]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reload.c
* Check in merge from gcc2. See ChangeLog.11 and ChangeLog.12
[thirdparty/gcc.git] / gcc / reload.c
CommitLineData
eab89b90 1/* Search an insn for pseudo regs that must be in hard regs and are not.
e5e809f4 2 Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
eab89b90
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
e99215a3
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
eab89b90
RK
20
21
22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73
74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
90#include "config.h"
670ee920 91#include "system.h"
eab89b90
RK
92#include "rtl.h"
93#include "insn-config.h"
94#include "insn-codes.h"
95#include "recog.h"
96#include "reload.h"
97#include "regs.h"
98#include "hard-reg-set.h"
99#include "flags.h"
100#include "real.h"
8a840ac9 101#include "output.h"
55c22565 102#include "expr.h"
eab89b90
RK
103
104#ifndef REGISTER_MOVE_COST
105#define REGISTER_MOVE_COST(x, y) 2
106#endif
858c3c8c
ILT
107
108#ifndef REGNO_MODE_OK_FOR_BASE_P
109#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110#endif
111
112#ifndef REG_MODE_OK_FOR_BASE_P
113#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114#endif
eab89b90
RK
115\f
116/* The variables set up by `find_reloads' are:
117
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
eab89b90
RK
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
a8c9daeb
RK
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
eab89b90
RK
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
eab89b90 156 reload_secondary_p int, 1 if this is a secondary register for one
9ec7078b
RK
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
eab89b90
RK
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169int n_reloads;
170
171rtx reload_in[MAX_RELOADS];
172rtx reload_out[MAX_RELOADS];
173enum reg_class reload_reg_class[MAX_RELOADS];
174enum machine_mode reload_inmode[MAX_RELOADS];
175enum machine_mode reload_outmode[MAX_RELOADS];
eab89b90
RK
176rtx reload_reg_rtx[MAX_RELOADS];
177char reload_optional[MAX_RELOADS];
178int reload_inc[MAX_RELOADS];
179rtx reload_in_reg[MAX_RELOADS];
180char reload_nocombine[MAX_RELOADS];
a8c9daeb
RK
181int reload_opnum[MAX_RELOADS];
182enum reload_type reload_when_needed[MAX_RELOADS];
eab89b90 183int reload_secondary_p[MAX_RELOADS];
9ec7078b
RK
184int reload_secondary_in_reload[MAX_RELOADS];
185int reload_secondary_out_reload[MAX_RELOADS];
186enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187enum insn_code reload_secondary_out_icode[MAX_RELOADS];
eab89b90
RK
188
189/* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191int n_earlyclobbers;
192rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
193
a8c9daeb
RK
194int reload_n_operands;
195
eab89b90
RK
196/* Replacing reloads.
197
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
202
203/* Nonzero means record the places to replace. */
204static int replace_reloads;
205
206/* Each replacement is recorded with a structure like this. */
207struct replacement
208{
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
214};
215
216static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
217
218/* Number of replacements currently recorded. */
219static int n_replacements;
220
a8c9daeb
RK
221/* Used to track what is modified by an operand. */
222struct decomposition
223{
0f41302f
MS
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
2a6d5ce0 228 HOST_WIDE_INT end; /* Ending offset or register number. */
a8c9daeb
RK
229};
230
eab89b90
RK
231/* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234static int n_memlocs;
235
0dadecf6
RK
236#ifdef SECONDARY_MEMORY_NEEDED
237
238/* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
240
a8c9daeb
RK
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
0dadecf6
RK
245
246static rtx secondary_memlocs[NUM_MACHINE_MODES];
77545d45 247static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
0dadecf6
RK
248#endif
249
eab89b90
RK
250/* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252static rtx this_insn;
253
254/* Nonzero if this instruction is a user-specified asm with operands. */
255static int this_insn_is_asm;
256
257/* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260static int hard_regs_live_known;
261
262/* Indexed by hard reg number,
956d6950 263 element is nonnegative if hard reg has been spilled.
eab89b90
RK
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266static short *static_reload_reg_p;
267
268/* Set to 1 in subst_reg_equivs if it changes anything. */
269static int subst_reg_equivs_changed;
270
271/* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273static int output_reloadnum;
274
9ec7078b
RK
275 /* Compare two RTX's. */
276#define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
280
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283#define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
291
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293#define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
299
47c8cf91
ILT
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302#define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
308
56c5d8bf 309#ifdef HAVE_SECONDARY_RELOADS
9ec7078b
RK
310static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
311 enum machine_mode, enum reload_type,
312 enum insn_code *));
56c5d8bf 313#endif
c6716840 314static enum reg_class find_valid_class PROTO((enum machine_mode, int));
a8c9daeb
RK
315static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
316 enum machine_mode, enum machine_mode,
317 int, int, int, enum reload_type));
318static void push_replacement PROTO((rtx *, int, enum machine_mode));
319static void combine_reloads PROTO((void));
320static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
36b50568 321 enum machine_mode, enum machine_mode,
189086f9 322 enum reg_class, int, int));
4644aad4 323static int earlyclobber_operand_p PROTO((rtx));
a8c9daeb
RK
324static int hard_reg_set_here_p PROTO((int, int, rtx));
325static struct decomposition decompose PROTO((rtx));
326static int immune_p PROTO((rtx, rtx, struct decomposition));
327static int alternative_allows_memconst PROTO((char *, int));
328static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
329static rtx make_memloc PROTO((rtx, int));
330static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
55c22565 331 int, enum reload_type, int, rtx));
a8c9daeb
RK
332static rtx subst_reg_equivs PROTO((rtx));
333static rtx subst_indexed_address PROTO((rtx));
858c3c8c 334static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
55c22565 335 int, enum reload_type,int, rtx));
a8c9daeb
RK
336static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
337 enum machine_mode, int,
338 enum reload_type, int));
339static int find_inc_amount PROTO((rtx, rtx));
eab89b90
RK
340\f
341#ifdef HAVE_SECONDARY_RELOADS
342
343/* Determine if any secondary reloads are needed for loading (if IN_P is
344 non-zero) or storing (if IN_P is zero) X to or from a reload register of
9ec7078b
RK
345 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
346 are needed, push them.
347
348 Return the reload number of the secondary reload we made, or -1 if
349 we didn't need one. *PICODE is set to the insn_code to use if we do
350 need a secondary reload. */
351
352static int
353push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
354 type, picode)
355 int in_p;
eab89b90 356 rtx x;
9ec7078b
RK
357 int opnum;
358 int optional;
eab89b90
RK
359 enum reg_class reload_class;
360 enum machine_mode reload_mode;
9ec7078b 361 enum reload_type type;
eab89b90 362 enum insn_code *picode;
eab89b90
RK
363{
364 enum reg_class class = NO_REGS;
365 enum machine_mode mode = reload_mode;
366 enum insn_code icode = CODE_FOR_nothing;
367 enum reg_class t_class = NO_REGS;
368 enum machine_mode t_mode = VOIDmode;
369 enum insn_code t_icode = CODE_FOR_nothing;
d94d2abc 370 enum reload_type secondary_type;
9ec7078b
RK
371 int s_reload, t_reload = -1;
372
47c8cf91
ILT
373 if (type == RELOAD_FOR_INPUT_ADDRESS
374 || type == RELOAD_FOR_OUTPUT_ADDRESS
375 || type == RELOAD_FOR_INPADDR_ADDRESS
376 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d94d2abc
RK
377 secondary_type = type;
378 else
379 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
380
9ec7078b 381 *picode = CODE_FOR_nothing;
eab89b90 382
67340b03
RK
383 /* If X is a paradoxical SUBREG, use the inner value to determine both the
384 mode and object being reloaded. */
385 if (GET_CODE (x) == SUBREG
386 && (GET_MODE_SIZE (GET_MODE (x))
387 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
388 {
389 x = SUBREG_REG (x);
390 reload_mode = GET_MODE (x);
391 }
392
d45cf215
RS
393 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
394 is still a pseudo-register by now, it *must* have an equivalent MEM
395 but we don't want to assume that), use that equivalent when seeing if
396 a secondary reload is needed since whether or not a reload is needed
397 might be sensitive to the form of the MEM. */
398
399 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
400 && reg_equiv_mem[REGNO (x)] != 0)
401 x = reg_equiv_mem[REGNO (x)];
402
eab89b90
RK
403#ifdef SECONDARY_INPUT_RELOAD_CLASS
404 if (in_p)
405 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
406#endif
407
408#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
409 if (! in_p)
410 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
411#endif
412
9ec7078b 413 /* If we don't need any secondary registers, done. */
eab89b90 414 if (class == NO_REGS)
9ec7078b 415 return -1;
eab89b90
RK
416
417 /* Get a possible insn to use. If the predicate doesn't accept X, don't
418 use the insn. */
419
420 icode = (in_p ? reload_in_optab[(int) reload_mode]
421 : reload_out_optab[(int) reload_mode]);
422
423 if (icode != CODE_FOR_nothing
424 && insn_operand_predicate[(int) icode][in_p]
425 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
426 icode = CODE_FOR_nothing;
427
428 /* If we will be using an insn, see if it can directly handle the reload
429 register we will be using. If it can, the secondary reload is for a
430 scratch register. If it can't, we will use the secondary reload for
431 an intermediate register and require a tertiary reload for the scratch
432 register. */
433
434 if (icode != CODE_FOR_nothing)
435 {
436 /* If IN_P is non-zero, the reload register will be the output in
437 operand 0. If IN_P is zero, the reload register will be the input
438 in operand 1. Outputs should have an initial "=", which we must
439 skip. */
440
d45cf215 441 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
eab89b90 442 enum reg_class insn_class
d45cf215
RS
443 = (insn_letter == 'r' ? GENERAL_REGS
444 : REG_CLASS_FROM_LETTER (insn_letter));
eab89b90
RK
445
446 if (insn_class == NO_REGS
447 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
448 /* The scratch register's constraint must start with "=&". */
449 || insn_operand_constraint[(int) icode][2][0] != '='
450 || insn_operand_constraint[(int) icode][2][1] != '&')
451 abort ();
452
453 if (reg_class_subset_p (reload_class, insn_class))
454 mode = insn_operand_mode[(int) icode][2];
455 else
456 {
d45cf215 457 char t_letter = insn_operand_constraint[(int) icode][2][2];
eab89b90
RK
458 class = insn_class;
459 t_mode = insn_operand_mode[(int) icode][2];
d45cf215
RS
460 t_class = (t_letter == 'r' ? GENERAL_REGS
461 : REG_CLASS_FROM_LETTER (t_letter));
eab89b90
RK
462 t_icode = icode;
463 icode = CODE_FOR_nothing;
464 }
465 }
466
9ec7078b
RK
467 /* This case isn't valid, so fail. Reload is allowed to use the same
468 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
469 in the case of a secondary register, we actually need two different
470 registers for correct code. We fail here to prevent the possibility of
471 silently generating incorrect code later.
472
473 The convention is that secondary input reloads are valid only if the
474 secondary_class is different from class. If you have such a case, you
475 can not use secondary reloads, you must work around the problem some
476 other way.
477
478 Allow this when MODE is not reload_mode and assume that the generated
479 code handles this case (it does on the Alpha, which is the only place
480 this currently happens). */
481
482 if (in_p && class == reload_class && mode == reload_mode)
483 abort ();
484
485 /* If we need a tertiary reload, see if we have one we can reuse or else
486 make a new one. */
487
488 if (t_class != NO_REGS)
489 {
490 for (t_reload = 0; t_reload < n_reloads; t_reload++)
491 if (reload_secondary_p[t_reload]
492 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
493 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
494 && ((in_p && reload_inmode[t_reload] == t_mode)
495 || (! in_p && reload_outmode[t_reload] == t_mode))
496 && ((in_p && (reload_secondary_in_icode[t_reload]
497 == CODE_FOR_nothing))
498 || (! in_p &&(reload_secondary_out_icode[t_reload]
499 == CODE_FOR_nothing)))
e9a25f70 500 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
501 && MERGABLE_RELOADS (secondary_type,
502 reload_when_needed[t_reload],
503 opnum, reload_opnum[t_reload]))
504 {
505 if (in_p)
506 reload_inmode[t_reload] = t_mode;
507 if (! in_p)
508 reload_outmode[t_reload] = t_mode;
509
510 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
511 reload_reg_class[t_reload] = t_class;
512
513 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
514 reload_optional[t_reload] &= optional;
515 reload_secondary_p[t_reload] = 1;
516 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
517 opnum, reload_opnum[t_reload]))
518 reload_when_needed[t_reload] = RELOAD_OTHER;
519 }
520
521 if (t_reload == n_reloads)
522 {
523 /* We need to make a new tertiary reload for this register class. */
524 reload_in[t_reload] = reload_out[t_reload] = 0;
525 reload_reg_class[t_reload] = t_class;
526 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
527 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
528 reload_reg_rtx[t_reload] = 0;
529 reload_optional[t_reload] = optional;
530 reload_inc[t_reload] = 0;
531 /* Maybe we could combine these, but it seems too tricky. */
532 reload_nocombine[t_reload] = 1;
533 reload_in_reg[t_reload] = 0;
534 reload_opnum[t_reload] = opnum;
535 reload_when_needed[t_reload] = secondary_type;
536 reload_secondary_in_reload[t_reload] = -1;
537 reload_secondary_out_reload[t_reload] = -1;
538 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
539 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
540 reload_secondary_p[t_reload] = 1;
541
542 n_reloads++;
543 }
544 }
545
546 /* See if we can reuse an existing secondary reload. */
547 for (s_reload = 0; s_reload < n_reloads; s_reload++)
548 if (reload_secondary_p[s_reload]
549 && (reg_class_subset_p (class, reload_reg_class[s_reload])
550 || reg_class_subset_p (reload_reg_class[s_reload], class))
551 && ((in_p && reload_inmode[s_reload] == mode)
552 || (! in_p && reload_outmode[s_reload] == mode))
553 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
554 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
555 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
556 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
e9a25f70 557 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
9ec7078b
RK
558 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
559 opnum, reload_opnum[s_reload]))
560 {
561 if (in_p)
562 reload_inmode[s_reload] = mode;
563 if (! in_p)
564 reload_outmode[s_reload] = mode;
565
566 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
567 reload_reg_class[s_reload] = class;
568
569 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
570 reload_optional[s_reload] &= optional;
571 reload_secondary_p[s_reload] = 1;
572 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
573 opnum, reload_opnum[s_reload]))
574 reload_when_needed[s_reload] = RELOAD_OTHER;
575 }
eab89b90 576
9ec7078b
RK
577 if (s_reload == n_reloads)
578 {
e9a25f70
JL
579#ifdef SECONDARY_MEMORY_NEEDED
580 /* If we need a memory location to copy between the two reload regs,
581 set it up now. Note that we do the input case before making
582 the reload and the output case after. This is due to the
583 way reloads are output. */
584
585 if (in_p && icode == CODE_FOR_nothing
586 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
587 get_secondary_mem (x, reload_mode, opnum, type);
588#endif
589
9ec7078b
RK
590 /* We need to make a new secondary reload for this register class. */
591 reload_in[s_reload] = reload_out[s_reload] = 0;
592 reload_reg_class[s_reload] = class;
593
594 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
595 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
596 reload_reg_rtx[s_reload] = 0;
597 reload_optional[s_reload] = optional;
598 reload_inc[s_reload] = 0;
599 /* Maybe we could combine these, but it seems too tricky. */
600 reload_nocombine[s_reload] = 1;
601 reload_in_reg[s_reload] = 0;
602 reload_opnum[s_reload] = opnum;
603 reload_when_needed[s_reload] = secondary_type;
604 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
605 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
606 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
607 reload_secondary_out_icode[s_reload]
608 = ! in_p ? t_icode : CODE_FOR_nothing;
609 reload_secondary_p[s_reload] = 1;
610
611 n_reloads++;
612
613#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b 614 if (! in_p && icode == CODE_FOR_nothing
f49e4127
JW
615 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
616 get_secondary_mem (x, mode, opnum, type);
9ec7078b
RK
617#endif
618 }
619
620 *picode = icode;
621 return s_reload;
eab89b90
RK
622}
623#endif /* HAVE_SECONDARY_RELOADS */
624\f
0dadecf6
RK
625#ifdef SECONDARY_MEMORY_NEEDED
626
627/* Return a memory location that will be used to copy X in mode MODE.
628 If we haven't already made a location for this mode in this insn,
629 call find_reloads_address on the location being returned. */
630
631rtx
a8c9daeb 632get_secondary_mem (x, mode, opnum, type)
0dadecf6
RK
633 rtx x;
634 enum machine_mode mode;
a8c9daeb
RK
635 int opnum;
636 enum reload_type type;
0dadecf6
RK
637{
638 rtx loc;
639 int mem_valid;
640
64609742
RK
641 /* By default, if MODE is narrower than a word, widen it to a word.
642 This is required because most machines that require these memory
643 locations do not support short load and stores from all registers
644 (e.g., FP registers). */
645
646#ifdef SECONDARY_MEMORY_NEEDED_MODE
647 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
648#else
0dadecf6
RK
649 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
650 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
64609742 651#endif
0dadecf6 652
77545d45
RK
653 /* If we already have made a MEM for this operand in MODE, return it. */
654 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
655 return secondary_memlocs_elim[(int) mode][opnum];
0dadecf6
RK
656
657 /* If this is the first time we've tried to get a MEM for this mode,
658 allocate a new one. `something_changed' in reload will get set
659 by noticing that the frame size has changed. */
660
661 if (secondary_memlocs[(int) mode] == 0)
b24a53d5
JW
662 {
663#ifdef SECONDARY_MEMORY_NEEDED_RTX
664 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
665#else
666 secondary_memlocs[(int) mode]
667 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
668#endif
669 }
0dadecf6
RK
670
671 /* Get a version of the address doing any eliminations needed. If that
672 didn't give us a new MEM, make a new one if it isn't valid. */
673
1914f5da 674 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
0dadecf6
RK
675 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
676
677 if (! mem_valid && loc == secondary_memlocs[(int) mode])
678 loc = copy_rtx (loc);
679
680 /* The only time the call below will do anything is if the stack
681 offset is too large. In that case IND_LEVELS doesn't matter, so we
a8c9daeb
RK
682 can just pass a zero. Adjust the type to be the address of the
683 corresponding object. If the address was valid, save the eliminated
684 address. If it wasn't valid, we need to make a reload each time, so
685 don't save it. */
0dadecf6 686
a8c9daeb
RK
687 if (! mem_valid)
688 {
689 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
690 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
691 : RELOAD_OTHER);
8d618585 692
a8c9daeb 693 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
55c22565 694 opnum, type, 0, 0);
a8c9daeb 695 }
0dadecf6 696
77545d45 697 secondary_memlocs_elim[(int) mode][opnum] = loc;
0dadecf6
RK
698 return loc;
699}
700
701/* Clear any secondary memory locations we've made. */
702
703void
704clear_secondary_mem ()
705{
4c9a05bc 706 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
0dadecf6
RK
707}
708#endif /* SECONDARY_MEMORY_NEEDED */
709\f
c6716840
RK
710/* Find the largest class for which every register number plus N is valid in
711 M1 (if in range). Abort if no such class exists. */
712
713static enum reg_class
714find_valid_class (m1, n)
715 enum machine_mode m1;
716 int n;
717{
718 int class;
719 int regno;
720 enum reg_class best_class;
721 int best_size = 0;
722
723 for (class = 1; class < N_REG_CLASSES; class++)
724 {
725 int bad = 0;
726 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
727 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
728 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
729 && ! HARD_REGNO_MODE_OK (regno + n, m1))
730 bad = 1;
731
732 if (! bad && reg_class_size[class] > best_size)
733 best_class = class, best_size = reg_class_size[class];
734 }
735
736 if (best_size == 0)
737 abort ();
738
739 return best_class;
740}
741\f
a8c9daeb 742/* Record one reload that needs to be performed.
eab89b90
RK
743 IN is an rtx saying where the data are to be found before this instruction.
744 OUT says where they must be stored after the instruction.
745 (IN is zero for data not read, and OUT is zero for data not written.)
746 INLOC and OUTLOC point to the places in the instructions where
747 IN and OUT were found.
a8c9daeb
RK
748 If IN and OUT are both non-zero, it means the same register must be used
749 to reload both IN and OUT.
750
eab89b90
RK
751 CLASS is a register class required for the reloaded data.
752 INMODE is the machine mode that the instruction requires
753 for the reg that replaces IN and OUTMODE is likewise for OUT.
754
755 If IN is zero, then OUT's location and mode should be passed as
756 INLOC and INMODE.
757
758 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
759
760 OPTIONAL nonzero means this reload does not need to be performed:
761 it can be discarded if that is more convenient.
762
a8c9daeb
RK
763 OPNUM and TYPE say what the purpose of this reload is.
764
eab89b90
RK
765 The return value is the reload-number for this reload.
766
767 If both IN and OUT are nonzero, in some rare cases we might
768 want to make two separate reloads. (Actually we never do this now.)
769 Therefore, the reload-number for OUT is stored in
770 output_reloadnum when we return; the return value applies to IN.
771 Usually (presently always), when IN and OUT are nonzero,
772 the two reload-numbers are equal, but the caller should be careful to
773 distinguish them. */
774
775static int
776push_reload (in, out, inloc, outloc, class,
a8c9daeb 777 inmode, outmode, strict_low, optional, opnum, type)
eab89b90
RK
778 register rtx in, out;
779 rtx *inloc, *outloc;
780 enum reg_class class;
781 enum machine_mode inmode, outmode;
782 int strict_low;
783 int optional;
a8c9daeb
RK
784 int opnum;
785 enum reload_type type;
eab89b90
RK
786{
787 register int i;
788 int dont_share = 0;
74347d76 789 int dont_remove_subreg = 0;
eab89b90 790 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
9ec7078b 791 int secondary_in_reload = -1, secondary_out_reload = -1;
a229128d
RK
792 enum insn_code secondary_in_icode = CODE_FOR_nothing;
793 enum insn_code secondary_out_icode = CODE_FOR_nothing;
a8c9daeb 794
eab89b90
RK
795 /* INMODE and/or OUTMODE could be VOIDmode if no mode
796 has been specified for the operand. In that case,
797 use the operand's mode as the mode to reload. */
798 if (inmode == VOIDmode && in != 0)
799 inmode = GET_MODE (in);
800 if (outmode == VOIDmode && out != 0)
801 outmode = GET_MODE (out);
802
803 /* If IN is a pseudo register everywhere-equivalent to a constant, and
804 it is not in a hard register, reload straight from the constant,
805 since we want to get rid of such pseudo registers.
806 Often this is done earlier, but not always in find_reloads_address. */
807 if (in != 0 && GET_CODE (in) == REG)
808 {
809 register int regno = REGNO (in);
810
811 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
812 && reg_equiv_constant[regno] != 0)
813 in = reg_equiv_constant[regno];
814 }
815
816 /* Likewise for OUT. Of course, OUT will never be equivalent to
817 an actual constant, but it might be equivalent to a memory location
818 (in the case of a parameter). */
819 if (out != 0 && GET_CODE (out) == REG)
820 {
821 register int regno = REGNO (out);
822
823 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
824 && reg_equiv_constant[regno] != 0)
825 out = reg_equiv_constant[regno];
826 }
827
828 /* If we have a read-write operand with an address side-effect,
829 change either IN or OUT so the side-effect happens only once. */
830 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
831 {
832 if (GET_CODE (XEXP (in, 0)) == POST_INC
833 || GET_CODE (XEXP (in, 0)) == POST_DEC)
38a448ca 834 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
eab89b90
RK
835 if (GET_CODE (XEXP (in, 0)) == PRE_INC
836 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
38a448ca 837 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
eab89b90
RK
838 }
839
a61c98cf 840 /* If we are reloading a (SUBREG constant ...), really reload just the
ca769828 841 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
a61c98cf
RK
842 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
843 a pseudo and hence will become a MEM) with M1 wider than M2 and the
844 register is a pseudo, also reload the inside expression.
f72ccbe6 845 For machines that extend byte loads, do this for any SUBREG of a pseudo
486d8509
RK
846 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
847 M2 is an integral mode that gets extended when loaded.
86c31b2d 848 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
eab89b90
RK
849 either M1 is not valid for R or M2 is wider than a word but we only
850 need one word to store an M2-sized quantity in R.
86c31b2d
RS
851 (However, if OUT is nonzero, we need to reload the reg *and*
852 the subreg, so do nothing here, and let following statement handle it.)
853
eab89b90
RK
854 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
855 we can't handle it here because CONST_INT does not indicate a mode.
856
857 Similarly, we must reload the inside expression if we have a
df62f951
RK
858 STRICT_LOW_PART (presumably, in == out in the cas).
859
860 Also reload the inner expression if it does not require a secondary
486d8509
RK
861 reload but the SUBREG does.
862
863 Finally, reload the inner expression if it is a register that is in
864 the class whose registers cannot be referenced in a different size
d030f4b2
RK
865 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
866 cannot reload just the inside since we might end up with the wrong
0f41302f 867 register class. */
eab89b90 868
d030f4b2 869 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
94bafba7
RK
870#ifdef CLASS_CANNOT_CHANGE_SIZE
871 && class != CLASS_CANNOT_CHANGE_SIZE
872#endif
a61c98cf 873 && (CONSTANT_P (SUBREG_REG (in))
ca769828 874 || GET_CODE (SUBREG_REG (in)) == PLUS
eab89b90 875 || strict_low
a61c98cf
RK
876 || (((GET_CODE (SUBREG_REG (in)) == REG
877 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
878 || GET_CODE (SUBREG_REG (in)) == MEM)
03b72c86
RK
879 && ((GET_MODE_SIZE (inmode)
880 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
09bf0250 881#ifdef LOAD_EXTEND_OP
03b72c86
RK
882 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
883 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
884 <= UNITS_PER_WORD)
885 && (GET_MODE_SIZE (inmode)
486d8509
RK
886 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
887 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
888 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
d2c92f5a
R
889#endif
890#ifdef WORD_REGISTER_OPERATIONS
891 || ((GET_MODE_SIZE (inmode)
892 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
893 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
894 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
895 / UNITS_PER_WORD)))
f72ccbe6 896#endif
03b72c86 897 ))
a61c98cf
RK
898 || (GET_CODE (SUBREG_REG (in)) == REG
899 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
86c31b2d
RS
900 /* The case where out is nonzero
901 is handled differently in the following statement. */
902 && (out == 0 || SUBREG_WORD (in) == 0)
f72ccbe6
RK
903 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
904 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
905 > UNITS_PER_WORD)
906 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
907 / UNITS_PER_WORD)
908 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
909 GET_MODE (SUBREG_REG (in)))))
910 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
911 + SUBREG_WORD (in)),
912 inmode)))
df62f951
RK
913#ifdef SECONDARY_INPUT_RELOAD_CLASS
914 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
915 && (SECONDARY_INPUT_RELOAD_CLASS (class,
916 GET_MODE (SUBREG_REG (in)),
917 SUBREG_REG (in))
918 == NO_REGS))
486d8509
RK
919#endif
920#ifdef CLASS_CANNOT_CHANGE_SIZE
921 || (GET_CODE (SUBREG_REG (in)) == REG
922 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
923 && (TEST_HARD_REG_BIT
924 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
925 REGNO (SUBREG_REG (in))))
926 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
927 != GET_MODE_SIZE (inmode)))
df62f951
RK
928#endif
929 ))
eab89b90
RK
930 {
931 in_subreg_loc = inloc;
932 inloc = &SUBREG_REG (in);
933 in = *inloc;
d2c92f5a 934#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
eab89b90
RK
935 if (GET_CODE (in) == MEM)
936 /* This is supposed to happen only for paradoxical subregs made by
937 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
938 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
939 abort ();
e05a9da8 940#endif
eab89b90
RK
941 inmode = GET_MODE (in);
942 }
943
86c31b2d
RS
944 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
945 either M1 is not valid for R or M2 is wider than a word but we only
946 need one word to store an M2-sized quantity in R.
947
948 However, we must reload the inner reg *as well as* the subreg in
949 that case. */
950
6fd5ac08
JW
951 /* Similar issue for (SUBREG constant ...) if it was not handled by the
952 code above. This can happen if SUBREG_WORD != 0. */
953
86c31b2d 954 if (in != 0 && GET_CODE (in) == SUBREG
6fd5ac08
JW
955 && (CONSTANT_P (SUBREG_REG (in))
956 || (GET_CODE (SUBREG_REG (in)) == REG
957 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
958 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
959 + SUBREG_WORD (in),
960 inmode)
961 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
962 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
963 > UNITS_PER_WORD)
964 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 / UNITS_PER_WORD)
966 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
967 GET_MODE (SUBREG_REG (in)))))))))
86c31b2d 968 {
c96d01ab
RK
969 /* This relies on the fact that emit_reload_insns outputs the
970 instructions for input reloads of type RELOAD_OTHER in the same
971 order as the reloads. Thus if the outer reload is also of type
972 RELOAD_OTHER, we are guaranteed that this inner reload will be
973 output before the outer reload. */
86c31b2d 974 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
c6716840
RK
975 find_valid_class (inmode, SUBREG_WORD (in)),
976 VOIDmode, VOIDmode, 0, 0, opnum, type);
74347d76 977 dont_remove_subreg = 1;
86c31b2d
RS
978 }
979
eab89b90
RK
980 /* Similarly for paradoxical and problematical SUBREGs on the output.
981 Note that there is no reason we need worry about the previous value
982 of SUBREG_REG (out); even if wider than out,
983 storing in a subreg is entitled to clobber it all
984 (except in the case of STRICT_LOW_PART,
985 and in that case the constraint should label it input-output.) */
d030f4b2 986 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
94bafba7
RK
987#ifdef CLASS_CANNOT_CHANGE_SIZE
988 && class != CLASS_CANNOT_CHANGE_SIZE
989#endif
a61c98cf 990 && (CONSTANT_P (SUBREG_REG (out))
eab89b90 991 || strict_low
a61c98cf
RK
992 || (((GET_CODE (SUBREG_REG (out)) == REG
993 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
994 || GET_CODE (SUBREG_REG (out)) == MEM)
03b72c86 995 && ((GET_MODE_SIZE (outmode)
1914f5da
RH
996 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
997#ifdef WORD_REGISTER_OPERATIONS
6d49a073
JW
998 || ((GET_MODE_SIZE (outmode)
999 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1000 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1001 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1002 / UNITS_PER_WORD)))
1914f5da
RH
1003#endif
1004 ))
eab89b90
RK
1005 || (GET_CODE (SUBREG_REG (out)) == REG
1006 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
1007 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1008 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1009 > UNITS_PER_WORD)
1010 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1011 / UNITS_PER_WORD)
1012 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1013 GET_MODE (SUBREG_REG (out)))))
1014 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1015 + SUBREG_WORD (out)),
1016 outmode)))
df62f951
RK
1017#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1018 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1019 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1020 GET_MODE (SUBREG_REG (out)),
1021 SUBREG_REG (out))
1022 == NO_REGS))
486d8509
RK
1023#endif
1024#ifdef CLASS_CANNOT_CHANGE_SIZE
1025 || (GET_CODE (SUBREG_REG (out)) == REG
1026 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1027 && (TEST_HARD_REG_BIT
1028 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1029 REGNO (SUBREG_REG (out))))
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1031 != GET_MODE_SIZE (outmode)))
df62f951
RK
1032#endif
1033 ))
eab89b90
RK
1034 {
1035 out_subreg_loc = outloc;
1036 outloc = &SUBREG_REG (out);
e05a9da8 1037 out = *outloc;
d2c92f5a 1038#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
e05a9da8 1039 if (GET_CODE (out) == MEM
eab89b90
RK
1040 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1041 abort ();
e05a9da8 1042#endif
eab89b90
RK
1043 outmode = GET_MODE (out);
1044 }
1045
74347d76
RK
1046 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1047 either M1 is not valid for R or M2 is wider than a word but we only
1048 need one word to store an M2-sized quantity in R.
1049
1050 However, we must reload the inner reg *as well as* the subreg in
1051 that case. In this case, the inner reg is an in-out reload. */
1052
1053 if (out != 0 && GET_CODE (out) == SUBREG
1054 && GET_CODE (SUBREG_REG (out)) == REG
1055 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
c6716840
RK
1056 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1057 outmode)
74347d76
RK
1058 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1059 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1060 > UNITS_PER_WORD)
1061 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1062 / UNITS_PER_WORD)
1063 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1064 GET_MODE (SUBREG_REG (out)))))))
1065 {
c96d01ab
RK
1066 /* This relies on the fact that emit_reload_insns outputs the
1067 instructions for output reloads of type RELOAD_OTHER in reverse
1068 order of the reloads. Thus if the outer reload is also of type
1069 RELOAD_OTHER, we are guaranteed that this inner reload will be
1070 output after the outer reload. */
74347d76
RK
1071 dont_remove_subreg = 1;
1072 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
c6716840
RK
1073 &SUBREG_REG (out),
1074 find_valid_class (outmode, SUBREG_WORD (out)),
1075 VOIDmode, VOIDmode, 0, 0,
74347d76
RK
1076 opnum, RELOAD_OTHER);
1077 }
1078
eab89b90
RK
1079 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1080 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1081 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
bfa30b22 1082 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
eab89b90
RK
1083 dont_share = 1;
1084
0dadecf6
RK
1085 /* If IN is a SUBREG of a hard register, make a new REG. This
1086 simplifies some of the cases below. */
1087
1088 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
74347d76
RK
1089 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1090 && ! dont_remove_subreg)
38a448ca
RH
1091 in = gen_rtx_REG (GET_MODE (in),
1092 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
0dadecf6
RK
1093
1094 /* Similarly for OUT. */
1095 if (out != 0 && GET_CODE (out) == SUBREG
1096 && GET_CODE (SUBREG_REG (out)) == REG
74347d76
RK
1097 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1098 && ! dont_remove_subreg)
38a448ca
RH
1099 out = gen_rtx_REG (GET_MODE (out),
1100 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
0dadecf6 1101
eab89b90
RK
1102 /* Narrow down the class of register wanted if that is
1103 desirable on this machine for efficiency. */
1104 if (in != 0)
1105 class = PREFERRED_RELOAD_CLASS (in, class);
1106
ac2a9454 1107 /* Output reloads may need analogous treatment, different in detail. */
18a53b78
RS
1108#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1109 if (out != 0)
1110 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1111#endif
1112
eab89b90
RK
1113 /* Make sure we use a class that can handle the actual pseudo
1114 inside any subreg. For example, on the 386, QImode regs
1115 can appear within SImode subregs. Although GENERAL_REGS
1116 can handle SImode, QImode needs a smaller class. */
1117#ifdef LIMIT_RELOAD_CLASS
1118 if (in_subreg_loc)
1119 class = LIMIT_RELOAD_CLASS (inmode, class);
1120 else if (in != 0 && GET_CODE (in) == SUBREG)
1121 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1122
1123 if (out_subreg_loc)
1124 class = LIMIT_RELOAD_CLASS (outmode, class);
1125 if (out != 0 && GET_CODE (out) == SUBREG)
1126 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1127#endif
1128
eab89b90
RK
1129 /* Verify that this class is at least possible for the mode that
1130 is specified. */
1131 if (this_insn_is_asm)
1132 {
1133 enum machine_mode mode;
1134 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1135 mode = inmode;
1136 else
1137 mode = outmode;
5488078f
RS
1138 if (mode == VOIDmode)
1139 {
1140 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1141 mode = word_mode;
1142 if (in != 0)
1143 inmode = word_mode;
1144 if (out != 0)
1145 outmode = word_mode;
1146 }
eab89b90
RK
1147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1148 if (HARD_REGNO_MODE_OK (i, mode)
1149 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1150 {
1151 int nregs = HARD_REGNO_NREGS (i, mode);
1152
1153 int j;
1154 for (j = 1; j < nregs; j++)
1155 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1156 break;
1157 if (j == nregs)
1158 break;
1159 }
1160 if (i == FIRST_PSEUDO_REGISTER)
1161 {
1162 error_for_asm (this_insn, "impossible register constraint in `asm'");
1163 class = ALL_REGS;
1164 }
1165 }
1166
5488078f
RS
1167 if (class == NO_REGS)
1168 abort ();
1169
eab89b90
RK
1170 /* We can use an existing reload if the class is right
1171 and at least one of IN and OUT is a match
1172 and the other is at worst neutral.
a8c9daeb
RK
1173 (A zero compared against anything is neutral.)
1174
1175 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1176 for the same thing since that can cause us to need more reload registers
1177 than we otherwise would. */
1178
eab89b90
RK
1179 for (i = 0; i < n_reloads; i++)
1180 if ((reg_class_subset_p (class, reload_reg_class[i])
1181 || reg_class_subset_p (reload_reg_class[i], class))
eab89b90
RK
1182 /* If the existing reload has a register, it must fit our class. */
1183 && (reload_reg_rtx[i] == 0
1184 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1185 true_regnum (reload_reg_rtx[i])))
1186 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1187 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1188 ||
1189 (out != 0 && MATCHES (reload_out[i], out)
a8c9daeb 1190 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
e9a25f70 1191 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1192 && MERGABLE_RELOADS (type, reload_when_needed[i],
1193 opnum, reload_opnum[i]))
eab89b90
RK
1194 break;
1195
1196 /* Reloading a plain reg for input can match a reload to postincrement
1197 that reg, since the postincrement's value is the right value.
1198 Likewise, it can match a preincrement reload, since we regard
1199 the preincrementation as happening before any ref in this insn
1200 to that register. */
1201 if (i == n_reloads)
1202 for (i = 0; i < n_reloads; i++)
1203 if ((reg_class_subset_p (class, reload_reg_class[i])
1204 || reg_class_subset_p (reload_reg_class[i], class))
1205 /* If the existing reload has a register, it must fit our class. */
1206 && (reload_reg_rtx[i] == 0
1207 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1208 true_regnum (reload_reg_rtx[i])))
eab89b90
RK
1209 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1210 && ((GET_CODE (in) == REG
1211 && (GET_CODE (reload_in[i]) == POST_INC
1212 || GET_CODE (reload_in[i]) == POST_DEC
1213 || GET_CODE (reload_in[i]) == PRE_INC
1214 || GET_CODE (reload_in[i]) == PRE_DEC)
1215 && MATCHES (XEXP (reload_in[i], 0), in))
1216 ||
1217 (GET_CODE (reload_in[i]) == REG
1218 && (GET_CODE (in) == POST_INC
1219 || GET_CODE (in) == POST_DEC
1220 || GET_CODE (in) == PRE_INC
1221 || GET_CODE (in) == PRE_DEC)
a8c9daeb 1222 && MATCHES (XEXP (in, 0), reload_in[i])))
e9a25f70 1223 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1224 && MERGABLE_RELOADS (type, reload_when_needed[i],
1225 opnum, reload_opnum[i]))
eab89b90
RK
1226 {
1227 /* Make sure reload_in ultimately has the increment,
1228 not the plain register. */
1229 if (GET_CODE (in) == REG)
1230 in = reload_in[i];
1231 break;
1232 }
1233
1234 if (i == n_reloads)
1235 {
9ec7078b
RK
1236 /* See if we need a secondary reload register to move between CLASS
1237 and IN or CLASS and OUT. Get the icode and push any required reloads
1238 needed for each of them if so. */
eab89b90
RK
1239
1240#ifdef SECONDARY_INPUT_RELOAD_CLASS
1241 if (in != 0)
9ec7078b
RK
1242 secondary_in_reload
1243 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1244 &secondary_in_icode);
eab89b90
RK
1245#endif
1246
1247#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1248 if (out != 0 && GET_CODE (out) != SCRATCH)
9ec7078b
RK
1249 secondary_out_reload
1250 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1251 type, &secondary_out_icode);
eab89b90
RK
1252#endif
1253
1254 /* We found no existing reload suitable for re-use.
1255 So add an additional reload. */
1256
e9a25f70
JL
1257#ifdef SECONDARY_MEMORY_NEEDED
1258 /* If a memory location is needed for the copy, make one. */
1259 if (in != 0 && GET_CODE (in) == REG
1260 && REGNO (in) < FIRST_PSEUDO_REGISTER
1261 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1262 class, inmode))
1263 get_secondary_mem (in, inmode, opnum, type);
1264#endif
1265
9ec7078b 1266 i = n_reloads;
eab89b90
RK
1267 reload_in[i] = in;
1268 reload_out[i] = out;
1269 reload_reg_class[i] = class;
1270 reload_inmode[i] = inmode;
1271 reload_outmode[i] = outmode;
1272 reload_reg_rtx[i] = 0;
1273 reload_optional[i] = optional;
1274 reload_inc[i] = 0;
eab89b90
RK
1275 reload_nocombine[i] = 0;
1276 reload_in_reg[i] = inloc ? *inloc : 0;
a8c9daeb
RK
1277 reload_opnum[i] = opnum;
1278 reload_when_needed[i] = type;
9ec7078b
RK
1279 reload_secondary_in_reload[i] = secondary_in_reload;
1280 reload_secondary_out_reload[i] = secondary_out_reload;
1281 reload_secondary_in_icode[i] = secondary_in_icode;
1282 reload_secondary_out_icode[i] = secondary_out_icode;
eab89b90
RK
1283 reload_secondary_p[i] = 0;
1284
1285 n_reloads++;
0dadecf6
RK
1286
1287#ifdef SECONDARY_MEMORY_NEEDED
0dadecf6
RK
1288 if (out != 0 && GET_CODE (out) == REG
1289 && REGNO (out) < FIRST_PSEUDO_REGISTER
1290 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1291 outmode))
a8c9daeb 1292 get_secondary_mem (out, outmode, opnum, type);
0dadecf6 1293#endif
eab89b90
RK
1294 }
1295 else
1296 {
1297 /* We are reusing an existing reload,
1298 but we may have additional information for it.
1299 For example, we may now have both IN and OUT
1300 while the old one may have just one of them. */
1301
6fd5ac08
JW
1302 /* The modes can be different. If they are, we want to reload in
1303 the larger mode, so that the value is valid for both modes. */
1304 if (inmode != VOIDmode
1305 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
eab89b90 1306 reload_inmode[i] = inmode;
6fd5ac08
JW
1307 if (outmode != VOIDmode
1308 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
eab89b90
RK
1309 reload_outmode[i] = outmode;
1310 if (in != 0)
1311 reload_in[i] = in;
1312 if (out != 0)
1313 reload_out[i] = out;
1314 if (reg_class_subset_p (class, reload_reg_class[i]))
1315 reload_reg_class[i] = class;
1316 reload_optional[i] &= optional;
a8c9daeb
RK
1317 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1318 opnum, reload_opnum[i]))
1319 reload_when_needed[i] = RELOAD_OTHER;
1320 reload_opnum[i] = MIN (reload_opnum[i], opnum);
eab89b90
RK
1321 }
1322
1323 /* If the ostensible rtx being reload differs from the rtx found
1324 in the location to substitute, this reload is not safe to combine
1325 because we cannot reliably tell whether it appears in the insn. */
1326
1327 if (in != 0 && in != *inloc)
1328 reload_nocombine[i] = 1;
1329
1330#if 0
1331 /* This was replaced by changes in find_reloads_address_1 and the new
1332 function inc_for_reload, which go with a new meaning of reload_inc. */
1333
1334 /* If this is an IN/OUT reload in an insn that sets the CC,
1335 it must be for an autoincrement. It doesn't work to store
1336 the incremented value after the insn because that would clobber the CC.
1337 So we must do the increment of the value reloaded from,
1338 increment it, store it back, then decrement again. */
1339 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1340 {
1341 out = 0;
1342 reload_out[i] = 0;
1343 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1344 /* If we did not find a nonzero amount-to-increment-by,
1345 that contradicts the belief that IN is being incremented
1346 in an address in this insn. */
1347 if (reload_inc[i] == 0)
1348 abort ();
1349 }
1350#endif
1351
1352 /* If we will replace IN and OUT with the reload-reg,
1353 record where they are located so that substitution need
1354 not do a tree walk. */
1355
1356 if (replace_reloads)
1357 {
1358 if (inloc != 0)
1359 {
1360 register struct replacement *r = &replacements[n_replacements++];
1361 r->what = i;
1362 r->subreg_loc = in_subreg_loc;
1363 r->where = inloc;
1364 r->mode = inmode;
1365 }
1366 if (outloc != 0 && outloc != inloc)
1367 {
1368 register struct replacement *r = &replacements[n_replacements++];
1369 r->what = i;
1370 r->where = outloc;
1371 r->subreg_loc = out_subreg_loc;
1372 r->mode = outmode;
1373 }
1374 }
1375
1376 /* If this reload is just being introduced and it has both
1377 an incoming quantity and an outgoing quantity that are
1378 supposed to be made to match, see if either one of the two
1379 can serve as the place to reload into.
1380
1381 If one of them is acceptable, set reload_reg_rtx[i]
1382 to that one. */
1383
1384 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1385 {
1386 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
36b50568 1387 inmode, outmode,
189086f9 1388 reload_reg_class[i], i,
31c21e0c 1389 earlyclobber_operand_p (out));
eab89b90
RK
1390
1391 /* If the outgoing register already contains the same value
1392 as the incoming one, we can dispense with loading it.
1393 The easiest way to tell the caller that is to give a phony
1394 value for the incoming operand (same as outgoing one). */
1395 if (reload_reg_rtx[i] == out
1396 && (GET_CODE (in) == REG || CONSTANT_P (in))
1397 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1398 static_reload_reg_p, i, inmode))
1399 reload_in[i] = out;
1400 }
1401
1402 /* If this is an input reload and the operand contains a register that
1403 dies in this insn and is used nowhere else, see if it is the right class
1404 to be used for this reload. Use it if so. (This occurs most commonly
1405 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1406 this if it is also an output reload that mentions the register unless
1407 the output is a SUBREG that clobbers an entire register.
1408
1409 Note that the operand might be one of the spill regs, if it is a
1410 pseudo reg and we are in a block where spilling has not taken place.
1411 But if there is no spilling in this block, that is OK.
1412 An explicitly used hard reg cannot be a spill reg. */
1413
1414 if (reload_reg_rtx[i] == 0 && in != 0)
1415 {
1416 rtx note;
1417 int regno;
1418
1419 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1420 if (REG_NOTE_KIND (note) == REG_DEAD
1421 && GET_CODE (XEXP (note, 0)) == REG
1422 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1423 && reg_mentioned_p (XEXP (note, 0), in)
1424 && ! refers_to_regno_for_reload_p (regno,
1425 (regno
1426 + HARD_REGNO_NREGS (regno,
1427 inmode)),
1428 PATTERN (this_insn), inloc)
05b4ec4f
RS
1429 /* If this is also an output reload, IN cannot be used as
1430 the reload register if it is set in this insn unless IN
1431 is also OUT. */
1432 && (out == 0 || in == out
1433 || ! hard_reg_set_here_p (regno,
1434 (regno
1435 + HARD_REGNO_NREGS (regno,
1436 inmode)),
1437 PATTERN (this_insn)))
1438 /* ??? Why is this code so different from the previous?
1439 Is there any simple coherent way to describe the two together?
1440 What's going on here. */
eab89b90
RK
1441 && (in != out
1442 || (GET_CODE (in) == SUBREG
1443 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1444 / UNITS_PER_WORD)
1445 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1446 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1447 /* Make sure the operand fits in the reg that dies. */
1448 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1449 && HARD_REGNO_MODE_OK (regno, inmode)
1450 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1451 && HARD_REGNO_MODE_OK (regno, outmode)
1452 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1453 && !fixed_regs[regno])
1454 {
38a448ca 1455 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
eab89b90
RK
1456 break;
1457 }
1458 }
1459
1460 if (out)
1461 output_reloadnum = i;
1462
1463 return i;
1464}
1465
1466/* Record an additional place we must replace a value
1467 for which we have already recorded a reload.
1468 RELOADNUM is the value returned by push_reload
1469 when the reload was recorded.
1470 This is used in insn patterns that use match_dup. */
1471
1472static void
1473push_replacement (loc, reloadnum, mode)
1474 rtx *loc;
1475 int reloadnum;
1476 enum machine_mode mode;
1477{
1478 if (replace_reloads)
1479 {
1480 register struct replacement *r = &replacements[n_replacements++];
1481 r->what = reloadnum;
1482 r->where = loc;
1483 r->subreg_loc = 0;
1484 r->mode = mode;
1485 }
1486}
1487\f
a8c9daeb
RK
1488/* Transfer all replacements that used to be in reload FROM to be in
1489 reload TO. */
1490
1491void
1492transfer_replacements (to, from)
1493 int to, from;
1494{
1495 int i;
1496
1497 for (i = 0; i < n_replacements; i++)
1498 if (replacements[i].what == from)
1499 replacements[i].what = to;
1500}
1501\f
eab89b90
RK
1502/* If there is only one output reload, and it is not for an earlyclobber
1503 operand, try to combine it with a (logically unrelated) input reload
1504 to reduce the number of reload registers needed.
1505
1506 This is safe if the input reload does not appear in
1507 the value being output-reloaded, because this implies
1508 it is not needed any more once the original insn completes.
1509
1510 If that doesn't work, see we can use any of the registers that
1511 die in this insn as a reload register. We can if it is of the right
1512 class and does not appear in the value being output-reloaded. */
1513
1514static void
1515combine_reloads ()
1516{
1517 int i;
1518 int output_reload = -1;
8922eb5b 1519 int secondary_out = -1;
eab89b90
RK
1520 rtx note;
1521
1522 /* Find the output reload; return unless there is exactly one
1523 and that one is mandatory. */
1524
1525 for (i = 0; i < n_reloads; i++)
1526 if (reload_out[i] != 0)
1527 {
1528 if (output_reload >= 0)
1529 return;
1530 output_reload = i;
1531 }
1532
1533 if (output_reload < 0 || reload_optional[output_reload])
1534 return;
1535
1536 /* An input-output reload isn't combinable. */
1537
1538 if (reload_in[output_reload] != 0)
1539 return;
1540
6dc42e49 1541 /* If this reload is for an earlyclobber operand, we can't do anything. */
4644aad4
RK
1542 if (earlyclobber_operand_p (reload_out[output_reload]))
1543 return;
eab89b90
RK
1544
1545 /* Check each input reload; can we combine it? */
1546
1547 for (i = 0; i < n_reloads; i++)
1548 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1549 /* Life span of this reload must not extend past main insn. */
a8c9daeb 1550 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
47c8cf91 1551 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
a8c9daeb
RK
1552 && reload_when_needed[i] != RELOAD_OTHER
1553 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1554 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1555 reload_outmode[output_reload]))
eab89b90
RK
1556 && reload_inc[i] == 0
1557 && reload_reg_rtx[i] == 0
a8c9daeb 1558#ifdef SECONDARY_MEMORY_NEEDED
9ec7078b
RK
1559 /* Don't combine two reloads with different secondary
1560 memory locations. */
77545d45
RK
1561 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1562 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1563 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1564 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
a8c9daeb 1565#endif
e9a25f70
JL
1566 && (SMALL_REGISTER_CLASSES
1567 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1568 : (reg_class_subset_p (reload_reg_class[i],
1569 reload_reg_class[output_reload])
1570 || reg_class_subset_p (reload_reg_class[output_reload],
1571 reload_reg_class[i])))
eab89b90
RK
1572 && (MATCHES (reload_in[i], reload_out[output_reload])
1573 /* Args reversed because the first arg seems to be
1574 the one that we imagine being modified
1575 while the second is the one that might be affected. */
bfa30b22
RK
1576 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1577 reload_in[i])
eab89b90
RK
1578 /* However, if the input is a register that appears inside
1579 the output, then we also can't share.
1580 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1581 If the same reload reg is used for both reg 69 and the
1582 result to be stored in memory, then that result
1583 will clobber the address of the memory ref. */
1584 && ! (GET_CODE (reload_in[i]) == REG
bfa30b22 1585 && reg_overlap_mentioned_for_reload_p (reload_in[i],
a8c9daeb
RK
1586 reload_out[output_reload]))))
1587 && (reg_class_size[(int) reload_reg_class[i]]
e9a25f70 1588 || SMALL_REGISTER_CLASSES)
a8c9daeb
RK
1589 /* We will allow making things slightly worse by combining an
1590 input and an output, but no worse than that. */
1591 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1592 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
eab89b90
RK
1593 {
1594 int j;
1595
1596 /* We have found a reload to combine with! */
1597 reload_out[i] = reload_out[output_reload];
1598 reload_outmode[i] = reload_outmode[output_reload];
1599 /* Mark the old output reload as inoperative. */
1600 reload_out[output_reload] = 0;
1601 /* The combined reload is needed for the entire insn. */
eab89b90 1602 reload_when_needed[i] = RELOAD_OTHER;
0f41302f 1603 /* If the output reload had a secondary reload, copy it. */
9ec7078b
RK
1604 if (reload_secondary_out_reload[output_reload] != -1)
1605 {
1606 reload_secondary_out_reload[i]
1607 = reload_secondary_out_reload[output_reload];
1608 reload_secondary_out_icode[i]
1609 = reload_secondary_out_icode[output_reload];
1610 }
1611
a8c9daeb
RK
1612#ifdef SECONDARY_MEMORY_NEEDED
1613 /* Copy any secondary MEM. */
77545d45
RK
1614 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1615 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1616 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
a8c9daeb 1617#endif
0f41302f 1618 /* If required, minimize the register class. */
eab89b90
RK
1619 if (reg_class_subset_p (reload_reg_class[output_reload],
1620 reload_reg_class[i]))
1621 reload_reg_class[i] = reload_reg_class[output_reload];
1622
1623 /* Transfer all replacements from the old reload to the combined. */
1624 for (j = 0; j < n_replacements; j++)
1625 if (replacements[j].what == output_reload)
1626 replacements[j].what = i;
1627
1628 return;
1629 }
1630
1631 /* If this insn has only one operand that is modified or written (assumed
1632 to be the first), it must be the one corresponding to this reload. It
1633 is safe to use anything that dies in this insn for that output provided
1634 that it does not occur in the output (we already know it isn't an
1635 earlyclobber. If this is an asm insn, give up. */
1636
1637 if (INSN_CODE (this_insn) == -1)
1638 return;
1639
1640 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1641 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1642 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1643 return;
1644
1645 /* See if some hard register that dies in this insn and is not used in
1646 the output is the right class. Only works if the register we pick
1647 up can fully hold our output reload. */
1648 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1649 if (REG_NOTE_KIND (note) == REG_DEAD
1650 && GET_CODE (XEXP (note, 0)) == REG
bfa30b22
RK
1651 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1652 reload_out[output_reload])
eab89b90
RK
1653 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1654 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1655 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1656 REGNO (XEXP (note, 0)))
1657 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1658 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
8922eb5b
RK
1659 /* Ensure that a secondary or tertiary reload for this output
1660 won't want this register. */
1661 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1662 || (! (TEST_HARD_REG_BIT
1663 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1664 REGNO (XEXP (note, 0))))
1665 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1666 || ! (TEST_HARD_REG_BIT
1667 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1668 REGNO (XEXP (note, 0)))))))
eab89b90
RK
1669 && ! fixed_regs[REGNO (XEXP (note, 0))])
1670 {
38a448ca
RH
1671 reload_reg_rtx[output_reload]
1672 = gen_rtx_REG (reload_outmode[output_reload],
1673 REGNO (XEXP (note, 0)));
eab89b90
RK
1674 return;
1675 }
1676}
1677\f
1678/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1679 See if one of IN and OUT is a register that may be used;
1680 this is desirable since a spill-register won't be needed.
1681 If so, return the register rtx that proves acceptable.
1682
1683 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1684 CLASS is the register class required for the reload.
1685
1686 If FOR_REAL is >= 0, it is the number of the reload,
1687 and in some cases when it can be discovered that OUT doesn't need
1688 to be computed, clear out reload_out[FOR_REAL].
1689
1690 If FOR_REAL is -1, this should not be done, because this call
189086f9
RK
1691 is just to see if a register can be found, not to find and install it.
1692
1693 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1694 puts an additional constraint on being able to use IN for OUT since
1695 IN must not appear elsewhere in the insn (it is assumed that IN itself
1696 is safe from the earlyclobber). */
eab89b90
RK
1697
1698static rtx
36b50568 1699find_dummy_reload (real_in, real_out, inloc, outloc,
189086f9 1700 inmode, outmode, class, for_real, earlyclobber)
eab89b90
RK
1701 rtx real_in, real_out;
1702 rtx *inloc, *outloc;
36b50568 1703 enum machine_mode inmode, outmode;
eab89b90
RK
1704 enum reg_class class;
1705 int for_real;
189086f9 1706 int earlyclobber;
eab89b90
RK
1707{
1708 rtx in = real_in;
1709 rtx out = real_out;
1710 int in_offset = 0;
1711 int out_offset = 0;
1712 rtx value = 0;
1713
1714 /* If operands exceed a word, we can't use either of them
1715 unless they have the same size. */
36b50568
RS
1716 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1717 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1718 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
eab89b90
RK
1719 return 0;
1720
1721 /* Find the inside of any subregs. */
1722 while (GET_CODE (out) == SUBREG)
1723 {
1724 out_offset = SUBREG_WORD (out);
1725 out = SUBREG_REG (out);
1726 }
1727 while (GET_CODE (in) == SUBREG)
1728 {
1729 in_offset = SUBREG_WORD (in);
1730 in = SUBREG_REG (in);
1731 }
1732
1733 /* Narrow down the reg class, the same way push_reload will;
1734 otherwise we might find a dummy now, but push_reload won't. */
1735 class = PREFERRED_RELOAD_CLASS (in, class);
1736
1737 /* See if OUT will do. */
1738 if (GET_CODE (out) == REG
1739 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1740 {
1741 register int regno = REGNO (out) + out_offset;
36b50568 1742 int nwords = HARD_REGNO_NREGS (regno, outmode);
d3b9996a 1743 rtx saved_rtx;
eab89b90
RK
1744
1745 /* When we consider whether the insn uses OUT,
1746 ignore references within IN. They don't prevent us
1747 from copying IN into OUT, because those refs would
1748 move into the insn that reloads IN.
1749
1750 However, we only ignore IN in its role as this reload.
1751 If the insn uses IN elsewhere and it contains OUT,
1752 that counts. We can't be sure it's the "same" operand
1753 so it might not go through this reload. */
d3b9996a 1754 saved_rtx = *inloc;
eab89b90
RK
1755 *inloc = const0_rtx;
1756
1757 if (regno < FIRST_PSEUDO_REGISTER
1758 /* A fixed reg that can overlap other regs better not be used
1759 for reloading in any way. */
1760#ifdef OVERLAPPING_REGNO_P
1761 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1762#endif
1763 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1764 PATTERN (this_insn), outloc))
1765 {
1766 int i;
1767 for (i = 0; i < nwords; i++)
1768 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1769 regno + i))
1770 break;
1771
1772 if (i == nwords)
1773 {
1774 if (GET_CODE (real_out) == REG)
1775 value = real_out;
1776 else
38a448ca 1777 value = gen_rtx_REG (outmode, regno);
eab89b90
RK
1778 }
1779 }
1780
d3b9996a 1781 *inloc = saved_rtx;
eab89b90
RK
1782 }
1783
1784 /* Consider using IN if OUT was not acceptable
1785 or if OUT dies in this insn (like the quotient in a divmod insn).
1786 We can't use IN unless it is dies in this insn,
1787 which means we must know accurately which hard regs are live.
189086f9
RK
1788 Also, the result can't go in IN if IN is used within OUT,
1789 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
eab89b90
RK
1790 if (hard_regs_live_known
1791 && GET_CODE (in) == REG
1792 && REGNO (in) < FIRST_PSEUDO_REGISTER
1793 && (value == 0
1794 || find_reg_note (this_insn, REG_UNUSED, real_out))
1795 && find_reg_note (this_insn, REG_DEAD, real_in)
1796 && !fixed_regs[REGNO (in)]
36b50568
RS
1797 && HARD_REGNO_MODE_OK (REGNO (in),
1798 /* The only case where out and real_out might
1799 have different modes is where real_out
1800 is a subreg, and in that case, out
1801 has a real mode. */
1802 (GET_MODE (out) != VOIDmode
1803 ? GET_MODE (out) : outmode)))
eab89b90
RK
1804 {
1805 register int regno = REGNO (in) + in_offset;
36b50568 1806 int nwords = HARD_REGNO_NREGS (regno, inmode);
eab89b90 1807
fb3821f7 1808 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
eab89b90 1809 && ! hard_reg_set_here_p (regno, regno + nwords,
189086f9
RK
1810 PATTERN (this_insn))
1811 && (! earlyclobber
1812 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1813 PATTERN (this_insn), inloc)))
eab89b90
RK
1814 {
1815 int i;
1816 for (i = 0; i < nwords; i++)
1817 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1818 regno + i))
1819 break;
1820
1821 if (i == nwords)
1822 {
1823 /* If we were going to use OUT as the reload reg
1824 and changed our mind, it means OUT is a dummy that
1825 dies here. So don't bother copying value to it. */
1826 if (for_real >= 0 && value == real_out)
1827 reload_out[for_real] = 0;
1828 if (GET_CODE (real_in) == REG)
1829 value = real_in;
1830 else
38a448ca 1831 value = gen_rtx_REG (inmode, regno);
eab89b90
RK
1832 }
1833 }
1834 }
1835
1836 return value;
1837}
1838\f
1839/* This page contains subroutines used mainly for determining
1840 whether the IN or an OUT of a reload can serve as the
1841 reload register. */
1842
4644aad4
RK
1843/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1844
1845static int
1846earlyclobber_operand_p (x)
1847 rtx x;
1848{
1849 int i;
1850
1851 for (i = 0; i < n_earlyclobbers; i++)
1852 if (reload_earlyclobbers[i] == x)
1853 return 1;
1854
1855 return 0;
1856}
1857
eab89b90
RK
1858/* Return 1 if expression X alters a hard reg in the range
1859 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1860 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1861 X should be the body of an instruction. */
1862
1863static int
1864hard_reg_set_here_p (beg_regno, end_regno, x)
1865 register int beg_regno, end_regno;
1866 rtx x;
1867{
1868 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1869 {
1870 register rtx op0 = SET_DEST (x);
1871 while (GET_CODE (op0) == SUBREG)
1872 op0 = SUBREG_REG (op0);
1873 if (GET_CODE (op0) == REG)
1874 {
1875 register int r = REGNO (op0);
1876 /* See if this reg overlaps range under consideration. */
1877 if (r < end_regno
1878 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1879 return 1;
1880 }
1881 }
1882 else if (GET_CODE (x) == PARALLEL)
1883 {
1884 register int i = XVECLEN (x, 0) - 1;
1885 for (; i >= 0; i--)
1886 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1887 return 1;
1888 }
1889
1890 return 0;
1891}
1892
1893/* Return 1 if ADDR is a valid memory address for mode MODE,
1894 and check that each pseudo reg has the proper kind of
1895 hard reg. */
1896
1897int
1898strict_memory_address_p (mode, addr)
1899 enum machine_mode mode;
1900 register rtx addr;
1901{
1902 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1903 return 0;
1904
1905 win:
1906 return 1;
1907}
eab89b90
RK
1908\f
1909/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1910 if they are the same hard reg, and has special hacks for
1911 autoincrement and autodecrement.
1912 This is specifically intended for find_reloads to use
1913 in determining whether two operands match.
1914 X is the operand whose number is the lower of the two.
1915
1916 The value is 2 if Y contains a pre-increment that matches
1917 a non-incrementing address in X. */
1918
1919/* ??? To be completely correct, we should arrange to pass
1920 for X the output operand and for Y the input operand.
1921 For now, we assume that the output operand has the lower number
1922 because that is natural in (SET output (... input ...)). */
1923
1924int
1925operands_match_p (x, y)
1926 register rtx x, y;
1927{
1928 register int i;
1929 register RTX_CODE code = GET_CODE (x);
1930 register char *fmt;
1931 int success_2;
1932
1933 if (x == y)
1934 return 1;
1935 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1936 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1937 && GET_CODE (SUBREG_REG (y)) == REG)))
1938 {
1939 register int j;
1940
1941 if (code == SUBREG)
1942 {
1943 i = REGNO (SUBREG_REG (x));
1944 if (i >= FIRST_PSEUDO_REGISTER)
1945 goto slow;
1946 i += SUBREG_WORD (x);
1947 }
1948 else
1949 i = REGNO (x);
1950
1951 if (GET_CODE (y) == SUBREG)
1952 {
1953 j = REGNO (SUBREG_REG (y));
1954 if (j >= FIRST_PSEUDO_REGISTER)
1955 goto slow;
1956 j += SUBREG_WORD (y);
1957 }
1958 else
1959 j = REGNO (y);
1960
dca52d80
JW
1961 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1962 multiple hard register group, so that for example (reg:DI 0) and
1963 (reg:SI 1) will be considered the same register. */
1964 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1965 && i < FIRST_PSEUDO_REGISTER)
1966 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1967 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1968 && j < FIRST_PSEUDO_REGISTER)
1969 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1970
eab89b90
RK
1971 return i == j;
1972 }
1973 /* If two operands must match, because they are really a single
1974 operand of an assembler insn, then two postincrements are invalid
1975 because the assembler insn would increment only once.
1976 On the other hand, an postincrement matches ordinary indexing
1977 if the postincrement is the output operand. */
1978 if (code == POST_DEC || code == POST_INC)
1979 return operands_match_p (XEXP (x, 0), y);
1980 /* Two preincrements are invalid
1981 because the assembler insn would increment only once.
1982 On the other hand, an preincrement matches ordinary indexing
1983 if the preincrement is the input operand.
1984 In this case, return 2, since some callers need to do special
1985 things when this happens. */
1986 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1987 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1988
1989 slow:
1990
1991 /* Now we have disposed of all the cases
1992 in which different rtx codes can match. */
1993 if (code != GET_CODE (y))
1994 return 0;
1995 if (code == LABEL_REF)
1996 return XEXP (x, 0) == XEXP (y, 0);
1997 if (code == SYMBOL_REF)
1998 return XSTR (x, 0) == XSTR (y, 0);
1999
2000 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2001
2002 if (GET_MODE (x) != GET_MODE (y))
2003 return 0;
2004
2005 /* Compare the elements. If any pair of corresponding elements
2006 fail to match, return 0 for the whole things. */
2007
2008 success_2 = 0;
2009 fmt = GET_RTX_FORMAT (code);
2010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2011 {
2012 int val;
2013 switch (fmt[i])
2014 {
fb3821f7
CH
2015 case 'w':
2016 if (XWINT (x, i) != XWINT (y, i))
2017 return 0;
2018 break;
2019
eab89b90
RK
2020 case 'i':
2021 if (XINT (x, i) != XINT (y, i))
2022 return 0;
2023 break;
2024
2025 case 'e':
2026 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2027 if (val == 0)
2028 return 0;
2029 /* If any subexpression returns 2,
2030 we should return 2 if we are successful. */
2031 if (val == 2)
2032 success_2 = 1;
2033 break;
2034
2035 case '0':
2036 break;
2037
2038 /* It is believed that rtx's at this level will never
2039 contain anything but integers and other rtx's,
2040 except for within LABEL_REFs and SYMBOL_REFs. */
2041 default:
2042 abort ();
2043 }
2044 }
2045 return 1 + success_2;
2046}
2047\f
2048/* Return the number of times character C occurs in string S. */
2049
e4600702 2050int
eab89b90 2051n_occurrences (c, s)
d149d5f5 2052 int c;
eab89b90
RK
2053 char *s;
2054{
2055 int n = 0;
2056 while (*s)
2057 n += (*s++ == c);
2058 return n;
2059}
2060\f
eab89b90
RK
2061/* Describe the range of registers or memory referenced by X.
2062 If X is a register, set REG_FLAG and put the first register
2063 number into START and the last plus one into END.
2064 If X is a memory reference, put a base address into BASE
2065 and a range of integer offsets into START and END.
2066 If X is pushing on the stack, we can assume it causes no trouble,
2067 so we set the SAFE field. */
2068
2069static struct decomposition
2070decompose (x)
2071 rtx x;
2072{
2073 struct decomposition val;
2074 int all_const = 0;
2075
2076 val.reg_flag = 0;
2077 val.safe = 0;
43984e29 2078 val.base = 0;
eab89b90
RK
2079 if (GET_CODE (x) == MEM)
2080 {
2081 rtx base, offset = 0;
2082 rtx addr = XEXP (x, 0);
2083
2084 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2085 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2086 {
2087 val.base = XEXP (addr, 0);
2088 val.start = - GET_MODE_SIZE (GET_MODE (x));
2089 val.end = GET_MODE_SIZE (GET_MODE (x));
2090 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2091 return val;
2092 }
2093
2094 if (GET_CODE (addr) == CONST)
2095 {
2096 addr = XEXP (addr, 0);
2097 all_const = 1;
2098 }
2099 if (GET_CODE (addr) == PLUS)
2100 {
2101 if (CONSTANT_P (XEXP (addr, 0)))
2102 {
2103 base = XEXP (addr, 1);
2104 offset = XEXP (addr, 0);
2105 }
2106 else if (CONSTANT_P (XEXP (addr, 1)))
2107 {
2108 base = XEXP (addr, 0);
2109 offset = XEXP (addr, 1);
2110 }
2111 }
2112
2113 if (offset == 0)
2114 {
2115 base = addr;
2116 offset = const0_rtx;
2117 }
2118 if (GET_CODE (offset) == CONST)
2119 offset = XEXP (offset, 0);
2120 if (GET_CODE (offset) == PLUS)
2121 {
2122 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2123 {
38a448ca 2124 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
eab89b90
RK
2125 offset = XEXP (offset, 0);
2126 }
2127 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2128 {
38a448ca 2129 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
eab89b90
RK
2130 offset = XEXP (offset, 1);
2131 }
2132 else
2133 {
38a448ca 2134 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2135 offset = const0_rtx;
2136 }
2137 }
2138 else if (GET_CODE (offset) != CONST_INT)
2139 {
38a448ca 2140 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
eab89b90
RK
2141 offset = const0_rtx;
2142 }
2143
2144 if (all_const && GET_CODE (base) == PLUS)
38a448ca 2145 base = gen_rtx_CONST (GET_MODE (base), base);
eab89b90
RK
2146
2147 if (GET_CODE (offset) != CONST_INT)
2148 abort ();
2149
2150 val.start = INTVAL (offset);
2151 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2152 val.base = base;
2153 return val;
2154 }
2155 else if (GET_CODE (x) == REG)
2156 {
2157 val.reg_flag = 1;
2158 val.start = true_regnum (x);
2159 if (val.start < 0)
2160 {
2161 /* A pseudo with no hard reg. */
2162 val.start = REGNO (x);
2163 val.end = val.start + 1;
2164 }
2165 else
2166 /* A hard reg. */
2167 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2168 }
2169 else if (GET_CODE (x) == SUBREG)
2170 {
2171 if (GET_CODE (SUBREG_REG (x)) != REG)
2172 /* This could be more precise, but it's good enough. */
2173 return decompose (SUBREG_REG (x));
2174 val.reg_flag = 1;
2175 val.start = true_regnum (x);
2176 if (val.start < 0)
2177 return decompose (SUBREG_REG (x));
2178 else
2179 /* A hard reg. */
2180 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2181 }
2182 else if (CONSTANT_P (x)
2183 /* This hasn't been assigned yet, so it can't conflict yet. */
2184 || GET_CODE (x) == SCRATCH)
2185 val.safe = 1;
2186 else
2187 abort ();
2188 return val;
2189}
2190
2191/* Return 1 if altering Y will not modify the value of X.
2192 Y is also described by YDATA, which should be decompose (Y). */
2193
2194static int
2195immune_p (x, y, ydata)
2196 rtx x, y;
2197 struct decomposition ydata;
2198{
2199 struct decomposition xdata;
2200
2201 if (ydata.reg_flag)
fb3821f7 2202 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
eab89b90
RK
2203 if (ydata.safe)
2204 return 1;
2205
2206 if (GET_CODE (y) != MEM)
2207 abort ();
2208 /* If Y is memory and X is not, Y can't affect X. */
2209 if (GET_CODE (x) != MEM)
2210 return 1;
2211
2212 xdata = decompose (x);
2213
2214 if (! rtx_equal_p (xdata.base, ydata.base))
2215 {
2216 /* If bases are distinct symbolic constants, there is no overlap. */
2217 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2218 return 1;
2219 /* Constants and stack slots never overlap. */
2220 if (CONSTANT_P (xdata.base)
2221 && (ydata.base == frame_pointer_rtx
a36d4c62 2222 || ydata.base == hard_frame_pointer_rtx
eab89b90
RK
2223 || ydata.base == stack_pointer_rtx))
2224 return 1;
2225 if (CONSTANT_P (ydata.base)
2226 && (xdata.base == frame_pointer_rtx
a36d4c62 2227 || xdata.base == hard_frame_pointer_rtx
eab89b90
RK
2228 || xdata.base == stack_pointer_rtx))
2229 return 1;
2230 /* If either base is variable, we don't know anything. */
2231 return 0;
2232 }
2233
2234
2235 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2236}
44ace968 2237
f72aed24 2238/* Similar, but calls decompose. */
44ace968
JW
2239
2240int
2241safe_from_earlyclobber (op, clobber)
2242 rtx op, clobber;
2243{
2244 struct decomposition early_data;
2245
2246 early_data = decompose (clobber);
2247 return immune_p (op, clobber, early_data);
2248}
eab89b90
RK
2249\f
2250/* Main entry point of this file: search the body of INSN
2251 for values that need reloading and record them with push_reload.
2252 REPLACE nonzero means record also where the values occur
2253 so that subst_reloads can be used.
2254
2255 IND_LEVELS says how many levels of indirection are supported by this
2256 machine; a value of zero means that a memory reference is not a valid
2257 memory address.
2258
2259 LIVE_KNOWN says we have valid information about which hard
2260 regs are live at each point in the program; this is true when
2261 we are called from global_alloc but false when stupid register
2262 allocation has been done.
2263
2264 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2265 which is nonnegative if the reg has been commandeered for reloading into.
2266 It is copied into STATIC_RELOAD_REG_P and referenced from there
2267 by various subroutines. */
2268
2269void
2270find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2271 rtx insn;
2272 int replace, ind_levels;
2273 int live_known;
2274 short *reload_reg_p;
2275{
eab89b90
RK
2276#ifdef REGISTER_CONSTRAINTS
2277
eab89b90 2278 register int insn_code_number;
a8c9daeb 2279 register int i, j;
eab89b90
RK
2280 int noperands;
2281 /* These are the constraints for the insn. We don't change them. */
2282 char *constraints1[MAX_RECOG_OPERANDS];
2283 /* These start out as the constraints for the insn
2284 and they are chewed up as we consider alternatives. */
2285 char *constraints[MAX_RECOG_OPERANDS];
2286 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2287 a register. */
2288 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2289 char pref_or_nothing[MAX_RECOG_OPERANDS];
2290 /* Nonzero for a MEM operand whose entire address needs a reload. */
2291 int address_reloaded[MAX_RECOG_OPERANDS];
a8c9daeb
RK
2292 /* Value of enum reload_type to use for operand. */
2293 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2294 /* Value of enum reload_type to use within address of operand. */
2295 enum reload_type address_type[MAX_RECOG_OPERANDS];
2296 /* Save the usage of each operand. */
2297 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
eab89b90
RK
2298 int no_input_reloads = 0, no_output_reloads = 0;
2299 int n_alternatives;
2300 int this_alternative[MAX_RECOG_OPERANDS];
2301 char this_alternative_win[MAX_RECOG_OPERANDS];
2302 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2303 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2304 int this_alternative_matches[MAX_RECOG_OPERANDS];
2305 int swapped;
2306 int goal_alternative[MAX_RECOG_OPERANDS];
2307 int this_alternative_number;
2308 int goal_alternative_number;
2309 int operand_reloadnum[MAX_RECOG_OPERANDS];
2310 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2311 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2312 char goal_alternative_win[MAX_RECOG_OPERANDS];
2313 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2314 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2315 int goal_alternative_swapped;
eab89b90
RK
2316 int best;
2317 int commutative;
2318 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2319 rtx substed_operand[MAX_RECOG_OPERANDS];
2320 rtx body = PATTERN (insn);
2321 rtx set = single_set (insn);
2322 int goal_earlyclobber, this_earlyclobber;
2323 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2324
2325 this_insn = insn;
2326 this_insn_is_asm = 0; /* Tentative. */
2327 n_reloads = 0;
2328 n_replacements = 0;
2329 n_memlocs = 0;
2330 n_earlyclobbers = 0;
2331 replace_reloads = replace;
2332 hard_regs_live_known = live_known;
2333 static_reload_reg_p = reload_reg_p;
2334
2335 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2336 neither are insns that SET cc0. Insns that use CC0 are not allowed
2337 to have any input reloads. */
2338 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2339 no_output_reloads = 1;
2340
2341#ifdef HAVE_cc0
2342 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2343 no_input_reloads = 1;
2344 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2345 no_output_reloads = 1;
2346#endif
2347
0dadecf6
RK
2348#ifdef SECONDARY_MEMORY_NEEDED
2349 /* The eliminated forms of any secondary memory locations are per-insn, so
2350 clear them out here. */
2351
4c9a05bc 2352 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
0dadecf6
RK
2353#endif
2354
eab89b90
RK
2355 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2356 Make OPERANDS point to a vector of operand values.
2357 Make OPERAND_LOCS point to a vector of pointers to
2358 where the operands were found.
2359 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2360 constraint-strings for this insn.
2361 Return if the insn needs no reload processing. */
2362
2363 switch (GET_CODE (body))
2364 {
2365 case USE:
2366 case CLOBBER:
2367 case ASM_INPUT:
2368 case ADDR_VEC:
2369 case ADDR_DIFF_VEC:
2370 return;
2371
2372 case SET:
2373 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2374 is cheap to move between them. If it is not, there may not be an insn
2375 to do the copy, so we may need a reload. */
2376 if (GET_CODE (SET_DEST (body)) == REG
2377 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2378 && GET_CODE (SET_SRC (body)) == REG
2379 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2380 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2381 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2382 return;
2383 case PARALLEL:
2384 case ASM_OPERANDS:
a8c9daeb 2385 reload_n_operands = noperands = asm_noperands (body);
eab89b90
RK
2386 if (noperands >= 0)
2387 {
2388 /* This insn is an `asm' with operands. */
2389
2390 insn_code_number = -1;
2391 this_insn_is_asm = 1;
2392
2393 /* expand_asm_operands makes sure there aren't too many operands. */
2394 if (noperands > MAX_RECOG_OPERANDS)
2395 abort ();
2396
2397 /* Now get the operand values and constraints out of the insn. */
2398
2399 decode_asm_operands (body, recog_operand, recog_operand_loc,
2400 constraints, operand_mode);
2401 if (noperands > 0)
2402 {
4c9a05bc
RK
2403 bcopy ((char *) constraints, (char *) constraints1,
2404 noperands * sizeof (char *));
eab89b90
RK
2405 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2406 for (i = 1; i < noperands; i++)
d45cf215 2407 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
eab89b90
RK
2408 {
2409 error_for_asm (insn, "operand constraints differ in number of alternatives");
2410 /* Avoid further trouble with this insn. */
38a448ca 2411 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
2412 n_reloads = 0;
2413 return;
2414 }
2415 }
2416 break;
2417 }
2418
2419 default:
2420 /* Ordinary insn: recognize it, get the operands via insn_extract
2421 and get the constraints. */
2422
2423 insn_code_number = recog_memoized (insn);
2424 if (insn_code_number < 0)
2425 fatal_insn_not_found (insn);
2426
a8c9daeb 2427 reload_n_operands = noperands = insn_n_operands[insn_code_number];
eab89b90
RK
2428 n_alternatives = insn_n_alternatives[insn_code_number];
2429 /* Just return "no reloads" if insn has no operands with constraints. */
2430 if (n_alternatives == 0)
2431 return;
2432 insn_extract (insn);
2433 for (i = 0; i < noperands; i++)
2434 {
2435 constraints[i] = constraints1[i]
2436 = insn_operand_constraint[insn_code_number][i];
2437 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2438 }
2439 }
2440
2441 if (noperands == 0)
2442 return;
2443
2444 commutative = -1;
2445
2446 /* If we will need to know, later, whether some pair of operands
2447 are the same, we must compare them now and save the result.
2448 Reloading the base and index registers will clobber them
2449 and afterward they will fail to match. */
2450
2451 for (i = 0; i < noperands; i++)
2452 {
2453 register char *p;
2454 register int c;
2455
2456 substed_operand[i] = recog_operand[i];
2457 p = constraints[i];
2458
a8c9daeb
RK
2459 modified[i] = RELOAD_READ;
2460
2461 /* Scan this operand's constraint to see if it is an output operand,
2462 an in-out operand, is commutative, or should match another. */
eab89b90 2463
51723711 2464 while ((c = *p++))
a8c9daeb
RK
2465 {
2466 if (c == '=')
2467 modified[i] = RELOAD_WRITE;
2468 else if (c == '+')
2469 modified[i] = RELOAD_READ_WRITE;
2470 else if (c == '%')
2471 {
2472 /* The last operand should not be marked commutative. */
2473 if (i == noperands - 1)
2474 {
2475 if (this_insn_is_asm)
2476 warning_for_asm (this_insn,
2477 "`%%' constraint used with last operand");
2478 else
2479 abort ();
2480 }
2481 else
2482 commutative = i;
2483 }
2484 else if (c >= '0' && c <= '9')
2485 {
2486 c -= '0';
2487 operands_match[c][i]
2488 = operands_match_p (recog_operand[c], recog_operand[i]);
ea9c5b9e 2489
a8c9daeb
RK
2490 /* An operand may not match itself. */
2491 if (c == i)
2492 {
2493 if (this_insn_is_asm)
2494 warning_for_asm (this_insn,
2495 "operand %d has constraint %d", i, c);
2496 else
2497 abort ();
2498 }
ea9c5b9e 2499
a8c9daeb
RK
2500 /* If C can be commuted with C+1, and C might need to match I,
2501 then C+1 might also need to match I. */
2502 if (commutative >= 0)
2503 {
2504 if (c == commutative || c == commutative + 1)
2505 {
2506 int other = c + (c == commutative ? 1 : -1);
2507 operands_match[other][i]
2508 = operands_match_p (recog_operand[other], recog_operand[i]);
2509 }
2510 if (i == commutative || i == commutative + 1)
2511 {
2512 int other = i + (i == commutative ? 1 : -1);
2513 operands_match[c][other]
2514 = operands_match_p (recog_operand[c], recog_operand[other]);
2515 }
2516 /* Note that C is supposed to be less than I.
2517 No need to consider altering both C and I because in
2518 that case we would alter one into the other. */
2519 }
2520 }
2521 }
eab89b90
RK
2522 }
2523
2524 /* Examine each operand that is a memory reference or memory address
2525 and reload parts of the addresses into index registers.
eab89b90
RK
2526 Also here any references to pseudo regs that didn't get hard regs
2527 but are equivalent to constants get replaced in the insn itself
2528 with those constants. Nobody will ever see them again.
2529
2530 Finally, set up the preferred classes of each operand. */
2531
2532 for (i = 0; i < noperands; i++)
2533 {
2534 register RTX_CODE code = GET_CODE (recog_operand[i]);
a8c9daeb 2535
eab89b90 2536 address_reloaded[i] = 0;
a8c9daeb
RK
2537 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2538 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2539 : RELOAD_OTHER);
2540 address_type[i]
2541 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2542 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2543 : RELOAD_OTHER);
eab89b90 2544
0d38001f
RS
2545 if (*constraints[i] == 0)
2546 /* Ignore things like match_operator operands. */
2547 ;
2548 else if (constraints[i][0] == 'p')
eab89b90 2549 {
fb3821f7 2550 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 2551 recog_operand[i], recog_operand_loc[i],
55c22565 2552 i, operand_type[i], ind_levels, insn);
b685dbae
RK
2553
2554 /* If we now have a simple operand where we used to have a
2555 PLUS or MULT, re-recognize and try again. */
2556 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2557 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2558 && (GET_CODE (recog_operand[i]) == MULT
2559 || GET_CODE (recog_operand[i]) == PLUS))
2560 {
2561 INSN_CODE (insn) = -1;
2562 find_reloads (insn, replace, ind_levels, live_known,
2563 reload_reg_p);
2564 return;
2565 }
2566
eab89b90
RK
2567 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2568 }
2569 else if (code == MEM)
2570 {
2571 if (find_reloads_address (GET_MODE (recog_operand[i]),
2572 recog_operand_loc[i],
2573 XEXP (recog_operand[i], 0),
2574 &XEXP (recog_operand[i], 0),
55c22565 2575 i, address_type[i], ind_levels, insn))
eab89b90
RK
2576 address_reloaded[i] = 1;
2577 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2578 }
2579 else if (code == SUBREG)
2580 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
2581 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2582 ind_levels,
eab89b90
RK
2583 set != 0
2584 && &SET_DEST (set) == recog_operand_loc[i]);
ff428c90
ILT
2585 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2586 /* We can get a PLUS as an "operand" as a result of register
2587 elimination. See eliminate_regs and gen_reload. We handle
2588 a unary operator by reloading the operand. */
944d7b14
RS
2589 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2590 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2591 ind_levels, 0);
eab89b90
RK
2592 else if (code == REG)
2593 {
2594 /* This is equivalent to calling find_reloads_toplev.
2595 The code is duplicated for speed.
2596 When we find a pseudo always equivalent to a constant,
2597 we replace it by the constant. We must be sure, however,
2598 that we don't try to replace it in the insn in which it
2599 is being set. */
2600 register int regno = REGNO (recog_operand[i]);
2601 if (reg_equiv_constant[regno] != 0
2602 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2603 substed_operand[i] = recog_operand[i]
2604 = reg_equiv_constant[regno];
2605#if 0 /* This might screw code in reload1.c to delete prior output-reload
2606 that feeds this insn. */
2607 if (reg_equiv_mem[regno] != 0)
2608 substed_operand[i] = recog_operand[i]
2609 = reg_equiv_mem[regno];
2610#endif
2611 if (reg_equiv_address[regno] != 0)
2612 {
2613 /* If reg_equiv_address is not a constant address, copy it,
2614 since it may be shared. */
4ffeab02
JW
2615 /* We must rerun eliminate_regs, in case the elimination
2616 offsets have changed. */
2617 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
1914f5da 2618 0, NULL_RTX),
4ffeab02 2619 0);
eab89b90
RK
2620
2621 if (rtx_varies_p (address))
2622 address = copy_rtx (address);
2623
2624 /* If this is an output operand, we must output a CLOBBER
a8c9daeb
RK
2625 after INSN so find_equiv_reg knows REGNO is being written.
2626 Mark this insn specially, do we can put our output reloads
2627 after it. */
2628
2629 if (modified[i] != RELOAD_READ)
38a448ca
RH
2630 PUT_MODE (emit_insn_after (gen_rtx_CLOBBER (VOIDmode,
2631 recog_operand[i]),
a8c9daeb
RK
2632 insn),
2633 DImode);
eab89b90
RK
2634
2635 *recog_operand_loc[i] = recog_operand[i]
38a448ca 2636 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
eab89b90
RK
2637 RTX_UNCHANGING_P (recog_operand[i])
2638 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2639 find_reloads_address (GET_MODE (recog_operand[i]),
130659a4 2640 recog_operand_loc[i],
eab89b90
RK
2641 XEXP (recog_operand[i], 0),
2642 &XEXP (recog_operand[i], 0),
55c22565 2643 i, address_type[i], ind_levels, insn);
eab89b90
RK
2644 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2645 }
2646 }
aaf9712e
RS
2647 /* If the operand is still a register (we didn't replace it with an
2648 equivalent), get the preferred class to reload it into. */
2649 code = GET_CODE (recog_operand[i]);
2650 preferred_class[i]
91f9a6ed 2651 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
aaf9712e
RS
2652 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2653 pref_or_nothing[i]
91f9a6ed 2654 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
e4600702 2655 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
eab89b90
RK
2656 }
2657
2658 /* If this is simply a copy from operand 1 to operand 0, merge the
2659 preferred classes for the operands. */
2660 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2661 && recog_operand[1] == SET_SRC (set))
2662 {
2663 preferred_class[0] = preferred_class[1]
2664 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2665 pref_or_nothing[0] |= pref_or_nothing[1];
2666 pref_or_nothing[1] |= pref_or_nothing[0];
2667 }
2668
2669 /* Now see what we need for pseudo-regs that didn't get hard regs
2670 or got the wrong kind of hard reg. For this, we must consider
2671 all the operands together against the register constraints. */
2672
812f2051 2673 best = MAX_RECOG_OPERANDS * 2 + 600;
eab89b90
RK
2674
2675 swapped = 0;
2676 goal_alternative_swapped = 0;
2677 try_swapped:
2678
2679 /* The constraints are made of several alternatives.
2680 Each operand's constraint looks like foo,bar,... with commas
2681 separating the alternatives. The first alternatives for all
2682 operands go together, the second alternatives go together, etc.
2683
2684 First loop over alternatives. */
2685
2686 for (this_alternative_number = 0;
2687 this_alternative_number < n_alternatives;
2688 this_alternative_number++)
2689 {
2690 /* Loop over operands for one constraint alternative. */
2691 /* LOSERS counts those that don't fit this alternative
2692 and would require loading. */
2693 int losers = 0;
2694 /* BAD is set to 1 if it some operand can't fit this alternative
2695 even after reloading. */
2696 int bad = 0;
2697 /* REJECT is a count of how undesirable this alternative says it is
2698 if any reloading is required. If the alternative matches exactly
2699 then REJECT is ignored, but otherwise it gets this much
2700 counted against it in addition to the reloading needed. Each
2701 ? counts three times here since we want the disparaging caused by
2702 a bad register class to only count 1/3 as much. */
2703 int reject = 0;
2704
2705 this_earlyclobber = 0;
2706
2707 for (i = 0; i < noperands; i++)
2708 {
2709 register char *p = constraints[i];
2710 register int win = 0;
2711 /* 0 => this operand can be reloaded somehow for this alternative */
2712 int badop = 1;
2713 /* 0 => this operand can be reloaded if the alternative allows regs. */
2714 int winreg = 0;
2715 int c;
2716 register rtx operand = recog_operand[i];
2717 int offset = 0;
2718 /* Nonzero means this is a MEM that must be reloaded into a reg
2719 regardless of what the constraint says. */
2720 int force_reload = 0;
2721 int offmemok = 0;
9d926da5
RK
2722 /* Nonzero if a constant forced into memory would be OK for this
2723 operand. */
2724 int constmemok = 0;
eab89b90
RK
2725 int earlyclobber = 0;
2726
ff428c90
ILT
2727 /* If the predicate accepts a unary operator, it means that
2728 we need to reload the operand. */
2729 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2730 operand = XEXP (operand, 0);
2731
eab89b90
RK
2732 /* If the operand is a SUBREG, extract
2733 the REG or MEM (or maybe even a constant) within.
2734 (Constants can occur as a result of reg_equiv_constant.) */
2735
2736 while (GET_CODE (operand) == SUBREG)
2737 {
2738 offset += SUBREG_WORD (operand);
2739 operand = SUBREG_REG (operand);
ca769828 2740 /* Force reload if this is a constant or PLUS or if there may may
a61c98cf
RK
2741 be a problem accessing OPERAND in the outer mode. */
2742 if (CONSTANT_P (operand)
ca769828 2743 || GET_CODE (operand) == PLUS
03b72c86
RK
2744 /* We must force a reload of paradoxical SUBREGs
2745 of a MEM because the alignment of the inner value
beb5a9b8
RK
2746 may not be enough to do the outer reference. On
2747 big-endian machines, it may also reference outside
2748 the object.
03b72c86
RK
2749
2750 On machines that extend byte operations and we have a
486d8509
RK
2751 SUBREG where both the inner and outer modes are no wider
2752 than a word and the inner mode is narrower, is integral,
2753 and gets extended when loaded from memory, combine.c has
2754 made assumptions about the behavior of the machine in such
03b72c86
RK
2755 register access. If the data is, in fact, in memory we
2756 must always load using the size assumed to be in the
2757 register and let the insn do the different-sized
5ec105cd
RH
2758 accesses.
2759
2760 This is doubly true if WORD_REGISTER_OPERATIONS. In
2761 this case eliminate_regs has left non-paradoxical
2762 subregs for push_reloads to see. Make sure it does
2763 by forcing the reload.
2764
2765 ??? When is it right at this stage to have a subreg
2766 of a mem that is _not_ to be handled specialy? IMO
2767 those should have been reduced to just a mem. */
a61c98cf
RK
2768 || ((GET_CODE (operand) == MEM
2769 || (GET_CODE (operand)== REG
2770 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
5ec105cd 2771#ifndef WORD_REGISTER_OPERATIONS
03b72c86
RK
2772 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2773 < BIGGEST_ALIGNMENT)
2774 && (GET_MODE_SIZE (operand_mode[i])
2775 > GET_MODE_SIZE (GET_MODE (operand))))
beb5a9b8 2776 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
03b72c86
RK
2777#ifdef LOAD_EXTEND_OP
2778 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2779 && (GET_MODE_SIZE (GET_MODE (operand))
2780 <= UNITS_PER_WORD)
2781 && (GET_MODE_SIZE (operand_mode[i])
486d8509
RK
2782 > GET_MODE_SIZE (GET_MODE (operand)))
2783 && INTEGRAL_MODE_P (GET_MODE (operand))
2784 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
46da6b3a 2785#endif
5ec105cd
RH
2786 )
2787#endif
2788 )
eab89b90
RK
2789 /* Subreg of a hard reg which can't handle the subreg's mode
2790 or which would handle that mode in the wrong number of
2791 registers for subregging to work. */
a61c98cf
RK
2792 || (GET_CODE (operand) == REG
2793 && REGNO (operand) < FIRST_PSEUDO_REGISTER
f72ccbe6
RK
2794 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2795 && (GET_MODE_SIZE (GET_MODE (operand))
2796 > UNITS_PER_WORD)
2797 && ((GET_MODE_SIZE (GET_MODE (operand))
2798 / UNITS_PER_WORD)
2799 != HARD_REGNO_NREGS (REGNO (operand),
2800 GET_MODE (operand))))
2801 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2802 operand_mode[i]))))
eab89b90
RK
2803 force_reload = 1;
2804 }
2805
2806 this_alternative[i] = (int) NO_REGS;
2807 this_alternative_win[i] = 0;
2808 this_alternative_offmemok[i] = 0;
2809 this_alternative_earlyclobber[i] = 0;
2810 this_alternative_matches[i] = -1;
2811
2812 /* An empty constraint or empty alternative
2813 allows anything which matched the pattern. */
2814 if (*p == 0 || *p == ',')
2815 win = 1, badop = 0;
2816
2817 /* Scan this alternative's specs for this operand;
2818 set WIN if the operand fits any letter in this alternative.
2819 Otherwise, clear BADOP if this operand could
2820 fit some letter after reloads,
2821 or set WINREG if this operand could fit after reloads
2822 provided the constraint allows some registers. */
2823
2824 while (*p && (c = *p++) != ',')
2825 switch (c)
2826 {
2827 case '=':
eab89b90 2828 case '+':
eab89b90
RK
2829 case '*':
2830 break;
2831
2832 case '%':
42add480
TW
2833 /* The last operand should not be marked commutative. */
2834 if (i != noperands - 1)
2835 commutative = i;
eab89b90
RK
2836 break;
2837
2838 case '?':
812f2051 2839 reject += 6;
eab89b90
RK
2840 break;
2841
2842 case '!':
812f2051 2843 reject = 600;
eab89b90
RK
2844 break;
2845
2846 case '#':
2847 /* Ignore rest of this alternative as far as
2848 reloading is concerned. */
2849 while (*p && *p != ',') p++;
2850 break;
2851
2852 case '0':
2853 case '1':
2854 case '2':
2855 case '3':
2856 case '4':
2857 c -= '0';
2858 this_alternative_matches[i] = c;
2859 /* We are supposed to match a previous operand.
2860 If we do, we win if that one did.
2861 If we do not, count both of the operands as losers.
2862 (This is too conservative, since most of the time
2863 only a single reload insn will be needed to make
2864 the two operands win. As a result, this alternative
2865 may be rejected when it is actually desirable.) */
2866 if ((swapped && (c != commutative || i != commutative + 1))
2867 /* If we are matching as if two operands were swapped,
2868 also pretend that operands_match had been computed
2869 with swapped.
2870 But if I is the second of those and C is the first,
2871 don't exchange them, because operands_match is valid
2872 only on one side of its diagonal. */
2873 ? (operands_match
2874 [(c == commutative || c == commutative + 1)
2875 ? 2*commutative + 1 - c : c]
2876 [(i == commutative || i == commutative + 1)
2877 ? 2*commutative + 1 - i : i])
2878 : operands_match[c][i])
fc79eafe
JW
2879 {
2880 /* If we are matching a non-offsettable address where an
2881 offsettable address was expected, then we must reject
2882 this combination, because we can't reload it. */
2883 if (this_alternative_offmemok[c]
2884 && GET_CODE (recog_operand[c]) == MEM
2885 && this_alternative[c] == (int) NO_REGS
2886 && ! this_alternative_win[c])
2887 bad = 1;
2888
2889 win = this_alternative_win[c];
2890 }
eab89b90
RK
2891 else
2892 {
2893 /* Operands don't match. */
2894 rtx value;
2895 /* Retroactively mark the operand we had to match
2896 as a loser, if it wasn't already. */
2897 if (this_alternative_win[c])
2898 losers++;
2899 this_alternative_win[c] = 0;
2900 if (this_alternative[c] == (int) NO_REGS)
2901 bad = 1;
2902 /* But count the pair only once in the total badness of
2903 this alternative, if the pair can be a dummy reload. */
2904 value
2905 = find_dummy_reload (recog_operand[i], recog_operand[c],
2906 recog_operand_loc[i], recog_operand_loc[c],
adb44af8 2907 operand_mode[i], operand_mode[c],
189086f9
RK
2908 this_alternative[c], -1,
2909 this_alternative_earlyclobber[c]);
eab89b90
RK
2910
2911 if (value != 0)
2912 losers--;
2913 }
2914 /* This can be fixed with reloads if the operand
2915 we are supposed to match can be fixed with reloads. */
2916 badop = 0;
2917 this_alternative[i] = this_alternative[c];
e64c4f9e
RK
2918
2919 /* If we have to reload this operand and some previous
2920 operand also had to match the same thing as this
2921 operand, we don't know how to do that. So reject this
2922 alternative. */
2923 if (! win || force_reload)
2924 for (j = 0; j < i; j++)
2925 if (this_alternative_matches[j]
2926 == this_alternative_matches[i])
2927 badop = 1;
2928
eab89b90
RK
2929 break;
2930
2931 case 'p':
2932 /* All necessary reloads for an address_operand
2933 were handled in find_reloads_address. */
5c73e847 2934 this_alternative[i] = (int) BASE_REG_CLASS;
eab89b90
RK
2935 win = 1;
2936 break;
2937
2938 case 'm':
2939 if (force_reload)
2940 break;
2941 if (GET_CODE (operand) == MEM
2942 || (GET_CODE (operand) == REG
2943 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2944 && reg_renumber[REGNO (operand)] < 0))
2945 win = 1;
3feffdfe
JW
2946 if (CONSTANT_P (operand)
2947 /* force_const_mem does not accept HIGH. */
2948 && GET_CODE (operand) != HIGH)
eab89b90 2949 badop = 0;
9d926da5 2950 constmemok = 1;
eab89b90
RK
2951 break;
2952
2953 case '<':
2954 if (GET_CODE (operand) == MEM
2955 && ! address_reloaded[i]
2956 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2957 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2958 win = 1;
2959 break;
2960
2961 case '>':
2962 if (GET_CODE (operand) == MEM
2963 && ! address_reloaded[i]
2964 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2965 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2966 win = 1;
2967 break;
2968
2969 /* Memory operand whose address is not offsettable. */
2970 case 'V':
2971 if (force_reload)
2972 break;
2973 if (GET_CODE (operand) == MEM
2974 && ! (ind_levels ? offsettable_memref_p (operand)
2975 : offsettable_nonstrict_memref_p (operand))
2976 /* Certain mem addresses will become offsettable
2977 after they themselves are reloaded. This is important;
2978 we don't want our own handling of unoffsettables
2979 to override the handling of reg_equiv_address. */
2980 && !(GET_CODE (XEXP (operand, 0)) == REG
2981 && (ind_levels == 0
2982 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2983 win = 1;
2984 break;
2985
2986 /* Memory operand whose address is offsettable. */
2987 case 'o':
2988 if (force_reload)
2989 break;
2990 if ((GET_CODE (operand) == MEM
2991 /* If IND_LEVELS, find_reloads_address won't reload a
2992 pseudo that didn't get a hard reg, so we have to
2993 reject that case. */
2994 && (ind_levels ? offsettable_memref_p (operand)
2995 : offsettable_nonstrict_memref_p (operand)))
26ba4aee
JW
2996 /* A reloaded auto-increment address is offsettable,
2997 because it is now just a simple register indirect. */
2998 || (GET_CODE (operand) == MEM
2999 && address_reloaded[i]
3000 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3001 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3002 || GET_CODE (XEXP (operand, 0)) == POST_INC
3003 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
eab89b90
RK
3004 /* Certain mem addresses will become offsettable
3005 after they themselves are reloaded. This is important;
3006 we don't want our own handling of unoffsettables
3007 to override the handling of reg_equiv_address. */
3008 || (GET_CODE (operand) == MEM
3009 && GET_CODE (XEXP (operand, 0)) == REG
3010 && (ind_levels == 0
3011 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3012 || (GET_CODE (operand) == REG
3013 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3a322c50
RK
3014 && reg_renumber[REGNO (operand)] < 0
3015 /* If reg_equiv_address is nonzero, we will be
3016 loading it into a register; hence it will be
3017 offsettable, but we cannot say that reg_equiv_mem
3018 is offsettable without checking. */
3019 && ((reg_equiv_mem[REGNO (operand)] != 0
3020 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3021 || (reg_equiv_address[REGNO (operand)] != 0))))
eab89b90 3022 win = 1;
3feffdfe
JW
3023 /* force_const_mem does not accept HIGH. */
3024 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3025 || GET_CODE (operand) == MEM)
eab89b90 3026 badop = 0;
9d926da5 3027 constmemok = 1;
eab89b90
RK
3028 offmemok = 1;
3029 break;
3030
3031 case '&':
3032 /* Output operand that is stored before the need for the
3033 input operands (and their index registers) is over. */
3034 earlyclobber = 1, this_earlyclobber = 1;
3035 break;
3036
3037 case 'E':
293166be 3038#ifndef REAL_ARITHMETIC
eab89b90
RK
3039 /* Match any floating double constant, but only if
3040 we can examine the bits of it reliably. */
3041 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
fb3821f7 3042 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
eab89b90
RK
3043 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3044 break;
293166be 3045#endif
eab89b90
RK
3046 if (GET_CODE (operand) == CONST_DOUBLE)
3047 win = 1;
3048 break;
3049
3050 case 'F':
3051 if (GET_CODE (operand) == CONST_DOUBLE)
3052 win = 1;
3053 break;
3054
3055 case 'G':
3056 case 'H':
3057 if (GET_CODE (operand) == CONST_DOUBLE
3058 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3059 win = 1;
3060 break;
3061
3062 case 's':
3063 if (GET_CODE (operand) == CONST_INT
3064 || (GET_CODE (operand) == CONST_DOUBLE
3065 && GET_MODE (operand) == VOIDmode))
3066 break;
3067 case 'i':
3068 if (CONSTANT_P (operand)
3069#ifdef LEGITIMATE_PIC_OPERAND_P
3070 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3071#endif
3072 )
3073 win = 1;
3074 break;
3075
3076 case 'n':
3077 if (GET_CODE (operand) == CONST_INT
3078 || (GET_CODE (operand) == CONST_DOUBLE
3079 && GET_MODE (operand) == VOIDmode))
3080 win = 1;
3081 break;
3082
3083 case 'I':
3084 case 'J':
3085 case 'K':
3086 case 'L':
3087 case 'M':
3088 case 'N':
3089 case 'O':
3090 case 'P':
3091 if (GET_CODE (operand) == CONST_INT
3092 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3093 win = 1;
3094 break;
3095
3096 case 'X':
3097 win = 1;
3098 break;
3099
3100 case 'g':
3101 if (! force_reload
3102 /* A PLUS is never a valid operand, but reload can make
3103 it from a register when eliminating registers. */
3104 && GET_CODE (operand) != PLUS
3105 /* A SCRATCH is not a valid operand. */
3106 && GET_CODE (operand) != SCRATCH
3107#ifdef LEGITIMATE_PIC_OPERAND_P
3108 && (! CONSTANT_P (operand)
3109 || ! flag_pic
3110 || LEGITIMATE_PIC_OPERAND_P (operand))
3111#endif
3112 && (GENERAL_REGS == ALL_REGS
3113 || GET_CODE (operand) != REG
3114 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3115 && reg_renumber[REGNO (operand)] < 0)))
3116 win = 1;
3117 /* Drop through into 'r' case */
3118
3119 case 'r':
3120 this_alternative[i]
3121 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3122 goto reg;
3123
3124#ifdef EXTRA_CONSTRAINT
3125 case 'Q':
3126 case 'R':
3127 case 'S':
3128 case 'T':
3129 case 'U':
3130 if (EXTRA_CONSTRAINT (operand, c))
3131 win = 1;
3132 break;
3133#endif
3134
3135 default:
3136 this_alternative[i]
3137 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3138
3139 reg:
3140 if (GET_MODE (operand) == BLKmode)
3141 break;
3142 winreg = 1;
3143 if (GET_CODE (operand) == REG
3144 && reg_fits_class_p (operand, this_alternative[i],
3145 offset, GET_MODE (recog_operand[i])))
3146 win = 1;
3147 break;
3148 }
3149
3150 constraints[i] = p;
3151
3152 /* If this operand could be handled with a reg,
3153 and some reg is allowed, then this operand can be handled. */
3154 if (winreg && this_alternative[i] != (int) NO_REGS)
3155 badop = 0;
3156
3157 /* Record which operands fit this alternative. */
3158 this_alternative_earlyclobber[i] = earlyclobber;
3159 if (win && ! force_reload)
3160 this_alternative_win[i] = 1;
3161 else
3162 {
9d926da5
RK
3163 int const_to_mem = 0;
3164
eab89b90
RK
3165 this_alternative_offmemok[i] = offmemok;
3166 losers++;
3167 if (badop)
3168 bad = 1;
3169 /* Alternative loses if it has no regs for a reg operand. */
3170 if (GET_CODE (operand) == REG
3171 && this_alternative[i] == (int) NO_REGS
3172 && this_alternative_matches[i] < 0)
3173 bad = 1;
3174
3a322c50
RK
3175 /* If this is a constant that is reloaded into the desired
3176 class by copying it to memory first, count that as another
3177 reload. This is consistent with other code and is
293166be 3178 required to avoid choosing another alternative when
3a322c50
RK
3179 the constant is moved into memory by this function on
3180 an early reload pass. Note that the test here is
3181 precisely the same as in the code below that calls
3182 force_const_mem. */
3183 if (CONSTANT_P (operand)
59f25cf9
RK
3184 /* force_const_mem does not accept HIGH. */
3185 && GET_CODE (operand) != HIGH
e5e809f4 3186 && ((PREFERRED_RELOAD_CLASS (operand,
3a322c50 3187 (enum reg_class) this_alternative[i])
e5e809f4
JL
3188 == NO_REGS)
3189 || no_input_reloads)
3a322c50 3190 && operand_mode[i] != VOIDmode)
9d926da5
RK
3191 {
3192 const_to_mem = 1;
3193 if (this_alternative[i] != (int) NO_REGS)
3194 losers++;
3195 }
3a322c50 3196
5e6aa513
RK
3197 /* If we can't reload this value at all, reject this
3198 alternative. Note that we could also lose due to
3199 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3200 here. */
3201
3202 if (! CONSTANT_P (operand)
73b236b5 3203 && (enum reg_class) this_alternative[i] != NO_REGS
5e6aa513
RK
3204 && (PREFERRED_RELOAD_CLASS (operand,
3205 (enum reg_class) this_alternative[i])
3206 == NO_REGS))
3207 bad = 1;
3208
e5e809f4
JL
3209 /* Alternative loses if it requires a type of reload not
3210 permitted for this insn. We can always reload SCRATCH
3211 and objects with a REG_UNUSED note. */
3212 else if (GET_CODE (operand) != SCRATCH
3213 && modified[i] != RELOAD_READ && no_output_reloads
3214 && ! find_reg_note (insn, REG_UNUSED, operand))
3215 bad = 1;
3216 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3217 && ! const_to_mem)
3218 bad = 1;
3219
3220
eab89b90
RK
3221 /* We prefer to reload pseudos over reloading other things,
3222 since such reloads may be able to be eliminated later.
3223 If we are reloading a SCRATCH, we won't be generating any
3224 insns, just using a register, so it is also preferred.
9d926da5
RK
3225 So bump REJECT in other cases. Don't do this in the
3226 case where we are forcing a constant into memory and
3227 it will then win since we don't want to have a different
3228 alternative match then. */
915bb763
RK
3229 if (! (GET_CODE (operand) == REG
3230 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
9d926da5
RK
3231 && GET_CODE (operand) != SCRATCH
3232 && ! (const_to_mem && constmemok))
812f2051
R
3233 reject += 2;
3234
3235 /* Input reloads can be inherited more often than output
3236 reloads can be removed, so penalize output reloads. */
3237 if (operand_type[i] != RELOAD_FOR_INPUT)
eab89b90
RK
3238 reject++;
3239 }
3240
3241 /* If this operand is a pseudo register that didn't get a hard
3242 reg and this alternative accepts some register, see if the
3243 class that we want is a subset of the preferred class for this
3244 register. If not, but it intersects that class, use the
3245 preferred class instead. If it does not intersect the preferred
3246 class, show that usage of this alternative should be discouraged;
3247 it will be discouraged more still if the register is `preferred
3248 or nothing'. We do this because it increases the chance of
3249 reusing our spill register in a later insn and avoiding a pair
3250 of memory stores and loads.
3251
3252 Don't bother with this if this alternative will accept this
3253 operand.
3254
a2d353e5
RK
3255 Don't do this for a multiword operand, since it is only a
3256 small win and has the risk of requiring more spill registers,
3257 which could cause a large loss.
5aa14fee 3258
eab89b90
RK
3259 Don't do this if the preferred class has only one register
3260 because we might otherwise exhaust the class. */
3261
3262
3263 if (! win && this_alternative[i] != (int) NO_REGS
5aa14fee 3264 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
eab89b90
RK
3265 && reg_class_size[(int) preferred_class[i]] > 1)
3266 {
3267 if (! reg_class_subset_p (this_alternative[i],
3268 preferred_class[i]))
3269 {
3270 /* Since we don't have a way of forming the intersection,
3271 we just do something special if the preferred class
3272 is a subset of the class we have; that's the most
3273 common case anyway. */
3274 if (reg_class_subset_p (preferred_class[i],
3275 this_alternative[i]))
3276 this_alternative[i] = (int) preferred_class[i];
3277 else
812f2051 3278 reject += (2 + 2 * pref_or_nothing[i]);
eab89b90
RK
3279 }
3280 }
3281 }
3282
3283 /* Now see if any output operands that are marked "earlyclobber"
3284 in this alternative conflict with any input operands
3285 or any memory addresses. */
3286
3287 for (i = 0; i < noperands; i++)
3288 if (this_alternative_earlyclobber[i]
3289 && this_alternative_win[i])
3290 {
3291 struct decomposition early_data;
eab89b90
RK
3292
3293 early_data = decompose (recog_operand[i]);
3294
3295 if (modified[i] == RELOAD_READ)
3296 {
3297 if (this_insn_is_asm)
3298 warning_for_asm (this_insn,
3299 "`&' constraint used with input operand");
3300 else
3301 abort ();
3302 continue;
3303 }
3304
3305 if (this_alternative[i] == NO_REGS)
3306 {
3307 this_alternative_earlyclobber[i] = 0;
3308 if (this_insn_is_asm)
3309 error_for_asm (this_insn,
3310 "`&' constraint used with no register class");
3311 else
3312 abort ();
3313 }
3314
3315 for (j = 0; j < noperands; j++)
3316 /* Is this an input operand or a memory ref? */
3317 if ((GET_CODE (recog_operand[j]) == MEM
3318 || modified[j] != RELOAD_WRITE)
3319 && j != i
3320 /* Ignore things like match_operator operands. */
3321 && *constraints1[j] != 0
3322 /* Don't count an input operand that is constrained to match
3323 the early clobber operand. */
3324 && ! (this_alternative_matches[j] == i
3325 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3326 /* Is it altered by storing the earlyclobber operand? */
3327 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3328 {
3329 /* If the output is in a single-reg class,
3330 it's costly to reload it, so reload the input instead. */
3331 if (reg_class_size[this_alternative[i]] == 1
3332 && (GET_CODE (recog_operand[j]) == REG
3333 || GET_CODE (recog_operand[j]) == SUBREG))
3334 {
3335 losers++;
3336 this_alternative_win[j] = 0;
3337 }
3338 else
3339 break;
3340 }
3341 /* If an earlyclobber operand conflicts with something,
3342 it must be reloaded, so request this and count the cost. */
3343 if (j != noperands)
3344 {
3345 losers++;
3346 this_alternative_win[i] = 0;
3347 for (j = 0; j < noperands; j++)
3348 if (this_alternative_matches[j] == i
3349 && this_alternative_win[j])
3350 {
3351 this_alternative_win[j] = 0;
3352 losers++;
3353 }
3354 }
3355 }
3356
3357 /* If one alternative accepts all the operands, no reload required,
3358 choose that alternative; don't consider the remaining ones. */
3359 if (losers == 0)
3360 {
3361 /* Unswap these so that they are never swapped at `finish'. */
3362 if (commutative >= 0)
3363 {
3364 recog_operand[commutative] = substed_operand[commutative];
3365 recog_operand[commutative + 1]
3366 = substed_operand[commutative + 1];
3367 }
3368 for (i = 0; i < noperands; i++)
3369 {
3370 goal_alternative_win[i] = 1;
3371 goal_alternative[i] = this_alternative[i];
3372 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3373 goal_alternative_matches[i] = this_alternative_matches[i];
3374 goal_alternative_earlyclobber[i]
3375 = this_alternative_earlyclobber[i];
3376 }
3377 goal_alternative_number = this_alternative_number;
3378 goal_alternative_swapped = swapped;
3379 goal_earlyclobber = this_earlyclobber;
3380 goto finish;
3381 }
3382
3383 /* REJECT, set by the ! and ? constraint characters and when a register
3384 would be reloaded into a non-preferred class, discourages the use of
812f2051
R
3385 this alternative for a reload goal. REJECT is incremented by six
3386 for each ? and two for each non-preferred class. */
3387 losers = losers * 6 + reject;
eab89b90
RK
3388
3389 /* If this alternative can be made to work by reloading,
3390 and it needs less reloading than the others checked so far,
3391 record it as the chosen goal for reloading. */
3392 if (! bad && best > losers)
3393 {
3394 for (i = 0; i < noperands; i++)
3395 {
3396 goal_alternative[i] = this_alternative[i];
3397 goal_alternative_win[i] = this_alternative_win[i];
3398 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3399 goal_alternative_matches[i] = this_alternative_matches[i];
3400 goal_alternative_earlyclobber[i]
3401 = this_alternative_earlyclobber[i];
3402 }
3403 goal_alternative_swapped = swapped;
3404 best = losers;
3405 goal_alternative_number = this_alternative_number;
3406 goal_earlyclobber = this_earlyclobber;
3407 }
3408 }
3409
3410 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3411 then we need to try each alternative twice,
3412 the second time matching those two operands
3413 as if we had exchanged them.
3414 To do this, really exchange them in operands.
3415
3416 If we have just tried the alternatives the second time,
3417 return operands to normal and drop through. */
3418
3419 if (commutative >= 0)
3420 {
3421 swapped = !swapped;
3422 if (swapped)
3423 {
3424 register enum reg_class tclass;
3425 register int t;
3426
3427 recog_operand[commutative] = substed_operand[commutative + 1];
3428 recog_operand[commutative + 1] = substed_operand[commutative];
3429
3430 tclass = preferred_class[commutative];
3431 preferred_class[commutative] = preferred_class[commutative + 1];
3432 preferred_class[commutative + 1] = tclass;
3433
3434 t = pref_or_nothing[commutative];
3435 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3436 pref_or_nothing[commutative + 1] = t;
3437
4c9a05bc
RK
3438 bcopy ((char *) constraints1, (char *) constraints,
3439 noperands * sizeof (char *));
eab89b90
RK
3440 goto try_swapped;
3441 }
3442 else
3443 {
3444 recog_operand[commutative] = substed_operand[commutative];
3445 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3446 }
3447 }
3448
3449 /* The operands don't meet the constraints.
3450 goal_alternative describes the alternative
3451 that we could reach by reloading the fewest operands.
3452 Reload so as to fit it. */
3453
3454 if (best == MAX_RECOG_OPERANDS + 300)
3455 {
3456 /* No alternative works with reloads?? */
3457 if (insn_code_number >= 0)
3458 abort ();
3459 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3460 /* Avoid further trouble with this insn. */
38a448ca 3461 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3462 n_reloads = 0;
3463 return;
3464 }
3465
3466 /* Jump to `finish' from above if all operands are valid already.
3467 In that case, goal_alternative_win is all 1. */
3468 finish:
3469
3470 /* Right now, for any pair of operands I and J that are required to match,
3471 with I < J,
3472 goal_alternative_matches[J] is I.
3473 Set up goal_alternative_matched as the inverse function:
3474 goal_alternative_matched[I] = J. */
3475
3476 for (i = 0; i < noperands; i++)
3477 goal_alternative_matched[i] = -1;
3478
3479 for (i = 0; i < noperands; i++)
3480 if (! goal_alternative_win[i]
3481 && goal_alternative_matches[i] >= 0)
3482 goal_alternative_matched[goal_alternative_matches[i]] = i;
3483
3484 /* If the best alternative is with operands 1 and 2 swapped,
a8c9daeb
RK
3485 consider them swapped before reporting the reloads. Update the
3486 operand numbers of any reloads already pushed. */
eab89b90
RK
3487
3488 if (goal_alternative_swapped)
3489 {
3490 register rtx tem;
3491
3492 tem = substed_operand[commutative];
3493 substed_operand[commutative] = substed_operand[commutative + 1];
3494 substed_operand[commutative + 1] = tem;
3495 tem = recog_operand[commutative];
3496 recog_operand[commutative] = recog_operand[commutative + 1];
3497 recog_operand[commutative + 1] = tem;
a8c9daeb
RK
3498
3499 for (i = 0; i < n_reloads; i++)
3500 {
3501 if (reload_opnum[i] == commutative)
3502 reload_opnum[i] = commutative + 1;
3503 else if (reload_opnum[i] == commutative + 1)
3504 reload_opnum[i] = commutative;
3505 }
eab89b90
RK
3506 }
3507
3508 /* Perform whatever substitutions on the operands we are supposed
3509 to make due to commutativity or replacement of registers
3510 with equivalent constants or memory slots. */
3511
3512 for (i = 0; i < noperands; i++)
3513 {
3514 *recog_operand_loc[i] = substed_operand[i];
3515 /* While we are looping on operands, initialize this. */
3516 operand_reloadnum[i] = -1;
a8c9daeb
RK
3517
3518 /* If this is an earlyclobber operand, we need to widen the scope.
3519 The reload must remain valid from the start of the insn being
3520 reloaded until after the operand is stored into its destination.
3521 We approximate this with RELOAD_OTHER even though we know that we
3522 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3523
3524 One special case that is worth checking is when we have an
3525 output that is earlyclobber but isn't used past the insn (typically
3526 a SCRATCH). In this case, we only need have the reload live
3527 through the insn itself, but not for any of our input or output
3528 reloads.
3529
3530 In any case, anything needed to address this operand can remain
3531 however they were previously categorized. */
3532
3533 if (goal_alternative_earlyclobber[i])
3534 operand_type[i]
3535 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3536 ? RELOAD_FOR_INSN : RELOAD_OTHER);
eab89b90
RK
3537 }
3538
3539 /* Any constants that aren't allowed and can't be reloaded
3540 into registers are here changed into memory references. */
3541 for (i = 0; i < noperands; i++)
3542 if (! goal_alternative_win[i]
3543 && CONSTANT_P (recog_operand[i])
59f25cf9
RK
3544 /* force_const_mem does not accept HIGH. */
3545 && GET_CODE (recog_operand[i]) != HIGH
e5e809f4 3546 && ((PREFERRED_RELOAD_CLASS (recog_operand[i],
eab89b90 3547 (enum reg_class) goal_alternative[i])
e5e809f4
JL
3548 == NO_REGS)
3549 || no_input_reloads)
eab89b90
RK
3550 && operand_mode[i] != VOIDmode)
3551 {
3552 *recog_operand_loc[i] = recog_operand[i]
3553 = find_reloads_toplev (force_const_mem (operand_mode[i],
3554 recog_operand[i]),
a8c9daeb 3555 i, address_type[i], ind_levels, 0);
eab89b90
RK
3556 if (alternative_allows_memconst (constraints1[i],
3557 goal_alternative_number))
3558 goal_alternative_win[i] = 1;
3559 }
3560
4644aad4
RK
3561 /* Record the values of the earlyclobber operands for the caller. */
3562 if (goal_earlyclobber)
3563 for (i = 0; i < noperands; i++)
3564 if (goal_alternative_earlyclobber[i])
3565 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3566
eab89b90
RK
3567 /* Now record reloads for all the operands that need them. */
3568 for (i = 0; i < noperands; i++)
3569 if (! goal_alternative_win[i])
3570 {
3571 /* Operands that match previous ones have already been handled. */
3572 if (goal_alternative_matches[i] >= 0)
3573 ;
3574 /* Handle an operand with a nonoffsettable address
3575 appearing where an offsettable address will do
3a322c50
RK
3576 by reloading the address into a base register.
3577
3578 ??? We can also do this when the operand is a register and
3579 reg_equiv_mem is not offsettable, but this is a bit tricky,
3580 so we don't bother with it. It may not be worth doing. */
eab89b90
RK
3581 else if (goal_alternative_matched[i] == -1
3582 && goal_alternative_offmemok[i]
3583 && GET_CODE (recog_operand[i]) == MEM)
3584 {
3585 operand_reloadnum[i]
fb3821f7
CH
3586 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3587 &XEXP (recog_operand[i], 0), NULL_PTR,
eab89b90 3588 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
a8c9daeb 3589 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
eab89b90
RK
3590 reload_inc[operand_reloadnum[i]]
3591 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
a8c9daeb
RK
3592
3593 /* If this operand is an output, we will have made any
3594 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3595 now we are treating part of the operand as an input, so
3596 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3597
2d55b7e8 3598 if (modified[i] == RELOAD_WRITE)
47c8cf91
ILT
3599 {
3600 for (j = 0; j < n_reloads; j++)
3601 {
3602 if (reload_opnum[j] == i)
3603 {
3604 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3605 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3606 else if (reload_when_needed[j]
3607 == RELOAD_FOR_OUTADDR_ADDRESS)
3608 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3609 }
3610 }
3611 }
eab89b90
RK
3612 }
3613 else if (goal_alternative_matched[i] == -1)
db3cf6fb
MS
3614 operand_reloadnum[i]
3615 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3616 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3617 (modified[i] != RELOAD_WRITE
3618 ? recog_operand_loc[i] : 0),
3619 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3620 (enum reg_class) goal_alternative[i],
3621 (modified[i] == RELOAD_WRITE
3622 ? VOIDmode : operand_mode[i]),
3623 (modified[i] == RELOAD_READ
3624 ? VOIDmode : operand_mode[i]),
3625 (insn_code_number < 0 ? 0
3626 : insn_operand_strict_low[insn_code_number][i]),
3627 0, i, operand_type[i]);
eab89b90
RK
3628 /* In a matching pair of operands, one must be input only
3629 and the other must be output only.
3630 Pass the input operand as IN and the other as OUT. */
3631 else if (modified[i] == RELOAD_READ
3632 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3633 {
3634 operand_reloadnum[i]
3635 = push_reload (recog_operand[i],
3636 recog_operand[goal_alternative_matched[i]],
3637 recog_operand_loc[i],
3638 recog_operand_loc[goal_alternative_matched[i]],
3639 (enum reg_class) goal_alternative[i],
3640 operand_mode[i],
3641 operand_mode[goal_alternative_matched[i]],
a8c9daeb 3642 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3643 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3644 }
3645 else if (modified[i] == RELOAD_WRITE
3646 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3647 {
3648 operand_reloadnum[goal_alternative_matched[i]]
3649 = push_reload (recog_operand[goal_alternative_matched[i]],
3650 recog_operand[i],
3651 recog_operand_loc[goal_alternative_matched[i]],
3652 recog_operand_loc[i],
3653 (enum reg_class) goal_alternative[i],
3654 operand_mode[goal_alternative_matched[i]],
3655 operand_mode[i],
a8c9daeb 3656 0, 0, i, RELOAD_OTHER);
eab89b90
RK
3657 operand_reloadnum[i] = output_reloadnum;
3658 }
3659 else if (insn_code_number >= 0)
3660 abort ();
3661 else
3662 {
3663 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3664 /* Avoid further trouble with this insn. */
38a448ca 3665 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
eab89b90
RK
3666 n_reloads = 0;
3667 return;
3668 }
3669 }
3670 else if (goal_alternative_matched[i] < 0
3671 && goal_alternative_matches[i] < 0
3672 && optimize)
3673 {
a8c9daeb 3674 /* For each non-matching operand that's a MEM or a pseudo-register
eab89b90
RK
3675 that didn't get a hard register, make an optional reload.
3676 This may get done even if the insn needs no reloads otherwise. */
a8c9daeb
RK
3677
3678 rtx operand = recog_operand[i];
3679
eab89b90
RK
3680 while (GET_CODE (operand) == SUBREG)
3681 operand = XEXP (operand, 0);
a8c9daeb
RK
3682 if ((GET_CODE (operand) == MEM
3683 || (GET_CODE (operand) == REG
3684 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
eab89b90 3685 && (enum reg_class) goal_alternative[i] != NO_REGS
a8c9daeb
RK
3686 && ! no_input_reloads
3687 /* Optional output reloads don't do anything and we mustn't
3688 make in-out reloads on insns that are not permitted output
3689 reloads. */
eab89b90 3690 && (modified[i] == RELOAD_READ
a8c9daeb 3691 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
eab89b90
RK
3692 operand_reloadnum[i]
3693 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3694 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
a8c9daeb
RK
3695 (modified[i] != RELOAD_WRITE
3696 ? recog_operand_loc[i] : 0),
3697 (modified[i] != RELOAD_READ
3698 ? recog_operand_loc[i] : 0),
eab89b90 3699 (enum reg_class) goal_alternative[i],
a8c9daeb
RK
3700 (modified[i] == RELOAD_WRITE
3701 ? VOIDmode : operand_mode[i]),
3702 (modified[i] == RELOAD_READ
3703 ? VOIDmode : operand_mode[i]),
eab89b90
RK
3704 (insn_code_number < 0 ? 0
3705 : insn_operand_strict_low[insn_code_number][i]),
a8c9daeb 3706 1, i, operand_type[i]);
eab89b90 3707 }
a8c9daeb
RK
3708 else if (goal_alternative_matches[i] >= 0
3709 && goal_alternative_win[goal_alternative_matches[i]]
3710 && modified[i] == RELOAD_READ
3711 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3712 && ! no_input_reloads && ! no_output_reloads
3713 && optimize)
3714 {
3715 /* Similarly, make an optional reload for a pair of matching
3716 objects that are in MEM or a pseudo that didn't get a hard reg. */
eab89b90 3717
a8c9daeb
RK
3718 rtx operand = recog_operand[i];
3719
3720 while (GET_CODE (operand) == SUBREG)
3721 operand = XEXP (operand, 0);
3722 if ((GET_CODE (operand) == MEM
3723 || (GET_CODE (operand) == REG
3724 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3725 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3726 != NO_REGS))
3727 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3728 = push_reload (recog_operand[goal_alternative_matches[i]],
3729 recog_operand[i],
3730 recog_operand_loc[goal_alternative_matches[i]],
3731 recog_operand_loc[i],
3732 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3733 operand_mode[goal_alternative_matches[i]],
3734 operand_mode[i],
3735 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3736 }
3737
eab89b90
RK
3738 /* If this insn pattern contains any MATCH_DUP's, make sure that
3739 they will be substituted if the operands they match are substituted.
3740 Also do now any substitutions we already did on the operands.
3741
3742 Don't do this if we aren't making replacements because we might be
3743 propagating things allocated by frame pointer elimination into places
3744 it doesn't expect. */
3745
3746 if (insn_code_number >= 0 && replace)
3747 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3748 {
3749 int opno = recog_dup_num[i];
3750 *recog_dup_loc[i] = *recog_operand_loc[opno];
3751 if (operand_reloadnum[opno] >= 0)
3752 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3753 insn_operand_mode[insn_code_number][opno]);
3754 }
3755
3756#if 0
3757 /* This loses because reloading of prior insns can invalidate the equivalence
3758 (or at least find_equiv_reg isn't smart enough to find it any more),
3759 causing this insn to need more reload regs than it needed before.
3760 It may be too late to make the reload regs available.
3761 Now this optimization is done safely in choose_reload_regs. */
3762
3763 /* For each reload of a reg into some other class of reg,
3764 search for an existing equivalent reg (same value now) in the right class.
3765 We can use it as long as we don't need to change its contents. */
3766 for (i = 0; i < n_reloads; i++)
3767 if (reload_reg_rtx[i] == 0
3768 && reload_in[i] != 0
3769 && GET_CODE (reload_in[i]) == REG
3770 && reload_out[i] == 0)
3771 {
3772 reload_reg_rtx[i]
3773 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3774 static_reload_reg_p, 0, reload_inmode[i]);
3775 /* Prevent generation of insn to load the value
3776 because the one we found already has the value. */
3777 if (reload_reg_rtx[i])
3778 reload_in[i] = reload_reg_rtx[i];
3779 }
3780#endif
3781
a8c9daeb
RK
3782 /* Perhaps an output reload can be combined with another
3783 to reduce needs by one. */
3784 if (!goal_earlyclobber)
3785 combine_reloads ();
3786
3787 /* If we have a pair of reloads for parts of an address, they are reloading
3788 the same object, the operands themselves were not reloaded, and they
3789 are for two operands that are supposed to match, merge the reloads and
0f41302f 3790 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
a8c9daeb
RK
3791
3792 for (i = 0; i < n_reloads; i++)
3793 {
3794 int k;
3795
3796 for (j = i + 1; j < n_reloads; j++)
3797 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3798 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3799 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3800 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3801 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3802 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3803 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3804 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb
RK
3805 && rtx_equal_p (reload_in[i], reload_in[j])
3806 && (operand_reloadnum[reload_opnum[i]] < 0
3807 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3808 && (operand_reloadnum[reload_opnum[j]] < 0
3809 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3810 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3811 || (goal_alternative_matches[reload_opnum[j]]
3812 == reload_opnum[i])))
3813 {
3814 for (k = 0; k < n_replacements; k++)
3815 if (replacements[k].what == j)
3816 replacements[k].what = i;
3817
47c8cf91
ILT
3818 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3819 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3820 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3821 else
3822 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
a8c9daeb
RK
3823 reload_in[j] = 0;
3824 }
3825 }
3826
3827 /* Scan all the reloads and update their type.
3828 If a reload is for the address of an operand and we didn't reload
3829 that operand, change the type. Similarly, change the operand number
3830 of a reload when two operands match. If a reload is optional, treat it
3831 as though the operand isn't reloaded.
3832
3833 ??? This latter case is somewhat odd because if we do the optional
3834 reload, it means the object is hanging around. Thus we need only
3835 do the address reload if the optional reload was NOT done.
3836
3837 Change secondary reloads to be the address type of their operand, not
3838 the normal type.
3839
3840 If an operand's reload is now RELOAD_OTHER, change any
3841 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3842 RELOAD_FOR_OTHER_ADDRESS. */
3843
3844 for (i = 0; i < n_reloads; i++)
3845 {
3846 if (reload_secondary_p[i]
3847 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3848 reload_when_needed[i] = address_type[reload_opnum[i]];
3849
3850 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
47c8cf91
ILT
3851 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3852 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3853 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
a8c9daeb 3854 && (operand_reloadnum[reload_opnum[i]] < 0
6ded3228 3855 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
f98bb7d3
RK
3856 {
3857 /* If we have a secondary reload to go along with this reload,
0f41302f 3858 change its type to RELOAD_FOR_OPADDR_ADDR. */
f98bb7d3 3859
47c8cf91
ILT
3860 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3861 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
f98bb7d3
RK
3862 && reload_secondary_in_reload[i] != -1)
3863 {
3864 int secondary_in_reload = reload_secondary_in_reload[i];
3865
db3cf6fb
MS
3866 reload_when_needed[secondary_in_reload]
3867 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3868
0f41302f 3869 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3870 if (secondary_in_reload > 0
3871 && reload_secondary_in_reload[secondary_in_reload] != -1)
3872 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3873 = RELOAD_FOR_OPADDR_ADDR;
3874 }
3875
47c8cf91
ILT
3876 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3877 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
f98bb7d3
RK
3878 && reload_secondary_out_reload[i] != -1)
3879 {
3880 int secondary_out_reload = reload_secondary_out_reload[i];
3881
db3cf6fb
MS
3882 reload_when_needed[secondary_out_reload]
3883 = RELOAD_FOR_OPADDR_ADDR;
f98bb7d3 3884
0f41302f 3885 /* If there's a tertiary reload we have to change it also. */
f98bb7d3
RK
3886 if (secondary_out_reload
3887 && reload_secondary_out_reload[secondary_out_reload] != -1)
3888 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3889 = RELOAD_FOR_OPADDR_ADDR;
3890 }
e5e809f4
JL
3891
3892 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
f98bb7d3 3893 }
a8c9daeb 3894
47c8cf91
ILT
3895 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3896 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
a8c9daeb
RK
3897 && operand_reloadnum[reload_opnum[i]] >= 0
3898 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3899 == RELOAD_OTHER))
3900 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3901
3902 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3903 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3904 }
3905
a94ce333
JW
3906 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3907 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3908 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3909
3910 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3911 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3912 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3913 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3914 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3915 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3916 This is complicated by the fact that a single operand can have more
3917 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3918 choose_reload_regs without affecting code quality, and cases that
3919 actually fail are extremely rare, so it turns out to be better to fix
3920 the problem here by not generating cases that choose_reload_regs will
3921 fail for. */
3922
3923 {
3924 int op_addr_reloads = 0;
3925 for (i = 0; i < n_reloads; i++)
3926 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3927 op_addr_reloads++;
3928
3929 if (op_addr_reloads > 1)
3930 for (i = 0; i < n_reloads; i++)
3931 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3932 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3933 }
3934
a8c9daeb
RK
3935 /* See if we have any reloads that are now allowed to be merged
3936 because we've changed when the reload is needed to
3937 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3938 check for the most common cases. */
3939
3940 for (i = 0; i < n_reloads; i++)
3941 if (reload_in[i] != 0 && reload_out[i] == 0
3942 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
47c8cf91 3943 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
a8c9daeb
RK
3944 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3945 for (j = 0; j < n_reloads; j++)
3946 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3947 && reload_when_needed[j] == reload_when_needed[i]
73f67895
RS
3948 && MATCHES (reload_in[i], reload_in[j])
3949 && reload_reg_class[i] == reload_reg_class[j]
92b37691
RK
3950 && !reload_nocombine[i] && !reload_nocombine[j]
3951 && reload_reg_rtx[i] == reload_reg_rtx[j])
a8c9daeb
RK
3952 {
3953 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3954 transfer_replacements (i, j);
3955 reload_in[j] = 0;
3956 }
3957
eab89b90
RK
3958#else /* no REGISTER_CONSTRAINTS */
3959 int noperands;
3960 int insn_code_number;
3961 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3962 register int i;
3963 rtx body = PATTERN (insn);
3964
3965 n_reloads = 0;
3966 n_replacements = 0;
3967 n_earlyclobbers = 0;
3968 replace_reloads = replace;
3969 this_insn = insn;
3970
3971 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3972 Store the operand values in RECOG_OPERAND and the locations
3973 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3974 Return if the insn needs no reload processing. */
3975
3976 switch (GET_CODE (body))
3977 {
3978 case USE:
3979 case CLOBBER:
3980 case ASM_INPUT:
3981 case ADDR_VEC:
3982 case ADDR_DIFF_VEC:
3983 return;
3984
3985 case PARALLEL:
3986 case SET:
3987 noperands = asm_noperands (body);
3988 if (noperands >= 0)
3989 {
3990 /* This insn is an `asm' with operands.
3991 First, find out how many operands, and allocate space. */
3992
3993 insn_code_number = -1;
3994 /* ??? This is a bug! ???
3995 Give up and delete this insn if it has too many operands. */
3996 if (noperands > MAX_RECOG_OPERANDS)
3997 abort ();
3998
3999 /* Now get the operand values out of the insn. */
4000
fb3821f7
CH
4001 decode_asm_operands (body, recog_operand, recog_operand_loc,
4002 NULL_PTR, NULL_PTR);
eab89b90
RK
4003 break;
4004 }
4005
4006 default:
4007 /* Ordinary insn: recognize it, allocate space for operands and
4008 constraints, and get them out via insn_extract. */
4009
4010 insn_code_number = recog_memoized (insn);
4011 noperands = insn_n_operands[insn_code_number];
4012 insn_extract (insn);
4013 }
4014
4015 if (noperands == 0)
4016 return;
4017
4018 for (i = 0; i < noperands; i++)
4019 {
4020 register RTX_CODE code = GET_CODE (recog_operand[i]);
4021 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4022
4023 if (insn_code_number >= 0)
4024 if (insn_operand_address_p[insn_code_number][i])
fb3821f7 4025 find_reloads_address (VOIDmode, NULL_PTR,
eab89b90 4026 recog_operand[i], recog_operand_loc[i],
55c22565 4027 i, RELOAD_FOR_INPUT, ind_levels, insn);
a8c9daeb
RK
4028
4029 /* In these cases, we can't tell if the operand is an input
4030 or an output, so be conservative. In practice it won't be
4031 problem. */
4032
eab89b90
RK
4033 if (code == MEM)
4034 find_reloads_address (GET_MODE (recog_operand[i]),
4035 recog_operand_loc[i],
4036 XEXP (recog_operand[i], 0),
4037 &XEXP (recog_operand[i], 0),
55c22565 4038 i, RELOAD_OTHER, ind_levels, insn);
eab89b90
RK
4039 if (code == SUBREG)
4040 recog_operand[i] = *recog_operand_loc[i]
a8c9daeb
RK
4041 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4042 ind_levels, is_set_dest);
eab89b90
RK
4043 if (code == REG)
4044 {
4045 register int regno = REGNO (recog_operand[i]);
4046 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4047 recog_operand[i] = *recog_operand_loc[i]
4048 = reg_equiv_constant[regno];
4049#if 0 /* This might screw code in reload1.c to delete prior output-reload
4050 that feeds this insn. */
4051 if (reg_equiv_mem[regno] != 0)
4052 recog_operand[i] = *recog_operand_loc[i]
4053 = reg_equiv_mem[regno];
4054#endif
4055 }
eab89b90
RK
4056 }
4057
4058 /* Perhaps an output reload can be combined with another
4059 to reduce needs by one. */
4060 if (!goal_earlyclobber)
4061 combine_reloads ();
a8c9daeb 4062#endif /* no REGISTER_CONSTRAINTS */
eab89b90
RK
4063}
4064
4065/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4066 accepts a memory operand with constant address. */
4067
4068static int
4069alternative_allows_memconst (constraint, altnum)
4070 char *constraint;
4071 int altnum;
4072{
4073 register int c;
4074 /* Skip alternatives before the one requested. */
4075 while (altnum > 0)
4076 {
4077 while (*constraint++ != ',');
4078 altnum--;
4079 }
4080 /* Scan the requested alternative for 'm' or 'o'.
4081 If one of them is present, this alternative accepts memory constants. */
4082 while ((c = *constraint++) && c != ',' && c != '#')
4083 if (c == 'm' || c == 'o')
4084 return 1;
4085 return 0;
4086}
4087\f
4088/* Scan X for memory references and scan the addresses for reloading.
4089 Also checks for references to "constant" regs that we want to eliminate
4090 and replaces them with the values they stand for.
6dc42e49 4091 We may alter X destructively if it contains a reference to such.
eab89b90
RK
4092 If X is just a constant reg, we return the equivalent value
4093 instead of X.
4094
4095 IND_LEVELS says how many levels of indirect addressing this machine
4096 supports.
4097
a8c9daeb
RK
4098 OPNUM and TYPE identify the purpose of the reload.
4099
eab89b90
RK
4100 IS_SET_DEST is true if X is the destination of a SET, which is not
4101 appropriate to be replaced by a constant. */
4102
4103static rtx
a8c9daeb 4104find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
eab89b90 4105 rtx x;
a8c9daeb
RK
4106 int opnum;
4107 enum reload_type type;
eab89b90
RK
4108 int ind_levels;
4109 int is_set_dest;
4110{
4111 register RTX_CODE code = GET_CODE (x);
4112
4113 register char *fmt = GET_RTX_FORMAT (code);
4114 register int i;
4115
4116 if (code == REG)
4117 {
4118 /* This code is duplicated for speed in find_reloads. */
4119 register int regno = REGNO (x);
4120 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4121 x = reg_equiv_constant[regno];
4122#if 0
4123/* This creates (subreg (mem...)) which would cause an unnecessary
4124 reload of the mem. */
4125 else if (reg_equiv_mem[regno] != 0)
4126 x = reg_equiv_mem[regno];
4127#endif
4128 else if (reg_equiv_address[regno] != 0)
4129 {
4130 /* If reg_equiv_address varies, it may be shared, so copy it. */
4ffeab02
JW
4131 /* We must rerun eliminate_regs, in case the elimination
4132 offsets have changed. */
4133 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4134 NULL_RTX),
4ffeab02 4135 0);
eab89b90
RK
4136
4137 if (rtx_varies_p (addr))
4138 addr = copy_rtx (addr);
4139
38a448ca 4140 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4141 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4142 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4143 XEXP (x, 0),
55c22565 4144 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4145 }
4146 return x;
4147 }
4148 if (code == MEM)
4149 {
4150 rtx tem = x;
4151 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
55c22565 4152 opnum, type, ind_levels, 0);
eab89b90
RK
4153 return tem;
4154 }
4155
4156 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4157 {
4158 /* Check for SUBREG containing a REG that's equivalent to a constant.
4159 If the constant has a known value, truncate it right now.
4160 Similarly if we are extracting a single-word of a multi-word
4161 constant. If the constant is symbolic, allow it to be substituted
4162 normally. push_reload will strip the subreg later. If the
4163 constant is VOIDmode, abort because we will lose the mode of
4164 the register (this should never happen because one of the cases
4165 above should handle it). */
4166
4167 register int regno = REGNO (SUBREG_REG (x));
4168 rtx tem;
4169
4170 if (subreg_lowpart_p (x)
4171 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4172 && reg_equiv_constant[regno] != 0
4173 && (tem = gen_lowpart_common (GET_MODE (x),
4174 reg_equiv_constant[regno])) != 0)
4175 return tem;
4176
4177 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4178 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4179 && reg_equiv_constant[regno] != 0
4180 && (tem = operand_subword (reg_equiv_constant[regno],
4181 SUBREG_WORD (x), 0,
4182 GET_MODE (SUBREG_REG (x)))) != 0)
4183 return tem;
4184
2fd0af53
R
4185 /* If the SUBREG is wider than a word, the above test will fail.
4186 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4187 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4188 a 32 bit target. We still can - and have to - handle this
4189 for non-paradoxical subregs of CONST_INTs. */
4190 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4191 && reg_equiv_constant[regno] != 0
4192 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4193 && (GET_MODE_SIZE (GET_MODE (x))
4194 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4195 {
4196 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4197 if (WORDS_BIG_ENDIAN)
4198 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4199 - GET_MODE_BITSIZE (GET_MODE (x))
4200 - shift);
4201 /* Here we use the knowledge that CONST_INTs have a
4202 HOST_WIDE_INT field. */
4203 if (shift >= HOST_BITS_PER_WIDE_INT)
4204 shift = HOST_BITS_PER_WIDE_INT - 1;
4205 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4206 }
4207
eab89b90
RK
4208 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4209 && reg_equiv_constant[regno] != 0
4210 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4211 abort ();
4212
4213 /* If the subreg contains a reg that will be converted to a mem,
4214 convert the subreg to a narrower memref now.
4215 Otherwise, we would get (subreg (mem ...) ...),
4216 which would force reload of the mem.
4217
4218 We also need to do this if there is an equivalent MEM that is
4219 not offsettable. In that case, alter_subreg would produce an
4220 invalid address on big-endian machines.
4221
46da6b3a 4222 For machines that extend byte loads, we must not reload using
eab89b90
RK
4223 a wider mode if we have a paradoxical SUBREG. find_reloads will
4224 force a reload in that case. So we should not do anything here. */
4225
4226 else if (regno >= FIRST_PSEUDO_REGISTER
fd72420f 4227#ifdef LOAD_EXTEND_OP
eab89b90
RK
4228 && (GET_MODE_SIZE (GET_MODE (x))
4229 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4230#endif
4231 && (reg_equiv_address[regno] != 0
4232 || (reg_equiv_mem[regno] != 0
f2fbfe92
JL
4233 && (! strict_memory_address_p (GET_MODE (x),
4234 XEXP (reg_equiv_mem[regno], 0))
4235 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
eab89b90
RK
4236 {
4237 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4ffeab02
JW
4238 /* We must rerun eliminate_regs, in case the elimination
4239 offsets have changed. */
4240 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
1914f5da 4241 NULL_RTX),
4ffeab02 4242 0);
f76b9db2
ILT
4243 if (BYTES_BIG_ENDIAN)
4244 {
4245 int size;
4246 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4247 offset += MIN (size, UNITS_PER_WORD);
4248 size = GET_MODE_SIZE (GET_MODE (x));
4249 offset -= MIN (size, UNITS_PER_WORD);
4250 }
eab89b90 4251 addr = plus_constant (addr, offset);
38a448ca 4252 x = gen_rtx_MEM (GET_MODE (x), addr);
eab89b90 4253 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
fb3821f7 4254 find_reloads_address (GET_MODE (x), NULL_PTR,
eab89b90 4255 XEXP (x, 0),
55c22565 4256 &XEXP (x, 0), opnum, type, ind_levels, 0);
eab89b90
RK
4257 }
4258
4259 }
4260
4261 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4262 {
4263 if (fmt[i] == 'e')
a8c9daeb 4264 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
eab89b90
RK
4265 ind_levels, is_set_dest);
4266 }
4267 return x;
4268}
4269
dbf85761
RS
4270/* Return a mem ref for the memory equivalent of reg REGNO.
4271 This mem ref is not shared with anything. */
4272
eab89b90
RK
4273static rtx
4274make_memloc (ad, regno)
4275 rtx ad;
4276 int regno;
4277{
29a82058 4278#if 0
eab89b90 4279 register int i;
29a82058 4280#endif
4ffeab02
JW
4281 /* We must rerun eliminate_regs, in case the elimination
4282 offsets have changed. */
1914f5da 4283 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
dbf85761
RS
4284
4285#if 0 /* We cannot safely reuse a memloc made here;
4286 if the pseudo appears twice, and its mem needs a reload,
4287 it gets two separate reloads assigned, but it only
4288 gets substituted with the second of them;
4289 then it can get used before that reload reg gets loaded up. */
eab89b90
RK
4290 for (i = 0; i < n_memlocs; i++)
4291 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4292 return memlocs[i];
dbf85761 4293#endif
eab89b90
RK
4294
4295 /* If TEM might contain a pseudo, we must copy it to avoid
4296 modifying it when we do the substitution for the reload. */
4297 if (rtx_varies_p (tem))
4298 tem = copy_rtx (tem);
4299
38a448ca 4300 tem = gen_rtx_MEM (GET_MODE (ad), tem);
eab89b90
RK
4301 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4302 memlocs[n_memlocs++] = tem;
4303 return tem;
4304}
4305
4306/* Record all reloads needed for handling memory address AD
4307 which appears in *LOC in a memory reference to mode MODE
4308 which itself is found in location *MEMREFLOC.
4309 Note that we take shortcuts assuming that no multi-reg machine mode
4310 occurs as part of an address.
4311
a8c9daeb 4312 OPNUM and TYPE specify the purpose of this reload.
eab89b90
RK
4313
4314 IND_LEVELS says how many levels of indirect addressing this machine
4315 supports.
4316
55c22565
RK
4317 INSN, if nonzero, is the insn in which we do the reload. It is used
4318 to determine if we may generate output reloads.
4319
eab89b90
RK
4320 Value is nonzero if this address is reloaded or replaced as a whole.
4321 This is interesting to the caller if the address is an autoincrement.
4322
4323 Note that there is no verification that the address will be valid after
4324 this routine does its work. Instead, we rely on the fact that the address
4325 was valid when reload started. So we need only undo things that reload
4326 could have broken. These are wrong register types, pseudos not allocated
4327 to a hard register, and frame pointer elimination. */
4328
4329static int
55c22565 4330find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
eab89b90
RK
4331 enum machine_mode mode;
4332 rtx *memrefloc;
4333 rtx ad;
4334 rtx *loc;
a8c9daeb
RK
4335 int opnum;
4336 enum reload_type type;
eab89b90 4337 int ind_levels;
55c22565 4338 rtx insn;
eab89b90
RK
4339{
4340 register int regno;
4341 rtx tem;
4342
4343 /* If the address is a register, see if it is a legitimate address and
4344 reload if not. We first handle the cases where we need not reload
4345 or where we must reload in a non-standard way. */
4346
4347 if (GET_CODE (ad) == REG)
4348 {
4349 regno = REGNO (ad);
4350
4351 if (reg_equiv_constant[regno] != 0
4352 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4353 {
4354 *loc = ad = reg_equiv_constant[regno];
4355 return 1;
4356 }
4357
4358 else if (reg_equiv_address[regno] != 0)
4359 {
4360 tem = make_memloc (ad, regno);
fb3821f7 4361 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
47c8cf91 4362 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
55c22565 4363 ind_levels, insn);
1ba61f4e
ILT
4364 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4365 reload_address_base_reg_class,
eab89b90 4366 GET_MODE (ad), VOIDmode, 0, 0,
a8c9daeb 4367 opnum, type);
eab89b90
RK
4368 return 1;
4369 }
4370
b39555b4 4371 /* We can avoid a reload if the register's equivalent memory expression
c1875d66
RS
4372 is valid as an indirect memory address.
4373 But not all addresses are valid in a mem used as an indirect address:
4374 only reg or reg+constant. */
b39555b4
RS
4375
4376 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
c1875d66
RS
4377 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4378 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4379 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4380 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
75301d68 4381 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
b39555b4 4382 return 0;
eab89b90
RK
4383
4384 /* The only remaining case where we can avoid a reload is if this is a
4385 hard register that is valid as a base register and which is not the
4386 subject of a CLOBBER in this insn. */
4387
858c3c8c
ILT
4388 else if (regno < FIRST_PSEUDO_REGISTER
4389 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
eab89b90
RK
4390 && ! regno_clobbered_p (regno, this_insn))
4391 return 0;
4392
4393 /* If we do not have one of the cases above, we must do the reload. */
1ba61f4e 4394 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
a8c9daeb 4395 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
4396 return 1;
4397 }
4398
4399 if (strict_memory_address_p (mode, ad))
4400 {
4401 /* The address appears valid, so reloads are not needed.
4402 But the address may contain an eliminable register.
4403 This can happen because a machine with indirect addressing
4404 may consider a pseudo register by itself a valid address even when
4405 it has failed to get a hard reg.
4406 So do a tree-walk to find and eliminate all such regs. */
4407
4408 /* But first quickly dispose of a common case. */
4409 if (GET_CODE (ad) == PLUS
4410 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4411 && GET_CODE (XEXP (ad, 0)) == REG
4412 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4413 return 0;
4414
4415 subst_reg_equivs_changed = 0;
4416 *loc = subst_reg_equivs (ad);
4417
4418 if (! subst_reg_equivs_changed)
4419 return 0;
4420
4421 /* Check result for validity after substitution. */
4422 if (strict_memory_address_p (mode, ad))
4423 return 0;
4424 }
4425
a9a2595b
JR
4426#ifdef LEGITIMIZE_RELOAD_ADDRESS
4427 do
4428 {
4429 if (memrefloc)
4430 {
4431 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4432 ind_levels, win);
4433 }
4434 break;
4435 win:
4436 *memrefloc = copy_rtx (*memrefloc);
4437 XEXP (*memrefloc, 0) = ad;
4438 move_replacements (&ad, &XEXP (*memrefloc, 0));
4439 return 1;
4440 }
4441 while (0);
4442#endif
4443
eab89b90
RK
4444 /* The address is not valid. We have to figure out why. One possibility
4445 is that it is itself a MEM. This can happen when the frame pointer is
4446 being eliminated, a pseudo is not allocated to a hard register, and the
4447 offset between the frame and stack pointers is not its initial value.
d45cf215 4448 In that case the pseudo will have been replaced by a MEM referring to
eab89b90
RK
4449 the stack pointer. */
4450 if (GET_CODE (ad) == MEM)
4451 {
4452 /* First ensure that the address in this MEM is valid. Then, unless
4453 indirect addresses are valid, reload the MEM into a register. */
4454 tem = ad;
4455 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
47c8cf91 4456 opnum, ADDR_TYPE (type),
55c22565 4457 ind_levels == 0 ? 0 : ind_levels - 1, insn);
d2555454
RS
4458
4459 /* If tem was changed, then we must create a new memory reference to
4460 hold it and store it back into memrefloc. */
4461 if (tem != ad && memrefloc)
ca3e4a2f 4462 {
ca3e4a2f 4463 *memrefloc = copy_rtx (*memrefloc);
3c80f7ed 4464 copy_replacements (tem, XEXP (*memrefloc, 0));
ca3e4a2f 4465 loc = &XEXP (*memrefloc, 0);
ca3e4a2f 4466 }
d2555454 4467
eab89b90
RK
4468 /* Check similar cases as for indirect addresses as above except
4469 that we can allow pseudos and a MEM since they should have been
4470 taken care of above. */
4471
4472 if (ind_levels == 0
4473 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4474 || GET_CODE (XEXP (tem, 0)) == MEM
4475 || ! (GET_CODE (XEXP (tem, 0)) == REG
4476 || (GET_CODE (XEXP (tem, 0)) == PLUS
4477 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4478 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4479 {
4480 /* Must use TEM here, not AD, since it is the one that will
4481 have any subexpressions reloaded, if needed. */
fb3821f7 4482 push_reload (tem, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
4483 reload_address_base_reg_class, GET_MODE (tem),
4484 VOIDmode, 0,
a8c9daeb 4485 0, opnum, type);
eab89b90
RK
4486 return 1;
4487 }
4488 else
4489 return 0;
4490 }
4491
1b4d2764
RK
4492 /* If we have address of a stack slot but it's not valid because the
4493 displacement is too large, compute the sum in a register.
4494 Handle all base registers here, not just fp/ap/sp, because on some
4495 targets (namely SH) we can also get too large displacements from
4496 big-endian corrections. */
eab89b90 4497 else if (GET_CODE (ad) == PLUS
1b4d2764
RK
4498 && GET_CODE (XEXP (ad, 0)) == REG
4499 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
858c3c8c 4500 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
eab89b90
RK
4501 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4502 {
4503 /* Unshare the MEM rtx so we can safely alter it. */
4504 if (memrefloc)
4505 {
eab89b90
RK
4506 *memrefloc = copy_rtx (*memrefloc);
4507 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4508 }
4509 if (double_reg_address_ok)
4510 {
4511 /* Unshare the sum as well. */
4512 *loc = ad = copy_rtx (ad);
4513 /* Reload the displacement into an index reg.
4514 We assume the frame pointer or arg pointer is a base reg. */
4515 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
1ba61f4e
ILT
4516 reload_address_index_reg_class,
4517 GET_MODE (ad), opnum, type, ind_levels);
eab89b90
RK
4518 }
4519 else
4520 {
4521 /* If the sum of two regs is not necessarily valid,
4522 reload the sum into a base reg.
4523 That will at least work. */
1ba61f4e
ILT
4524 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4525 Pmode, opnum, type, ind_levels);
eab89b90
RK
4526 }
4527 return 1;
4528 }
4529
4530 /* If we have an indexed stack slot, there are three possible reasons why
4531 it might be invalid: The index might need to be reloaded, the address
4532 might have been made by frame pointer elimination and hence have a
f302eea3 4533 constant out of range, or both reasons might apply.
eab89b90
RK
4534
4535 We can easily check for an index needing reload, but even if that is the
4536 case, we might also have an invalid constant. To avoid making the
4537 conservative assumption and requiring two reloads, we see if this address
4538 is valid when not interpreted strictly. If it is, the only problem is
4539 that the index needs a reload and find_reloads_address_1 will take care
4540 of it.
4541
4542 There is still a case when we might generate an extra reload,
4543 however. In certain cases eliminate_regs will return a MEM for a REG
4544 (see the code there for details). In those cases, memory_address_p
4545 applied to our address will return 0 so we will think that our offset
4546 must be too large. But it might indeed be valid and the only problem
4547 is that a MEM is present where a REG should be. This case should be
4548 very rare and there doesn't seem to be any way to avoid it.
4549
4550 If we decide to do something here, it must be that
4551 `double_reg_address_ok' is true and that this address rtl was made by
4552 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4553 rework the sum so that the reload register will be added to the index.
4554 This is safe because we know the address isn't shared.
4555
4556 We check for fp/ap/sp as both the first and second operand of the
4557 innermost PLUS. */
4558
4559 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
f302eea3 4560 && GET_CODE (XEXP (ad, 0)) == PLUS
eab89b90 4561 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
a36d4c62
DE
4562#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4563 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4564#endif
eab89b90
RK
4565#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4566 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4567#endif
4568 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4569 && ! memory_address_p (mode, ad))
4570 {
38a448ca
RH
4571 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4572 plus_constant (XEXP (XEXP (ad, 0), 0),
4573 INTVAL (XEXP (ad, 1))),
eab89b90 4574 XEXP (XEXP (ad, 0), 1));
1ba61f4e
ILT
4575 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4576 reload_address_base_reg_class,
a8c9daeb 4577 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4578 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
55c22565 4579 type, 0, insn);
eab89b90
RK
4580
4581 return 1;
4582 }
4583
4584 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4585 && GET_CODE (XEXP (ad, 0)) == PLUS
4586 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
a36d4c62
DE
4587#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4588 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4589#endif
eab89b90
RK
4590#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4591 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4592#endif
4593 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4594 && ! memory_address_p (mode, ad))
4595 {
38a448ca
RH
4596 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4597 XEXP (XEXP (ad, 0), 0),
4598 plus_constant (XEXP (XEXP (ad, 0), 1),
4599 INTVAL (XEXP (ad, 1))));
1ba61f4e
ILT
4600 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4601 reload_address_base_reg_class,
a8c9daeb 4602 GET_MODE (ad), opnum, type, ind_levels);
858c3c8c 4603 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
55c22565 4604 type, 0, insn);
eab89b90
RK
4605
4606 return 1;
4607 }
4608
4609 /* See if address becomes valid when an eliminable register
4610 in a sum is replaced. */
4611
4612 tem = ad;
4613 if (GET_CODE (ad) == PLUS)
4614 tem = subst_indexed_address (ad);
4615 if (tem != ad && strict_memory_address_p (mode, tem))
4616 {
4617 /* Ok, we win that way. Replace any additional eliminable
4618 registers. */
4619
4620 subst_reg_equivs_changed = 0;
4621 tem = subst_reg_equivs (tem);
4622
4623 /* Make sure that didn't make the address invalid again. */
4624
4625 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4626 {
4627 *loc = tem;
4628 return 0;
4629 }
4630 }
4631
4632 /* If constants aren't valid addresses, reload the constant address
4633 into a register. */
191b18e9 4634 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
eab89b90
RK
4635 {
4636 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4637 Unshare it so we can safely alter it. */
4638 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4639 && CONSTANT_POOL_ADDRESS_P (ad))
4640 {
eab89b90
RK
4641 *memrefloc = copy_rtx (*memrefloc);
4642 loc = &XEXP (*memrefloc, 0);
eab89b90
RK
4643 }
4644
1ba61f4e
ILT
4645 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4646 Pmode, opnum, type,
eab89b90
RK
4647 ind_levels);
4648 return 1;
4649 }
4650
55c22565
RK
4651 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4652 insn);
eab89b90
RK
4653}
4654\f
4655/* Find all pseudo regs appearing in AD
4656 that are eliminable in favor of equivalent values
4657 and do not have hard regs; replace them by their equivalents. */
4658
4659static rtx
4660subst_reg_equivs (ad)
4661 rtx ad;
4662{
4663 register RTX_CODE code = GET_CODE (ad);
4664 register int i;
4665 register char *fmt;
4666
4667 switch (code)
4668 {
4669 case HIGH:
4670 case CONST_INT:
4671 case CONST:
4672 case CONST_DOUBLE:
4673 case SYMBOL_REF:
4674 case LABEL_REF:
4675 case PC:
4676 case CC0:
4677 return ad;
4678
4679 case REG:
4680 {
4681 register int regno = REGNO (ad);
4682
4683 if (reg_equiv_constant[regno] != 0)
4684 {
4685 subst_reg_equivs_changed = 1;
4686 return reg_equiv_constant[regno];
4687 }
4688 }
4689 return ad;
4690
4691 case PLUS:
4692 /* Quickly dispose of a common case. */
4693 if (XEXP (ad, 0) == frame_pointer_rtx
4694 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4695 return ad;
e9a25f70
JL
4696 break;
4697
4698 default:
4699 break;
eab89b90
RK
4700 }
4701
4702 fmt = GET_RTX_FORMAT (code);
4703 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4704 if (fmt[i] == 'e')
4705 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4706 return ad;
4707}
4708\f
4709/* Compute the sum of X and Y, making canonicalizations assumed in an
4710 address, namely: sum constant integers, surround the sum of two
4711 constants with a CONST, put the constant as the second operand, and
4712 group the constant on the outermost sum.
4713
4714 This routine assumes both inputs are already in canonical form. */
4715
4716rtx
4717form_sum (x, y)
4718 rtx x, y;
4719{
4720 rtx tem;
2c0623e8
RK
4721 enum machine_mode mode = GET_MODE (x);
4722
4723 if (mode == VOIDmode)
4724 mode = GET_MODE (y);
4725
4726 if (mode == VOIDmode)
4727 mode = Pmode;
eab89b90
RK
4728
4729 if (GET_CODE (x) == CONST_INT)
4730 return plus_constant (y, INTVAL (x));
4731 else if (GET_CODE (y) == CONST_INT)
4732 return plus_constant (x, INTVAL (y));
4733 else if (CONSTANT_P (x))
4734 tem = x, x = y, y = tem;
4735
4736 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4737 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4738
4739 /* Note that if the operands of Y are specified in the opposite
4740 order in the recursive calls below, infinite recursion will occur. */
d9771f62 4741 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
eab89b90
RK
4742 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4743
4744 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4745 constant will have been placed second. */
4746 if (CONSTANT_P (x) && CONSTANT_P (y))
4747 {
4748 if (GET_CODE (x) == CONST)
4749 x = XEXP (x, 0);
4750 if (GET_CODE (y) == CONST)
4751 y = XEXP (y, 0);
4752
38a448ca 4753 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
eab89b90
RK
4754 }
4755
38a448ca 4756 return gen_rtx_PLUS (mode, x, y);
eab89b90
RK
4757}
4758\f
4759/* If ADDR is a sum containing a pseudo register that should be
4760 replaced with a constant (from reg_equiv_constant),
4761 return the result of doing so, and also apply the associative
4762 law so that the result is more likely to be a valid address.
4763 (But it is not guaranteed to be one.)
4764
4765 Note that at most one register is replaced, even if more are
4766 replaceable. Also, we try to put the result into a canonical form
4767 so it is more likely to be a valid address.
4768
4769 In all other cases, return ADDR. */
4770
4771static rtx
4772subst_indexed_address (addr)
4773 rtx addr;
4774{
4775 rtx op0 = 0, op1 = 0, op2 = 0;
4776 rtx tem;
4777 int regno;
4778
4779 if (GET_CODE (addr) == PLUS)
4780 {
4781 /* Try to find a register to replace. */
4782 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4783 if (GET_CODE (op0) == REG
4784 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4785 && reg_renumber[regno] < 0
4786 && reg_equiv_constant[regno] != 0)
4787 op0 = reg_equiv_constant[regno];
4788 else if (GET_CODE (op1) == REG
4789 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4790 && reg_renumber[regno] < 0
4791 && reg_equiv_constant[regno] != 0)
4792 op1 = reg_equiv_constant[regno];
4793 else if (GET_CODE (op0) == PLUS
4794 && (tem = subst_indexed_address (op0)) != op0)
4795 op0 = tem;
4796 else if (GET_CODE (op1) == PLUS
4797 && (tem = subst_indexed_address (op1)) != op1)
4798 op1 = tem;
4799 else
4800 return addr;
4801
4802 /* Pick out up to three things to add. */
4803 if (GET_CODE (op1) == PLUS)
4804 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4805 else if (GET_CODE (op0) == PLUS)
4806 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4807
4808 /* Compute the sum. */
4809 if (op2 != 0)
4810 op1 = form_sum (op1, op2);
4811 if (op1 != 0)
4812 op0 = form_sum (op0, op1);
4813
4814 return op0;
4815 }
4816 return addr;
4817}
4818\f
858c3c8c
ILT
4819/* Record the pseudo registers we must reload into hard registers in a
4820 subexpression of a would-be memory address, X referring to a value
4821 in mode MODE. (This function is not called if the address we find
4822 is strictly valid.)
4823
eab89b90
RK
4824 CONTEXT = 1 means we are considering regs as index regs,
4825 = 0 means we are considering them as base regs.
4826
a8c9daeb 4827 OPNUM and TYPE specify the purpose of any reloads made.
eab89b90
RK
4828
4829 IND_LEVELS says how many levels of indirect addressing are
4830 supported at this point in the address.
4831
55c22565
RK
4832 INSN, if nonzero, is the insn in which we do the reload. It is used
4833 to determine if we may generate output reloads.
4834
eab89b90
RK
4835 We return nonzero if X, as a whole, is reloaded or replaced. */
4836
4837/* Note that we take shortcuts assuming that no multi-reg machine mode
4838 occurs as part of an address.
4839 Also, this is not fully machine-customizable; it works for machines
4840 such as vaxes and 68000's and 32000's, but other possible machines
4841 could have addressing modes that this does not handle right. */
4842
4843static int
55c22565 4844find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
858c3c8c 4845 enum machine_mode mode;
eab89b90
RK
4846 rtx x;
4847 int context;
4848 rtx *loc;
a8c9daeb
RK
4849 int opnum;
4850 enum reload_type type;
eab89b90 4851 int ind_levels;
55c22565 4852 rtx insn;
eab89b90
RK
4853{
4854 register RTX_CODE code = GET_CODE (x);
4855
a2d353e5 4856 switch (code)
eab89b90 4857 {
a2d353e5
RK
4858 case PLUS:
4859 {
4860 register rtx orig_op0 = XEXP (x, 0);
4861 register rtx orig_op1 = XEXP (x, 1);
4862 register RTX_CODE code0 = GET_CODE (orig_op0);
4863 register RTX_CODE code1 = GET_CODE (orig_op1);
4864 register rtx op0 = orig_op0;
4865 register rtx op1 = orig_op1;
4866
4867 if (GET_CODE (op0) == SUBREG)
4868 {
4869 op0 = SUBREG_REG (op0);
4870 code0 = GET_CODE (op0);
922db4bb 4871 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
4872 op0 = gen_rtx_REG (word_mode,
4873 REGNO (op0) + SUBREG_WORD (orig_op0));
a2d353e5 4874 }
87935f60 4875
a2d353e5
RK
4876 if (GET_CODE (op1) == SUBREG)
4877 {
4878 op1 = SUBREG_REG (op1);
4879 code1 = GET_CODE (op1);
922db4bb 4880 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
38a448ca
RH
4881 op1 = gen_rtx_REG (GET_MODE (op1),
4882 REGNO (op1) + SUBREG_WORD (orig_op1));
a2d353e5
RK
4883 }
4884
5f8997b9
SC
4885 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4886 || code0 == ZERO_EXTEND || code1 == MEM)
a2d353e5 4887 {
858c3c8c 4888 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4889 type, ind_levels, insn);
858c3c8c 4890 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4891 type, ind_levels, insn);
a2d353e5
RK
4892 }
4893
5f8997b9
SC
4894 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4895 || code1 == ZERO_EXTEND || code0 == MEM)
a2d353e5 4896 {
858c3c8c 4897 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4898 type, ind_levels, insn);
858c3c8c 4899 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4900 type, ind_levels, insn);
a2d353e5
RK
4901 }
4902
4903 else if (code0 == CONST_INT || code0 == CONST
4904 || code0 == SYMBOL_REF || code0 == LABEL_REF)
858c3c8c 4905 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4906 type, ind_levels, insn);
a2d353e5
RK
4907
4908 else if (code1 == CONST_INT || code1 == CONST
4909 || code1 == SYMBOL_REF || code1 == LABEL_REF)
858c3c8c 4910 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4911 type, ind_levels, insn);
a2d353e5
RK
4912
4913 else if (code0 == REG && code1 == REG)
4914 {
4915 if (REG_OK_FOR_INDEX_P (op0)
858c3c8c 4916 && REG_MODE_OK_FOR_BASE_P (op1, mode))
a2d353e5
RK
4917 return 0;
4918 else if (REG_OK_FOR_INDEX_P (op1)
858c3c8c 4919 && REG_MODE_OK_FOR_BASE_P (op0, mode))
a2d353e5 4920 return 0;
858c3c8c
ILT
4921 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4922 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4923 type, ind_levels, insn);
858c3c8c
ILT
4924 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4925 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4926 type, ind_levels, insn);
a2d353e5 4927 else if (REG_OK_FOR_INDEX_P (op1))
858c3c8c 4928 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4929 type, ind_levels, insn);
a2d353e5 4930 else if (REG_OK_FOR_INDEX_P (op0))
858c3c8c 4931 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4932 type, ind_levels, insn);
a2d353e5
RK
4933 else
4934 {
858c3c8c 4935 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4936 type, ind_levels, insn);
858c3c8c 4937 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4938 type, ind_levels, insn);
a2d353e5
RK
4939 }
4940 }
4941
4942 else if (code0 == REG)
4943 {
858c3c8c 4944 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
55c22565 4945 type, ind_levels, insn);
858c3c8c 4946 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
55c22565 4947 type, ind_levels, insn);
a2d353e5
RK
4948 }
4949
4950 else if (code1 == REG)
4951 {
858c3c8c 4952 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
55c22565 4953 type, ind_levels, insn);
858c3c8c 4954 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
55c22565 4955 type, ind_levels, insn);
a2d353e5
RK
4956 }
4957 }
4958
4959 return 0;
4960
4961 case POST_INC:
4962 case POST_DEC:
4963 case PRE_INC:
4964 case PRE_DEC:
eab89b90
RK
4965 if (GET_CODE (XEXP (x, 0)) == REG)
4966 {
4967 register int regno = REGNO (XEXP (x, 0));
4968 int value = 0;
4969 rtx x_orig = x;
4970
4971 /* A register that is incremented cannot be constant! */
4972 if (regno >= FIRST_PSEUDO_REGISTER
4973 && reg_equiv_constant[regno] != 0)
4974 abort ();
4975
4976 /* Handle a register that is equivalent to a memory location
4977 which cannot be addressed directly. */
4978 if (reg_equiv_address[regno] != 0)
4979 {
4980 rtx tem = make_memloc (XEXP (x, 0), regno);
4757e6a4
JW
4981 /* First reload the memory location's address.
4982 We can't use ADDR_TYPE (type) here, because we need to
4983 write back the value after reading it, hence we actually
4984 need two registers. */
eab89b90 4985 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4757e6a4 4986 &XEXP (tem, 0), opnum, type,
55c22565 4987 ind_levels, insn);
eab89b90 4988 /* Put this inside a new increment-expression. */
38a448ca 4989 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
eab89b90
RK
4990 /* Proceed to reload that, as if it contained a register. */
4991 }
4992
4993 /* If we have a hard register that is ok as an index,
4994 don't make a reload. If an autoincrement of a nice register
4995 isn't "valid", it must be that no autoincrement is "valid".
4996 If that is true and something made an autoincrement anyway,
4997 this must be a special context where one is allowed.
4998 (For example, a "push" instruction.)
4999 We can't improve this address, so leave it alone. */
5000
5001 /* Otherwise, reload the autoincrement into a suitable hard reg
5002 and record how much to increment by. */
5003
5004 if (reg_renumber[regno] >= 0)
5005 regno = reg_renumber[regno];
5006 if ((regno >= FIRST_PSEUDO_REGISTER
5007 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5008 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
eab89b90 5009 {
29a82058 5010#ifdef AUTO_INC_DEC
eab89b90 5011 register rtx link;
29a82058 5012#endif
55c22565
RK
5013 int reloadnum;
5014
5015 /* If we can output the register afterwards, do so, this
5016 saves the extra update.
5017 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5018 CALL_INSN - and it does not set CC0.
5019 But don't do this if we cannot directly address the
5020 memory location, since this will make it harder to
956d6950 5021 reuse address reloads, and increases register pressure.
55c22565
RK
5022 Also don't do this if we can probably update x directly. */
5023 rtx equiv = reg_equiv_mem[regno];
5024 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5025 if (insn && GET_CODE (insn) == INSN && equiv
5026#ifdef HAVE_cc0
5027 && ! sets_cc0_p (PATTERN (insn))
5028#endif
5029 && ! (icode != CODE_FOR_nothing
5030 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5031 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5032 {
5033 loc = &XEXP (x, 0);
5034 x = XEXP (x, 0);
5035 reloadnum
5036 = push_reload (x, x, loc, loc,
5037 (context
5038 ? reload_address_index_reg_class
5039 : reload_address_base_reg_class),
e9a25f70 5040 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5041 opnum, RELOAD_OTHER);
5042 }
5043 else
5044 {
5045 reloadnum
5046 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5047 (context
5048 ? reload_address_index_reg_class
5049 : reload_address_base_reg_class),
e9a25f70 5050 GET_MODE (x), GET_MODE (x), 0, 0,
55c22565
RK
5051 opnum, type);
5052 reload_inc[reloadnum]
5053 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5054
5055 value = 1;
5056 }
eab89b90
RK
5057
5058#ifdef AUTO_INC_DEC
5059 /* Update the REG_INC notes. */
5060
5061 for (link = REG_NOTES (this_insn);
5062 link; link = XEXP (link, 1))
5063 if (REG_NOTE_KIND (link) == REG_INC
5064 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5065 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5066#endif
5067 }
5068 return value;
5069 }
a2d353e5 5070
eab89b90
RK
5071 else if (GET_CODE (XEXP (x, 0)) == MEM)
5072 {
5073 /* This is probably the result of a substitution, by eliminate_regs,
5074 of an equivalent address for a pseudo that was not allocated to a
5075 hard register. Verify that the specified address is valid and
5076 reload it into a register. */
5077 rtx tem = XEXP (x, 0);
5078 register rtx link;
5079 int reloadnum;
5080
5081 /* Since we know we are going to reload this item, don't decrement
5082 for the indirection level.
5083
5084 Note that this is actually conservative: it would be slightly
5085 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5086 reload1.c here. */
4757e6a4
JW
5087 /* We can't use ADDR_TYPE (type) here, because we need to
5088 write back the value after reading it, hence we actually
5089 need two registers. */
eab89b90
RK
5090 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5091 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
55c22565 5092 opnum, type, ind_levels, insn);
eab89b90 5093
fb3821f7 5094 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5095 (context
5096 ? reload_address_index_reg_class
5097 : reload_address_base_reg_class),
a8c9daeb 5098 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5099 reload_inc[reloadnum]
5100 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5101
5102 link = FIND_REG_INC_NOTE (this_insn, tem);
5103 if (link != 0)
5104 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5105
5106 return 1;
5107 }
a2d353e5
RK
5108 return 0;
5109
5110 case MEM:
5111 /* This is probably the result of a substitution, by eliminate_regs, of
5112 an equivalent address for a pseudo that was not allocated to a hard
5113 register. Verify that the specified address is valid and reload it
5114 into a register.
eab89b90 5115
a2d353e5
RK
5116 Since we know we are going to reload this item, don't decrement for
5117 the indirection level.
eab89b90
RK
5118
5119 Note that this is actually conservative: it would be slightly more
5120 efficient to use the value of SPILL_INDIRECT_LEVELS from
5121 reload1.c here. */
5122
5123 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
55c22565 5124 opnum, ADDR_TYPE (type), ind_levels, insn);
fb3821f7 5125 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5126 (context ? reload_address_index_reg_class
5127 : reload_address_base_reg_class),
a8c9daeb 5128 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
eab89b90 5129 return 1;
eab89b90 5130
a2d353e5
RK
5131 case REG:
5132 {
5133 register int regno = REGNO (x);
5134
5135 if (reg_equiv_constant[regno] != 0)
5136 {
5137 find_reloads_address_part (reg_equiv_constant[regno], loc,
1ba61f4e
ILT
5138 (context
5139 ? reload_address_index_reg_class
5140 : reload_address_base_reg_class),
a2d353e5
RK
5141 GET_MODE (x), opnum, type, ind_levels);
5142 return 1;
5143 }
eab89b90
RK
5144
5145#if 0 /* This might screw code in reload1.c to delete prior output-reload
5146 that feeds this insn. */
a2d353e5
RK
5147 if (reg_equiv_mem[regno] != 0)
5148 {
5149 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5150 (context
5151 ? reload_address_index_reg_class
5152 : reload_address_base_reg_class),
a2d353e5
RK
5153 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5154 return 1;
5155 }
eab89b90 5156#endif
eab89b90 5157
a2d353e5
RK
5158 if (reg_equiv_address[regno] != 0)
5159 {
5160 x = make_memloc (x, regno);
5161 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
55c22565 5162 opnum, ADDR_TYPE (type), ind_levels, insn);
a2d353e5 5163 }
eab89b90 5164
a2d353e5
RK
5165 if (reg_renumber[regno] >= 0)
5166 regno = reg_renumber[regno];
5167
5168 if ((regno >= FIRST_PSEUDO_REGISTER
5169 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5170 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
a2d353e5
RK
5171 {
5172 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5173 (context
5174 ? reload_address_index_reg_class
5175 : reload_address_base_reg_class),
a2d353e5
RK
5176 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5177 return 1;
5178 }
5179
5180 /* If a register appearing in an address is the subject of a CLOBBER
5181 in this insn, reload it into some other register to be safe.
5182 The CLOBBER is supposed to make the register unavailable
5183 from before this insn to after it. */
5184 if (regno_clobbered_p (regno, this_insn))
5185 {
5186 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5187 (context
5188 ? reload_address_index_reg_class
5189 : reload_address_base_reg_class),
a2d353e5
RK
5190 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5191 return 1;
5192 }
5193 }
5194 return 0;
5195
5196 case SUBREG:
922db4bb 5197 if (GET_CODE (SUBREG_REG (x)) == REG)
eab89b90 5198 {
922db4bb
RK
5199 /* If this is a SUBREG of a hard register and the resulting register
5200 is of the wrong class, reload the whole SUBREG. This avoids
5201 needless copies if SUBREG_REG is multi-word. */
5202 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5203 {
5204 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
a2d353e5 5205
922db4bb 5206 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
858c3c8c 5207 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
922db4bb
RK
5208 {
5209 push_reload (x, NULL_RTX, loc, NULL_PTR,
1ba61f4e
ILT
5210 (context
5211 ? reload_address_index_reg_class
5212 : reload_address_base_reg_class),
922db4bb
RK
5213 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5214 return 1;
5215 }
5216 }
abc95ed3 5217 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
922db4bb
RK
5218 is larger than the class size, then reload the whole SUBREG. */
5219 else
a2d353e5 5220 {
922db4bb 5221 enum reg_class class = (context
1ba61f4e
ILT
5222 ? reload_address_index_reg_class
5223 : reload_address_base_reg_class);
922db4bb
RK
5224 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5225 > reg_class_size[class])
5226 {
5227 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5228 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5229 return 1;
5230 }
a2d353e5 5231 }
eab89b90 5232 }
a2d353e5 5233 break;
e9a25f70
JL
5234
5235 default:
5236 break;
eab89b90
RK
5237 }
5238
a2d353e5
RK
5239 {
5240 register char *fmt = GET_RTX_FORMAT (code);
5241 register int i;
5242
5243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5244 {
5245 if (fmt[i] == 'e')
858c3c8c 5246 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
55c22565 5247 opnum, type, ind_levels, insn);
a2d353e5
RK
5248 }
5249 }
5250
eab89b90
RK
5251 return 0;
5252}
5253\f
5254/* X, which is found at *LOC, is a part of an address that needs to be
5255 reloaded into a register of class CLASS. If X is a constant, or if
5256 X is a PLUS that contains a constant, check that the constant is a
5257 legitimate operand and that we are supposed to be able to load
5258 it into the register.
5259
5260 If not, force the constant into memory and reload the MEM instead.
5261
5262 MODE is the mode to use, in case X is an integer constant.
5263
a8c9daeb 5264 OPNUM and TYPE describe the purpose of any reloads made.
eab89b90
RK
5265
5266 IND_LEVELS says how many levels of indirect addressing this machine
5267 supports. */
5268
5269static void
a8c9daeb 5270find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
eab89b90
RK
5271 rtx x;
5272 rtx *loc;
5273 enum reg_class class;
5274 enum machine_mode mode;
a8c9daeb
RK
5275 int opnum;
5276 enum reload_type type;
eab89b90
RK
5277 int ind_levels;
5278{
5279 if (CONSTANT_P (x)
5280 && (! LEGITIMATE_CONSTANT_P (x)
5281 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5282 {
5283 rtx tem = x = force_const_mem (mode, x);
5284 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5285 opnum, type, ind_levels, 0);
eab89b90
RK
5286 }
5287
5288 else if (GET_CODE (x) == PLUS
5289 && CONSTANT_P (XEXP (x, 1))
5290 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5291 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5292 {
5293 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5294
38a448ca 5295 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
eab89b90 5296 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
55c22565 5297 opnum, type, ind_levels, 0);
eab89b90
RK
5298 }
5299
fb3821f7 5300 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
a8c9daeb 5301 mode, VOIDmode, 0, 0, opnum, type);
eab89b90
RK
5302}
5303\f
a8c9daeb 5304/* Substitute into the current INSN the registers into which we have reloaded
eab89b90
RK
5305 the things that need reloading. The array `replacements'
5306 says contains the locations of all pointers that must be changed
5307 and says what to replace them with.
5308
5309 Return the rtx that X translates into; usually X, but modified. */
5310
5311void
5312subst_reloads ()
5313{
5314 register int i;
5315
5316 for (i = 0; i < n_replacements; i++)
5317 {
5318 register struct replacement *r = &replacements[i];
5319 register rtx reloadreg = reload_reg_rtx[r->what];
5320 if (reloadreg)
5321 {
5322 /* Encapsulate RELOADREG so its machine mode matches what
26f1a00e
RK
5323 used to be there. Note that gen_lowpart_common will
5324 do the wrong thing if RELOADREG is multi-word. RELOADREG
5325 will always be a REG here. */
eab89b90 5326 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
38a448ca 5327 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
eab89b90
RK
5328
5329 /* If we are putting this into a SUBREG and RELOADREG is a
5330 SUBREG, we would be making nested SUBREGs, so we have to fix
5331 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5332
5333 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5334 {
5335 if (GET_MODE (*r->subreg_loc)
5336 == GET_MODE (SUBREG_REG (reloadreg)))
5337 *r->subreg_loc = SUBREG_REG (reloadreg);
5338 else
5339 {
5340 *r->where = SUBREG_REG (reloadreg);
5341 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5342 }
5343 }
5344 else
5345 *r->where = reloadreg;
5346 }
5347 /* If reload got no reg and isn't optional, something's wrong. */
5348 else if (! reload_optional[r->what])
5349 abort ();
5350 }
5351}
5352\f
5353/* Make a copy of any replacements being done into X and move those copies
5354 to locations in Y, a copy of X. We only look at the highest level of
5355 the RTL. */
5356
5357void
5358copy_replacements (x, y)
5359 rtx x;
5360 rtx y;
5361{
5362 int i, j;
5363 enum rtx_code code = GET_CODE (x);
5364 char *fmt = GET_RTX_FORMAT (code);
5365 struct replacement *r;
5366
5367 /* We can't support X being a SUBREG because we might then need to know its
5368 location if something inside it was replaced. */
5369 if (code == SUBREG)
5370 abort ();
5371
5372 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5373 if (fmt[i] == 'e')
5374 for (j = 0; j < n_replacements; j++)
5375 {
5376 if (replacements[j].subreg_loc == &XEXP (x, i))
5377 {
5378 r = &replacements[n_replacements++];
5379 r->where = replacements[j].where;
5380 r->subreg_loc = &XEXP (y, i);
5381 r->what = replacements[j].what;
5382 r->mode = replacements[j].mode;
5383 }
5384 else if (replacements[j].where == &XEXP (x, i))
5385 {
5386 r = &replacements[n_replacements++];
5387 r->where = &XEXP (y, i);
5388 r->subreg_loc = 0;
5389 r->what = replacements[j].what;
5390 r->mode = replacements[j].mode;
5391 }
5392 }
5393}
a9a2595b
JR
5394
5395/* Change any replacements being done to *X to be done to *Y */
5396
5397void
5398move_replacements (x, y)
5399 rtx *x;
5400 rtx *y;
5401{
5402 int i;
5403
5404 for (i = 0; i < n_replacements; i++)
5405 if (replacements[i].subreg_loc == x)
5406 replacements[i].subreg_loc = y;
5407 else if (replacements[i].where == x)
5408 {
5409 replacements[i].where = y;
5410 replacements[i].subreg_loc = 0;
5411 }
5412}
eab89b90 5413\f
af929c62
RK
5414/* If LOC was scheduled to be replaced by something, return the replacement.
5415 Otherwise, return *LOC. */
5416
5417rtx
5418find_replacement (loc)
5419 rtx *loc;
5420{
5421 struct replacement *r;
5422
5423 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5424 {
5425 rtx reloadreg = reload_reg_rtx[r->what];
5426
5427 if (reloadreg && r->where == loc)
5428 {
5429 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
38a448ca 5430 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
af929c62
RK
5431
5432 return reloadreg;
5433 }
5434 else if (reloadreg && r->subreg_loc == loc)
5435 {
5436 /* RELOADREG must be either a REG or a SUBREG.
5437
5438 ??? Is it actually still ever a SUBREG? If so, why? */
5439
5440 if (GET_CODE (reloadreg) == REG)
38a448ca
RH
5441 return gen_rtx_REG (GET_MODE (*loc),
5442 REGNO (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5443 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5444 return reloadreg;
5445 else
38a448ca
RH
5446 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5447 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
af929c62
RK
5448 }
5449 }
5450
956d6950
JL
5451 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5452 what's inside and make a new rtl if so. */
5453 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5454 || GET_CODE (*loc) == MULT)
5455 {
5456 rtx x = find_replacement (&XEXP (*loc, 0));
5457 rtx y = find_replacement (&XEXP (*loc, 1));
5458
5459 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
38a448ca 5460 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
956d6950
JL
5461 }
5462
af929c62
RK
5463 return *loc;
5464}
5465\f
eab89b90
RK
5466/* Return nonzero if register in range [REGNO, ENDREGNO)
5467 appears either explicitly or implicitly in X
4644aad4 5468 other than being stored into (except for earlyclobber operands).
eab89b90
RK
5469
5470 References contained within the substructure at LOC do not count.
5471 LOC may be zero, meaning don't ignore anything.
5472
5473 This is similar to refers_to_regno_p in rtlanal.c except that we
5474 look at equivalences for pseudos that didn't get hard registers. */
5475
5476int
5477refers_to_regno_for_reload_p (regno, endregno, x, loc)
5478 int regno, endregno;
5479 rtx x;
5480 rtx *loc;
5481{
5482 register int i;
5483 register RTX_CODE code;
5484 register char *fmt;
5485
5486 if (x == 0)
5487 return 0;
5488
5489 repeat:
5490 code = GET_CODE (x);
5491
5492 switch (code)
5493 {
5494 case REG:
5495 i = REGNO (x);
5496
4803a34a
RK
5497 /* If this is a pseudo, a hard register must not have been allocated.
5498 X must therefore either be a constant or be in memory. */
5499 if (i >= FIRST_PSEUDO_REGISTER)
5500 {
5501 if (reg_equiv_memory_loc[i])
5502 return refers_to_regno_for_reload_p (regno, endregno,
fb3821f7
CH
5503 reg_equiv_memory_loc[i],
5504 NULL_PTR);
4803a34a
RK
5505
5506 if (reg_equiv_constant[i])
5507 return 0;
5508
5509 abort ();
5510 }
eab89b90
RK
5511
5512 return (endregno > i
5513 && regno < i + (i < FIRST_PSEUDO_REGISTER
5514 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5515 : 1));
5516
5517 case SUBREG:
5518 /* If this is a SUBREG of a hard reg, we can see exactly which
5519 registers are being modified. Otherwise, handle normally. */
5520 if (GET_CODE (SUBREG_REG (x)) == REG
5521 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5522 {
5523 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5524 int inner_endregno
5525 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5526 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5527
5528 return endregno > inner_regno && regno < inner_endregno;
5529 }
5530 break;
5531
5532 case CLOBBER:
5533 case SET:
5534 if (&SET_DEST (x) != loc
5535 /* Note setting a SUBREG counts as referring to the REG it is in for
5536 a pseudo but not for hard registers since we can
5537 treat each word individually. */
5538 && ((GET_CODE (SET_DEST (x)) == SUBREG
5539 && loc != &SUBREG_REG (SET_DEST (x))
5540 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5541 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5542 && refers_to_regno_for_reload_p (regno, endregno,
5543 SUBREG_REG (SET_DEST (x)),
5544 loc))
abc95ed3 5545 /* If the output is an earlyclobber operand, this is
4644aad4
RK
5546 a conflict. */
5547 || ((GET_CODE (SET_DEST (x)) != REG
5548 || earlyclobber_operand_p (SET_DEST (x)))
eab89b90
RK
5549 && refers_to_regno_for_reload_p (regno, endregno,
5550 SET_DEST (x), loc))))
5551 return 1;
5552
5553 if (code == CLOBBER || loc == &SET_SRC (x))
5554 return 0;
5555 x = SET_SRC (x);
5556 goto repeat;
e9a25f70
JL
5557
5558 default:
5559 break;
eab89b90
RK
5560 }
5561
5562 /* X does not match, so try its subexpressions. */
5563
5564 fmt = GET_RTX_FORMAT (code);
5565 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5566 {
5567 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5568 {
5569 if (i == 0)
5570 {
5571 x = XEXP (x, 0);
5572 goto repeat;
5573 }
5574 else
5575 if (refers_to_regno_for_reload_p (regno, endregno,
5576 XEXP (x, i), loc))
5577 return 1;
5578 }
5579 else if (fmt[i] == 'E')
5580 {
5581 register int j;
5582 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5583 if (loc != &XVECEXP (x, i, j)
5584 && refers_to_regno_for_reload_p (regno, endregno,
5585 XVECEXP (x, i, j), loc))
5586 return 1;
5587 }
5588 }
5589 return 0;
5590}
bfa30b22
RK
5591
5592/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5593 we check if any register number in X conflicts with the relevant register
5594 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5595 contains a MEM (we don't bother checking for memory addresses that can't
5596 conflict because we expect this to be a rare case.
5597
5598 This function is similar to reg_overlap_mention_p in rtlanal.c except
5599 that we look at equivalences for pseudos that didn't get hard registers. */
5600
5601int
5602reg_overlap_mentioned_for_reload_p (x, in)
5603 rtx x, in;
5604{
5605 int regno, endregno;
5606
5607 if (GET_CODE (x) == SUBREG)
5608 {
5609 regno = REGNO (SUBREG_REG (x));
5610 if (regno < FIRST_PSEUDO_REGISTER)
5611 regno += SUBREG_WORD (x);
5612 }
5613 else if (GET_CODE (x) == REG)
5614 {
5615 regno = REGNO (x);
4803a34a
RK
5616
5617 /* If this is a pseudo, it must not have been assigned a hard register.
5618 Therefore, it must either be in memory or be a constant. */
5619
5620 if (regno >= FIRST_PSEUDO_REGISTER)
5621 {
5622 if (reg_equiv_memory_loc[regno])
5623 return refers_to_mem_for_reload_p (in);
5624 else if (reg_equiv_constant[regno])
5625 return 0;
5626 abort ();
5627 }
bfa30b22
RK
5628 }
5629 else if (CONSTANT_P (x))
5630 return 0;
5631 else if (GET_CODE (x) == MEM)
4803a34a 5632 return refers_to_mem_for_reload_p (in);
bfa30b22
RK
5633 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5634 || GET_CODE (x) == CC0)
5635 return reg_mentioned_p (x, in);
5636 else
5637 abort ();
5638
5639 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5640 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5641
fb3821f7 5642 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
bfa30b22 5643}
4803a34a
RK
5644
5645/* Return nonzero if anything in X contains a MEM. Look also for pseudo
5646 registers. */
5647
5648int
5649refers_to_mem_for_reload_p (x)
5650 rtx x;
5651{
5652 char *fmt;
5653 int i;
5654
5655 if (GET_CODE (x) == MEM)
5656 return 1;
5657
5658 if (GET_CODE (x) == REG)
5659 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5660 && reg_equiv_memory_loc[REGNO (x)]);
5661
5662 fmt = GET_RTX_FORMAT (GET_CODE (x));
5663 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5664 if (fmt[i] == 'e'
5665 && (GET_CODE (XEXP (x, i)) == MEM
5666 || refers_to_mem_for_reload_p (XEXP (x, i))))
5667 return 1;
5668
5669 return 0;
5670}
eab89b90 5671\f
eab89b90
RK
5672/* Check the insns before INSN to see if there is a suitable register
5673 containing the same value as GOAL.
5674 If OTHER is -1, look for a register in class CLASS.
5675 Otherwise, just see if register number OTHER shares GOAL's value.
5676
5677 Return an rtx for the register found, or zero if none is found.
5678
5679 If RELOAD_REG_P is (short *)1,
5680 we reject any hard reg that appears in reload_reg_rtx
5681 because such a hard reg is also needed coming into this insn.
5682
5683 If RELOAD_REG_P is any other nonzero value,
5684 it is a vector indexed by hard reg number
5685 and we reject any hard reg whose element in the vector is nonnegative
5686 as well as any that appears in reload_reg_rtx.
5687
5688 If GOAL is zero, then GOALREG is a register number; we look
5689 for an equivalent for that register.
5690
5691 MODE is the machine mode of the value we want an equivalence for.
5692 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5693
5694 This function is used by jump.c as well as in the reload pass.
5695
5696 If GOAL is the sum of the stack pointer and a constant, we treat it
5697 as if it were a constant except that sp is required to be unchanging. */
5698
5699rtx
5700find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5701 register rtx goal;
5702 rtx insn;
5703 enum reg_class class;
5704 register int other;
5705 short *reload_reg_p;
5706 int goalreg;
5707 enum machine_mode mode;
5708{
5709 register rtx p = insn;
f55b1d97 5710 rtx goaltry, valtry, value, where;
eab89b90
RK
5711 register rtx pat;
5712 register int regno = -1;
5713 int valueno;
5714 int goal_mem = 0;
5715 int goal_const = 0;
5716 int goal_mem_addr_varies = 0;
5717 int need_stable_sp = 0;
5718 int nregs;
5719 int valuenregs;
5720
5721 if (goal == 0)
5722 regno = goalreg;
5723 else if (GET_CODE (goal) == REG)
5724 regno = REGNO (goal);
5725 else if (GET_CODE (goal) == MEM)
5726 {
5727 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5728 if (MEM_VOLATILE_P (goal))
5729 return 0;
5730 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5731 return 0;
5732 /* An address with side effects must be reexecuted. */
5733 switch (code)
5734 {
5735 case POST_INC:
5736 case PRE_INC:
5737 case POST_DEC:
5738 case PRE_DEC:
5739 return 0;
e9a25f70
JL
5740 default:
5741 break;
eab89b90
RK
5742 }
5743 goal_mem = 1;
5744 }
5745 else if (CONSTANT_P (goal))
5746 goal_const = 1;
5747 else if (GET_CODE (goal) == PLUS
5748 && XEXP (goal, 0) == stack_pointer_rtx
5749 && CONSTANT_P (XEXP (goal, 1)))
5750 goal_const = need_stable_sp = 1;
812f2051
R
5751 else if (GET_CODE (goal) == PLUS
5752 && XEXP (goal, 0) == frame_pointer_rtx
5753 && CONSTANT_P (XEXP (goal, 1)))
5754 goal_const = 1;
eab89b90
RK
5755 else
5756 return 0;
5757
5758 /* On some machines, certain regs must always be rejected
5759 because they don't behave the way ordinary registers do. */
5760
5761#ifdef OVERLAPPING_REGNO_P
5762 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5763 && OVERLAPPING_REGNO_P (regno))
5764 return 0;
5765#endif
5766
5767 /* Scan insns back from INSN, looking for one that copies
5768 a value into or out of GOAL.
5769 Stop and give up if we reach a label. */
5770
5771 while (1)
5772 {
5773 p = PREV_INSN (p);
5774 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5775 return 0;
5776 if (GET_CODE (p) == INSN
0f41302f 5777 /* If we don't want spill regs ... */
a8c9daeb
RK
5778 && (! (reload_reg_p != 0
5779 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
eab89b90
RK
5780 /* ... then ignore insns introduced by reload; they aren't useful
5781 and can cause results in reload_as_needed to be different
5782 from what they were when calculating the need for spills.
5783 If we notice an input-reload insn here, we will reject it below,
5784 but it might hide a usable equivalent. That makes bad code.
5785 It may even abort: perhaps no reg was spilled for this insn
5786 because it was assumed we would find that equivalent. */
5787 || INSN_UID (p) < reload_first_uid))
5788 {
e8094962 5789 rtx tem;
eab89b90
RK
5790 pat = single_set (p);
5791 /* First check for something that sets some reg equal to GOAL. */
5792 if (pat != 0
5793 && ((regno >= 0
5794 && true_regnum (SET_SRC (pat)) == regno
5795 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5796 ||
5797 (regno >= 0
5798 && true_regnum (SET_DEST (pat)) == regno
5799 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5800 ||
5801 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5802 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5803 || (goal_mem
5804 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5805 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5806 || (goal_mem
5807 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
e8094962
RK
5808 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5809 /* If we are looking for a constant,
5810 and something equivalent to that constant was copied
5811 into a reg, we can use that reg. */
fb3821f7
CH
5812 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5813 NULL_RTX))
e8094962 5814 && rtx_equal_p (XEXP (tem, 0), goal)
95d3562b 5815 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
fb3821f7
CH
5816 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5817 NULL_RTX))
e8094962
RK
5818 && GET_CODE (SET_DEST (pat)) == REG
5819 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5820 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5821 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5822 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5823 VOIDmode))
5824 && rtx_equal_p (goal, goaltry)
e8094962
RK
5825 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5826 VOIDmode))
95d3562b 5827 && (valueno = true_regnum (valtry)) >= 0)
fb3821f7
CH
5828 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5829 NULL_RTX))
e8094962
RK
5830 && GET_CODE (SET_DEST (pat)) == REG
5831 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5832 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5833 && GET_CODE (goal) == CONST_INT
f55b1d97
RK
5834 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5835 VOIDmode))
5836 && rtx_equal_p (goal, goaltry)
e8094962
RK
5837 && (valtry
5838 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
95d3562b 5839 && (valueno = true_regnum (valtry)) >= 0)))
eab89b90
RK
5840 if (other >= 0
5841 ? valueno == other
5842 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5843 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5844 valueno)))
5845 {
5846 value = valtry;
5847 where = p;
5848 break;
5849 }
5850 }
5851 }
5852
5853 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5854 (or copying VALUE into GOAL, if GOAL is also a register).
5855 Now verify that VALUE is really valid. */
5856
5857 /* VALUENO is the register number of VALUE; a hard register. */
5858
5859 /* Don't try to re-use something that is killed in this insn. We want
5860 to be able to trust REG_UNUSED notes. */
5861 if (find_reg_note (where, REG_UNUSED, value))
5862 return 0;
5863
5864 /* If we propose to get the value from the stack pointer or if GOAL is
5865 a MEM based on the stack pointer, we need a stable SP. */
d5a1d1c7 5866 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
bfa30b22
RK
5867 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5868 goal)))
eab89b90
RK
5869 need_stable_sp = 1;
5870
5871 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5872 if (GET_MODE (value) != mode)
5873 return 0;
5874
5875 /* Reject VALUE if it was loaded from GOAL
5876 and is also a register that appears in the address of GOAL. */
5877
bd5f6d44 5878 if (goal_mem && value == SET_DEST (single_set (where))
bfa30b22
RK
5879 && refers_to_regno_for_reload_p (valueno,
5880 (valueno
5881 + HARD_REGNO_NREGS (valueno, mode)),
fb3821f7 5882 goal, NULL_PTR))
eab89b90
RK
5883 return 0;
5884
5885 /* Reject registers that overlap GOAL. */
5886
5887 if (!goal_mem && !goal_const
5888 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5889 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5890 return 0;
5891
5892 /* Reject VALUE if it is one of the regs reserved for reloads.
5893 Reload1 knows how to reuse them anyway, and it would get
5894 confused if we allocated one without its knowledge.
5895 (Now that insns introduced by reload are ignored above,
5896 this case shouldn't happen, but I'm not positive.) */
5897
a8c9daeb 5898 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
eab89b90
RK
5899 && reload_reg_p[valueno] >= 0)
5900 return 0;
5901
5902 /* On some machines, certain regs must always be rejected
5903 because they don't behave the way ordinary registers do. */
5904
5905#ifdef OVERLAPPING_REGNO_P
5906 if (OVERLAPPING_REGNO_P (valueno))
5907 return 0;
5908#endif
5909
5910 nregs = HARD_REGNO_NREGS (regno, mode);
5911 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5912
5913 /* Reject VALUE if it is a register being used for an input reload
5914 even if it is not one of those reserved. */
5915
5916 if (reload_reg_p != 0)
5917 {
5918 int i;
5919 for (i = 0; i < n_reloads; i++)
5920 if (reload_reg_rtx[i] != 0 && reload_in[i])
5921 {
5922 int regno1 = REGNO (reload_reg_rtx[i]);
5923 int nregs1 = HARD_REGNO_NREGS (regno1,
5924 GET_MODE (reload_reg_rtx[i]));
5925 if (regno1 < valueno + valuenregs
5926 && regno1 + nregs1 > valueno)
5927 return 0;
5928 }
5929 }
5930
5931 if (goal_mem)
54b5ffe9
RS
5932 /* We must treat frame pointer as varying here,
5933 since it can vary--in a nonlocal goto as generated by expand_goto. */
5934 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
eab89b90
RK
5935
5936 /* Now verify that the values of GOAL and VALUE remain unaltered
5937 until INSN is reached. */
5938
5939 p = insn;
5940 while (1)
5941 {
5942 p = PREV_INSN (p);
5943 if (p == where)
5944 return value;
5945
5946 /* Don't trust the conversion past a function call
5947 if either of the two is in a call-clobbered register, or memory. */
5948 if (GET_CODE (p) == CALL_INSN
5949 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5950 && call_used_regs[regno])
5951 ||
5952 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5953 && call_used_regs[valueno])
5954 ||
5955 goal_mem
5956 || need_stable_sp))
5957 return 0;
5958
41fe17ab
RK
5959#ifdef NON_SAVING_SETJMP
5960 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5961 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5962 return 0;
5963#endif
5964
eab89b90
RK
5965#ifdef INSN_CLOBBERS_REGNO_P
5966 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5967 && INSN_CLOBBERS_REGNO_P (p, valueno))
5968 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5969 && INSN_CLOBBERS_REGNO_P (p, regno)))
5970 return 0;
5971#endif
5972
5973 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5974 {
5975 /* If this insn P stores in either GOAL or VALUE, return 0.
5976 If GOAL is a memory ref and this insn writes memory, return 0.
5977 If GOAL is a memory ref and its address is not constant,
5978 and this insn P changes a register used in GOAL, return 0. */
5979
5980 pat = PATTERN (p);
5981 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5982 {
5983 register rtx dest = SET_DEST (pat);
5984 while (GET_CODE (dest) == SUBREG
5985 || GET_CODE (dest) == ZERO_EXTRACT
5986 || GET_CODE (dest) == SIGN_EXTRACT
5987 || GET_CODE (dest) == STRICT_LOW_PART)
5988 dest = XEXP (dest, 0);
5989 if (GET_CODE (dest) == REG)
5990 {
5991 register int xregno = REGNO (dest);
5992 int xnregs;
5993 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5994 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5995 else
5996 xnregs = 1;
5997 if (xregno < regno + nregs && xregno + xnregs > regno)
5998 return 0;
5999 if (xregno < valueno + valuenregs
6000 && xregno + xnregs > valueno)
6001 return 0;
6002 if (goal_mem_addr_varies
bfa30b22 6003 && reg_overlap_mentioned_for_reload_p (dest, goal))
eab89b90
RK
6004 return 0;
6005 }
6006 else if (goal_mem && GET_CODE (dest) == MEM
6007 && ! push_operand (dest, GET_MODE (dest)))
6008 return 0;
9fac9680
RK
6009 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6010 && reg_equiv_memory_loc[regno] != 0)
6011 return 0;
eab89b90
RK
6012 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6013 return 0;
6014 }
6015 else if (GET_CODE (pat) == PARALLEL)
6016 {
6017 register int i;
6018 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6019 {
6020 register rtx v1 = XVECEXP (pat, 0, i);
6021 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6022 {
6023 register rtx dest = SET_DEST (v1);
6024 while (GET_CODE (dest) == SUBREG
6025 || GET_CODE (dest) == ZERO_EXTRACT
6026 || GET_CODE (dest) == SIGN_EXTRACT
6027 || GET_CODE (dest) == STRICT_LOW_PART)
6028 dest = XEXP (dest, 0);
6029 if (GET_CODE (dest) == REG)
6030 {
6031 register int xregno = REGNO (dest);
6032 int xnregs;
6033 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6034 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6035 else
6036 xnregs = 1;
6037 if (xregno < regno + nregs
6038 && xregno + xnregs > regno)
6039 return 0;
6040 if (xregno < valueno + valuenregs
6041 && xregno + xnregs > valueno)
6042 return 0;
6043 if (goal_mem_addr_varies
bfa30b22
RK
6044 && reg_overlap_mentioned_for_reload_p (dest,
6045 goal))
eab89b90
RK
6046 return 0;
6047 }
6048 else if (goal_mem && GET_CODE (dest) == MEM
6049 && ! push_operand (dest, GET_MODE (dest)))
6050 return 0;
e9a25f70
JL
6051 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6052 && reg_equiv_memory_loc[regno] != 0)
6053 return 0;
369c7ab6
JW
6054 else if (need_stable_sp
6055 && push_operand (dest, GET_MODE (dest)))
6056 return 0;
6057 }
6058 }
6059 }
6060
6061 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6062 {
6063 rtx link;
6064
6065 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6066 link = XEXP (link, 1))
6067 {
6068 pat = XEXP (link, 0);
6069 if (GET_CODE (pat) == CLOBBER)
6070 {
6071 register rtx dest = SET_DEST (pat);
6072 while (GET_CODE (dest) == SUBREG
6073 || GET_CODE (dest) == ZERO_EXTRACT
6074 || GET_CODE (dest) == SIGN_EXTRACT
6075 || GET_CODE (dest) == STRICT_LOW_PART)
6076 dest = XEXP (dest, 0);
6077 if (GET_CODE (dest) == REG)
6078 {
6079 register int xregno = REGNO (dest);
6080 int xnregs;
6081 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6082 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6083 else
6084 xnregs = 1;
6085 if (xregno < regno + nregs
6086 && xregno + xnregs > regno)
6087 return 0;
6088 if (xregno < valueno + valuenregs
6089 && xregno + xnregs > valueno)
6090 return 0;
6091 if (goal_mem_addr_varies
6092 && reg_overlap_mentioned_for_reload_p (dest,
6093 goal))
6094 return 0;
6095 }
6096 else if (goal_mem && GET_CODE (dest) == MEM
6097 && ! push_operand (dest, GET_MODE (dest)))
6098 return 0;
eab89b90
RK
6099 else if (need_stable_sp
6100 && push_operand (dest, GET_MODE (dest)))
6101 return 0;
6102 }
6103 }
6104 }
6105
6106#ifdef AUTO_INC_DEC
6107 /* If this insn auto-increments or auto-decrements
6108 either regno or valueno, return 0 now.
6109 If GOAL is a memory ref and its address is not constant,
6110 and this insn P increments a register used in GOAL, return 0. */
6111 {
6112 register rtx link;
6113
6114 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6115 if (REG_NOTE_KIND (link) == REG_INC
6116 && GET_CODE (XEXP (link, 0)) == REG)
6117 {
6118 register int incno = REGNO (XEXP (link, 0));
6119 if (incno < regno + nregs && incno >= regno)
6120 return 0;
6121 if (incno < valueno + valuenregs && incno >= valueno)
6122 return 0;
6123 if (goal_mem_addr_varies
bfa30b22
RK
6124 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6125 goal))
eab89b90
RK
6126 return 0;
6127 }
6128 }
6129#endif
6130 }
6131 }
6132}
6133\f
6134/* Find a place where INCED appears in an increment or decrement operator
6135 within X, and return the amount INCED is incremented or decremented by.
6136 The value is always positive. */
6137
6138static int
6139find_inc_amount (x, inced)
6140 rtx x, inced;
6141{
6142 register enum rtx_code code = GET_CODE (x);
6143 register char *fmt;
6144 register int i;
6145
6146 if (code == MEM)
6147 {
6148 register rtx addr = XEXP (x, 0);
6149 if ((GET_CODE (addr) == PRE_DEC
6150 || GET_CODE (addr) == POST_DEC
6151 || GET_CODE (addr) == PRE_INC
6152 || GET_CODE (addr) == POST_INC)
6153 && XEXP (addr, 0) == inced)
6154 return GET_MODE_SIZE (GET_MODE (x));
6155 }
6156
6157 fmt = GET_RTX_FORMAT (code);
6158 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6159 {
6160 if (fmt[i] == 'e')
6161 {
6162 register int tem = find_inc_amount (XEXP (x, i), inced);
6163 if (tem != 0)
6164 return tem;
6165 }
6166 if (fmt[i] == 'E')
6167 {
6168 register int j;
6169 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6170 {
6171 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6172 if (tem != 0)
6173 return tem;
6174 }
6175 }
6176 }
6177
6178 return 0;
6179}
6180\f
6181/* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6182
6183int
6184regno_clobbered_p (regno, insn)
6185 int regno;
6186 rtx insn;
6187{
6188 if (GET_CODE (PATTERN (insn)) == CLOBBER
6189 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6190 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6191
6192 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6193 {
6194 int i = XVECLEN (PATTERN (insn), 0) - 1;
6195
6196 for (; i >= 0; i--)
6197 {
6198 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6199 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6200 && REGNO (XEXP (elt, 0)) == regno)
6201 return 1;
6202 }
6203 }
6204
6205 return 0;
6206}
10bcde0d
RK
6207
6208static char *reload_when_needed_name[] =
6209{
6210 "RELOAD_FOR_INPUT",
6211 "RELOAD_FOR_OUTPUT",
6212 "RELOAD_FOR_INSN",
47c8cf91
ILT
6213 "RELOAD_FOR_INPUT_ADDRESS",
6214 "RELOAD_FOR_INPADDR_ADDRESS",
10bcde0d 6215 "RELOAD_FOR_OUTPUT_ADDRESS",
47c8cf91 6216 "RELOAD_FOR_OUTADDR_ADDRESS",
10bcde0d
RK
6217 "RELOAD_FOR_OPERAND_ADDRESS",
6218 "RELOAD_FOR_OPADDR_ADDR",
6219 "RELOAD_OTHER",
6220 "RELOAD_FOR_OTHER_ADDRESS"
6221};
6222
6223static char *reg_class_names[] = REG_CLASS_NAMES;
6224
b8fb2d72 6225/* These functions are used to print the variables set by 'find_reloads' */
10bcde0d
RK
6226
6227void
b8fb2d72
CI
6228debug_reload_to_stream (f)
6229 FILE *f;
10bcde0d
RK
6230{
6231 int r;
505923a0 6232 char *prefix;
10bcde0d 6233
b8fb2d72
CI
6234 if (! f)
6235 f = stderr;
10bcde0d
RK
6236 for (r = 0; r < n_reloads; r++)
6237 {
b8fb2d72 6238 fprintf (f, "Reload %d: ", r);
10bcde0d 6239
505923a0 6240 if (reload_in[r] != 0)
10bcde0d 6241 {
b8fb2d72 6242 fprintf (f, "reload_in (%s) = ",
f7393e85 6243 GET_MODE_NAME (reload_inmode[r]));
b8fb2d72
CI
6244 print_inline_rtx (f, reload_in[r], 24);
6245 fprintf (f, "\n\t");
10bcde0d
RK
6246 }
6247
505923a0 6248 if (reload_out[r] != 0)
10bcde0d 6249 {
b8fb2d72 6250 fprintf (f, "reload_out (%s) = ",
f7393e85 6251 GET_MODE_NAME (reload_outmode[r]));
b8fb2d72
CI
6252 print_inline_rtx (f, reload_out[r], 24);
6253 fprintf (f, "\n\t");
10bcde0d
RK
6254 }
6255
b8fb2d72 6256 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
10bcde0d 6257
b8fb2d72 6258 fprintf (f, "%s (opnum = %d)",
505923a0 6259 reload_when_needed_name[(int) reload_when_needed[r]],
10bcde0d
RK
6260 reload_opnum[r]);
6261
6262 if (reload_optional[r])
b8fb2d72 6263 fprintf (f, ", optional");
10bcde0d 6264
505923a0 6265 if (reload_inc[r] != 0)
b8fb2d72 6266 fprintf (f, ", inc by %d", reload_inc[r]);
10bcde0d
RK
6267
6268 if (reload_nocombine[r])
b8fb2d72 6269 fprintf (f, ", can't combine");
10bcde0d
RK
6270
6271 if (reload_secondary_p[r])
b8fb2d72 6272 fprintf (f, ", secondary_reload_p");
10bcde0d 6273
505923a0 6274 if (reload_in_reg[r] != 0)
10bcde0d 6275 {
b8fb2d72
CI
6276 fprintf (f, "\n\treload_in_reg: ");
6277 print_inline_rtx (f, reload_in_reg[r], 24);
10bcde0d
RK
6278 }
6279
505923a0 6280 if (reload_reg_rtx[r] != 0)
10bcde0d 6281 {
b8fb2d72
CI
6282 fprintf (f, "\n\treload_reg_rtx: ");
6283 print_inline_rtx (f, reload_reg_rtx[r], 24);
10bcde0d
RK
6284 }
6285
505923a0 6286 prefix = "\n\t";
10bcde0d
RK
6287 if (reload_secondary_in_reload[r] != -1)
6288 {
b8fb2d72 6289 fprintf (f, "%ssecondary_in_reload = %d",
505923a0
RK
6290 prefix, reload_secondary_in_reload[r]);
6291 prefix = ", ";
10bcde0d
RK
6292 }
6293
6294 if (reload_secondary_out_reload[r] != -1)
b8fb2d72 6295 fprintf (f, "%ssecondary_out_reload = %d\n",
505923a0 6296 prefix, reload_secondary_out_reload[r]);
10bcde0d 6297
505923a0 6298 prefix = "\n\t";
10bcde0d
RK
6299 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6300 {
e5e809f4
JL
6301 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6302 insn_name[reload_secondary_in_icode[r]]);
505923a0 6303 prefix = ", ";
10bcde0d
RK
6304 }
6305
6306 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
e5e809f4
JL
6307 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6308 insn_name[reload_secondary_out_icode[r]]);
10bcde0d 6309
b8fb2d72 6310 fprintf (f, "\n");
10bcde0d 6311 }
10bcde0d 6312}
b8fb2d72
CI
6313
6314void
6315debug_reload ()
6316{
6317 debug_reload_to_stream (stderr);
6318}