]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reload.c
Change copyright header to refer to version 3 of the GNU General Public License and...
[thirdparty/gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
6fb5fa3c
DB
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
eab89b90 5
1322177d 6This file is part of GCC.
eab89b90 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
eab89b90 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
eab89b90
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
eab89b90 21
eab89b90
RK
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
965ccc5a 30 init_reload actually has to be called earlier anyway.
eab89b90
RK
31
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
38
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
45
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
54
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
57
58NOTE SIDE EFFECTS:
59
60 find_reloads can alter the operands of the instruction it is called on.
61
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
66
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
69
701 happens every time find_reloads is called.
712 happens only when REPLACE is 1, which is only when
72actually doing the reloads, not when just counting them.
73
eab89b90
RK
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
0fa4cb7d
SE
90/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91#undef DEBUG_RELOAD
92
eab89b90 93#include "config.h"
670ee920 94#include "system.h"
4977bab6
ZW
95#include "coretypes.h"
96#include "tm.h"
eab89b90 97#include "rtl.h"
6baf1cc8 98#include "tm_p.h"
eab89b90 99#include "insn-config.h"
e78d8e51
ZW
100#include "expr.h"
101#include "optabs.h"
eab89b90
RK
102#include "recog.h"
103#include "reload.h"
104#include "regs.h"
c4963a0a 105#include "addresses.h"
eab89b90
RK
106#include "hard-reg-set.h"
107#include "flags.h"
108#include "real.h"
8a840ac9 109#include "output.h"
49ad7cfa 110#include "function.h"
10f0ad3d 111#include "toplev.h"
0bcf8261 112#include "params.h"
34208acf 113#include "target.h"
6fb5fa3c 114#include "df.h"
eab89b90 115
34208acf
AO
116/* True if X is a constant that can be forced into the constant pool. */
117#define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
e9840398
AO
121
122/* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124#define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
127
eab89b90 128\f
eceef4c9
BS
129/* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
eab89b90 131int n_reloads;
eceef4c9 132struct reload rld[MAX_RELOADS];
eab89b90
RK
133
134/* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136int n_earlyclobbers;
137rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
138
a8c9daeb
RK
139int reload_n_operands;
140
eab89b90
RK
141/* Replacing reloads.
142
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
147
148/* Nonzero means record the places to replace. */
149static int replace_reloads;
150
151/* Each replacement is recorded with a structure like this. */
152struct replacement
153{
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
159};
160
161static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
162
163/* Number of replacements currently recorded. */
164static int n_replacements;
165
a8c9daeb
RK
166/* Used to track what is modified by an operand. */
167struct decomposition
168{
0f41302f
MS
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 173 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
174};
175
0dadecf6
RK
176#ifdef SECONDARY_MEMORY_NEEDED
177
178/* Save MEMs needed to copy from one class of registers to another. One MEM
05d10675 179 is used per mode, but normally only one or two modes are ever used.
0dadecf6 180
05d10675 181 We keep two versions, before and after register elimination. The one
a8c9daeb
RK
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
0dadecf6
RK
185
186static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 187static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
048b0d2e 188static int secondary_memlocs_elim_used = 0;
0dadecf6
RK
189#endif
190
eab89b90
RK
191/* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193static rtx this_insn;
194
195/* Nonzero if this instruction is a user-specified asm with operands. */
196static int this_insn_is_asm;
197
198/* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201static int hard_regs_live_known;
202
203/* Indexed by hard reg number,
956d6950 204 element is nonnegative if hard reg has been spilled.
eab89b90
RK
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207static short *static_reload_reg_p;
208
209/* Set to 1 in subst_reg_equivs if it changes anything. */
210static int subst_reg_equivs_changed;
211
212/* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214static int output_reloadnum;
215
9ec7078b
RK
216 /* Compare two RTX's. */
217#define MATCHES(x, y) \
f8cfc6aa
JQ
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
9ec7078b
RK
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
221
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224#define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
232
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234#define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
240
47c8cf91
ILT
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243#define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
249
0c20a65f
AJ
250static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
8a99f6f9 252 enum insn_code *, secondary_reload_info *);
e11ab33b
DD
253static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
0c20a65f
AJ
255static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256static void push_replacement (rtx *, int, enum machine_mode);
257static void dup_replacements (rtx *, rtx *);
258static void combine_reloads (void);
259static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264static struct decomposition decompose (rtx);
265static int immune_p (rtx, rtx, struct decomposition);
266static int alternative_allows_memconst (const char *, int);
267static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269static rtx make_memloc (rtx, int);
270static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
271static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
272 int, enum reload_type, int, rtx);
273static rtx subst_reg_equivs (rtx, rtx);
274static rtx subst_indexed_address (rtx);
275static void update_auto_inc_notes (rtx, int, int);
c4963a0a
BS
276static int find_reloads_address_1 (enum machine_mode, rtx, int,
277 enum rtx_code, enum rtx_code, rtx *,
0c20a65f
AJ
278 int, enum reload_type,int, rtx);
279static void find_reloads_address_part (rtx, rtx *, enum reg_class,
280 enum machine_mode, int,
281 enum reload_type, int);
282static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
283 int, rtx);
284static void copy_replacements_1 (rtx *, rtx *, int);
285static int find_inc_amount (rtx, rtx);
10015a27
KH
286static int refers_to_mem_for_reload_p (rtx);
287static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
288 rtx, rtx *);
3f1e3e70
AO
289
290/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
291 list yet. */
292
293static void
294push_reg_equiv_alt_mem (int regno, rtx mem)
295{
296 rtx it;
297
298 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
299 if (rtx_equal_p (XEXP (it, 0), mem))
300 return;
301
302 reg_equiv_alt_mem_list [regno]
303 = alloc_EXPR_LIST (REG_EQUIV, mem,
304 reg_equiv_alt_mem_list [regno]);
305}
eab89b90 306\f
eab89b90 307/* Determine if any secondary reloads are needed for loading (if IN_P is
40f03658 308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
311
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
315
316static int
0c20a65f
AJ
317push_secondary_reload (int in_p, rtx x, int opnum, int optional,
318 enum reg_class reload_class,
319 enum machine_mode reload_mode, enum reload_type type,
8a99f6f9 320 enum insn_code *picode, secondary_reload_info *prev_sri)
eab89b90
RK
321{
322 enum reg_class class = NO_REGS;
8a99f6f9 323 enum reg_class scratch_class;
eab89b90
RK
324 enum machine_mode mode = reload_mode;
325 enum insn_code icode = CODE_FOR_nothing;
65b4c337 326 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 327 enum reload_type secondary_type;
9ec7078b 328 int s_reload, t_reload = -1;
8a99f6f9
R
329 const char *scratch_constraint;
330 char letter;
331 secondary_reload_info sri;
9ec7078b 332
47c8cf91
ILT
333 if (type == RELOAD_FOR_INPUT_ADDRESS
334 || type == RELOAD_FOR_OUTPUT_ADDRESS
335 || type == RELOAD_FOR_INPADDR_ADDRESS
336 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
337 secondary_type = type;
338 else
339 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
340
9ec7078b 341 *picode = CODE_FOR_nothing;
eab89b90 342
67340b03
RK
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
348 {
349 x = SUBREG_REG (x);
350 reload_mode = GET_MODE (x);
351 }
352
d45cf215
RS
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
358
f8cfc6aa 359 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
d45cf215
RS
360 && reg_equiv_mem[REGNO (x)] != 0)
361 x = reg_equiv_mem[REGNO (x)];
362
8a99f6f9
R
363 sri.icode = CODE_FOR_nothing;
364 sri.prev_sri = prev_sri;
365 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
366 icode = sri.icode;
eab89b90 367
9ec7078b 368 /* If we don't need any secondary registers, done. */
8a99f6f9 369 if (class == NO_REGS && icode == CODE_FOR_nothing)
9ec7078b 370 return -1;
eab89b90 371
8a99f6f9
R
372 if (class != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
374 reload_mode, type, &t_icode, &sri);
eab89b90 375
8a99f6f9
R
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
eab89b90
RK
378
379 if (icode != CODE_FOR_nothing)
380 {
40f03658 381 /* If IN_P is nonzero, the reload register will be the output in
eab89b90
RK
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
385
8a99f6f9
R
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
390
391 /* ??? We currently have no way to represent a reload that needs
6416ae7f 392 an icode to reload from an intermediate tertiary reload register.
8a99f6f9
R
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (class == NO_REGS);
396
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
58477b5d 405 scratch_constraint));
8a99f6f9
R
406
407 class = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
eab89b90
RK
409 }
410
9ec7078b
RK
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
416
417 The convention is that secondary input reloads are valid only if the
31989264
RH
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
9ec7078b 421
94aaab7a
RH
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
9ec7078b 424
41374e13
NS
425 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
9ec7078b 427
9ec7078b
RK
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
eceef4c9
BS
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (class, rld[s_reload].class)
432 || reg_class_subset_p (rld[s_reload].class, class))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
e9840398 439 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
eceef4c9
BS
440 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
441 opnum, rld[s_reload].opnum))
9ec7078b
RK
442 {
443 if (in_p)
eceef4c9 444 rld[s_reload].inmode = mode;
9ec7078b 445 if (! in_p)
eceef4c9 446 rld[s_reload].outmode = mode;
9ec7078b 447
eceef4c9
BS
448 if (reg_class_subset_p (class, rld[s_reload].class))
449 rld[s_reload].class = class;
9ec7078b 450
eceef4c9
BS
451 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
452 rld[s_reload].optional &= optional;
453 rld[s_reload].secondary_p = 1;
454 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
455 opnum, rld[s_reload].opnum))
456 rld[s_reload].when_needed = RELOAD_OTHER;
9ec7078b 457 }
eab89b90 458
9ec7078b
RK
459 if (s_reload == n_reloads)
460 {
e9a25f70
JL
461#ifdef SECONDARY_MEMORY_NEEDED
462 /* If we need a memory location to copy between the two reload regs,
463 set it up now. Note that we do the input case before making
05d10675 464 the reload and the output case after. This is due to the
e9a25f70
JL
465 way reloads are output. */
466
467 if (in_p && icode == CODE_FOR_nothing
468 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
6fe8aebc
RH
469 {
470 get_secondary_mem (x, reload_mode, opnum, type);
471
472 /* We may have just added new reloads. Make sure we add
473 the new reload at the end. */
474 s_reload = n_reloads;
475 }
e9a25f70
JL
476#endif
477
9ec7078b 478 /* We need to make a new secondary reload for this register class. */
eceef4c9
BS
479 rld[s_reload].in = rld[s_reload].out = 0;
480 rld[s_reload].class = class;
481
482 rld[s_reload].inmode = in_p ? mode : VOIDmode;
483 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
484 rld[s_reload].reg_rtx = 0;
485 rld[s_reload].optional = optional;
eceef4c9 486 rld[s_reload].inc = 0;
9ec7078b 487 /* Maybe we could combine these, but it seems too tricky. */
eceef4c9
BS
488 rld[s_reload].nocombine = 1;
489 rld[s_reload].in_reg = 0;
490 rld[s_reload].out_reg = 0;
491 rld[s_reload].opnum = opnum;
492 rld[s_reload].when_needed = secondary_type;
493 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
494 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
495 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
496 rld[s_reload].secondary_out_icode
9ec7078b 497 = ! in_p ? t_icode : CODE_FOR_nothing;
eceef4c9 498 rld[s_reload].secondary_p = 1;
9ec7078b
RK
499
500 n_reloads++;
501
502#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b 503 if (! in_p && icode == CODE_FOR_nothing
f49e4127
JW
504 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
505 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
506#endif
507 }
508
509 *picode = icode;
510 return s_reload;
eab89b90 511}
8a99f6f9
R
512
513/* If a secondary reload is needed, return its class. If both an intermediate
514 register and a scratch register is needed, we return the class of the
515 intermediate register. */
516enum reg_class
517secondary_reload_class (bool in_p, enum reg_class class,
518 enum machine_mode mode, rtx x)
519{
520 enum insn_code icode;
521 secondary_reload_info sri;
522
523 sri.icode = CODE_FOR_nothing;
524 sri.prev_sri = NULL;
525 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
526 icode = sri.icode;
527
528 /* If there are no secondary reloads at all, we return NO_REGS.
529 If an intermediate register is needed, we return its class. */
530 if (icode == CODE_FOR_nothing || class != NO_REGS)
531 return class;
532
533 /* No intermediate register is needed, but we have a special reload
534 pattern, which we assume for now needs a scratch register. */
535 return scratch_reload_class (icode);
536}
537
538/* ICODE is the insn_code of a reload pattern. Check that it has exactly
539 three operands, verify that operand 2 is an output operand, and return
540 its register class.
541 ??? We'd like to be able to handle any pattern with at least 2 operands,
542 for zero or more scratch registers, but that needs more infrastructure. */
543enum reg_class
544scratch_reload_class (enum insn_code icode)
545{
546 const char *scratch_constraint;
547 char scratch_letter;
548 enum reg_class class;
549
550 gcc_assert (insn_data[(int) icode].n_operands == 3);
551 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
552 gcc_assert (*scratch_constraint == '=');
553 scratch_constraint++;
554 if (*scratch_constraint == '&')
555 scratch_constraint++;
556 scratch_letter = *scratch_constraint;
557 if (scratch_letter == 'r')
558 return GENERAL_REGS;
559 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
560 scratch_constraint);
561 gcc_assert (class != NO_REGS);
562 return class;
563}
eab89b90 564\f
0dadecf6
RK
565#ifdef SECONDARY_MEMORY_NEEDED
566
05d10675 567/* Return a memory location that will be used to copy X in mode MODE.
0dadecf6
RK
568 If we haven't already made a location for this mode in this insn,
569 call find_reloads_address on the location being returned. */
570
571rtx
0c20a65f
AJ
572get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
573 int opnum, enum reload_type type)
0dadecf6
RK
574{
575 rtx loc;
576 int mem_valid;
577
64609742
RK
578 /* By default, if MODE is narrower than a word, widen it to a word.
579 This is required because most machines that require these memory
580 locations do not support short load and stores from all registers
581 (e.g., FP registers). */
582
583#ifdef SECONDARY_MEMORY_NEEDED_MODE
584 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
585#else
4f9e0766 586 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
0dadecf6 587 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 588#endif
0dadecf6 589
77545d45
RK
590 /* If we already have made a MEM for this operand in MODE, return it. */
591 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
592 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6 593
05d10675 594 /* If this is the first time we've tried to get a MEM for this mode,
0dadecf6
RK
595 allocate a new one. `something_changed' in reload will get set
596 by noticing that the frame size has changed. */
597
598 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
599 {
600#ifdef SECONDARY_MEMORY_NEEDED_RTX
601 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
602#else
603 secondary_memlocs[(int) mode]
604 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
605#endif
606 }
0dadecf6
RK
607
608 /* Get a version of the address doing any eliminations needed. If that
609 didn't give us a new MEM, make a new one if it isn't valid. */
610
1914f5da 611 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
612 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
613
614 if (! mem_valid && loc == secondary_memlocs[(int) mode])
615 loc = copy_rtx (loc);
616
617 /* The only time the call below will do anything is if the stack
618 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
619 can just pass a zero. Adjust the type to be the address of the
620 corresponding object. If the address was valid, save the eliminated
621 address. If it wasn't valid, we need to make a reload each time, so
622 don't save it. */
0dadecf6 623
a8c9daeb
RK
624 if (! mem_valid)
625 {
626 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
627 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
628 : RELOAD_OTHER);
8d618585 629
57292ec3 630 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 631 opnum, type, 0, 0);
a8c9daeb 632 }
0dadecf6 633
77545d45 634 secondary_memlocs_elim[(int) mode][opnum] = loc;
98e5e087
JH
635 if (secondary_memlocs_elim_used <= (int)mode)
636 secondary_memlocs_elim_used = (int)mode + 1;
0dadecf6
RK
637 return loc;
638}
639
640/* Clear any secondary memory locations we've made. */
641
642void
0c20a65f 643clear_secondary_mem (void)
0dadecf6 644{
703ad42b 645 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
0dadecf6
RK
646}
647#endif /* SECONDARY_MEMORY_NEEDED */
648\f
e11ab33b
DD
649
650/* Find the largest class which has at least one register valid in
651 mode INNER, and which for every such register, that register number
652 plus N is also valid in OUTER (if in range) and is cheap to move
0e61db61 653 into REGNO. Such a class must exist. */
c6716840
RK
654
655static enum reg_class
e11ab33b
DD
656find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
657 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
0c20a65f 658 unsigned int dest_regno ATTRIBUTE_UNUSED)
c6716840 659{
a65dc37d 660 int best_cost = -1;
c6716840
RK
661 int class;
662 int regno;
f428f252 663 enum reg_class best_class = NO_REGS;
4977bab6 664 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
770ae6cc 665 unsigned int best_size = 0;
b80cb6e2 666 int cost;
c6716840
RK
667
668 for (class = 1; class < N_REG_CLASSES; class++)
669 {
670 int bad = 0;
e11ab33b
DD
671 int good = 0;
672 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
673 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
674 {
675 if (HARD_REGNO_MODE_OK (regno, inner))
676 {
677 good = 1;
678 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
679 || ! HARD_REGNO_MODE_OK (regno + n, outer))
680 bad = 1;
681 }
682 }
c6716840 683
e11ab33b 684 if (bad || !good)
b80cb6e2 685 continue;
e11ab33b 686 cost = REGISTER_MOVE_COST (outer, class, dest_class);
b80cb6e2
JH
687
688 if ((reg_class_size[class] > best_size
689 && (best_cost < 0 || best_cost >= cost))
690 || best_cost > cost)
a65dc37d
JH
691 {
692 best_class = class;
693 best_size = reg_class_size[class];
e11ab33b 694 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
a65dc37d 695 }
c6716840
RK
696 }
697
41374e13 698 gcc_assert (best_size != 0);
c6716840
RK
699
700 return best_class;
701}
702\f
121315ea
BS
703/* Return the number of a previously made reload that can be combined with
704 a new one, or n_reloads if none of the existing reloads can be used.
705 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
706 push_reload, they determine the kind of the new reload that we try to
707 combine. P_IN points to the corresponding value of IN, which can be
708 modified by this function.
709 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
35fb60c4 710
121315ea 711static int
0c20a65f
AJ
712find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
713 enum reload_type type, int opnum, int dont_share)
121315ea
BS
714{
715 rtx in = *p_in;
716 int i;
717 /* We can't merge two reloads if the output of either one is
718 earlyclobbered. */
719
720 if (earlyclobber_operand_p (out))
721 return n_reloads;
722
723 /* We can use an existing reload if the class is right
724 and at least one of IN and OUT is a match
725 and the other is at worst neutral.
05d10675 726 (A zero compared against anything is neutral.)
121315ea
BS
727
728 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
729 for the same thing since that can cause us to need more reload registers
730 than we otherwise would. */
05d10675 731
121315ea 732 for (i = 0; i < n_reloads; i++)
eceef4c9
BS
733 if ((reg_class_subset_p (class, rld[i].class)
734 || reg_class_subset_p (rld[i].class, class))
121315ea 735 /* If the existing reload has a register, it must fit our class. */
eceef4c9 736 && (rld[i].reg_rtx == 0
121315ea 737 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
eceef4c9
BS
738 true_regnum (rld[i].reg_rtx)))
739 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
740 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
741 || (out != 0 && MATCHES (rld[i].out, out)
742 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
743 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
e9840398 744 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
eceef4c9 745 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
121315ea
BS
746 return i;
747
748 /* Reloading a plain reg for input can match a reload to postincrement
749 that reg, since the postincrement's value is the right value.
750 Likewise, it can match a preincrement reload, since we regard
751 the preincrementation as happening before any ref in this insn
752 to that register. */
753 for (i = 0; i < n_reloads; i++)
eceef4c9
BS
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
121315ea
BS
756 /* If the existing reload has a register, it must fit our
757 class. */
eceef4c9 758 && (rld[i].reg_rtx == 0
121315ea 759 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
eceef4c9
BS
760 true_regnum (rld[i].reg_rtx)))
761 && out == 0 && rld[i].out == 0 && rld[i].in != 0
f8cfc6aa 762 && ((REG_P (in)
ec8e098d 763 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
eceef4c9 764 && MATCHES (XEXP (rld[i].in, 0), in))
f8cfc6aa 765 || (REG_P (rld[i].in)
ec8e098d 766 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
4b983fdc 767 && MATCHES (XEXP (in, 0), rld[i].in)))
eceef4c9 768 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
e9840398 769 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
eceef4c9
BS
770 && MERGABLE_RELOADS (type, rld[i].when_needed,
771 opnum, rld[i].opnum))
121315ea
BS
772 {
773 /* Make sure reload_in ultimately has the increment,
774 not the plain register. */
f8cfc6aa 775 if (REG_P (in))
eceef4c9 776 *p_in = rld[i].in;
121315ea
BS
777 return i;
778 }
779 return n_reloads;
780}
781
e6ea3b5f
JL
782/* Return nonzero if X is a SUBREG which will require reloading of its
783 SUBREG_REG expression. */
784
785static int
0c20a65f 786reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
e6ea3b5f
JL
787{
788 rtx inner;
789
790 /* Only SUBREGs are problematical. */
791 if (GET_CODE (x) != SUBREG)
792 return 0;
793
794 inner = SUBREG_REG (x);
795
35fb60c4
RK
796 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
797 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
e6ea3b5f
JL
798 return 1;
799
800 /* If INNER is not a hard register, then INNER will not need to
801 be reloaded. */
f8cfc6aa 802 if (!REG_P (inner)
e6ea3b5f
JL
803 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
804 return 0;
805
806 /* If INNER is not ok for MODE, then INNER will need reloading. */
ddef6bc7 807 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
e6ea3b5f
JL
808 return 1;
809
810 /* If the outer part is a word or smaller, INNER larger than a
811 word and the number of regs for INNER is not the same as the
812 number of words in INNER, then INNER will need reloading. */
813 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
4bf1d92e 814 && output
e6ea3b5f
JL
815 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
816 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
66fd46b6 817 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
e6ea3b5f
JL
818}
819
35d6034b
R
820/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
821 requiring an extra reload register. The caller has already found that
822 IN contains some reference to REGNO, so check that we can produce the
823 new value in a single step. E.g. if we have
824 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
825 instruction that adds one to a register, this should succeed.
826 However, if we have something like
827 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
828 needs to be loaded into a register first, we need a separate reload
829 register.
830 Such PLUS reloads are generated by find_reload_address_part.
831 The out-of-range PLUS expressions are usually introduced in the instruction
832 patterns by register elimination and substituting pseudos without a home
833 by their function-invariant equivalences. */
834static int
835can_reload_into (rtx in, int regno, enum machine_mode mode)
836{
837 rtx dst, test_insn;
838 int r = 0;
839 struct recog_data save_recog_data;
840
841 /* For matching constraints, we often get notional input reloads where
842 we want to use the original register as the reload register. I.e.
843 technically this is a non-optional input-output reload, but IN is
844 already a valid register, and has been chosen as the reload register.
845 Speed this up, since it trivially works. */
f8cfc6aa 846 if (REG_P (in))
35d6034b
R
847 return 1;
848
849 /* To test MEMs properly, we'd have to take into account all the reloads
850 that are already scheduled, which can become quite complicated.
851 And since we've already handled address reloads for this MEM, it
852 should always succeed anyway. */
3c0cb5de 853 if (MEM_P (in))
35d6034b
R
854 return 1;
855
856 /* If we can make a simple SET insn that does the job, everything should
857 be fine. */
858 dst = gen_rtx_REG (mode, regno);
859 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
860 save_recog_data = recog_data;
861 if (recog_memoized (test_insn) >= 0)
862 {
863 extract_insn (test_insn);
864 r = constrain_operands (1);
865 }
866 recog_data = save_recog_data;
867 return r;
868}
869
a8c9daeb 870/* Record one reload that needs to be performed.
eab89b90
RK
871 IN is an rtx saying where the data are to be found before this instruction.
872 OUT says where they must be stored after the instruction.
873 (IN is zero for data not read, and OUT is zero for data not written.)
874 INLOC and OUTLOC point to the places in the instructions where
875 IN and OUT were found.
40f03658 876 If IN and OUT are both nonzero, it means the same register must be used
a8c9daeb
RK
877 to reload both IN and OUT.
878
eab89b90
RK
879 CLASS is a register class required for the reloaded data.
880 INMODE is the machine mode that the instruction requires
881 for the reg that replaces IN and OUTMODE is likewise for OUT.
882
883 If IN is zero, then OUT's location and mode should be passed as
884 INLOC and INMODE.
885
886 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
887
888 OPTIONAL nonzero means this reload does not need to be performed:
889 it can be discarded if that is more convenient.
890
a8c9daeb
RK
891 OPNUM and TYPE say what the purpose of this reload is.
892
eab89b90
RK
893 The return value is the reload-number for this reload.
894
895 If both IN and OUT are nonzero, in some rare cases we might
896 want to make two separate reloads. (Actually we never do this now.)
897 Therefore, the reload-number for OUT is stored in
898 output_reloadnum when we return; the return value applies to IN.
899 Usually (presently always), when IN and OUT are nonzero,
900 the two reload-numbers are equal, but the caller should be careful to
901 distinguish them. */
902
aead1ca3 903int
0c20a65f
AJ
904push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
905 enum reg_class class, enum machine_mode inmode,
906 enum machine_mode outmode, int strict_low, int optional,
907 int opnum, enum reload_type type)
eab89b90 908{
b3694847 909 int i;
eab89b90 910 int dont_share = 0;
74347d76 911 int dont_remove_subreg = 0;
eab89b90 912 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 913 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
914 enum insn_code secondary_in_icode = CODE_FOR_nothing;
915 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 916
eab89b90
RK
917 /* INMODE and/or OUTMODE could be VOIDmode if no mode
918 has been specified for the operand. In that case,
919 use the operand's mode as the mode to reload. */
920 if (inmode == VOIDmode && in != 0)
921 inmode = GET_MODE (in);
922 if (outmode == VOIDmode && out != 0)
923 outmode = GET_MODE (out);
924
05d10675 925 /* If IN is a pseudo register everywhere-equivalent to a constant, and
eab89b90
RK
926 it is not in a hard register, reload straight from the constant,
927 since we want to get rid of such pseudo registers.
928 Often this is done earlier, but not always in find_reloads_address. */
f8cfc6aa 929 if (in != 0 && REG_P (in))
eab89b90 930 {
b3694847 931 int regno = REGNO (in);
eab89b90
RK
932
933 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
934 && reg_equiv_constant[regno] != 0)
935 in = reg_equiv_constant[regno];
936 }
937
938 /* Likewise for OUT. Of course, OUT will never be equivalent to
939 an actual constant, but it might be equivalent to a memory location
940 (in the case of a parameter). */
f8cfc6aa 941 if (out != 0 && REG_P (out))
eab89b90 942 {
b3694847 943 int regno = REGNO (out);
eab89b90
RK
944
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 out = reg_equiv_constant[regno];
948 }
949
950 /* If we have a read-write operand with an address side-effect,
951 change either IN or OUT so the side-effect happens only once. */
3c0cb5de 952 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
f1ec5147
RK
953 switch (GET_CODE (XEXP (in, 0)))
954 {
955 case POST_INC: case POST_DEC: case POST_MODIFY:
956 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
957 break;
3bdf5ad1 958
f1ec5147
RK
959 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
960 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
961 break;
3bdf5ad1 962
f1ec5147
RK
963 default:
964 break;
f4f4d0f8 965 }
eab89b90 966
a61c98cf 967 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 968 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
969 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
970 a pseudo and hence will become a MEM) with M1 wider than M2 and the
971 register is a pseudo, also reload the inside expression.
f72ccbe6 972 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
973 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
974 M2 is an integral mode that gets extended when loaded.
86c31b2d 975 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
86c31b2d
RS
978 (However, if OUT is nonzero, we need to reload the reg *and*
979 the subreg, so do nothing here, and let following statement handle it.)
980
eab89b90
RK
981 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
982 we can't handle it here because CONST_INT does not indicate a mode.
983
984 Similarly, we must reload the inside expression if we have a
df62f951
RK
985 STRICT_LOW_PART (presumably, in == out in the cas).
986
987 Also reload the inner expression if it does not require a secondary
486d8509
RK
988 reload but the SUBREG does.
989
990 Finally, reload the inner expression if it is a register that is in
991 the class whose registers cannot be referenced in a different size
b4905cba 992 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
d030f4b2 993 cannot reload just the inside since we might end up with the wrong
ab87f8c8
JL
994 register class. But if it is inside a STRICT_LOW_PART, we have
995 no choice, so we hope we do get the right register class there. */
eab89b90 996
ab87f8c8 997 if (in != 0 && GET_CODE (in) == SUBREG
b4905cba 998 && (subreg_lowpart_p (in) || strict_low)
cff9f8d5 999#ifdef CANNOT_CHANGE_MODE_CLASS
b0c42aed 1000 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
94bafba7 1001#endif
a61c98cf 1002 && (CONSTANT_P (SUBREG_REG (in))
ca769828 1003 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 1004 || strict_low
f8cfc6aa 1005 || (((REG_P (SUBREG_REG (in))
a61c98cf 1006 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
3c0cb5de 1007 || MEM_P (SUBREG_REG (in)))
03b72c86
RK
1008 && ((GET_MODE_SIZE (inmode)
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 1010#ifdef LOAD_EXTEND_OP
03b72c86
RK
1011 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 <= UNITS_PER_WORD)
1014 && (GET_MODE_SIZE (inmode)
486d8509
RK
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1016 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
f822d252 1017 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
d2c92f5a
R
1018#endif
1019#ifdef WORD_REGISTER_OPERATIONS
1020 || ((GET_MODE_SIZE (inmode)
1021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1023 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1024 / UNITS_PER_WORD)))
f72ccbe6 1025#endif
03b72c86 1026 ))
f8cfc6aa 1027 || (REG_P (SUBREG_REG (in))
a61c98cf 1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
1029 /* The case where out is nonzero
1030 is handled differently in the following statement. */
b4905cba 1031 && (out == 0 || subreg_lowpart_p (in))
f72ccbe6
RK
1032 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 > UNITS_PER_WORD)
1035 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1036 / UNITS_PER_WORD)
66fd46b6
JH
1037 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1038 [GET_MODE (SUBREG_REG (in))]))
ddef6bc7 1039 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
8a99f6f9
R
1040 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1041 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1042 SUBREG_REG (in))
df62f951 1043 == NO_REGS))
cff9f8d5 1044#ifdef CANNOT_CHANGE_MODE_CLASS
f8cfc6aa 1045 || (REG_P (SUBREG_REG (in))
486d8509 1046 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
cff9f8d5
AH
1047 && REG_CANNOT_CHANGE_MODE_P
1048 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
df62f951
RK
1049#endif
1050 ))
eab89b90
RK
1051 {
1052 in_subreg_loc = inloc;
1053 inloc = &SUBREG_REG (in);
1054 in = *inloc;
d2c92f5a 1055#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
3c0cb5de 1056 if (MEM_P (in))
eab89b90
RK
1057 /* This is supposed to happen only for paradoxical subregs made by
1058 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
41374e13 1059 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
e05a9da8 1060#endif
eab89b90
RK
1061 inmode = GET_MODE (in);
1062 }
1063
86c31b2d
RS
1064 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1065 either M1 is not valid for R or M2 is wider than a word but we only
1066 need one word to store an M2-sized quantity in R.
1067
1068 However, we must reload the inner reg *as well as* the subreg in
1069 that case. */
1070
6fd5ac08 1071 /* Similar issue for (SUBREG constant ...) if it was not handled by the
ddef6bc7 1072 code above. This can happen if SUBREG_BYTE != 0. */
6fd5ac08 1073
4bf1d92e 1074 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
86c31b2d 1075 {
35fb60c4
RK
1076 enum reg_class in_class = class;
1077
f8cfc6aa 1078 if (REG_P (SUBREG_REG (in)))
35fb60c4 1079 in_class
e11ab33b 1080 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
35fb60c4
RK
1081 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1082 GET_MODE (SUBREG_REG (in)),
1083 SUBREG_BYTE (in),
a65dc37d
JH
1084 GET_MODE (in)),
1085 REGNO (SUBREG_REG (in)));
35fb60c4 1086
c96d01ab
RK
1087 /* This relies on the fact that emit_reload_insns outputs the
1088 instructions for input reloads of type RELOAD_OTHER in the same
1089 order as the reloads. Thus if the outer reload is also of type
1090 RELOAD_OTHER, we are guaranteed that this inner reload will be
1091 output before the outer reload. */
f4f4d0f8 1092 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
35fb60c4 1093 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 1094 dont_remove_subreg = 1;
86c31b2d
RS
1095 }
1096
eab89b90
RK
1097 /* Similarly for paradoxical and problematical SUBREGs on the output.
1098 Note that there is no reason we need worry about the previous value
1099 of SUBREG_REG (out); even if wider than out,
1100 storing in a subreg is entitled to clobber it all
1101 (except in the case of STRICT_LOW_PART,
1102 and in that case the constraint should label it input-output.) */
ab87f8c8 1103 if (out != 0 && GET_CODE (out) == SUBREG
b4905cba 1104 && (subreg_lowpart_p (out) || strict_low)
cff9f8d5 1105#ifdef CANNOT_CHANGE_MODE_CLASS
b0c42aed 1106 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
94bafba7 1107#endif
a61c98cf 1108 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 1109 || strict_low
f8cfc6aa 1110 || (((REG_P (SUBREG_REG (out))
a61c98cf 1111 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
3c0cb5de 1112 || MEM_P (SUBREG_REG (out)))
03b72c86 1113 && ((GET_MODE_SIZE (outmode)
1914f5da
RH
1114 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1115#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
1116 || ((GET_MODE_SIZE (outmode)
1117 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1118 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1119 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1120 / UNITS_PER_WORD)))
1914f5da 1121#endif
05d10675 1122 ))
f8cfc6aa 1123 || (REG_P (SUBREG_REG (out))
eab89b90 1124 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
1125 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1126 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1127 > UNITS_PER_WORD)
1128 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1129 / UNITS_PER_WORD)
66fd46b6
JH
1130 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1131 [GET_MODE (SUBREG_REG (out))]))
ddef6bc7 1132 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
8a99f6f9
R
1133 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1134 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1135 SUBREG_REG (out))
df62f951 1136 == NO_REGS))
cff9f8d5 1137#ifdef CANNOT_CHANGE_MODE_CLASS
f8cfc6aa 1138 || (REG_P (SUBREG_REG (out))
486d8509 1139 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
cff9f8d5 1140 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
0c20a65f 1141 GET_MODE (SUBREG_REG (out)),
cff9f8d5 1142 outmode))
df62f951
RK
1143#endif
1144 ))
eab89b90
RK
1145 {
1146 out_subreg_loc = outloc;
1147 outloc = &SUBREG_REG (out);
05d10675 1148 out = *outloc;
d2c92f5a 1149#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
41374e13
NS
1150 gcc_assert (!MEM_P (out)
1151 || GET_MODE_SIZE (GET_MODE (out))
1152 <= GET_MODE_SIZE (outmode));
e05a9da8 1153#endif
eab89b90
RK
1154 outmode = GET_MODE (out);
1155 }
1156
74347d76
RK
1157 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1158 either M1 is not valid for R or M2 is wider than a word but we only
1159 need one word to store an M2-sized quantity in R.
1160
1161 However, we must reload the inner reg *as well as* the subreg in
1162 that case. In this case, the inner reg is an in-out reload. */
1163
4bf1d92e 1164 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
74347d76 1165 {
c96d01ab
RK
1166 /* This relies on the fact that emit_reload_insns outputs the
1167 instructions for output reloads of type RELOAD_OTHER in reverse
1168 order of the reloads. Thus if the outer reload is also of type
1169 RELOAD_OTHER, we are guaranteed that this inner reload will be
1170 output after the outer reload. */
74347d76
RK
1171 dont_remove_subreg = 1;
1172 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840 1173 &SUBREG_REG (out),
e11ab33b 1174 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
ddef6bc7
JJ
1175 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1176 GET_MODE (SUBREG_REG (out)),
1177 SUBREG_BYTE (out),
a65dc37d
JH
1178 GET_MODE (out)),
1179 REGNO (SUBREG_REG (out))),
c6716840 1180 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1181 opnum, RELOAD_OTHER);
1182 }
1183
eab89b90 1184 /* If IN appears in OUT, we can't share any input-only reload for IN. */
3c0cb5de 1185 if (in != 0 && out != 0 && MEM_P (out)
10050f74 1186 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
bfa30b22 1187 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1188 dont_share = 1;
1189
0dadecf6
RK
1190 /* If IN is a SUBREG of a hard register, make a new REG. This
1191 simplifies some of the cases below. */
1192
f8cfc6aa 1193 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
74347d76
RK
1194 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1195 && ! dont_remove_subreg)
ddef6bc7 1196 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
0dadecf6
RK
1197
1198 /* Similarly for OUT. */
1199 if (out != 0 && GET_CODE (out) == SUBREG
f8cfc6aa 1200 && REG_P (SUBREG_REG (out))
74347d76
RK
1201 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
ddef6bc7 1203 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
0dadecf6 1204
eab89b90
RK
1205 /* Narrow down the class of register wanted if that is
1206 desirable on this machine for efficiency. */
b5c82fa1
PB
1207 {
1208 enum reg_class preferred_class = class;
1209
1210 if (in != 0)
1211 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
eab89b90 1212
ac2a9454 1213 /* Output reloads may need analogous treatment, different in detail. */
18a53b78 1214#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
b5c82fa1
PB
1215 if (out != 0)
1216 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
18a53b78
RS
1217#endif
1218
b5c82fa1
PB
1219 /* Discard what the target said if we cannot do it. */
1220 if (preferred_class != NO_REGS
1221 || (optional && type == RELOAD_FOR_OUTPUT))
1222 class = preferred_class;
1223 }
1224
eab89b90
RK
1225 /* Make sure we use a class that can handle the actual pseudo
1226 inside any subreg. For example, on the 386, QImode regs
1227 can appear within SImode subregs. Although GENERAL_REGS
1228 can handle SImode, QImode needs a smaller class. */
1229#ifdef LIMIT_RELOAD_CLASS
1230 if (in_subreg_loc)
1231 class = LIMIT_RELOAD_CLASS (inmode, class);
1232 else if (in != 0 && GET_CODE (in) == SUBREG)
1233 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1234
1235 if (out_subreg_loc)
1236 class = LIMIT_RELOAD_CLASS (outmode, class);
1237 if (out != 0 && GET_CODE (out) == SUBREG)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1239#endif
1240
eab89b90
RK
1241 /* Verify that this class is at least possible for the mode that
1242 is specified. */
1243 if (this_insn_is_asm)
1244 {
1245 enum machine_mode mode;
1246 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1247 mode = inmode;
1248 else
1249 mode = outmode;
5488078f
RS
1250 if (mode == VOIDmode)
1251 {
971801ff
JM
1252 error_for_asm (this_insn, "cannot reload integer constant "
1253 "operand in %<asm%>");
5488078f
RS
1254 mode = word_mode;
1255 if (in != 0)
1256 inmode = word_mode;
1257 if (out != 0)
1258 outmode = word_mode;
1259 }
eab89b90
RK
1260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1261 if (HARD_REGNO_MODE_OK (i, mode)
09e18274
RS
1262 && in_hard_reg_set_p (reg_class_contents[(int) class], mode, i))
1263 break;
eab89b90
RK
1264 if (i == FIRST_PSEUDO_REGISTER)
1265 {
971801ff
JM
1266 error_for_asm (this_insn, "impossible register constraint "
1267 "in %<asm%>");
71156bcc
JH
1268 /* Avoid further trouble with this insn. */
1269 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1270 /* We used to continue here setting class to ALL_REGS, but it triggers
1271 sanity check on i386 for:
1272 void foo(long double d)
1273 {
1274 asm("" :: "a" (d));
1275 }
1276 Returning zero here ought to be safe as we take care in
1277 find_reloads to not process the reloads when instruction was
1278 replaced by USE. */
1279
1280 return 0;
eab89b90
RK
1281 }
1282 }
1283
cb2afeb3
R
1284 /* Optional output reloads are always OK even if we have no register class,
1285 since the function of these reloads is only to have spill_reg_store etc.
1286 set, so that the storing insn can be deleted later. */
41374e13
NS
1287 gcc_assert (class != NO_REGS
1288 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
5488078f 1289
121315ea 1290 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
eab89b90
RK
1291
1292 if (i == n_reloads)
1293 {
9ec7078b
RK
1294 /* See if we need a secondary reload register to move between CLASS
1295 and IN or CLASS and OUT. Get the icode and push any required reloads
1296 needed for each of them if so. */
eab89b90 1297
eab89b90 1298 if (in != 0)
9ec7078b
RK
1299 secondary_in_reload
1300 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
8a99f6f9 1301 &secondary_in_icode, NULL);
eab89b90 1302 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1303 secondary_out_reload
1304 = push_secondary_reload (0, out, opnum, optional, class, outmode,
8a99f6f9 1305 type, &secondary_out_icode, NULL);
eab89b90
RK
1306
1307 /* We found no existing reload suitable for re-use.
1308 So add an additional reload. */
1309
e9a25f70
JL
1310#ifdef SECONDARY_MEMORY_NEEDED
1311 /* If a memory location is needed for the copy, make one. */
71a9b19a
RG
1312 if (in != 0
1313 && (REG_P (in)
1314 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
344b78b8
JH
1315 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1316 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
05d10675 1317 class, inmode))
e9a25f70
JL
1318 get_secondary_mem (in, inmode, opnum, type);
1319#endif
1320
9ec7078b 1321 i = n_reloads;
eceef4c9
BS
1322 rld[i].in = in;
1323 rld[i].out = out;
1324 rld[i].class = class;
1325 rld[i].inmode = inmode;
1326 rld[i].outmode = outmode;
1327 rld[i].reg_rtx = 0;
1328 rld[i].optional = optional;
eceef4c9
BS
1329 rld[i].inc = 0;
1330 rld[i].nocombine = 0;
1331 rld[i].in_reg = inloc ? *inloc : 0;
1332 rld[i].out_reg = outloc ? *outloc : 0;
1333 rld[i].opnum = opnum;
1334 rld[i].when_needed = type;
1335 rld[i].secondary_in_reload = secondary_in_reload;
1336 rld[i].secondary_out_reload = secondary_out_reload;
1337 rld[i].secondary_in_icode = secondary_in_icode;
1338 rld[i].secondary_out_icode = secondary_out_icode;
1339 rld[i].secondary_p = 0;
eab89b90
RK
1340
1341 n_reloads++;
0dadecf6
RK
1342
1343#ifdef SECONDARY_MEMORY_NEEDED
71a9b19a
RG
1344 if (out != 0
1345 && (REG_P (out)
1346 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
344b78b8
JH
1347 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1348 && SECONDARY_MEMORY_NEEDED (class,
1349 REGNO_REG_CLASS (reg_or_subregno (out)),
0dadecf6 1350 outmode))
a8c9daeb 1351 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1352#endif
eab89b90
RK
1353 }
1354 else
1355 {
1356 /* We are reusing an existing reload,
1357 but we may have additional information for it.
1358 For example, we may now have both IN and OUT
1359 while the old one may have just one of them. */
1360
6fd5ac08
JW
1361 /* The modes can be different. If they are, we want to reload in
1362 the larger mode, so that the value is valid for both modes. */
1363 if (inmode != VOIDmode
eceef4c9
BS
1364 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1365 rld[i].inmode = inmode;
6fd5ac08 1366 if (outmode != VOIDmode
eceef4c9
BS
1367 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1368 rld[i].outmode = outmode;
eab89b90 1369 if (in != 0)
cb2afeb3 1370 {
506b3b3a 1371 rtx in_reg = inloc ? *inloc : 0;
cb2afeb3
R
1372 /* If we merge reloads for two distinct rtl expressions that
1373 are identical in content, there might be duplicate address
1374 reloads. Remove the extra set now, so that if we later find
1375 that we can inherit this reload, we can get rid of the
b838974e
JL
1376 address reloads altogether.
1377
1378 Do not do this if both reloads are optional since the result
1379 would be an optional reload which could potentially leave
1380 unresolved address replacements.
1381
1382 It is not sufficient to call transfer_replacements since
1383 choose_reload_regs will remove the replacements for address
1384 reloads of inherited reloads which results in the same
1385 problem. */
eceef4c9
BS
1386 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1387 && ! (rld[i].optional && optional))
cb2afeb3
R
1388 {
1389 /* We must keep the address reload with the lower operand
1390 number alive. */
eceef4c9 1391 if (opnum > rld[i].opnum)
cb2afeb3
R
1392 {
1393 remove_address_replacements (in);
eceef4c9
BS
1394 in = rld[i].in;
1395 in_reg = rld[i].in_reg;
cb2afeb3
R
1396 }
1397 else
eceef4c9 1398 remove_address_replacements (rld[i].in);
cb2afeb3 1399 }
eceef4c9
BS
1400 rld[i].in = in;
1401 rld[i].in_reg = in_reg;
cb2afeb3 1402 }
eab89b90 1403 if (out != 0)
cb2afeb3 1404 {
eceef4c9
BS
1405 rld[i].out = out;
1406 rld[i].out_reg = outloc ? *outloc : 0;
cb2afeb3 1407 }
eceef4c9
BS
1408 if (reg_class_subset_p (class, rld[i].class))
1409 rld[i].class = class;
1410 rld[i].optional &= optional;
1411 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1412 opnum, rld[i].opnum))
1413 rld[i].when_needed = RELOAD_OTHER;
1414 rld[i].opnum = MIN (rld[i].opnum, opnum);
eab89b90
RK
1415 }
1416
e0120d6e 1417 /* If the ostensible rtx being reloaded differs from the rtx found
eab89b90
RK
1418 in the location to substitute, this reload is not safe to combine
1419 because we cannot reliably tell whether it appears in the insn. */
1420
1421 if (in != 0 && in != *inloc)
eceef4c9 1422 rld[i].nocombine = 1;
eab89b90
RK
1423
1424#if 0
1425 /* This was replaced by changes in find_reloads_address_1 and the new
1426 function inc_for_reload, which go with a new meaning of reload_inc. */
1427
1428 /* If this is an IN/OUT reload in an insn that sets the CC,
1429 it must be for an autoincrement. It doesn't work to store
1430 the incremented value after the insn because that would clobber the CC.
1431 So we must do the increment of the value reloaded from,
1432 increment it, store it back, then decrement again. */
1433 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1434 {
1435 out = 0;
eceef4c9
BS
1436 rld[i].out = 0;
1437 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
eab89b90
RK
1438 /* If we did not find a nonzero amount-to-increment-by,
1439 that contradicts the belief that IN is being incremented
1440 in an address in this insn. */
41374e13 1441 gcc_assert (rld[i].inc != 0);
eab89b90
RK
1442 }
1443#endif
1444
1445 /* If we will replace IN and OUT with the reload-reg,
1446 record where they are located so that substitution need
1447 not do a tree walk. */
1448
1449 if (replace_reloads)
1450 {
1451 if (inloc != 0)
1452 {
b3694847 1453 struct replacement *r = &replacements[n_replacements++];
eab89b90
RK
1454 r->what = i;
1455 r->subreg_loc = in_subreg_loc;
1456 r->where = inloc;
1457 r->mode = inmode;
1458 }
1459 if (outloc != 0 && outloc != inloc)
1460 {
b3694847 1461 struct replacement *r = &replacements[n_replacements++];
eab89b90
RK
1462 r->what = i;
1463 r->where = outloc;
1464 r->subreg_loc = out_subreg_loc;
1465 r->mode = outmode;
1466 }
1467 }
1468
1469 /* If this reload is just being introduced and it has both
1470 an incoming quantity and an outgoing quantity that are
1471 supposed to be made to match, see if either one of the two
1472 can serve as the place to reload into.
1473
eceef4c9 1474 If one of them is acceptable, set rld[i].reg_rtx
eab89b90
RK
1475 to that one. */
1476
eceef4c9 1477 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
eab89b90 1478 {
eceef4c9
BS
1479 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1480 inmode, outmode,
1481 rld[i].class, i,
1482 earlyclobber_operand_p (out));
eab89b90
RK
1483
1484 /* If the outgoing register already contains the same value
1485 as the incoming one, we can dispense with loading it.
1486 The easiest way to tell the caller that is to give a phony
1487 value for the incoming operand (same as outgoing one). */
eceef4c9 1488 if (rld[i].reg_rtx == out
f8cfc6aa 1489 && (REG_P (in) || CONSTANT_P (in))
eab89b90
RK
1490 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1491 static_reload_reg_p, i, inmode))
eceef4c9 1492 rld[i].in = out;
eab89b90
RK
1493 }
1494
1495 /* If this is an input reload and the operand contains a register that
1496 dies in this insn and is used nowhere else, see if it is the right class
1497 to be used for this reload. Use it if so. (This occurs most commonly
1498 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1499 this if it is also an output reload that mentions the register unless
1500 the output is a SUBREG that clobbers an entire register.
1501
1502 Note that the operand might be one of the spill regs, if it is a
1503 pseudo reg and we are in a block where spilling has not taken place.
1504 But if there is no spilling in this block, that is OK.
1505 An explicitly used hard reg cannot be a spill reg. */
1506
687b527d 1507 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
eab89b90
RK
1508 {
1509 rtx note;
1510 int regno;
d0b6af71
R
1511 enum machine_mode rel_mode = inmode;
1512
1513 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1514 rel_mode = outmode;
eab89b90
RK
1515
1516 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1517 if (REG_NOTE_KIND (note) == REG_DEAD
f8cfc6aa 1518 && REG_P (XEXP (note, 0))
eab89b90
RK
1519 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1520 && reg_mentioned_p (XEXP (note, 0), in)
687b527d
MM
1521 /* Check that we don't use a hardreg for an uninitialized
1522 pseudo. See also find_dummy_reload(). */
1523 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
6fb5fa3c 1524 || ! bitmap_bit_p (DF_RA_LIVE_OUT (ENTRY_BLOCK_PTR),
687b527d 1525 ORIGINAL_REGNO (XEXP (note, 0))))
eab89b90 1526 && ! refers_to_regno_for_reload_p (regno,
09e18274
RS
1527 end_hard_regno (rel_mode,
1528 regno),
eab89b90 1529 PATTERN (this_insn), inloc)
05b4ec4f
RS
1530 /* If this is also an output reload, IN cannot be used as
1531 the reload register if it is set in this insn unless IN
1532 is also OUT. */
1533 && (out == 0 || in == out
1534 || ! hard_reg_set_here_p (regno,
09e18274 1535 end_hard_regno (rel_mode, regno),
05b4ec4f
RS
1536 PATTERN (this_insn)))
1537 /* ??? Why is this code so different from the previous?
1538 Is there any simple coherent way to describe the two together?
1539 What's going on here. */
eab89b90
RK
1540 && (in != out
1541 || (GET_CODE (in) == SUBREG
1542 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1543 / UNITS_PER_WORD)
1544 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1545 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1546 /* Make sure the operand fits in the reg that dies. */
d0b6af71
R
1547 && (GET_MODE_SIZE (rel_mode)
1548 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
eab89b90 1549 && HARD_REGNO_MODE_OK (regno, inmode)
96b42f4c 1550 && HARD_REGNO_MODE_OK (regno, outmode))
eab89b90 1551 {
db30db99 1552 unsigned int offs;
66fd46b6
JH
1553 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1554 hard_regno_nregs[regno][outmode]);
db30db99 1555
96b42f4c
BS
1556 for (offs = 0; offs < nregs; offs++)
1557 if (fixed_regs[regno + offs]
1558 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1559 regno + offs))
1560 break;
1561
35d6034b
R
1562 if (offs == nregs
1563 && (! (refers_to_regno_for_reload_p
09e18274 1564 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
35d6034b 1565 || can_reload_into (in, regno, inmode)))
96b42f4c 1566 {
d0b6af71 1567 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
96b42f4c
BS
1568 break;
1569 }
eab89b90
RK
1570 }
1571 }
1572
1573 if (out)
1574 output_reloadnum = i;
1575
1576 return i;
1577}
1578
1579/* Record an additional place we must replace a value
1580 for which we have already recorded a reload.
1581 RELOADNUM is the value returned by push_reload
1582 when the reload was recorded.
1583 This is used in insn patterns that use match_dup. */
1584
1585static void
0c20a65f 1586push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
eab89b90
RK
1587{
1588 if (replace_reloads)
1589 {
b3694847 1590 struct replacement *r = &replacements[n_replacements++];
eab89b90
RK
1591 r->what = reloadnum;
1592 r->where = loc;
1593 r->subreg_loc = 0;
1594 r->mode = mode;
1595 }
1596}
6cabe79e
UW
1597
1598/* Duplicate any replacement we have recorded to apply at
1599 location ORIG_LOC to also be performed at DUP_LOC.
1600 This is used in insn patterns that use match_dup. */
1601
1602static void
0c20a65f 1603dup_replacements (rtx *dup_loc, rtx *orig_loc)
6cabe79e
UW
1604{
1605 int i, n = n_replacements;
1606
1607 for (i = 0; i < n; i++)
1608 {
1609 struct replacement *r = &replacements[i];
1610 if (r->where == orig_loc)
1611 push_replacement (dup_loc, r->what, r->mode);
1612 }
1613}
eab89b90 1614\f
a8c9daeb
RK
1615/* Transfer all replacements that used to be in reload FROM to be in
1616 reload TO. */
1617
1618void
0c20a65f 1619transfer_replacements (int to, int from)
a8c9daeb
RK
1620{
1621 int i;
1622
1623 for (i = 0; i < n_replacements; i++)
1624 if (replacements[i].what == from)
1625 replacements[i].what = to;
1626}
1627\f
cb2afeb3
R
1628/* IN_RTX is the value loaded by a reload that we now decided to inherit,
1629 or a subpart of it. If we have any replacements registered for IN_RTX,
1630 cancel the reloads that were supposed to load them.
40f03658 1631 Return nonzero if we canceled any reloads. */
cb2afeb3 1632int
0c20a65f 1633remove_address_replacements (rtx in_rtx)
029b38ff
R
1634{
1635 int i, j;
cb2afeb3
R
1636 char reload_flags[MAX_RELOADS];
1637 int something_changed = 0;
029b38ff 1638
961192e1 1639 memset (reload_flags, 0, sizeof reload_flags);
029b38ff
R
1640 for (i = 0, j = 0; i < n_replacements; i++)
1641 {
cb2afeb3
R
1642 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1643 reload_flags[replacements[i].what] |= 1;
1644 else
1645 {
1646 replacements[j++] = replacements[i];
1647 reload_flags[replacements[i].what] |= 2;
1648 }
1649 }
1650 /* Note that the following store must be done before the recursive calls. */
1651 n_replacements = j;
1652
1653 for (i = n_reloads - 1; i >= 0; i--)
1654 {
1655 if (reload_flags[i] == 1)
1656 {
1657 deallocate_reload_reg (i);
eceef4c9
BS
1658 remove_address_replacements (rld[i].in);
1659 rld[i].in = 0;
cb2afeb3
R
1660 something_changed = 1;
1661 }
1662 }
1663 return something_changed;
1664}
029b38ff 1665\f
eab89b90
RK
1666/* If there is only one output reload, and it is not for an earlyclobber
1667 operand, try to combine it with a (logically unrelated) input reload
1668 to reduce the number of reload registers needed.
1669
1670 This is safe if the input reload does not appear in
1671 the value being output-reloaded, because this implies
1672 it is not needed any more once the original insn completes.
1673
1674 If that doesn't work, see we can use any of the registers that
1675 die in this insn as a reload register. We can if it is of the right
1676 class and does not appear in the value being output-reloaded. */
1677
1678static void
0c20a65f 1679combine_reloads (void)
eab89b90
RK
1680{
1681 int i;
1682 int output_reload = -1;
8922eb5b 1683 int secondary_out = -1;
eab89b90
RK
1684 rtx note;
1685
1686 /* Find the output reload; return unless there is exactly one
1687 and that one is mandatory. */
1688
1689 for (i = 0; i < n_reloads; i++)
eceef4c9 1690 if (rld[i].out != 0)
eab89b90
RK
1691 {
1692 if (output_reload >= 0)
1693 return;
1694 output_reload = i;
1695 }
1696
eceef4c9 1697 if (output_reload < 0 || rld[output_reload].optional)
eab89b90
RK
1698 return;
1699
1700 /* An input-output reload isn't combinable. */
1701
eceef4c9 1702 if (rld[output_reload].in != 0)
eab89b90
RK
1703 return;
1704
6dc42e49 1705 /* If this reload is for an earlyclobber operand, we can't do anything. */
eceef4c9 1706 if (earlyclobber_operand_p (rld[output_reload].out))
4644aad4 1707 return;
eab89b90 1708
6b3736a1 1709 /* If there is a reload for part of the address of this operand, we would
9f5ed61a 1710 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
6b3736a1
RK
1711 its life to the point where doing this combine would not lower the
1712 number of spill registers needed. */
1713 for (i = 0; i < n_reloads; i++)
1714 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1715 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1716 && rld[i].opnum == rld[output_reload].opnum)
1717 return;
1718
eab89b90
RK
1719 /* Check each input reload; can we combine it? */
1720
1721 for (i = 0; i < n_reloads; i++)
eceef4c9 1722 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
eab89b90 1723 /* Life span of this reload must not extend past main insn. */
eceef4c9
BS
1724 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1725 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1726 && rld[i].when_needed != RELOAD_OTHER
1727 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1728 == CLASS_MAX_NREGS (rld[output_reload].class,
1729 rld[output_reload].outmode))
1730 && rld[i].inc == 0
1731 && rld[i].reg_rtx == 0
a8c9daeb 1732#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1733 /* Don't combine two reloads with different secondary
1734 memory locations. */
eceef4c9
BS
1735 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1736 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1737 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1738 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
a8c9daeb 1739#endif
e9a25f70 1740 && (SMALL_REGISTER_CLASSES
eceef4c9
BS
1741 ? (rld[i].class == rld[output_reload].class)
1742 : (reg_class_subset_p (rld[i].class,
1743 rld[output_reload].class)
1744 || reg_class_subset_p (rld[output_reload].class,
1745 rld[i].class)))
1746 && (MATCHES (rld[i].in, rld[output_reload].out)
eab89b90
RK
1747 /* Args reversed because the first arg seems to be
1748 the one that we imagine being modified
1749 while the second is the one that might be affected. */
eceef4c9
BS
1750 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1751 rld[i].in)
eab89b90
RK
1752 /* However, if the input is a register that appears inside
1753 the output, then we also can't share.
1754 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1755 If the same reload reg is used for both reg 69 and the
1756 result to be stored in memory, then that result
1757 will clobber the address of the memory ref. */
f8cfc6aa 1758 && ! (REG_P (rld[i].in)
eceef4c9
BS
1759 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1760 rld[output_reload].out))))
4bf1d92e
JH
1761 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1762 rld[i].when_needed != RELOAD_FOR_INPUT)
eceef4c9 1763 && (reg_class_size[(int) rld[i].class]
e9a25f70 1764 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1765 /* We will allow making things slightly worse by combining an
1766 input and an output, but no worse than that. */
eceef4c9
BS
1767 && (rld[i].when_needed == RELOAD_FOR_INPUT
1768 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
eab89b90
RK
1769 {
1770 int j;
1771
1772 /* We have found a reload to combine with! */
eceef4c9
BS
1773 rld[i].out = rld[output_reload].out;
1774 rld[i].out_reg = rld[output_reload].out_reg;
1775 rld[i].outmode = rld[output_reload].outmode;
eab89b90 1776 /* Mark the old output reload as inoperative. */
eceef4c9 1777 rld[output_reload].out = 0;
eab89b90 1778 /* The combined reload is needed for the entire insn. */
eceef4c9 1779 rld[i].when_needed = RELOAD_OTHER;
0f41302f 1780 /* If the output reload had a secondary reload, copy it. */
eceef4c9 1781 if (rld[output_reload].secondary_out_reload != -1)
9ec7078b 1782 {
eceef4c9
BS
1783 rld[i].secondary_out_reload
1784 = rld[output_reload].secondary_out_reload;
1785 rld[i].secondary_out_icode
1786 = rld[output_reload].secondary_out_icode;
9ec7078b
RK
1787 }
1788
a8c9daeb
RK
1789#ifdef SECONDARY_MEMORY_NEEDED
1790 /* Copy any secondary MEM. */
eceef4c9
BS
1791 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1792 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1793 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
a8c9daeb 1794#endif
0f41302f 1795 /* If required, minimize the register class. */
eceef4c9
BS
1796 if (reg_class_subset_p (rld[output_reload].class,
1797 rld[i].class))
1798 rld[i].class = rld[output_reload].class;
eab89b90
RK
1799
1800 /* Transfer all replacements from the old reload to the combined. */
1801 for (j = 0; j < n_replacements; j++)
1802 if (replacements[j].what == output_reload)
1803 replacements[j].what = i;
1804
1805 return;
1806 }
1807
1808 /* If this insn has only one operand that is modified or written (assumed
1809 to be the first), it must be the one corresponding to this reload. It
1810 is safe to use anything that dies in this insn for that output provided
1811 that it does not occur in the output (we already know it isn't an
1812 earlyclobber. If this is an asm insn, give up. */
1813
1f9a0ec2 1814 if (INSN_CODE (this_insn) == -1)
eab89b90
RK
1815 return;
1816
a995e389
RH
1817 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1818 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1819 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
eab89b90
RK
1820 return;
1821
1822 /* See if some hard register that dies in this insn and is not used in
1823 the output is the right class. Only works if the register we pick
1824 up can fully hold our output reload. */
1825 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1826 if (REG_NOTE_KIND (note) == REG_DEAD
f8cfc6aa 1827 && REG_P (XEXP (note, 0))
bfa30b22 1828 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
eceef4c9 1829 rld[output_reload].out)
eab89b90 1830 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
eceef4c9
BS
1831 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1832 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
eab89b90 1833 REGNO (XEXP (note, 0)))
66fd46b6
JH
1834 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1835 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
8922eb5b
RK
1836 /* Ensure that a secondary or tertiary reload for this output
1837 won't want this register. */
eceef4c9 1838 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
05d10675 1839 || (! (TEST_HARD_REG_BIT
eceef4c9 1840 (reg_class_contents[(int) rld[secondary_out].class],
05d10675 1841 REGNO (XEXP (note, 0))))
eceef4c9 1842 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
8922eb5b 1843 || ! (TEST_HARD_REG_BIT
eceef4c9 1844 (reg_class_contents[(int) rld[secondary_out].class],
8922eb5b 1845 REGNO (XEXP (note, 0)))))))
c1673e1b
BS
1846 && ! fixed_regs[REGNO (XEXP (note, 0))]
1847 /* Check that we don't use a hardreg for an uninitialized
1848 pseudo. See also find_dummy_reload(). */
1849 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
6fb5fa3c 1850 || ! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
c1673e1b 1851 ORIGINAL_REGNO (XEXP (note, 0)))))
eab89b90 1852 {
eceef4c9
BS
1853 rld[output_reload].reg_rtx
1854 = gen_rtx_REG (rld[output_reload].outmode,
38a448ca 1855 REGNO (XEXP (note, 0)));
eab89b90
RK
1856 return;
1857 }
1858}
1859\f
1860/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1861 See if one of IN and OUT is a register that may be used;
1862 this is desirable since a spill-register won't be needed.
1863 If so, return the register rtx that proves acceptable.
1864
1865 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1866 CLASS is the register class required for the reload.
1867
1868 If FOR_REAL is >= 0, it is the number of the reload,
1869 and in some cases when it can be discovered that OUT doesn't need
eceef4c9 1870 to be computed, clear out rld[FOR_REAL].out.
eab89b90
RK
1871
1872 If FOR_REAL is -1, this should not be done, because this call
189086f9
RK
1873 is just to see if a register can be found, not to find and install it.
1874
40f03658 1875 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
189086f9
RK
1876 puts an additional constraint on being able to use IN for OUT since
1877 IN must not appear elsewhere in the insn (it is assumed that IN itself
1878 is safe from the earlyclobber). */
eab89b90
RK
1879
1880static rtx
0c20a65f
AJ
1881find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1882 enum machine_mode inmode, enum machine_mode outmode,
1883 enum reg_class class, int for_real, int earlyclobber)
eab89b90
RK
1884{
1885 rtx in = real_in;
1886 rtx out = real_out;
1887 int in_offset = 0;
1888 int out_offset = 0;
1889 rtx value = 0;
1890
1891 /* If operands exceed a word, we can't use either of them
1892 unless they have the same size. */
36b50568
RS
1893 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1894 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1895 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1896 return 0;
1897
ddef6bc7
JJ
1898 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1899 respectively refers to a hard register. */
1900
eab89b90
RK
1901 /* Find the inside of any subregs. */
1902 while (GET_CODE (out) == SUBREG)
1903 {
f8cfc6aa 1904 if (REG_P (SUBREG_REG (out))
ddef6bc7
JJ
1905 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1906 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1907 GET_MODE (SUBREG_REG (out)),
1908 SUBREG_BYTE (out),
1909 GET_MODE (out));
eab89b90
RK
1910 out = SUBREG_REG (out);
1911 }
1912 while (GET_CODE (in) == SUBREG)
1913 {
f8cfc6aa 1914 if (REG_P (SUBREG_REG (in))
ddef6bc7
JJ
1915 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1916 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1917 GET_MODE (SUBREG_REG (in)),
1918 SUBREG_BYTE (in),
1919 GET_MODE (in));
eab89b90
RK
1920 in = SUBREG_REG (in);
1921 }
1922
1923 /* Narrow down the reg class, the same way push_reload will;
1924 otherwise we might find a dummy now, but push_reload won't. */
b5c82fa1
PB
1925 {
1926 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
e17e34d8 1927 if (preferred_class != NO_REGS)
b5c82fa1
PB
1928 class = preferred_class;
1929 }
eab89b90
RK
1930
1931 /* See if OUT will do. */
f8cfc6aa 1932 if (REG_P (out)
eab89b90
RK
1933 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1934 {
770ae6cc 1935 unsigned int regno = REGNO (out) + out_offset;
66fd46b6 1936 unsigned int nwords = hard_regno_nregs[regno][outmode];
d3b9996a 1937 rtx saved_rtx;
eab89b90
RK
1938
1939 /* When we consider whether the insn uses OUT,
1940 ignore references within IN. They don't prevent us
1941 from copying IN into OUT, because those refs would
1942 move into the insn that reloads IN.
1943
1944 However, we only ignore IN in its role as this reload.
1945 If the insn uses IN elsewhere and it contains OUT,
1946 that counts. We can't be sure it's the "same" operand
1947 so it might not go through this reload. */
d3b9996a 1948 saved_rtx = *inloc;
eab89b90
RK
1949 *inloc = const0_rtx;
1950
1951 if (regno < FIRST_PSEUDO_REGISTER
05fa709d 1952 && HARD_REGNO_MODE_OK (regno, outmode)
eab89b90
RK
1953 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1954 PATTERN (this_insn), outloc))
1955 {
770ae6cc
RK
1956 unsigned int i;
1957
eab89b90
RK
1958 for (i = 0; i < nwords; i++)
1959 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1960 regno + i))
1961 break;
1962
1963 if (i == nwords)
1964 {
f8cfc6aa 1965 if (REG_P (real_out))
eab89b90
RK
1966 value = real_out;
1967 else
38a448ca 1968 value = gen_rtx_REG (outmode, regno);
eab89b90
RK
1969 }
1970 }
1971
d3b9996a 1972 *inloc = saved_rtx;
eab89b90
RK
1973 }
1974
1975 /* Consider using IN if OUT was not acceptable
1976 or if OUT dies in this insn (like the quotient in a divmod insn).
1977 We can't use IN unless it is dies in this insn,
1978 which means we must know accurately which hard regs are live.
189086f9
RK
1979 Also, the result can't go in IN if IN is used within OUT,
1980 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
eab89b90 1981 if (hard_regs_live_known
f8cfc6aa 1982 && REG_P (in)
eab89b90
RK
1983 && REGNO (in) < FIRST_PSEUDO_REGISTER
1984 && (value == 0
1985 || find_reg_note (this_insn, REG_UNUSED, real_out))
1986 && find_reg_note (this_insn, REG_DEAD, real_in)
1987 && !fixed_regs[REGNO (in)]
36b50568
RS
1988 && HARD_REGNO_MODE_OK (REGNO (in),
1989 /* The only case where out and real_out might
1990 have different modes is where real_out
1991 is a subreg, and in that case, out
1992 has a real mode. */
1993 (GET_MODE (out) != VOIDmode
687b527d
MM
1994 ? GET_MODE (out) : outmode))
1995 /* But only do all this if we can be sure, that this input
1996 operand doesn't correspond with an uninitialized pseudoreg.
1997 global can assign some hardreg to it, which is the same as
1998 a different pseudo also currently live (as it can ignore the
1999 conflict). So we never must introduce writes to such hardregs,
2000 as they would clobber the other live pseudo using the same.
2001 See also PR20973. */
2002 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
6fb5fa3c 2003 || ! bitmap_bit_p (DF_RA_LIVE_OUT (ENTRY_BLOCK_PTR),
687b527d 2004 ORIGINAL_REGNO (in))))
eab89b90 2005 {
770ae6cc 2006 unsigned int regno = REGNO (in) + in_offset;
66fd46b6 2007 unsigned int nwords = hard_regno_nregs[regno][inmode];
eab89b90 2008
f4f4d0f8 2009 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
eab89b90 2010 && ! hard_reg_set_here_p (regno, regno + nwords,
189086f9
RK
2011 PATTERN (this_insn))
2012 && (! earlyclobber
2013 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2014 PATTERN (this_insn), inloc)))
eab89b90 2015 {
770ae6cc
RK
2016 unsigned int i;
2017
eab89b90
RK
2018 for (i = 0; i < nwords; i++)
2019 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2020 regno + i))
2021 break;
2022
2023 if (i == nwords)
2024 {
2025 /* If we were going to use OUT as the reload reg
2026 and changed our mind, it means OUT is a dummy that
2027 dies here. So don't bother copying value to it. */
2028 if (for_real >= 0 && value == real_out)
eceef4c9 2029 rld[for_real].out = 0;
f8cfc6aa 2030 if (REG_P (real_in))
eab89b90
RK
2031 value = real_in;
2032 else
38a448ca 2033 value = gen_rtx_REG (inmode, regno);
eab89b90
RK
2034 }
2035 }
2036 }
2037
2038 return value;
2039}
2040\f
2041/* This page contains subroutines used mainly for determining
2042 whether the IN or an OUT of a reload can serve as the
2043 reload register. */
2044
4644aad4
RK
2045/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2046
09a308fe 2047int
0c20a65f 2048earlyclobber_operand_p (rtx x)
4644aad4
RK
2049{
2050 int i;
2051
2052 for (i = 0; i < n_earlyclobbers; i++)
2053 if (reload_earlyclobbers[i] == x)
2054 return 1;
2055
2056 return 0;
2057}
2058
eab89b90
RK
2059/* Return 1 if expression X alters a hard reg in the range
2060 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2061 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2062 X should be the body of an instruction. */
2063
2064static int
0c20a65f 2065hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
eab89b90
RK
2066{
2067 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2068 {
b3694847 2069 rtx op0 = SET_DEST (x);
770ae6cc 2070
eab89b90
RK
2071 while (GET_CODE (op0) == SUBREG)
2072 op0 = SUBREG_REG (op0);
f8cfc6aa 2073 if (REG_P (op0))
eab89b90 2074 {
770ae6cc
RK
2075 unsigned int r = REGNO (op0);
2076
eab89b90
RK
2077 /* See if this reg overlaps range under consideration. */
2078 if (r < end_regno
09e18274 2079 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
eab89b90
RK
2080 return 1;
2081 }
2082 }
2083 else if (GET_CODE (x) == PARALLEL)
2084 {
b3694847 2085 int i = XVECLEN (x, 0) - 1;
770ae6cc 2086
eab89b90
RK
2087 for (; i >= 0; i--)
2088 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2089 return 1;
2090 }
2091
2092 return 0;
2093}
2094
2095/* Return 1 if ADDR is a valid memory address for mode MODE,
2096 and check that each pseudo reg has the proper kind of
2097 hard reg. */
2098
2099int
0c20a65f 2100strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
eab89b90
RK
2101{
2102 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2103 return 0;
2104
2105 win:
2106 return 1;
2107}
eab89b90
RK
2108\f
2109/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2110 if they are the same hard reg, and has special hacks for
2111 autoincrement and autodecrement.
2112 This is specifically intended for find_reloads to use
2113 in determining whether two operands match.
2114 X is the operand whose number is the lower of the two.
2115
2116 The value is 2 if Y contains a pre-increment that matches
2117 a non-incrementing address in X. */
2118
2119/* ??? To be completely correct, we should arrange to pass
2120 for X the output operand and for Y the input operand.
2121 For now, we assume that the output operand has the lower number
2122 because that is natural in (SET output (... input ...)). */
2123
2124int
0c20a65f 2125operands_match_p (rtx x, rtx y)
eab89b90 2126{
b3694847
SS
2127 int i;
2128 RTX_CODE code = GET_CODE (x);
2129 const char *fmt;
eab89b90 2130 int success_2;
05d10675 2131
eab89b90
RK
2132 if (x == y)
2133 return 1;
f8cfc6aa
JQ
2134 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2135 && (REG_P (y) || (GET_CODE (y) == SUBREG
2136 && REG_P (SUBREG_REG (y)))))
eab89b90 2137 {
b3694847 2138 int j;
eab89b90
RK
2139
2140 if (code == SUBREG)
2141 {
2142 i = REGNO (SUBREG_REG (x));
2143 if (i >= FIRST_PSEUDO_REGISTER)
2144 goto slow;
ddef6bc7
JJ
2145 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2146 GET_MODE (SUBREG_REG (x)),
2147 SUBREG_BYTE (x),
2148 GET_MODE (x));
eab89b90
RK
2149 }
2150 else
2151 i = REGNO (x);
2152
2153 if (GET_CODE (y) == SUBREG)
2154 {
2155 j = REGNO (SUBREG_REG (y));
2156 if (j >= FIRST_PSEUDO_REGISTER)
2157 goto slow;
ddef6bc7
JJ
2158 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2159 GET_MODE (SUBREG_REG (y)),
2160 SUBREG_BYTE (y),
2161 GET_MODE (y));
eab89b90
RK
2162 }
2163 else
2164 j = REGNO (y);
2165
dca52d80 2166 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
b436d712
DE
2167 multiple hard register group of scalar integer registers, so that
2168 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2169 register. */
dca52d80 2170 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
b436d712 2171 && SCALAR_INT_MODE_P (GET_MODE (x))
dca52d80 2172 && i < FIRST_PSEUDO_REGISTER)
66fd46b6 2173 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
dca52d80 2174 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
b436d712 2175 && SCALAR_INT_MODE_P (GET_MODE (y))
dca52d80 2176 && j < FIRST_PSEUDO_REGISTER)
66fd46b6 2177 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
dca52d80 2178
eab89b90
RK
2179 return i == j;
2180 }
2181 /* If two operands must match, because they are really a single
2182 operand of an assembler insn, then two postincrements are invalid
2183 because the assembler insn would increment only once.
09da1532 2184 On the other hand, a postincrement matches ordinary indexing
eab89b90 2185 if the postincrement is the output operand. */
4b983fdc 2186 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
eab89b90
RK
2187 return operands_match_p (XEXP (x, 0), y);
2188 /* Two preincrements are invalid
2189 because the assembler insn would increment only once.
09da1532 2190 On the other hand, a preincrement matches ordinary indexing
eab89b90
RK
2191 if the preincrement is the input operand.
2192 In this case, return 2, since some callers need to do special
2193 things when this happens. */
4b983fdc
RH
2194 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2195 || GET_CODE (y) == PRE_MODIFY)
eab89b90
RK
2196 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2197
2198 slow:
2199
37cf6116
RH
2200 /* Now we have disposed of all the cases in which different rtx codes
2201 can match. */
eab89b90
RK
2202 if (code != GET_CODE (y))
2203 return 0;
eab89b90
RK
2204
2205 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
eab89b90
RK
2206 if (GET_MODE (x) != GET_MODE (y))
2207 return 0;
2208
37cf6116
RH
2209 switch (code)
2210 {
2211 case CONST_INT:
2212 case CONST_DOUBLE:
2213 return 0;
2214
2215 case LABEL_REF:
2216 return XEXP (x, 0) == XEXP (y, 0);
2217 case SYMBOL_REF:
2218 return XSTR (x, 0) == XSTR (y, 0);
2219
2220 default:
2221 break;
2222 }
2223
eab89b90
RK
2224 /* Compare the elements. If any pair of corresponding elements
2225 fail to match, return 0 for the whole things. */
2226
2227 success_2 = 0;
2228 fmt = GET_RTX_FORMAT (code);
2229 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2230 {
91bb873f 2231 int val, j;
eab89b90
RK
2232 switch (fmt[i])
2233 {
fb3821f7
CH
2234 case 'w':
2235 if (XWINT (x, i) != XWINT (y, i))
2236 return 0;
2237 break;
2238
eab89b90
RK
2239 case 'i':
2240 if (XINT (x, i) != XINT (y, i))
2241 return 0;
2242 break;
2243
2244 case 'e':
2245 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2246 if (val == 0)
2247 return 0;
2248 /* If any subexpression returns 2,
2249 we should return 2 if we are successful. */
2250 if (val == 2)
2251 success_2 = 1;
2252 break;
2253
2254 case '0':
2255 break;
2256
91bb873f
RH
2257 case 'E':
2258 if (XVECLEN (x, i) != XVECLEN (y, i))
2259 return 0;
2260 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2261 {
2262 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2263 if (val == 0)
2264 return 0;
2265 if (val == 2)
2266 success_2 = 1;
2267 }
2268 break;
2269
eab89b90
RK
2270 /* It is believed that rtx's at this level will never
2271 contain anything but integers and other rtx's,
2272 except for within LABEL_REFs and SYMBOL_REFs. */
2273 default:
41374e13 2274 gcc_unreachable ();
eab89b90
RK
2275 }
2276 }
2277 return 1 + success_2;
2278}
2279\f
eab89b90 2280/* Describe the range of registers or memory referenced by X.
05d10675 2281 If X is a register, set REG_FLAG and put the first register
eab89b90 2282 number into START and the last plus one into END.
05d10675 2283 If X is a memory reference, put a base address into BASE
eab89b90 2284 and a range of integer offsets into START and END.
05d10675 2285 If X is pushing on the stack, we can assume it causes no trouble,
eab89b90
RK
2286 so we set the SAFE field. */
2287
2288static struct decomposition
0c20a65f 2289decompose (rtx x)
eab89b90
RK
2290{
2291 struct decomposition val;
2292 int all_const = 0;
2293
6de9cd9a
DN
2294 memset (&val, 0, sizeof (val));
2295
41374e13 2296 switch (GET_CODE (x))
eab89b90 2297 {
41374e13
NS
2298 case MEM:
2299 {
2300 rtx base = NULL_RTX, offset = 0;
2301 rtx addr = XEXP (x, 0);
2302
2303 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2304 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2305 {
2306 val.base = XEXP (addr, 0);
2307 val.start = -GET_MODE_SIZE (GET_MODE (x));
2308 val.end = GET_MODE_SIZE (GET_MODE (x));
2309 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2310 return val;
2311 }
2312
2313 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2314 {
2315 if (GET_CODE (XEXP (addr, 1)) == PLUS
2316 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2317 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2318 {
2319 val.base = XEXP (addr, 0);
2320 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2321 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2322 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2323 return val;
2324 }
2325 }
2326
2327 if (GET_CODE (addr) == CONST)
2328 {
2329 addr = XEXP (addr, 0);
2330 all_const = 1;
2331 }
2332 if (GET_CODE (addr) == PLUS)
2333 {
2334 if (CONSTANT_P (XEXP (addr, 0)))
2335 {
2336 base = XEXP (addr, 1);
2337 offset = XEXP (addr, 0);
2338 }
2339 else if (CONSTANT_P (XEXP (addr, 1)))
2340 {
2341 base = XEXP (addr, 0);
2342 offset = XEXP (addr, 1);
2343 }
2344 }
2345
2346 if (offset == 0)
2347 {
2348 base = addr;
2349 offset = const0_rtx;
2350 }
2351 if (GET_CODE (offset) == CONST)
2352 offset = XEXP (offset, 0);
2353 if (GET_CODE (offset) == PLUS)
2354 {
2355 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2356 {
2357 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2358 offset = XEXP (offset, 0);
2359 }
2360 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2361 {
2362 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2363 offset = XEXP (offset, 1);
2364 }
2365 else
2366 {
2367 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2368 offset = const0_rtx;
2369 }
2370 }
2371 else if (GET_CODE (offset) != CONST_INT)
2372 {
2373 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2374 offset = const0_rtx;
2375 }
2376
2377 if (all_const && GET_CODE (base) == PLUS)
2378 base = gen_rtx_CONST (GET_MODE (base), base);
2379
2380 gcc_assert (GET_CODE (offset) == CONST_INT);
2381
2382 val.start = INTVAL (offset);
2383 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2384 val.base = base;
2385 }
2386 break;
2387
2388 case REG:
eab89b90 2389 val.reg_flag = 1;
05d10675 2390 val.start = true_regnum (x);
67468e8e 2391 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
eab89b90
RK
2392 {
2393 /* A pseudo with no hard reg. */
2394 val.start = REGNO (x);
2395 val.end = val.start + 1;
2396 }
2397 else
2398 /* A hard reg. */
09e18274 2399 val.end = end_hard_regno (GET_MODE (x), val.start);
41374e13
NS
2400 break;
2401
2402 case SUBREG:
f8cfc6aa 2403 if (!REG_P (SUBREG_REG (x)))
eab89b90
RK
2404 /* This could be more precise, but it's good enough. */
2405 return decompose (SUBREG_REG (x));
2406 val.reg_flag = 1;
05d10675 2407 val.start = true_regnum (x);
67468e8e 2408 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
eab89b90
RK
2409 return decompose (SUBREG_REG (x));
2410 else
2411 /* A hard reg. */
f1f4e530 2412 val.end = val.start + subreg_nregs (x);
41374e13
NS
2413 break;
2414
2415 case SCRATCH:
2416 /* This hasn't been assigned yet, so it can't conflict yet. */
2417 val.safe = 1;
2418 break;
2419
2420 default:
2421 gcc_assert (CONSTANT_P (x));
2422 val.safe = 1;
2423 break;
eab89b90 2424 }
eab89b90
RK
2425 return val;
2426}
2427
2428/* Return 1 if altering Y will not modify the value of X.
2429 Y is also described by YDATA, which should be decompose (Y). */
2430
2431static int
0c20a65f 2432immune_p (rtx x, rtx y, struct decomposition ydata)
eab89b90
RK
2433{
2434 struct decomposition xdata;
2435
2436 if (ydata.reg_flag)
f4f4d0f8 2437 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
eab89b90
RK
2438 if (ydata.safe)
2439 return 1;
2440
41374e13 2441 gcc_assert (MEM_P (y));
eab89b90 2442 /* If Y is memory and X is not, Y can't affect X. */
3c0cb5de 2443 if (!MEM_P (x))
eab89b90
RK
2444 return 1;
2445
4381f7c2 2446 xdata = decompose (x);
eab89b90
RK
2447
2448 if (! rtx_equal_p (xdata.base, ydata.base))
2449 {
2450 /* If bases are distinct symbolic constants, there is no overlap. */
2451 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2452 return 1;
2453 /* Constants and stack slots never overlap. */
2454 if (CONSTANT_P (xdata.base)
2455 && (ydata.base == frame_pointer_rtx
a36d4c62 2456 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2457 || ydata.base == stack_pointer_rtx))
2458 return 1;
2459 if (CONSTANT_P (ydata.base)
2460 && (xdata.base == frame_pointer_rtx
a36d4c62 2461 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2462 || xdata.base == stack_pointer_rtx))
2463 return 1;
2464 /* If either base is variable, we don't know anything. */
2465 return 0;
2466 }
2467
eab89b90
RK
2468 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2469}
44ace968 2470
f72aed24 2471/* Similar, but calls decompose. */
44ace968
JW
2472
2473int
0c20a65f 2474safe_from_earlyclobber (rtx op, rtx clobber)
44ace968
JW
2475{
2476 struct decomposition early_data;
2477
2478 early_data = decompose (clobber);
2479 return immune_p (op, clobber, early_data);
2480}
eab89b90
RK
2481\f
2482/* Main entry point of this file: search the body of INSN
2483 for values that need reloading and record them with push_reload.
2484 REPLACE nonzero means record also where the values occur
2485 so that subst_reloads can be used.
2486
2487 IND_LEVELS says how many levels of indirection are supported by this
2488 machine; a value of zero means that a memory reference is not a valid
2489 memory address.
2490
2491 LIVE_KNOWN says we have valid information about which hard
2492 regs are live at each point in the program; this is true when
2493 we are called from global_alloc but false when stupid register
2494 allocation has been done.
2495
2496 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2497 which is nonnegative if the reg has been commandeered for reloading into.
2498 It is copied into STATIC_RELOAD_REG_P and referenced from there
cb2afeb3 2499 by various subroutines.
eab89b90 2500
cb2afeb3
R
2501 Return TRUE if some operands need to be changed, because of swapping
2502 commutative operands, reg_equiv_address substitution, or whatever. */
2503
2504int
0c20a65f
AJ
2505find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2506 short *reload_reg_p)
eab89b90 2507{
b3694847
SS
2508 int insn_code_number;
2509 int i, j;
eab89b90 2510 int noperands;
eab89b90
RK
2511 /* These start out as the constraints for the insn
2512 and they are chewed up as we consider alternatives. */
2513 char *constraints[MAX_RECOG_OPERANDS];
2514 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2515 a register. */
2516 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2517 char pref_or_nothing[MAX_RECOG_OPERANDS];
0b540f12
UW
2518 /* Nonzero for a MEM operand whose entire address needs a reload.
2519 May be -1 to indicate the entire address may or may not need a reload. */
eab89b90 2520 int address_reloaded[MAX_RECOG_OPERANDS];
0b540f12
UW
2521 /* Nonzero for an address operand that needs to be completely reloaded.
2522 May be -1 to indicate the entire operand may or may not need a reload. */
9537511b 2523 int address_operand_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2524 /* Value of enum reload_type to use for operand. */
2525 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2526 /* Value of enum reload_type to use within address of operand. */
2527 enum reload_type address_type[MAX_RECOG_OPERANDS];
2528 /* Save the usage of each operand. */
2529 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2530 int no_input_reloads = 0, no_output_reloads = 0;
2531 int n_alternatives;
2532 int this_alternative[MAX_RECOG_OPERANDS];
69add2a8 2533 char this_alternative_match_win[MAX_RECOG_OPERANDS];
eab89b90
RK
2534 char this_alternative_win[MAX_RECOG_OPERANDS];
2535 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2536 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2537 int this_alternative_matches[MAX_RECOG_OPERANDS];
2538 int swapped;
2539 int goal_alternative[MAX_RECOG_OPERANDS];
2540 int this_alternative_number;
a544cfd2 2541 int goal_alternative_number = 0;
eab89b90
RK
2542 int operand_reloadnum[MAX_RECOG_OPERANDS];
2543 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2544 int goal_alternative_matched[MAX_RECOG_OPERANDS];
69add2a8 2545 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
eab89b90
RK
2546 char goal_alternative_win[MAX_RECOG_OPERANDS];
2547 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2548 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2549 int goal_alternative_swapped;
eab89b90
RK
2550 int best;
2551 int commutative;
2552 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2553 rtx substed_operand[MAX_RECOG_OPERANDS];
2554 rtx body = PATTERN (insn);
2555 rtx set = single_set (insn);
a544cfd2 2556 int goal_earlyclobber = 0, this_earlyclobber;
eab89b90 2557 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
cb2afeb3 2558 int retval = 0;
eab89b90
RK
2559
2560 this_insn = insn;
eab89b90
RK
2561 n_reloads = 0;
2562 n_replacements = 0;
eab89b90
RK
2563 n_earlyclobbers = 0;
2564 replace_reloads = replace;
2565 hard_regs_live_known = live_known;
2566 static_reload_reg_p = reload_reg_p;
2567
2568 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2569 neither are insns that SET cc0. Insns that use CC0 are not allowed
2570 to have any input reloads. */
4b4bf941 2571 if (JUMP_P (insn) || CALL_P (insn))
eab89b90
RK
2572 no_output_reloads = 1;
2573
2574#ifdef HAVE_cc0
2575 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2576 no_input_reloads = 1;
2577 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2578 no_output_reloads = 1;
2579#endif
05d10675 2580
0dadecf6
RK
2581#ifdef SECONDARY_MEMORY_NEEDED
2582 /* The eliminated forms of any secondary memory locations are per-insn, so
2583 clear them out here. */
2584
048b0d2e
JH
2585 if (secondary_memlocs_elim_used)
2586 {
2587 memset (secondary_memlocs_elim, 0,
2588 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2589 secondary_memlocs_elim_used = 0;
2590 }
0dadecf6
RK
2591#endif
2592
0a578fee
BS
2593 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2594 is cheap to move between them. If it is not, there may not be an insn
2595 to do the copy, so we may need a reload. */
2596 if (GET_CODE (body) == SET
f8cfc6aa 2597 && REG_P (SET_DEST (body))
0a578fee 2598 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
f8cfc6aa 2599 && REG_P (SET_SRC (body))
0a578fee 2600 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
e56b4594
AO
2601 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2602 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
0a578fee
BS
2603 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2604 return 0;
eab89b90 2605
0a578fee 2606 extract_insn (insn);
eab89b90 2607
1ccbefce
RH
2608 noperands = reload_n_operands = recog_data.n_operands;
2609 n_alternatives = recog_data.n_alternatives;
eab89b90 2610
0a578fee
BS
2611 /* Just return "no reloads" if insn has no operands with constraints. */
2612 if (noperands == 0 || n_alternatives == 0)
2613 return 0;
eab89b90 2614
0a578fee
BS
2615 insn_code_number = INSN_CODE (insn);
2616 this_insn_is_asm = insn_code_number < 0;
eab89b90 2617
f428f252
KG
2618 memcpy (operand_mode, recog_data.operand_mode,
2619 noperands * sizeof (enum machine_mode));
2620 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
eab89b90
RK
2621
2622 commutative = -1;
2623
2624 /* If we will need to know, later, whether some pair of operands
2625 are the same, we must compare them now and save the result.
2626 Reloading the base and index registers will clobber them
2627 and afterward they will fail to match. */
2628
2629 for (i = 0; i < noperands; i++)
2630 {
b3694847
SS
2631 char *p;
2632 int c;
eab89b90 2633
1ccbefce 2634 substed_operand[i] = recog_data.operand[i];
eab89b90
RK
2635 p = constraints[i];
2636
a8c9daeb
RK
2637 modified[i] = RELOAD_READ;
2638
05d10675 2639 /* Scan this operand's constraint to see if it is an output operand,
a8c9daeb 2640 an in-out operand, is commutative, or should match another. */
eab89b90 2641
97488870 2642 while ((c = *p))
a8c9daeb 2643 {
97488870 2644 p += CONSTRAINT_LEN (c, p);
f345f21a 2645 switch (c)
a8c9daeb 2646 {
f345f21a
JH
2647 case '=':
2648 modified[i] = RELOAD_WRITE;
2649 break;
2650 case '+':
2651 modified[i] = RELOAD_READ_WRITE;
2652 break;
2653 case '%':
2654 {
2655 /* The last operand should not be marked commutative. */
41374e13 2656 gcc_assert (i != noperands - 1);
f345f21a
JH
2657
2658 /* We currently only support one commutative pair of
2659 operands. Some existing asm code currently uses more
2660 than one pair. Previously, that would usually work,
2661 but sometimes it would crash the compiler. We
2662 continue supporting that case as well as we can by
2663 silently ignoring all but the first pair. In the
2664 future we may handle it correctly. */
2665 if (commutative < 0)
2666 commutative = i;
41374e13
NS
2667 else
2668 gcc_assert (this_insn_is_asm);
f345f21a
JH
2669 }
2670 break;
2671 /* Use of ISDIGIT is tempting here, but it may get expensive because
2672 of locale support we don't want. */
2673 case '0': case '1': case '2': case '3': case '4':
2674 case '5': case '6': case '7': case '8': case '9':
2675 {
2676 c = strtoul (p - 1, &p, 10);
2677
2678 operands_match[c][i]
2679 = operands_match_p (recog_data.operand[c],
2680 recog_data.operand[i]);
2681
2682 /* An operand may not match itself. */
41374e13 2683 gcc_assert (c != i);
f345f21a
JH
2684
2685 /* If C can be commuted with C+1, and C might need to match I,
2686 then C+1 might also need to match I. */
2687 if (commutative >= 0)
2688 {
2689 if (c == commutative || c == commutative + 1)
2690 {
2691 int other = c + (c == commutative ? 1 : -1);
2692 operands_match[other][i]
2693 = operands_match_p (recog_data.operand[other],
2694 recog_data.operand[i]);
2695 }
2696 if (i == commutative || i == commutative + 1)
2697 {
2698 int other = i + (i == commutative ? 1 : -1);
2699 operands_match[c][other]
2700 = operands_match_p (recog_data.operand[c],
2701 recog_data.operand[other]);
2702 }
2703 /* Note that C is supposed to be less than I.
2704 No need to consider altering both C and I because in
2705 that case we would alter one into the other. */
2706 }
2707 }
a8c9daeb
RK
2708 }
2709 }
eab89b90
RK
2710 }
2711
2712 /* Examine each operand that is a memory reference or memory address
2713 and reload parts of the addresses into index registers.
eab89b90
RK
2714 Also here any references to pseudo regs that didn't get hard regs
2715 but are equivalent to constants get replaced in the insn itself
05d10675 2716 with those constants. Nobody will ever see them again.
eab89b90
RK
2717
2718 Finally, set up the preferred classes of each operand. */
2719
2720 for (i = 0; i < noperands; i++)
2721 {
b3694847 2722 RTX_CODE code = GET_CODE (recog_data.operand[i]);
a8c9daeb 2723
eab89b90 2724 address_reloaded[i] = 0;
9537511b 2725 address_operand_reloaded[i] = 0;
a8c9daeb
RK
2726 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2727 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2728 : RELOAD_OTHER);
2729 address_type[i]
2730 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2731 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2732 : RELOAD_OTHER);
eab89b90 2733
0d38001f
RS
2734 if (*constraints[i] == 0)
2735 /* Ignore things like match_operator operands. */
2736 ;
ccfc6cc8 2737 else if (constraints[i][0] == 'p'
97488870 2738 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
eab89b90 2739 {
9537511b
UW
2740 address_operand_reloaded[i]
2741 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2742 recog_data.operand[i],
2743 recog_data.operand_loc[i],
2744 i, operand_type[i], ind_levels, insn);
b685dbae 2745
05d10675 2746 /* If we now have a simple operand where we used to have a
b685dbae 2747 PLUS or MULT, re-recognize and try again. */
ec8e098d 2748 if ((OBJECT_P (*recog_data.operand_loc[i])
1ccbefce
RH
2749 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2750 && (GET_CODE (recog_data.operand[i]) == MULT
2751 || GET_CODE (recog_data.operand[i]) == PLUS))
b685dbae
RK
2752 {
2753 INSN_CODE (insn) = -1;
cb2afeb3
R
2754 retval = find_reloads (insn, replace, ind_levels, live_known,
2755 reload_reg_p);
2756 return retval;
b685dbae
RK
2757 }
2758
1ccbefce
RH
2759 recog_data.operand[i] = *recog_data.operand_loc[i];
2760 substed_operand[i] = recog_data.operand[i];
9537511b
UW
2761
2762 /* Address operands are reloaded in their existing mode,
2763 no matter what is specified in the machine description. */
2764 operand_mode[i] = GET_MODE (recog_data.operand[i]);
eab89b90
RK
2765 }
2766 else if (code == MEM)
2767 {
ab87f8c8 2768 address_reloaded[i]
1ccbefce
RH
2769 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2770 recog_data.operand_loc[i],
2771 XEXP (recog_data.operand[i], 0),
2772 &XEXP (recog_data.operand[i], 0),
ab87f8c8 2773 i, address_type[i], ind_levels, insn);
1ccbefce
RH
2774 recog_data.operand[i] = *recog_data.operand_loc[i];
2775 substed_operand[i] = recog_data.operand[i];
eab89b90
RK
2776 }
2777 else if (code == SUBREG)
b60a8416 2778 {
1ccbefce 2779 rtx reg = SUBREG_REG (recog_data.operand[i]);
b60a8416 2780 rtx op
1ccbefce 2781 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
b60a8416
R
2782 ind_levels,
2783 set != 0
1ccbefce 2784 && &SET_DEST (set) == recog_data.operand_loc[i],
9246aadb
AH
2785 insn,
2786 &address_reloaded[i]);
b60a8416
R
2787
2788 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2789 that didn't get a hard register, emit a USE with a REG_EQUAL
2790 note in front so that we might inherit a previous, possibly
2791 wider reload. */
05d10675 2792
cb2afeb3 2793 if (replace
3c0cb5de 2794 && MEM_P (op)
f8cfc6aa 2795 && REG_P (reg)
b60a8416
R
2796 && (GET_MODE_SIZE (GET_MODE (reg))
2797 >= GET_MODE_SIZE (GET_MODE (op))))
3d238248
JJ
2798 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2799 insn),
2800 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
b60a8416 2801
1ccbefce 2802 substed_operand[i] = recog_data.operand[i] = op;
b60a8416 2803 }
ec8e098d 2804 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
ff428c90
ILT
2805 /* We can get a PLUS as an "operand" as a result of register
2806 elimination. See eliminate_regs and gen_reload. We handle
2807 a unary operator by reloading the operand. */
1ccbefce
RH
2808 substed_operand[i] = recog_data.operand[i]
2809 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
9246aadb
AH
2810 ind_levels, 0, insn,
2811 &address_reloaded[i]);
eab89b90
RK
2812 else if (code == REG)
2813 {
2814 /* This is equivalent to calling find_reloads_toplev.
2815 The code is duplicated for speed.
2816 When we find a pseudo always equivalent to a constant,
2817 we replace it by the constant. We must be sure, however,
2818 that we don't try to replace it in the insn in which it
6d2f8887 2819 is being set. */
b3694847 2820 int regno = REGNO (recog_data.operand[i]);
eab89b90 2821 if (reg_equiv_constant[regno] != 0
1ccbefce 2822 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
726e2d54
JW
2823 {
2824 /* Record the existing mode so that the check if constants are
eceef4c9 2825 allowed will work when operand_mode isn't specified. */
726e2d54
JW
2826
2827 if (operand_mode[i] == VOIDmode)
1ccbefce 2828 operand_mode[i] = GET_MODE (recog_data.operand[i]);
726e2d54 2829
1ccbefce 2830 substed_operand[i] = recog_data.operand[i]
05d10675 2831 = reg_equiv_constant[regno];
726e2d54 2832 }
cb2afeb3
R
2833 if (reg_equiv_memory_loc[regno] != 0
2834 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2835 /* We need not give a valid is_set_dest argument since the case
2836 of a constant equivalence was checked above. */
1ccbefce
RH
2837 substed_operand[i] = recog_data.operand[i]
2838 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
9246aadb
AH
2839 ind_levels, 0, insn,
2840 &address_reloaded[i]);
eab89b90 2841 }
aaf9712e
RS
2842 /* If the operand is still a register (we didn't replace it with an
2843 equivalent), get the preferred class to reload it into. */
1ccbefce 2844 code = GET_CODE (recog_data.operand[i]);
aaf9712e 2845 preferred_class[i]
1ccbefce
RH
2846 = ((code == REG && REGNO (recog_data.operand[i])
2847 >= FIRST_PSEUDO_REGISTER)
2848 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2849 : NO_REGS);
aaf9712e 2850 pref_or_nothing[i]
1ccbefce
RH
2851 = (code == REG
2852 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2853 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
eab89b90
RK
2854 }
2855
2856 /* If this is simply a copy from operand 1 to operand 0, merge the
2857 preferred classes for the operands. */
1ccbefce
RH
2858 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2859 && recog_data.operand[1] == SET_SRC (set))
eab89b90
RK
2860 {
2861 preferred_class[0] = preferred_class[1]
2862 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2863 pref_or_nothing[0] |= pref_or_nothing[1];
2864 pref_or_nothing[1] |= pref_or_nothing[0];
2865 }
2866
2867 /* Now see what we need for pseudo-regs that didn't get hard regs
2868 or got the wrong kind of hard reg. For this, we must consider
2869 all the operands together against the register constraints. */
2870
812f2051 2871 best = MAX_RECOG_OPERANDS * 2 + 600;
eab89b90
RK
2872
2873 swapped = 0;
2874 goal_alternative_swapped = 0;
2875 try_swapped:
2876
2877 /* The constraints are made of several alternatives.
2878 Each operand's constraint looks like foo,bar,... with commas
2879 separating the alternatives. The first alternatives for all
2880 operands go together, the second alternatives go together, etc.
2881
2882 First loop over alternatives. */
2883
2884 for (this_alternative_number = 0;
2885 this_alternative_number < n_alternatives;
2886 this_alternative_number++)
2887 {
2888 /* Loop over operands for one constraint alternative. */
2889 /* LOSERS counts those that don't fit this alternative
2890 and would require loading. */
2891 int losers = 0;
2892 /* BAD is set to 1 if it some operand can't fit this alternative
2893 even after reloading. */
2894 int bad = 0;
2895 /* REJECT is a count of how undesirable this alternative says it is
2896 if any reloading is required. If the alternative matches exactly
2897 then REJECT is ignored, but otherwise it gets this much
05d10675 2898 counted against it in addition to the reloading needed. Each
eab89b90
RK
2899 ? counts three times here since we want the disparaging caused by
2900 a bad register class to only count 1/3 as much. */
2901 int reject = 0;
2902
2903 this_earlyclobber = 0;
2904
2905 for (i = 0; i < noperands; i++)
2906 {
b3694847 2907 char *p = constraints[i];
97488870
R
2908 char *end;
2909 int len;
b3694847 2910 int win = 0;
69add2a8 2911 int did_match = 0;
82efa2e5 2912 /* 0 => this operand can be reloaded somehow for this alternative. */
eab89b90
RK
2913 int badop = 1;
2914 /* 0 => this operand can be reloaded if the alternative allows regs. */
2915 int winreg = 0;
2916 int c;
97488870 2917 int m;
b3694847 2918 rtx operand = recog_data.operand[i];
eab89b90
RK
2919 int offset = 0;
2920 /* Nonzero means this is a MEM that must be reloaded into a reg
2921 regardless of what the constraint says. */
2922 int force_reload = 0;
2923 int offmemok = 0;
9d926da5
RK
2924 /* Nonzero if a constant forced into memory would be OK for this
2925 operand. */
2926 int constmemok = 0;
eab89b90
RK
2927 int earlyclobber = 0;
2928
ff428c90 2929 /* If the predicate accepts a unary operator, it means that
05d10675 2930 we need to reload the operand, but do not do this for
ad729076 2931 match_operator and friends. */
ec8e098d 2932 if (UNARY_P (operand) && *p != 0)
ff428c90
ILT
2933 operand = XEXP (operand, 0);
2934
eab89b90
RK
2935 /* If the operand is a SUBREG, extract
2936 the REG or MEM (or maybe even a constant) within.
2937 (Constants can occur as a result of reg_equiv_constant.) */
2938
2939 while (GET_CODE (operand) == SUBREG)
2940 {
ddef6bc7
JJ
2941 /* Offset only matters when operand is a REG and
2942 it is a hard reg. This is because it is passed
2943 to reg_fits_class_p if it is a REG and all pseudos
2944 return 0 from that function. */
f8cfc6aa 2945 if (REG_P (SUBREG_REG (operand))
ddef6bc7
JJ
2946 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2947 {
04c5580f
JH
2948 if (!subreg_offset_representable_p
2949 (REGNO (SUBREG_REG (operand)),
2950 GET_MODE (SUBREG_REG (operand)),
2951 SUBREG_BYTE (operand),
2952 GET_MODE (operand)))
2953 force_reload = 1;
ddef6bc7
JJ
2954 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2955 GET_MODE (SUBREG_REG (operand)),
2956 SUBREG_BYTE (operand),
2957 GET_MODE (operand));
2958 }
eab89b90 2959 operand = SUBREG_REG (operand);
38e01259 2960 /* Force reload if this is a constant or PLUS or if there may
a61c98cf
RK
2961 be a problem accessing OPERAND in the outer mode. */
2962 if (CONSTANT_P (operand)
ca769828 2963 || GET_CODE (operand) == PLUS
03b72c86
RK
2964 /* We must force a reload of paradoxical SUBREGs
2965 of a MEM because the alignment of the inner value
beb5a9b8
RK
2966 may not be enough to do the outer reference. On
2967 big-endian machines, it may also reference outside
2968 the object.
03b72c86
RK
2969
2970 On machines that extend byte operations and we have a
486d8509
RK
2971 SUBREG where both the inner and outer modes are no wider
2972 than a word and the inner mode is narrower, is integral,
2973 and gets extended when loaded from memory, combine.c has
2974 made assumptions about the behavior of the machine in such
03b72c86
RK
2975 register access. If the data is, in fact, in memory we
2976 must always load using the size assumed to be in the
05d10675 2977 register and let the insn do the different-sized
5ec105cd
RH
2978 accesses.
2979
05d10675 2980 This is doubly true if WORD_REGISTER_OPERATIONS. In
5ec105cd 2981 this case eliminate_regs has left non-paradoxical
bd235d86 2982 subregs for push_reload to see. Make sure it does
5ec105cd
RH
2983 by forcing the reload.
2984
2985 ??? When is it right at this stage to have a subreg
14b493d6 2986 of a mem that is _not_ to be handled specially? IMO
5ec105cd 2987 those should have been reduced to just a mem. */
3c0cb5de 2988 || ((MEM_P (operand)
f8cfc6aa 2989 || (REG_P (operand)
a61c98cf 2990 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
5ec105cd 2991#ifndef WORD_REGISTER_OPERATIONS
03b72c86
RK
2992 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2993 < BIGGEST_ALIGNMENT)
2994 && (GET_MODE_SIZE (operand_mode[i])
2995 > GET_MODE_SIZE (GET_MODE (operand))))
b605eb59 2996 || BYTES_BIG_ENDIAN
03b72c86
RK
2997#ifdef LOAD_EXTEND_OP
2998 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2999 && (GET_MODE_SIZE (GET_MODE (operand))
3000 <= UNITS_PER_WORD)
3001 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
3002 > GET_MODE_SIZE (GET_MODE (operand)))
3003 && INTEGRAL_MODE_P (GET_MODE (operand))
f822d252 3004 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
46da6b3a 3005#endif
5ec105cd
RH
3006 )
3007#endif
3008 )
ddef6bc7 3009 )
eab89b90
RK
3010 force_reload = 1;
3011 }
3012
3013 this_alternative[i] = (int) NO_REGS;
3014 this_alternative_win[i] = 0;
69add2a8 3015 this_alternative_match_win[i] = 0;
eab89b90
RK
3016 this_alternative_offmemok[i] = 0;
3017 this_alternative_earlyclobber[i] = 0;
3018 this_alternative_matches[i] = -1;
3019
3020 /* An empty constraint or empty alternative
3021 allows anything which matched the pattern. */
3022 if (*p == 0 || *p == ',')
3023 win = 1, badop = 0;
3024
3025 /* Scan this alternative's specs for this operand;
3026 set WIN if the operand fits any letter in this alternative.
3027 Otherwise, clear BADOP if this operand could
3028 fit some letter after reloads,
3029 or set WINREG if this operand could fit after reloads
3030 provided the constraint allows some registers. */
3031
97488870
R
3032 do
3033 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
eab89b90 3034 {
97488870
R
3035 case '\0':
3036 len = 0;
3037 break;
3038 case ',':
3039 c = '\0';
3040 break;
3041
c5c76735 3042 case '=': case '+': case '*':
eab89b90
RK
3043 break;
3044
3045 case '%':
7e3aa041
ILT
3046 /* We only support one commutative marker, the first
3047 one. We already set commutative above. */
eab89b90
RK
3048 break;
3049
3050 case '?':
812f2051 3051 reject += 6;
eab89b90
RK
3052 break;
3053
3054 case '!':
812f2051 3055 reject = 600;
eab89b90
RK
3056 break;
3057
3058 case '#':
3059 /* Ignore rest of this alternative as far as
3060 reloading is concerned. */
97488870 3061 do
4381f7c2 3062 p++;
97488870
R
3063 while (*p && *p != ',');
3064 len = 0;
eab89b90
RK
3065 break;
3066
c5c76735
JL
3067 case '0': case '1': case '2': case '3': case '4':
3068 case '5': case '6': case '7': case '8': case '9':
97488870
R
3069 m = strtoul (p, &end, 10);
3070 p = end;
3071 len = 0;
c5c76735 3072
97488870 3073 this_alternative_matches[i] = m;
eab89b90
RK
3074 /* We are supposed to match a previous operand.
3075 If we do, we win if that one did.
3076 If we do not, count both of the operands as losers.
3077 (This is too conservative, since most of the time
3078 only a single reload insn will be needed to make
3079 the two operands win. As a result, this alternative
3080 may be rejected when it is actually desirable.) */
97488870 3081 if ((swapped && (m != commutative || i != commutative + 1))
eab89b90
RK
3082 /* If we are matching as if two operands were swapped,
3083 also pretend that operands_match had been computed
3084 with swapped.
3085 But if I is the second of those and C is the first,
3086 don't exchange them, because operands_match is valid
3087 only on one side of its diagonal. */
3088 ? (operands_match
97488870
R
3089 [(m == commutative || m == commutative + 1)
3090 ? 2 * commutative + 1 - m : m]
05d10675 3091 [(i == commutative || i == commutative + 1)
4381f7c2 3092 ? 2 * commutative + 1 - i : i])
97488870 3093 : operands_match[m][i])
fc79eafe
JW
3094 {
3095 /* If we are matching a non-offsettable address where an
3096 offsettable address was expected, then we must reject
3097 this combination, because we can't reload it. */
97488870 3098 if (this_alternative_offmemok[m]
3c0cb5de 3099 && MEM_P (recog_data.operand[m])
97488870
R
3100 && this_alternative[m] == (int) NO_REGS
3101 && ! this_alternative_win[m])
fc79eafe
JW
3102 bad = 1;
3103
97488870 3104 did_match = this_alternative_win[m];
fc79eafe 3105 }
eab89b90
RK
3106 else
3107 {
3108 /* Operands don't match. */
3109 rtx value;
87cda9d6 3110 int loc1, loc2;
eab89b90
RK
3111 /* Retroactively mark the operand we had to match
3112 as a loser, if it wasn't already. */
97488870 3113 if (this_alternative_win[m])
eab89b90 3114 losers++;
97488870
R
3115 this_alternative_win[m] = 0;
3116 if (this_alternative[m] == (int) NO_REGS)
eab89b90
RK
3117 bad = 1;
3118 /* But count the pair only once in the total badness of
87cda9d6
DJ
3119 this alternative, if the pair can be a dummy reload.
3120 The pointers in operand_loc are not swapped; swap
3121 them by hand if necessary. */
3122 if (swapped && i == commutative)
3123 loc1 = commutative + 1;
3124 else if (swapped && i == commutative + 1)
3125 loc1 = commutative;
3126 else
3127 loc1 = i;
3128 if (swapped && m == commutative)
3129 loc2 = commutative + 1;
3130 else if (swapped && m == commutative + 1)
3131 loc2 = commutative;
3132 else
3133 loc2 = m;
eab89b90 3134 value
1ccbefce 3135 = find_dummy_reload (recog_data.operand[i],
97488870 3136 recog_data.operand[m],
87cda9d6
DJ
3137 recog_data.operand_loc[loc1],
3138 recog_data.operand_loc[loc2],
97488870
R
3139 operand_mode[i], operand_mode[m],
3140 this_alternative[m], -1,
3141 this_alternative_earlyclobber[m]);
eab89b90
RK
3142
3143 if (value != 0)
3144 losers--;
3145 }
3146 /* This can be fixed with reloads if the operand
3147 we are supposed to match can be fixed with reloads. */
3148 badop = 0;
97488870 3149 this_alternative[i] = this_alternative[m];
e64c4f9e
RK
3150
3151 /* If we have to reload this operand and some previous
3152 operand also had to match the same thing as this
3153 operand, we don't know how to do that. So reject this
3154 alternative. */
69add2a8 3155 if (! did_match || force_reload)
e64c4f9e
RK
3156 for (j = 0; j < i; j++)
3157 if (this_alternative_matches[j]
3158 == this_alternative_matches[i])
3159 badop = 1;
eab89b90
RK
3160 break;
3161
3162 case 'p':
3163 /* All necessary reloads for an address_operand
3164 were handled in find_reloads_address. */
c4963a0a
BS
3165 this_alternative[i]
3166 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
eab89b90 3167 win = 1;
8d53318f 3168 badop = 0;
eab89b90
RK
3169 break;
3170
3171 case 'm':
3172 if (force_reload)
3173 break;
3c0cb5de 3174 if (MEM_P (operand)
f8cfc6aa 3175 || (REG_P (operand)
eab89b90
RK
3176 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3177 && reg_renumber[REGNO (operand)] < 0))
3178 win = 1;
34208acf 3179 if (CONST_POOL_OK_P (operand))
eab89b90 3180 badop = 0;
9d926da5 3181 constmemok = 1;
eab89b90
RK
3182 break;
3183
3184 case '<':
3c0cb5de 3185 if (MEM_P (operand)
eab89b90
RK
3186 && ! address_reloaded[i]
3187 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3188 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3189 win = 1;
3190 break;
3191
3192 case '>':
3c0cb5de 3193 if (MEM_P (operand)
eab89b90
RK
3194 && ! address_reloaded[i]
3195 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3196 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3197 win = 1;
3198 break;
3199
3200 /* Memory operand whose address is not offsettable. */
3201 case 'V':
3202 if (force_reload)
3203 break;
3c0cb5de 3204 if (MEM_P (operand)
eab89b90
RK
3205 && ! (ind_levels ? offsettable_memref_p (operand)
3206 : offsettable_nonstrict_memref_p (operand))
3207 /* Certain mem addresses will become offsettable
3208 after they themselves are reloaded. This is important;
3209 we don't want our own handling of unoffsettables
3210 to override the handling of reg_equiv_address. */
f8cfc6aa 3211 && !(REG_P (XEXP (operand, 0))
eab89b90
RK
3212 && (ind_levels == 0
3213 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3214 win = 1;
3215 break;
3216
3217 /* Memory operand whose address is offsettable. */
3218 case 'o':
3219 if (force_reload)
3220 break;
3c0cb5de 3221 if ((MEM_P (operand)
eab89b90
RK
3222 /* If IND_LEVELS, find_reloads_address won't reload a
3223 pseudo that didn't get a hard reg, so we have to
3224 reject that case. */
ab87f8c8
JL
3225 && ((ind_levels ? offsettable_memref_p (operand)
3226 : offsettable_nonstrict_memref_p (operand))
3227 /* A reloaded address is offsettable because it is now
3228 just a simple register indirect. */
0b540f12 3229 || address_reloaded[i] == 1))
f8cfc6aa 3230 || (REG_P (operand)
eab89b90 3231 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
3232 && reg_renumber[REGNO (operand)] < 0
3233 /* If reg_equiv_address is nonzero, we will be
3234 loading it into a register; hence it will be
3235 offsettable, but we cannot say that reg_equiv_mem
3236 is offsettable without checking. */
3237 && ((reg_equiv_mem[REGNO (operand)] != 0
3238 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3239 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90 3240 win = 1;
34208acf 3241 if (CONST_POOL_OK_P (operand)
3c0cb5de 3242 || MEM_P (operand))
eab89b90 3243 badop = 0;
9d926da5 3244 constmemok = 1;
eab89b90
RK
3245 offmemok = 1;
3246 break;
3247
3248 case '&':
3249 /* Output operand that is stored before the need for the
3250 input operands (and their index registers) is over. */
3251 earlyclobber = 1, this_earlyclobber = 1;
3252 break;
3253
3254 case 'E':
eab89b90 3255 case 'F':
bf7cd754
R
3256 if (GET_CODE (operand) == CONST_DOUBLE
3257 || (GET_CODE (operand) == CONST_VECTOR
3258 && (GET_MODE_CLASS (GET_MODE (operand))
3259 == MODE_VECTOR_FLOAT)))
eab89b90
RK
3260 win = 1;
3261 break;
3262
3263 case 'G':
3264 case 'H':
3265 if (GET_CODE (operand) == CONST_DOUBLE
97488870 3266 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
eab89b90
RK
3267 win = 1;
3268 break;
3269
3270 case 's':
3271 if (GET_CODE (operand) == CONST_INT
3272 || (GET_CODE (operand) == CONST_DOUBLE
3273 && GET_MODE (operand) == VOIDmode))
3274 break;
3275 case 'i':
3276 if (CONSTANT_P (operand)
2e4e72b1 3277 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
eab89b90
RK
3278 win = 1;
3279 break;
3280
3281 case 'n':
3282 if (GET_CODE (operand) == CONST_INT
3283 || (GET_CODE (operand) == CONST_DOUBLE
3284 && GET_MODE (operand) == VOIDmode))
3285 win = 1;
3286 break;
3287
3288 case 'I':
3289 case 'J':
3290 case 'K':
3291 case 'L':
3292 case 'M':
3293 case 'N':
3294 case 'O':
3295 case 'P':
3296 if (GET_CODE (operand) == CONST_INT
97488870 3297 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
eab89b90
RK
3298 win = 1;
3299 break;
3300
3301 case 'X':
6c65d757 3302 force_reload = 0;
eab89b90
RK
3303 win = 1;
3304 break;
3305
3306 case 'g':
3307 if (! force_reload
3308 /* A PLUS is never a valid operand, but reload can make
3309 it from a register when eliminating registers. */
3310 && GET_CODE (operand) != PLUS
3311 /* A SCRATCH is not a valid operand. */
3312 && GET_CODE (operand) != SCRATCH
05d10675
BS
3313 && (! CONSTANT_P (operand)
3314 || ! flag_pic
eab89b90 3315 || LEGITIMATE_PIC_OPERAND_P (operand))
eab89b90 3316 && (GENERAL_REGS == ALL_REGS
f8cfc6aa 3317 || !REG_P (operand)
eab89b90
RK
3318 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3319 && reg_renumber[REGNO (operand)] < 0)))
3320 win = 1;
82efa2e5 3321 /* Drop through into 'r' case. */
eab89b90
RK
3322
3323 case 'r':
3324 this_alternative[i]
3325 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3326 goto reg;
3327
c2cba7a9 3328 default:
97488870 3329 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
c2cba7a9 3330 {
97488870
R
3331#ifdef EXTRA_CONSTRAINT_STR
3332 if (EXTRA_MEMORY_CONSTRAINT (c, p))
ccfc6cc8
UW
3333 {
3334 if (force_reload)
3335 break;
97488870 3336 if (EXTRA_CONSTRAINT_STR (operand, c, p))
ccfc6cc8
UW
3337 win = 1;
3338 /* If the address was already reloaded,
3339 we win as well. */
3c0cb5de 3340 else if (MEM_P (operand)
0b540f12 3341 && address_reloaded[i] == 1)
ccfc6cc8
UW
3342 win = 1;
3343 /* Likewise if the address will be reloaded because
3344 reg_equiv_address is nonzero. For reg_equiv_mem
3345 we have to check. */
f8cfc6aa 3346 else if (REG_P (operand)
3b6c3bb0
JW
3347 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3348 && reg_renumber[REGNO (operand)] < 0
3349 && ((reg_equiv_mem[REGNO (operand)] != 0
3350 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3351 || (reg_equiv_address[REGNO (operand)] != 0)))
ccfc6cc8
UW
3352 win = 1;
3353
3354 /* If we didn't already win, we can reload
3355 constants via force_const_mem, and other
3356 MEMs by reloading the address like for 'o'. */
34208acf 3357 if (CONST_POOL_OK_P (operand)
3c0cb5de 3358 || MEM_P (operand))
ccfc6cc8
UW
3359 badop = 0;
3360 constmemok = 1;
3361 offmemok = 1;
3362 break;
3363 }
97488870 3364 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
ccfc6cc8 3365 {
97488870 3366 if (EXTRA_CONSTRAINT_STR (operand, c, p))
ccfc6cc8
UW
3367 win = 1;
3368
3369 /* If we didn't already win, we can reload
3370 the address into a base register. */
c4963a0a
BS
3371 this_alternative[i]
3372 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
ccfc6cc8
UW
3373 badop = 0;
3374 break;
3375 }
3376
97488870 3377 if (EXTRA_CONSTRAINT_STR (operand, c, p))
c2cba7a9 3378 win = 1;
eab89b90 3379#endif
c2cba7a9
RH
3380 break;
3381 }
05d10675 3382
eab89b90 3383 this_alternative[i]
97488870
R
3384 = (int) (reg_class_subunion
3385 [this_alternative[i]]
3386 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
eab89b90
RK
3387 reg:
3388 if (GET_MODE (operand) == BLKmode)
3389 break;
3390 winreg = 1;
f8cfc6aa 3391 if (REG_P (operand)
eab89b90 3392 && reg_fits_class_p (operand, this_alternative[i],
1ccbefce 3393 offset, GET_MODE (recog_data.operand[i])))
eab89b90
RK
3394 win = 1;
3395 break;
3396 }
97488870 3397 while ((p += len), c);
eab89b90
RK
3398
3399 constraints[i] = p;
3400
3401 /* If this operand could be handled with a reg,
3402 and some reg is allowed, then this operand can be handled. */
3403 if (winreg && this_alternative[i] != (int) NO_REGS)
3404 badop = 0;
3405
3406 /* Record which operands fit this alternative. */
3407 this_alternative_earlyclobber[i] = earlyclobber;
3408 if (win && ! force_reload)
3409 this_alternative_win[i] = 1;
69add2a8
BS
3410 else if (did_match && ! force_reload)
3411 this_alternative_match_win[i] = 1;
eab89b90
RK
3412 else
3413 {
9d926da5
RK
3414 int const_to_mem = 0;
3415
eab89b90
RK
3416 this_alternative_offmemok[i] = offmemok;
3417 losers++;
3418 if (badop)
3419 bad = 1;
3420 /* Alternative loses if it has no regs for a reg operand. */
f8cfc6aa 3421 if (REG_P (operand)
eab89b90
RK
3422 && this_alternative[i] == (int) NO_REGS
3423 && this_alternative_matches[i] < 0)
3424 bad = 1;
3425
3a322c50
RK
3426 /* If this is a constant that is reloaded into the desired
3427 class by copying it to memory first, count that as another
3428 reload. This is consistent with other code and is
293166be 3429 required to avoid choosing another alternative when
3a322c50 3430 the constant is moved into memory by this function on
05d10675 3431 an early reload pass. Note that the test here is
3a322c50
RK
3432 precisely the same as in the code below that calls
3433 force_const_mem. */
34208acf 3434 if (CONST_POOL_OK_P (operand)
e5e809f4 3435 && ((PREFERRED_RELOAD_CLASS (operand,
05d10675 3436 (enum reg_class) this_alternative[i])
e5e809f4
JL
3437 == NO_REGS)
3438 || no_input_reloads)
3a322c50 3439 && operand_mode[i] != VOIDmode)
9d926da5
RK
3440 {
3441 const_to_mem = 1;
3442 if (this_alternative[i] != (int) NO_REGS)
3443 losers++;
3444 }
3a322c50 3445
e5e809f4
JL
3446 /* Alternative loses if it requires a type of reload not
3447 permitted for this insn. We can always reload SCRATCH
3448 and objects with a REG_UNUSED note. */
b5c82fa1 3449 if (GET_CODE (operand) != SCRATCH
05d10675
BS
3450 && modified[i] != RELOAD_READ && no_output_reloads
3451 && ! find_reg_note (insn, REG_UNUSED, operand))
e5e809f4
JL
3452 bad = 1;
3453 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3454 && ! const_to_mem)
3455 bad = 1;
3456
b5c82fa1
PB
3457 /* If we can't reload this value at all, reject this
3458 alternative. Note that we could also lose due to
3459 LIMIT_RELOAD_CLASS, but we don't check that
3460 here. */
3461
3462 if (! CONSTANT_P (operand)
3463 && (enum reg_class) this_alternative[i] != NO_REGS)
3464 {
3465 if (PREFERRED_RELOAD_CLASS
3466 (operand, (enum reg_class) this_alternative[i])
3467 == NO_REGS)
3468 reject = 600;
3469
3470#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3471 if (operand_type[i] == RELOAD_FOR_OUTPUT
3472 && PREFERRED_OUTPUT_RELOAD_CLASS
3473 (operand, (enum reg_class) this_alternative[i])
3474 == NO_REGS)
3475 reject = 600;
3476#endif
3477 }
3478
eab89b90
RK
3479 /* We prefer to reload pseudos over reloading other things,
3480 since such reloads may be able to be eliminated later.
3481 If we are reloading a SCRATCH, we won't be generating any
05d10675 3482 insns, just using a register, so it is also preferred.
9d926da5
RK
3483 So bump REJECT in other cases. Don't do this in the
3484 case where we are forcing a constant into memory and
3485 it will then win since we don't want to have a different
3486 alternative match then. */
f8cfc6aa 3487 if (! (REG_P (operand)
915bb763 3488 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3489 && GET_CODE (operand) != SCRATCH
3490 && ! (const_to_mem && constmemok))
812f2051
R
3491 reject += 2;
3492
3493 /* Input reloads can be inherited more often than output
3494 reloads can be removed, so penalize output reloads. */
7924156a
JW
3495 if (operand_type[i] != RELOAD_FOR_INPUT
3496 && GET_CODE (operand) != SCRATCH)
eab89b90
RK
3497 reject++;
3498 }
3499
05d10675 3500 /* If this operand is a pseudo register that didn't get a hard
eab89b90
RK
3501 reg and this alternative accepts some register, see if the
3502 class that we want is a subset of the preferred class for this
3503 register. If not, but it intersects that class, use the
3504 preferred class instead. If it does not intersect the preferred
3505 class, show that usage of this alternative should be discouraged;
3506 it will be discouraged more still if the register is `preferred
3507 or nothing'. We do this because it increases the chance of
3508 reusing our spill register in a later insn and avoiding a pair
3509 of memory stores and loads.
3510
3511 Don't bother with this if this alternative will accept this
3512 operand.
3513
a2d353e5
RK
3514 Don't do this for a multiword operand, since it is only a
3515 small win and has the risk of requiring more spill registers,
3516 which could cause a large loss.
5aa14fee 3517
eab89b90
RK
3518 Don't do this if the preferred class has only one register
3519 because we might otherwise exhaust the class. */
3520
69add2a8
BS
3521 if (! win && ! did_match
3522 && this_alternative[i] != (int) NO_REGS
5aa14fee 3523 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
e9840398
AO
3524 && reg_class_size [(int) preferred_class[i]] > 0
3525 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
eab89b90
RK
3526 {
3527 if (! reg_class_subset_p (this_alternative[i],
3528 preferred_class[i]))
3529 {
3530 /* Since we don't have a way of forming the intersection,
3531 we just do something special if the preferred class
05d10675 3532 is a subset of the class we have; that's the most
eab89b90
RK
3533 common case anyway. */
3534 if (reg_class_subset_p (preferred_class[i],
3535 this_alternative[i]))
3536 this_alternative[i] = (int) preferred_class[i];
3537 else
812f2051 3538 reject += (2 + 2 * pref_or_nothing[i]);
eab89b90
RK
3539 }
3540 }
3541 }
3542
3543 /* Now see if any output operands that are marked "earlyclobber"
3544 in this alternative conflict with any input operands
3545 or any memory addresses. */
3546
3547 for (i = 0; i < noperands; i++)
3548 if (this_alternative_earlyclobber[i]
69add2a8 3549 && (this_alternative_win[i] || this_alternative_match_win[i]))
eab89b90 3550 {
05d10675 3551 struct decomposition early_data;
eab89b90 3552
1ccbefce 3553 early_data = decompose (recog_data.operand[i]);
eab89b90 3554
41374e13 3555 gcc_assert (modified[i] != RELOAD_READ);
05d10675 3556
eab89b90
RK
3557 if (this_alternative[i] == NO_REGS)
3558 {
3559 this_alternative_earlyclobber[i] = 0;
41374e13
NS
3560 gcc_assert (this_insn_is_asm);
3561 error_for_asm (this_insn,
971801ff 3562 "%<&%> constraint used with no register class");
eab89b90
RK
3563 }
3564
3565 for (j = 0; j < noperands; j++)
3566 /* Is this an input operand or a memory ref? */
3c0cb5de 3567 if ((MEM_P (recog_data.operand[j])
eab89b90
RK
3568 || modified[j] != RELOAD_WRITE)
3569 && j != i
3570 /* Ignore things like match_operator operands. */
1ccbefce 3571 && *recog_data.constraints[j] != 0
eab89b90
RK
3572 /* Don't count an input operand that is constrained to match
3573 the early clobber operand. */
3574 && ! (this_alternative_matches[j] == i
1ccbefce
RH
3575 && rtx_equal_p (recog_data.operand[i],
3576 recog_data.operand[j]))
eab89b90 3577 /* Is it altered by storing the earlyclobber operand? */
1ccbefce
RH
3578 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3579 early_data))
eab89b90 3580 {
e9840398 3581 /* If the output is in a non-empty few-regs class,
eab89b90 3582 it's costly to reload it, so reload the input instead. */
e9840398 3583 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
f8cfc6aa 3584 && (REG_P (recog_data.operand[j])
1ccbefce 3585 || GET_CODE (recog_data.operand[j]) == SUBREG))
eab89b90
RK
3586 {
3587 losers++;
3588 this_alternative_win[j] = 0;
69add2a8 3589 this_alternative_match_win[j] = 0;
eab89b90
RK
3590 }
3591 else
3592 break;
3593 }
3594 /* If an earlyclobber operand conflicts with something,
3595 it must be reloaded, so request this and count the cost. */
3596 if (j != noperands)
3597 {
3598 losers++;
3599 this_alternative_win[i] = 0;
69add2a8 3600 this_alternative_match_win[j] = 0;
eab89b90
RK
3601 for (j = 0; j < noperands; j++)
3602 if (this_alternative_matches[j] == i
69add2a8 3603 && this_alternative_match_win[j])
eab89b90
RK
3604 {
3605 this_alternative_win[j] = 0;
69add2a8 3606 this_alternative_match_win[j] = 0;
eab89b90
RK
3607 losers++;
3608 }
3609 }
3610 }
3611
3612 /* If one alternative accepts all the operands, no reload required,
3613 choose that alternative; don't consider the remaining ones. */
3614 if (losers == 0)
3615 {
3616 /* Unswap these so that they are never swapped at `finish'. */
3617 if (commutative >= 0)
3618 {
1ccbefce
RH
3619 recog_data.operand[commutative] = substed_operand[commutative];
3620 recog_data.operand[commutative + 1]
eab89b90
RK
3621 = substed_operand[commutative + 1];
3622 }
3623 for (i = 0; i < noperands; i++)
3624 {
69add2a8
BS
3625 goal_alternative_win[i] = this_alternative_win[i];
3626 goal_alternative_match_win[i] = this_alternative_match_win[i];
eab89b90
RK
3627 goal_alternative[i] = this_alternative[i];
3628 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3629 goal_alternative_matches[i] = this_alternative_matches[i];
3630 goal_alternative_earlyclobber[i]
3631 = this_alternative_earlyclobber[i];
3632 }
3633 goal_alternative_number = this_alternative_number;
3634 goal_alternative_swapped = swapped;
3635 goal_earlyclobber = this_earlyclobber;
3636 goto finish;
3637 }
3638
3639 /* REJECT, set by the ! and ? constraint characters and when a register
3640 would be reloaded into a non-preferred class, discourages the use of
812f2051
R
3641 this alternative for a reload goal. REJECT is incremented by six
3642 for each ? and two for each non-preferred class. */
3643 losers = losers * 6 + reject;
eab89b90
RK
3644
3645 /* If this alternative can be made to work by reloading,
3646 and it needs less reloading than the others checked so far,
3647 record it as the chosen goal for reloading. */
3648 if (! bad && best > losers)
3649 {
3650 for (i = 0; i < noperands; i++)
3651 {
3652 goal_alternative[i] = this_alternative[i];
3653 goal_alternative_win[i] = this_alternative_win[i];
69add2a8 3654 goal_alternative_match_win[i] = this_alternative_match_win[i];
eab89b90
RK
3655 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3656 goal_alternative_matches[i] = this_alternative_matches[i];
3657 goal_alternative_earlyclobber[i]
3658 = this_alternative_earlyclobber[i];
3659 }
3660 goal_alternative_swapped = swapped;
3661 best = losers;
3662 goal_alternative_number = this_alternative_number;
3663 goal_earlyclobber = this_earlyclobber;
3664 }
3665 }
3666
3667 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3668 then we need to try each alternative twice,
3669 the second time matching those two operands
3670 as if we had exchanged them.
3671 To do this, really exchange them in operands.
3672
3673 If we have just tried the alternatives the second time,
3674 return operands to normal and drop through. */
3675
3676 if (commutative >= 0)
3677 {
3678 swapped = !swapped;
3679 if (swapped)
3680 {
b3694847
SS
3681 enum reg_class tclass;
3682 int t;
eab89b90 3683
1ccbefce
RH
3684 recog_data.operand[commutative] = substed_operand[commutative + 1];
3685 recog_data.operand[commutative + 1] = substed_operand[commutative];
9cd56be1
JH
3686 /* Swap the duplicates too. */
3687 for (i = 0; i < recog_data.n_dups; i++)
3688 if (recog_data.dup_num[i] == commutative
3689 || recog_data.dup_num[i] == commutative + 1)
3690 *recog_data.dup_loc[i]
3691 = recog_data.operand[(int) recog_data.dup_num[i]];
eab89b90
RK
3692
3693 tclass = preferred_class[commutative];
3694 preferred_class[commutative] = preferred_class[commutative + 1];
3695 preferred_class[commutative + 1] = tclass;
3696
3697 t = pref_or_nothing[commutative];
3698 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3699 pref_or_nothing[commutative + 1] = t;
3700
e88d55cd
UW
3701 t = address_reloaded[commutative];
3702 address_reloaded[commutative] = address_reloaded[commutative + 1];
3703 address_reloaded[commutative + 1] = t;
3704
f428f252
KG
3705 memcpy (constraints, recog_data.constraints,
3706 noperands * sizeof (char *));
eab89b90
RK
3707 goto try_swapped;
3708 }
3709 else
3710 {
1ccbefce
RH
3711 recog_data.operand[commutative] = substed_operand[commutative];
3712 recog_data.operand[commutative + 1]
3713 = substed_operand[commutative + 1];
9cd56be1
JH
3714 /* Unswap the duplicates too. */
3715 for (i = 0; i < recog_data.n_dups; i++)
3716 if (recog_data.dup_num[i] == commutative
3717 || recog_data.dup_num[i] == commutative + 1)
3718 *recog_data.dup_loc[i]
3719 = recog_data.operand[(int) recog_data.dup_num[i]];
eab89b90
RK
3720 }
3721 }
3722
3723 /* The operands don't meet the constraints.
3724 goal_alternative describes the alternative
3725 that we could reach by reloading the fewest operands.
3726 Reload so as to fit it. */
3727
c22eaf8a 3728 if (best == MAX_RECOG_OPERANDS * 2 + 600)
eab89b90
RK
3729 {
3730 /* No alternative works with reloads?? */
3731 if (insn_code_number >= 0)
1f978f5f 3732 fatal_insn ("unable to generate reloads for:", insn);
971801ff 3733 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
eab89b90 3734 /* Avoid further trouble with this insn. */
38a448ca 3735 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90 3736 n_reloads = 0;
cb2afeb3 3737 return 0;
eab89b90
RK
3738 }
3739
3740 /* Jump to `finish' from above if all operands are valid already.
3741 In that case, goal_alternative_win is all 1. */
3742 finish:
3743
3744 /* Right now, for any pair of operands I and J that are required to match,
3745 with I < J,
3746 goal_alternative_matches[J] is I.
3747 Set up goal_alternative_matched as the inverse function:
3748 goal_alternative_matched[I] = J. */
3749
3750 for (i = 0; i < noperands; i++)
3751 goal_alternative_matched[i] = -1;
a6a2274a 3752
eab89b90
RK
3753 for (i = 0; i < noperands; i++)
3754 if (! goal_alternative_win[i]
3755 && goal_alternative_matches[i] >= 0)
3756 goal_alternative_matched[goal_alternative_matches[i]] = i;
3757
69add2a8
BS
3758 for (i = 0; i < noperands; i++)
3759 goal_alternative_win[i] |= goal_alternative_match_win[i];
3760
eab89b90 3761 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3762 consider them swapped before reporting the reloads. Update the
3763 operand numbers of any reloads already pushed. */
eab89b90
RK
3764
3765 if (goal_alternative_swapped)
3766 {
b3694847 3767 rtx tem;
eab89b90
RK
3768
3769 tem = substed_operand[commutative];
3770 substed_operand[commutative] = substed_operand[commutative + 1];
3771 substed_operand[commutative + 1] = tem;
1ccbefce
RH
3772 tem = recog_data.operand[commutative];
3773 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3774 recog_data.operand[commutative + 1] = tem;
3775 tem = *recog_data.operand_loc[commutative];
3776 *recog_data.operand_loc[commutative]
3777 = *recog_data.operand_loc[commutative + 1];
4381f7c2 3778 *recog_data.operand_loc[commutative + 1] = tem;
a8c9daeb
RK
3779
3780 for (i = 0; i < n_reloads; i++)
3781 {
eceef4c9
BS
3782 if (rld[i].opnum == commutative)
3783 rld[i].opnum = commutative + 1;
3784 else if (rld[i].opnum == commutative + 1)
3785 rld[i].opnum = commutative;
a8c9daeb 3786 }
eab89b90
RK
3787 }
3788
eab89b90
RK
3789 for (i = 0; i < noperands; i++)
3790 {
eab89b90 3791 operand_reloadnum[i] = -1;
a8c9daeb
RK
3792
3793 /* If this is an earlyclobber operand, we need to widen the scope.
3794 The reload must remain valid from the start of the insn being
3795 reloaded until after the operand is stored into its destination.
3796 We approximate this with RELOAD_OTHER even though we know that we
3797 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3798
3799 One special case that is worth checking is when we have an
3800 output that is earlyclobber but isn't used past the insn (typically
05d10675 3801 a SCRATCH). In this case, we only need have the reload live
a8c9daeb 3802 through the insn itself, but not for any of our input or output
05d10675 3803 reloads.
f9df0a1d
R
3804 But we must not accidentally narrow the scope of an existing
3805 RELOAD_OTHER reload - leave these alone.
a8c9daeb
RK
3806
3807 In any case, anything needed to address this operand can remain
3808 however they were previously categorized. */
3809
f9df0a1d 3810 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
a8c9daeb 3811 operand_type[i]
1ccbefce 3812 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
a8c9daeb 3813 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3814 }
3815
3816 /* Any constants that aren't allowed and can't be reloaded
3817 into registers are here changed into memory references. */
3818 for (i = 0; i < noperands; i++)
3819 if (! goal_alternative_win[i]
34208acf 3820 && CONST_POOL_OK_P (recog_data.operand[i])
1ccbefce 3821 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
05d10675 3822 (enum reg_class) goal_alternative[i])
e5e809f4
JL
3823 == NO_REGS)
3824 || no_input_reloads)
eab89b90
RK
3825 && operand_mode[i] != VOIDmode)
3826 {
1ccbefce 3827 substed_operand[i] = recog_data.operand[i]
eab89b90 3828 = find_reloads_toplev (force_const_mem (operand_mode[i],
1ccbefce 3829 recog_data.operand[i]),
9246aadb
AH
3830 i, address_type[i], ind_levels, 0, insn,
3831 NULL);
1ccbefce 3832 if (alternative_allows_memconst (recog_data.constraints[i],
eab89b90
RK
3833 goal_alternative_number))
3834 goal_alternative_win[i] = 1;
3835 }
3836
d58005c7
UW
3837 /* Likewise any invalid constants appearing as operand of a PLUS
3838 that is to be reloaded. */
3839 for (i = 0; i < noperands; i++)
3840 if (! goal_alternative_win[i]
3841 && GET_CODE (recog_data.operand[i]) == PLUS
3842 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3843 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3844 (enum reg_class) goal_alternative[i])
3845 == NO_REGS)
3846 && operand_mode[i] != VOIDmode)
3847 {
3848 rtx tem = force_const_mem (operand_mode[i],
3849 XEXP (recog_data.operand[i], 1));
3850 tem = gen_rtx_PLUS (operand_mode[i],
3851 XEXP (recog_data.operand[i], 0), tem);
3852
3853 substed_operand[i] = recog_data.operand[i]
3854 = find_reloads_toplev (tem, i, address_type[i],
3855 ind_levels, 0, insn, NULL);
3856 }
3857
4644aad4
RK
3858 /* Record the values of the earlyclobber operands for the caller. */
3859 if (goal_earlyclobber)
3860 for (i = 0; i < noperands; i++)
3861 if (goal_alternative_earlyclobber[i])
1ccbefce 3862 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4644aad4 3863
eab89b90
RK
3864 /* Now record reloads for all the operands that need them. */
3865 for (i = 0; i < noperands; i++)
3866 if (! goal_alternative_win[i])
3867 {
3868 /* Operands that match previous ones have already been handled. */
3869 if (goal_alternative_matches[i] >= 0)
3870 ;
3871 /* Handle an operand with a nonoffsettable address
3872 appearing where an offsettable address will do
3a322c50
RK
3873 by reloading the address into a base register.
3874
3875 ??? We can also do this when the operand is a register and
3876 reg_equiv_mem is not offsettable, but this is a bit tricky,
3877 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3878 else if (goal_alternative_matched[i] == -1
3879 && goal_alternative_offmemok[i]
3c0cb5de 3880 && MEM_P (recog_data.operand[i]))
eab89b90 3881 {
7c7ce73a
UW
3882 /* If the address to be reloaded is a VOIDmode constant,
3883 use Pmode as mode of the reload register, as would have
3884 been done by find_reloads_address. */
3885 enum machine_mode address_mode;
3886 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3887 if (address_mode == VOIDmode)
3888 address_mode = Pmode;
3889
eab89b90 3890 operand_reloadnum[i]
1ccbefce 3891 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
f4f4d0f8 3892 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
c4963a0a 3893 base_reg_class (VOIDmode, MEM, SCRATCH),
7c7ce73a 3894 address_mode,
a8c9daeb 3895 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eceef4c9 3896 rld[operand_reloadnum[i]].inc
1ccbefce 3897 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
a8c9daeb
RK
3898
3899 /* If this operand is an output, we will have made any
3900 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3901 now we are treating part of the operand as an input, so
3902 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3903
2d55b7e8 3904 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3905 {
3906 for (j = 0; j < n_reloads; j++)
3907 {
eceef4c9 3908 if (rld[j].opnum == i)
47c8cf91 3909 {
eceef4c9
BS
3910 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3911 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3912 else if (rld[j].when_needed
47c8cf91 3913 == RELOAD_FOR_OUTADDR_ADDRESS)
eceef4c9 3914 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
47c8cf91
ILT
3915 }
3916 }
3917 }
eab89b90
RK
3918 }
3919 else if (goal_alternative_matched[i] == -1)
9ec36da5
JL
3920 {
3921 operand_reloadnum[i]
3922 = push_reload ((modified[i] != RELOAD_WRITE
1ccbefce
RH
3923 ? recog_data.operand[i] : 0),
3924 (modified[i] != RELOAD_READ
3925 ? recog_data.operand[i] : 0),
9ec36da5 3926 (modified[i] != RELOAD_WRITE
1ccbefce 3927 ? recog_data.operand_loc[i] : 0),
9ec36da5 3928 (modified[i] != RELOAD_READ
1ccbefce 3929 ? recog_data.operand_loc[i] : 0),
9ec36da5
JL
3930 (enum reg_class) goal_alternative[i],
3931 (modified[i] == RELOAD_WRITE
3932 ? VOIDmode : operand_mode[i]),
3933 (modified[i] == RELOAD_READ
3934 ? VOIDmode : operand_mode[i]),
3935 (insn_code_number < 0 ? 0
a995e389 3936 : insn_data[insn_code_number].operand[i].strict_low),
9ec36da5 3937 0, i, operand_type[i]);
9ec36da5 3938 }
eab89b90
RK
3939 /* In a matching pair of operands, one must be input only
3940 and the other must be output only.
3941 Pass the input operand as IN and the other as OUT. */
3942 else if (modified[i] == RELOAD_READ
3943 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3944 {
3945 operand_reloadnum[i]
1ccbefce
RH
3946 = push_reload (recog_data.operand[i],
3947 recog_data.operand[goal_alternative_matched[i]],
3948 recog_data.operand_loc[i],
3949 recog_data.operand_loc[goal_alternative_matched[i]],
eab89b90
RK
3950 (enum reg_class) goal_alternative[i],
3951 operand_mode[i],
3952 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3953 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3954 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3955 }
3956 else if (modified[i] == RELOAD_WRITE
3957 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3958 {
3959 operand_reloadnum[goal_alternative_matched[i]]
1ccbefce
RH
3960 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3961 recog_data.operand[i],
3962 recog_data.operand_loc[goal_alternative_matched[i]],
3963 recog_data.operand_loc[i],
eab89b90
RK
3964 (enum reg_class) goal_alternative[i],
3965 operand_mode[goal_alternative_matched[i]],
3966 operand_mode[i],
a8c9daeb 3967 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3968 operand_reloadnum[i] = output_reloadnum;
3969 }
eab89b90
RK
3970 else
3971 {
41374e13 3972 gcc_assert (insn_code_number < 0);
971801ff
JM
3973 error_for_asm (insn, "inconsistent operand constraints "
3974 "in an %<asm%>");
eab89b90 3975 /* Avoid further trouble with this insn. */
38a448ca 3976 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90 3977 n_reloads = 0;
cb2afeb3 3978 return 0;
eab89b90
RK
3979 }
3980 }
3981 else if (goal_alternative_matched[i] < 0
112f7223 3982 && goal_alternative_matches[i] < 0
0b540f12 3983 && address_operand_reloaded[i] != 1
112f7223 3984 && optimize)
eab89b90 3985 {
05d10675 3986 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3987 that didn't get a hard register, make an optional reload.
3988 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb 3989
1ccbefce 3990 rtx operand = recog_data.operand[i];
a8c9daeb 3991
eab89b90 3992 while (GET_CODE (operand) == SUBREG)
ddef6bc7 3993 operand = SUBREG_REG (operand);
3c0cb5de 3994 if ((MEM_P (operand)
f8cfc6aa 3995 || (REG_P (operand)
a8c9daeb 3996 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
cb2afeb3
R
3997 /* If this is only for an output, the optional reload would not
3998 actually cause us to use a register now, just note that
3999 something is stored here. */
4000 && ((enum reg_class) goal_alternative[i] != NO_REGS
4001 || modified[i] == RELOAD_WRITE)
a8c9daeb 4002 && ! no_input_reloads
cb2afeb3
R
4003 /* An optional output reload might allow to delete INSN later.
4004 We mustn't make in-out reloads on insns that are not permitted
4005 output reloads.
4006 If this is an asm, we can't delete it; we must not even call
4007 push_reload for an optional output reload in this case,
4008 because we can't be sure that the constraint allows a register,
4009 and push_reload verifies the constraints for asms. */
eab89b90 4010 && (modified[i] == RELOAD_READ
cb2afeb3 4011 || (! no_output_reloads && ! this_insn_is_asm)))
eab89b90 4012 operand_reloadnum[i]
1ccbefce
RH
4013 = push_reload ((modified[i] != RELOAD_WRITE
4014 ? recog_data.operand[i] : 0),
4015 (modified[i] != RELOAD_READ
4016 ? recog_data.operand[i] : 0),
a8c9daeb 4017 (modified[i] != RELOAD_WRITE
1ccbefce 4018 ? recog_data.operand_loc[i] : 0),
a8c9daeb 4019 (modified[i] != RELOAD_READ
1ccbefce 4020 ? recog_data.operand_loc[i] : 0),
eab89b90 4021 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
4022 (modified[i] == RELOAD_WRITE
4023 ? VOIDmode : operand_mode[i]),
4024 (modified[i] == RELOAD_READ
4025 ? VOIDmode : operand_mode[i]),
eab89b90 4026 (insn_code_number < 0 ? 0
a995e389 4027 : insn_data[insn_code_number].operand[i].strict_low),
a8c9daeb 4028 1, i, operand_type[i]);
87afbee6
JL
4029 /* If a memory reference remains (either as a MEM or a pseudo that
4030 did not get a hard register), yet we can't make an optional
cb2afeb3
R
4031 reload, check if this is actually a pseudo register reference;
4032 we then need to emit a USE and/or a CLOBBER so that reload
4033 inheritance will do the right thing. */
112f7223 4034 else if (replace
3c0cb5de 4035 && (MEM_P (operand)
f8cfc6aa 4036 || (REG_P (operand)
112f7223
UW
4037 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4038 && reg_renumber [REGNO (operand)] < 0)))
cb2afeb3 4039 {
1ccbefce 4040 operand = *recog_data.operand_loc[i];
cb2afeb3
R
4041
4042 while (GET_CODE (operand) == SUBREG)
ddef6bc7 4043 operand = SUBREG_REG (operand);
f8cfc6aa 4044 if (REG_P (operand))
cb2afeb3
R
4045 {
4046 if (modified[i] != RELOAD_WRITE)
3d17d93d
AO
4047 /* We mark the USE with QImode so that we recognize
4048 it as one that can be safely deleted at the end
4049 of reload. */
4050 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4051 insn), QImode);
cb2afeb3
R
4052 if (modified[i] != RELOAD_READ)
4053 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4054 }
4055 }
eab89b90 4056 }
a8c9daeb
RK
4057 else if (goal_alternative_matches[i] >= 0
4058 && goal_alternative_win[goal_alternative_matches[i]]
4059 && modified[i] == RELOAD_READ
4060 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
112f7223
UW
4061 && ! no_input_reloads && ! no_output_reloads
4062 && optimize)
a8c9daeb
RK
4063 {
4064 /* Similarly, make an optional reload for a pair of matching
4065 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 4066
1ccbefce 4067 rtx operand = recog_data.operand[i];
a8c9daeb
RK
4068
4069 while (GET_CODE (operand) == SUBREG)
ddef6bc7 4070 operand = SUBREG_REG (operand);
3c0cb5de 4071 if ((MEM_P (operand)
f8cfc6aa 4072 || (REG_P (operand)
a8c9daeb
RK
4073 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4074 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4075 != NO_REGS))
4076 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
1ccbefce
RH
4077 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4078 recog_data.operand[i],
4079 recog_data.operand_loc[goal_alternative_matches[i]],
4080 recog_data.operand_loc[i],
a8c9daeb
RK
4081 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4082 operand_mode[goal_alternative_matches[i]],
4083 operand_mode[i],
4084 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4085 }
05d10675 4086
cb2afeb3
R
4087 /* Perform whatever substitutions on the operands we are supposed
4088 to make due to commutativity or replacement of registers
4089 with equivalent constants or memory slots. */
4090
4091 for (i = 0; i < noperands; i++)
4092 {
4093 /* We only do this on the last pass through reload, because it is
05d10675 4094 possible for some data (like reg_equiv_address) to be changed during
425de739 4095 later passes. Moreover, we lose the opportunity to get a useful
05d10675 4096 reload_{in,out}_reg when we do these replacements. */
cb2afeb3
R
4097
4098 if (replace)
e54db24f
MM
4099 {
4100 rtx substitution = substed_operand[i];
4101
1ccbefce 4102 *recog_data.operand_loc[i] = substitution;
e54db24f
MM
4103
4104 /* If we're replacing an operand with a LABEL_REF, we need
4105 to make sure that there's a REG_LABEL note attached to
4106 this instruction. */
4b4bf941 4107 if (!JUMP_P (insn)
e54db24f
MM
4108 && GET_CODE (substitution) == LABEL_REF
4109 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
6b8c9327 4110 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
e54db24f
MM
4111 XEXP (substitution, 0),
4112 REG_NOTES (insn));
4113 }
cb2afeb3 4114 else
1ccbefce 4115 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
cb2afeb3
R
4116 }
4117
eab89b90
RK
4118 /* If this insn pattern contains any MATCH_DUP's, make sure that
4119 they will be substituted if the operands they match are substituted.
4120 Also do now any substitutions we already did on the operands.
4121
4122 Don't do this if we aren't making replacements because we might be
4123 propagating things allocated by frame pointer elimination into places
4124 it doesn't expect. */
4125
4126 if (insn_code_number >= 0 && replace)
a995e389 4127 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
eab89b90 4128 {
1ccbefce
RH
4129 int opno = recog_data.dup_num[i];
4130 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
6cabe79e 4131 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
eab89b90
RK
4132 }
4133
4134#if 0
4135 /* This loses because reloading of prior insns can invalidate the equivalence
4136 (or at least find_equiv_reg isn't smart enough to find it any more),
4137 causing this insn to need more reload regs than it needed before.
4138 It may be too late to make the reload regs available.
4139 Now this optimization is done safely in choose_reload_regs. */
4140
4141 /* For each reload of a reg into some other class of reg,
4142 search for an existing equivalent reg (same value now) in the right class.
4143 We can use it as long as we don't need to change its contents. */
4144 for (i = 0; i < n_reloads; i++)
eceef4c9
BS
4145 if (rld[i].reg_rtx == 0
4146 && rld[i].in != 0
f8cfc6aa 4147 && REG_P (rld[i].in)
eceef4c9 4148 && rld[i].out == 0)
eab89b90 4149 {
eceef4c9
BS
4150 rld[i].reg_rtx
4151 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4152 static_reload_reg_p, 0, rld[i].inmode);
eab89b90
RK
4153 /* Prevent generation of insn to load the value
4154 because the one we found already has the value. */
eceef4c9
BS
4155 if (rld[i].reg_rtx)
4156 rld[i].in = rld[i].reg_rtx;
eab89b90
RK
4157 }
4158#endif
4159
71156bcc
JH
4160 /* If we detected error and replaced asm instruction by USE, forget about the
4161 reloads. */
4162 if (GET_CODE (PATTERN (insn)) == USE
4163 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4164 n_reloads = 0;
4165
a8c9daeb
RK
4166 /* Perhaps an output reload can be combined with another
4167 to reduce needs by one. */
4168 if (!goal_earlyclobber)
4169 combine_reloads ();
4170
4171 /* If we have a pair of reloads for parts of an address, they are reloading
4172 the same object, the operands themselves were not reloaded, and they
4173 are for two operands that are supposed to match, merge the reloads and
0f41302f 4174 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
4175
4176 for (i = 0; i < n_reloads; i++)
4177 {
4178 int k;
4179
4180 for (j = i + 1; j < n_reloads; j++)
eceef4c9
BS
4181 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4182 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4183 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4184 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4185 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4186 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4187 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4188 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4189 && rtx_equal_p (rld[i].in, rld[j].in)
4190 && (operand_reloadnum[rld[i].opnum] < 0
4191 || rld[operand_reloadnum[rld[i].opnum]].optional)
4192 && (operand_reloadnum[rld[j].opnum] < 0
4193 || rld[operand_reloadnum[rld[j].opnum]].optional)
4194 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4195 || (goal_alternative_matches[rld[j].opnum]
4196 == rld[i].opnum)))
a8c9daeb
RK
4197 {
4198 for (k = 0; k < n_replacements; k++)
4199 if (replacements[k].what == j)
4200 replacements[k].what = i;
4201
eceef4c9
BS
4202 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4203 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4204 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
47c8cf91 4205 else
eceef4c9
BS
4206 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4207 rld[j].in = 0;
a8c9daeb
RK
4208 }
4209 }
4210
05d10675 4211 /* Scan all the reloads and update their type.
a8c9daeb
RK
4212 If a reload is for the address of an operand and we didn't reload
4213 that operand, change the type. Similarly, change the operand number
4214 of a reload when two operands match. If a reload is optional, treat it
4215 as though the operand isn't reloaded.
4216
4217 ??? This latter case is somewhat odd because if we do the optional
4218 reload, it means the object is hanging around. Thus we need only
4219 do the address reload if the optional reload was NOT done.
4220
4221 Change secondary reloads to be the address type of their operand, not
4222 the normal type.
4223
4224 If an operand's reload is now RELOAD_OTHER, change any
4225 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4226 RELOAD_FOR_OTHER_ADDRESS. */
4227
4228 for (i = 0; i < n_reloads; i++)
4229 {
eceef4c9 4230 if (rld[i].secondary_p
38323cc3
RH
4231 && rld[i].when_needed == operand_type[rld[i].opnum])
4232 rld[i].when_needed = address_type[rld[i].opnum];
eceef4c9
BS
4233
4234 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4235 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4236 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4237 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4238 && (operand_reloadnum[rld[i].opnum] < 0
4239 || rld[operand_reloadnum[rld[i].opnum]].optional))
f98bb7d3
RK
4240 {
4241 /* If we have a secondary reload to go along with this reload,
0f41302f 4242 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 4243
eceef4c9
BS
4244 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4245 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4246 && rld[i].secondary_in_reload != -1)
f98bb7d3 4247 {
eceef4c9 4248 int secondary_in_reload = rld[i].secondary_in_reload;
f98bb7d3 4249
4381f7c2 4250 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 4251
0f41302f 4252 /* If there's a tertiary reload we have to change it also. */
f98bb7d3 4253 if (secondary_in_reload > 0
eceef4c9
BS
4254 && rld[secondary_in_reload].secondary_in_reload != -1)
4255 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
38323cc3 4256 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3
RK
4257 }
4258
eceef4c9
BS
4259 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4260 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4261 && rld[i].secondary_out_reload != -1)
f98bb7d3 4262 {
eceef4c9 4263 int secondary_out_reload = rld[i].secondary_out_reload;
f98bb7d3 4264
4381f7c2 4265 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 4266
0f41302f 4267 /* If there's a tertiary reload we have to change it also. */
f98bb7d3 4268 if (secondary_out_reload
eceef4c9
BS
4269 && rld[secondary_out_reload].secondary_out_reload != -1)
4270 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
38323cc3 4271 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 4272 }
e5e809f4 4273
eceef4c9
BS
4274 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4275 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4276 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
cb2afeb3 4277 else
eceef4c9 4278 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 4279 }
a8c9daeb 4280
eceef4c9
BS
4281 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4282 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4283 && operand_reloadnum[rld[i].opnum] >= 0
4284 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
a8c9daeb 4285 == RELOAD_OTHER))
eceef4c9 4286 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
a8c9daeb 4287
eceef4c9
BS
4288 if (goal_alternative_matches[rld[i].opnum] >= 0)
4289 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
a8c9daeb
RK
4290 }
4291
a94ce333
JW
4292 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4293 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4294 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4295
4296 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4297 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4298 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4299 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4300 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4301 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4302 This is complicated by the fact that a single operand can have more
4303 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4304 choose_reload_regs without affecting code quality, and cases that
4305 actually fail are extremely rare, so it turns out to be better to fix
4306 the problem here by not generating cases that choose_reload_regs will
4307 fail for. */
d3adbeea 4308 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
826e3854
R
4309 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4310 a single operand.
4311 We can reduce the register pressure by exploiting that a
4312 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
c10638c9
R
4313 does not conflict with any of them, if it is only used for the first of
4314 the RELOAD_FOR_X_ADDRESS reloads. */
a94ce333 4315 {
826e3854
R
4316 int first_op_addr_num = -2;
4317 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4318 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4381f7c2 4319 int need_change = 0;
826e3854
R
4320 /* We use last_op_addr_reload and the contents of the above arrays
4321 first as flags - -2 means no instance encountered, -1 means exactly
4322 one instance encountered.
4323 If more than one instance has been encountered, we store the reload
4324 number of the first reload of the kind in question; reload numbers
4325 are known to be non-negative. */
4326 for (i = 0; i < noperands; i++)
4327 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4328 for (i = n_reloads - 1; i >= 0; i--)
4329 {
eceef4c9 4330 switch (rld[i].when_needed)
826e3854
R
4331 {
4332 case RELOAD_FOR_OPERAND_ADDRESS:
c10638c9 4333 if (++first_op_addr_num >= 0)
826e3854 4334 {
c10638c9 4335 first_op_addr_num = i;
826e3854
R
4336 need_change = 1;
4337 }
4338 break;
4339 case RELOAD_FOR_INPUT_ADDRESS:
eceef4c9 4340 if (++first_inpaddr_num[rld[i].opnum] >= 0)
826e3854 4341 {
eceef4c9 4342 first_inpaddr_num[rld[i].opnum] = i;
826e3854
R
4343 need_change = 1;
4344 }
4345 break;
4346 case RELOAD_FOR_OUTPUT_ADDRESS:
eceef4c9 4347 if (++first_outpaddr_num[rld[i].opnum] >= 0)
826e3854 4348 {
eceef4c9 4349 first_outpaddr_num[rld[i].opnum] = i;
826e3854
R
4350 need_change = 1;
4351 }
4352 break;
4353 default:
4354 break;
4355 }
4356 }
a94ce333 4357
826e3854
R
4358 if (need_change)
4359 {
4360 for (i = 0; i < n_reloads; i++)
4361 {
c8d8ed65
RK
4362 int first_num;
4363 enum reload_type type;
826e3854 4364
eceef4c9 4365 switch (rld[i].when_needed)
826e3854
R
4366 {
4367 case RELOAD_FOR_OPADDR_ADDR:
4368 first_num = first_op_addr_num;
4369 type = RELOAD_FOR_OPERAND_ADDRESS;
4370 break;
4371 case RELOAD_FOR_INPADDR_ADDRESS:
eceef4c9 4372 first_num = first_inpaddr_num[rld[i].opnum];
826e3854
R
4373 type = RELOAD_FOR_INPUT_ADDRESS;
4374 break;
4375 case RELOAD_FOR_OUTADDR_ADDRESS:
eceef4c9 4376 first_num = first_outpaddr_num[rld[i].opnum];
826e3854
R
4377 type = RELOAD_FOR_OUTPUT_ADDRESS;
4378 break;
4379 default:
4380 continue;
4381 }
c10638c9
R
4382 if (first_num < 0)
4383 continue;
4384 else if (i > first_num)
eceef4c9 4385 rld[i].when_needed = type;
c10638c9
R
4386 else
4387 {
4388 /* Check if the only TYPE reload that uses reload I is
4389 reload FIRST_NUM. */
4390 for (j = n_reloads - 1; j > first_num; j--)
4391 {
eceef4c9
BS
4392 if (rld[j].when_needed == type
4393 && (rld[i].secondary_p
4394 ? rld[j].secondary_in_reload == i
4395 : reg_mentioned_p (rld[i].in, rld[j].in)))
c10638c9 4396 {
eceef4c9 4397 rld[i].when_needed = type;
c10638c9
R
4398 break;
4399 }
4400 }
4401 }
826e3854
R
4402 }
4403 }
a94ce333
JW
4404 }
4405
a8c9daeb
RK
4406 /* See if we have any reloads that are now allowed to be merged
4407 because we've changed when the reload is needed to
4408 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4409 check for the most common cases. */
4410
4411 for (i = 0; i < n_reloads; i++)
eceef4c9
BS
4412 if (rld[i].in != 0 && rld[i].out == 0
4413 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4414 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4415 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
a8c9daeb 4416 for (j = 0; j < n_reloads; j++)
eceef4c9
BS
4417 if (i != j && rld[j].in != 0 && rld[j].out == 0
4418 && rld[j].when_needed == rld[i].when_needed
4419 && MATCHES (rld[i].in, rld[j].in)
4420 && rld[i].class == rld[j].class
4421 && !rld[i].nocombine && !rld[j].nocombine
4422 && rld[i].reg_rtx == rld[j].reg_rtx)
a8c9daeb 4423 {
eceef4c9 4424 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
a8c9daeb 4425 transfer_replacements (i, j);
eceef4c9 4426 rld[j].in = 0;
a8c9daeb
RK
4427 }
4428
14a774a9
RK
4429#ifdef HAVE_cc0
4430 /* If we made any reloads for addresses, see if they violate a
4431 "no input reloads" requirement for this insn. But loads that we
4432 do after the insn (such as for output addresses) are fine. */
4433 if (no_input_reloads)
4434 for (i = 0; i < n_reloads; i++)
41374e13
NS
4435 gcc_assert (rld[i].in == 0
4436 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4437 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
14a774a9
RK
4438#endif
4439
67e61fe7
BS
4440 /* Compute reload_mode and reload_nregs. */
4441 for (i = 0; i < n_reloads; i++)
4442 {
4443 rld[i].mode
4444 = (rld[i].inmode == VOIDmode
4445 || (GET_MODE_SIZE (rld[i].outmode)
4446 > GET_MODE_SIZE (rld[i].inmode)))
4447 ? rld[i].outmode : rld[i].inmode;
4448
4449 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4450 }
4451
02a10130
RH
4452 /* Special case a simple move with an input reload and a
4453 destination of a hard reg, if the hard reg is ok, use it. */
4454 for (i = 0; i < n_reloads; i++)
4455 if (rld[i].when_needed == RELOAD_FOR_INPUT
4456 && GET_CODE (PATTERN (insn)) == SET
f8cfc6aa 4457 && REG_P (SET_DEST (PATTERN (insn)))
8c74fb06
RS
4458 && SET_SRC (PATTERN (insn)) == rld[i].in
4459 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
02a10130 4460 {
0c20a65f 4461 rtx dest = SET_DEST (PATTERN (insn));
02a10130
RH
4462 unsigned int regno = REGNO (dest);
4463
0c20a65f
AJ
4464 if (regno < FIRST_PSEUDO_REGISTER
4465 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4466 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
57458e8a 4467 {
66fd46b6 4468 int nr = hard_regno_nregs[regno][rld[i].mode];
57458e8a
DD
4469 int ok = 1, nri;
4470
4471 for (nri = 1; nri < nr; nri ++)
4472 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4473 ok = 0;
4474
4475 if (ok)
4476 rld[i].reg_rtx = dest;
4477 }
02a10130
RH
4478 }
4479
cb2afeb3 4480 return retval;
eab89b90
RK
4481}
4482
4483/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4484 accepts a memory operand with constant address. */
4485
4486static int
0c20a65f 4487alternative_allows_memconst (const char *constraint, int altnum)
eab89b90 4488{
b3694847 4489 int c;
eab89b90
RK
4490 /* Skip alternatives before the one requested. */
4491 while (altnum > 0)
4492 {
4493 while (*constraint++ != ',');
4494 altnum--;
4495 }
4496 /* Scan the requested alternative for 'm' or 'o'.
4497 If one of them is present, this alternative accepts memory constants. */
97488870
R
4498 for (; (c = *constraint) && c != ',' && c != '#';
4499 constraint += CONSTRAINT_LEN (c, constraint))
4500 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
eab89b90
RK
4501 return 1;
4502 return 0;
4503}
4504\f
4505/* Scan X for memory references and scan the addresses for reloading.
4506 Also checks for references to "constant" regs that we want to eliminate
4507 and replaces them with the values they stand for.
6dc42e49 4508 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4509 If X is just a constant reg, we return the equivalent value
4510 instead of X.
4511
4512 IND_LEVELS says how many levels of indirect addressing this machine
4513 supports.
4514
a8c9daeb
RK
4515 OPNUM and TYPE identify the purpose of the reload.
4516
eab89b90 4517 IS_SET_DEST is true if X is the destination of a SET, which is not
cb2afeb3
R
4518 appropriate to be replaced by a constant.
4519
4520 INSN, if nonzero, is the insn in which we do the reload. It is used
4521 to determine if we may generate output reloads, and where to put USEs
9246aadb
AH
4522 for pseudos that we have to replace with stack slots.
4523
4524 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4525 result of find_reloads_address. */
eab89b90
RK
4526
4527static rtx
0c20a65f
AJ
4528find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4529 int ind_levels, int is_set_dest, rtx insn,
4530 int *address_reloaded)
eab89b90 4531{
b3694847 4532 RTX_CODE code = GET_CODE (x);
eab89b90 4533
b3694847
SS
4534 const char *fmt = GET_RTX_FORMAT (code);
4535 int i;
9f4749b1 4536 int copied;
eab89b90
RK
4537
4538 if (code == REG)
4539 {
4540 /* This code is duplicated for speed in find_reloads. */
b3694847 4541 int regno = REGNO (x);
eab89b90
RK
4542 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4543 x = reg_equiv_constant[regno];
4544#if 0
05d10675
BS
4545 /* This creates (subreg (mem...)) which would cause an unnecessary
4546 reload of the mem. */
eab89b90
RK
4547 else if (reg_equiv_mem[regno] != 0)
4548 x = reg_equiv_mem[regno];
4549#endif
cb2afeb3
R
4550 else if (reg_equiv_memory_loc[regno]
4551 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
eab89b90 4552 {
cb2afeb3
R
4553 rtx mem = make_memloc (x, regno);
4554 if (reg_equiv_address[regno]
4555 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4556 {
4557 /* If this is not a toplevel operand, find_reloads doesn't see
4558 this substitution. We have to emit a USE of the pseudo so
4559 that delete_output_reload can see it. */
1ccbefce 4560 if (replace_reloads && recog_data.operand[opnum] != x)
3d17d93d
AO
4561 /* We mark the USE with QImode so that we recognize it
4562 as one that can be safely deleted at the end of
4563 reload. */
4564 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4565 QImode);
cb2afeb3 4566 x = mem;
9246aadb
AH
4567 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4568 opnum, type, ind_levels, insn);
0f4b25a3 4569 if (!rtx_equal_p (x, mem))
3f1e3e70 4570 push_reg_equiv_alt_mem (regno, x);
9246aadb
AH
4571 if (address_reloaded)
4572 *address_reloaded = i;
cb2afeb3 4573 }
eab89b90
RK
4574 }
4575 return x;
4576 }
4577 if (code == MEM)
4578 {
4579 rtx tem = x;
9246aadb
AH
4580
4581 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4582 opnum, type, ind_levels, insn);
4583 if (address_reloaded)
4584 *address_reloaded = i;
4585
eab89b90
RK
4586 return tem;
4587 }
4588
f8cfc6aa 4589 if (code == SUBREG && REG_P (SUBREG_REG (x)))
eab89b90 4590 {
0e61db61
NS
4591 /* Check for SUBREG containing a REG that's equivalent to a
4592 constant. If the constant has a known value, truncate it
4593 right now. Similarly if we are extracting a single-word of a
4594 multi-word constant. If the constant is symbolic, allow it
4595 to be substituted normally. push_reload will strip the
4596 subreg later. The constant must not be VOIDmode, because we
4597 will lose the mode of the register (this should never happen
4598 because one of the cases above should handle it). */
eab89b90 4599
b3694847 4600 int regno = REGNO (SUBREG_REG (x));
eab89b90
RK
4601 rtx tem;
4602
4603 if (subreg_lowpart_p (x)
857e5753
RS
4604 && regno >= FIRST_PSEUDO_REGISTER
4605 && reg_renumber[regno] < 0
eab89b90
RK
4606 && reg_equiv_constant[regno] != 0
4607 && (tem = gen_lowpart_common (GET_MODE (x),
4119019b 4608 reg_equiv_constant[regno])) != 0)
eab89b90
RK
4609 return tem;
4610
857e5753
RS
4611 if (regno >= FIRST_PSEUDO_REGISTER
4612 && reg_renumber[regno] < 0
451f86fd 4613 && reg_equiv_constant[regno] != 0)
0365438d 4614 {
451f86fd
R
4615 tem =
4616 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4617 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
41374e13 4618 gcc_assert (tem);
4119019b 4619 return tem;
0365438d 4620 }
eab89b90 4621
eab89b90
RK
4622 /* If the subreg contains a reg that will be converted to a mem,
4623 convert the subreg to a narrower memref now.
4624 Otherwise, we would get (subreg (mem ...) ...),
4625 which would force reload of the mem.
4626
4627 We also need to do this if there is an equivalent MEM that is
4628 not offsettable. In that case, alter_subreg would produce an
4629 invalid address on big-endian machines.
4630
46da6b3a 4631 For machines that extend byte loads, we must not reload using
eab89b90
RK
4632 a wider mode if we have a paradoxical SUBREG. find_reloads will
4633 force a reload in that case. So we should not do anything here. */
4634
857e5753 4635 if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4636#ifdef LOAD_EXTEND_OP
eab89b90
RK
4637 && (GET_MODE_SIZE (GET_MODE (x))
4638 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4639#endif
4640 && (reg_equiv_address[regno] != 0
4641 || (reg_equiv_mem[regno] != 0
05d10675 4642 && (! strict_memory_address_p (GET_MODE (x),
f2fbfe92 4643 XEXP (reg_equiv_mem[regno], 0))
cb2afeb3
R
4644 || ! offsettable_memref_p (reg_equiv_mem[regno])
4645 || num_not_at_initial_offset))))
22505ad8
R
4646 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4647 insn);
eab89b90
RK
4648 }
4649
9f4749b1 4650 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
eab89b90
RK
4651 {
4652 if (fmt[i] == 'e')
9f4749b1
R
4653 {
4654 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
9246aadb
AH
4655 ind_levels, is_set_dest, insn,
4656 address_reloaded);
9f4749b1
R
4657 /* If we have replaced a reg with it's equivalent memory loc -
4658 that can still be handled here e.g. if it's in a paradoxical
4659 subreg - we must make the change in a copy, rather than using
4660 a destructive change. This way, find_reloads can still elect
4661 not to do the change. */
4662 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4663 {
ce9d4c6d 4664 x = shallow_copy_rtx (x);
9f4749b1
R
4665 copied = 1;
4666 }
4667 XEXP (x, i) = new_part;
4668 }
eab89b90
RK
4669 }
4670 return x;
4671}
4672
dbf85761
RS
4673/* Return a mem ref for the memory equivalent of reg REGNO.
4674 This mem ref is not shared with anything. */
4675
eab89b90 4676static rtx
0c20a65f 4677make_memloc (rtx ad, int regno)
eab89b90 4678{
4ffeab02
JW
4679 /* We must rerun eliminate_regs, in case the elimination
4680 offsets have changed. */
cb2afeb3
R
4681 rtx tem
4682 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
eab89b90
RK
4683
4684 /* If TEM might contain a pseudo, we must copy it to avoid
4685 modifying it when we do the substitution for the reload. */
e38fe8e0 4686 if (rtx_varies_p (tem, 0))
eab89b90
RK
4687 tem = copy_rtx (tem);
4688
f1ec5147 4689 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
cf728d61
HPN
4690 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4691
4692 /* Copy the result if it's still the same as the equivalence, to avoid
4693 modifying it when we do the substitution for the reload. */
4694 if (tem == reg_equiv_memory_loc[regno])
4695 tem = copy_rtx (tem);
4696 return tem;
eab89b90
RK
4697}
4698
acf9fa5f 4699/* Returns true if AD could be turned into a valid memory reference
0c20a65f 4700 to mode MODE by reloading the part pointed to by PART into a
acf9fa5f
UW
4701 register. */
4702
4703static int
0c20a65f 4704maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
acf9fa5f
UW
4705{
4706 int retv;
4707 rtx tem = *part;
4708 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4709
4710 *part = reg;
4711 retv = memory_address_p (mode, ad);
4712 *part = tem;
4713
4714 return retv;
4715}
4716
eab89b90
RK
4717/* Record all reloads needed for handling memory address AD
4718 which appears in *LOC in a memory reference to mode MODE
4719 which itself is found in location *MEMREFLOC.
4720 Note that we take shortcuts assuming that no multi-reg machine mode
4721 occurs as part of an address.
4722
a8c9daeb 4723 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4724
4725 IND_LEVELS says how many levels of indirect addressing this machine
4726 supports.
4727
55c22565 4728 INSN, if nonzero, is the insn in which we do the reload. It is used
cb2afeb3
R
4729 to determine if we may generate output reloads, and where to put USEs
4730 for pseudos that we have to replace with stack slots.
55c22565 4731
0b540f12
UW
4732 Value is one if this address is reloaded or replaced as a whole; it is
4733 zero if the top level of this address was not reloaded or replaced, and
4734 it is -1 if it may or may not have been reloaded or replaced.
eab89b90
RK
4735
4736 Note that there is no verification that the address will be valid after
4737 this routine does its work. Instead, we rely on the fact that the address
4738 was valid when reload started. So we need only undo things that reload
4739 could have broken. These are wrong register types, pseudos not allocated
4740 to a hard register, and frame pointer elimination. */
4741
4742static int
0c20a65f
AJ
4743find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4744 rtx *loc, int opnum, enum reload_type type,
4745 int ind_levels, rtx insn)
eab89b90 4746{
b3694847 4747 int regno;
ab87f8c8 4748 int removed_and = 0;
14d3dc34 4749 int op_index;
eab89b90
RK
4750 rtx tem;
4751
4752 /* If the address is a register, see if it is a legitimate address and
4753 reload if not. We first handle the cases where we need not reload
4754 or where we must reload in a non-standard way. */
4755
f8cfc6aa 4756 if (REG_P (ad))
eab89b90
RK
4757 {
4758 regno = REGNO (ad);
4759
4971426b 4760 /* If the register is equivalent to an invariant expression, substitute
82efa2e5 4761 the invariant, and eliminate any eliminable register references. */
4971426b
AL
4762 tem = reg_equiv_constant[regno];
4763 if (tem != 0
4764 && (tem = eliminate_regs (tem, mode, insn))
4765 && strict_memory_address_p (mode, tem))
eab89b90 4766 {
4971426b 4767 *loc = ad = tem;
ab87f8c8 4768 return 0;
eab89b90
RK
4769 }
4770
cb2afeb3
R
4771 tem = reg_equiv_memory_loc[regno];
4772 if (tem != 0)
eab89b90 4773 {
cb2afeb3
R
4774 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4775 {
4776 tem = make_memloc (ad, regno);
4777 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4778 {
3f1e3e70
AO
4779 rtx orig = tem;
4780
57292ec3
AL
4781 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4782 &XEXP (tem, 0), opnum,
4783 ADDR_TYPE (type), ind_levels, insn);
0f4b25a3 4784 if (!rtx_equal_p (tem, orig))
3f1e3e70 4785 push_reg_equiv_alt_mem (regno, tem);
cb2afeb3
R
4786 }
4787 /* We can avoid a reload if the register's equivalent memory
4788 expression is valid as an indirect memory address.
4789 But not all addresses are valid in a mem used as an indirect
4790 address: only reg or reg+constant. */
4791
4792 if (ind_levels > 0
4793 && strict_memory_address_p (mode, tem)
f8cfc6aa 4794 && (REG_P (XEXP (tem, 0))
cb2afeb3 4795 || (GET_CODE (XEXP (tem, 0)) == PLUS
f8cfc6aa 4796 && REG_P (XEXP (XEXP (tem, 0), 0))
cb2afeb3
R
4797 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4798 {
4799 /* TEM is not the same as what we'll be replacing the
4800 pseudo with after reload, put a USE in front of INSN
4801 in the final reload pass. */
4802 if (replace_reloads
4803 && num_not_at_initial_offset
4804 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4805 {
4806 *loc = tem;
3d17d93d
AO
4807 /* We mark the USE with QImode so that we
4808 recognize it as one that can be safely
4809 deleted at the end of reload. */
4810 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4811 insn), QImode);
4812
cb2afeb3
R
4813 /* This doesn't really count as replacing the address
4814 as a whole, since it is still a memory access. */
4815 }
4816 return 0;
4817 }
4818 ad = tem;
4819 }
eab89b90
RK
4820 }
4821
eab89b90
RK
4822 /* The only remaining case where we can avoid a reload is if this is a
4823 hard register that is valid as a base register and which is not the
4824 subject of a CLOBBER in this insn. */
4825
858c3c8c 4826 else if (regno < FIRST_PSEUDO_REGISTER
c4963a0a 4827 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
9532e31f 4828 && ! regno_clobbered_p (regno, this_insn, mode, 0))
eab89b90
RK
4829 return 0;
4830
4831 /* If we do not have one of the cases above, we must do the reload. */
c4963a0a 4832 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
a8c9daeb 4833 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4834 return 1;
4835 }
4836
4837 if (strict_memory_address_p (mode, ad))
4838 {
4839 /* The address appears valid, so reloads are not needed.
4840 But the address may contain an eliminable register.
4841 This can happen because a machine with indirect addressing
4842 may consider a pseudo register by itself a valid address even when
4843 it has failed to get a hard reg.
4844 So do a tree-walk to find and eliminate all such regs. */
4845
4846 /* But first quickly dispose of a common case. */
4847 if (GET_CODE (ad) == PLUS
4848 && GET_CODE (XEXP (ad, 1)) == CONST_INT
f8cfc6aa 4849 && REG_P (XEXP (ad, 0))
eab89b90
RK
4850 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4851 return 0;
4852
4853 subst_reg_equivs_changed = 0;
cb2afeb3 4854 *loc = subst_reg_equivs (ad, insn);
eab89b90
RK
4855
4856 if (! subst_reg_equivs_changed)
4857 return 0;
4858
4859 /* Check result for validity after substitution. */
4860 if (strict_memory_address_p (mode, ad))
4861 return 0;
4862 }
4863
a9a2595b
JR
4864#ifdef LEGITIMIZE_RELOAD_ADDRESS
4865 do
4866 {
4867 if (memrefloc)
4868 {
4869 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4870 ind_levels, win);
4871 }
4872 break;
4873 win:
4874 *memrefloc = copy_rtx (*memrefloc);
4875 XEXP (*memrefloc, 0) = ad;
4876 move_replacements (&ad, &XEXP (*memrefloc, 0));
0b540f12 4877 return -1;
a9a2595b
JR
4878 }
4879 while (0);
4880#endif
4881
ab87f8c8
JL
4882 /* The address is not valid. We have to figure out why. First see if
4883 we have an outer AND and remove it if so. Then analyze what's inside. */
4884
4885 if (GET_CODE (ad) == AND)
4886 {
4887 removed_and = 1;
4888 loc = &XEXP (ad, 0);
4889 ad = *loc;
4890 }
4891
4892 /* One possibility for why the address is invalid is that it is itself
4893 a MEM. This can happen when the frame pointer is being eliminated, a
4894 pseudo is not allocated to a hard register, and the offset between the
4895 frame and stack pointers is not its initial value. In that case the
4896 pseudo will have been replaced by a MEM referring to the
4897 stack pointer. */
3c0cb5de 4898 if (MEM_P (ad))
eab89b90
RK
4899 {
4900 /* First ensure that the address in this MEM is valid. Then, unless
4901 indirect addresses are valid, reload the MEM into a register. */
4902 tem = ad;
4903 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4904 opnum, ADDR_TYPE (type),
55c22565 4905 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4906
4907 /* If tem was changed, then we must create a new memory reference to
4908 hold it and store it back into memrefloc. */
4909 if (tem != ad && memrefloc)
ca3e4a2f 4910 {
ca3e4a2f 4911 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4912 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4913 loc = &XEXP (*memrefloc, 0);
ab87f8c8
JL
4914 if (removed_and)
4915 loc = &XEXP (*loc, 0);
ca3e4a2f 4916 }
d2555454 4917
eab89b90
RK
4918 /* Check similar cases as for indirect addresses as above except
4919 that we can allow pseudos and a MEM since they should have been
4920 taken care of above. */
4921
4922 if (ind_levels == 0
4923 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
3c0cb5de 4924 || MEM_P (XEXP (tem, 0))
f8cfc6aa 4925 || ! (REG_P (XEXP (tem, 0))
eab89b90 4926 || (GET_CODE (XEXP (tem, 0)) == PLUS
f8cfc6aa 4927 && REG_P (XEXP (XEXP (tem, 0), 0))
eab89b90
RK
4928 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4929 {
4930 /* Must use TEM here, not AD, since it is the one that will
4931 have any subexpressions reloaded, if needed. */
f4f4d0f8 4932 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
c4963a0a 4933 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
1ba61f4e 4934 VOIDmode, 0,
a8c9daeb 4935 0, opnum, type);
ab87f8c8 4936 return ! removed_and;
eab89b90
RK
4937 }
4938 else
4939 return 0;
4940 }
4941
1b4d2764
RK
4942 /* If we have address of a stack slot but it's not valid because the
4943 displacement is too large, compute the sum in a register.
4944 Handle all base registers here, not just fp/ap/sp, because on some
4945 targets (namely SH) we can also get too large displacements from
4946 big-endian corrections. */
eab89b90 4947 else if (GET_CODE (ad) == PLUS
f8cfc6aa 4948 && REG_P (XEXP (ad, 0))
1b4d2764 4949 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
c4963a0a
BS
4950 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4951 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4952 CONST_INT))
4953
eab89b90
RK
4954 {
4955 /* Unshare the MEM rtx so we can safely alter it. */
4956 if (memrefloc)
4957 {
eab89b90
RK
4958 *memrefloc = copy_rtx (*memrefloc);
4959 loc = &XEXP (*memrefloc, 0);
ab87f8c8
JL
4960 if (removed_and)
4961 loc = &XEXP (*loc, 0);
eab89b90 4962 }
ab87f8c8 4963
eab89b90
RK
4964 if (double_reg_address_ok)
4965 {
4966 /* Unshare the sum as well. */
4967 *loc = ad = copy_rtx (ad);
ab87f8c8 4968
eab89b90
RK
4969 /* Reload the displacement into an index reg.
4970 We assume the frame pointer or arg pointer is a base reg. */
4971 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
03acd8f8
BS
4972 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4973 type, ind_levels);
ab87f8c8 4974 return 0;
eab89b90
RK
4975 }
4976 else
4977 {
4978 /* If the sum of two regs is not necessarily valid,
4979 reload the sum into a base reg.
4980 That will at least work. */
c4963a0a
BS
4981 find_reloads_address_part (ad, loc,
4982 base_reg_class (mode, MEM, SCRATCH),
1ba61f4e 4983 Pmode, opnum, type, ind_levels);
eab89b90 4984 }
ab87f8c8 4985 return ! removed_and;
eab89b90
RK
4986 }
4987
4988 /* If we have an indexed stack slot, there are three possible reasons why
4989 it might be invalid: The index might need to be reloaded, the address
4990 might have been made by frame pointer elimination and hence have a
05d10675 4991 constant out of range, or both reasons might apply.
eab89b90
RK
4992
4993 We can easily check for an index needing reload, but even if that is the
4994 case, we might also have an invalid constant. To avoid making the
4995 conservative assumption and requiring two reloads, we see if this address
4996 is valid when not interpreted strictly. If it is, the only problem is
4997 that the index needs a reload and find_reloads_address_1 will take care
4998 of it.
4999
27e484bc 5000 Handle all base registers here, not just fp/ap/sp, because on some
6356f892 5001 targets (namely SPARC) we can also get invalid addresses from preventive
14d3dc34
MM
5002 subreg big-endian corrections made by find_reloads_toplev. We
5003 can also get expressions involving LO_SUM (rather than PLUS) from
5004 find_reloads_subreg_address.
27e484bc
EB
5005
5006 If we decide to do something, it must be that `double_reg_address_ok'
5007 is true. We generate a reload of the base register + constant and
eab89b90
RK
5008 rework the sum so that the reload register will be added to the index.
5009 This is safe because we know the address isn't shared.
5010
27e484bc 5011 We check for the base register as both the first and second operand of
14d3dc34
MM
5012 the innermost PLUS and/or LO_SUM. */
5013
5014 for (op_index = 0; op_index < 2; ++op_index)
eab89b90 5015 {
c4963a0a
BS
5016 rtx operand, addend;
5017 enum rtx_code inner_code;
5018
5019 if (GET_CODE (ad) != PLUS)
5020 continue;
eab89b90 5021
c4963a0a 5022 inner_code = GET_CODE (XEXP (ad, 0));
14d3dc34
MM
5023 if (!(GET_CODE (ad) == PLUS
5024 && GET_CODE (XEXP (ad, 1)) == CONST_INT
c4963a0a 5025 && (inner_code == PLUS || inner_code == LO_SUM)))
14d3dc34 5026 continue;
05d10675 5027
14d3dc34 5028 operand = XEXP (XEXP (ad, 0), op_index);
0e544c37 5029 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
14d3dc34
MM
5030 continue;
5031
c4963a0a
BS
5032 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5033
5034 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5035 GET_CODE (addend))
14d3dc34 5036 || operand == frame_pointer_rtx
0422e940 5037#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
14d3dc34 5038 || operand == hard_frame_pointer_rtx
0422e940
UW
5039#endif
5040#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
14d3dc34 5041 || operand == arg_pointer_rtx
0422e940 5042#endif
14d3dc34
MM
5043 || operand == stack_pointer_rtx)
5044 && ! maybe_memory_address_p (mode, ad,
7bb09d15 5045 &XEXP (XEXP (ad, 0), 1 - op_index)))
14d3dc34
MM
5046 {
5047 rtx offset_reg;
c4963a0a 5048 enum reg_class cls;
14d3dc34
MM
5049
5050 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
c4963a0a 5051
14d3dc34
MM
5052 /* Form the adjusted address. */
5053 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5054 ad = gen_rtx_PLUS (GET_MODE (ad),
5055 op_index == 0 ? offset_reg : addend,
5056 op_index == 0 ? addend : offset_reg);
5057 else
5058 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5059 op_index == 0 ? offset_reg : addend,
5060 op_index == 0 ? addend : offset_reg);
5061 *loc = ad;
5062
c4963a0a 5063 cls = base_reg_class (mode, MEM, GET_CODE (addend));
14d3dc34 5064 find_reloads_address_part (XEXP (ad, op_index),
c4963a0a 5065 &XEXP (ad, op_index), cls,
14d3dc34 5066 GET_MODE (ad), opnum, type, ind_levels);
c4963a0a
BS
5067 find_reloads_address_1 (mode,
5068 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5069 GET_CODE (XEXP (ad, op_index)),
14d3dc34
MM
5070 &XEXP (ad, 1 - op_index), opnum,
5071 type, 0, insn);
eab89b90 5072
14d3dc34
MM
5073 return 0;
5074 }
eab89b90 5075 }
05d10675 5076
eab89b90
RK
5077 /* See if address becomes valid when an eliminable register
5078 in a sum is replaced. */
5079
5080 tem = ad;
5081 if (GET_CODE (ad) == PLUS)
5082 tem = subst_indexed_address (ad);
5083 if (tem != ad && strict_memory_address_p (mode, tem))
5084 {
5085 /* Ok, we win that way. Replace any additional eliminable
5086 registers. */
5087
5088 subst_reg_equivs_changed = 0;
cb2afeb3 5089 tem = subst_reg_equivs (tem, insn);
eab89b90
RK
5090
5091 /* Make sure that didn't make the address invalid again. */
5092
5093 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5094 {
5095 *loc = tem;
5096 return 0;
5097 }
5098 }
5099
5100 /* If constants aren't valid addresses, reload the constant address
5101 into a register. */
191b18e9 5102 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90 5103 {
e0120d6e 5104 /* If AD is an address in the constant pool, the MEM rtx may be shared.
eab89b90
RK
5105 Unshare it so we can safely alter it. */
5106 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5107 && CONSTANT_POOL_ADDRESS_P (ad))
5108 {
eab89b90
RK
5109 *memrefloc = copy_rtx (*memrefloc);
5110 loc = &XEXP (*memrefloc, 0);
ab87f8c8
JL
5111 if (removed_and)
5112 loc = &XEXP (*loc, 0);
eab89b90
RK
5113 }
5114
c4963a0a 5115 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
3dcc68a4 5116 Pmode, opnum, type, ind_levels);
ab87f8c8 5117 return ! removed_and;
eab89b90
RK
5118 }
5119
c4963a0a
BS
5120 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5121 ind_levels, insn);
eab89b90
RK
5122}
5123\f
5124/* Find all pseudo regs appearing in AD
5125 that are eliminable in favor of equivalent values
cb2afeb3
R
5126 and do not have hard regs; replace them by their equivalents.
5127 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5128 front of it for pseudos that we have to replace with stack slots. */
eab89b90
RK
5129
5130static rtx
0c20a65f 5131subst_reg_equivs (rtx ad, rtx insn)
eab89b90 5132{
b3694847
SS
5133 RTX_CODE code = GET_CODE (ad);
5134 int i;
5135 const char *fmt;
eab89b90
RK
5136
5137 switch (code)
5138 {
5139 case HIGH:
5140 case CONST_INT:
5141 case CONST:
5142 case CONST_DOUBLE:
69ef87e2 5143 case CONST_VECTOR:
eab89b90
RK
5144 case SYMBOL_REF:
5145 case LABEL_REF:
5146 case PC:
5147 case CC0:
5148 return ad;
5149
5150 case REG:
5151 {
b3694847 5152 int regno = REGNO (ad);
eab89b90
RK
5153
5154 if (reg_equiv_constant[regno] != 0)
5155 {
5156 subst_reg_equivs_changed = 1;
5157 return reg_equiv_constant[regno];
5158 }
cb2afeb3
R
5159 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5160 {
5161 rtx mem = make_memloc (ad, regno);
5162 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5163 {
5164 subst_reg_equivs_changed = 1;
3d17d93d
AO
5165 /* We mark the USE with QImode so that we recognize it
5166 as one that can be safely deleted at the end of
5167 reload. */
5168 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5169 QImode);
cb2afeb3
R
5170 return mem;
5171 }
5172 }
eab89b90
RK
5173 }
5174 return ad;
5175
5176 case PLUS:
5177 /* Quickly dispose of a common case. */
5178 if (XEXP (ad, 0) == frame_pointer_rtx
5179 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5180 return ad;
e9a25f70 5181 break;
05d10675 5182
e9a25f70
JL
5183 default:
5184 break;
eab89b90
RK
5185 }
5186
5187 fmt = GET_RTX_FORMAT (code);
5188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5189 if (fmt[i] == 'e')
cb2afeb3 5190 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
eab89b90
RK
5191 return ad;
5192}
5193\f
5194/* Compute the sum of X and Y, making canonicalizations assumed in an
5195 address, namely: sum constant integers, surround the sum of two
5196 constants with a CONST, put the constant as the second operand, and
5197 group the constant on the outermost sum.
5198
5199 This routine assumes both inputs are already in canonical form. */
5200
5201rtx
0c20a65f 5202form_sum (rtx x, rtx y)
eab89b90
RK
5203{
5204 rtx tem;
2c0623e8
RK
5205 enum machine_mode mode = GET_MODE (x);
5206
5207 if (mode == VOIDmode)
5208 mode = GET_MODE (y);
5209
5210 if (mode == VOIDmode)
5211 mode = Pmode;
eab89b90
RK
5212
5213 if (GET_CODE (x) == CONST_INT)
5214 return plus_constant (y, INTVAL (x));
5215 else if (GET_CODE (y) == CONST_INT)
5216 return plus_constant (x, INTVAL (y));
5217 else if (CONSTANT_P (x))
5218 tem = x, x = y, y = tem;
5219
5220 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5221 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5222
5223 /* Note that if the operands of Y are specified in the opposite
5224 order in the recursive calls below, infinite recursion will occur. */
d9771f62 5225 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
5226 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5227
5228 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5229 constant will have been placed second. */
5230 if (CONSTANT_P (x) && CONSTANT_P (y))
5231 {
5232 if (GET_CODE (x) == CONST)
5233 x = XEXP (x, 0);
5234 if (GET_CODE (y) == CONST)
5235 y = XEXP (y, 0);
5236
38a448ca 5237 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
eab89b90
RK
5238 }
5239
38a448ca 5240 return gen_rtx_PLUS (mode, x, y);
eab89b90
RK
5241}
5242\f
5243/* If ADDR is a sum containing a pseudo register that should be
5244 replaced with a constant (from reg_equiv_constant),
5245 return the result of doing so, and also apply the associative
5246 law so that the result is more likely to be a valid address.
5247 (But it is not guaranteed to be one.)
5248
5249 Note that at most one register is replaced, even if more are
5250 replaceable. Also, we try to put the result into a canonical form
5251 so it is more likely to be a valid address.
5252
5253 In all other cases, return ADDR. */
5254
5255static rtx
0c20a65f 5256subst_indexed_address (rtx addr)
eab89b90
RK
5257{
5258 rtx op0 = 0, op1 = 0, op2 = 0;
5259 rtx tem;
5260 int regno;
5261
5262 if (GET_CODE (addr) == PLUS)
5263 {
5264 /* Try to find a register to replace. */
5265 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
f8cfc6aa 5266 if (REG_P (op0)
eab89b90
RK
5267 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5268 && reg_renumber[regno] < 0
5269 && reg_equiv_constant[regno] != 0)
5270 op0 = reg_equiv_constant[regno];
f8cfc6aa 5271 else if (REG_P (op1)
05d10675
BS
5272 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5273 && reg_renumber[regno] < 0
5274 && reg_equiv_constant[regno] != 0)
eab89b90
RK
5275 op1 = reg_equiv_constant[regno];
5276 else if (GET_CODE (op0) == PLUS
5277 && (tem = subst_indexed_address (op0)) != op0)
5278 op0 = tem;
5279 else if (GET_CODE (op1) == PLUS
5280 && (tem = subst_indexed_address (op1)) != op1)
5281 op1 = tem;
5282 else
5283 return addr;
5284
5285 /* Pick out up to three things to add. */
5286 if (GET_CODE (op1) == PLUS)
5287 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5288 else if (GET_CODE (op0) == PLUS)
5289 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5290
5291 /* Compute the sum. */
5292 if (op2 != 0)
5293 op1 = form_sum (op1, op2);
5294 if (op1 != 0)
5295 op0 = form_sum (op0, op1);
5296
5297 return op0;
5298 }
5299 return addr;
5300}
5301\f
98c17df2
GS
5302/* Update the REG_INC notes for an insn. It updates all REG_INC
5303 notes for the instruction which refer to REGNO the to refer
5304 to the reload number.
5305
5306 INSN is the insn for which any REG_INC notes need updating.
5307
5308 REGNO is the register number which has been reloaded.
5309
5310 RELOADNUM is the reload number. */
5311
5312static void
0c20a65f
AJ
5313update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5314 int reloadnum ATTRIBUTE_UNUSED)
98c17df2
GS
5315{
5316#ifdef AUTO_INC_DEC
5317 rtx link;
5318
5319 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5320 if (REG_NOTE_KIND (link) == REG_INC
fc555370 5321 && (int) REGNO (XEXP (link, 0)) == regno)
98c17df2
GS
5322 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5323#endif
5324}
5325\f
858c3c8c
ILT
5326/* Record the pseudo registers we must reload into hard registers in a
5327 subexpression of a would-be memory address, X referring to a value
5328 in mode MODE. (This function is not called if the address we find
5329 is strictly valid.)
5330
eab89b90 5331 CONTEXT = 1 means we are considering regs as index regs,
c4963a0a
BS
5332 = 0 means we are considering them as base regs.
5333 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5334 or an autoinc code.
5335 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5336 is the code of the index part of the address. Otherwise, pass SCRATCH
5337 for this argument.
a8c9daeb 5338 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
5339
5340 IND_LEVELS says how many levels of indirect addressing are
5341 supported at this point in the address.
5342
55c22565
RK
5343 INSN, if nonzero, is the insn in which we do the reload. It is used
5344 to determine if we may generate output reloads.
5345
eab89b90
RK
5346 We return nonzero if X, as a whole, is reloaded or replaced. */
5347
5348/* Note that we take shortcuts assuming that no multi-reg machine mode
5349 occurs as part of an address.
5350 Also, this is not fully machine-customizable; it works for machines
8aeea6e6 5351 such as VAXen and 68000's and 32000's, but other possible machines
ff0d9879
HPN
5352 could have addressing modes that this does not handle right.
5353 If you add push_reload calls here, you need to make sure gen_reload
5354 handles those cases gracefully. */
eab89b90
RK
5355
5356static int
0c20a65f 5357find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
c4963a0a 5358 enum rtx_code outer_code, enum rtx_code index_code,
0c20a65f
AJ
5359 rtx *loc, int opnum, enum reload_type type,
5360 int ind_levels, rtx insn)
eab89b90 5361{
c4963a0a
BS
5362#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5363 ((CONTEXT) == 0 \
5364 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5365 : REGNO_OK_FOR_INDEX_P (REGNO))
888d2cd6
DJ
5366
5367 enum reg_class context_reg_class;
b3694847 5368 RTX_CODE code = GET_CODE (x);
eab89b90 5369
c4963a0a 5370 if (context == 1)
888d2cd6
DJ
5371 context_reg_class = INDEX_REG_CLASS;
5372 else
c4963a0a 5373 context_reg_class = base_reg_class (mode, outer_code, index_code);
888d2cd6 5374
a2d353e5 5375 switch (code)
eab89b90 5376 {
a2d353e5
RK
5377 case PLUS:
5378 {
b3694847
SS
5379 rtx orig_op0 = XEXP (x, 0);
5380 rtx orig_op1 = XEXP (x, 1);
5381 RTX_CODE code0 = GET_CODE (orig_op0);
5382 RTX_CODE code1 = GET_CODE (orig_op1);
5383 rtx op0 = orig_op0;
5384 rtx op1 = orig_op1;
a2d353e5
RK
5385
5386 if (GET_CODE (op0) == SUBREG)
5387 {
5388 op0 = SUBREG_REG (op0);
5389 code0 = GET_CODE (op0);
922db4bb 5390 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
38a448ca 5391 op0 = gen_rtx_REG (word_mode,
ddef6bc7
JJ
5392 (REGNO (op0) +
5393 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5394 GET_MODE (SUBREG_REG (orig_op0)),
5395 SUBREG_BYTE (orig_op0),
5396 GET_MODE (orig_op0))));
a2d353e5 5397 }
87935f60 5398
a2d353e5
RK
5399 if (GET_CODE (op1) == SUBREG)
5400 {
5401 op1 = SUBREG_REG (op1);
5402 code1 = GET_CODE (op1);
922db4bb 5403 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
ddef6bc7
JJ
5404 /* ??? Why is this given op1's mode and above for
5405 ??? op0 SUBREGs we use word_mode? */
38a448ca 5406 op1 = gen_rtx_REG (GET_MODE (op1),
ddef6bc7
JJ
5407 (REGNO (op1) +
5408 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5409 GET_MODE (SUBREG_REG (orig_op1)),
5410 SUBREG_BYTE (orig_op1),
5411 GET_MODE (orig_op1))));
a2d353e5 5412 }
04c5580f 5413 /* Plus in the index register may be created only as a result of
6fc0bb99 5414 register rematerialization for expression like &localvar*4. Reload it.
04c5580f
JH
5415 It may be possible to combine the displacement on the outer level,
5416 but it is probably not worthwhile to do so. */
888d2cd6 5417 if (context == 1)
04c5580f
JH
5418 {
5419 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5420 opnum, ADDR_TYPE (type), ind_levels, insn);
5421 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5422 context_reg_class,
04c5580f
JH
5423 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5424 return 1;
5425 }
a2d353e5 5426
05d10675 5427 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5f8997b9 5428 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 5429 {
c4963a0a
BS
5430 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5431 &XEXP (x, 0), opnum, type, ind_levels,
5432 insn);
5433 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5434 &XEXP (x, 1), opnum, type, ind_levels,
5435 insn);
a2d353e5
RK
5436 }
5437
5f8997b9
SC
5438 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5439 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 5440 {
c4963a0a
BS
5441 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5442 &XEXP (x, 0), opnum, type, ind_levels,
5443 insn);
5444 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5445 &XEXP (x, 1), opnum, type, ind_levels,
5446 insn);
a2d353e5
RK
5447 }
5448
5449 else if (code0 == CONST_INT || code0 == CONST
5450 || code0 == SYMBOL_REF || code0 == LABEL_REF)
c4963a0a
BS
5451 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5452 &XEXP (x, 1), opnum, type, ind_levels,
5453 insn);
a2d353e5
RK
5454
5455 else if (code1 == CONST_INT || code1 == CONST
5456 || code1 == SYMBOL_REF || code1 == LABEL_REF)
c4963a0a
BS
5457 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5458 &XEXP (x, 0), opnum, type, ind_levels,
5459 insn);
a2d353e5
RK
5460
5461 else if (code0 == REG && code1 == REG)
5462 {
c4963a0a
BS
5463 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5464 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
a2d353e5 5465 return 0;
c4963a0a
BS
5466 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5467 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
a2d353e5 5468 return 0;
c4963a0a
BS
5469 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5470 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5471 &XEXP (x, 0), opnum, type, ind_levels,
5472 insn);
5473 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5474 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5475 &XEXP (x, 1), opnum, type, ind_levels,
5476 insn);
5477 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5478 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5479 &XEXP (x, 0), opnum, type, ind_levels,
5480 insn);
5481 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5482 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5483 &XEXP (x, 1), opnum, type, ind_levels,
5484 insn);
a2d353e5
RK
5485 else
5486 {
c4963a0a
BS
5487 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5488 &XEXP (x, 0), opnum, type, ind_levels,
5489 insn);
5490 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5491 &XEXP (x, 1), opnum, type, ind_levels,
5492 insn);
a2d353e5
RK
5493 }
5494 }
5495
5496 else if (code0 == REG)
5497 {
c4963a0a
BS
5498 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5499 &XEXP (x, 0), opnum, type, ind_levels,
5500 insn);
5501 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5502 &XEXP (x, 1), opnum, type, ind_levels,
5503 insn);
a2d353e5
RK
5504 }
5505
5506 else if (code1 == REG)
5507 {
c4963a0a
BS
5508 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5509 &XEXP (x, 1), opnum, type, ind_levels,
5510 insn);
5511 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5512 &XEXP (x, 0), opnum, type, ind_levels,
5513 insn);
a2d353e5
RK
5514 }
5515 }
5516
5517 return 0;
5518
4b983fdc
RH
5519 case POST_MODIFY:
5520 case PRE_MODIFY:
5521 {
5522 rtx op0 = XEXP (x, 0);
5523 rtx op1 = XEXP (x, 1);
c4963a0a 5524 enum rtx_code index_code;
41374e13
NS
5525 int regno;
5526 int reloadnum;
4b983fdc
RH
5527
5528 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5529 return 0;
5530
5531 /* Currently, we only support {PRE,POST}_MODIFY constructs
5532 where a base register is {inc,dec}remented by the contents
5533 of another register or by a constant value. Thus, these
5534 operands must match. */
41374e13 5535 gcc_assert (op0 == XEXP (op1, 0));
4b983fdc
RH
5536
5537 /* Require index register (or constant). Let's just handle the
5538 register case in the meantime... If the target allows
5539 auto-modify by a constant then we could try replacing a pseudo
4b7b277a
RS
5540 register with its equivalent constant where applicable.
5541
b098aaf2
UW
5542 We also handle the case where the register was eliminated
5543 resulting in a PLUS subexpression.
5544
4b7b277a
RS
5545 If we later decide to reload the whole PRE_MODIFY or
5546 POST_MODIFY, inc_for_reload might clobber the reload register
5547 before reading the index. The index register might therefore
5548 need to live longer than a TYPE reload normally would, so be
5549 conservative and class it as RELOAD_OTHER. */
b098aaf2
UW
5550 if ((REG_P (XEXP (op1, 1))
5551 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5552 || GET_CODE (XEXP (op1, 1)) == PLUS)
5553 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5554 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5555 ind_levels, insn);
4b983fdc 5556
41374e13 5557 gcc_assert (REG_P (XEXP (op1, 0)));
4b983fdc 5558
41374e13 5559 regno = REGNO (XEXP (op1, 0));
c4963a0a 5560 index_code = GET_CODE (XEXP (op1, 1));
41374e13
NS
5561
5562 /* A register that is incremented cannot be constant! */
5563 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5564 || reg_equiv_constant[regno] == 0);
4b983fdc 5565
41374e13
NS
5566 /* Handle a register that is equivalent to a memory location
5567 which cannot be addressed directly. */
5568 if (reg_equiv_memory_loc[regno] != 0
5569 && (reg_equiv_address[regno] != 0
5570 || num_not_at_initial_offset))
5571 {
5572 rtx tem = make_memloc (XEXP (x, 0), regno);
4b983fdc 5573
41374e13
NS
5574 if (reg_equiv_address[regno]
5575 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4b983fdc 5576 {
3f1e3e70
AO
5577 rtx orig = tem;
5578
41374e13
NS
5579 /* First reload the memory location's address.
5580 We can't use ADDR_TYPE (type) here, because we need to
5581 write back the value after reading it, hence we actually
5582 need two registers. */
5583 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5584 &XEXP (tem, 0), opnum,
5585 RELOAD_OTHER,
5586 ind_levels, insn);
5587
0f4b25a3 5588 if (!rtx_equal_p (tem, orig))
3f1e3e70
AO
5589 push_reg_equiv_alt_mem (regno, tem);
5590
41374e13 5591 /* Then reload the memory location into a base
c4963a0a 5592 register. */
41374e13 5593 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
c4963a0a
BS
5594 &XEXP (op1, 0),
5595 base_reg_class (mode, code,
5596 index_code),
5597 GET_MODE (x), GET_MODE (x), 0,
5598 0, opnum, RELOAD_OTHER);
9532e31f 5599
98c17df2
GS
5600 update_auto_inc_notes (this_insn, regno, reloadnum);
5601 return 0;
5602 }
4b983fdc 5603 }
41374e13
NS
5604
5605 if (reg_renumber[regno] >= 0)
5606 regno = reg_renumber[regno];
5607
5608 /* We require a base register here... */
c4963a0a 5609 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
41374e13
NS
5610 {
5611 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
c4963a0a
BS
5612 &XEXP (op1, 0), &XEXP (x, 0),
5613 base_reg_class (mode, code, index_code),
5614 GET_MODE (x), GET_MODE (x), 0, 0,
5615 opnum, RELOAD_OTHER);
41374e13
NS
5616
5617 update_auto_inc_notes (this_insn, regno, reloadnum);
5618 return 0;
5619 }
4b983fdc
RH
5620 }
5621 return 0;
5622
a2d353e5
RK
5623 case POST_INC:
5624 case POST_DEC:
5625 case PRE_INC:
5626 case PRE_DEC:
f8cfc6aa 5627 if (REG_P (XEXP (x, 0)))
eab89b90 5628 {
b3694847 5629 int regno = REGNO (XEXP (x, 0));
eab89b90
RK
5630 int value = 0;
5631 rtx x_orig = x;
5632
5633 /* A register that is incremented cannot be constant! */
41374e13
NS
5634 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5635 || reg_equiv_constant[regno] == 0);
eab89b90
RK
5636
5637 /* Handle a register that is equivalent to a memory location
5638 which cannot be addressed directly. */
cb2afeb3
R
5639 if (reg_equiv_memory_loc[regno] != 0
5640 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
eab89b90
RK
5641 {
5642 rtx tem = make_memloc (XEXP (x, 0), regno);
cb2afeb3
R
5643 if (reg_equiv_address[regno]
5644 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5645 {
3f1e3e70
AO
5646 rtx orig = tem;
5647
cb2afeb3
R
5648 /* First reload the memory location's address.
5649 We can't use ADDR_TYPE (type) here, because we need to
5650 write back the value after reading it, hence we actually
5651 need two registers. */
5652 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5653 &XEXP (tem, 0), opnum, type,
5654 ind_levels, insn);
0f4b25a3 5655 if (!rtx_equal_p (tem, orig))
3f1e3e70 5656 push_reg_equiv_alt_mem (regno, tem);
cb2afeb3
R
5657 /* Put this inside a new increment-expression. */
5658 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5659 /* Proceed to reload that, as if it contained a register. */
5660 }
eab89b90
RK
5661 }
5662
5663 /* If we have a hard register that is ok as an index,
5664 don't make a reload. If an autoincrement of a nice register
5665 isn't "valid", it must be that no autoincrement is "valid".
5666 If that is true and something made an autoincrement anyway,
5667 this must be a special context where one is allowed.
5668 (For example, a "push" instruction.)
5669 We can't improve this address, so leave it alone. */
5670
5671 /* Otherwise, reload the autoincrement into a suitable hard reg
5672 and record how much to increment by. */
5673
5674 if (reg_renumber[regno] >= 0)
5675 regno = reg_renumber[regno];
888d2cd6 5676 if (regno >= FIRST_PSEUDO_REGISTER
c4963a0a
BS
5677 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5678 index_code))
eab89b90 5679 {
55c22565
RK
5680 int reloadnum;
5681
5682 /* If we can output the register afterwards, do so, this
5683 saves the extra update.
5684 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5685 CALL_INSN - and it does not set CC0.
5686 But don't do this if we cannot directly address the
5687 memory location, since this will make it harder to
956d6950 5688 reuse address reloads, and increases register pressure.
55c22565 5689 Also don't do this if we can probably update x directly. */
3c0cb5de 5690 rtx equiv = (MEM_P (XEXP (x, 0))
cb2afeb3
R
5691 ? XEXP (x, 0)
5692 : reg_equiv_mem[regno]);
55c22565 5693 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
4b4bf941 5694 if (insn && NONJUMP_INSN_P (insn) && equiv
cb2afeb3 5695 && memory_operand (equiv, GET_MODE (equiv))
55c22565
RK
5696#ifdef HAVE_cc0
5697 && ! sets_cc0_p (PATTERN (insn))
5698#endif
5699 && ! (icode != CODE_FOR_nothing
a995e389
RH
5700 && ((*insn_data[icode].operand[0].predicate)
5701 (equiv, Pmode))
5702 && ((*insn_data[icode].operand[1].predicate)
5703 (equiv, Pmode))))
55c22565 5704 {
9e8f528c
AO
5705 /* We use the original pseudo for loc, so that
5706 emit_reload_insns() knows which pseudo this
5707 reload refers to and updates the pseudo rtx, not
5708 its equivalent memory location, as well as the
5709 corresponding entry in reg_last_reload_reg. */
5710 loc = &XEXP (x_orig, 0);
55c22565
RK
5711 x = XEXP (x, 0);
5712 reloadnum
5713 = push_reload (x, x, loc, loc,
888d2cd6 5714 context_reg_class,
05d10675
BS
5715 GET_MODE (x), GET_MODE (x), 0, 0,
5716 opnum, RELOAD_OTHER);
55c22565
RK
5717 }
5718 else
5719 {
5720 reloadnum
f4f4d0f8 5721 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5722 context_reg_class,
e9a25f70 5723 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565 5724 opnum, type);
eceef4c9 5725 rld[reloadnum].inc
55c22565 5726 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
05d10675 5727
55c22565
RK
5728 value = 1;
5729 }
eab89b90 5730
98c17df2
GS
5731 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5732 reloadnum);
eab89b90
RK
5733 }
5734 return value;
5735 }
a2d353e5
RK
5736 return 0;
5737
19fe122f
HPN
5738 case TRUNCATE:
5739 case SIGN_EXTEND:
5740 case ZERO_EXTEND:
5741 /* Look for parts to reload in the inner expression and reload them
5742 too, in addition to this operation. Reloading all inner parts in
5743 addition to this one shouldn't be necessary, but at this point,
5744 we don't know if we can possibly omit any part that *can* be
5745 reloaded. Targets that are better off reloading just either part
5746 (or perhaps even a different part of an outer expression), should
5747 define LEGITIMIZE_RELOAD_ADDRESS. */
5748 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
c4963a0a 5749 context, code, SCRATCH, &XEXP (x, 0), opnum,
19fe122f
HPN
5750 type, ind_levels, insn);
5751 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5752 context_reg_class,
5753 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5754 return 1;
5755
a2d353e5
RK
5756 case MEM:
5757 /* This is probably the result of a substitution, by eliminate_regs, of
5758 an equivalent address for a pseudo that was not allocated to a hard
5759 register. Verify that the specified address is valid and reload it
5760 into a register.
eab89b90 5761
a2d353e5
RK
5762 Since we know we are going to reload this item, don't decrement for
5763 the indirection level.
eab89b90
RK
5764
5765 Note that this is actually conservative: it would be slightly more
5766 efficient to use the value of SPILL_INDIRECT_LEVELS from
5767 reload1.c here. */
5768
5769 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5770 opnum, ADDR_TYPE (type), ind_levels, insn);
f4f4d0f8 5771 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5772 context_reg_class,
a8c9daeb 5773 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5774 return 1;
eab89b90 5775
a2d353e5
RK
5776 case REG:
5777 {
b3694847 5778 int regno = REGNO (x);
a2d353e5
RK
5779
5780 if (reg_equiv_constant[regno] != 0)
5781 {
03acd8f8 5782 find_reloads_address_part (reg_equiv_constant[regno], loc,
888d2cd6 5783 context_reg_class,
a2d353e5
RK
5784 GET_MODE (x), opnum, type, ind_levels);
5785 return 1;
5786 }
eab89b90
RK
5787
5788#if 0 /* This might screw code in reload1.c to delete prior output-reload
5789 that feeds this insn. */
a2d353e5
RK
5790 if (reg_equiv_mem[regno] != 0)
5791 {
f4f4d0f8 5792 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
888d2cd6 5793 context_reg_class,
a2d353e5
RK
5794 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5795 return 1;
5796 }
eab89b90 5797#endif
eab89b90 5798
cb2afeb3
R
5799 if (reg_equiv_memory_loc[regno]
5800 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
a2d353e5 5801 {
cb2afeb3
R
5802 rtx tem = make_memloc (x, regno);
5803 if (reg_equiv_address[regno] != 0
5804 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5805 {
5806 x = tem;
5807 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5808 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5809 ind_levels, insn);
0f4b25a3 5810 if (!rtx_equal_p (x, tem))
3f1e3e70 5811 push_reg_equiv_alt_mem (regno, x);
cb2afeb3 5812 }
a2d353e5 5813 }
eab89b90 5814
a2d353e5
RK
5815 if (reg_renumber[regno] >= 0)
5816 regno = reg_renumber[regno];
5817
888d2cd6 5818 if (regno >= FIRST_PSEUDO_REGISTER
c4963a0a
BS
5819 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5820 index_code))
a2d353e5 5821 {
f4f4d0f8 5822 push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5823 context_reg_class,
a2d353e5
RK
5824 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5825 return 1;
5826 }
5827
5828 /* If a register appearing in an address is the subject of a CLOBBER
5829 in this insn, reload it into some other register to be safe.
5830 The CLOBBER is supposed to make the register unavailable
5831 from before this insn to after it. */
9532e31f 5832 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
a2d353e5 5833 {
f4f4d0f8 5834 push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5835 context_reg_class,
a2d353e5
RK
5836 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5837 return 1;
5838 }
5839 }
5840 return 0;
5841
5842 case SUBREG:
f8cfc6aa 5843 if (REG_P (SUBREG_REG (x)))
eab89b90 5844 {
922db4bb
RK
5845 /* If this is a SUBREG of a hard register and the resulting register
5846 is of the wrong class, reload the whole SUBREG. This avoids
5847 needless copies if SUBREG_REG is multi-word. */
5848 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5849 {
4977bab6 5850 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
a2d353e5 5851
c4963a0a
BS
5852 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5853 index_code))
922db4bb 5854 {
f4f4d0f8 5855 push_reload (x, NULL_RTX, loc, (rtx*) 0,
888d2cd6 5856 context_reg_class,
922db4bb
RK
5857 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5858 return 1;
5859 }
5860 }
abc95ed3 5861 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5862 is larger than the class size, then reload the whole SUBREG. */
5863 else
a2d353e5 5864 {
888d2cd6 5865 enum reg_class class = context_reg_class;
f7043461 5866 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
922db4bb
RK
5867 > reg_class_size[class])
5868 {
50aa8e71
R
5869 x = find_reloads_subreg_address (x, 0, opnum,
5870 ADDR_TYPE (type),
22505ad8 5871 ind_levels, insn);
f4f4d0f8 5872 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
922db4bb
RK
5873 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5874 return 1;
5875 }
a2d353e5 5876 }
eab89b90 5877 }
a2d353e5 5878 break;
05d10675 5879
e9a25f70
JL
5880 default:
5881 break;
eab89b90
RK
5882 }
5883
a2d353e5 5884 {
b3694847
SS
5885 const char *fmt = GET_RTX_FORMAT (code);
5886 int i;
a2d353e5
RK
5887
5888 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5889 {
5890 if (fmt[i] == 'e')
c4963a0a
BS
5891 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5892 we get here. */
5893 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5894 &XEXP (x, i), opnum, type, ind_levels, insn);
a2d353e5
RK
5895 }
5896 }
5897
888d2cd6 5898#undef REG_OK_FOR_CONTEXT
eab89b90
RK
5899 return 0;
5900}
5901\f
5902/* X, which is found at *LOC, is a part of an address that needs to be
5903 reloaded into a register of class CLASS. If X is a constant, or if
5904 X is a PLUS that contains a constant, check that the constant is a
5905 legitimate operand and that we are supposed to be able to load
5906 it into the register.
5907
5908 If not, force the constant into memory and reload the MEM instead.
5909
5910 MODE is the mode to use, in case X is an integer constant.
5911
a8c9daeb 5912 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
5913
5914 IND_LEVELS says how many levels of indirect addressing this machine
5915 supports. */
5916
5917static void
0c20a65f
AJ
5918find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5919 enum machine_mode mode, int opnum,
5920 enum reload_type type, int ind_levels)
eab89b90
RK
5921{
5922 if (CONSTANT_P (x)
5923 && (! LEGITIMATE_CONSTANT_P (x)
5924 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5925 {
ef18065c
JW
5926 rtx tem;
5927
081b49f1 5928 tem = x = force_const_mem (mode, x);
eab89b90 5929 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5930 opnum, type, ind_levels, 0);
eab89b90
RK
5931 }
5932
5933 else if (GET_CODE (x) == PLUS
5934 && CONSTANT_P (XEXP (x, 1))
5935 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5936 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5937 {
ef18065c
JW
5938 rtx tem;
5939
081b49f1 5940 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
38a448ca 5941 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
eab89b90 5942 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5943 opnum, type, ind_levels, 0);
eab89b90
RK
5944 }
5945
f4f4d0f8 5946 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
a8c9daeb 5947 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5948}
5949\f
22505ad8
R
5950/* X, a subreg of a pseudo, is a part of an address that needs to be
5951 reloaded.
5952
5953 If the pseudo is equivalent to a memory location that cannot be directly
5954 addressed, make the necessary address reloads.
5955
5956 If address reloads have been necessary, or if the address is changed
5957 by register elimination, return the rtx of the memory location;
5958 otherwise, return X.
5959
5960 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5961 memory location.
5962
5963 OPNUM and TYPE identify the purpose of the reload.
5964
5965 IND_LEVELS says how many levels of indirect addressing are
5966 supported at this point in the address.
5967
5968 INSN, if nonzero, is the insn in which we do the reload. It is used
5969 to determine where to put USEs for pseudos that we have to replace with
5970 stack slots. */
5971
5972static rtx
0c20a65f
AJ
5973find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5974 enum reload_type type, int ind_levels, rtx insn)
22505ad8
R
5975{
5976 int regno = REGNO (SUBREG_REG (x));
5977
5978 if (reg_equiv_memory_loc[regno])
5979 {
5980 /* If the address is not directly addressable, or if the address is not
5981 offsettable, then it must be replaced. */
5982 if (! force_replace
5983 && (reg_equiv_address[regno]
5984 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5985 force_replace = 1;
5986
5987 if (force_replace || num_not_at_initial_offset)
5988 {
5989 rtx tem = make_memloc (SUBREG_REG (x), regno);
5990
5991 /* If the address changes because of register elimination, then
dd074554 5992 it must be replaced. */
22505ad8
R
5993 if (force_replace
5994 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5995 {
0a28aef9
RH
5996 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5997 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6357135a 5998 int offset;
3f1e3e70 5999 rtx orig = tem;
f5c3dc96
ILT
6000 enum machine_mode orig_mode = GET_MODE (orig);
6001 int reloaded;
6357135a
UW
6002
6003 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6004 hold the correct (negative) byte offset. */
6005 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6006 offset = inner_size - outer_size;
6007 else
6008 offset = SUBREG_BYTE (x);
22505ad8 6009
22505ad8
R
6010 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6011 PUT_MODE (tem, GET_MODE (x));
0a28aef9
RH
6012
6013 /* If this was a paradoxical subreg that we replaced, the
6014 resulting memory must be sufficiently aligned to allow
6015 us to widen the mode of the memory. */
5a575f77 6016 if (outer_size > inner_size)
0a28aef9
RH
6017 {
6018 rtx base;
6019
6020 base = XEXP (tem, 0);
6021 if (GET_CODE (base) == PLUS)
6022 {
6023 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6024 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6025 return x;
6026 base = XEXP (base, 0);
6027 }
f8cfc6aa 6028 if (!REG_P (base)
0a28aef9
RH
6029 || (REGNO_POINTER_ALIGN (REGNO (base))
6030 < outer_size * BITS_PER_UNIT))
6031 return x;
6032 }
6033
f5c3dc96
ILT
6034 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6035 XEXP (tem, 0), &XEXP (tem, 0),
6036 opnum, type, ind_levels, insn);
3f1e3e70 6037 /* ??? Do we need to handle nonzero offsets somehow? */
0f4b25a3 6038 if (!offset && !rtx_equal_p (tem, orig))
3f1e3e70 6039 push_reg_equiv_alt_mem (regno, tem);
0a28aef9 6040
f5c3dc96
ILT
6041 /* For some processors an address may be valid in the
6042 original mode but not in a smaller mode. For
6043 example, ARM accepts a scaled index register in
6044 SImode but not in HImode. find_reloads_address
6045 assumes that we pass it a valid address, and doesn't
6046 force a reload. This will probably be fine if
6047 find_reloads_address finds some reloads. But if it
6048 doesn't find any, then we may have just converted a
6049 valid address into an invalid one. Check for that
6050 here. */
6051 if (reloaded != 1
6052 && strict_memory_address_p (orig_mode, XEXP (tem, 0))
6053 && !strict_memory_address_p (GET_MODE (tem),
6054 XEXP (tem, 0)))
6055 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6056 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6057 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6058 opnum, type);
6059
22505ad8
R
6060 /* If this is not a toplevel operand, find_reloads doesn't see
6061 this substitution. We have to emit a USE of the pseudo so
6062 that delete_output_reload can see it. */
1ccbefce 6063 if (replace_reloads && recog_data.operand[opnum] != x)
3d17d93d
AO
6064 /* We mark the USE with QImode so that we recognize it
6065 as one that can be safely deleted at the end of
6066 reload. */
6067 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6068 SUBREG_REG (x)),
6069 insn), QImode);
0ba9b9e6 6070 x = tem;
22505ad8
R
6071 }
6072 }
6073 }
6074 return x;
6075}
6076\f
a8c9daeb 6077/* Substitute into the current INSN the registers into which we have reloaded
eab89b90 6078 the things that need reloading. The array `replacements'
ecbe6c61 6079 contains the locations of all pointers that must be changed
eab89b90
RK
6080 and says what to replace them with.
6081
6082 Return the rtx that X translates into; usually X, but modified. */
6083
6084void
0c20a65f 6085subst_reloads (rtx insn)
eab89b90 6086{
b3694847 6087 int i;
eab89b90
RK
6088
6089 for (i = 0; i < n_replacements; i++)
6090 {
b3694847
SS
6091 struct replacement *r = &replacements[i];
6092 rtx reloadreg = rld[r->what].reg_rtx;
eab89b90
RK
6093 if (reloadreg)
6094 {
0fa4cb7d
SE
6095#ifdef DEBUG_RELOAD
6096 /* This checking takes a very long time on some platforms
6097 causing the gcc.c-torture/compile/limits-fnargs.c test
6098 to time out during testing. See PR 31850.
6099
6100 Internal consistency test. Check that we don't modify
cf728d61
HPN
6101 anything in the equivalence arrays. Whenever something from
6102 those arrays needs to be reloaded, it must be unshared before
6103 being substituted into; the equivalence must not be modified.
6104 Otherwise, if the equivalence is used after that, it will
6105 have been modified, and the thing substituted (probably a
6106 register) is likely overwritten and not a usable equivalence. */
6107 int check_regno;
6108
6109 for (check_regno = 0; check_regno < max_regno; check_regno++)
6110 {
6111#define CHECK_MODF(ARRAY) \
41374e13
NS
6112 gcc_assert (!ARRAY[check_regno] \
6113 || !loc_mentioned_in_p (r->where, \
6114 ARRAY[check_regno]))
cf728d61
HPN
6115
6116 CHECK_MODF (reg_equiv_constant);
6117 CHECK_MODF (reg_equiv_memory_loc);
6118 CHECK_MODF (reg_equiv_address);
6119 CHECK_MODF (reg_equiv_mem);
6120#undef CHECK_MODF
6121 }
0fa4cb7d 6122#endif /* DEBUG_RELOAD */
cf728d61 6123
f759eb8b
AO
6124 /* If we're replacing a LABEL_REF with a register, add a
6125 REG_LABEL note to indicate to flow which label this
6126 register refers to. */
6127 if (GET_CODE (*r->where) == LABEL_REF
4b4bf941 6128 && JUMP_P (insn))
d14e25e0
AP
6129 {
6130 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6131 XEXP (*r->where, 0),
6132 REG_NOTES (insn));
6133 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6134 }
f759eb8b 6135
eab89b90 6136 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
6137 used to be there. Note that gen_lowpart_common will
6138 do the wrong thing if RELOADREG is multi-word. RELOADREG
6139 will always be a REG here. */
eab89b90 6140 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
f12448c8 6141 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
eab89b90
RK
6142
6143 /* If we are putting this into a SUBREG and RELOADREG is a
6144 SUBREG, we would be making nested SUBREGs, so we have to fix
6145 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6146
6147 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6148 {
6149 if (GET_MODE (*r->subreg_loc)
6150 == GET_MODE (SUBREG_REG (reloadreg)))
6151 *r->subreg_loc = SUBREG_REG (reloadreg);
6152 else
6153 {
ddef6bc7
JJ
6154 int final_offset =
6155 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6156
6157 /* When working with SUBREGs the rule is that the byte
6158 offset must be a multiple of the SUBREG's mode. */
6159 final_offset = (final_offset /
6160 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6161 final_offset = (final_offset *
6162 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6163
eab89b90 6164 *r->where = SUBREG_REG (reloadreg);
ddef6bc7 6165 SUBREG_BYTE (*r->subreg_loc) = final_offset;
eab89b90
RK
6166 }
6167 }
6168 else
6169 *r->where = reloadreg;
6170 }
6171 /* If reload got no reg and isn't optional, something's wrong. */
41374e13
NS
6172 else
6173 gcc_assert (rld[r->what].optional);
eab89b90
RK
6174 }
6175}
6176\f
561c9153
RH
6177/* Make a copy of any replacements being done into X and move those
6178 copies to locations in Y, a copy of X. */
eab89b90
RK
6179
6180void
0c20a65f 6181copy_replacements (rtx x, rtx y)
eab89b90 6182{
eab89b90
RK
6183 /* We can't support X being a SUBREG because we might then need to know its
6184 location if something inside it was replaced. */
41374e13 6185 gcc_assert (GET_CODE (x) != SUBREG);
eab89b90 6186
561c9153
RH
6187 copy_replacements_1 (&x, &y, n_replacements);
6188}
6189
6190static void
0c20a65f 6191copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
561c9153
RH
6192{
6193 int i, j;
6194 rtx x, y;
6195 struct replacement *r;
6196 enum rtx_code code;
6197 const char *fmt;
6198
6199 for (j = 0; j < orig_replacements; j++)
6200 {
6201 if (replacements[j].subreg_loc == px)
eab89b90 6202 {
561c9153
RH
6203 r = &replacements[n_replacements++];
6204 r->where = replacements[j].where;
6205 r->subreg_loc = py;
6206 r->what = replacements[j].what;
6207 r->mode = replacements[j].mode;
6208 }
6209 else if (replacements[j].where == px)
6210 {
6211 r = &replacements[n_replacements++];
6212 r->where = py;
6213 r->subreg_loc = 0;
6214 r->what = replacements[j].what;
6215 r->mode = replacements[j].mode;
eab89b90 6216 }
561c9153
RH
6217 }
6218
6219 x = *px;
6220 y = *py;
6221 code = GET_CODE (x);
6222 fmt = GET_RTX_FORMAT (code);
6223
6224 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6225 {
6226 if (fmt[i] == 'e')
6227 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6228 else if (fmt[i] == 'E')
6229 for (j = XVECLEN (x, i); --j >= 0; )
6230 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6231 orig_replacements);
6232 }
eab89b90 6233}
a9a2595b 6234
3eae4643 6235/* Change any replacements being done to *X to be done to *Y. */
a9a2595b
JR
6236
6237void
0c20a65f 6238move_replacements (rtx *x, rtx *y)
a9a2595b
JR
6239{
6240 int i;
6241
6242 for (i = 0; i < n_replacements; i++)
6243 if (replacements[i].subreg_loc == x)
6244 replacements[i].subreg_loc = y;
6245 else if (replacements[i].where == x)
6246 {
6247 replacements[i].where = y;
6248 replacements[i].subreg_loc = 0;
6249 }
6250}
eab89b90 6251\f
af929c62
RK
6252/* If LOC was scheduled to be replaced by something, return the replacement.
6253 Otherwise, return *LOC. */
6254
6255rtx
0c20a65f 6256find_replacement (rtx *loc)
af929c62
RK
6257{
6258 struct replacement *r;
6259
6260 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6261 {
eceef4c9 6262 rtx reloadreg = rld[r->what].reg_rtx;
af929c62
RK
6263
6264 if (reloadreg && r->where == loc)
6265 {
6266 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
38a448ca 6267 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
af929c62
RK
6268
6269 return reloadreg;
6270 }
6271 else if (reloadreg && r->subreg_loc == loc)
6272 {
6273 /* RELOADREG must be either a REG or a SUBREG.
6274
6275 ??? Is it actually still ever a SUBREG? If so, why? */
6276
f8cfc6aa 6277 if (REG_P (reloadreg))
38a448ca 6278 return gen_rtx_REG (GET_MODE (*loc),
ddef6bc7
JJ
6279 (REGNO (reloadreg) +
6280 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6281 GET_MODE (SUBREG_REG (*loc)),
6282 SUBREG_BYTE (*loc),
6283 GET_MODE (*loc))));
af929c62
RK
6284 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6285 return reloadreg;
6286 else
ddef6bc7
JJ
6287 {
6288 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6289
6290 /* When working with SUBREGs the rule is that the byte
6291 offset must be a multiple of the SUBREG's mode. */
6292 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6293 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6294 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6295 final_offset);
6296 }
af929c62
RK
6297 }
6298 }
6299
956d6950
JL
6300 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6301 what's inside and make a new rtl if so. */
6302 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6303 || GET_CODE (*loc) == MULT)
6304 {
6305 rtx x = find_replacement (&XEXP (*loc, 0));
6306 rtx y = find_replacement (&XEXP (*loc, 1));
6307
6308 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
38a448ca 6309 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
956d6950
JL
6310 }
6311
af929c62
RK
6312 return *loc;
6313}
6314\f
eab89b90
RK
6315/* Return nonzero if register in range [REGNO, ENDREGNO)
6316 appears either explicitly or implicitly in X
4644aad4 6317 other than being stored into (except for earlyclobber operands).
eab89b90
RK
6318
6319 References contained within the substructure at LOC do not count.
6320 LOC may be zero, meaning don't ignore anything.
6321
6322 This is similar to refers_to_regno_p in rtlanal.c except that we
6323 look at equivalences for pseudos that didn't get hard registers. */
6324
10015a27 6325static int
0c20a65f
AJ
6326refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6327 rtx x, rtx *loc)
eab89b90 6328{
770ae6cc
RK
6329 int i;
6330 unsigned int r;
6331 RTX_CODE code;
6332 const char *fmt;
eab89b90
RK
6333
6334 if (x == 0)
6335 return 0;
6336
6337 repeat:
6338 code = GET_CODE (x);
6339
6340 switch (code)
6341 {
6342 case REG:
770ae6cc 6343 r = REGNO (x);
eab89b90 6344
4803a34a
RK
6345 /* If this is a pseudo, a hard register must not have been allocated.
6346 X must therefore either be a constant or be in memory. */
770ae6cc 6347 if (r >= FIRST_PSEUDO_REGISTER)
4803a34a 6348 {
770ae6cc 6349 if (reg_equiv_memory_loc[r])
4803a34a 6350 return refers_to_regno_for_reload_p (regno, endregno,
770ae6cc 6351 reg_equiv_memory_loc[r],
f4f4d0f8 6352 (rtx*) 0);
4803a34a 6353
444aea52 6354 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
41374e13 6355 return 0;
4803a34a 6356 }
eab89b90 6357
770ae6cc
RK
6358 return (endregno > r
6359 && regno < r + (r < FIRST_PSEUDO_REGISTER
66fd46b6 6360 ? hard_regno_nregs[r][GET_MODE (x)]
eab89b90
RK
6361 : 1));
6362
6363 case SUBREG:
6364 /* If this is a SUBREG of a hard reg, we can see exactly which
6365 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 6366 if (REG_P (SUBREG_REG (x))
eab89b90
RK
6367 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6368 {
ddef6bc7 6369 unsigned int inner_regno = subreg_regno (x);
770ae6cc 6370 unsigned int inner_endregno
403c659c 6371 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 6372 ? subreg_nregs (x) : 1);
eab89b90
RK
6373
6374 return endregno > inner_regno && regno < inner_endregno;
6375 }
6376 break;
6377
6378 case CLOBBER:
6379 case SET:
6380 if (&SET_DEST (x) != loc
6381 /* Note setting a SUBREG counts as referring to the REG it is in for
6382 a pseudo but not for hard registers since we can
6383 treat each word individually. */
6384 && ((GET_CODE (SET_DEST (x)) == SUBREG
6385 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 6386 && REG_P (SUBREG_REG (SET_DEST (x)))
eab89b90
RK
6387 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6388 && refers_to_regno_for_reload_p (regno, endregno,
6389 SUBREG_REG (SET_DEST (x)),
6390 loc))
abc95ed3 6391 /* If the output is an earlyclobber operand, this is
4644aad4 6392 a conflict. */
f8cfc6aa 6393 || ((!REG_P (SET_DEST (x))
4644aad4 6394 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
6395 && refers_to_regno_for_reload_p (regno, endregno,
6396 SET_DEST (x), loc))))
6397 return 1;
6398
6399 if (code == CLOBBER || loc == &SET_SRC (x))
6400 return 0;
6401 x = SET_SRC (x);
6402 goto repeat;
05d10675 6403
e9a25f70
JL
6404 default:
6405 break;
eab89b90
RK
6406 }
6407
6408 /* X does not match, so try its subexpressions. */
6409
6410 fmt = GET_RTX_FORMAT (code);
6411 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6412 {
6413 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6414 {
6415 if (i == 0)
6416 {
6417 x = XEXP (x, 0);
6418 goto repeat;
6419 }
6420 else
6421 if (refers_to_regno_for_reload_p (regno, endregno,
6422 XEXP (x, i), loc))
6423 return 1;
6424 }
6425 else if (fmt[i] == 'E')
6426 {
b3694847 6427 int j;
4381f7c2 6428 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
eab89b90
RK
6429 if (loc != &XVECEXP (x, i, j)
6430 && refers_to_regno_for_reload_p (regno, endregno,
6431 XVECEXP (x, i, j), loc))
6432 return 1;
6433 }
6434 }
6435 return 0;
6436}
bfa30b22
RK
6437
6438/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6439 we check if any register number in X conflicts with the relevant register
6440 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6441 contains a MEM (we don't bother checking for memory addresses that can't
05d10675 6442 conflict because we expect this to be a rare case.
bfa30b22 6443
e0120d6e 6444 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
bfa30b22
RK
6445 that we look at equivalences for pseudos that didn't get hard registers. */
6446
6447int
0c20a65f 6448reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
bfa30b22
RK
6449{
6450 int regno, endregno;
6451
b98b49ac 6452 /* Overly conservative. */
38979c65 6453 if (GET_CODE (x) == STRICT_LOW_PART
ec8e098d 6454 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
b98b49ac
JL
6455 x = XEXP (x, 0);
6456
6457 /* If either argument is a constant, then modifying X can not affect IN. */
6458 if (CONSTANT_P (x) || CONSTANT_P (in))
6459 return 0;
838f78d6
DD
6460 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6461 return refers_to_mem_for_reload_p (in);
b98b49ac 6462 else if (GET_CODE (x) == SUBREG)
bfa30b22
RK
6463 {
6464 regno = REGNO (SUBREG_REG (x));
6465 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7
JJ
6466 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6467 GET_MODE (SUBREG_REG (x)),
6468 SUBREG_BYTE (x),
6469 GET_MODE (x));
f1f4e530
JM
6470 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6471 ? subreg_nregs (x) : 1);
6472
6473 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
bfa30b22 6474 }
f8cfc6aa 6475 else if (REG_P (x))
bfa30b22
RK
6476 {
6477 regno = REGNO (x);
4803a34a
RK
6478
6479 /* If this is a pseudo, it must not have been assigned a hard register.
6480 Therefore, it must either be in memory or be a constant. */
6481
6482 if (regno >= FIRST_PSEUDO_REGISTER)
6483 {
6484 if (reg_equiv_memory_loc[regno])
6485 return refers_to_mem_for_reload_p (in);
41374e13
NS
6486 gcc_assert (reg_equiv_constant[regno]);
6487 return 0;
4803a34a 6488 }
f1f4e530 6489
09e18274 6490 endregno = END_HARD_REGNO (x);
f1f4e530
JM
6491
6492 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
bfa30b22 6493 }
3c0cb5de 6494 else if (MEM_P (x))
4803a34a 6495 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
6496 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6497 || GET_CODE (x) == CC0)
6498 return reg_mentioned_p (x, in);
41374e13 6499 else
69f38ab9 6500 {
41374e13
NS
6501 gcc_assert (GET_CODE (x) == PLUS);
6502
69f38ab9
R
6503 /* We actually want to know if X is mentioned somewhere inside IN.
6504 We must not say that (plus (sp) (const_int 124)) is in
6505 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6506 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6507 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
3c0cb5de 6508 while (MEM_P (in))
69f38ab9 6509 in = XEXP (in, 0);
f8cfc6aa 6510 if (REG_P (in))
69f38ab9
R
6511 return 0;
6512 else if (GET_CODE (in) == PLUS)
10050f74
KK
6513 return (rtx_equal_p (x, in)
6514 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
69f38ab9
R
6515 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6516 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6517 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6518 }
bfa30b22 6519
f1f4e530 6520 gcc_unreachable ();
bfa30b22 6521}
4803a34a
RK
6522
6523/* Return nonzero if anything in X contains a MEM. Look also for pseudo
6524 registers. */
6525
10015a27 6526static int
0c20a65f 6527refers_to_mem_for_reload_p (rtx x)
4803a34a 6528{
6f7d635c 6529 const char *fmt;
4803a34a
RK
6530 int i;
6531
3c0cb5de 6532 if (MEM_P (x))
4803a34a
RK
6533 return 1;
6534
f8cfc6aa 6535 if (REG_P (x))
4803a34a
RK
6536 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6537 && reg_equiv_memory_loc[REGNO (x)]);
05d10675 6538
4803a34a
RK
6539 fmt = GET_RTX_FORMAT (GET_CODE (x));
6540 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6541 if (fmt[i] == 'e'
3c0cb5de 6542 && (MEM_P (XEXP (x, i))
4803a34a
RK
6543 || refers_to_mem_for_reload_p (XEXP (x, i))))
6544 return 1;
05d10675 6545
4803a34a
RK
6546 return 0;
6547}
eab89b90 6548\f
eab89b90
RK
6549/* Check the insns before INSN to see if there is a suitable register
6550 containing the same value as GOAL.
6551 If OTHER is -1, look for a register in class CLASS.
6552 Otherwise, just see if register number OTHER shares GOAL's value.
6553
6554 Return an rtx for the register found, or zero if none is found.
6555
6556 If RELOAD_REG_P is (short *)1,
6557 we reject any hard reg that appears in reload_reg_rtx
6558 because such a hard reg is also needed coming into this insn.
6559
6560 If RELOAD_REG_P is any other nonzero value,
6561 it is a vector indexed by hard reg number
6562 and we reject any hard reg whose element in the vector is nonnegative
6563 as well as any that appears in reload_reg_rtx.
6564
6565 If GOAL is zero, then GOALREG is a register number; we look
6566 for an equivalent for that register.
6567
6568 MODE is the machine mode of the value we want an equivalence for.
6569 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6570
6571 This function is used by jump.c as well as in the reload pass.
6572
6573 If GOAL is the sum of the stack pointer and a constant, we treat it
6574 as if it were a constant except that sp is required to be unchanging. */
6575
6576rtx
0c20a65f
AJ
6577find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6578 short *reload_reg_p, int goalreg, enum machine_mode mode)
eab89b90 6579{
b3694847 6580 rtx p = insn;
f55b1d97 6581 rtx goaltry, valtry, value, where;
b3694847
SS
6582 rtx pat;
6583 int regno = -1;
eab89b90
RK
6584 int valueno;
6585 int goal_mem = 0;
6586 int goal_const = 0;
6587 int goal_mem_addr_varies = 0;
6588 int need_stable_sp = 0;
6589 int nregs;
6590 int valuenregs;
0bcf8261 6591 int num = 0;
eab89b90
RK
6592
6593 if (goal == 0)
6594 regno = goalreg;
f8cfc6aa 6595 else if (REG_P (goal))
eab89b90 6596 regno = REGNO (goal);
3c0cb5de 6597 else if (MEM_P (goal))
eab89b90
RK
6598 {
6599 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6600 if (MEM_VOLATILE_P (goal))
6601 return 0;
3d8bf70f 6602 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
eab89b90
RK
6603 return 0;
6604 /* An address with side effects must be reexecuted. */
6605 switch (code)
6606 {
6607 case POST_INC:
6608 case PRE_INC:
6609 case POST_DEC:
6610 case PRE_DEC:
4b983fdc
RH
6611 case POST_MODIFY:
6612 case PRE_MODIFY:
eab89b90 6613 return 0;
e9a25f70
JL
6614 default:
6615 break;
eab89b90
RK
6616 }
6617 goal_mem = 1;
6618 }
6619 else if (CONSTANT_P (goal))
6620 goal_const = 1;
6621 else if (GET_CODE (goal) == PLUS
6622 && XEXP (goal, 0) == stack_pointer_rtx
6623 && CONSTANT_P (XEXP (goal, 1)))
6624 goal_const = need_stable_sp = 1;
812f2051
R
6625 else if (GET_CODE (goal) == PLUS
6626 && XEXP (goal, 0) == frame_pointer_rtx
6627 && CONSTANT_P (XEXP (goal, 1)))
6628 goal_const = 1;
eab89b90
RK
6629 else
6630 return 0;
6631
0bcf8261 6632 num = 0;
eab89b90
RK
6633 /* Scan insns back from INSN, looking for one that copies
6634 a value into or out of GOAL.
6635 Stop and give up if we reach a label. */
6636
6637 while (1)
6638 {
6639 p = PREV_INSN (p);
0bcf8261 6640 num++;
4b4bf941 6641 if (p == 0 || LABEL_P (p)
0bcf8261 6642 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
eab89b90 6643 return 0;
770ae6cc 6644
4b4bf941 6645 if (NONJUMP_INSN_P (p)
0f41302f 6646 /* If we don't want spill regs ... */
a8c9daeb
RK
6647 && (! (reload_reg_p != 0
6648 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
770ae6cc
RK
6649 /* ... then ignore insns introduced by reload; they aren't
6650 useful and can cause results in reload_as_needed to be
6651 different from what they were when calculating the need for
6652 spills. If we notice an input-reload insn here, we will
6653 reject it below, but it might hide a usable equivalent.
0e61db61 6654 That makes bad code. It may even fail: perhaps no reg was
770ae6cc
RK
6655 spilled for this insn because it was assumed we would find
6656 that equivalent. */
eab89b90
RK
6657 || INSN_UID (p) < reload_first_uid))
6658 {
e8094962 6659 rtx tem;
eab89b90 6660 pat = single_set (p);
770ae6cc 6661
eab89b90
RK
6662 /* First check for something that sets some reg equal to GOAL. */
6663 if (pat != 0
6664 && ((regno >= 0
6665 && true_regnum (SET_SRC (pat)) == regno
6666 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6667 ||
6668 (regno >= 0
6669 && true_regnum (SET_DEST (pat)) == regno
6670 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6671 ||
6672 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
a5546290
R
6673 /* When looking for stack pointer + const,
6674 make sure we don't use a stack adjust. */
6675 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
eab89b90
RK
6676 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6677 || (goal_mem
6678 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6679 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6680 || (goal_mem
6681 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
6682 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6683 /* If we are looking for a constant,
6684 and something equivalent to that constant was copied
6685 into a reg, we can use that reg. */
efc9bd41
RK
6686 || (goal_const && REG_NOTES (p) != 0
6687 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6688 && ((rtx_equal_p (XEXP (tem, 0), goal)
6689 && (valueno
6690 = true_regnum (valtry = SET_DEST (pat))) >= 0)
f8cfc6aa 6691 || (REG_P (SET_DEST (pat))
efc9bd41 6692 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
3d8bf70f 6693 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
efc9bd41
RK
6694 && GET_CODE (goal) == CONST_INT
6695 && 0 != (goaltry
6696 = operand_subword (XEXP (tem, 0), 0, 0,
f55b1d97 6697 VOIDmode))
efc9bd41
RK
6698 && rtx_equal_p (goal, goaltry)
6699 && (valtry
6700 = operand_subword (SET_DEST (pat), 0, 0,
6701 VOIDmode))
6702 && (valueno = true_regnum (valtry)) >= 0)))
fb3821f7
CH
6703 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6704 NULL_RTX))
f8cfc6aa 6705 && REG_P (SET_DEST (pat))
e8094962 6706 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
3d8bf70f 6707 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
e8094962 6708 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
6709 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6710 VOIDmode))
6711 && rtx_equal_p (goal, goaltry)
e8094962
RK
6712 && (valtry
6713 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 6714 && (valueno = true_regnum (valtry)) >= 0)))
0192d704
R
6715 {
6716 if (other >= 0)
6717 {
6718 if (valueno != other)
6719 continue;
6720 }
6721 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6722 continue;
09e18274
RS
6723 else if (!in_hard_reg_set_p (reg_class_contents[(int) class],
6724 mode, valueno))
6725 continue;
0192d704
R
6726 value = valtry;
6727 where = p;
6728 break;
6729 }
eab89b90
RK
6730 }
6731 }
6732
6733 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6734 (or copying VALUE into GOAL, if GOAL is also a register).
6735 Now verify that VALUE is really valid. */
6736
6737 /* VALUENO is the register number of VALUE; a hard register. */
6738
6739 /* Don't try to re-use something that is killed in this insn. We want
6740 to be able to trust REG_UNUSED notes. */
efc9bd41 6741 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
eab89b90
RK
6742 return 0;
6743
6744 /* If we propose to get the value from the stack pointer or if GOAL is
6745 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 6746 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
6747 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6748 goal)))
eab89b90
RK
6749 need_stable_sp = 1;
6750
6751 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6752 if (GET_MODE (value) != mode)
6753 return 0;
6754
6755 /* Reject VALUE if it was loaded from GOAL
6756 and is also a register that appears in the address of GOAL. */
6757
bd5f6d44 6758 if (goal_mem && value == SET_DEST (single_set (where))
09e18274 6759 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
f4f4d0f8 6760 goal, (rtx*) 0))
eab89b90
RK
6761 return 0;
6762
6763 /* Reject registers that overlap GOAL. */
6764
66fd46b6
JH
6765 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6766 nregs = hard_regno_nregs[regno][mode];
6767 else
6768 nregs = 1;
6769 valuenregs = hard_regno_nregs[valueno][mode];
16ab191f 6770
3c241c19
GK
6771 if (!goal_mem && !goal_const
6772 && regno + nregs > valueno && regno < valueno + valuenregs)
6773 return 0;
6774
eab89b90
RK
6775 /* Reject VALUE if it is one of the regs reserved for reloads.
6776 Reload1 knows how to reuse them anyway, and it would get
6777 confused if we allocated one without its knowledge.
6778 (Now that insns introduced by reload are ignored above,
6779 this case shouldn't happen, but I'm not positive.) */
6780
16ab191f
DC
6781 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6782 {
6783 int i;
6784 for (i = 0; i < valuenregs; ++i)
6785 if (reload_reg_p[valueno + i] >= 0)
6786 return 0;
6787 }
eab89b90
RK
6788
6789 /* Reject VALUE if it is a register being used for an input reload
6790 even if it is not one of those reserved. */
6791
6792 if (reload_reg_p != 0)
6793 {
6794 int i;
6795 for (i = 0; i < n_reloads; i++)
eceef4c9 6796 if (rld[i].reg_rtx != 0 && rld[i].in)
eab89b90 6797 {
eceef4c9 6798 int regno1 = REGNO (rld[i].reg_rtx);
66fd46b6
JH
6799 int nregs1 = hard_regno_nregs[regno1]
6800 [GET_MODE (rld[i].reg_rtx)];
eab89b90
RK
6801 if (regno1 < valueno + valuenregs
6802 && regno1 + nregs1 > valueno)
6803 return 0;
6804 }
6805 }
6806
6807 if (goal_mem)
54b5ffe9
RS
6808 /* We must treat frame pointer as varying here,
6809 since it can vary--in a nonlocal goto as generated by expand_goto. */
6810 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
6811
6812 /* Now verify that the values of GOAL and VALUE remain unaltered
6813 until INSN is reached. */
6814
6815 p = insn;
6816 while (1)
6817 {
6818 p = PREV_INSN (p);
6819 if (p == where)
6820 return value;
6821
6822 /* Don't trust the conversion past a function call
6823 if either of the two is in a call-clobbered register, or memory. */
4b4bf941 6824 if (CALL_P (p))
aad2919f
DC
6825 {
6826 int i;
4381f7c2 6827
aad2919f
DC
6828 if (goal_mem || need_stable_sp)
6829 return 0;
4381f7c2 6830
aad2919f
DC
6831 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6832 for (i = 0; i < nregs; ++i)
7e42db17
DJ
6833 if (call_used_regs[regno + i]
6834 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
aad2919f
DC
6835 return 0;
6836
6837 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6838 for (i = 0; i < valuenregs; ++i)
7e42db17
DJ
6839 if (call_used_regs[valueno + i]
6840 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
aad2919f 6841 return 0;
570a98eb 6842 }
41fe17ab 6843
2c3c49de 6844 if (INSN_P (p))
eab89b90 6845 {
8ec82f87
RH
6846 pat = PATTERN (p);
6847
05d10675
BS
6848 /* Watch out for unspec_volatile, and volatile asms. */
6849 if (volatile_insn_p (pat))
8ec82f87
RH
6850 return 0;
6851
eab89b90
RK
6852 /* If this insn P stores in either GOAL or VALUE, return 0.
6853 If GOAL is a memory ref and this insn writes memory, return 0.
6854 If GOAL is a memory ref and its address is not constant,
6855 and this insn P changes a register used in GOAL, return 0. */
6856
0c99ec5c
RH
6857 if (GET_CODE (pat) == COND_EXEC)
6858 pat = COND_EXEC_CODE (pat);
eab89b90
RK
6859 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6860 {
b3694847 6861 rtx dest = SET_DEST (pat);
eab89b90
RK
6862 while (GET_CODE (dest) == SUBREG
6863 || GET_CODE (dest) == ZERO_EXTRACT
eab89b90
RK
6864 || GET_CODE (dest) == STRICT_LOW_PART)
6865 dest = XEXP (dest, 0);
f8cfc6aa 6866 if (REG_P (dest))
eab89b90 6867 {
b3694847 6868 int xregno = REGNO (dest);
eab89b90
RK
6869 int xnregs;
6870 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
66fd46b6 6871 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
eab89b90
RK
6872 else
6873 xnregs = 1;
6874 if (xregno < regno + nregs && xregno + xnregs > regno)
6875 return 0;
6876 if (xregno < valueno + valuenregs
6877 && xregno + xnregs > valueno)
6878 return 0;
6879 if (goal_mem_addr_varies
bfa30b22 6880 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90 6881 return 0;
1b4d8b2b
R
6882 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6883 return 0;
eab89b90 6884 }
3c0cb5de 6885 else if (goal_mem && MEM_P (dest)
eab89b90
RK
6886 && ! push_operand (dest, GET_MODE (dest)))
6887 return 0;
3c0cb5de 6888 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
9fac9680
RK
6889 && reg_equiv_memory_loc[regno] != 0)
6890 return 0;
eab89b90
RK
6891 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6892 return 0;
6893 }
6894 else if (GET_CODE (pat) == PARALLEL)
6895 {
b3694847 6896 int i;
eab89b90
RK
6897 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6898 {
b3694847 6899 rtx v1 = XVECEXP (pat, 0, i);
0c99ec5c
RH
6900 if (GET_CODE (v1) == COND_EXEC)
6901 v1 = COND_EXEC_CODE (v1);
eab89b90
RK
6902 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6903 {
b3694847 6904 rtx dest = SET_DEST (v1);
eab89b90
RK
6905 while (GET_CODE (dest) == SUBREG
6906 || GET_CODE (dest) == ZERO_EXTRACT
eab89b90
RK
6907 || GET_CODE (dest) == STRICT_LOW_PART)
6908 dest = XEXP (dest, 0);
f8cfc6aa 6909 if (REG_P (dest))
eab89b90 6910 {
b3694847 6911 int xregno = REGNO (dest);
eab89b90
RK
6912 int xnregs;
6913 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
66fd46b6 6914 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
eab89b90
RK
6915 else
6916 xnregs = 1;
6917 if (xregno < regno + nregs
6918 && xregno + xnregs > regno)
6919 return 0;
6920 if (xregno < valueno + valuenregs
6921 && xregno + xnregs > valueno)
6922 return 0;
6923 if (goal_mem_addr_varies
bfa30b22
RK
6924 && reg_overlap_mentioned_for_reload_p (dest,
6925 goal))
eab89b90 6926 return 0;
930176e7
R
6927 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6928 return 0;
eab89b90 6929 }
3c0cb5de 6930 else if (goal_mem && MEM_P (dest)
eab89b90
RK
6931 && ! push_operand (dest, GET_MODE (dest)))
6932 return 0;
3c0cb5de 6933 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
e9a25f70
JL
6934 && reg_equiv_memory_loc[regno] != 0)
6935 return 0;
369c7ab6
JW
6936 else if (need_stable_sp
6937 && push_operand (dest, GET_MODE (dest)))
6938 return 0;
6939 }
6940 }
6941 }
6942
4b4bf941 6943 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
369c7ab6
JW
6944 {
6945 rtx link;
6946
6947 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6948 link = XEXP (link, 1))
6949 {
6950 pat = XEXP (link, 0);
6951 if (GET_CODE (pat) == CLOBBER)
6952 {
b3694847 6953 rtx dest = SET_DEST (pat);
f8cd4126 6954
f8cfc6aa 6955 if (REG_P (dest))
369c7ab6 6956 {
b3694847 6957 int xregno = REGNO (dest);
f8cd4126 6958 int xnregs
66fd46b6 6959 = hard_regno_nregs[xregno][GET_MODE (dest)];
f8cd4126 6960
369c7ab6
JW
6961 if (xregno < regno + nregs
6962 && xregno + xnregs > regno)
6963 return 0;
f8cd4126 6964 else if (xregno < valueno + valuenregs
4381f7c2 6965 && xregno + xnregs > valueno)
369c7ab6 6966 return 0;
f8cd4126
RK
6967 else if (goal_mem_addr_varies
6968 && reg_overlap_mentioned_for_reload_p (dest,
369c7ab6
JW
6969 goal))
6970 return 0;
6971 }
f8cd4126 6972
3c0cb5de 6973 else if (goal_mem && MEM_P (dest)
369c7ab6
JW
6974 && ! push_operand (dest, GET_MODE (dest)))
6975 return 0;
eab89b90
RK
6976 else if (need_stable_sp
6977 && push_operand (dest, GET_MODE (dest)))
6978 return 0;
6979 }
6980 }
6981 }
6982
6983#ifdef AUTO_INC_DEC
6984 /* If this insn auto-increments or auto-decrements
6985 either regno or valueno, return 0 now.
6986 If GOAL is a memory ref and its address is not constant,
6987 and this insn P increments a register used in GOAL, return 0. */
6988 {
b3694847 6989 rtx link;
eab89b90
RK
6990
6991 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6992 if (REG_NOTE_KIND (link) == REG_INC
f8cfc6aa 6993 && REG_P (XEXP (link, 0)))
eab89b90 6994 {
b3694847 6995 int incno = REGNO (XEXP (link, 0));
eab89b90
RK
6996 if (incno < regno + nregs && incno >= regno)
6997 return 0;
6998 if (incno < valueno + valuenregs && incno >= valueno)
6999 return 0;
7000 if (goal_mem_addr_varies
bfa30b22
RK
7001 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7002 goal))
eab89b90
RK
7003 return 0;
7004 }
7005 }
7006#endif
7007 }
7008 }
7009}
7010\f
7011/* Find a place where INCED appears in an increment or decrement operator
7012 within X, and return the amount INCED is incremented or decremented by.
7013 The value is always positive. */
7014
7015static int
0c20a65f 7016find_inc_amount (rtx x, rtx inced)
eab89b90 7017{
b3694847
SS
7018 enum rtx_code code = GET_CODE (x);
7019 const char *fmt;
7020 int i;
eab89b90
RK
7021
7022 if (code == MEM)
7023 {
b3694847 7024 rtx addr = XEXP (x, 0);
eab89b90
RK
7025 if ((GET_CODE (addr) == PRE_DEC
7026 || GET_CODE (addr) == POST_DEC
7027 || GET_CODE (addr) == PRE_INC
7028 || GET_CODE (addr) == POST_INC)
7029 && XEXP (addr, 0) == inced)
7030 return GET_MODE_SIZE (GET_MODE (x));
4b983fdc
RH
7031 else if ((GET_CODE (addr) == PRE_MODIFY
7032 || GET_CODE (addr) == POST_MODIFY)
7033 && GET_CODE (XEXP (addr, 1)) == PLUS
7034 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7035 && XEXP (addr, 0) == inced
7036 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
4381f7c2
KH
7037 {
7038 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7039 return i < 0 ? -i : i;
7040 }
7041 }
eab89b90
RK
7042
7043 fmt = GET_RTX_FORMAT (code);
7044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7045 {
7046 if (fmt[i] == 'e')
7047 {
b3694847 7048 int tem = find_inc_amount (XEXP (x, i), inced);
eab89b90
RK
7049 if (tem != 0)
7050 return tem;
7051 }
7052 if (fmt[i] == 'E')
7053 {
b3694847 7054 int j;
eab89b90
RK
7055 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7056 {
b3694847 7057 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
eab89b90
RK
7058 if (tem != 0)
7059 return tem;
7060 }
7061 }
7062 }
7063
7064 return 0;
7065}
7066\f
d0236c3b
DN
7067/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7068 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7069
7070#ifdef AUTO_INC_DEC
7071static int
7072reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7073 rtx insn)
7074{
7075 rtx link;
7076
7077 gcc_assert (insn);
7078
7079 if (! INSN_P (insn))
7080 return 0;
7081
7082 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7083 if (REG_NOTE_KIND (link) == REG_INC)
7084 {
7085 unsigned int test = (int) REGNO (XEXP (link, 0));
7086 if (test >= regno && test < endregno)
7087 return 1;
7088 }
7089 return 0;
7090}
7091#else
7092
7093#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7094
7095#endif
7096
9532e31f 7097/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
d0236c3b
DN
7098 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7099 REG_INC. REGNO must refer to a hard register. */
eab89b90
RK
7100
7101int
0c20a65f
AJ
7102regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7103 int sets)
eab89b90 7104{
5b804e8a
RS
7105 unsigned int nregs, endregno;
7106
7107 /* regno must be a hard register. */
7108 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7109
7110 nregs = hard_regno_nregs[regno][mode];
7111 endregno = regno + nregs;
8441bc30 7112
9532e31f 7113 if ((GET_CODE (PATTERN (insn)) == CLOBBER
d0236c3b 7114 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
f8cfc6aa 7115 && REG_P (XEXP (PATTERN (insn), 0)))
8441bc30 7116 {
ae0ed63a 7117 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
8441bc30 7118
e695931e 7119 return test >= regno && test < endregno;
8441bc30 7120 }
eab89b90 7121
d0236c3b
DN
7122 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7123 return 1;
7124
eab89b90
RK
7125 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7126 {
7127 int i = XVECLEN (PATTERN (insn), 0) - 1;
7128
7129 for (; i >= 0; i--)
7130 {
7131 rtx elt = XVECEXP (PATTERN (insn), 0, i);
9532e31f 7132 if ((GET_CODE (elt) == CLOBBER
d0236c3b 7133 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
f8cfc6aa 7134 && REG_P (XEXP (elt, 0)))
8441bc30 7135 {
ae0ed63a 7136 unsigned int test = REGNO (XEXP (elt, 0));
a6a2274a 7137
e695931e 7138 if (test >= regno && test < endregno)
8441bc30
BS
7139 return 1;
7140 }
d0236c3b
DN
7141 if (sets == 2
7142 && reg_inc_found_and_valid_p (regno, endregno, elt))
7143 return 1;
eab89b90
RK
7144 }
7145 }
7146
7147 return 0;
7148}
10bcde0d 7149
f12448c8
AO
7150/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7151rtx
0c20a65f 7152reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
f12448c8
AO
7153{
7154 int regno;
7155
7156 if (GET_MODE (reloadreg) == mode)
7157 return reloadreg;
7158
7159 regno = REGNO (reloadreg);
7160
7161 if (WORDS_BIG_ENDIAN)
66fd46b6
JH
7162 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7163 - (int) hard_regno_nregs[regno][mode];
f12448c8
AO
7164
7165 return gen_rtx_REG (mode, regno);
7166}
7167
27c38fbe 7168static const char *const reload_when_needed_name[] =
10bcde0d 7169{
05d10675
BS
7170 "RELOAD_FOR_INPUT",
7171 "RELOAD_FOR_OUTPUT",
10bcde0d 7172 "RELOAD_FOR_INSN",
47c8cf91
ILT
7173 "RELOAD_FOR_INPUT_ADDRESS",
7174 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 7175 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 7176 "RELOAD_FOR_OUTADDR_ADDRESS",
05d10675 7177 "RELOAD_FOR_OPERAND_ADDRESS",
10bcde0d 7178 "RELOAD_FOR_OPADDR_ADDR",
05d10675 7179 "RELOAD_OTHER",
10bcde0d
RK
7180 "RELOAD_FOR_OTHER_ADDRESS"
7181};
7182
b8fb2d72 7183/* These functions are used to print the variables set by 'find_reloads' */
10bcde0d
RK
7184
7185void
0c20a65f 7186debug_reload_to_stream (FILE *f)
10bcde0d
RK
7187{
7188 int r;
6f7d635c 7189 const char *prefix;
10bcde0d 7190
b8fb2d72
CI
7191 if (! f)
7192 f = stderr;
10bcde0d
RK
7193 for (r = 0; r < n_reloads; r++)
7194 {
b8fb2d72 7195 fprintf (f, "Reload %d: ", r);
10bcde0d 7196
eceef4c9 7197 if (rld[r].in != 0)
10bcde0d 7198 {
b8fb2d72 7199 fprintf (f, "reload_in (%s) = ",
eceef4c9
BS
7200 GET_MODE_NAME (rld[r].inmode));
7201 print_inline_rtx (f, rld[r].in, 24);
b8fb2d72 7202 fprintf (f, "\n\t");
10bcde0d
RK
7203 }
7204
eceef4c9 7205 if (rld[r].out != 0)
10bcde0d 7206 {
b8fb2d72 7207 fprintf (f, "reload_out (%s) = ",
eceef4c9
BS
7208 GET_MODE_NAME (rld[r].outmode));
7209 print_inline_rtx (f, rld[r].out, 24);
b8fb2d72 7210 fprintf (f, "\n\t");
10bcde0d
RK
7211 }
7212
eceef4c9 7213 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
10bcde0d 7214
b8fb2d72 7215 fprintf (f, "%s (opnum = %d)",
eceef4c9
BS
7216 reload_when_needed_name[(int) rld[r].when_needed],
7217 rld[r].opnum);
10bcde0d 7218
eceef4c9 7219 if (rld[r].optional)
b8fb2d72 7220 fprintf (f, ", optional");
10bcde0d 7221
eceef4c9 7222 if (rld[r].nongroup)
b2ee8ec2 7223 fprintf (f, ", nongroup");
f5963e61 7224
eceef4c9
BS
7225 if (rld[r].inc != 0)
7226 fprintf (f, ", inc by %d", rld[r].inc);
10bcde0d 7227
eceef4c9 7228 if (rld[r].nocombine)
b8fb2d72 7229 fprintf (f, ", can't combine");
10bcde0d 7230
eceef4c9 7231 if (rld[r].secondary_p)
b8fb2d72 7232 fprintf (f, ", secondary_reload_p");
10bcde0d 7233
eceef4c9 7234 if (rld[r].in_reg != 0)
10bcde0d 7235 {
b8fb2d72 7236 fprintf (f, "\n\treload_in_reg: ");
eceef4c9 7237 print_inline_rtx (f, rld[r].in_reg, 24);
10bcde0d
RK
7238 }
7239
eceef4c9 7240 if (rld[r].out_reg != 0)
cb2afeb3
R
7241 {
7242 fprintf (f, "\n\treload_out_reg: ");
eceef4c9 7243 print_inline_rtx (f, rld[r].out_reg, 24);
cb2afeb3
R
7244 }
7245
eceef4c9 7246 if (rld[r].reg_rtx != 0)
10bcde0d 7247 {
b8fb2d72 7248 fprintf (f, "\n\treload_reg_rtx: ");
eceef4c9 7249 print_inline_rtx (f, rld[r].reg_rtx, 24);
10bcde0d
RK
7250 }
7251
505923a0 7252 prefix = "\n\t";
eceef4c9 7253 if (rld[r].secondary_in_reload != -1)
10bcde0d 7254 {
b8fb2d72 7255 fprintf (f, "%ssecondary_in_reload = %d",
eceef4c9 7256 prefix, rld[r].secondary_in_reload);
505923a0 7257 prefix = ", ";
10bcde0d
RK
7258 }
7259
eceef4c9 7260 if (rld[r].secondary_out_reload != -1)
b8fb2d72 7261 fprintf (f, "%ssecondary_out_reload = %d\n",
eceef4c9 7262 prefix, rld[r].secondary_out_reload);
10bcde0d 7263
505923a0 7264 prefix = "\n\t";
eceef4c9 7265 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
10bcde0d 7266 {
b2ee8ec2 7267 fprintf (f, "%ssecondary_in_icode = %s", prefix,
eceef4c9 7268 insn_data[rld[r].secondary_in_icode].name);
505923a0 7269 prefix = ", ";
10bcde0d
RK
7270 }
7271
eceef4c9 7272 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
b2ee8ec2 7273 fprintf (f, "%ssecondary_out_icode = %s", prefix,
eceef4c9 7274 insn_data[rld[r].secondary_out_icode].name);
10bcde0d 7275
b8fb2d72 7276 fprintf (f, "\n");
10bcde0d 7277 }
10bcde0d 7278}
b8fb2d72
CI
7279
7280void
0c20a65f 7281debug_reload (void)
b8fb2d72
CI
7282{
7283 debug_reload_to_stream (stderr);
7284}