b90
RK
3679 goal_alternative[i] = this_alternative[i];
3680 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3681 goal_alternative_matches[i] = this_alternative_matches[i];
3682 goal_alternative_earlyclobber[i]
3683 = this_alternative_earlyclobber[i];
3684 }
3685 goal_alternative_number = this_alternative_number;
3686 goal_alternative_swapped = swapped;
3687 goal_earlyclobber = this_earlyclobber;
3688 goto finish;
3689 }
3690
3691 /* REJECT, set by the ! and ? constraint characters and when a register
3692 would be reloaded into a non-preferred class, discourages the use of
812f2051
R
3693 this alternative for a reload goal. REJECT is incremented by six
3694 for each ? and two for each non-preferred class. */
3695 losers = losers * 6 + reject;
eab89b90
RK
3696
3697 /* If this alternative can be made to work by reloading,
3698 and it needs less reloading than the others checked so far,
3699 record it as the chosen goal for reloading. */
3700 if (! bad && best > losers)
3701 {
3702 for (i = 0; i < noperands; i++)
3703 {
3704 goal_alternative[i] = this_alternative[i];
3705 goal_alternative_win[i] = this_alternative_win[i];
69add2a8 3706 goal_alternative_match_win[i] = this_alternative_match_win[i];
eab89b90
RK
3707 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3708 goal_alternative_matches[i] = this_alternative_matches[i];
3709 goal_alternative_earlyclobber[i]
3710 = this_alternative_earlyclobber[i];
3711 }
3712 goal_alternative_swapped = swapped;
3713 best = losers;
3714 goal_alternative_number = this_alternative_number;
3715 goal_earlyclobber = this_earlyclobber;
3716 }
3717 }
3718
3719 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3720 then we need to try each alternative twice,
3721 the second time matching those two operands
3722 as if we had exchanged them.
3723 To do this, really exchange them in operands.
3724
3725 If we have just tried the alternatives the second time,
3726 return operands to normal and drop through. */
3727
3728 if (commutative >= 0)
3729 {
3730 swapped = !swapped;
3731 if (swapped)
3732 {
b3694847
SS
3733 enum reg_class tclass;
3734 int t;
eab89b90 3735
1ccbefce
RH
3736 recog_data.operand[commutative] = substed_operand[commutative + 1];
3737 recog_data.operand[commutative + 1] = substed_operand[commutative];
9cd56be1
JH
3738 /* Swap the duplicates too. */
3739 for (i = 0; i < recog_data.n_dups; i++)
3740 if (recog_data.dup_num[i] == commutative
3741 || recog_data.dup_num[i] == commutative + 1)
3742 *recog_data.dup_loc[i]
3743 = recog_data.operand[(int) recog_data.dup_num[i]];
eab89b90
RK
3744
3745 tclass = preferred_class[commutative];
3746 preferred_class[commutative] = preferred_class[commutative + 1];
3747 preferred_class[commutative + 1] = tclass;
3748
3749 t = pref_or_nothing[commutative];
3750 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3751 pref_or_nothing[commutative + 1] = t;
3752
e88d55cd
UW
3753 t = address_reloaded[commutative];
3754 address_reloaded[commutative] = address_reloaded[commutative + 1];
3755 address_reloaded[commutative + 1] = t;
3756
f428f252 3757 memcpy (constraints, recog_data.constraints,
7ac28727 3758 noperands * sizeof (const char *));
eab89b90
RK
3759 goto try_swapped;
3760 }
3761 else
3762 {
1ccbefce
RH
3763 recog_data.operand[commutative] = substed_operand[commutative];
3764 recog_data.operand[commutative + 1]
3765 = substed_operand[commutative + 1];
9cd56be1
JH
3766 /* Unswap the duplicates too. */
3767 for (i = 0; i < recog_data.n_dups; i++)
3768 if (recog_data.dup_num[i] == commutative
3769 || recog_data.dup_num[i] == commutative + 1)
3770 *recog_data.dup_loc[i]
3771 = recog_data.operand[(int) recog_data.dup_num[i]];
eab89b90
RK
3772 }
3773 }
3774
3775 /* The operands don't meet the constraints.
3776 goal_alternative describes the alternative
3777 that we could reach by reloading the fewest operands.
3778 Reload so as to fit it. */
3779
c22eaf8a 3780 if (best == MAX_RECOG_OPERANDS * 2 + 600)
eab89b90
RK
3781 {
3782 /* No alternative works with reloads?? */
3783 if (insn_code_number >= 0)
1f978f5f 3784 fatal_insn ("unable to generate reloads for:", insn);
971801ff 3785 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
eab89b90 3786 /* Avoid further trouble with this insn. */
38a448ca 3787 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90 3788 n_reloads = 0;
cb2afeb3 3789 return 0;
eab89b90
RK
3790 }
3791
3792 /* Jump to `finish' from above if all operands are valid already.
3793 In that case, goal_alternative_win is all 1. */
3794 finish:
3795
3796 /* Right now, for any pair of operands I and J that are required to match,
3797 with I < J,
3798 goal_alternative_matches[J] is I.
3799 Set up goal_alternative_matched as the inverse function:
3800 goal_alternative_matched[I] = J. */
3801
3802 for (i = 0; i < noperands; i++)
3803 goal_alternative_matched[i] = -1;
a6a2274a 3804
eab89b90
RK
3805 for (i = 0; i < noperands; i++)
3806 if (! goal_alternative_win[i]
3807 && goal_alternative_matches[i] >= 0)
3808 goal_alternative_matched[goal_alternative_matches[i]] = i;
3809
69add2a8
BS
3810 for (i = 0; i < noperands; i++)
3811 goal_alternative_win[i] |= goal_alternative_match_win[i];
3812
eab89b90 3813 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3814 consider them swapped before reporting the reloads. Update the
3815 operand numbers of any reloads already pushed. */
eab89b90
RK
3816
3817 if (goal_alternative_swapped)
3818 {
b3694847 3819 rtx tem;
eab89b90
RK
3820
3821 tem = substed_operand[commutative];
3822 substed_operand[commutative] = substed_operand[commutative + 1];
3823 substed_operand[commutative + 1] = tem;
1ccbefce
RH
3824 tem = recog_data.operand[commutative];
3825 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3826 recog_data.operand[commutative + 1] = tem;
3827 tem = *recog_data.operand_loc[commutative];
3828 *recog_data.operand_loc[commutative]
3829 = *recog_data.operand_loc[commutative + 1];
4381f7c2 3830 *recog_data.operand_loc[commutative + 1] = tem;
a8c9daeb
RK
3831
3832 for (i = 0; i < n_reloads; i++)
3833 {
eceef4c9
BS
3834 if (rld[i].opnum == commutative)
3835 rld[i].opnum = commutative + 1;
3836 else if (rld[i].opnum == commutative + 1)
3837 rld[i].opnum = commutative;
a8c9daeb 3838 }
eab89b90
RK
3839 }
3840
eab89b90
RK
3841 for (i = 0; i < noperands; i++)
3842 {
eab89b90 3843 operand_reloadnum[i] = -1;
a8c9daeb
RK
3844
3845 /* If this is an earlyclobber operand, we need to widen the scope.
3846 The reload must remain valid from the start of the insn being
3847 reloaded until after the operand is stored into its destination.
3848 We approximate this with RELOAD_OTHER even though we know that we
3849 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3850
3851 One special case that is worth checking is when we have an
3852 output that is earlyclobber but isn't used past the insn (typically
05d10675 3853 a SCRATCH). In this case, we only need have the reload live
a8c9daeb 3854 through the insn itself, but not for any of our input or output
05d10675 3855 reloads.
f9df0a1d
R
3856 But we must not accidentally narrow the scope of an existing
3857 RELOAD_OTHER reload - leave these alone.
a8c9daeb
RK
3858
3859 In any case, anything needed to address this operand can remain
3860 however they were previously categorized. */
3861
f9df0a1d 3862 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
a8c9daeb 3863 operand_type[i]
1ccbefce 3864 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
a8c9daeb 3865 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3866 }
3867
3868 /* Any constants that aren't allowed and can't be reloaded
3869 into registers are here changed into memory references. */
3870 for (i = 0; i < noperands; i++)
e0a17959 3871 if (! goal_alternative_win[i])
eab89b90 3872 {
e0a17959
AK
3873 rtx op = recog_data.operand[i];
3874 rtx subreg = NULL_RTX;
3875 rtx plus = NULL_RTX;
3876 enum machine_mode mode = operand_mode[i];
3877
3878 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3879 push_reload so we have to let them pass here. */
3880 if (GET_CODE (op) == SUBREG)
3881 {
3882 subreg = op;
3883 op = SUBREG_REG (op);
3884 mode = GET_MODE (op);
3885 }
1f7f6676 3886
e0a17959
AK
3887 if (GET_CODE (op) == PLUS)
3888 {
3889 plus = op;
3890 op = XEXP (op, 1);
3891 }
eab89b90 3892
e0a17959
AK
3893 if (CONST_POOL_OK_P (op)
3894 && ((PREFERRED_RELOAD_CLASS (op,
3895 (enum reg_class) goal_alternative[i])
3896 == NO_REGS)
3897 || no_input_reloads)
3898 && mode != VOIDmode)
3899 {
3900 int this_address_reloaded;
3901 rtx tem = force_const_mem (mode, op);
d58005c7 3902
e0a17959
AK
3903 /* If we stripped a SUBREG or a PLUS above add it back. */
3904 if (plus != NULL_RTX)
3905 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3906
3907 if (subreg != NULL_RTX)
3908 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3909
3910 this_address_reloaded = 0;
3911 substed_operand[i] = recog_data.operand[i]
3912 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3913 0, insn, &this_address_reloaded);
3914
3915 /* If the alternative accepts constant pool refs directly
3916 there will be no reload needed at all. */
3917 if (plus == NULL_RTX
3918 && subreg == NULL_RTX
3919 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3920 ? substed_operand[i]
3921 : NULL,
3922 recog_data.constraints[i],
3923 goal_alternative_number))
3924 goal_alternative_win[i] = 1;
3925 }
d58005c7
UW
3926 }
3927
4644aad4
RK
3928 /* Record the values of the earlyclobber operands for the caller. */
3929 if (goal_earlyclobber)
3930 for (i = 0; i < noperands; i++)
3931 if (goal_alternative_earlyclobber[i])
1ccbefce 3932 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4644aad4 3933
eab89b90
RK
3934 /* Now record reloads for all the operands that need them. */
3935 for (i = 0; i < noperands; i++)
3936 if (! goal_alternative_win[i])
3937 {
3938 /* Operands that match previous ones have already been handled. */
3939 if (goal_alternative_matches[i] >= 0)
3940 ;
3941 /* Handle an operand with a nonoffsettable address
3942 appearing where an offsettable address will do
3a322c50
RK
3943 by reloading the address into a base register.
3944
3945 ??? We can also do this when the operand is a register and
3946 reg_equiv_mem is not offsettable, but this is a bit tricky,
3947 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3948 else if (goal_alternative_matched[i] == -1
3949 && goal_alternative_offmemok[i]
3c0cb5de 3950 && MEM_P (recog_data.operand[i]))
eab89b90 3951 {
7c7ce73a
UW
3952 /* If the address to be reloaded is a VOIDmode constant,
3953 use Pmode as mode of the reload register, as would have
3954 been done by find_reloads_address. */
3955 enum machine_mode address_mode;
3956 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3957 if (address_mode == VOIDmode)
3958 address_mode = Pmode;
3959
eab89b90 3960 operand_reloadnum[i]
1ccbefce 3961 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
f4f4d0f8 3962 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
c4963a0a 3963 base_reg_class (VOIDmode, MEM, SCRATCH),
7c7ce73a 3964 address_mode,
a8c9daeb 3965 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eceef4c9 3966 rld[operand_reloadnum[i]].inc
1ccbefce 3967 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
a8c9daeb
RK
3968
3969 /* If this operand is an output, we will have made any
3970 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3971 now we are treating part of the operand as an input, so
3972 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3973
2d55b7e8 3974 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3975 {
3976 for (j = 0; j < n_reloads; j++)
3977 {
eceef4c9 3978 if (rld[j].opnum == i)
47c8cf91 3979 {
eceef4c9
BS
3980 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3981 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3982 else if (rld[j].when_needed
47c8cf91 3983 == RELOAD_FOR_OUTADDR_ADDRESS)
eceef4c9 3984 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
47c8cf91
ILT
3985 }
3986 }
3987 }
eab89b90
RK
3988 }
3989 else if (goal_alternative_matched[i] == -1)
9ec36da5
JL
3990 {
3991 operand_reloadnum[i]
3992 = push_reload ((modified[i] != RELOAD_WRITE
1ccbefce
RH
3993 ? recog_data.operand[i] : 0),
3994 (modified[i] != RELOAD_READ
3995 ? recog_data.operand[i] : 0),
9ec36da5 3996 (modified[i] != RELOAD_WRITE
1ccbefce 3997 ? recog_data.operand_loc[i] : 0),
9ec36da5 3998 (modified[i] != RELOAD_READ
1ccbefce 3999 ? recog_data.operand_loc[i] : 0),
9ec36da5
JL
4000 (enum reg_class) goal_alternative[i],
4001 (modified[i] == RELOAD_WRITE
4002 ? VOIDmode : operand_mode[i]),
4003 (modified[i] == RELOAD_READ
4004 ? VOIDmode : operand_mode[i]),
4005 (insn_code_number < 0 ? 0
a995e389 4006 : insn_data[insn_code_number].operand[i].strict_low),
9ec36da5 4007 0, i, operand_type[i]);
9ec36da5 4008 }
eab89b90
RK
4009 /* In a matching pair of operands, one must be input only
4010 and the other must be output only.
4011 Pass the input operand as IN and the other as OUT. */
4012 else if (modified[i] == RELOAD_READ
4013 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4014 {
4015 operand_reloadnum[i]
1ccbefce
RH
4016 = push_reload (recog_data.operand[i],
4017 recog_data.operand[goal_alternative_matched[i]],
4018 recog_data.operand_loc[i],
4019 recog_data.operand_loc[goal_alternative_matched[i]],
eab89b90
RK
4020 (enum reg_class) goal_alternative[i],
4021 operand_mode[i],
4022 operand_mode[goal_alternative_matched[i]],
a8c9daeb 4023 0, 0, i, RELOAD_OTHER);
eab89b90
RK
4024 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4025 }
4026 else if (modified[i] == RELOAD_WRITE
4027 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4028 {
4029 operand_reloadnum[goal_alternative_matched[i]]
1ccbefce
RH
4030 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4031 recog_data.operand[i],
4032 recog_data.operand_loc[goal_alternative_matched[i]],
4033 recog_data.operand_loc[i],
eab89b90
RK
4034 (enum reg_class) goal_alternative[i],
4035 operand_mode[goal_alternative_matched[i]],
4036 operand_mode[i],
a8c9daeb 4037 0, 0, i, RELOAD_OTHER);
eab89b90
RK
4038 operand_reloadnum[i] = output_reloadnum;
4039 }
eab89b90
RK
4040 else
4041 {
41374e13 4042 gcc_assert (insn_code_number < 0);
971801ff
JM
4043 error_for_asm (insn, "inconsistent operand constraints "
4044 "in an %<asm%>");
eab89b90 4045 /* Avoid further trouble with this insn. */
38a448ca 4046 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90 4047 n_reloads = 0;
cb2afeb3 4048 return 0;
eab89b90
RK
4049 }
4050 }
4051 else if (goal_alternative_matched[i] < 0
112f7223 4052 && goal_alternative_matches[i] < 0
0b540f12 4053 && address_operand_reloaded[i] != 1
112f7223 4054 && optimize)
eab89b90 4055 {
05d10675 4056 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
4057 that didn't get a hard register, make an optional reload.
4058 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb 4059
1ccbefce 4060 rtx operand = recog_data.operand[i];
a8c9daeb 4061
eab89b90 4062 while (GET_CODE (operand) == SUBREG)
ddef6bc7 4063 operand = SUBREG_REG (operand);
3c0cb5de 4064 if ((MEM_P (operand)
f8cfc6aa 4065 || (REG_P (operand)
a8c9daeb 4066 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
cb2afeb3
R
4067 /* If this is only for an output, the optional reload would not
4068 actually cause us to use a register now, just note that
4069 something is stored here. */
4070 && ((enum reg_class) goal_alternative[i] != NO_REGS
4071 || modified[i] == RELOAD_WRITE)
a8c9daeb 4072 && ! no_input_reloads
cb2afeb3
R
4073 /* An optional output reload might allow to delete INSN later.
4074 We mustn't make in-out reloads on insns that are not permitted
4075 output reloads.
4076 If this is an asm, we can't delete it; we must not even call
4077 push_reload for an optional output reload in this case,
4078 because we can't be sure that the constraint allows a register,
4079 and push_reload verifies the constraints for asms. */
eab89b90 4080 && (modified[i] == RELOAD_READ
cb2afeb3 4081 || (! no_output_reloads && ! this_insn_is_asm)))
eab89b90 4082 operand_reloadnum[i]
1ccbefce
RH
4083 = push_reload ((modified[i] != RELOAD_WRITE
4084 ? recog_data.operand[i] : 0),
4085 (modified[i] != RELOAD_READ
4086 ? recog_data.operand[i] : 0),
a8c9daeb 4087 (modified[i] != RELOAD_WRITE
1ccbefce 4088 ? recog_data.operand_loc[i] : 0),
a8c9daeb 4089 (modified[i] != RELOAD_READ
1ccbefce 4090 ? recog_data.operand_loc[i] : 0),
eab89b90 4091 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
4092 (modified[i] == RELOAD_WRITE
4093 ? VOIDmode : operand_mode[i]),
4094 (modified[i] == RELOAD_READ
4095 ? VOIDmode : operand_mode[i]),
eab89b90 4096 (insn_code_number < 0 ? 0
a995e389 4097 : insn_data[insn_code_number].operand[i].strict_low),
a8c9daeb 4098 1, i, operand_type[i]);
87afbee6
JL
4099 /* If a memory reference remains (either as a MEM or a pseudo that
4100 did not get a hard register), yet we can't make an optional
cb2afeb3
R
4101 reload, check if this is actually a pseudo register reference;
4102 we then need to emit a USE and/or a CLOBBER so that reload
4103 inheritance will do the right thing. */
112f7223 4104 else if (replace
3c0cb5de 4105 && (MEM_P (operand)
f8cfc6aa 4106 || (REG_P (operand)
112f7223
UW
4107 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4108 && reg_renumber [REGNO (operand)] < 0)))
cb2afeb3 4109 {
1ccbefce 4110 operand = *recog_data.operand_loc[i];
cb2afeb3
R
4111
4112 while (GET_CODE (operand) == SUBREG)
ddef6bc7 4113 operand = SUBREG_REG (operand);
f8cfc6aa 4114 if (REG_P (operand))
cb2afeb3
R
4115 {
4116 if (modified[i] != RELOAD_WRITE)
3d17d93d
AO
4117 /* We mark the USE with QImode so that we recognize
4118 it as one that can be safely deleted at the end
4119 of reload. */
4120 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4121 insn), QImode);
cb2afeb3 4122 if (modified[i] != RELOAD_READ)
c41c1387 4123 emit_insn_after (gen_clobber (operand), insn);
cb2afeb3
R
4124 }
4125 }
eab89b90 4126 }
a8c9daeb
RK
4127 else if (goal_alternative_matches[i] >= 0
4128 && goal_alternative_win[goal_alternative_matches[i]]
4129 && modified[i] == RELOAD_READ
4130 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
112f7223
UW
4131 && ! no_input_reloads && ! no_output_reloads
4132 && optimize)
a8c9daeb
RK
4133 {
4134 /* Similarly, make an optional reload for a pair of matching
4135 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 4136
1ccbefce 4137 rtx operand = recog_data.operand[i];
a8c9daeb
RK
4138
4139 while (GET_CODE (operand) == SUBREG)
ddef6bc7 4140 operand = SUBREG_REG (operand);
3c0cb5de 4141 if ((MEM_P (operand)
f8cfc6aa 4142 || (REG_P (operand)
a8c9daeb
RK
4143 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4144 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4145 != NO_REGS))
4146 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
1ccbefce
RH
4147 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4148 recog_data.operand[i],
4149 recog_data.operand_loc[goal_alternative_matches[i]],
4150 recog_data.operand_loc[i],
a8c9daeb
RK
4151 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4152 operand_mode[goal_alternative_matches[i]],
4153 operand_mode[i],
4154 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4155 }
05d10675 4156
cb2afeb3
R
4157 /* Perform whatever substitutions on the operands we are supposed
4158 to make due to commutativity or replacement of registers
4159 with equivalent constants or memory slots. */
4160
4161 for (i = 0; i < noperands; i++)
4162 {
4163 /* We only do this on the last pass through reload, because it is
05d10675 4164 possible for some data (like reg_equiv_address) to be changed during
425de739 4165 later passes. Moreover, we lose the opportunity to get a useful
05d10675 4166 reload_{in,out}_reg when we do these replacements. */
cb2afeb3
R
4167
4168 if (replace)
e54db24f
MM
4169 {
4170 rtx substitution = substed_operand[i];
4171
1ccbefce 4172 *recog_data.operand_loc[i] = substitution;
e54db24f 4173
cf7c4aa6
HPN
4174 /* If we're replacing an operand with a LABEL_REF, we need to
4175 make sure that there's a REG_LABEL_OPERAND note attached to
e54db24f 4176 this instruction. */
cf7c4aa6
HPN
4177 if (GET_CODE (substitution) == LABEL_REF
4178 && !find_reg_note (insn, REG_LABEL_OPERAND,
4179 XEXP (substitution, 0))
4180 /* For a JUMP_P, if it was a branch target it must have
4181 already been recorded as such. */
4182 && (!JUMP_P (insn)
4183 || !label_is_jump_target_p (XEXP (substitution, 0),
4184 insn)))
65c5f2a6 4185 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
e54db24f 4186 }
cb2afeb3 4187 else
1ccbefce 4188 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
cb2afeb3
R
4189 }
4190
eab89b90
RK
4191 /* If this insn pattern contains any MATCH_DUP's, make sure that
4192 they will be substituted if the operands they match are substituted.
4193 Also do now any substitutions we already did on the operands.
4194
4195 Don't do this if we aren't making replacements because we might be
4196 propagating things allocated by frame pointer elimination into places
4197 it doesn't expect. */
4198
4199 if (insn_code_number >= 0 && replace)
a995e389 4200 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
eab89b90 4201 {
1ccbefce
RH
4202 int opno = recog_data.dup_num[i];
4203 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
6cabe79e 4204 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
eab89b90
RK
4205 }
4206
4207#if 0
4208 /* This loses because reloading of prior insns can invalidate the equivalence
4209 (or at least find_equiv_reg isn't smart enough to find it any more),
4210 causing this insn to need more reload regs than it needed before.
4211 It may be too late to make the reload regs available.
4212 Now this optimization is done safely in choose_reload_regs. */
4213
4214 /* For each reload of a reg into some other class of reg,
4215 search for an existing equivalent reg (same value now) in the right class.
4216 We can use it as long as we don't need to change its contents. */
4217 for (i = 0; i < n_reloads; i++)
eceef4c9
BS
4218 if (rld[i].reg_rtx == 0
4219 && rld[i].in != 0
f8cfc6aa 4220 && REG_P (rld[i].in)
eceef4c9 4221 && rld[i].out == 0)
eab89b90 4222 {
eceef4c9 4223 rld[i].reg_rtx
48c54229 4224 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
eceef4c9 4225 static_reload_reg_p, 0, rld[i].inmode);
eab89b90
RK
4226 /* Prevent generation of insn to load the value
4227 because the one we found already has the value. */
eceef4c9
BS
4228 if (rld[i].reg_rtx)
4229 rld[i].in = rld[i].reg_rtx;
eab89b90
RK
4230 }
4231#endif
4232
71156bcc
JH
4233 /* If we detected error and replaced asm instruction by USE, forget about the
4234 reloads. */
4235 if (GET_CODE (PATTERN (insn)) == USE
481683e1 4236 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
71156bcc
JH
4237 n_reloads = 0;
4238
a8c9daeb
RK
4239 /* Perhaps an output reload can be combined with another
4240 to reduce needs by one. */
4241 if (!goal_earlyclobber)
4242 combine_reloads ();
4243
4244 /* If we have a pair of reloads for parts of an address, they are reloading
4245 the same object, the operands themselves were not reloaded, and they
4246 are for two operands that are supposed to match, merge the reloads and
0f41302f 4247 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
4248
4249 for (i = 0; i < n_reloads; i++)
4250 {
4251 int k;
4252
4253 for (j = i + 1; j < n_reloads; j++)
eceef4c9
BS
4254 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4255 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4256 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4257 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4258 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4259 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4260 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4261 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4262 && rtx_equal_p (rld[i].in, rld[j].in)
4263 && (operand_reloadnum[rld[i].opnum] < 0
4264 || rld[operand_reloadnum[rld[i].opnum]].optional)
4265 && (operand_reloadnum[rld[j].opnum] < 0
4266 || rld[operand_reloadnum[rld[j].opnum]].optional)
4267 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4268 || (goal_alternative_matches[rld[j].opnum]
4269 == rld[i].opnum)))
a8c9daeb
RK
4270 {
4271 for (k = 0; k < n_replacements; k++)
4272 if (replacements[k].what == j)
4273 replacements[k].what = i;
4274
eceef4c9
BS
4275 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4276 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4277 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
47c8cf91 4278 else
eceef4c9
BS
4279 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4280 rld[j].in = 0;
a8c9daeb
RK
4281 }
4282 }
4283
05d10675 4284 /* Scan all the reloads and update their type.
a8c9daeb
RK
4285 If a reload is for the address of an operand and we didn't reload
4286 that operand, change the type. Similarly, change the operand number
4287 of a reload when two operands match. If a reload is optional, treat it
4288 as though the operand isn't reloaded.
4289
4290 ??? This latter case is somewhat odd because if we do the optional
4291 reload, it means the object is hanging around. Thus we need only
4292 do the address reload if the optional reload was NOT done.
4293
4294 Change secondary reloads to be the address type of their operand, not
4295 the normal type.
4296
4297 If an operand's reload is now RELOAD_OTHER, change any
4298 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4299 RELOAD_FOR_OTHER_ADDRESS. */
4300
4301 for (i = 0; i < n_reloads; i++)
4302 {
eceef4c9 4303 if (rld[i].secondary_p
38323cc3
RH
4304 && rld[i].when_needed == operand_type[rld[i].opnum])
4305 rld[i].when_needed = address_type[rld[i].opnum];
eceef4c9
BS
4306
4307 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4308 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4309 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4310 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4311 && (operand_reloadnum[rld[i].opnum] < 0
4312 || rld[operand_reloadnum[rld[i].opnum]].optional))
f98bb7d3
RK
4313 {
4314 /* If we have a secondary reload to go along with this reload,
0f41302f 4315 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 4316
eceef4c9
BS
4317 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4318 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4319 && rld[i].secondary_in_reload != -1)
f98bb7d3 4320 {
eceef4c9 4321 int secondary_in_reload = rld[i].secondary_in_reload;
f98bb7d3 4322
4381f7c2 4323 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 4324
0f41302f 4325 /* If there's a tertiary reload we have to change it also. */
f98bb7d3 4326 if (secondary_in_reload > 0
eceef4c9
BS
4327 && rld[secondary_in_reload].secondary_in_reload != -1)
4328 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
38323cc3 4329 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3
RK
4330 }
4331
eceef4c9
BS
4332 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4333 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4334 && rld[i].secondary_out_reload != -1)
f98bb7d3 4335 {
eceef4c9 4336 int secondary_out_reload = rld[i].secondary_out_reload;
f98bb7d3 4337
4381f7c2 4338 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 4339
0f41302f 4340 /* If there's a tertiary reload we have to change it also. */
f98bb7d3 4341 if (secondary_out_reload
eceef4c9
BS
4342 && rld[secondary_out_reload].secondary_out_reload != -1)
4343 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
38323cc3 4344 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 4345 }
e5e809f4 4346
eceef4c9
BS
4347 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4348 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4349 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
cb2afeb3 4350 else
eceef4c9 4351 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 4352 }
a8c9daeb 4353
eceef4c9
BS
4354 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4355 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4356 && operand_reloadnum[rld[i].opnum] >= 0
4357 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
a8c9daeb 4358 == RELOAD_OTHER))
eceef4c9 4359 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
a8c9daeb 4360
eceef4c9
BS
4361 if (goal_alternative_matches[rld[i].opnum] >= 0)
4362 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
a8c9daeb
RK
4363 }
4364
a94ce333
JW
4365 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4366 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4367 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4368
4369 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4370 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4371 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4372 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4373 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4374 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4375 This is complicated by the fact that a single operand can have more
4376 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4377 choose_reload_regs without affecting code quality, and cases that
4378 actually fail are extremely rare, so it turns out to be better to fix
4379 the problem here by not generating cases that choose_reload_regs will
4380 fail for. */
d3adbeea 4381 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
826e3854
R
4382 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4383 a single operand.
4384 We can reduce the register pressure by exploiting that a
4385 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
c10638c9
R
4386 does not conflict with any of them, if it is only used for the first of
4387 the RELOAD_FOR_X_ADDRESS reloads. */
a94ce333 4388 {
826e3854
R
4389 int first_op_addr_num = -2;
4390 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4391 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4381f7c2 4392 int need_change = 0;
826e3854
R
4393 /* We use last_op_addr_reload and the contents of the above arrays
4394 first as flags - -2 means no instance encountered, -1 means exactly
4395 one instance encountered.
4396 If more than one instance has been encountered, we store the reload
4397 number of the first reload of the kind in question; reload numbers
4398 are known to be non-negative. */
4399 for (i = 0; i < noperands; i++)
4400 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4401 for (i = n_reloads - 1; i >= 0; i--)
4402 {
eceef4c9 4403 switch (rld[i].when_needed)
826e3854
R
4404 {
4405 case RELOAD_FOR_OPERAND_ADDRESS:
c10638c9 4406 if (++first_op_addr_num >= 0)
826e3854 4407 {
c10638c9 4408 first_op_addr_num = i;
826e3854
R
4409 need_change = 1;
4410 }
4411 break;
4412 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4413 if (++first_inpaddr_num[rld[i].opnum] >= 0)
826e3854 4414 {
eceef4c9 4415 first_inpaddr_num[rld[i].opnum] = i;
826e3854
R
4416 need_change = 1;
4417 }
4418 break;
4419 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4420 if (++first_outpaddr_num[rld[i].opnum] >= 0)
826e3854 4421 {
eceef4c9 4422 first_outpaddr_num[rld[i].opnum] = i;
826e3854
R
4423 need_change = 1;
4424 }
4425 break;
4426 default:
4427 break;
4428 }
4429 }
a94ce333 4430
826e3854
R
4431 if (need_change)
4432 {
4433 for (i = 0; i < n_reloads; i++)
4434 {
c8d8ed65
RK
4435 int first_num;
4436 enum reload_type type;
826e3854 4437
eceef4c9 4438 switch (rld[i].when_needed)
826e3854
R
4439 {
4440 case RELOAD_FOR_OPADDR_ADDR:
4441 first_num = first_op_addr_num;
4442 type = RELOAD_FOR_OPERAND_ADDRESS;
4443 break;
4444 case RELOAD_FOR_INPADDR_ADDRESS:
eceef4c9 4445 first_num = first_inpaddr_num[rld[i].opnum];
826e3854
R
4446 type = RELOAD_FOR_INPUT_ADDRESS;
4447 break;
4448 case RELOAD_FOR_OUTADDR_ADDRESS:
eceef4c9 4449 first_num = first_outpaddr_num[rld[i].opnum];
826e3854
R
4450 type = RELOAD_FOR_OUTPUT_ADDRESS;
4451 break;
4452 default:
4453 continue;
4454 }
c10638c9
R
4455 if (first_num < 0)
4456 continue;
4457 else if (i > first_num)
eceef4c9 4458 rld[i].when_needed = type;
c10638c9
R
4459 else
4460 {
4461 /* Check if the only TYPE reload that uses reload I is
4462 reload FIRST_NUM. */
4463 for (j = n_reloads - 1; j > first_num; j--)
4464 {
eceef4c9
BS
4465 if (rld[j].when_needed == type
4466 && (rld[i].secondary_p
4467 ? rld[j].secondary_in_reload == i
4468 : reg_mentioned_p (rld[i].in, rld[j].in)))
c10638c9 4469 {
eceef4c9 4470 rld[i].when_needed = type;
c10638c9
R
4471 break;
4472 }
4473 }
4474 }
826e3854
R
4475 }
4476 }
a94ce333
JW
4477 }
4478
a8c9daeb
RK
4479 /* See if we have any reloads that are now allowed to be merged
4480 because we've changed when the reload is needed to
4481 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4482 check for the most common cases. */
4483
4484 for (i = 0; i < n_reloads; i++)
eceef4c9
BS
4485 if (rld[i].in != 0 && rld[i].out == 0
4486 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4487 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4488 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
a8c9daeb 4489 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
4490 if (i != j && rld[j].in != 0 && rld[j].out == 0
4491 && rld[j].when_needed == rld[i].when_needed
4492 && MATCHES (rld[i].in, rld[j].in)
48c54229 4493 && rld[i].rclass == rld[j].rclass
eceef4c9
BS
4494 && !rld[i].nocombine && !rld[j].nocombine
4495 && rld[i].reg_rtx == rld[j].reg_rtx)
a8c9daeb 4496 {
eceef4c9 4497 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
a8c9daeb 4498 transfer_replacements (i, j);
eceef4c9 4499 rld[j].in = 0;
a8c9daeb
RK
4500 }
4501
14a774a9
RK
4502#ifdef HAVE_cc0
4503 /* If we made any reloads for addresses, see if they violate a
4504 "no input reloads" requirement for this insn. But loads that we
4505 do after the insn (such as for output addresses) are fine. */
4506 if (no_input_reloads)
4507 for (i = 0; i < n_reloads; i++)
41374e13
NS
4508 gcc_assert (rld[i].in == 0
4509 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4510 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
14a774a9
RK
4511#endif
4512
67e61fe7
BS
4513 /* Compute reload_mode and reload_nregs. */
4514 for (i = 0; i < n_reloads; i++)
4515 {
4516 rld[i].mode
4517 = (rld[i].inmode == VOIDmode
4518 || (GET_MODE_SIZE (rld[i].outmode)
4519 > GET_MODE_SIZE (rld[i].inmode)))
4520 ? rld[i].outmode : rld[i].inmode;
4521
48c54229 4522 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
67e61fe7
BS
4523 }
4524
02a10130
RH
4525 /* Special case a simple move with an input reload and a
4526 destination of a hard reg, if the hard reg is ok, use it. */
4527 for (i = 0; i < n_reloads; i++)
4528 if (rld[i].when_needed == RELOAD_FOR_INPUT
4529 && GET_CODE (PATTERN (insn)) == SET
f8cfc6aa 4530 && REG_P (SET_DEST (PATTERN (insn)))
b3519e7c
L
4531 && (SET_SRC (PATTERN (insn)) == rld[i].in
4532 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
8c74fb06 4533 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
02a10130 4534 {
0c20a65f 4535 rtx dest = SET_DEST (PATTERN (insn));
02a10130
RH
4536 unsigned int regno = REGNO (dest);
4537
0c20a65f 4538 if (regno < FIRST_PSEUDO_REGISTER
48c54229 4539 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
0c20a65f 4540 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
57458e8a 4541 {
66fd46b6 4542 int nr = hard_regno_nregs[regno][rld[i].mode];
57458e8a
DD
4543 int ok = 1, nri;
4544
4545 for (nri = 1; nri < nr; nri ++)
48c54229 4546 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
57458e8a
DD
4547 ok = 0;
4548
4549 if (ok)
4550 rld[i].reg_rtx = dest;
4551 }
02a10130
RH
4552 }
4553
cb2afeb3 4554 return retval;
eab89b90
RK
4555}
4556
1f7f6676
RS
4557/* Return true if alternative number ALTNUM in constraint-string
4558 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4559 MEM gives the reference if it didn't need any reloads, otherwise it
4560 is null. */
eab89b90 4561
1f7f6676
RS
4562static bool
4563alternative_allows_const_pool_ref (rtx mem, const char *constraint, int altnum)
eab89b90 4564{
b3694847 4565 int c;
1f7f6676 4566
eab89b90
RK
4567 /* Skip alternatives before the one requested. */
4568 while (altnum > 0)
4569 {
4570 while (*constraint++ != ',');
4571 altnum--;
4572 }
a4edaf83 4573 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
1f7f6676
RS
4574 If one of them is present, this alternative accepts the result of
4575 passing a constant-pool reference through find_reloads_toplev.
4576
4577 The same is true of extra memory constraints if the address
4578 was reloaded into a register. However, the target may elect
4579 to disallow the original constant address, forcing it to be
4580 reloaded into a register instead. */
97488870
R
4581 for (; (c = *constraint) && c != ',' && c != '#';
4582 constraint += CONSTRAINT_LEN (c, constraint))
1f7f6676 4583 {
a4edaf83 4584 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
1f7f6676
RS
4585 return true;
4586#ifdef EXTRA_CONSTRAINT_STR
4587 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4588 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4589 return true;
4590#endif
4591 }
4592 return false;
eab89b90
RK
4593}
4594\f
4595/* Scan X for memory references and scan the addresses for reloading.
4596 Also checks for references to "constant" regs that we want to eliminate
4597 and replaces them with the values they stand for.
6dc42e49 4598 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4599 If X is just a constant reg, we return the equivalent value
4600 instead of X.
4601
4602 IND_LEVELS says how many levels of indirect addressing this machine
4603 supports.
4604
a8c9daeb
RK
4605 OPNUM and TYPE identify the purpose of the reload.
4606
eab89b90 4607 IS_SET_DEST is true if X is the destination of a SET, which is not
cb2afeb3
R
4608 appropriate to be replaced by a constant.
4609
4610 INSN, if nonzero, is the insn in which we do the reload. It is used
4611 to determine if we may generate output reloads, and where to put USEs
9246aadb
AH
4612 for pseudos that we have to replace with stack slots.
4613
4614 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4615 result of find_reloads_address. */
eab89b90
RK
4616
4617static rtx
0c20a65f
AJ
4618find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4619 int ind_levels, int is_set_dest, rtx insn,
4620 int *address_reloaded)
eab89b90 4621{
b3694847 4622 RTX_CODE code = GET_CODE (x);
eab89b90 4623
b3694847
SS
4624 const char *fmt = GET_RTX_FORMAT (code);
4625 int i;
9f4749b1 4626 int copied;
eab89b90
RK
4627
4628 if (code == REG)
4629 {
4630 /* This code is duplicated for speed in find_reloads. */
b3694847 4631 int regno = REGNO (x);
eab89b90
RK
4632 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4633 x = reg_equiv_constant[regno];
4634#if 0
05d10675
BS
4635 /* This creates (subreg (mem...)) which would cause an unnecessary
4636 reload of the mem. */
eab89b90
RK
4637 else if (reg_equiv_mem[regno] != 0)
4638 x = reg_equiv_mem[regno];
4639#endif
cb2afeb3
R
4640 else if (reg_equiv_memory_loc[regno]
4641 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
eab89b90 4642 {
cb2afeb3
R
4643 rtx mem = make_memloc (x, regno);
4644 if (reg_equiv_address[regno]
4645 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4646 {
4647 /* If this is not a toplevel operand, find_reloads doesn't see
4648 this substitution. We have to emit a USE of the pseudo so
4649 that delete_output_reload can see it. */
1ccbefce 4650 if (replace_reloads && recog_data.operand[opnum] != x)
3d17d93d
AO
4651 /* We mark the USE with QImode so that we recognize it
4652 as one that can be safely deleted at the end of
4653 reload. */
4654 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4655 QImode);
cb2afeb3 4656 x = mem;
9246aadb
AH
4657 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4658 opnum, type, ind_levels, insn);
0f4b25a3 4659 if (!rtx_equal_p (x, mem))
3f1e3e70 4660 push_reg_equiv_alt_mem (regno, x);
9246aadb
AH
4661 if (address_reloaded)
4662 *address_reloaded = i;
cb2afeb3 4663 }
eab89b90
RK
4664 }
4665 return x;
4666 }
4667 if (code == MEM)
4668 {
4669 rtx tem = x;
9246aadb
AH
4670
4671 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4672 opnum, type, ind_levels, insn);
4673 if (address_reloaded)
4674 *address_reloaded = i;
4675
eab89b90
RK
4676 return tem;
4677 }
4678
f8cfc6aa 4679 if (code == SUBREG && REG_P (SUBREG_REG (x)))
eab89b90 4680 {
0e61db61
NS
4681 /* Check for SUBREG containing a REG that's equivalent to a
4682 constant. If the constant has a known value, truncate it
4683 right now. Similarly if we are extracting a single-word of a
4684 multi-word constant. If the constant is symbolic, allow it
4685 to be substituted normally. push_reload will strip the
4686 subreg later. The constant must not be VOIDmode, because we
4687 will lose the mode of the register (this should never happen
4688 because one of the cases above should handle it). */
eab89b90 4689
b3694847 4690 int regno = REGNO (SUBREG_REG (x));
eab89b90
RK
4691 rtx tem;
4692
857e5753
RS
4693 if (regno >= FIRST_PSEUDO_REGISTER
4694 && reg_renumber[regno] < 0
451f86fd 4695 && reg_equiv_constant[regno] != 0)
0365438d 4696 {
451f86fd
R
4697 tem =
4698 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4699 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
41374e13 4700 gcc_assert (tem);
c07fdd94
RS
4701 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4702 {
4703 tem = force_const_mem (GET_MODE (x), tem);
4704 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4705 &XEXP (tem, 0), opnum, type,
4706 ind_levels, insn);
4707 if (address_reloaded)
4708 *address_reloaded = i;
4709 }
4119019b 4710 return tem;
0365438d 4711 }
eab89b90 4712
eab89b90
RK
4713 /* If the subreg contains a reg that will be converted to a mem,
4714 convert the subreg to a narrower memref now.
4715 Otherwise, we would get (subreg (mem ...) ...),
4716 which would force reload of the mem.
4717
4718 We also need to do this if there is an equivalent MEM that is
4719 not offsettable. In that case, alter_subreg would produce an
4720 invalid address on big-endian machines.
4721
46da6b3a 4722 For machines that extend byte loads, we must not reload using
eab89b90
RK
4723 a wider mode if we have a paradoxical SUBREG. find_reloads will
4724 force a reload in that case. So we should not do anything here. */
4725
857e5753 4726 if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4727#ifdef LOAD_EXTEND_OP
eab89b90
RK
4728 && (GET_MODE_SIZE (GET_MODE (x))
4729 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4730#endif
4731 && (reg_equiv_address[regno] != 0
4732 || (reg_equiv_mem[regno] != 0
05d10675 4733 && (! strict_memory_address_p (GET_MODE (x),
f2fbfe92 4734 XEXP (reg_equiv_mem[regno], 0))
cb2afeb3
R
4735 || ! offsettable_memref_p (reg_equiv_mem[regno])
4736 || num_not_at_initial_offset))))
22505ad8
R
4737 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4738 insn);
eab89b90
RK
4739 }
4740
9f4749b1 4741 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
eab89b90
RK
4742 {
4743 if (fmt[i] == 'e')
9f4749b1
R
4744 {
4745 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
9246aadb
AH
4746 ind_levels, is_set_dest, insn,
4747 address_reloaded);
9f4749b1
R
4748 /* If we have replaced a reg with it's equivalent memory loc -
4749 that can still be handled here e.g. if it's in a paradoxical
4750 subreg - we must make the change in a copy, rather than using
4751 a destructive change. This way, find_reloads can still elect
4752 not to do the change. */
4753 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4754 {
ce9d4c6d 4755 x = shallow_copy_rtx (x);
9f4749b1
R
4756 copied = 1;
4757 }
4758 XEXP (x, i) = new_part;
4759 }
eab89b90
RK
4760 }
4761 return x;
4762}
4763
dbf85761
RS
4764/* Return a mem ref for the memory equivalent of reg REGNO.
4765 This mem ref is not shared with anything. */
4766
eab89b90 4767static rtx
0c20a65f 4768make_memloc (rtx ad, int regno)
eab89b90 4769{
4ffeab02
JW
4770 /* We must rerun eliminate_regs, in case the elimination
4771 offsets have changed. */
cb2afeb3 4772 rtx tem
bbbbb16a
ILT
4773 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4774 0);
eab89b90
RK
4775
4776 /* If TEM might contain a pseudo, we must copy it to avoid
4777 modifying it when we do the substitution for the reload. */
e38fe8e0 4778 if (rtx_varies_p (tem, 0))
eab89b90
RK
4779 tem = copy_rtx (tem);
4780
f1ec5147 4781 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
cf728d61
HPN
4782 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4783
4784 /* Copy the result if it's still the same as the equivalence, to avoid
4785 modifying it when we do the substitution for the reload. */
4786 if (tem == reg_equiv_memory_loc[regno])
4787 tem = copy_rtx (tem);
4788 return tem;
eab89b90
RK
4789}
4790
acf9fa5f 4791/* Returns true if AD could be turned into a valid memory reference
0c20a65f 4792 to mode MODE by reloading the part pointed to by PART into a
acf9fa5f
UW
4793 register. */
4794
4795static int
0c20a65f 4796maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
acf9fa5f
UW
4797{
4798 int retv;
4799 rtx tem = *part;
4800 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4801
4802 *part = reg;
4803 retv = memory_address_p (mode, ad);
4804 *part = tem;
4805
4806 return retv;
4807}
4808
eab89b90
RK
4809/* Record all reloads needed for handling memory address AD
4810 which appears in *LOC in a memory reference to mode MODE
4811 which itself is found in location *MEMREFLOC.
4812 Note that we take shortcuts assuming that no multi-reg machine mode
4813 occurs as part of an address.
4814
a8c9daeb 4815 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4816
4817 IND_LEVELS says how many levels of indirect addressing this machine
4818 supports.
4819
55c22565 4820 INSN, if nonzero, is the insn in which we do the reload. It is used
cb2afeb3
R
4821 to determine if we may generate output reloads, and where to put USEs
4822 for pseudos that we have to replace with stack slots.
55c22565 4823
0b540f12
UW
4824 Value is one if this address is reloaded or replaced as a whole; it is
4825 zero if the top level of this address was not reloaded or replaced, and
4826 it is -1 if it may or may not have been reloaded or replaced.
eab89b90
RK
4827
4828 Note that there is no verification that the address will be valid after
4829 this routine does its work. Instead, we rely on the fact that the address
4830 was valid when reload started. So we need only undo things that reload
4831 could have broken. These are wrong register types, pseudos not allocated
4832 to a hard register, and frame pointer elimination. */
4833
4834static int
0c20a65f
AJ
4835find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4836 rtx *loc, int opnum, enum reload_type type,
4837 int ind_levels, rtx insn)
eab89b90 4838{
b3694847 4839 int regno;
ab87f8c8 4840 int removed_and = 0;
14d3dc34 4841 int op_index;
eab89b90
RK
4842 rtx tem;
4843
4844 /* If the address is a register, see if it is a legitimate address and
4845 reload if not. We first handle the cases where we need not reload
4846 or where we must reload in a non-standard way. */
4847
f8cfc6aa 4848 if (REG_P (ad))
eab89b90
RK
4849 {
4850 regno = REGNO (ad);
4851
90d12f1f 4852 if (reg_equiv_constant[regno] != 0)
eab89b90 4853 {
90d12f1f
AK
4854 find_reloads_address_part (reg_equiv_constant[regno], loc,
4855 base_reg_class (mode, MEM, SCRATCH),
4856 GET_MODE (ad), opnum, type, ind_levels);
4857 return 1;
eab89b90
RK
4858 }
4859
cb2afeb3
R
4860 tem = reg_equiv_memory_loc[regno];
4861 if (tem != 0)
eab89b90 4862 {
cb2afeb3
R
4863 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4864 {
4865 tem = make_memloc (ad, regno);
4866 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4867 {
3f1e3e70
AO
4868 rtx orig = tem;
4869
57292ec3
AL
4870 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4871 &XEXP (tem, 0), opnum,
4872 ADDR_TYPE (type), ind_levels, insn);
0f4b25a3 4873 if (!rtx_equal_p (tem, orig))
3f1e3e70 4874 push_reg_equiv_alt_mem (regno, tem);
cb2afeb3
R
4875 }
4876 /* We can avoid a reload if the register's equivalent memory
4877 expression is valid as an indirect memory address.
4878 But not all addresses are valid in a mem used as an indirect
4879 address: only reg or reg+constant. */
4880
4881 if (ind_levels > 0
4882 && strict_memory_address_p (mode, tem)
f8cfc6aa 4883 && (REG_P (XEXP (tem, 0))
cb2afeb3 4884 || (GET_CODE (XEXP (tem, 0)) == PLUS
f8cfc6aa 4885 && REG_P (XEXP (XEXP (tem, 0), 0))
cb2afeb3
R
4886 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4887 {
4888 /* TEM is not the same as what we'll be replacing the
4889 pseudo with after reload, put a USE in front of INSN
4890 in the final reload pass. */
4891 if (replace_reloads
4892 && num_not_at_initial_offset
4893 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4894 {
4895 *loc = tem;
3d17d93d
AO
4896 /* We mark the USE with QImode so that we
4897 recognize it as one that can be safely
4898 deleted at the end of reload. */
4899 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4900 insn), QImode);
4901
cb2afeb3
R
4902 /* This doesn't really count as replacing the address
4903 as a whole, since it is still a memory access. */
4904 }
4905 return 0;
4906 }
4907 ad = tem;
4908 }
eab89b90
RK
4909 }
4910
eab89b90
RK
4911 /* The only remaining case where we can avoid a reload is if this is a
4912 hard register that is valid as a base register and which is not the
4913 subject of a CLOBBER in this insn. */
4914
858c3c8c 4915 else if (regno < FIRST_PSEUDO_REGISTER
c4963a0a 4916 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
9532e31f 4917 && ! regno_clobbered_p (regno, this_insn, mode, 0))
eab89b90
RK
4918 return 0;
4919
4920 /* If we do not have one of the cases above, we must do the reload. */
c4963a0a 4921 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
a8c9daeb 4922 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4923 return 1;
4924 }
4925
4926 if (strict_memory_address_p (mode, ad))
4927 {
4928 /* The address appears valid, so reloads are not needed.
4929 But the address may contain an eliminable register.
4930 This can happen because a machine with indirect addressing
4931 may consider a pseudo register by itself a valid address even when
4932 it has failed to get a hard reg.
4933 So do a tree-walk to find and eliminate all such regs. */
4934
4935 /* But first quickly dispose of a common case. */
4936 if (GET_CODE (ad) == PLUS
481683e1 4937 && CONST_INT_P (XEXP (ad, 1))
f8cfc6aa 4938 && REG_P (XEXP (ad, 0))
eab89b90
RK
4939 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4940 return 0;
4941
4942 subst_reg_equivs_changed = 0;
cb2afeb3 4943 *loc = subst_reg_equivs (ad, insn);
eab89b90
RK
4944
4945 if (! subst_reg_equivs_changed)
4946 return 0;
4947
4948 /* Check result for validity after substitution. */
4949 if (strict_memory_address_p (mode, ad))
4950 return 0;
4951 }
4952
a9a2595b
JR
4953#ifdef LEGITIMIZE_RELOAD_ADDRESS
4954 do
4955 {
4956 if (memrefloc)
4957 {
4958 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4959 ind_levels, win);
4960 }
4961 break;
4962 win:
4963 *memrefloc = copy_rtx (*memrefloc);
4964 XEXP (*memrefloc, 0) = ad;
4965 move_replacements (&ad, &XEXP (*memrefloc, 0));
0b540f12 4966 return -1;
a9a2595b
JR
4967 }
4968 while (0);
4969#endif
4970
ab87f8c8
JL
4971 /* The address is not valid. We have to figure out why. First see if
4972 we have an outer AND and remove it if so. Then analyze what's inside. */
4973
4974 if (GET_CODE (ad) == AND)
4975 {
4976 removed_and = 1;
4977 loc = &XEXP (ad, 0);
4978 ad = *loc;
4979 }
4980
4981 /* One possibility for why the address is invalid is that it is itself
4982 a MEM. This can happen when the frame pointer is being eliminated, a
4983 pseudo is not allocated to a hard register, and the offset between the
4984 frame and stack pointers is not its initial value. In that case the
4985 pseudo will have been replaced by a MEM referring to the
4986 stack pointer. */
3c0cb5de 4987 if (MEM_P (ad))
eab89b90
RK
4988 {
4989 /* First ensure that the address in this MEM is valid. Then, unless
4990 indirect addresses are valid, reload the MEM into a register. */
4991 tem = ad;
4992 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4993 opnum, ADDR_TYPE (type),
55c22565 4994 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4995
4996 /* If tem was changed, then we must create a new memory reference to
4997 hold it and store it back into memrefloc. */
4998 if (tem != ad && memrefloc)
ca3e4a2f 4999 {
ca3e4a2f 5000 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 5001 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 5002 loc = &XEXP (*memrefloc, 0);
ab87f8c8
JL
5003 if (removed_and)
5004 loc = &XEXP (*loc, 0);
ca3e4a2f 5005 }
d2555454 5006
eab89b90
RK
5007 /* Check similar cases as for indirect addresses as above except
5008 that we can allow pseudos and a MEM since they should have been
5009 taken care of above. */
5010
5011 if (ind_levels == 0
5012 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
3c0cb5de 5013 || MEM_P (XEXP (tem, 0))
f8cfc6aa 5014 || ! (REG_P (XEXP (tem, 0))
eab89b90 5015 || (GET_CODE (XEXP (tem, 0)) == PLUS
f8cfc6aa 5016 && REG_P (XEXP (XEXP (tem, 0), 0))
481683e1 5017 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
eab89b90
RK
5018 {
5019 /* Must use TEM here, not AD, since it is the one that will
5020 have any subexpressions reloaded, if needed. */
f4f4d0f8 5021 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
c4963a0a 5022 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
1ba61f4e 5023 VOIDmode, 0,
a8c9daeb 5024 0, opnum, type);
ab87f8c8 5025 return ! removed_and;
eab89b90
RK
5026 }
5027 else
5028 return 0;
5029 }
5030
1b4d2764
RK
5031 /* If we have address of a stack slot but it's not valid because the
5032 displacement is too large, compute the sum in a register.
5033 Handle all base registers here, not just fp/ap/sp, because on some
5034 targets (namely SH) we can also get too large displacements from
5035 big-endian corrections. */
eab89b90 5036 else if (GET_CODE (ad) == PLUS
f8cfc6aa 5037 && REG_P (XEXP (ad, 0))
1b4d2764 5038 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
481683e1 5039 && CONST_INT_P (XEXP (ad, 1))
c4963a0a
BS
5040 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5041 CONST_INT))
5042
eab89b90
RK
5043 {
5044 /* Unshare the MEM rtx so we can safely alter it. */
5045 if (memrefloc)
5046 {
eab89b90
RK
5047 *memrefloc = copy_rtx (*memrefloc);
5048 loc = &XEXP (*memrefloc, 0);
ab87f8c8
JL
5049 if (removed_and)
5050 loc = &XEXP (*loc, 0);
eab89b90 5051 }
ab87f8c8 5052
eab89b90
RK
5053 if (double_reg_address_ok)
5054 {
5055 /* Unshare the sum as well. */
5056 *loc = ad = copy_rtx (ad);
ab87f8c8 5057
eab89b90
RK
5058 /* Reload the displacement into an index reg.
5059 We assume the frame pointer or arg pointer is a base reg. */
5060 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
03acd8f8
BS
5061 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5062 type, ind_levels);
ab87f8c8 5063 return 0;
eab89b90
RK
5064 }
5065 else
5066 {
5067 /* If the sum of two regs is not necessarily valid,
5068 reload the sum into a base reg.
5069 That will at least work. */
c4963a0a
BS
5070 find_reloads_address_part (ad, loc,
5071 base_reg_class (mode, MEM, SCRATCH),
1ba61f4e 5072 Pmode, opnum, type, ind_levels);
eab89b90 5073 }
ab87f8c8 5074 return ! removed_and;
eab89b90
RK
5075 }
5076
5077 /* If we have an indexed stack slot, there are three possible reasons why
5078 it might be invalid: The index might need to be reloaded, the address
5079 might have been made by frame pointer elimination and hence have a
05d10675 5080 constant out of range, or both reasons might apply.
eab89b90
RK
5081
5082 We can easily check for an index needing reload, but even if that is the
5083 case, we might also have an invalid constant. To avoid making the
5084 conservative assumption and requiring two reloads, we see if this address
5085 is valid when not interpreted strictly. If it is, the only problem is
5086 that the index needs a reload and find_reloads_address_1 will take care
5087 of it.
5088
27e484bc 5089 Handle all base registers here, not just fp/ap/sp, because on some
6356f892 5090 targets (namely SPARC) we can also get invalid addresses from preventive
14d3dc34
MM
5091 subreg big-endian corrections made by find_reloads_toplev. We
5092 can also get expressions involving LO_SUM (rather than PLUS) from
5093 find_reloads_subreg_address.
27e484bc
EB
5094
5095 If we decide to do something, it must be that `double_reg_address_ok'
5096 is true. We generate a reload of the base register + constant and
eab89b90
RK
5097 rework the sum so that the reload register will be added to the index.
5098 This is safe because we know the address isn't shared.
5099
27e484bc 5100 We check for the base register as both the first and second operand of
14d3dc34
MM
5101 the innermost PLUS and/or LO_SUM. */
5102
5103 for (op_index = 0; op_index < 2; ++op_index)
eab89b90 5104 {
c4963a0a
BS
5105 rtx operand, addend;
5106 enum rtx_code inner_code;
5107
5108 if (GET_CODE (ad) != PLUS)
5109 continue;
eab89b90 5110
c4963a0a 5111 inner_code = GET_CODE (XEXP (ad, 0));
14d3dc34 5112 if (!(GET_CODE (ad) == PLUS
481683e1 5113 && CONST_INT_P (XEXP (ad, 1))
c4963a0a 5114 && (inner_code == PLUS || inner_code == LO_SUM)))
14d3dc34 5115 continue;
05d10675 5116
14d3dc34 5117 operand = XEXP (XEXP (ad, 0), op_index);
0e544c37 5118 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
14d3dc34
MM
5119 continue;
5120
c4963a0a
BS
5121 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5122
5123 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5124 GET_CODE (addend))
14d3dc34 5125 || operand == frame_pointer_rtx
0422e940 5126#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
14d3dc34 5127 || operand == hard_frame_pointer_rtx
0422e940
UW
5128#endif
5129#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
14d3dc34 5130 || operand == arg_pointer_rtx
0422e940 5131#endif
14d3dc34
MM
5132 || operand == stack_pointer_rtx)
5133 && ! maybe_memory_address_p (mode, ad,
7bb09d15 5134 &XEXP (XEXP (ad, 0), 1 - op_index)))
14d3dc34
MM
5135 {
5136 rtx offset_reg;
c4963a0a 5137 enum reg_class cls;
14d3dc34
MM
5138
5139 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
c4963a0a 5140
14d3dc34
MM
5141 /* Form the adjusted address. */
5142 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5143 ad = gen_rtx_PLUS (GET_MODE (ad),
5144 op_index == 0 ? offset_reg : addend,
5145 op_index == 0 ? addend : offset_reg);
5146 else
5147 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5148 op_index == 0 ? offset_reg : addend,
5149 op_index == 0 ? addend : offset_reg);
5150 *loc = ad;
5151
c4963a0a 5152 cls = base_reg_class (mode, MEM, GET_CODE (addend));
14d3dc34 5153 find_reloads_address_part (XEXP (ad, op_index),
c4963a0a 5154 &XEXP (ad, op_index), cls,
14d3dc34 5155 GET_MODE (ad), opnum, type, ind_levels);
c4963a0a
BS
5156 find_reloads_address_1 (mode,
5157 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5158 GET_CODE (XEXP (ad, op_index)),
14d3dc34
MM
5159 &XEXP (ad, 1 - op_index), opnum,
5160 type, 0, insn);
eab89b90 5161
14d3dc34
MM
5162 return 0;
5163 }
eab89b90 5164 }
05d10675 5165
eab89b90
RK
5166 /* See if address becomes valid when an eliminable register
5167 in a sum is replaced. */
5168
5169 tem = ad;
5170 if (GET_CODE (ad) == PLUS)
5171 tem = subst_indexed_address (ad);
5172 if (tem != ad && strict_memory_address_p (mode, tem))
5173 {
5174 /* Ok, we win that way. Replace any additional eliminable
5175 registers. */
5176
5177 subst_reg_equivs_changed = 0;
cb2afeb3 5178 tem = subst_reg_equivs (tem, insn);
eab89b90
RK
5179
5180 /* Make sure that didn't make the address invalid again. */
5181
5182 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5183 {
5184 *loc = tem;
5185 return 0;
5186 }
5187 }
5188
5189 /* If constants aren't valid addresses, reload the constant address
5190 into a register. */
191b18e9 5191 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90 5192 {
e0120d6e 5193 /* If AD is an address in the constant pool, the MEM rtx may be shared.
eab89b90
RK
5194 Unshare it so we can safely alter it. */
5195 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5196 && CONSTANT_POOL_ADDRESS_P (ad))
5197 {
eab89b90
RK
5198 *memrefloc = copy_rtx (*memrefloc);
5199 loc = &XEXP (*memrefloc, 0);
ab87f8c8
JL
5200 if (removed_and)
5201 loc = &XEXP (*loc, 0);
eab89b90
RK
5202 }
5203
c4963a0a 5204 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
3dcc68a4 5205 Pmode, opnum, type, ind_levels);
ab87f8c8 5206 return ! removed_and;
eab89b90
RK
5207 }
5208
c4963a0a
BS
5209 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5210 ind_levels, insn);
eab89b90
RK
5211}
5212\f
5213/* Find all pseudo regs appearing in AD
5214 that are eliminable in favor of equivalent values
cb2afeb3
R
5215 and do not have hard regs; replace them by their equivalents.
5216 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5217 front of it for pseudos that we have to replace with stack slots. */
eab89b90
RK
5218
5219static rtx
0c20a65f 5220subst_reg_equivs (rtx ad, rtx insn)
eab89b90 5221{
b3694847
SS
5222 RTX_CODE code = GET_CODE (ad);
5223 int i;
5224 const char *fmt;
eab89b90
RK
5225
5226 switch (code)
5227 {
5228 case HIGH:
5229 case CONST_INT:
5230 case CONST:
5231 case CONST_DOUBLE:
091a3ac7 5232 case CONST_FIXED:
69ef87e2 5233 case CONST_VECTOR:
eab89b90
RK
5234 case SYMBOL_REF:
5235 case LABEL_REF:
5236 case PC:
5237 case CC0:
5238 return ad;
5239
5240 case REG:
5241 {
b3694847 5242 int regno = REGNO (ad);
eab89b90
RK
5243
5244 if (reg_equiv_constant[regno] != 0)
5245 {
5246 subst_reg_equivs_changed = 1;
5247 return reg_equiv_constant[regno];
5248 }
cb2afeb3
R
5249 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5250 {
5251 rtx mem = make_memloc (ad, regno);
5252 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5253 {
5254 subst_reg_equivs_changed = 1;
3d17d93d
AO
5255 /* We mark the USE with QImode so that we recognize it
5256 as one that can be safely deleted at the end of
5257 reload. */
5258 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5259 QImode);
cb2afeb3
R
5260 return mem;
5261 }
5262 }
eab89b90
RK
5263 }
5264 return ad;
5265
5266 case PLUS:
5267 /* Quickly dispose of a common case. */
5268 if (XEXP (ad, 0) == frame_pointer_rtx
481683e1 5269 && CONST_INT_P (XEXP (ad, 1)))
eab89b90 5270 return ad;
e9a25f70 5271 break;
05d10675 5272
e9a25f70
JL
5273 default:
5274 break;
eab89b90
RK
5275 }
5276
5277 fmt = GET_RTX_FORMAT (code);
5278 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5279 if (fmt[i] == 'e')
cb2afeb3 5280 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
eab89b90
RK
5281 return ad;
5282}
5283\f
5284/* Compute the sum of X and Y, making canonicalizations assumed in an
5285 address, namely: sum constant integers, surround the sum of two
5286 constants with a CONST, put the constant as the second operand, and
5287 group the constant on the outermost sum.
5288
5289 This routine assumes both inputs are already in canonical form. */
5290
5291rtx
0c20a65f 5292form_sum (rtx x, rtx y)
eab89b90
RK
5293{
5294 rtx tem;
2c0623e8
RK
5295 enum machine_mode mode = GET_MODE (x);
5296
5297 if (mode == VOIDmode)
5298 mode = GET_MODE (y);
5299
5300 if (mode == VOIDmode)
5301 mode = Pmode;
eab89b90 5302
481683e1 5303 if (CONST_INT_P (x))
eab89b90 5304 return plus_constant (y, INTVAL (x));
481683e1 5305 else if (CONST_INT_P (y))
eab89b90
RK
5306 return plus_constant (x, INTVAL (y));
5307 else if (CONSTANT_P (x))
5308 tem = x, x = y, y = tem;
5309
5310 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5311 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5312
5313 /* Note that if the operands of Y are specified in the opposite
5314 order in the recursive calls below, infinite recursion will occur. */
d9771f62 5315 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
5316 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5317
5318 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5319 constant will have been placed second. */
5320 if (CONSTANT_P (x) && CONSTANT_P (y))
5321 {
5322 if (GET_CODE (x) == CONST)
5323 x = XEXP (x, 0);
5324 if (GET_CODE (y) == CONST)
5325 y = XEXP (y, 0);
5326
38a448ca 5327 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
eab89b90
RK
5328 }
5329
38a448ca 5330 return gen_rtx_PLUS (mode, x, y);
eab89b90
RK
5331}
5332\f
5333/* If ADDR is a sum containing a pseudo register that should be
5334 replaced with a constant (from reg_equiv_constant),
5335 return the result of doing so, and also apply the associative
5336 law so that the result is more likely to be a valid address.
5337 (But it is not guaranteed to be one.)
5338
5339 Note that at most one register is replaced, even if more are
5340 replaceable. Also, we try to put the result into a canonical form
5341 so it is more likely to be a valid address.
5342
5343 In all other cases, return ADDR. */
5344
5345static rtx
0c20a65f 5346subst_indexed_address (rtx addr)
eab89b90
RK
5347{
5348 rtx op0 = 0, op1 = 0, op2 = 0;
5349 rtx tem;
5350 int regno;
5351
5352 if (GET_CODE (addr) == PLUS)
5353 {
5354 /* Try to find a register to replace. */
5355 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
f8cfc6aa 5356 if (REG_P (op0)
eab89b90
RK
5357 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5358 && reg_renumber[regno] < 0
5359 && reg_equiv_constant[regno] != 0)
5360 op0 = reg_equiv_constant[regno];
f8cfc6aa 5361 else if (REG_P (op1)
05d10675
BS
5362 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5363 && reg_renumber[regno] < 0
5364 && reg_equiv_constant[regno] != 0)
eab89b90
RK
5365 op1 = reg_equiv_constant[regno];
5366 else if (GET_CODE (op0) == PLUS
5367 && (tem = subst_indexed_address (op0)) != op0)
5368 op0 = tem;
5369 else if (GET_CODE (op1) == PLUS
5370 && (tem = subst_indexed_address (op1)) != op1)
5371 op1 = tem;
5372 else
5373 return addr;
5374
5375 /* Pick out up to three things to add. */
5376 if (GET_CODE (op1) == PLUS)
5377 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5378 else if (GET_CODE (op0) == PLUS)
5379 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5380
5381 /* Compute the sum. */
5382 if (op2 != 0)
5383 op1 = form_sum (op1, op2);
5384 if (op1 != 0)
5385 op0 = form_sum (op0, op1);
5386
5387 return op0;
5388 }
5389 return addr;
5390}
5391\f
98c17df2
GS
5392/* Update the REG_INC notes for an insn. It updates all REG_INC
5393 notes for the instruction which refer to REGNO the to refer
5394 to the reload number.
5395
5396 INSN is the insn for which any REG_INC notes need updating.
5397
5398 REGNO is the register number which has been reloaded.
5399
5400 RELOADNUM is the reload number. */
5401
5402static void
0c20a65f
AJ
5403update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5404 int reloadnum ATTRIBUTE_UNUSED)
98c17df2
GS
5405{
5406#ifdef AUTO_INC_DEC
5407 rtx link;
5408
5409 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5410 if (REG_NOTE_KIND (link) == REG_INC
fc555370 5411 && (int) REGNO (XEXP (link, 0)) == regno)
98c17df2
GS
5412 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5413#endif
5414}
5415\f
858c3c8c
ILT
5416/* Record the pseudo registers we must reload into hard registers in a
5417 subexpression of a would-be memory address, X referring to a value
5418 in mode MODE. (This function is not called if the address we find
5419 is strictly valid.)
5420
eab89b90 5421 CONTEXT = 1 means we are considering regs as index regs,
c4963a0a
BS
5422 = 0 means we are considering them as base regs.
5423 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5424 or an autoinc code.
5425 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5426 is the code of the index part of the address. Otherwise, pass SCRATCH
5427 for this argument.
a8c9daeb 5428 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
5429
5430 IND_LEVELS says how many levels of indirect addressing are
5431 supported at this point in the address.
5432
55c22565
RK
5433 INSN, if nonzero, is the insn in which we do the reload. It is used
5434 to determine if we may generate output reloads.
5435
eab89b90
RK
5436 We return nonzero if X, as a whole, is reloaded or replaced. */
5437
5438/* Note that we take shortcuts assuming that no multi-reg machine mode
5439 occurs as part of an address.
5440 Also, this is not fully machine-customizable; it works for machines
8aeea6e6 5441 such as VAXen and 68000's and 32000's, but other possible machines
ff0d9879
HPN
5442 could have addressing modes that this does not handle right.
5443 If you add push_reload calls here, you need to make sure gen_reload
5444 handles those cases gracefully. */
eab89b90
RK
5445
5446static int
0c20a65f 5447find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
c4963a0a 5448 enum rtx_code outer_code, enum rtx_code index_code,
0c20a65f
AJ
5449 rtx *loc, int opnum, enum reload_type type,
5450 int ind_levels, rtx insn)
eab89b90 5451{
c4963a0a
BS
5452#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5453 ((CONTEXT) == 0 \
5454 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5455 : REGNO_OK_FOR_INDEX_P (REGNO))
888d2cd6
DJ
5456
5457 enum reg_class context_reg_class;
b3694847 5458 RTX_CODE code = GET_CODE (x);
eab89b90 5459
c4963a0a 5460 if (context == 1)
888d2cd6
DJ
5461 context_reg_class = INDEX_REG_CLASS;
5462 else
c4963a0a 5463 context_reg_class = base_reg_class (mode, outer_code, index_code);
888d2cd6 5464
a2d353e5 5465 switch (code)
eab89b90 5466 {
a2d353e5
RK
5467 case PLUS:
5468 {
b3694847
SS
5469 rtx orig_op0 = XEXP (x, 0);
5470 rtx orig_op1 = XEXP (x, 1);
5471 RTX_CODE code0 = GET_CODE (orig_op0);
5472 RTX_CODE code1 = GET_CODE (orig_op1);
5473 rtx op0 = orig_op0;
5474 rtx op1 = orig_op1;
a2d353e5
RK
5475
5476 if (GET_CODE (op0) == SUBREG)
5477 {
5478 op0 = SUBREG_REG (op0);
5479 code0 = GET_CODE (op0);
922db4bb 5480 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
38a448ca 5481 op0 = gen_rtx_REG (word_mode,
ddef6bc7
JJ
5482 (REGNO (op0) +
5483 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5484 GET_MODE (SUBREG_REG (orig_op0)),
5485 SUBREG_BYTE (orig_op0),
5486 GET_MODE (orig_op0))));
a2d353e5 5487 }
87935f60 5488
a2d353e5
RK
5489 if (GET_CODE (op1) == SUBREG)
5490 {
5491 op1 = SUBREG_REG (op1);
5492 code1 = GET_CODE (op1);
922db4bb 5493 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
ddef6bc7
JJ
5494 /* ??? Why is this given op1's mode and above for
5495 ??? op0 SUBREGs we use word_mode? */
38a448ca 5496 op1 = gen_rtx_REG (GET_MODE (op1),
ddef6bc7
JJ
5497 (REGNO (op1) +
5498 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5499 GET_MODE (SUBREG_REG (orig_op1)),
5500 SUBREG_BYTE (orig_op1),
5501 GET_MODE (orig_op1))));
a2d353e5 5502 }
04c5580f 5503 /* Plus in the index register may be created only as a result of
6fc0bb99 5504 register rematerialization for expression like &localvar*4. Reload it.
04c5580f
JH
5505 It may be possible to combine the displacement on the outer level,
5506 but it is probably not worthwhile to do so. */
888d2cd6 5507 if (context == 1)
04c5580f
JH
5508 {
5509 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5510 opnum, ADDR_TYPE (type), ind_levels, insn);
5511 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5512 context_reg_class,
04c5580f
JH
5513 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5514 return 1;
5515 }
a2d353e5 5516
05d10675 5517 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5f8997b9 5518 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 5519 {
c4963a0a
BS
5520 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5521 &XEXP (x, 0), opnum, type, ind_levels,
5522 insn);
5523 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5524 &XEXP (x, 1), opnum, type, ind_levels,
5525 insn);
a2d353e5
RK
5526 }
5527
5f8997b9
SC
5528 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5529 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 5530 {
c4963a0a
BS
5531 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5532 &XEXP (x, 0), opnum, type, ind_levels,
5533 insn);
5534 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5535 &XEXP (x, 1), opnum, type, ind_levels,
5536 insn);
a2d353e5
RK
5537 }
5538
5539 else if (code0 == CONST_INT || code0 == CONST
5540 || code0 == SYMBOL_REF || code0 == LABEL_REF)
c4963a0a
BS
5541 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5542 &XEXP (x, 1), opnum, type, ind_levels,
5543 insn);
a2d353e5
RK
5544
5545 else if (code1 == CONST_INT || code1 == CONST
5546 || code1 == SYMBOL_REF || code1 == LABEL_REF)
c4963a0a
BS
5547 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5548 &XEXP (x, 0), opnum, type, ind_levels,
5549 insn);
a2d353e5
RK
5550
5551 else if (code0 == REG && code1 == REG)
5552 {
bd379f73
PH
5553 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5554 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
a2d353e5 5555 return 0;
bd379f73
PH
5556 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5557 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
a2d353e5 5558 return 0;
c4963a0a
BS
5559 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5560 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5561 &XEXP (x, 1), opnum, type, ind_levels,
5562 insn);
5563 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5564 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5565 &XEXP (x, 0), opnum, type, ind_levels,
5566 insn);
bd379f73
PH
5567 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5568 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5569 &XEXP (x, 0), opnum, type, ind_levels,
5570 insn);
c4963a0a
BS
5571 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5572 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5573 &XEXP (x, 1), opnum, type, ind_levels,
5574 insn);
a2d353e5
RK
5575 else
5576 {
bd379f73 5577 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
c4963a0a
BS
5578 &XEXP (x, 0), opnum, type, ind_levels,
5579 insn);
bd379f73 5580 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
c4963a0a
BS
5581 &XEXP (x, 1), opnum, type, ind_levels,
5582 insn);
a2d353e5
RK
5583 }
5584 }
5585
5586 else if (code0 == REG)
5587 {
c4963a0a
BS
5588 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5589 &XEXP (x, 0), opnum, type, ind_levels,
5590 insn);
5591 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5592 &XEXP (x, 1), opnum, type, ind_levels,
5593 insn);
a2d353e5
RK
5594 }
5595
5596 else if (code1 == REG)
5597 {
c4963a0a
BS
5598 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5599 &XEXP (x, 1), opnum, type, ind_levels,
5600 insn);
5601 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5602 &XEXP (x, 0), opnum, type, ind_levels,
5603 insn);
a2d353e5
RK
5604 }
5605 }
5606
5607 return 0;
5608
4b983fdc
RH
5609 case POST_MODIFY:
5610 case PRE_MODIFY:
5611 {
5612 rtx op0 = XEXP (x, 0);
5613 rtx op1 = XEXP (x, 1);
c4963a0a 5614 enum rtx_code index_code;
41374e13
NS
5615 int regno;
5616 int reloadnum;
4b983fdc
RH
5617
5618 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5619 return 0;
5620
5621 /* Currently, we only support {PRE,POST}_MODIFY constructs
5622 where a base register is {inc,dec}remented by the contents
5623 of another register or by a constant value. Thus, these
5624 operands must match. */
41374e13 5625 gcc_assert (op0 == XEXP (op1, 0));
4b983fdc
RH
5626
5627 /* Require index register (or constant). Let's just handle the
5628 register case in the meantime... If the target allows
5629 auto-modify by a constant then we could try replacing a pseudo
4b7b277a
RS
5630 register with its equivalent constant where applicable.
5631
b098aaf2
UW
5632 We also handle the case where the register was eliminated
5633 resulting in a PLUS subexpression.
5634
4b7b277a
RS
5635 If we later decide to reload the whole PRE_MODIFY or
5636 POST_MODIFY, inc_for_reload might clobber the reload register
5637 before reading the index. The index register might therefore
5638 need to live longer than a TYPE reload normally would, so be
5639 conservative and class it as RELOAD_OTHER. */
b098aaf2
UW
5640 if ((REG_P (XEXP (op1, 1))
5641 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5642 || GET_CODE (XEXP (op1, 1)) == PLUS)
5643 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5644 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5645 ind_levels, insn);
4b983fdc 5646
41374e13 5647 gcc_assert (REG_P (XEXP (op1, 0)));
4b983fdc 5648
41374e13 5649 regno = REGNO (XEXP (op1, 0));
c4963a0a 5650 index_code = GET_CODE (XEXP (op1, 1));
41374e13
NS
5651
5652 /* A register that is incremented cannot be constant! */
5653 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5654 || reg_equiv_constant[regno] == 0);
4b983fdc 5655
41374e13
NS
5656 /* Handle a register that is equivalent to a memory location
5657 which cannot be addressed directly. */
5658 if (reg_equiv_memory_loc[regno] != 0
5659 && (reg_equiv_address[regno] != 0
5660 || num_not_at_initial_offset))
5661 {
5662 rtx tem = make_memloc (XEXP (x, 0), regno);
4b983fdc 5663
41374e13
NS
5664 if (reg_equiv_address[regno]
5665 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4b983fdc 5666 {
3f1e3e70
AO
5667 rtx orig = tem;
5668
41374e13
NS
5669 /* First reload the memory location's address.
5670 We can't use ADDR_TYPE (type) here, because we need to
5671 write back the value after reading it, hence we actually
5672 need two registers. */
5673 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5674 &XEXP (tem, 0), opnum,
5675 RELOAD_OTHER,
5676 ind_levels, insn);
5677
0f4b25a3 5678 if (!rtx_equal_p (tem, orig))
3f1e3e70
AO
5679 push_reg_equiv_alt_mem (regno, tem);
5680
41374e13 5681 /* Then reload the memory location into a base
c4963a0a 5682 register. */
41374e13 5683 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
c4963a0a
BS
5684 &XEXP (op1, 0),
5685 base_reg_class (mode, code,
5686 index_code),
5687 GET_MODE (x), GET_MODE (x), 0,
5688 0, opnum, RELOAD_OTHER);
9532e31f 5689
98c17df2
GS
5690 update_auto_inc_notes (this_insn, regno, reloadnum);
5691 return 0;
5692 }
4b983fdc 5693 }
41374e13
NS
5694
5695 if (reg_renumber[regno] >= 0)
5696 regno = reg_renumber[regno];
5697
5698 /* We require a base register here... */
c4963a0a 5699 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
41374e13
NS
5700 {
5701 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
c4963a0a
BS
5702 &XEXP (op1, 0), &XEXP (x, 0),
5703 base_reg_class (mode, code, index_code),
5704 GET_MODE (x), GET_MODE (x), 0, 0,
5705 opnum, RELOAD_OTHER);
41374e13
NS
5706
5707 update_auto_inc_notes (this_insn, regno, reloadnum);
5708 return 0;
5709 }
4b983fdc
RH
5710 }
5711 return 0;
5712
a2d353e5
RK
5713 case POST_INC:
5714 case POST_DEC:
5715 case PRE_INC:
5716 case PRE_DEC:
f8cfc6aa 5717 if (REG_P (XEXP (x, 0)))
eab89b90 5718 {
b3694847 5719 int regno = REGNO (XEXP (x, 0));
eab89b90
RK
5720 int value = 0;
5721 rtx x_orig = x;
5722
5723 /* A register that is incremented cannot be constant! */
41374e13
NS
5724 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5725 || reg_equiv_constant[regno] == 0);
eab89b90
RK
5726
5727 /* Handle a register that is equivalent to a memory location
5728 which cannot be addressed directly. */
cb2afeb3
R
5729 if (reg_equiv_memory_loc[regno] != 0
5730 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
eab89b90
RK
5731 {
5732 rtx tem = make_memloc (XEXP (x, 0), regno);
cb2afeb3
R
5733 if (reg_equiv_address[regno]
5734 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5735 {
3f1e3e70
AO
5736 rtx orig = tem;
5737
cb2afeb3
R
5738 /* First reload the memory location's address.
5739 We can't use ADDR_TYPE (type) here, because we need to
5740 write back the value after reading it, hence we actually
5741 need two registers. */
5742 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5743 &XEXP (tem, 0), opnum, type,
5744 ind_levels, insn);
0f4b25a3 5745 if (!rtx_equal_p (tem, orig))
3f1e3e70 5746 push_reg_equiv_alt_mem (regno, tem);
cb2afeb3
R
5747 /* Put this inside a new increment-expression. */
5748 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5749 /* Proceed to reload that, as if it contained a register. */
5750 }
eab89b90
RK
5751 }
5752
f89935ed
HPN
5753 /* If we have a hard register that is ok in this incdec context,
5754 don't make a reload. If the register isn't nice enough for
5755 autoincdec, we can reload it. But, if an autoincrement of a
5756 register that we here verified as playing nice, still outside
eab89b90
RK
5757 isn't "valid", it must be that no autoincrement is "valid".
5758 If that is true and something made an autoincrement anyway,
5759 this must be a special context where one is allowed.
5760 (For example, a "push" instruction.)
5761 We can't improve this address, so leave it alone. */
5762
5763 /* Otherwise, reload the autoincrement into a suitable hard reg
5764 and record how much to increment by. */
5765
5766 if (reg_renumber[regno] >= 0)
5767 regno = reg_renumber[regno];
888d2cd6 5768 if (regno >= FIRST_PSEUDO_REGISTER
f89935ed 5769 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
c4963a0a 5770 index_code))
eab89b90 5771 {
55c22565
RK
5772 int reloadnum;
5773
5774 /* If we can output the register afterwards, do so, this
5775 saves the extra update.
5776 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5777 CALL_INSN - and it does not set CC0.
5778 But don't do this if we cannot directly address the
5779 memory location, since this will make it harder to
956d6950 5780 reuse address reloads, and increases register pressure.
55c22565 5781 Also don't do this if we can probably update x directly. */
3c0cb5de 5782 rtx equiv = (MEM_P (XEXP (x, 0))
cb2afeb3
R
5783 ? XEXP (x, 0)
5784 : reg_equiv_mem[regno]);
166cdb08 5785 int icode = (int) optab_handler (add_optab, Pmode)->insn_code;
4b4bf941 5786 if (insn && NONJUMP_INSN_P (insn) && equiv
cb2afeb3 5787 && memory_operand (equiv, GET_MODE (equiv))
55c22565
RK
5788#ifdef HAVE_cc0
5789 && ! sets_cc0_p (PATTERN (insn))
5790#endif
5791 && ! (icode != CODE_FOR_nothing
a995e389
RH
5792 && ((*insn_data[icode].operand[0].predicate)
5793 (equiv, Pmode))
5794 && ((*insn_data[icode].operand[1].predicate)
5795 (equiv, Pmode))))
55c22565 5796 {
9e8f528c
AO
5797 /* We use the original pseudo for loc, so that
5798 emit_reload_insns() knows which pseudo this
5799 reload refers to and updates the pseudo rtx, not
5800 its equivalent memory location, as well as the
5801 corresponding entry in reg_last_reload_reg. */
5802 loc = &XEXP (x_orig, 0);
55c22565
RK
5803 x = XEXP (x, 0);
5804 reloadnum
5805 = push_reload (x, x, loc, loc,
888d2cd6 5806 context_reg_class,
05d10675
BS
5807 GET_MODE (x), GET_MODE (x), 0, 0,
5808 opnum, RELOAD_OTHER);
55c22565
RK
5809 }
5810 else
5811 {
5812 reloadnum
7fb446a3 5813 = push_reload (x, x, loc, (rtx*) 0,
888d2cd6 5814 context_reg_class,
e9a25f70 5815 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565 5816 opnum, type);
eceef4c9 5817 rld[reloadnum].inc
55c22565 5818 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
05d10675 5819
55c22565
RK
5820 value = 1;
5821 }
eab89b90 5822
98c17df2
GS
5823 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5824 reloadnum);
eab89b90
RK
5825 }
5826 return value;
5827 }
a2d353e5
RK
5828 return 0;
5829
19fe122f
HPN
5830 case TRUNCATE:
5831 case SIGN_EXTEND:
5832 case ZERO_EXTEND:
5833 /* Look for parts to reload in the inner expression and reload them
5834 too, in addition to this operation. Reloading all inner parts in
5835 addition to this one shouldn't be necessary, but at this point,
5836 we don't know if we can possibly omit any part that *can* be
5837 reloaded. Targets that are better off reloading just either part
5838 (or perhaps even a different part of an outer expression), should
5839 define LEGITIMIZE_RELOAD_ADDRESS. */
5840 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
c4963a0a 5841 context, code, SCRATCH, &XEXP (x, 0), opnum,
19fe122f
HPN
5842 type, ind_levels, insn);
5843 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5844 context_reg_class,
5845 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5846 return 1;
5847
a2d353e5
RK
5848 case MEM:
5849 /* This is probably the result of a substitution, by eliminate_regs, of
5850 an equivalent address for a pseudo that was not allocated to a hard
5851 register. Verify that the specified address is valid and reload it
5852 into a register.
eab89b90 5853
a2d353e5
RK
5854 Since we know we are going to reload this item, don't decrement for
5855 the indirection level.
eab89b90
RK
5856
5857 Note that this is actually conservative: it would be slightly more
5858 efficient to use the value of SPILL_INDIRECT_LEVELS from
5859 reload1.c here. */
5860
5861 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5862 opnum, ADDR_TYPE (type), ind_levels, insn);
f4f4d0f8 5863 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5864 context_reg_class,
a8c9daeb 5865 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5866 return 1;
eab89b90 5867
a2d353e5
RK
5868 case REG:
5869 {
b3694847 5870 int regno = REGNO (x);
a2d353e5
RK
5871
5872 if (reg_equiv_constant[regno] != 0)
5873 {
03acd8f8 5874 find_reloads_address_part (reg_equiv_constant[regno], loc,
888d2cd6 5875 context_reg_class,
a2d353e5
RK
5876 GET_MODE (x), opnum, type, ind_levels);
5877 return 1;
5878 }
eab89b90
RK
5879
5880#if 0 /* This might screw code in reload1.c to delete prior output-reload
5881 that feeds this insn. */
a2d353e5
RK
5882 if (reg_equiv_mem[regno] != 0)
5883 {
f4f4d0f8 5884 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
888d2cd6 5885 context_reg_class,
a2d353e5
RK
5886 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5887 return 1;
5888 }
eab89b90 5889#endif
eab89b90 5890
cb2afeb3
R
5891 if (reg_equiv_memory_loc[regno]
5892 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
a2d353e5 5893 {
cb2afeb3
R
5894 rtx tem = make_memloc (x, regno);
5895 if (reg_equiv_address[regno] != 0
5896 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5897 {
5898 x = tem;
5899 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5900 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5901 ind_levels, insn);
0f4b25a3 5902 if (!rtx_equal_p (x, tem))
3f1e3e70 5903 push_reg_equiv_alt_mem (regno, x);
cb2afeb3 5904 }
a2d353e5 5905 }
eab89b90 5906
a2d353e5
RK
5907 if (reg_renumber[regno] >= 0)
5908 regno = reg_renumber[regno];
5909
888d2cd6 5910 if (regno >= FIRST_PSEUDO_REGISTER
c4963a0a
BS
5911 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5912 index_code))
a2d353e5 5913 {
f4f4d0f8 5914 push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5915 context_reg_class,
a2d353e5
RK
5916 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5917 return 1;
5918 }
5919
5920 /* If a register appearing in an address is the subject of a CLOBBER
5921 in this insn, reload it into some other register to be safe.
5922 The CLOBBER is supposed to make the register unavailable
5923 from before this insn to after it. */
9532e31f 5924 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
a2d353e5 5925 {
f4f4d0f8 5926 push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5927 context_reg_class,
a2d353e5
RK
5928 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5929 return 1;
5930 }
5931 }
5932 return 0;
5933
5934 case SUBREG:
f8cfc6aa 5935 if (REG_P (SUBREG_REG (x)))
eab89b90 5936 {
922db4bb
RK
5937 /* If this is a SUBREG of a hard register and the resulting register
5938 is of the wrong class, reload the whole SUBREG. This avoids
5939 needless copies if SUBREG_REG is multi-word. */
5940 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5941 {
4977bab6 5942 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
a2d353e5 5943
c4963a0a
BS
5944 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5945 index_code))
922db4bb 5946 {
f4f4d0f8 5947 push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5948 context_reg_class,
922db4bb
RK
5949 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5950 return 1;
5951 }
5952 }
abc95ed3 5953 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5954 is larger than the class size, then reload the whole SUBREG. */
5955 else
a2d353e5 5956 {
55d796da
KG
5957 enum reg_class rclass = context_reg_class;
5958 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5959 > reg_class_size[rclass])
922db4bb 5960 {
50aa8e71
R
5961 x = find_reloads_subreg_address (x, 0, opnum,
5962 ADDR_TYPE (type),
22505ad8 5963 ind_levels, insn);
55d796da 5964 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
922db4bb
RK
5965 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5966 return 1;
5967 }
a2d353e5 5968 }
eab89b90 5969 }
a2d353e5 5970 break;
05d10675 5971
e9a25f70
JL
5972 default:
5973 break;
eab89b90
RK
5974 }
5975
a2d353e5 5976 {
b3694847
SS
5977 const char *fmt = GET_RTX_FORMAT (code);
5978 int i;
a2d353e5
RK
5979
5980 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5981 {
5982 if (fmt[i] == 'e')
c4963a0a
BS
5983 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5984 we get here. */
5985 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5986 &XEXP (x, i), opnum, type, ind_levels, insn);
a2d353e5
RK
5987 }
5988 }
5989
888d2cd6 5990#undef REG_OK_FOR_CONTEXT
eab89b90
RK
5991 return 0;
5992}
5993\f
5994/* X, which is found at *LOC, is a part of an address that needs to be
55d796da 5995 reloaded into a register of class RCLASS. If X is a constant, or if
eab89b90
RK
5996 X is a PLUS that contains a constant, check that the constant is a
5997 legitimate operand and that we are supposed to be able to load
5998 it into the register.
5999
6000 If not, force the constant into memory and reload the MEM instead.
6001
6002 MODE is the mode to use, in case X is an integer constant.
6003
a8c9daeb 6004 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
6005
6006 IND_LEVELS says how many levels of indirect addressing this machine
6007 supports. */
6008
6009static void
55d796da 6010find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
0c20a65f
AJ
6011 enum machine_mode mode, int opnum,
6012 enum reload_type type, int ind_levels)
eab89b90
RK
6013{
6014 if (CONSTANT_P (x)
6015 && (! LEGITIMATE_CONSTANT_P (x)
55d796da 6016 || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
eab89b90 6017 {
e4fd64d6
SL
6018 x = force_const_mem (mode, x);
6019 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
55c22565 6020 opnum, type, ind_levels, 0);
eab89b90
RK
6021 }
6022
6023 else if (GET_CODE (x) == PLUS
6024 && CONSTANT_P (XEXP (x, 1))
6025 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
55d796da 6026 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
eab89b90 6027 {
ef18065c
JW
6028 rtx tem;
6029
081b49f1 6030 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
38a448ca 6031 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
e4fd64d6 6032 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
55c22565 6033 opnum, type, ind_levels, 0);
eab89b90
RK
6034 }
6035
55d796da 6036 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
a8c9daeb 6037 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
6038}
6039\f
22505ad8
R
6040/* X, a subreg of a pseudo, is a part of an address that needs to be
6041 reloaded.
6042
6043 If the pseudo is equivalent to a memory location that cannot be directly
6044 addressed, make the necessary address reloads.
6045
6046 If address reloads have been necessary, or if the address is changed
6047 by register elimination, return the rtx of the memory location;
6048 otherwise, return X.
6049
6050 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6051 memory location.
6052
6053 OPNUM and TYPE identify the purpose of the reload.
6054
6055 IND_LEVELS says how many levels of indirect addressing are
6056 supported at this point in the address.
6057
6058 INSN, if nonzero, is the insn in which we do the reload. It is used
6059 to determine where to put USEs for pseudos that we have to replace with
6060 stack slots. */
6061
6062static rtx
0c20a65f
AJ
6063find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6064 enum reload_type type, int ind_levels, rtx insn)
22505ad8
R
6065{
6066 int regno = REGNO (SUBREG_REG (x));
6067
6068 if (reg_equiv_memory_loc[regno])
6069 {
6070 /* If the address is not directly addressable, or if the address is not
6071 offsettable, then it must be replaced. */
6072 if (! force_replace
6073 && (reg_equiv_address[regno]
6074 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6075 force_replace = 1;
6076
6077 if (force_replace || num_not_at_initial_offset)
6078 {
6079 rtx tem = make_memloc (SUBREG_REG (x), regno);
6080
6081 /* If the address changes because of register elimination, then
dd074554 6082 it must be replaced. */
22505ad8
R
6083 if (force_replace
6084 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6085 {
0a28aef9
RH
6086 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6087 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6357135a 6088 int offset;
3f1e3e70 6089 rtx orig = tem;
f5c3dc96 6090 int reloaded;
6357135a
UW
6091
6092 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6093 hold the correct (negative) byte offset. */
6094 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6095 offset = inner_size - outer_size;
6096 else
6097 offset = SUBREG_BYTE (x);
22505ad8 6098
22505ad8
R
6099 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6100 PUT_MODE (tem, GET_MODE (x));
38ae7651
RS
6101 if (MEM_OFFSET (tem))
6102 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
0a28aef9
RH
6103
6104 /* If this was a paradoxical subreg that we replaced, the
6105 resulting memory must be sufficiently aligned to allow
6106 us to widen the mode of the memory. */
5a575f77 6107 if (outer_size > inner_size)
0a28aef9
RH
6108 {
6109 rtx base;
6110
6111 base = XEXP (tem, 0);
6112 if (GET_CODE (base) == PLUS)
6113 {
481683e1 6114 if (CONST_INT_P (XEXP (base, 1))
0a28aef9
RH
6115 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6116 return x;
6117 base = XEXP (base, 0);
6118 }
f8cfc6aa 6119 if (!REG_P (base)
0a28aef9
RH
6120 || (REGNO_POINTER_ALIGN (REGNO (base))
6121 < outer_size * BITS_PER_UNIT))
6122 return x;
6123 }
6124
f5c3dc96
ILT
6125 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6126 XEXP (tem, 0), &XEXP (tem, 0),
6127 opnum, type, ind_levels, insn);
3f1e3e70 6128 /* ??? Do we need to handle nonzero offsets somehow? */
0f4b25a3 6129 if (!offset && !rtx_equal_p (tem, orig))
3f1e3e70 6130 push_reg_equiv_alt_mem (regno, tem);
0a28aef9 6131
f5c3dc96
ILT
6132 /* For some processors an address may be valid in the
6133 original mode but not in a smaller mode. For
6134 example, ARM accepts a scaled index register in
10932211
JM
6135 SImode but not in HImode. Similarly, the address may
6136 have been valid before the subreg offset was added,
6137 but not afterwards. find_reloads_address
f5c3dc96
ILT
6138 assumes that we pass it a valid address, and doesn't
6139 force a reload. This will probably be fine if
6140 find_reloads_address finds some reloads. But if it
6141 doesn't find any, then we may have just converted a
6142 valid address into an invalid one. Check for that
6143 here. */
ea471af0 6144 if (reloaded == 0
f5c3dc96
ILT
6145 && !strict_memory_address_p (GET_MODE (tem),
6146 XEXP (tem, 0)))
6147 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6148 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6149 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6150 opnum, type);
6151
22505ad8
R
6152 /* If this is not a toplevel operand, find_reloads doesn't see
6153 this substitution. We have to emit a USE of the pseudo so
6154 that delete_output_reload can see it. */
1ccbefce 6155 if (replace_reloads && recog_data.operand[opnum] != x)
3d17d93d
AO
6156 /* We mark the USE with QImode so that we recognize it
6157 as one that can be safely deleted at the end of
6158 reload. */
6159 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6160 SUBREG_REG (x)),
6161 insn), QImode);
0ba9b9e6 6162 x = tem;
22505ad8
R
6163 }
6164 }
6165 }
6166 return x;
6167}
6168\f
a8c9daeb 6169/* Substitute into the current INSN the registers into which we have reloaded
eab89b90 6170 the things that need reloading. The array `replacements'
ecbe6c61 6171 contains the locations of all pointers that must be changed
eab89b90
RK
6172 and says what to replace them with.
6173
6174 Return the rtx that X translates into; usually X, but modified. */
6175
6176void
0c20a65f 6177subst_reloads (rtx insn)
eab89b90 6178{
b3694847 6179 int i;
eab89b90
RK
6180
6181 for (i = 0; i < n_replacements; i++)
6182 {
b3694847
SS
6183 struct replacement *r = &replacements[i];
6184 rtx reloadreg = rld[r->what].reg_rtx;
eab89b90
RK
6185 if (reloadreg)
6186 {
0fa4cb7d
SE
6187#ifdef DEBUG_RELOAD
6188 /* This checking takes a very long time on some platforms
6189 causing the gcc.c-torture/compile/limits-fnargs.c test
6190 to time out during testing. See PR 31850.
6191
6192 Internal consistency test. Check that we don't modify
cf728d61
HPN
6193 anything in the equivalence arrays. Whenever something from
6194 those arrays needs to be reloaded, it must be unshared before
6195 being substituted into; the equivalence must not be modified.
6196 Otherwise, if the equivalence is used after that, it will
6197 have been modified, and the thing substituted (probably a
6198 register) is likely overwritten and not a usable equivalence. */
6199 int check_regno;
6200
6201 for (check_regno = 0; check_regno < max_regno; check_regno++)
6202 {
6203#define CHECK_MODF(ARRAY) \
41374e13
NS
6204 gcc_assert (!ARRAY[check_regno] \
6205 || !loc_mentioned_in_p (r->where, \
6206 ARRAY[check_regno]))
cf728d61
HPN
6207
6208 CHECK_MODF (reg_equiv_constant);
6209 CHECK_MODF (reg_equiv_memory_loc);
6210 CHECK_MODF (reg_equiv_address);
6211 CHECK_MODF (reg_equiv_mem);
6212#undef CHECK_MODF
6213 }
0fa4cb7d 6214#endif /* DEBUG_RELOAD */
cf728d61 6215
cf7c4aa6
HPN
6216 /* If we're replacing a LABEL_REF with a register, there must
6217 already be an indication (to e.g. flow) which label this
f759eb8b 6218 register refers to. */
cf7c4aa6
HPN
6219 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6220 || !JUMP_P (insn)
6221 || find_reg_note (insn,
6222 REG_LABEL_OPERAND,
6223 XEXP (*r->where, 0))
6224 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
f759eb8b 6225
eab89b90 6226 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
6227 used to be there. Note that gen_lowpart_common will
6228 do the wrong thing if RELOADREG is multi-word. RELOADREG
6229 will always be a REG here. */
eab89b90 6230 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
f12448c8 6231 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
eab89b90
RK
6232
6233 /* If we are putting this into a SUBREG and RELOADREG is a
6234 SUBREG, we would be making nested SUBREGs, so we have to fix
6235 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6236
6237 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6238 {
6239 if (GET_MODE (*r->subreg_loc)
6240 == GET_MODE (SUBREG_REG (reloadreg)))
6241 *r->subreg_loc = SUBREG_REG (reloadreg);
6242 else
6243 {
ddef6bc7
JJ
6244 int final_offset =
6245 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6246
6247 /* When working with SUBREGs the rule is that the byte
6248 offset must be a multiple of the SUBREG's mode. */
6249 final_offset = (final_offset /
6250 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6251 final_offset = (final_offset *
6252 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6253
eab89b90 6254 *r->where = SUBREG_REG (reloadreg);
ddef6bc7 6255 SUBREG_BYTE (*r->subreg_loc) = final_offset;
eab89b90
RK
6256 }
6257 }
6258 else
6259 *r->where = reloadreg;
6260 }
6261 /* If reload got no reg and isn't optional, something's wrong. */
41374e13
NS
6262 else
6263 gcc_assert (rld[r->what].optional);
eab89b90
RK
6264 }
6265}
6266\f
561c9153
RH
6267/* Make a copy of any replacements being done into X and move those
6268 copies to locations in Y, a copy of X. */
eab89b90
RK
6269
6270void
0c20a65f 6271copy_replacements (rtx x, rtx y)
eab89b90 6272{
eab89b90
RK
6273 /* We can't support X being a SUBREG because we might then need to know its
6274 location if something inside it was replaced. */
41374e13 6275 gcc_assert (GET_CODE (x) != SUBREG);
eab89b90 6276
561c9153
RH
6277 copy_replacements_1 (&x, &y, n_replacements);
6278}
6279
6280static void
0c20a65f 6281copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
561c9153
RH
6282{
6283 int i, j;
6284 rtx x, y;
6285 struct replacement *r;
6286 enum rtx_code code;
6287 const char *fmt;
6288
6289 for (j = 0; j < orig_replacements; j++)
6290 {
6291 if (replacements[j].subreg_loc == px)
eab89b90 6292 {
561c9153
RH
6293 r = &replacements[n_replacements++];
6294 r->where = replacements[j].where;
6295 r->subreg_loc = py;
6296 r->what = replacements[j].what;
6297 r->mode = replacements[j].mode;
6298 }
6299 else if (replacements[j].where == px)
6300 {
6301 r = &replacements[n_replacements++];
6302 r->where = py;
6303 r->subreg_loc = 0;
6304 r->what = replacements[j].what;
6305 r->mode = replacements[j].mode;
eab89b90 6306 }
561c9153
RH
6307 }
6308
6309 x = *px;
6310 y = *py;
6311 code = GET_CODE (x);
6312 fmt = GET_RTX_FORMAT (code);
6313
6314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6315 {
6316 if (fmt[i] == 'e')
6317 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6318 else if (fmt[i] == 'E')
6319 for (j = XVECLEN (x, i); --j >= 0; )
6320 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6321 orig_replacements);
6322 }
eab89b90 6323}
a9a2595b 6324
3eae4643 6325/* Change any replacements being done to *X to be done to *Y. */
a9a2595b
JR
6326
6327void
0c20a65f 6328move_replacements (rtx *x, rtx *y)
a9a2595b
JR
6329{
6330 int i;
6331
6332 for (i = 0; i < n_replacements; i++)
6333 if (replacements[i].subreg_loc == x)
6334 replacements[i].subreg_loc = y;
6335 else if (replacements[i].where == x)
6336 {
6337 replacements[i].where = y;
6338 replacements[i].subreg_loc = 0;
6339 }
6340}
eab89b90 6341\f
af929c62
RK
6342/* If LOC was scheduled to be replaced by something, return the replacement.
6343 Otherwise, return *LOC. */
6344
6345rtx
0c20a65f 6346find_replacement (rtx *loc)
af929c62
RK
6347{
6348 struct replacement *r;
6349
6350 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6351 {
eceef4c9 6352 rtx reloadreg = rld[r->what].reg_rtx;
af929c62
RK
6353
6354 if (reloadreg && r->where == loc)
6355 {
6356 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
38a448ca 6357 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
af929c62
RK
6358
6359 return reloadreg;
6360 }
6361 else if (reloadreg && r->subreg_loc == loc)
6362 {
6363 /* RELOADREG must be either a REG or a SUBREG.
6364
6365 ??? Is it actually still ever a SUBREG? If so, why? */
6366
f8cfc6aa 6367 if (REG_P (reloadreg))
38a448ca 6368 return gen_rtx_REG (GET_MODE (*loc),
ddef6bc7
JJ
6369 (REGNO (reloadreg) +
6370 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6371 GET_MODE (SUBREG_REG (*loc)),
6372 SUBREG_BYTE (*loc),
6373 GET_MODE (*loc))));
af929c62
RK
6374 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6375 return reloadreg;
6376 else
ddef6bc7
JJ
6377 {
6378 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6379
6380 /* When working with SUBREGs the rule is that the byte
6381 offset must be a multiple of the SUBREG's mode. */
6382 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6383 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6384 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6385 final_offset);
6386 }
af929c62
RK
6387 }
6388 }
6389
956d6950
JL
6390 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6391 what's inside and make a new rtl if so. */
6392 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6393 || GET_CODE (*loc) == MULT)
6394 {
6395 rtx x = find_replacement (&XEXP (*loc, 0));
6396 rtx y = find_replacement (&XEXP (*loc, 1));
6397
6398 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
38a448ca 6399 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
956d6950
JL
6400 }
6401
af929c62
RK
6402 return *loc;
6403}
6404\f
eab89b90
RK
6405/* Return nonzero if register in range [REGNO, ENDREGNO)
6406 appears either explicitly or implicitly in X
4644aad4 6407 other than being stored into (except for earlyclobber operands).
eab89b90
RK
6408
6409 References contained within the substructure at LOC do not count.
6410 LOC may be zero, meaning don't ignore anything.
6411
6412 This is similar to refers_to_regno_p in rtlanal.c except that we
6413 look at equivalences for pseudos that didn't get hard registers. */
6414
10015a27 6415static int
0c20a65f
AJ
6416refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6417 rtx x, rtx *loc)
eab89b90 6418{
770ae6cc
RK
6419 int i;
6420 unsigned int r;
6421 RTX_CODE code;
6422 const char *fmt;
eab89b90
RK
6423
6424 if (x == 0)
6425 return 0;
6426
6427 repeat:
6428 code = GET_CODE (x);
6429
6430 switch (code)
6431 {
6432 case REG:
770ae6cc 6433 r = REGNO (x);
eab89b90 6434
4803a34a
RK
6435 /* If this is a pseudo, a hard register must not have been allocated.
6436 X must therefore either be a constant or be in memory. */
770ae6cc 6437 if (r >= FIRST_PSEUDO_REGISTER)
4803a34a 6438 {
770ae6cc 6439 if (reg_equiv_memory_loc[r])
4803a34a 6440 return refers_to_regno_for_reload_p (regno, endregno,
770ae6cc 6441 reg_equiv_memory_loc[r],
f4f4d0f8 6442 (rtx*) 0);
4803a34a 6443
444aea52 6444 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
41374e13 6445 return 0;
4803a34a 6446 }
eab89b90 6447
770ae6cc
RK
6448 return (endregno > r
6449 && regno < r + (r < FIRST_PSEUDO_REGISTER
66fd46b6 6450 ? hard_regno_nregs[r][GET_MODE (x)]
eab89b90
RK
6451 : 1));
6452
6453 case SUBREG:
6454 /* If this is a SUBREG of a hard reg, we can see exactly which
6455 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 6456 if (REG_P (SUBREG_REG (x))
eab89b90
RK
6457 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6458 {
ddef6bc7 6459 unsigned int inner_regno = subreg_regno (x);
770ae6cc 6460 unsigned int inner_endregno
403c659c 6461 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 6462 ? subreg_nregs (x) : 1);
eab89b90
RK
6463
6464 return endregno > inner_regno && regno < inner_endregno;
6465 }
6466 break;
6467
6468 case CLOBBER:
6469 case SET:
6470 if (&SET_DEST (x) != loc
6471 /* Note setting a SUBREG counts as referring to the REG it is in for
6472 a pseudo but not for hard registers since we can
6473 treat each word individually. */
6474 && ((GET_CODE (SET_DEST (x)) == SUBREG
6475 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 6476 && REG_P (SUBREG_REG (SET_DEST (x)))
eab89b90
RK
6477 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6478 && refers_to_regno_for_reload_p (regno, endregno,
6479 SUBREG_REG (SET_DEST (x)),
6480 loc))
abc95ed3 6481 /* If the output is an earlyclobber operand, this is
4644aad4 6482 a conflict. */
f8cfc6aa 6483 || ((!REG_P (SET_DEST (x))
4644aad4 6484 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
6485 && refers_to_regno_for_reload_p (regno, endregno,
6486 SET_DEST (x), loc))))
6487 return 1;
6488
6489 if (code == CLOBBER || loc == &SET_SRC (x))
6490 return 0;
6491 x = SET_SRC (x);
6492 goto repeat;
05d10675 6493
e9a25f70
JL
6494 default:
6495 break;
eab89b90
RK
6496 }
6497
6498 /* X does not match, so try its subexpressions. */
6499
6500 fmt = GET_RTX_FORMAT (code);
6501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6502 {
6503 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6504 {
6505 if (i == 0)
6506 {
6507 x = XEXP (x, 0);
6508 goto repeat;
6509 }
6510 else
6511 if (refers_to_regno_for_reload_p (regno, endregno,
6512 XEXP (x, i), loc))
6513 return 1;
6514 }
6515 else if (fmt[i] == 'E')
6516 {
b3694847 6517 int j;
4381f7c2 6518 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
eab89b90
RK
6519 if (loc != &XVECEXP (x, i, j)
6520 && refers_to_regno_for_reload_p (regno, endregno,
6521 XVECEXP (x, i, j), loc))
6522 return 1;
6523 }
6524 }
6525 return 0;
6526}
bfa30b22
RK
6527
6528/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6529 we check if any register number in X conflicts with the relevant register
6530 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6531 contains a MEM (we don't bother checking for memory addresses that can't
05d10675 6532 conflict because we expect this to be a rare case.
bfa30b22 6533
e0120d6e 6534 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
bfa30b22
RK
6535 that we look at equivalences for pseudos that didn't get hard registers. */
6536
6537int
0c20a65f 6538reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
bfa30b22
RK
6539{
6540 int regno, endregno;
6541
b98b49ac 6542 /* Overly conservative. */
38979c65 6543 if (GET_CODE (x) == STRICT_LOW_PART
ec8e098d 6544 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
b98b49ac
JL
6545 x = XEXP (x, 0);
6546
6547 /* If either argument is a constant, then modifying X can not affect IN. */
6548 if (CONSTANT_P (x) || CONSTANT_P (in))
6549 return 0;
481683e1 6550 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
838f78d6 6551 return refers_to_mem_for_reload_p (in);
b98b49ac 6552 else if (GET_CODE (x) == SUBREG)
bfa30b22
RK
6553 {
6554 regno = REGNO (SUBREG_REG (x));
6555 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7
JJ
6556 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6557 GET_MODE (SUBREG_REG (x)),
6558 SUBREG_BYTE (x),
6559 GET_MODE (x));
f1f4e530
JM
6560 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6561 ? subreg_nregs (x) : 1);
6562
6563 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
bfa30b22 6564 }
f8cfc6aa 6565 else if (REG_P (x))
bfa30b22
RK
6566 {
6567 regno = REGNO (x);
4803a34a
RK
6568
6569 /* If this is a pseudo, it must not have been assigned a hard register.
6570 Therefore, it must either be in memory or be a constant. */
6571
6572 if (regno >= FIRST_PSEUDO_REGISTER)
6573 {
6574 if (reg_equiv_memory_loc[regno])
6575 return refers_to_mem_for_reload_p (in);
41374e13
NS
6576 gcc_assert (reg_equiv_constant[regno]);
6577 return 0;
4803a34a 6578 }
f1f4e530 6579
09e18274 6580 endregno = END_HARD_REGNO (x);
f1f4e530
JM
6581
6582 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
bfa30b22 6583 }
3c0cb5de 6584 else if (MEM_P (x))
4803a34a 6585 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
6586 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6587 || GET_CODE (x) == CC0)
6588 return reg_mentioned_p (x, in);
41374e13 6589 else
69f38ab9 6590 {
41374e13
NS
6591 gcc_assert (GET_CODE (x) == PLUS);
6592
69f38ab9
R
6593 /* We actually want to know if X is mentioned somewhere inside IN.
6594 We must not say that (plus (sp) (const_int 124)) is in
6595 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6596 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6597 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
3c0cb5de 6598 while (MEM_P (in))
69f38ab9 6599 in = XEXP (in, 0);
f8cfc6aa 6600 if (REG_P (in))
69f38ab9
R
6601 return 0;
6602 else if (GET_CODE (in) == PLUS)
10050f74
KK
6603 return (rtx_equal_p (x, in)
6604 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
69f38ab9
R
6605 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6606 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6607 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6608 }
bfa30b22 6609
f1f4e530 6610 gcc_unreachable ();
bfa30b22 6611}
4803a34a
RK
6612
6613/* Return nonzero if anything in X contains a MEM. Look also for pseudo
6614 registers. */
6615
10015a27 6616static int
0c20a65f 6617refers_to_mem_for_reload_p (rtx x)
4803a34a 6618{
6f7d635c 6619 const char *fmt;
4803a34a
RK
6620 int i;
6621
3c0cb5de 6622 if (MEM_P (x))
4803a34a
RK
6623 return 1;
6624
f8cfc6aa 6625 if (REG_P (x))
4803a34a
RK
6626 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6627 && reg_equiv_memory_loc[REGNO (x)]);
05d10675 6628
4803a34a
RK
6629 fmt = GET_RTX_FORMAT (GET_CODE (x));
6630 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6631 if (fmt[i] == 'e'
3c0cb5de 6632 && (MEM_P (XEXP (x, i))
4803a34a
RK
6633 || refers_to_mem_for_reload_p (XEXP (x, i))))
6634 return 1;
05d10675 6635
4803a34a
RK
6636 return 0;
6637}
eab89b90 6638\f
eab89b90
RK
6639/* Check the insns before INSN to see if there is a suitable register
6640 containing the same value as GOAL.
55d796da 6641 If OTHER is -1, look for a register in class RCLASS.
eab89b90
RK
6642 Otherwise, just see if register number OTHER shares GOAL's value.
6643
6644 Return an rtx for the register found, or zero if none is found.
6645
6646 If RELOAD_REG_P is (short *)1,
6647 we reject any hard reg that appears in reload_reg_rtx
6648 because such a hard reg is also needed coming into this insn.
6649
6650 If RELOAD_REG_P is any other nonzero value,
6651 it is a vector indexed by hard reg number
6652 and we reject any hard reg whose element in the vector is nonnegative
6653 as well as any that appears in reload_reg_rtx.
6654
6655 If GOAL is zero, then GOALREG is a register number; we look
6656 for an equivalent for that register.
6657
6658 MODE is the machine mode of the value we want an equivalence for.
6659 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6660
6661 This function is used by jump.c as well as in the reload pass.
6662
6663 If GOAL is the sum of the stack pointer and a constant, we treat it
6664 as if it were a constant except that sp is required to be unchanging. */
6665
6666rtx
55d796da 6667find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
0c20a65f 6668 short *reload_reg_p, int goalreg, enum machine_mode mode)
eab89b90 6669{
b3694847 6670 rtx p = insn;
f55b1d97 6671 rtx goaltry, valtry, value, where;
b3694847
SS
6672 rtx pat;
6673 int regno = -1;
eab89b90
RK
6674 int valueno;
6675 int goal_mem = 0;
6676 int goal_const = 0;
6677 int goal_mem_addr_varies = 0;
6678 int need_stable_sp = 0;
6679 int nregs;
6680 int valuenregs;
0bcf8261 6681 int num = 0;
eab89b90
RK
6682
6683 if (goal == 0)
6684 regno = goalreg;
f8cfc6aa 6685 else if (REG_P (goal))
eab89b90 6686 regno = REGNO (goal);
3c0cb5de 6687 else if (MEM_P (goal))
eab89b90
RK
6688 {
6689 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6690 if (MEM_VOLATILE_P (goal))
6691 return 0;
3d8bf70f 6692 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
eab89b90
RK
6693 return 0;
6694 /* An address with side effects must be reexecuted. */
6695 switch (code)
6696 {
6697 case POST_INC:
6698 case PRE_INC:
6699 case POST_DEC:
6700 case PRE_DEC:
4b983fdc
RH
6701 case POST_MODIFY:
6702 case PRE_MODIFY:
eab89b90 6703 return 0;
e9a25f70
JL
6704 default:
6705 break;
eab89b90
RK
6706 }
6707 goal_mem = 1;
6708 }
6709 else if (CONSTANT_P (goal))
6710 goal_const = 1;
6711 else if (GET_CODE (goal) == PLUS
6712 && XEXP (goal, 0) == stack_pointer_rtx
6713 && CONSTANT_P (XEXP (goal, 1)))
6714 goal_const = need_stable_sp = 1;
812f2051
R
6715 else if (GET_CODE (goal) == PLUS
6716 && XEXP (goal, 0) == frame_pointer_rtx
6717 && CONSTANT_P (XEXP (goal, 1)))
6718 goal_const = 1;
eab89b90
RK
6719 else
6720 return 0;
6721
0bcf8261 6722 num = 0;
eab89b90
RK
6723 /* Scan insns back from INSN, looking for one that copies
6724 a value into or out of GOAL.
6725 Stop and give up if we reach a label. */
6726
6727 while (1)
6728 {
6729 p = PREV_INSN (p);
0bcf8261 6730 num++;
4b4bf941 6731 if (p == 0 || LABEL_P (p)
0bcf8261 6732 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
eab89b90 6733 return 0;
770ae6cc 6734
4b4bf941 6735 if (NONJUMP_INSN_P (p)
0f41302f 6736 /* If we don't want spill regs ... */
a8c9daeb
RK
6737 && (! (reload_reg_p != 0
6738 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
770ae6cc
RK
6739 /* ... then ignore insns introduced by reload; they aren't
6740 useful and can cause results in reload_as_needed to be
6741 different from what they were when calculating the need for
6742 spills. If we notice an input-reload insn here, we will
6743 reject it below, but it might hide a usable equivalent.
0e61db61 6744 That makes bad code. It may even fail: perhaps no reg was
770ae6cc
RK
6745 spilled for this insn because it was assumed we would find
6746 that equivalent. */
eab89b90
RK
6747 || INSN_UID (p) < reload_first_uid))
6748 {
e8094962 6749 rtx tem;
eab89b90 6750 pat = single_set (p);
770ae6cc 6751
eab89b90
RK
6752 /* First check for something that sets some reg equal to GOAL. */
6753 if (pat != 0
6754 && ((regno >= 0
6755 && true_regnum (SET_SRC (pat)) == regno
6756 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6757 ||
6758 (regno >= 0
6759 && true_regnum (SET_DEST (pat)) == regno
6760 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6761 ||
6762 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
a5546290
R
6763 /* When looking for stack pointer + const,
6764 make sure we don't use a stack adjust. */
6765 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
eab89b90
RK
6766 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6767 || (goal_mem
6768 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6769 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6770 || (goal_mem
6771 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
6772 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6773 /* If we are looking for a constant,
6774 and something equivalent to that constant was copied
6775 into a reg, we can use that reg. */
efc9bd41
RK
6776 || (goal_const && REG_NOTES (p) != 0
6777 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6778 && ((rtx_equal_p (XEXP (tem, 0), goal)
6779 && (valueno
6780 = true_regnum (valtry = SET_DEST (pat))) >= 0)
f8cfc6aa 6781 || (REG_P (SET_DEST (pat))
efc9bd41 6782 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
3d8bf70f 6783 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
481683e1 6784 && CONST_INT_P (goal)
efc9bd41
RK
6785 && 0 != (goaltry
6786 = operand_subword (XEXP (tem, 0), 0, 0,
f55b1d97 6787 VOIDmode))
efc9bd41
RK
6788 && rtx_equal_p (goal, goaltry)
6789 && (valtry
6790 = operand_subword (SET_DEST (pat), 0, 0,
6791 VOIDmode))
6792 && (valueno = true_regnum (valtry)) >= 0)))
fb3821f7
CH
6793 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6794 NULL_RTX))
f8cfc6aa 6795 && REG_P (SET_DEST (pat))
e8094962 6796 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
3d8bf70f 6797 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
481683e1 6798 && CONST_INT_P (goal)
f55b1d97
RK
6799 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6800 VOIDmode))
6801 && rtx_equal_p (goal, goaltry)
e8094962
RK
6802 && (valtry
6803 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 6804 && (valueno = true_regnum (valtry)) >= 0)))
0192d704
R
6805 {
6806 if (other >= 0)
6807 {
6808 if (valueno != other)
6809 continue;
6810 }
6811 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6812 continue;
55d796da 6813 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
09e18274
RS
6814 mode, valueno))
6815 continue;
0192d704
R
6816 value = valtry;
6817 where = p;
6818 break;
6819 }
eab89b90
RK
6820 }
6821 }
6822
6823 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6824 (or copying VALUE into GOAL, if GOAL is also a register).
6825 Now verify that VALUE is really valid. */
6826
6827 /* VALUENO is the register number of VALUE; a hard register. */
6828
6829 /* Don't try to re-use something that is killed in this insn. We want
6830 to be able to trust REG_UNUSED notes. */
efc9bd41 6831 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
eab89b90
RK
6832 return 0;
6833
6834 /* If we propose to get the value from the stack pointer or if GOAL is
6835 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 6836 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
6837 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6838 goal)))
eab89b90
RK
6839 need_stable_sp = 1;
6840
6841 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6842 if (GET_MODE (value) != mode)
6843 return 0;
6844
6845 /* Reject VALUE if it was loaded from GOAL
6846 and is also a register that appears in the address of GOAL. */
6847
bd5f6d44 6848 if (goal_mem && value == SET_DEST (single_set (where))
09e18274 6849 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
f4f4d0f8 6850 goal, (rtx*) 0))
eab89b90
RK
6851 return 0;
6852
6853 /* Reject registers that overlap GOAL. */
6854
66fd46b6
JH
6855 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6856 nregs = hard_regno_nregs[regno][mode];
6857 else
6858 nregs = 1;
6859 valuenregs = hard_regno_nregs[valueno][mode];
16ab191f 6860
3c241c19
GK
6861 if (!goal_mem && !goal_const
6862 && regno + nregs > valueno && regno < valueno + valuenregs)
6863 return 0;
6864
eab89b90
RK
6865 /* Reject VALUE if it is one of the regs reserved for reloads.
6866 Reload1 knows how to reuse them anyway, and it would get
6867 confused if we allocated one without its knowledge.
6868 (Now that insns introduced by reload are ignored above,
6869 this case shouldn't happen, but I'm not positive.) */
6870
16ab191f
DC
6871 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6872 {
6873 int i;
6874 for (i = 0; i < valuenregs; ++i)
6875 if (reload_reg_p[valueno + i] >= 0)
6876 return 0;
6877 }
eab89b90
RK
6878
6879 /* Reject VALUE if it is a register being used for an input reload
6880 even if it is not one of those reserved. */
6881
6882 if (reload_reg_p != 0)
6883 {
6884 int i;
6885 for (i = 0; i < n_reloads; i++)
eceef4c9 6886 if (rld[i].reg_rtx != 0 && rld[i].in)
eab89b90 6887 {
eceef4c9 6888 int regno1 = REGNO (rld[i].reg_rtx);
66fd46b6
JH
6889 int nregs1 = hard_regno_nregs[regno1]
6890 [GET_MODE (rld[i].reg_rtx)];
eab89b90
RK
6891 if (regno1 < valueno + valuenregs
6892 && regno1 + nregs1 > valueno)
6893 return 0;
6894 }
6895 }
6896
6897 if (goal_mem)
54b5ffe9
RS
6898 /* We must treat frame pointer as varying here,
6899 since it can vary--in a nonlocal goto as generated by expand_goto. */
6900 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
6901
6902 /* Now verify that the values of GOAL and VALUE remain unaltered
6903 until INSN is reached. */
6904
6905 p = insn;
6906 while (1)
6907 {
6908 p = PREV_INSN (p);
6909 if (p == where)
6910 return value;
6911
6912 /* Don't trust the conversion past a function call
6913 if either of the two is in a call-clobbered register, or memory. */
4b4bf941 6914 if (CALL_P (p))
aad2919f
DC
6915 {
6916 int i;
4381f7c2 6917
aad2919f
DC
6918 if (goal_mem || need_stable_sp)
6919 return 0;
4381f7c2 6920
aad2919f
DC
6921 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6922 for (i = 0; i < nregs; ++i)
7e42db17
DJ
6923 if (call_used_regs[regno + i]
6924 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
aad2919f
DC
6925 return 0;
6926
6927 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6928 for (i = 0; i < valuenregs; ++i)
7e42db17
DJ
6929 if (call_used_regs[valueno + i]
6930 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
aad2919f 6931 return 0;
570a98eb 6932 }
41fe17ab 6933
2c3c49de 6934 if (INSN_P (p))
eab89b90 6935 {
8ec82f87
RH
6936 pat = PATTERN (p);
6937
05d10675
BS
6938 /* Watch out for unspec_volatile, and volatile asms. */
6939 if (volatile_insn_p (pat))
8ec82f87
RH
6940 return 0;
6941
eab89b90
RK
6942 /* If this insn P stores in either GOAL or VALUE, return 0.
6943 If GOAL is a memory ref and this insn writes memory, return 0.
6944 If GOAL is a memory ref and its address is not constant,
6945 and this insn P changes a register used in GOAL, return 0. */
6946
0c99ec5c
RH
6947 if (GET_CODE (pat) == COND_EXEC)
6948 pat = COND_EXEC_CODE (pat);
eab89b90
RK
6949 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6950 {
b3694847 6951 rtx dest = SET_DEST (pat);
eab89b90
RK
6952 while (GET_CODE (dest) == SUBREG
6953 || GET_CODE (dest) == ZERO_EXTRACT
eab89b90
RK
6954 || GET_CODE (dest) == STRICT_LOW_PART)
6955 dest = XEXP (dest, 0);
f8cfc6aa 6956 if (REG_P (dest))
eab89b90 6957 {
b3694847 6958 int xregno = REGNO (dest);
eab89b90
RK
6959 int xnregs;
6960 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
66fd46b6 6961 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
eab89b90
RK
6962 else
6963 xnregs = 1;
6964 if (xregno < regno + nregs && xregno + xnregs > regno)
6965 return 0;
6966 if (xregno < valueno + valuenregs
6967 && xregno + xnregs > valueno)
6968 return 0;
6969 if (goal_mem_addr_varies
bfa30b22 6970 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90 6971 return 0;
1b4d8b2b
R
6972 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6973 return 0;
eab89b90 6974 }
3c0cb5de 6975 else if (goal_mem && MEM_P (dest)
eab89b90
RK
6976 && ! push_operand (dest, GET_MODE (dest)))
6977 return 0;
3c0cb5de 6978 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
9fac9680
RK
6979 && reg_equiv_memory_loc[regno] != 0)
6980 return 0;
eab89b90
RK
6981 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6982 return 0;
6983 }
6984 else if (GET_CODE (pat) == PARALLEL)
6985 {
b3694847 6986 int i;
eab89b90
RK
6987 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6988 {
b3694847 6989 rtx v1 = XVECEXP (pat, 0, i);
0c99ec5c
RH
6990 if (GET_CODE (v1) == COND_EXEC)
6991 v1 = COND_EXEC_CODE (v1);
eab89b90
RK
6992 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6993 {
b3694847 6994 rtx dest = SET_DEST (v1);
eab89b90
RK
6995 while (GET_CODE (dest) == SUBREG
6996 || GET_CODE (dest) == ZERO_EXTRACT
eab89b90
RK
6997 || GET_CODE (dest) == STRICT_LOW_PART)
6998 dest = XEXP (dest, 0);
f8cfc6aa 6999 if (REG_P (dest))
eab89b90 7000 {
b3694847 7001 int xregno = REGNO (dest);
eab89b90
RK
7002 int xnregs;
7003 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
66fd46b6 7004 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
eab89b90
RK
7005 else
7006 xnregs = 1;
7007 if (xregno < regno + nregs
7008 && xregno + xnregs > regno)
7009 return 0;
7010 if (xregno < valueno + valuenregs
7011 && xregno + xnregs > valueno)
7012 return 0;
7013 if (goal_mem_addr_varies
bfa30b22
RK
7014 && reg_overlap_mentioned_for_reload_p (dest,
7015 goal))
eab89b90 7016 return 0;
930176e7
R
7017 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7018 return 0;
eab89b90 7019 }
3c0cb5de 7020 else if (goal_mem && MEM_P (dest)
eab89b90
RK
7021 && ! push_operand (dest, GET_MODE (dest)))
7022 return 0;
3c0cb5de 7023 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
e9a25f70
JL
7024 && reg_equiv_memory_loc[regno] != 0)
7025 return 0;
369c7ab6
JW
7026 else if (need_stable_sp
7027 && push_operand (dest, GET_MODE (dest)))
7028 return 0;
7029 }
7030 }
7031 }
7032
4b4bf941 7033 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
369c7ab6
JW
7034 {
7035 rtx link;
7036
7037 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7038 link = XEXP (link, 1))
7039 {
7040 pat = XEXP (link, 0);
7041 if (GET_CODE (pat) == CLOBBER)
7042 {
b3694847 7043 rtx dest = SET_DEST (pat);
f8cd4126 7044
f8cfc6aa 7045 if (REG_P (dest))
369c7ab6 7046 {
b3694847 7047 int xregno = REGNO (dest);
f8cd4126 7048 int xnregs
66fd46b6 7049 = hard_regno_nregs[xregno][GET_MODE (dest)];
f8cd4126 7050
369c7ab6
JW
7051 if (xregno < regno + nregs
7052 && xregno + xnregs > regno)
7053 return 0;
f8cd4126 7054 else if (xregno < valueno + valuenregs
4381f7c2 7055 && xregno + xnregs > valueno)
369c7ab6 7056 return 0;
f8cd4126
RK
7057 else if (goal_mem_addr_varies
7058 && reg_overlap_mentioned_for_reload_p (dest,
369c7ab6
JW
7059 goal))
7060 return 0;
7061 }
f8cd4126 7062
3c0cb5de 7063 else if (goal_mem && MEM_P (dest)
369c7ab6
JW
7064 && ! push_operand (dest, GET_MODE (dest)))
7065 return 0;
eab89b90
RK
7066 else if (need_stable_sp
7067 && push_operand (dest, GET_MODE (dest)))
7068 return 0;
7069 }
7070 }
7071 }
7072
7073#ifdef AUTO_INC_DEC
7074 /* If this insn auto-increments or auto-decrements
7075 either regno or valueno, return 0 now.
7076 If GOAL is a memory ref and its address is not constant,
7077 and this insn P increments a register used in GOAL, return 0. */
7078 {
b3694847 7079 rtx link;
eab89b90
RK
7080
7081 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7082 if (REG_NOTE_KIND (link) == REG_INC
f8cfc6aa 7083 && REG_P (XEXP (link, 0)))
eab89b90 7084 {
b3694847 7085 int incno = REGNO (XEXP (link, 0));
eab89b90
RK
7086 if (incno < regno + nregs && incno >= regno)
7087 return 0;
7088 if (incno < valueno + valuenregs && incno >= valueno)
7089 return 0;
7090 if (goal_mem_addr_varies
bfa30b22
RK
7091 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7092 goal))
eab89b90
RK
7093 return 0;
7094 }
7095 }
7096#endif
7097 }
7098 }
7099}
7100\f
7101/* Find a place where INCED appears in an increment or decrement operator
7102 within X, and return the amount INCED is incremented or decremented by.
7103 The value is always positive. */
7104
7105static int
0c20a65f 7106find_inc_amount (rtx x, rtx inced)
eab89b90 7107{
b3694847
SS
7108 enum rtx_code code = GET_CODE (x);
7109 const char *fmt;
7110 int i;
eab89b90
RK
7111
7112 if (code == MEM)
7113 {
b3694847 7114 rtx addr = XEXP (x, 0);
eab89b90
RK
7115 if ((GET_CODE (addr) == PRE_DEC
7116 || GET_CODE (addr) == POST_DEC
7117 || GET_CODE (addr) == PRE_INC
7118 || GET_CODE (addr) == POST_INC)
7119 && XEXP (addr, 0) == inced)
7120 return GET_MODE_SIZE (GET_MODE (x));
4b983fdc
RH
7121 else if ((GET_CODE (addr) == PRE_MODIFY
7122 || GET_CODE (addr) == POST_MODIFY)
7123 && GET_CODE (XEXP (addr, 1)) == PLUS
7124 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7125 && XEXP (addr, 0) == inced
481683e1 7126 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
4381f7c2
KH
7127 {
7128 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7129 return i < 0 ? -i : i;
7130 }
7131 }
eab89b90
RK
7132
7133 fmt = GET_RTX_FORMAT (code);
7134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7135 {
7136 if (fmt[i] == 'e')
7137 {
b3694847 7138 int tem = find_inc_amount (XEXP (x, i), inced);
eab89b90
RK
7139 if (tem != 0)
7140 return tem;
7141 }
7142 if (fmt[i] == 'E')
7143 {
b3694847 7144 int j;
eab89b90
RK
7145 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7146 {
b3694847 7147 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
eab89b90
RK
7148 if (tem != 0)
7149 return tem;
7150 }
7151 }
7152 }
7153
7154 return 0;
7155}
7156\f
d0236c3b
DN
7157/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7158 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7159
7160#ifdef AUTO_INC_DEC
7161static int
7162reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7163 rtx insn)
7164{
7165 rtx link;
7166
7167 gcc_assert (insn);
7168
7169 if (! INSN_P (insn))
7170 return 0;
7171
7172 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7173 if (REG_NOTE_KIND (link) == REG_INC)
7174 {
7175 unsigned int test = (int) REGNO (XEXP (link, 0));
7176 if (test >= regno && test < endregno)
7177 return 1;
7178 }
7179 return 0;
7180}
7181#else
7182
7183#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7184
7185#endif
7186
9532e31f 7187/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
d0236c3b
DN
7188 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7189 REG_INC. REGNO must refer to a hard register. */
eab89b90
RK
7190
7191int
0c20a65f
AJ
7192regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7193 int sets)
eab89b90 7194{
5b804e8a
RS
7195 unsigned int nregs, endregno;
7196
7197 /* regno must be a hard register. */
7198 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7199
7200 nregs = hard_regno_nregs[regno][mode];
7201 endregno = regno + nregs;
8441bc30 7202
9532e31f 7203 if ((GET_CODE (PATTERN (insn)) == CLOBBER
d0236c3b 7204 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
f8cfc6aa 7205 && REG_P (XEXP (PATTERN (insn), 0)))
8441bc30 7206 {
ae0ed63a 7207 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
8441bc30 7208
e695931e 7209 return test >= regno && test < endregno;
8441bc30 7210 }
eab89b90 7211
d0236c3b
DN
7212 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7213 return 1;
7214
eab89b90
RK
7215 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7216 {
7217 int i = XVECLEN (PATTERN (insn), 0) - 1;
7218
7219 for (; i >= 0; i--)
7220 {
7221 rtx elt = XVECEXP (PATTERN (insn), 0, i);
9532e31f 7222 if ((GET_CODE (elt) == CLOBBER
d0236c3b 7223 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
f8cfc6aa 7224 && REG_P (XEXP (elt, 0)))
8441bc30 7225 {
ae0ed63a 7226 unsigned int test = REGNO (XEXP (elt, 0));
a6a2274a 7227
e695931e 7228 if (test >= regno && test < endregno)
8441bc30
BS
7229 return 1;
7230 }
d0236c3b
DN
7231 if (sets == 2
7232 && reg_inc_found_and_valid_p (regno, endregno, elt))
7233 return 1;
eab89b90
RK
7234 }
7235 }
7236
7237 return 0;
7238}
10bcde0d 7239
f12448c8
AO
7240/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7241rtx
0c20a65f 7242reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
f12448c8
AO
7243{
7244 int regno;
7245
7246 if (GET_MODE (reloadreg) == mode)
7247 return reloadreg;
7248
7249 regno = REGNO (reloadreg);
7250
7251 if (WORDS_BIG_ENDIAN)
66fd46b6
JH
7252 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7253 - (int) hard_regno_nregs[regno][mode];
f12448c8
AO
7254
7255 return gen_rtx_REG (mode, regno);
7256}
7257
27c38fbe 7258static const char *const reload_when_needed_name[] =
10bcde0d 7259{
05d10675
BS
7260 "RELOAD_FOR_INPUT",
7261 "RELOAD_FOR_OUTPUT",
10bcde0d 7262 "RELOAD_FOR_INSN",
47c8cf91
ILT
7263 "RELOAD_FOR_INPUT_ADDRESS",
7264 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 7265 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 7266 "RELOAD_FOR_OUTADDR_ADDRESS",
05d10675 7267 "RELOAD_FOR_OPERAND_ADDRESS",
10bcde0d 7268 "RELOAD_FOR_OPADDR_ADDR",
05d10675 7269 "RELOAD_OTHER",
10bcde0d
RK
7270 "RELOAD_FOR_OTHER_ADDRESS"
7271};
7272
b8fb2d72 7273/* These functions are used to print the variables set by 'find_reloads' */
10bcde0d
RK
7274
7275void
0c20a65f 7276debug_reload_to_stream (FILE *f)
10bcde0d
RK
7277{
7278 int r;
6f7d635c 7279 const char *prefix;
10bcde0d 7280
b8fb2d72
CI
7281 if (! f)
7282 f = stderr;
10bcde0d
RK
7283 for (r = 0; r < n_reloads; r++)
7284 {
b8fb2d72 7285 fprintf (f, "Reload %d: ", r);
10bcde0d 7286
eceef4c9 7287 if (rld[r].in != 0)
10bcde0d 7288 {
b8fb2d72 7289 fprintf (f, "reload_in (%s) = ",
eceef4c9
BS
7290 GET_MODE_NAME (rld[r].inmode));
7291 print_inline_rtx (f, rld[r].in, 24);
b8fb2d72 7292 fprintf (f, "\n\t");
10bcde0d
RK
7293 }
7294
eceef4c9 7295 if (rld[r].out != 0)
10bcde0d 7296 {
b8fb2d72 7297 fprintf (f, "reload_out (%s) = ",
eceef4c9
BS
7298 GET_MODE_NAME (rld[r].outmode));
7299 print_inline_rtx (f, rld[r].out, 24);
b8fb2d72 7300 fprintf (f, "\n\t");
10bcde0d
RK
7301 }
7302
48c54229 7303 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
10bcde0d 7304
b8fb2d72 7305 fprintf (f, "%s (opnum = %d)",
eceef4c9
BS
7306 reload_when_needed_name[(int) rld[r].when_needed],
7307 rld[r].opnum);
10bcde0d 7308
eceef4c9 7309 if (rld[r].optional)
b8fb2d72 7310 fprintf (f, ", optional");
10bcde0d 7311
eceef4c9 7312 if (rld[r].nongroup)
b2ee8ec2 7313 fprintf (f, ", nongroup");
f5963e61 7314
eceef4c9
BS
7315 if (rld[r].inc != 0)
7316 fprintf (f, ", inc by %d", rld[r].inc);
10bcde0d 7317
eceef4c9 7318 if (rld[r].nocombine)
b8fb2d72 7319 fprintf (f, ", can't combine");
10bcde0d 7320
eceef4c9 7321 if (rld[r].secondary_p)
b8fb2d72 7322 fprintf (f, ", secondary_reload_p");
10bcde0d 7323
eceef4c9 7324 if (rld[r].in_reg != 0)
10bcde0d 7325 {
b8fb2d72 7326 fprintf (f, "\n\treload_in_reg: ");
eceef4c9 7327 print_inline_rtx (f, rld[r].in_reg, 24);
10bcde0d
RK
7328 }
7329
eceef4c9 7330 if (rld[r].out_reg != 0)
cb2afeb3
R
7331 {
7332 fprintf (f, "\n\treload_out_reg: ");
eceef4c9 7333 print_inline_rtx (f, rld[r].out_reg, 24);
cb2afeb3
R
7334 }
7335
eceef4c9 7336 if (rld[r].reg_rtx != 0)
10bcde0d 7337 {
b8fb2d72 7338 fprintf (f, "\n\treload_reg_rtx: ");
eceef4c9 7339 print_inline_rtx (f, rld[r].reg_rtx, 24);
10bcde0d
RK
7340 }
7341
505923a0 7342 prefix = "\n\t";
eceef4c9 7343 if (rld[r].secondary_in_reload != -1)
10bcde0d 7344 {
b8fb2d72 7345 fprintf (f, "%ssecondary_in_reload = %d",
eceef4c9 7346 prefix, rld[r].secondary_in_reload);
505923a0 7347 prefix = ", ";
10bcde0d
RK
7348 }
7349
eceef4c9 7350 if (rld[r].secondary_out_reload != -1)
b8fb2d72 7351 fprintf (f, "%ssecondary_out_reload = %d\n",
eceef4c9 7352 prefix, rld[r].secondary_out_reload);
10bcde0d 7353
505923a0 7354 prefix = "\n\t";
eceef4c9 7355 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
10bcde0d 7356 {
b2ee8ec2 7357 fprintf (f, "%ssecondary_in_icode = %s", prefix,
eceef4c9 7358 insn_data[rld[r].secondary_in_icode].name);
505923a0 7359 prefix = ", ";
10bcde0d
RK
7360 }
7361
eceef4c9 7362 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
b2ee8ec2 7363 fprintf (f, "%ssecondary_out_icode = %s", prefix,
eceef4c9 7364 insn_data[rld[r].secondary_out_icode].name);
10bcde0d 7365
b8fb2d72 7366 fprintf (f, "\n");
10bcde0d 7367 }
10bcde0d 7368}
b8fb2d72
CI
7369
7370void
0c20a65f 7371debug_reload (void)
b8fb2d72
CI
7372{
7373 debug_reload_to_stream (stderr);
7374}