]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/reload.c
* doc/tm.texi.in (MODE_CODE_BASE_REG_CLASS): Add address space
[thirdparty/gcc.git] / gcc / reload.c
CommitLineData
42c63e4d 1/* Search an insn for pseudo regs that must be in hard regs and are not.
9daf6266 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
5ae82d58 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3072d30e 4 Free Software Foundation, Inc.
42c63e4d 5
f12b58b3 6This file is part of GCC.
42c63e4d 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
f12b58b3 11version.
42c63e4d 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
42c63e4d 17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
42c63e4d 21
42c63e4d 22/* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
2bc9fc53 30 init_reload actually has to be called earlier anyway.
42c63e4d 31
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
38
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
45
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
54
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
57
58NOTE SIDE EFFECTS:
59
60 find_reloads can alter the operands of the instruction it is called on.
61
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
66
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
69
701 happens every time find_reloads is called.
712 happens only when REPLACE is 1, which is only when
72actually doing the reloads, not when just counting them.
73
42c63e4d 74Using a reload register for several reloads in one insn:
75
76When an insn has reloads, it is considered as having three parts:
77the input reloads, the insn itself after reloading, and the output reloads.
78Reloads of values used in memory addresses are often needed for only one part.
79
80When this is so, reload_when_needed records which part needs the reload.
81Two reloads for different parts of the insn can share the same reload
82register.
83
84When a reload is used for addresses in multiple parts, or when it is
85an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86a register with any other reload. */
87
88#define REG_OK_STRICT
89
455ca9be 90/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91#undef DEBUG_RELOAD
92
42c63e4d 93#include "config.h"
405711de 94#include "system.h"
805e22b2 95#include "coretypes.h"
96#include "tm.h"
d7091a76 97#include "rtl-error.h"
7953c610 98#include "tm_p.h"
42c63e4d 99#include "insn-config.h"
d8fc4d0b 100#include "expr.h"
101#include "optabs.h"
42c63e4d 102#include "recog.h"
0f71a633 103#include "df.h"
42c63e4d 104#include "reload.h"
105#include "regs.h"
00cb30dc 106#include "addresses.h"
42c63e4d 107#include "hard-reg-set.h"
108#include "flags.h"
43bdb1fa 109#include "output.h"
0a893c29 110#include "function.h"
c15bc0ce 111#include "params.h"
3e7f6cce 112#include "target.h"
a7dcf969 113#include "ira.h"
42c63e4d 114
7d7d7bd2 115/* True if X is a constant that can be forced into the constant pool.
116 MODE is the mode of the operand, or VOIDmode if not known. */
117#define CONST_POOL_OK_P(MODE, X) \
118 ((MODE) != VOIDmode \
119 && CONSTANT_P (X) \
3e7f6cce 120 && GET_CODE (X) != HIGH \
7d7d7bd2 121 && !targetm.cannot_force_const_mem (MODE, X))
be77efb1 122
123/* True if C is a non-empty register class that has too few registers
124 to be safely used as a reload target class. */
24dd0668 125
126static inline bool
127small_register_class_p (reg_class_t rclass)
128{
129 return (reg_class_size [(int) rclass] == 1
130 || (reg_class_size [(int) rclass] >= 1
131 && targetm.class_likely_spilled_p (rclass)));
132}
be77efb1 133
42c63e4d 134\f
48666d2c 135/* All reloads of the current insn are recorded here. See reload.h for
136 comments. */
42c63e4d 137int n_reloads;
48666d2c 138struct reload rld[MAX_RELOADS];
42c63e4d 139
140/* All the "earlyclobber" operands of the current insn
141 are recorded here. */
142int n_earlyclobbers;
143rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
144
70457512 145int reload_n_operands;
146
42c63e4d 147/* Replacing reloads.
148
149 If `replace_reloads' is nonzero, then as each reload is recorded
150 an entry is made for it in the table `replacements'.
151 Then later `subst_reloads' can look through that table and
152 perform all the replacements needed. */
153
154/* Nonzero means record the places to replace. */
155static int replace_reloads;
156
157/* Each replacement is recorded with a structure like this. */
158struct replacement
159{
160 rtx *where; /* Location to store in */
42c63e4d 161 int what; /* which reload this is for */
162 enum machine_mode mode; /* mode it must have */
163};
164
165static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
166
167/* Number of replacements currently recorded. */
168static int n_replacements;
169
70457512 170/* Used to track what is modified by an operand. */
171struct decomposition
172{
a92771b8 173 int reg_flag; /* Nonzero if referencing a register. */
174 int safe; /* Nonzero if this can't conflict with anything. */
175 rtx base; /* Base address for MEM. */
176 HOST_WIDE_INT start; /* Starting offset or register number. */
569bf6ab 177 HOST_WIDE_INT end; /* Ending offset or register number. */
70457512 178};
179
c538053c 180#ifdef SECONDARY_MEMORY_NEEDED
181
182/* Save MEMs needed to copy from one class of registers to another. One MEM
5bb2f919 183 is used per mode, but normally only one or two modes are ever used.
c538053c 184
5bb2f919 185 We keep two versions, before and after register elimination. The one
70457512 186 after register elimination is record separately for each operand. This
187 is done in case the address is not valid to be sure that we separately
188 reload each. */
c538053c 189
190static rtx secondary_memlocs[NUM_MACHINE_MODES];
ac9ae2ad 191static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
605e65d9 192static int secondary_memlocs_elim_used = 0;
c538053c 193#endif
194
42c63e4d 195/* The instruction we are doing reloads for;
196 so we can test whether a register dies in it. */
197static rtx this_insn;
198
199/* Nonzero if this instruction is a user-specified asm with operands. */
200static int this_insn_is_asm;
201
202/* If hard_regs_live_known is nonzero,
203 we can tell which hard regs are currently live,
204 at least enough to succeed in choosing dummy reloads. */
205static int hard_regs_live_known;
206
207/* Indexed by hard reg number,
ad87de1e 208 element is nonnegative if hard reg has been spilled.
42c63e4d 209 This vector is passed to `find_reloads' as an argument
210 and is not changed here. */
211static short *static_reload_reg_p;
212
213/* Set to 1 in subst_reg_equivs if it changes anything. */
214static int subst_reg_equivs_changed;
215
216/* On return from push_reload, holds the reload-number for the OUT
217 operand, which can be different for that from the input operand. */
218static int output_reloadnum;
219
7b9a997f 220 /* Compare two RTX's. */
221#define MATCHES(x, y) \
8ad4c111 222 (x == y || (x != 0 && (REG_P (x) \
223 ? REG_P (y) && REGNO (x) == REGNO (y) \
7b9a997f 224 : rtx_equal_p (x, y) && ! side_effects_p (x))))
225
226 /* Indicates if two reloads purposes are for similar enough things that we
227 can merge their reloads. */
228#define MERGABLE_RELOADS(when1, when2, op1, op2) \
229 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
230 || ((when1) == (when2) && (op1) == (op2)) \
231 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
232 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
233 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
234 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
235 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
236
237 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
238#define MERGE_TO_OTHER(when1, when2, op1, op2) \
239 ((when1) != (when2) \
240 || ! ((op1) == (op2) \
241 || (when1) == RELOAD_FOR_INPUT \
242 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
243 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
244
9e53d777 245 /* If we are going to reload an address, compute the reload type to
246 use. */
247#define ADDR_TYPE(type) \
248 ((type) == RELOAD_FOR_INPUT_ADDRESS \
249 ? RELOAD_FOR_INPADDR_ADDRESS \
250 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
251 ? RELOAD_FOR_OUTADDR_ADDRESS \
252 : (type)))
253
3ad4992f 254static int push_secondary_reload (int, rtx, int, int, enum reg_class,
255 enum machine_mode, enum reload_type,
4d58fa46 256 enum insn_code *, secondary_reload_info *);
8f3b70dd 257static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
258 int, unsigned int);
3ad4992f 259static void push_replacement (rtx *, int, enum machine_mode);
260static void dup_replacements (rtx *, rtx *);
261static void combine_reloads (void);
262static int find_reusable_reload (rtx *, rtx, enum reg_class,
263 enum reload_type, int, int);
264static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
71db0d8b 265 enum machine_mode, reg_class_t, int, int);
3ad4992f 266static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
267static struct decomposition decompose (rtx);
268static int immune_p (rtx, rtx, struct decomposition);
53716799 269static bool alternative_allows_const_pool_ref (rtx, const char *, int);
3ad4992f 270static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
271 int *);
272static rtx make_memloc (rtx, int);
bd1a81f7 273static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
274 addr_space_t, rtx *);
3ad4992f 275static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
276 int, enum reload_type, int, rtx);
277static rtx subst_reg_equivs (rtx, rtx);
278static rtx subst_indexed_address (rtx);
279static void update_auto_inc_notes (rtx, int, int);
f8a8fc7b 280static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
00cb30dc 281 enum rtx_code, enum rtx_code, rtx *,
3ad4992f 282 int, enum reload_type,int, rtx);
283static void find_reloads_address_part (rtx, rtx *, enum reg_class,
284 enum machine_mode, int,
285 enum reload_type, int);
286static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
b5fe590a 287 int, rtx, int *);
3ad4992f 288static void copy_replacements_1 (rtx *, rtx *, int);
289static int find_inc_amount (rtx, rtx);
6e707336 290static int refers_to_mem_for_reload_p (rtx);
291static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
292 rtx, rtx *);
d51b37c2 293
294/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
295 list yet. */
296
297static void
298push_reg_equiv_alt_mem (int regno, rtx mem)
299{
300 rtx it;
301
1c654ff1 302 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
d51b37c2 303 if (rtx_equal_p (XEXP (it, 0), mem))
304 return;
305
1c654ff1 306 reg_equiv_alt_mem_list (regno)
d51b37c2 307 = alloc_EXPR_LIST (REG_EQUIV, mem,
1c654ff1 308 reg_equiv_alt_mem_list (regno));
d51b37c2 309}
42c63e4d 310\f
42c63e4d 311/* Determine if any secondary reloads are needed for loading (if IN_P is
7fd957fe 312 nonzero) or storing (if IN_P is zero) X to or from a reload register of
7b9a997f 313 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
314 are needed, push them.
315
316 Return the reload number of the secondary reload we made, or -1 if
317 we didn't need one. *PICODE is set to the insn_code to use if we do
318 need a secondary reload. */
319
320static int
3ad4992f 321push_secondary_reload (int in_p, rtx x, int opnum, int optional,
322 enum reg_class reload_class,
323 enum machine_mode reload_mode, enum reload_type type,
4d58fa46 324 enum insn_code *picode, secondary_reload_info *prev_sri)
42c63e4d 325{
47cfb7f4 326 enum reg_class rclass = NO_REGS;
4d58fa46 327 enum reg_class scratch_class;
42c63e4d 328 enum machine_mode mode = reload_mode;
329 enum insn_code icode = CODE_FOR_nothing;
4196778e 330 enum insn_code t_icode = CODE_FOR_nothing;
d6d6e221 331 enum reload_type secondary_type;
7b9a997f 332 int s_reload, t_reload = -1;
4d58fa46 333 const char *scratch_constraint;
334 char letter;
335 secondary_reload_info sri;
7b9a997f 336
9e53d777 337 if (type == RELOAD_FOR_INPUT_ADDRESS
338 || type == RELOAD_FOR_OUTPUT_ADDRESS
339 || type == RELOAD_FOR_INPADDR_ADDRESS
340 || type == RELOAD_FOR_OUTADDR_ADDRESS)
d6d6e221 341 secondary_type = type;
342 else
343 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
344
7b9a997f 345 *picode = CODE_FOR_nothing;
42c63e4d 346
50fad108 347 /* If X is a paradoxical SUBREG, use the inner value to determine both the
348 mode and object being reloaded. */
b537bfdb 349 if (paradoxical_subreg_p (x))
50fad108 350 {
351 x = SUBREG_REG (x);
352 reload_mode = GET_MODE (x);
353 }
354
f9e15121 355 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
356 is still a pseudo-register by now, it *must* have an equivalent MEM
357 but we don't want to assume that), use that equivalent when seeing if
358 a secondary reload is needed since whether or not a reload is needed
359 might be sensitive to the form of the MEM. */
360
8ad4c111 361 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
1c654ff1 362 && reg_equiv_mem (REGNO (x)))
363 x = reg_equiv_mem (REGNO (x));
f9e15121 364
4d58fa46 365 sri.icode = CODE_FOR_nothing;
366 sri.prev_sri = prev_sri;
964229b7 367 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
368 reload_mode, &sri);
8458f4ca 369 icode = (enum insn_code) sri.icode;
42c63e4d 370
7b9a997f 371 /* If we don't need any secondary registers, done. */
47cfb7f4 372 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
7b9a997f 373 return -1;
42c63e4d 374
47cfb7f4 375 if (rclass != NO_REGS)
376 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
4d58fa46 377 reload_mode, type, &t_icode, &sri);
42c63e4d 378
4d58fa46 379 /* If we will be using an insn, the secondary reload is for a
380 scratch register. */
42c63e4d 381
382 if (icode != CODE_FOR_nothing)
383 {
7fd957fe 384 /* If IN_P is nonzero, the reload register will be the output in
42c63e4d 385 operand 0. If IN_P is zero, the reload register will be the input
386 in operand 1. Outputs should have an initial "=", which we must
387 skip. */
388
4d58fa46 389 /* ??? It would be useful to be able to handle only two, or more than
390 three, operands, but for now we can only handle the case of having
391 exactly three: output, input and one temp/scratch. */
392 gcc_assert (insn_data[(int) icode].n_operands == 3);
393
394 /* ??? We currently have no way to represent a reload that needs
191ec5a2 395 an icode to reload from an intermediate tertiary reload register.
4d58fa46 396 We should probably have a new field in struct reload to tag a
397 chain of scratch operand reloads onto. */
47cfb7f4 398 gcc_assert (rclass == NO_REGS);
4d58fa46 399
400 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
401 gcc_assert (*scratch_constraint == '=');
402 scratch_constraint++;
403 if (*scratch_constraint == '&')
404 scratch_constraint++;
405 letter = *scratch_constraint;
406 scratch_class = (letter == 'r' ? GENERAL_REGS
407 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
6c045f8e 408 scratch_constraint));
4d58fa46 409
47cfb7f4 410 rclass = scratch_class;
4d58fa46 411 mode = insn_data[(int) icode].operand[2].mode;
42c63e4d 412 }
413
7b9a997f 414 /* This case isn't valid, so fail. Reload is allowed to use the same
415 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
416 in the case of a secondary register, we actually need two different
417 registers for correct code. We fail here to prevent the possibility of
418 silently generating incorrect code later.
419
420 The convention is that secondary input reloads are valid only if the
dc31aba7 421 secondary_class is different from class. If you have such a case, you
422 can not use secondary reloads, you must work around the problem some
423 other way.
7b9a997f 424
d428a20f 425 Allow this when a reload_in/out pattern is being used. I.e. assume
426 that the generated code handles this case. */
7b9a997f 427
47cfb7f4 428 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
04e579b6 429 || t_icode != CODE_FOR_nothing);
7b9a997f 430
7b9a997f 431 /* See if we can reuse an existing secondary reload. */
432 for (s_reload = 0; s_reload < n_reloads; s_reload++)
48666d2c 433 if (rld[s_reload].secondary_p
c32319fc 434 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
435 || reg_class_subset_p (rld[s_reload].rclass, rclass))
48666d2c 436 && ((in_p && rld[s_reload].inmode == mode)
437 || (! in_p && rld[s_reload].outmode == mode))
438 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
439 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
440 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
441 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
24dd0668 442 && (small_register_class_p (rclass)
ed5527ca 443 || targetm.small_register_classes_for_mode_p (VOIDmode))
48666d2c 444 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
445 opnum, rld[s_reload].opnum))
7b9a997f 446 {
447 if (in_p)
48666d2c 448 rld[s_reload].inmode = mode;
7b9a997f 449 if (! in_p)
48666d2c 450 rld[s_reload].outmode = mode;
7b9a997f 451
c32319fc 452 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
453 rld[s_reload].rclass = rclass;
7b9a997f 454
48666d2c 455 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
456 rld[s_reload].optional &= optional;
457 rld[s_reload].secondary_p = 1;
458 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
459 opnum, rld[s_reload].opnum))
460 rld[s_reload].when_needed = RELOAD_OTHER;
92d21e32 461
462 break;
7b9a997f 463 }
42c63e4d 464
7b9a997f 465 if (s_reload == n_reloads)
466 {
0dbd1c74 467#ifdef SECONDARY_MEMORY_NEEDED
468 /* If we need a memory location to copy between the two reload regs,
469 set it up now. Note that we do the input case before making
5bb2f919 470 the reload and the output case after. This is due to the
0dbd1c74 471 way reloads are output. */
472
473 if (in_p && icode == CODE_FOR_nothing
47cfb7f4 474 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
fc2da810 475 {
476 get_secondary_mem (x, reload_mode, opnum, type);
477
478 /* We may have just added new reloads. Make sure we add
479 the new reload at the end. */
480 s_reload = n_reloads;
481 }
0dbd1c74 482#endif
483
7b9a997f 484 /* We need to make a new secondary reload for this register class. */
48666d2c 485 rld[s_reload].in = rld[s_reload].out = 0;
c32319fc 486 rld[s_reload].rclass = rclass;
48666d2c 487
488 rld[s_reload].inmode = in_p ? mode : VOIDmode;
489 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
490 rld[s_reload].reg_rtx = 0;
491 rld[s_reload].optional = optional;
48666d2c 492 rld[s_reload].inc = 0;
7b9a997f 493 /* Maybe we could combine these, but it seems too tricky. */
48666d2c 494 rld[s_reload].nocombine = 1;
495 rld[s_reload].in_reg = 0;
496 rld[s_reload].out_reg = 0;
497 rld[s_reload].opnum = opnum;
498 rld[s_reload].when_needed = secondary_type;
499 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
500 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
501 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
502 rld[s_reload].secondary_out_icode
7b9a997f 503 = ! in_p ? t_icode : CODE_FOR_nothing;
48666d2c 504 rld[s_reload].secondary_p = 1;
7b9a997f 505
506 n_reloads++;
507
508#ifdef SECONDARY_MEMORY_NEEDED
7b9a997f 509 if (! in_p && icode == CODE_FOR_nothing
47cfb7f4 510 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
c0300174 511 get_secondary_mem (x, mode, opnum, type);
7b9a997f 512#endif
513 }
514
515 *picode = icode;
516 return s_reload;
42c63e4d 517}
4d58fa46 518
519/* If a secondary reload is needed, return its class. If both an intermediate
520 register and a scratch register is needed, we return the class of the
521 intermediate register. */
2dfa2c74 522reg_class_t
523secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
524 rtx x)
4d58fa46 525{
526 enum insn_code icode;
527 secondary_reload_info sri;
528
529 sri.icode = CODE_FOR_nothing;
530 sri.prev_sri = NULL;
964229b7 531 rclass
532 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
8458f4ca 533 icode = (enum insn_code) sri.icode;
4d58fa46 534
535 /* If there are no secondary reloads at all, we return NO_REGS.
536 If an intermediate register is needed, we return its class. */
47cfb7f4 537 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
538 return rclass;
4d58fa46 539
540 /* No intermediate register is needed, but we have a special reload
541 pattern, which we assume for now needs a scratch register. */
542 return scratch_reload_class (icode);
543}
544
545/* ICODE is the insn_code of a reload pattern. Check that it has exactly
546 three operands, verify that operand 2 is an output operand, and return
547 its register class.
548 ??? We'd like to be able to handle any pattern with at least 2 operands,
549 for zero or more scratch registers, but that needs more infrastructure. */
550enum reg_class
551scratch_reload_class (enum insn_code icode)
552{
553 const char *scratch_constraint;
554 char scratch_letter;
47cfb7f4 555 enum reg_class rclass;
4d58fa46 556
557 gcc_assert (insn_data[(int) icode].n_operands == 3);
558 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
559 gcc_assert (*scratch_constraint == '=');
560 scratch_constraint++;
561 if (*scratch_constraint == '&')
562 scratch_constraint++;
563 scratch_letter = *scratch_constraint;
564 if (scratch_letter == 'r')
565 return GENERAL_REGS;
47cfb7f4 566 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
4d58fa46 567 scratch_constraint);
47cfb7f4 568 gcc_assert (rclass != NO_REGS);
569 return rclass;
4d58fa46 570}
42c63e4d 571\f
c538053c 572#ifdef SECONDARY_MEMORY_NEEDED
573
5bb2f919 574/* Return a memory location that will be used to copy X in mode MODE.
c538053c 575 If we haven't already made a location for this mode in this insn,
576 call find_reloads_address on the location being returned. */
577
578rtx
3ad4992f 579get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
580 int opnum, enum reload_type type)
c538053c 581{
582 rtx loc;
583 int mem_valid;
584
c2fdde21 585 /* By default, if MODE is narrower than a word, widen it to a word.
586 This is required because most machines that require these memory
587 locations do not support short load and stores from all registers
588 (e.g., FP registers). */
589
590#ifdef SECONDARY_MEMORY_NEEDED_MODE
591 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
592#else
96ff0372 593 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
c538053c 594 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
c2fdde21 595#endif
c538053c 596
ac9ae2ad 597 /* If we already have made a MEM for this operand in MODE, return it. */
598 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
599 return secondary_memlocs_elim[(int) mode][opnum];
c538053c 600
5bb2f919 601 /* If this is the first time we've tried to get a MEM for this mode,
c538053c 602 allocate a new one. `something_changed' in reload will get set
603 by noticing that the frame size has changed. */
604
605 if (secondary_memlocs[(int) mode] == 0)
3bcf63ee 606 {
607#ifdef SECONDARY_MEMORY_NEEDED_RTX
608 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
609#else
610 secondary_memlocs[(int) mode]
611 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
612#endif
613 }
c538053c 614
615 /* Get a version of the address doing any eliminations needed. If that
616 didn't give us a new MEM, make a new one if it isn't valid. */
617
6182a80f 618 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
bd1a81f7 619 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
620 MEM_ADDR_SPACE (loc));
c538053c 621
622 if (! mem_valid && loc == secondary_memlocs[(int) mode])
623 loc = copy_rtx (loc);
624
625 /* The only time the call below will do anything is if the stack
626 offset is too large. In that case IND_LEVELS doesn't matter, so we
70457512 627 can just pass a zero. Adjust the type to be the address of the
628 corresponding object. If the address was valid, save the eliminated
629 address. If it wasn't valid, we need to make a reload each time, so
630 don't save it. */
c538053c 631
70457512 632 if (! mem_valid)
633 {
634 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
635 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
636 : RELOAD_OTHER);
958e9e7e 637
e9bf6953 638 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
d59f2d23 639 opnum, type, 0, 0);
70457512 640 }
c538053c 641
ac9ae2ad 642 secondary_memlocs_elim[(int) mode][opnum] = loc;
88b8887c 643 if (secondary_memlocs_elim_used <= (int)mode)
644 secondary_memlocs_elim_used = (int)mode + 1;
c538053c 645 return loc;
646}
647
648/* Clear any secondary memory locations we've made. */
649
650void
3ad4992f 651clear_secondary_mem (void)
c538053c 652{
f0af5a88 653 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
c538053c 654}
655#endif /* SECONDARY_MEMORY_NEEDED */
656\f
8f3b70dd 657
658/* Find the largest class which has at least one register valid in
659 mode INNER, and which for every such register, that register number
660 plus N is also valid in OUTER (if in range) and is cheap to move
1fa3a8f6 661 into REGNO. Such a class must exist. */
95969b77 662
663static enum reg_class
8f3b70dd 664find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
665 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
3ad4992f 666 unsigned int dest_regno ATTRIBUTE_UNUSED)
95969b77 667{
35e2e148 668 int best_cost = -1;
47cfb7f4 669 int rclass;
95969b77 670 int regno;
d844aacc 671 enum reg_class best_class = NO_REGS;
805e22b2 672 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
02e7a332 673 unsigned int best_size = 0;
53a53cbe 674 int cost;
95969b77 675
47cfb7f4 676 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
95969b77 677 {
678 int bad = 0;
8f3b70dd 679 int good = 0;
680 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
47cfb7f4 681 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
8f3b70dd 682 {
683 if (HARD_REGNO_MODE_OK (regno, inner))
684 {
685 good = 1;
47cfb7f4 686 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
8f3b70dd 687 || ! HARD_REGNO_MODE_OK (regno + n, outer))
688 bad = 1;
689 }
690 }
95969b77 691
8f3b70dd 692 if (bad || !good)
53a53cbe 693 continue;
e6078fbb 694 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
53a53cbe 695
47cfb7f4 696 if ((reg_class_size[rclass] > best_size
53a53cbe 697 && (best_cost < 0 || best_cost >= cost))
698 || best_cost > cost)
35e2e148 699 {
8458f4ca 700 best_class = (enum reg_class) rclass;
47cfb7f4 701 best_size = reg_class_size[rclass];
e6078fbb 702 best_cost = register_move_cost (outer, (enum reg_class) rclass,
b9c74b4d 703 dest_class);
35e2e148 704 }
95969b77 705 }
706
04e579b6 707 gcc_assert (best_size != 0);
95969b77 708
709 return best_class;
710}
711\f
00205cbc 712/* Return the number of a previously made reload that can be combined with
713 a new one, or n_reloads if none of the existing reloads can be used.
47cfb7f4 714 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
00205cbc 715 push_reload, they determine the kind of the new reload that we try to
716 combine. P_IN points to the corresponding value of IN, which can be
717 modified by this function.
718 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
1b4f35b9 719
00205cbc 720static int
47cfb7f4 721find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
3ad4992f 722 enum reload_type type, int opnum, int dont_share)
00205cbc 723{
724 rtx in = *p_in;
725 int i;
726 /* We can't merge two reloads if the output of either one is
727 earlyclobbered. */
728
729 if (earlyclobber_operand_p (out))
730 return n_reloads;
731
732 /* We can use an existing reload if the class is right
733 and at least one of IN and OUT is a match
734 and the other is at worst neutral.
5bb2f919 735 (A zero compared against anything is neutral.)
00205cbc 736
ed5527ca 737 For targets with small register classes, don't use existing reloads
738 unless they are for the same thing since that can cause us to need
739 more reload registers than we otherwise would. */
5bb2f919 740
00205cbc 741 for (i = 0; i < n_reloads; i++)
c32319fc 742 if ((reg_class_subset_p (rclass, rld[i].rclass)
743 || reg_class_subset_p (rld[i].rclass, rclass))
00205cbc 744 /* If the existing reload has a register, it must fit our class. */
48666d2c 745 && (rld[i].reg_rtx == 0
47cfb7f4 746 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
48666d2c 747 true_regnum (rld[i].reg_rtx)))
748 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
749 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
750 || (out != 0 && MATCHES (rld[i].out, out)
751 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
752 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
24dd0668 753 && (small_register_class_p (rclass)
ed5527ca 754 || targetm.small_register_classes_for_mode_p (VOIDmode))
48666d2c 755 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
00205cbc 756 return i;
757
758 /* Reloading a plain reg for input can match a reload to postincrement
759 that reg, since the postincrement's value is the right value.
760 Likewise, it can match a preincrement reload, since we regard
761 the preincrementation as happening before any ref in this insn
762 to that register. */
763 for (i = 0; i < n_reloads; i++)
c32319fc 764 if ((reg_class_subset_p (rclass, rld[i].rclass)
765 || reg_class_subset_p (rld[i].rclass, rclass))
00205cbc 766 /* If the existing reload has a register, it must fit our
767 class. */
48666d2c 768 && (rld[i].reg_rtx == 0
47cfb7f4 769 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
48666d2c 770 true_regnum (rld[i].reg_rtx)))
771 && out == 0 && rld[i].out == 0 && rld[i].in != 0
8ad4c111 772 && ((REG_P (in)
6720e96c 773 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
48666d2c 774 && MATCHES (XEXP (rld[i].in, 0), in))
8ad4c111 775 || (REG_P (rld[i].in)
6720e96c 776 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
40988080 777 && MATCHES (XEXP (in, 0), rld[i].in)))
48666d2c 778 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
24dd0668 779 && (small_register_class_p (rclass)
ed5527ca 780 || targetm.small_register_classes_for_mode_p (VOIDmode))
48666d2c 781 && MERGABLE_RELOADS (type, rld[i].when_needed,
782 opnum, rld[i].opnum))
00205cbc 783 {
784 /* Make sure reload_in ultimately has the increment,
785 not the plain register. */
8ad4c111 786 if (REG_P (in))
48666d2c 787 *p_in = rld[i].in;
00205cbc 788 return i;
789 }
790 return n_reloads;
791}
792
8ffd11f4 793/* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
794 expression. MODE is the mode that X will be used in. OUTPUT is true if
795 the function is invoked for the output part of an enclosing reload. */
239eff68 796
8ffd11f4 797static bool
798reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
239eff68 799{
800 rtx inner;
801
802 /* Only SUBREGs are problematical. */
803 if (GET_CODE (x) != SUBREG)
8ffd11f4 804 return false;
239eff68 805
806 inner = SUBREG_REG (x);
807
8ffd11f4 808 /* If INNER is a constant or PLUS, then INNER will need reloading. */
1b4f35b9 809 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
8ffd11f4 810 return true;
239eff68 811
8ffd11f4 812 /* If INNER is not a hard register, then INNER will not need reloading. */
813 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
814 return false;
239eff68 815
816 /* If INNER is not ok for MODE, then INNER will need reloading. */
8ffd11f4 817 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
818 return true;
819
820 /* If this is for an output, and the outer part is a word or smaller,
821 INNER is larger than a word and the number of registers in INNER is
822 not the same as the number of words in INNER, then INNER will need
823 reloading (with an in-out reload). */
824 return (output
825 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
239eff68 826 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
827 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
67d6c12b 828 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
239eff68 829}
830
ec6e4b23 831/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
832 requiring an extra reload register. The caller has already found that
833 IN contains some reference to REGNO, so check that we can produce the
834 new value in a single step. E.g. if we have
835 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
836 instruction that adds one to a register, this should succeed.
837 However, if we have something like
838 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
839 needs to be loaded into a register first, we need a separate reload
840 register.
841 Such PLUS reloads are generated by find_reload_address_part.
842 The out-of-range PLUS expressions are usually introduced in the instruction
843 patterns by register elimination and substituting pseudos without a home
844 by their function-invariant equivalences. */
845static int
846can_reload_into (rtx in, int regno, enum machine_mode mode)
847{
848 rtx dst, test_insn;
849 int r = 0;
850 struct recog_data save_recog_data;
851
852 /* For matching constraints, we often get notional input reloads where
853 we want to use the original register as the reload register. I.e.
854 technically this is a non-optional input-output reload, but IN is
855 already a valid register, and has been chosen as the reload register.
856 Speed this up, since it trivially works. */
8ad4c111 857 if (REG_P (in))
ec6e4b23 858 return 1;
859
860 /* To test MEMs properly, we'd have to take into account all the reloads
861 that are already scheduled, which can become quite complicated.
862 And since we've already handled address reloads for this MEM, it
863 should always succeed anyway. */
e16ceb8e 864 if (MEM_P (in))
ec6e4b23 865 return 1;
866
867 /* If we can make a simple SET insn that does the job, everything should
868 be fine. */
869 dst = gen_rtx_REG (mode, regno);
870 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
871 save_recog_data = recog_data;
872 if (recog_memoized (test_insn) >= 0)
873 {
874 extract_insn (test_insn);
875 r = constrain_operands (1);
876 }
877 recog_data = save_recog_data;
878 return r;
879}
880
70457512 881/* Record one reload that needs to be performed.
42c63e4d 882 IN is an rtx saying where the data are to be found before this instruction.
883 OUT says where they must be stored after the instruction.
884 (IN is zero for data not read, and OUT is zero for data not written.)
885 INLOC and OUTLOC point to the places in the instructions where
886 IN and OUT were found.
7fd957fe 887 If IN and OUT are both nonzero, it means the same register must be used
70457512 888 to reload both IN and OUT.
889
47cfb7f4 890 RCLASS is a register class required for the reloaded data.
42c63e4d 891 INMODE is the machine mode that the instruction requires
892 for the reg that replaces IN and OUTMODE is likewise for OUT.
893
894 If IN is zero, then OUT's location and mode should be passed as
895 INLOC and INMODE.
896
897 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
898
899 OPTIONAL nonzero means this reload does not need to be performed:
900 it can be discarded if that is more convenient.
901
70457512 902 OPNUM and TYPE say what the purpose of this reload is.
903
42c63e4d 904 The return value is the reload-number for this reload.
905
906 If both IN and OUT are nonzero, in some rare cases we might
907 want to make two separate reloads. (Actually we never do this now.)
908 Therefore, the reload-number for OUT is stored in
909 output_reloadnum when we return; the return value applies to IN.
910 Usually (presently always), when IN and OUT are nonzero,
911 the two reload-numbers are equal, but the caller should be careful to
912 distinguish them. */
913
0d50f0b7 914int
3ad4992f 915push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
47cfb7f4 916 enum reg_class rclass, enum machine_mode inmode,
3ad4992f 917 enum machine_mode outmode, int strict_low, int optional,
918 int opnum, enum reload_type type)
42c63e4d 919{
19cb6b50 920 int i;
42c63e4d 921 int dont_share = 0;
76f1a77f 922 int dont_remove_subreg = 0;
7257cc4d 923#ifdef LIMIT_RELOAD_CLASS
42c63e4d 924 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
7257cc4d 925#endif
7b9a997f 926 int secondary_in_reload = -1, secondary_out_reload = -1;
aaa8b713 927 enum insn_code secondary_in_icode = CODE_FOR_nothing;
928 enum insn_code secondary_out_icode = CODE_FOR_nothing;
70457512 929
42c63e4d 930 /* INMODE and/or OUTMODE could be VOIDmode if no mode
931 has been specified for the operand. In that case,
932 use the operand's mode as the mode to reload. */
933 if (inmode == VOIDmode && in != 0)
934 inmode = GET_MODE (in);
935 if (outmode == VOIDmode && out != 0)
936 outmode = GET_MODE (out);
937
cd6659e3 938 /* If find_reloads and friends until now missed to replace a pseudo
939 with a constant of reg_equiv_constant something went wrong
940 beforehand.
941 Note that it can't simply be done here if we missed it earlier
942 since the constant might need to be pushed into the literal pool
943 and the resulting memref would probably need further
944 reloading. */
8ad4c111 945 if (in != 0 && REG_P (in))
42c63e4d 946 {
19cb6b50 947 int regno = REGNO (in);
42c63e4d 948
cd6659e3 949 gcc_assert (regno < FIRST_PSEUDO_REGISTER
950 || reg_renumber[regno] >= 0
1c654ff1 951 || reg_equiv_constant (regno) == NULL_RTX);
42c63e4d 952 }
953
cd6659e3 954 /* reg_equiv_constant only contains constants which are obviously
955 not appropriate as destination. So if we would need to replace
956 the destination pseudo with a constant we are in real
957 trouble. */
8ad4c111 958 if (out != 0 && REG_P (out))
42c63e4d 959 {
19cb6b50 960 int regno = REGNO (out);
42c63e4d 961
cd6659e3 962 gcc_assert (regno < FIRST_PSEUDO_REGISTER
963 || reg_renumber[regno] >= 0
1c654ff1 964 || reg_equiv_constant (regno) == NULL_RTX);
42c63e4d 965 }
966
967 /* If we have a read-write operand with an address side-effect,
968 change either IN or OUT so the side-effect happens only once. */
e16ceb8e 969 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
e4e86ec5 970 switch (GET_CODE (XEXP (in, 0)))
971 {
972 case POST_INC: case POST_DEC: case POST_MODIFY:
973 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
974 break;
f7c44134 975
e4e86ec5 976 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
977 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
978 break;
f7c44134 979
e4e86ec5 980 default:
981 break;
33181afc 982 }
42c63e4d 983
cbcb19b7 984 /* If we are reloading a (SUBREG constant ...), really reload just the
7bc1bb34 985 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
cbcb19b7 986 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
987 a pseudo and hence will become a MEM) with M1 wider than M2 and the
988 register is a pseudo, also reload the inside expression.
cbbca02e 989 For machines that extend byte loads, do this for any SUBREG of a pseudo
bfdb517e 990 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
991 M2 is an integral mode that gets extended when loaded.
8ffd11f4 992 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
993 where either M1 is not valid for R or M2 is wider than a word but we
994 only need one register to store an M2-sized quantity in R.
2b6ccac4 995 (However, if OUT is nonzero, we need to reload the reg *and*
996 the subreg, so do nothing here, and let following statement handle it.)
997
42c63e4d 998 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
999 we can't handle it here because CONST_INT does not indicate a mode.
1000
1001 Similarly, we must reload the inside expression if we have a
f0b5f617 1002 STRICT_LOW_PART (presumably, in == out in this case).
a77b65e2 1003
1004 Also reload the inner expression if it does not require a secondary
bfdb517e 1005 reload but the SUBREG does.
1006
1007 Finally, reload the inner expression if it is a register that is in
1008 the class whose registers cannot be referenced in a different size
9685f2a4 1009 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
d8bdfb5a 1010 cannot reload just the inside since we might end up with the wrong
be2828ce 1011 register class. But if it is inside a STRICT_LOW_PART, we have
1012 no choice, so we hope we do get the right register class there. */
42c63e4d 1013
be2828ce 1014 if (in != 0 && GET_CODE (in) == SUBREG
9685f2a4 1015 && (subreg_lowpart_p (in) || strict_low)
897118e8 1016#ifdef CANNOT_CHANGE_MODE_CLASS
47cfb7f4 1017 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
4c9ebf15 1018#endif
b128b22f 1019 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
cbcb19b7 1020 && (CONSTANT_P (SUBREG_REG (in))
7bc1bb34 1021 || GET_CODE (SUBREG_REG (in)) == PLUS
42c63e4d 1022 || strict_low
8ad4c111 1023 || (((REG_P (SUBREG_REG (in))
cbcb19b7 1024 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
e16ceb8e 1025 || MEM_P (SUBREG_REG (in)))
b537bfdb 1026 && ((GET_MODE_PRECISION (inmode)
1027 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
c05e2779 1028#ifdef LOAD_EXTEND_OP
011d1afd 1029 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 <= UNITS_PER_WORD)
b537bfdb 1032 && (GET_MODE_PRECISION (inmode)
1033 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
bfdb517e 1034 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
21f1e711 1035 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
50cbc1ef 1036#endif
1037#ifdef WORD_REGISTER_OPERATIONS
b537bfdb 1038 || ((GET_MODE_PRECISION (inmode)
1039 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
50cbc1ef 1040 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1041 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1042 / UNITS_PER_WORD)))
cbbca02e 1043#endif
011d1afd 1044 ))
8ad4c111 1045 || (REG_P (SUBREG_REG (in))
cbcb19b7 1046 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
2b6ccac4 1047 /* The case where out is nonzero
1048 is handled differently in the following statement. */
9685f2a4 1049 && (out == 0 || subreg_lowpart_p (in))
cbbca02e 1050 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1051 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1052 > UNITS_PER_WORD)
1053 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1054 / UNITS_PER_WORD)
67d6c12b 1055 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1056 [GET_MODE (SUBREG_REG (in))]))
701e46d0 1057 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
47cfb7f4 1058 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1059 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
4d58fa46 1060 SUBREG_REG (in))
a77b65e2 1061 == NO_REGS))
897118e8 1062#ifdef CANNOT_CHANGE_MODE_CLASS
8ad4c111 1063 || (REG_P (SUBREG_REG (in))
bfdb517e 1064 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
897118e8 1065 && REG_CANNOT_CHANGE_MODE_P
1066 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
a77b65e2 1067#endif
1068 ))
42c63e4d 1069 {
7257cc4d 1070#ifdef LIMIT_RELOAD_CLASS
42c63e4d 1071 in_subreg_loc = inloc;
7257cc4d 1072#endif
42c63e4d 1073 inloc = &SUBREG_REG (in);
1074 in = *inloc;
50cbc1ef 1075#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
e16ceb8e 1076 if (MEM_P (in))
42c63e4d 1077 /* This is supposed to happen only for paradoxical subregs made by
1078 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
04e579b6 1079 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
2a8658e5 1080#endif
42c63e4d 1081 inmode = GET_MODE (in);
1082 }
1083
8ffd11f4 1084 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1085 where M1 is not valid for R if it was not handled by the code above.
1086
1087 Similar issue for (SUBREG constant ...) if it was not handled by the
1088 code above. This can happen if SUBREG_BYTE != 0.
2b6ccac4 1089
1090 However, we must reload the inner reg *as well as* the subreg in
1091 that case. */
1092
8ffd11f4 1093 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
2b6ccac4 1094 {
47cfb7f4 1095 enum reg_class in_class = rclass;
1b4f35b9 1096
8ad4c111 1097 if (REG_P (SUBREG_REG (in)))
1b4f35b9 1098 in_class
8f3b70dd 1099 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1b4f35b9 1100 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1101 GET_MODE (SUBREG_REG (in)),
1102 SUBREG_BYTE (in),
35e2e148 1103 GET_MODE (in)),
1104 REGNO (SUBREG_REG (in)));
1b4f35b9 1105
9b3dc0cb 1106 /* This relies on the fact that emit_reload_insns outputs the
1107 instructions for input reloads of type RELOAD_OTHER in the same
1108 order as the reloads. Thus if the outer reload is also of type
1109 RELOAD_OTHER, we are guaranteed that this inner reload will be
1110 output before the outer reload. */
33181afc 1111 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1b4f35b9 1112 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
76f1a77f 1113 dont_remove_subreg = 1;
2b6ccac4 1114 }
1115
42c63e4d 1116 /* Similarly for paradoxical and problematical SUBREGs on the output.
1117 Note that there is no reason we need worry about the previous value
6211b3f4 1118 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1119 entitled to clobber it all (except in the case of a word mode subreg
1120 or of a STRICT_LOW_PART, in that latter case the constraint should
1121 label it input-output.) */
be2828ce 1122 if (out != 0 && GET_CODE (out) == SUBREG
9685f2a4 1123 && (subreg_lowpart_p (out) || strict_low)
897118e8 1124#ifdef CANNOT_CHANGE_MODE_CLASS
47cfb7f4 1125 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
4c9ebf15 1126#endif
b128b22f 1127 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
cbcb19b7 1128 && (CONSTANT_P (SUBREG_REG (out))
42c63e4d 1129 || strict_low
8ad4c111 1130 || (((REG_P (SUBREG_REG (out))
cbcb19b7 1131 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
e16ceb8e 1132 || MEM_P (SUBREG_REG (out)))
b537bfdb 1133 && ((GET_MODE_PRECISION (outmode)
1134 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
6182a80f 1135#ifdef WORD_REGISTER_OPERATIONS
b537bfdb 1136 || ((GET_MODE_PRECISION (outmode)
1137 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
ebbb4987 1138 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1139 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1140 / UNITS_PER_WORD)))
6182a80f 1141#endif
5bb2f919 1142 ))
99bef0c5 1143 || (REG_P (SUBREG_REG (out))
1144 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1145 /* The case of a word mode subreg
1146 is handled differently in the following statement. */
1147 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1148 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1149 > UNITS_PER_WORD))
1150 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
47cfb7f4 1151 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1152 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
4d58fa46 1153 SUBREG_REG (out))
a77b65e2 1154 == NO_REGS))
897118e8 1155#ifdef CANNOT_CHANGE_MODE_CLASS
8ad4c111 1156 || (REG_P (SUBREG_REG (out))
bfdb517e 1157 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
897118e8 1158 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
3ad4992f 1159 GET_MODE (SUBREG_REG (out)),
897118e8 1160 outmode))
a77b65e2 1161#endif
1162 ))
42c63e4d 1163 {
7257cc4d 1164#ifdef LIMIT_RELOAD_CLASS
42c63e4d 1165 out_subreg_loc = outloc;
7257cc4d 1166#endif
42c63e4d 1167 outloc = &SUBREG_REG (out);
5bb2f919 1168 out = *outloc;
50cbc1ef 1169#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
04e579b6 1170 gcc_assert (!MEM_P (out)
1171 || GET_MODE_SIZE (GET_MODE (out))
1172 <= GET_MODE_SIZE (outmode));
2a8658e5 1173#endif
42c63e4d 1174 outmode = GET_MODE (out);
1175 }
1176
8ffd11f4 1177 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1178 where either M1 is not valid for R or M2 is wider than a word but we
1179 only need one register to store an M2-sized quantity in R.
76f1a77f 1180
1181 However, we must reload the inner reg *as well as* the subreg in
8ffd11f4 1182 that case and the inner reg is an in-out reload. */
76f1a77f 1183
8ffd11f4 1184 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
76f1a77f 1185 {
8ffd11f4 1186 enum reg_class in_out_class
1187 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1188 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1189 GET_MODE (SUBREG_REG (out)),
1190 SUBREG_BYTE (out),
1191 GET_MODE (out)),
1192 REGNO (SUBREG_REG (out)));
1193
9b3dc0cb 1194 /* This relies on the fact that emit_reload_insns outputs the
1195 instructions for output reloads of type RELOAD_OTHER in reverse
1196 order of the reloads. Thus if the outer reload is also of type
1197 RELOAD_OTHER, we are guaranteed that this inner reload will be
1198 output after the outer reload. */
76f1a77f 1199 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
8ffd11f4 1200 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1201 0, 0, opnum, RELOAD_OTHER);
1202 dont_remove_subreg = 1;
76f1a77f 1203 }
1204
42c63e4d 1205 /* If IN appears in OUT, we can't share any input-only reload for IN. */
e16ceb8e 1206 if (in != 0 && out != 0 && MEM_P (out)
1121ac6f 1207 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
d3862ba2 1208 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
42c63e4d 1209 dont_share = 1;
1210
c538053c 1211 /* If IN is a SUBREG of a hard register, make a new REG. This
1212 simplifies some of the cases below. */
1213
8ad4c111 1214 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
76f1a77f 1215 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1216 && ! dont_remove_subreg)
701e46d0 1217 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
c538053c 1218
1219 /* Similarly for OUT. */
1220 if (out != 0 && GET_CODE (out) == SUBREG
8ad4c111 1221 && REG_P (SUBREG_REG (out))
76f1a77f 1222 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1223 && ! dont_remove_subreg)
701e46d0 1224 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
c538053c 1225
42c63e4d 1226 /* Narrow down the class of register wanted if that is
1227 desirable on this machine for efficiency. */
897f76b2 1228 {
71db0d8b 1229 reg_class_t preferred_class = rclass;
897f76b2 1230
1231 if (in != 0)
71db0d8b 1232 preferred_class = targetm.preferred_reload_class (in, rclass);
42c63e4d 1233
71db0d8b 1234 /* Output reloads may need analogous treatment, different in detail. */
897f76b2 1235 if (out != 0)
71db0d8b 1236 preferred_class
1237 = targetm.preferred_output_reload_class (out, preferred_class);
2b9f2488 1238
897f76b2 1239 /* Discard what the target said if we cannot do it. */
1240 if (preferred_class != NO_REGS
1241 || (optional && type == RELOAD_FOR_OUTPUT))
71db0d8b 1242 rclass = (enum reg_class) preferred_class;
897f76b2 1243 }
1244
42c63e4d 1245 /* Make sure we use a class that can handle the actual pseudo
1246 inside any subreg. For example, on the 386, QImode regs
1247 can appear within SImode subregs. Although GENERAL_REGS
1248 can handle SImode, QImode needs a smaller class. */
1249#ifdef LIMIT_RELOAD_CLASS
1250 if (in_subreg_loc)
47cfb7f4 1251 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
42c63e4d 1252 else if (in != 0 && GET_CODE (in) == SUBREG)
47cfb7f4 1253 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
42c63e4d 1254
1255 if (out_subreg_loc)
47cfb7f4 1256 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
42c63e4d 1257 if (out != 0 && GET_CODE (out) == SUBREG)
47cfb7f4 1258 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
42c63e4d 1259#endif
1260
42c63e4d 1261 /* Verify that this class is at least possible for the mode that
1262 is specified. */
1263 if (this_insn_is_asm)
1264 {
1265 enum machine_mode mode;
1266 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1267 mode = inmode;
1268 else
1269 mode = outmode;
7ddfb054 1270 if (mode == VOIDmode)
1271 {
eb586f2c 1272 error_for_asm (this_insn, "cannot reload integer constant "
1273 "operand in %<asm%>");
7ddfb054 1274 mode = word_mode;
1275 if (in != 0)
1276 inmode = word_mode;
1277 if (out != 0)
1278 outmode = word_mode;
1279 }
42c63e4d 1280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1281 if (HARD_REGNO_MODE_OK (i, mode)
47cfb7f4 1282 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
a2c6f0b7 1283 break;
42c63e4d 1284 if (i == FIRST_PSEUDO_REGISTER)
1285 {
eb586f2c 1286 error_for_asm (this_insn, "impossible register constraint "
1287 "in %<asm%>");
7c679c65 1288 /* Avoid further trouble with this insn. */
1289 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1290 /* We used to continue here setting class to ALL_REGS, but it triggers
1291 sanity check on i386 for:
1292 void foo(long double d)
1293 {
1294 asm("" :: "a" (d));
1295 }
1296 Returning zero here ought to be safe as we take care in
1297 find_reloads to not process the reloads when instruction was
1298 replaced by USE. */
48e1416a 1299
7c679c65 1300 return 0;
42c63e4d 1301 }
1302 }
1303
93c7b06e 1304 /* Optional output reloads are always OK even if we have no register class,
1305 since the function of these reloads is only to have spill_reg_store etc.
1306 set, so that the storing insn can be deleted later. */
47cfb7f4 1307 gcc_assert (rclass != NO_REGS
04e579b6 1308 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
7ddfb054 1309
47cfb7f4 1310 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
42c63e4d 1311
1312 if (i == n_reloads)
1313 {
7b9a997f 1314 /* See if we need a secondary reload register to move between CLASS
1315 and IN or CLASS and OUT. Get the icode and push any required reloads
1316 needed for each of them if so. */
42c63e4d 1317
42c63e4d 1318 if (in != 0)
7b9a997f 1319 secondary_in_reload
47cfb7f4 1320 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
4d58fa46 1321 &secondary_in_icode, NULL);
42c63e4d 1322 if (out != 0 && GET_CODE (out) != SCRATCH)
7b9a997f 1323 secondary_out_reload
47cfb7f4 1324 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
4d58fa46 1325 type, &secondary_out_icode, NULL);
42c63e4d 1326
1327 /* We found no existing reload suitable for re-use.
1328 So add an additional reload. */
1329
0dbd1c74 1330#ifdef SECONDARY_MEMORY_NEEDED
1331 /* If a memory location is needed for the copy, make one. */
b870fa03 1332 if (in != 0
1333 && (REG_P (in)
1334 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
b627bae7 1335 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1336 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
47cfb7f4 1337 rclass, inmode))
0dbd1c74 1338 get_secondary_mem (in, inmode, opnum, type);
1339#endif
1340
7b9a997f 1341 i = n_reloads;
48666d2c 1342 rld[i].in = in;
1343 rld[i].out = out;
c32319fc 1344 rld[i].rclass = rclass;
48666d2c 1345 rld[i].inmode = inmode;
1346 rld[i].outmode = outmode;
1347 rld[i].reg_rtx = 0;
1348 rld[i].optional = optional;
48666d2c 1349 rld[i].inc = 0;
1350 rld[i].nocombine = 0;
1351 rld[i].in_reg = inloc ? *inloc : 0;
1352 rld[i].out_reg = outloc ? *outloc : 0;
1353 rld[i].opnum = opnum;
1354 rld[i].when_needed = type;
1355 rld[i].secondary_in_reload = secondary_in_reload;
1356 rld[i].secondary_out_reload = secondary_out_reload;
1357 rld[i].secondary_in_icode = secondary_in_icode;
1358 rld[i].secondary_out_icode = secondary_out_icode;
1359 rld[i].secondary_p = 0;
42c63e4d 1360
1361 n_reloads++;
c538053c 1362
1363#ifdef SECONDARY_MEMORY_NEEDED
b870fa03 1364 if (out != 0
1365 && (REG_P (out)
1366 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
b627bae7 1367 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
47cfb7f4 1368 && SECONDARY_MEMORY_NEEDED (rclass,
b627bae7 1369 REGNO_REG_CLASS (reg_or_subregno (out)),
c538053c 1370 outmode))
70457512 1371 get_secondary_mem (out, outmode, opnum, type);
c538053c 1372#endif
42c63e4d 1373 }
1374 else
1375 {
1376 /* We are reusing an existing reload,
1377 but we may have additional information for it.
1378 For example, we may now have both IN and OUT
1379 while the old one may have just one of them. */
1380
4c178649 1381 /* The modes can be different. If they are, we want to reload in
1382 the larger mode, so that the value is valid for both modes. */
1383 if (inmode != VOIDmode
48666d2c 1384 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1385 rld[i].inmode = inmode;
4c178649 1386 if (outmode != VOIDmode
48666d2c 1387 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1388 rld[i].outmode = outmode;
42c63e4d 1389 if (in != 0)
93c7b06e 1390 {
beb4ed48 1391 rtx in_reg = inloc ? *inloc : 0;
93c7b06e 1392 /* If we merge reloads for two distinct rtl expressions that
1393 are identical in content, there might be duplicate address
1394 reloads. Remove the extra set now, so that if we later find
1395 that we can inherit this reload, we can get rid of the
9065e42b 1396 address reloads altogether.
1397
1398 Do not do this if both reloads are optional since the result
1399 would be an optional reload which could potentially leave
1400 unresolved address replacements.
1401
1402 It is not sufficient to call transfer_replacements since
1403 choose_reload_regs will remove the replacements for address
1404 reloads of inherited reloads which results in the same
1405 problem. */
48666d2c 1406 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1407 && ! (rld[i].optional && optional))
93c7b06e 1408 {
1409 /* We must keep the address reload with the lower operand
1410 number alive. */
48666d2c 1411 if (opnum > rld[i].opnum)
93c7b06e 1412 {
1413 remove_address_replacements (in);
48666d2c 1414 in = rld[i].in;
1415 in_reg = rld[i].in_reg;
93c7b06e 1416 }
1417 else
48666d2c 1418 remove_address_replacements (rld[i].in);
93c7b06e 1419 }
16a3f6b8 1420 /* When emitting reloads we don't necessarily look at the in-
1421 and outmode, but also directly at the operands (in and out).
1422 So we can't simply overwrite them with whatever we have found
1423 for this (to-be-merged) reload, we have to "merge" that too.
1424 Reusing another reload already verified that we deal with the
1425 same operands, just possibly in different modes. So we
1426 overwrite the operands only when the new mode is larger.
1427 See also PR33613. */
1428 if (!rld[i].in
1429 || GET_MODE_SIZE (GET_MODE (in))
1430 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1431 rld[i].in = in;
1432 if (!rld[i].in_reg
1433 || (in_reg
1434 && GET_MODE_SIZE (GET_MODE (in_reg))
1435 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1436 rld[i].in_reg = in_reg;
93c7b06e 1437 }
42c63e4d 1438 if (out != 0)
93c7b06e 1439 {
16a3f6b8 1440 if (!rld[i].out
1441 || (out
1442 && GET_MODE_SIZE (GET_MODE (out))
1443 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1444 rld[i].out = out;
1445 if (outloc
1446 && (!rld[i].out_reg
1447 || GET_MODE_SIZE (GET_MODE (*outloc))
1448 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1449 rld[i].out_reg = *outloc;
93c7b06e 1450 }
c32319fc 1451 if (reg_class_subset_p (rclass, rld[i].rclass))
1452 rld[i].rclass = rclass;
48666d2c 1453 rld[i].optional &= optional;
1454 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1455 opnum, rld[i].opnum))
1456 rld[i].when_needed = RELOAD_OTHER;
1457 rld[i].opnum = MIN (rld[i].opnum, opnum);
42c63e4d 1458 }
1459
4822deca 1460 /* If the ostensible rtx being reloaded differs from the rtx found
42c63e4d 1461 in the location to substitute, this reload is not safe to combine
1462 because we cannot reliably tell whether it appears in the insn. */
1463
1464 if (in != 0 && in != *inloc)
48666d2c 1465 rld[i].nocombine = 1;
42c63e4d 1466
1467#if 0
1468 /* This was replaced by changes in find_reloads_address_1 and the new
1469 function inc_for_reload, which go with a new meaning of reload_inc. */
1470
1471 /* If this is an IN/OUT reload in an insn that sets the CC,
1472 it must be for an autoincrement. It doesn't work to store
1473 the incremented value after the insn because that would clobber the CC.
1474 So we must do the increment of the value reloaded from,
1475 increment it, store it back, then decrement again. */
1476 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1477 {
1478 out = 0;
48666d2c 1479 rld[i].out = 0;
1480 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
42c63e4d 1481 /* If we did not find a nonzero amount-to-increment-by,
1482 that contradicts the belief that IN is being incremented
1483 in an address in this insn. */
04e579b6 1484 gcc_assert (rld[i].inc != 0);
42c63e4d 1485 }
1486#endif
1487
1488 /* If we will replace IN and OUT with the reload-reg,
1489 record where they are located so that substitution need
1490 not do a tree walk. */
1491
1492 if (replace_reloads)
1493 {
1494 if (inloc != 0)
1495 {
19cb6b50 1496 struct replacement *r = &replacements[n_replacements++];
42c63e4d 1497 r->what = i;
42c63e4d 1498 r->where = inloc;
1499 r->mode = inmode;
1500 }
1501 if (outloc != 0 && outloc != inloc)
1502 {
19cb6b50 1503 struct replacement *r = &replacements[n_replacements++];
42c63e4d 1504 r->what = i;
1505 r->where = outloc;
42c63e4d 1506 r->mode = outmode;
1507 }
1508 }
1509
1510 /* If this reload is just being introduced and it has both
1511 an incoming quantity and an outgoing quantity that are
1512 supposed to be made to match, see if either one of the two
1513 can serve as the place to reload into.
1514
48666d2c 1515 If one of them is acceptable, set rld[i].reg_rtx
42c63e4d 1516 to that one. */
1517
48666d2c 1518 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
42c63e4d 1519 {
48666d2c 1520 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1521 inmode, outmode,
c32319fc 1522 rld[i].rclass, i,
48666d2c 1523 earlyclobber_operand_p (out));
42c63e4d 1524
1525 /* If the outgoing register already contains the same value
1526 as the incoming one, we can dispense with loading it.
1527 The easiest way to tell the caller that is to give a phony
1528 value for the incoming operand (same as outgoing one). */
48666d2c 1529 if (rld[i].reg_rtx == out
8ad4c111 1530 && (REG_P (in) || CONSTANT_P (in))
b9c74b4d 1531 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
42c63e4d 1532 static_reload_reg_p, i, inmode))
48666d2c 1533 rld[i].in = out;
42c63e4d 1534 }
1535
1536 /* If this is an input reload and the operand contains a register that
1537 dies in this insn and is used nowhere else, see if it is the right class
1538 to be used for this reload. Use it if so. (This occurs most commonly
1539 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1540 this if it is also an output reload that mentions the register unless
1541 the output is a SUBREG that clobbers an entire register.
1542
1543 Note that the operand might be one of the spill regs, if it is a
1544 pseudo reg and we are in a block where spilling has not taken place.
1545 But if there is no spilling in this block, that is OK.
1546 An explicitly used hard reg cannot be a spill reg. */
1547
1ef37f89 1548 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
42c63e4d 1549 {
1550 rtx note;
1551 int regno;
59c1ea57 1552 enum machine_mode rel_mode = inmode;
1553
1554 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1555 rel_mode = outmode;
42c63e4d 1556
1557 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1558 if (REG_NOTE_KIND (note) == REG_DEAD
8ad4c111 1559 && REG_P (XEXP (note, 0))
42c63e4d 1560 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1561 && reg_mentioned_p (XEXP (note, 0), in)
0565d6c8 1562 /* Check that a former pseudo is valid; see find_dummy_reload. */
1ef37f89 1563 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
2dd81ece 1564 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
47dd2e78 1565 ORIGINAL_REGNO (XEXP (note, 0)))
0565d6c8 1566 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
42c63e4d 1567 && ! refers_to_regno_for_reload_p (regno,
a2c6f0b7 1568 end_hard_regno (rel_mode,
1569 regno),
42c63e4d 1570 PATTERN (this_insn), inloc)
de61866e 1571 /* If this is also an output reload, IN cannot be used as
1572 the reload register if it is set in this insn unless IN
1573 is also OUT. */
1574 && (out == 0 || in == out
1575 || ! hard_reg_set_here_p (regno,
a2c6f0b7 1576 end_hard_regno (rel_mode, regno),
de61866e 1577 PATTERN (this_insn)))
1578 /* ??? Why is this code so different from the previous?
1579 Is there any simple coherent way to describe the two together?
1580 What's going on here. */
42c63e4d 1581 && (in != out
1582 || (GET_CODE (in) == SUBREG
1583 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1584 / UNITS_PER_WORD)
1585 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1586 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1587 /* Make sure the operand fits in the reg that dies. */
59c1ea57 1588 && (GET_MODE_SIZE (rel_mode)
1589 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
42c63e4d 1590 && HARD_REGNO_MODE_OK (regno, inmode)
d4a0955d 1591 && HARD_REGNO_MODE_OK (regno, outmode))
42c63e4d 1592 {
785d57a8 1593 unsigned int offs;
67d6c12b 1594 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1595 hard_regno_nregs[regno][outmode]);
785d57a8 1596
d4a0955d 1597 for (offs = 0; offs < nregs; offs++)
1598 if (fixed_regs[regno + offs]
47cfb7f4 1599 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
d4a0955d 1600 regno + offs))
1601 break;
1602
ec6e4b23 1603 if (offs == nregs
1604 && (! (refers_to_regno_for_reload_p
a2c6f0b7 1605 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
ec6e4b23 1606 || can_reload_into (in, regno, inmode)))
d4a0955d 1607 {
59c1ea57 1608 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
d4a0955d 1609 break;
1610 }
42c63e4d 1611 }
1612 }
1613
1614 if (out)
1615 output_reloadnum = i;
1616
1617 return i;
1618}
1619
1620/* Record an additional place we must replace a value
1621 for which we have already recorded a reload.
1622 RELOADNUM is the value returned by push_reload
1623 when the reload was recorded.
1624 This is used in insn patterns that use match_dup. */
1625
1626static void
3ad4992f 1627push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
42c63e4d 1628{
1629 if (replace_reloads)
1630 {
19cb6b50 1631 struct replacement *r = &replacements[n_replacements++];
42c63e4d 1632 r->what = reloadnum;
1633 r->where = loc;
42c63e4d 1634 r->mode = mode;
1635 }
1636}
520be5a2 1637
1638/* Duplicate any replacement we have recorded to apply at
1639 location ORIG_LOC to also be performed at DUP_LOC.
1640 This is used in insn patterns that use match_dup. */
1641
1642static void
3ad4992f 1643dup_replacements (rtx *dup_loc, rtx *orig_loc)
520be5a2 1644{
1645 int i, n = n_replacements;
1646
1647 for (i = 0; i < n; i++)
1648 {
1649 struct replacement *r = &replacements[i];
1650 if (r->where == orig_loc)
1651 push_replacement (dup_loc, r->what, r->mode);
1652 }
1653}
42c63e4d 1654\f
70457512 1655/* Transfer all replacements that used to be in reload FROM to be in
1656 reload TO. */
1657
1658void
3ad4992f 1659transfer_replacements (int to, int from)
70457512 1660{
1661 int i;
1662
1663 for (i = 0; i < n_replacements; i++)
1664 if (replacements[i].what == from)
1665 replacements[i].what = to;
1666}
1667\f
93c7b06e 1668/* IN_RTX is the value loaded by a reload that we now decided to inherit,
1669 or a subpart of it. If we have any replacements registered for IN_RTX,
1670 cancel the reloads that were supposed to load them.
7fd957fe 1671 Return nonzero if we canceled any reloads. */
93c7b06e 1672int
3ad4992f 1673remove_address_replacements (rtx in_rtx)
524613c6 1674{
1675 int i, j;
93c7b06e 1676 char reload_flags[MAX_RELOADS];
1677 int something_changed = 0;
524613c6 1678
93d3b7de 1679 memset (reload_flags, 0, sizeof reload_flags);
524613c6 1680 for (i = 0, j = 0; i < n_replacements; i++)
1681 {
93c7b06e 1682 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1683 reload_flags[replacements[i].what] |= 1;
1684 else
1685 {
1686 replacements[j++] = replacements[i];
1687 reload_flags[replacements[i].what] |= 2;
1688 }
1689 }
1690 /* Note that the following store must be done before the recursive calls. */
1691 n_replacements = j;
1692
1693 for (i = n_reloads - 1; i >= 0; i--)
1694 {
1695 if (reload_flags[i] == 1)
1696 {
1697 deallocate_reload_reg (i);
48666d2c 1698 remove_address_replacements (rld[i].in);
1699 rld[i].in = 0;
93c7b06e 1700 something_changed = 1;
1701 }
1702 }
1703 return something_changed;
1704}
524613c6 1705\f
42c63e4d 1706/* If there is only one output reload, and it is not for an earlyclobber
1707 operand, try to combine it with a (logically unrelated) input reload
1708 to reduce the number of reload registers needed.
1709
1710 This is safe if the input reload does not appear in
1711 the value being output-reloaded, because this implies
1712 it is not needed any more once the original insn completes.
1713
1714 If that doesn't work, see we can use any of the registers that
1715 die in this insn as a reload register. We can if it is of the right
1716 class and does not appear in the value being output-reloaded. */
1717
1718static void
3ad4992f 1719combine_reloads (void)
42c63e4d 1720{
0565d6c8 1721 int i, regno;
42c63e4d 1722 int output_reload = -1;
cd0c2d6d 1723 int secondary_out = -1;
42c63e4d 1724 rtx note;
1725
1726 /* Find the output reload; return unless there is exactly one
1727 and that one is mandatory. */
1728
1729 for (i = 0; i < n_reloads; i++)
48666d2c 1730 if (rld[i].out != 0)
42c63e4d 1731 {
1732 if (output_reload >= 0)
1733 return;
1734 output_reload = i;
1735 }
1736
48666d2c 1737 if (output_reload < 0 || rld[output_reload].optional)
42c63e4d 1738 return;
1739
1740 /* An input-output reload isn't combinable. */
1741
48666d2c 1742 if (rld[output_reload].in != 0)
42c63e4d 1743 return;
1744
4bbea254 1745 /* If this reload is for an earlyclobber operand, we can't do anything. */
48666d2c 1746 if (earlyclobber_operand_p (rld[output_reload].out))
3e561fd5 1747 return;
42c63e4d 1748
aa0db1ad 1749 /* If there is a reload for part of the address of this operand, we would
f2b32076 1750 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
aa0db1ad 1751 its life to the point where doing this combine would not lower the
1752 number of spill registers needed. */
1753 for (i = 0; i < n_reloads; i++)
1754 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1755 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1756 && rld[i].opnum == rld[output_reload].opnum)
1757 return;
1758
42c63e4d 1759 /* Check each input reload; can we combine it? */
1760
1761 for (i = 0; i < n_reloads; i++)
48666d2c 1762 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
42c63e4d 1763 /* Life span of this reload must not extend past main insn. */
48666d2c 1764 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1765 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1766 && rld[i].when_needed != RELOAD_OTHER
d3ba22dc 1767 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1768 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1769 [(int) rld[output_reload].outmode])
48666d2c 1770 && rld[i].inc == 0
1771 && rld[i].reg_rtx == 0
70457512 1772#ifdef SECONDARY_MEMORY_NEEDED
7b9a997f 1773 /* Don't combine two reloads with different secondary
1774 memory locations. */
48666d2c 1775 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1776 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1777 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1778 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
70457512 1779#endif
ed5527ca 1780 && (targetm.small_register_classes_for_mode_p (VOIDmode)
c32319fc 1781 ? (rld[i].rclass == rld[output_reload].rclass)
1782 : (reg_class_subset_p (rld[i].rclass,
1783 rld[output_reload].rclass)
1784 || reg_class_subset_p (rld[output_reload].rclass,
1785 rld[i].rclass)))
48666d2c 1786 && (MATCHES (rld[i].in, rld[output_reload].out)
42c63e4d 1787 /* Args reversed because the first arg seems to be
1788 the one that we imagine being modified
1789 while the second is the one that might be affected. */
48666d2c 1790 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1791 rld[i].in)
42c63e4d 1792 /* However, if the input is a register that appears inside
1793 the output, then we also can't share.
1794 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1795 If the same reload reg is used for both reg 69 and the
1796 result to be stored in memory, then that result
1797 will clobber the address of the memory ref. */
8ad4c111 1798 && ! (REG_P (rld[i].in)
48666d2c 1799 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1800 rld[output_reload].out))))
6ac19489 1801 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1802 rld[i].when_needed != RELOAD_FOR_INPUT)
c32319fc 1803 && (reg_class_size[(int) rld[i].rclass]
ed5527ca 1804 || targetm.small_register_classes_for_mode_p (VOIDmode))
70457512 1805 /* We will allow making things slightly worse by combining an
1806 input and an output, but no worse than that. */
48666d2c 1807 && (rld[i].when_needed == RELOAD_FOR_INPUT
1808 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
42c63e4d 1809 {
1810 int j;
1811
1812 /* We have found a reload to combine with! */
48666d2c 1813 rld[i].out = rld[output_reload].out;
1814 rld[i].out_reg = rld[output_reload].out_reg;
1815 rld[i].outmode = rld[output_reload].outmode;
42c63e4d 1816 /* Mark the old output reload as inoperative. */
48666d2c 1817 rld[output_reload].out = 0;
42c63e4d 1818 /* The combined reload is needed for the entire insn. */
48666d2c 1819 rld[i].when_needed = RELOAD_OTHER;
a92771b8 1820 /* If the output reload had a secondary reload, copy it. */
48666d2c 1821 if (rld[output_reload].secondary_out_reload != -1)
7b9a997f 1822 {
48666d2c 1823 rld[i].secondary_out_reload
1824 = rld[output_reload].secondary_out_reload;
1825 rld[i].secondary_out_icode
1826 = rld[output_reload].secondary_out_icode;
7b9a997f 1827 }
1828
70457512 1829#ifdef SECONDARY_MEMORY_NEEDED
1830 /* Copy any secondary MEM. */
48666d2c 1831 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1832 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1833 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
70457512 1834#endif
a92771b8 1835 /* If required, minimize the register class. */
c32319fc 1836 if (reg_class_subset_p (rld[output_reload].rclass,
1837 rld[i].rclass))
1838 rld[i].rclass = rld[output_reload].rclass;
42c63e4d 1839
1840 /* Transfer all replacements from the old reload to the combined. */
1841 for (j = 0; j < n_replacements; j++)
1842 if (replacements[j].what == output_reload)
1843 replacements[j].what = i;
1844
1845 return;
1846 }
1847
1848 /* If this insn has only one operand that is modified or written (assumed
1849 to be the first), it must be the one corresponding to this reload. It
1850 is safe to use anything that dies in this insn for that output provided
1851 that it does not occur in the output (we already know it isn't an
1852 earlyclobber. If this is an asm insn, give up. */
1853
c6649d6f 1854 if (INSN_CODE (this_insn) == -1)
42c63e4d 1855 return;
1856
6357eaae 1857 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1858 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1859 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
42c63e4d 1860 return;
1861
1862 /* See if some hard register that dies in this insn and is not used in
1863 the output is the right class. Only works if the register we pick
1864 up can fully hold our output reload. */
1865 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1866 if (REG_NOTE_KIND (note) == REG_DEAD
8ad4c111 1867 && REG_P (XEXP (note, 0))
0565d6c8 1868 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1869 rld[output_reload].out)
1870 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1871 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
c32319fc 1872 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
0565d6c8 1873 regno)
1874 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1875 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
cd0c2d6d 1876 /* Ensure that a secondary or tertiary reload for this output
1877 won't want this register. */
48666d2c 1878 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
0565d6c8 1879 || (!(TEST_HARD_REG_BIT
c32319fc 1880 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
48666d2c 1881 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
0565d6c8 1882 || !(TEST_HARD_REG_BIT
c32319fc 1883 (reg_class_contents[(int) rld[secondary_out].rclass],
0565d6c8 1884 regno)))))
1885 && !fixed_regs[regno]
1886 /* Check that a former pseudo is valid; see find_dummy_reload. */
efb8c784 1887 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
0565d6c8 1888 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1889 ORIGINAL_REGNO (XEXP (note, 0)))
1890 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
42c63e4d 1891 {
48666d2c 1892 rld[output_reload].reg_rtx
0565d6c8 1893 = gen_rtx_REG (rld[output_reload].outmode, regno);
42c63e4d 1894 return;
1895 }
1896}
1897\f
1898/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1899 See if one of IN and OUT is a register that may be used;
1900 this is desirable since a spill-register won't be needed.
1901 If so, return the register rtx that proves acceptable.
1902
1903 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
47cfb7f4 1904 RCLASS is the register class required for the reload.
42c63e4d 1905
1906 If FOR_REAL is >= 0, it is the number of the reload,
1907 and in some cases when it can be discovered that OUT doesn't need
48666d2c 1908 to be computed, clear out rld[FOR_REAL].out.
42c63e4d 1909
1910 If FOR_REAL is -1, this should not be done, because this call
2f39ee7a 1911 is just to see if a register can be found, not to find and install it.
1912
7fd957fe 1913 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
2f39ee7a 1914 puts an additional constraint on being able to use IN for OUT since
1915 IN must not appear elsewhere in the insn (it is assumed that IN itself
1916 is safe from the earlyclobber). */
42c63e4d 1917
1918static rtx
3ad4992f 1919find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1920 enum machine_mode inmode, enum machine_mode outmode,
71db0d8b 1921 reg_class_t rclass, int for_real, int earlyclobber)
42c63e4d 1922{
1923 rtx in = real_in;
1924 rtx out = real_out;
1925 int in_offset = 0;
1926 int out_offset = 0;
1927 rtx value = 0;
1928
1929 /* If operands exceed a word, we can't use either of them
1930 unless they have the same size. */
1b224b20 1931 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1932 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1933 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
42c63e4d 1934 return 0;
1935
701e46d0 1936 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1937 respectively refers to a hard register. */
1938
42c63e4d 1939 /* Find the inside of any subregs. */
1940 while (GET_CODE (out) == SUBREG)
1941 {
8ad4c111 1942 if (REG_P (SUBREG_REG (out))
701e46d0 1943 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1944 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1945 GET_MODE (SUBREG_REG (out)),
1946 SUBREG_BYTE (out),
1947 GET_MODE (out));
42c63e4d 1948 out = SUBREG_REG (out);
1949 }
1950 while (GET_CODE (in) == SUBREG)
1951 {
8ad4c111 1952 if (REG_P (SUBREG_REG (in))
701e46d0 1953 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1954 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1955 GET_MODE (SUBREG_REG (in)),
1956 SUBREG_BYTE (in),
1957 GET_MODE (in));
42c63e4d 1958 in = SUBREG_REG (in);
1959 }
1960
1961 /* Narrow down the reg class, the same way push_reload will;
1962 otherwise we might find a dummy now, but push_reload won't. */
897f76b2 1963 {
09a17585 1964 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
7781f014 1965 if (preferred_class != NO_REGS)
09a17585 1966 rclass = (enum reg_class) preferred_class;
897f76b2 1967 }
42c63e4d 1968
1969 /* See if OUT will do. */
8ad4c111 1970 if (REG_P (out)
42c63e4d 1971 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1972 {
02e7a332 1973 unsigned int regno = REGNO (out) + out_offset;
67d6c12b 1974 unsigned int nwords = hard_regno_nregs[regno][outmode];
eb1e4177 1975 rtx saved_rtx;
42c63e4d 1976
1977 /* When we consider whether the insn uses OUT,
1978 ignore references within IN. They don't prevent us
1979 from copying IN into OUT, because those refs would
1980 move into the insn that reloads IN.
1981
1982 However, we only ignore IN in its role as this reload.
1983 If the insn uses IN elsewhere and it contains OUT,
1984 that counts. We can't be sure it's the "same" operand
1985 so it might not go through this reload. */
eb1e4177 1986 saved_rtx = *inloc;
42c63e4d 1987 *inloc = const0_rtx;
1988
1989 if (regno < FIRST_PSEUDO_REGISTER
b2656069 1990 && HARD_REGNO_MODE_OK (regno, outmode)
42c63e4d 1991 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1992 PATTERN (this_insn), outloc))
1993 {
02e7a332 1994 unsigned int i;
1995
42c63e4d 1996 for (i = 0; i < nwords; i++)
47cfb7f4 1997 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
42c63e4d 1998 regno + i))
1999 break;
2000
2001 if (i == nwords)
2002 {
8ad4c111 2003 if (REG_P (real_out))
42c63e4d 2004 value = real_out;
2005 else
941522d6 2006 value = gen_rtx_REG (outmode, regno);
42c63e4d 2007 }
2008 }
2009
eb1e4177 2010 *inloc = saved_rtx;
42c63e4d 2011 }
2012
2013 /* Consider using IN if OUT was not acceptable
2014 or if OUT dies in this insn (like the quotient in a divmod insn).
2015 We can't use IN unless it is dies in this insn,
2016 which means we must know accurately which hard regs are live.
2f39ee7a 2017 Also, the result can't go in IN if IN is used within OUT,
2018 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
42c63e4d 2019 if (hard_regs_live_known
8ad4c111 2020 && REG_P (in)
42c63e4d 2021 && REGNO (in) < FIRST_PSEUDO_REGISTER
2022 && (value == 0
2023 || find_reg_note (this_insn, REG_UNUSED, real_out))
2024 && find_reg_note (this_insn, REG_DEAD, real_in)
2025 && !fixed_regs[REGNO (in)]
1b224b20 2026 && HARD_REGNO_MODE_OK (REGNO (in),
2027 /* The only case where out and real_out might
2028 have different modes is where real_out
2029 is a subreg, and in that case, out
2030 has a real mode. */
2031 (GET_MODE (out) != VOIDmode
1ef37f89 2032 ? GET_MODE (out) : outmode))
1ef37f89 2033 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
0565d6c8 2034 /* However only do this if we can be sure that this input
2035 operand doesn't correspond with an uninitialized pseudo.
2036 global can assign some hardreg to it that is the same as
2037 the one assigned to a different, also live pseudo (as it
2038 can ignore the conflict). We must never introduce writes
2039 to such hardregs, as they would clobber the other live
2040 pseudo. See PR 20973. */
2dd81ece 2041 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
0565d6c8 2042 ORIGINAL_REGNO (in))
2043 /* Similarly, only do this if we can be sure that the death
2044 note is still valid. global can assign some hardreg to
2045 the pseudo referenced in the note and simultaneously a
2046 subword of this hardreg to a different, also live pseudo,
2047 because only another subword of the hardreg is actually
2048 used in the insn. This cannot happen if the pseudo has
2049 been assigned exactly one hardreg. See PR 33732. */
2050 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
42c63e4d 2051 {
02e7a332 2052 unsigned int regno = REGNO (in) + in_offset;
67d6c12b 2053 unsigned int nwords = hard_regno_nregs[regno][inmode];
42c63e4d 2054
33181afc 2055 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
42c63e4d 2056 && ! hard_reg_set_here_p (regno, regno + nwords,
2f39ee7a 2057 PATTERN (this_insn))
2058 && (! earlyclobber
2059 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2060 PATTERN (this_insn), inloc)))
42c63e4d 2061 {
02e7a332 2062 unsigned int i;
2063
42c63e4d 2064 for (i = 0; i < nwords; i++)
47cfb7f4 2065 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
42c63e4d 2066 regno + i))
2067 break;
2068
2069 if (i == nwords)
2070 {
2071 /* If we were going to use OUT as the reload reg
2072 and changed our mind, it means OUT is a dummy that
2073 dies here. So don't bother copying value to it. */
2074 if (for_real >= 0 && value == real_out)
48666d2c 2075 rld[for_real].out = 0;
8ad4c111 2076 if (REG_P (real_in))
42c63e4d 2077 value = real_in;
2078 else
941522d6 2079 value = gen_rtx_REG (inmode, regno);
42c63e4d 2080 }
2081 }
2082 }
2083
2084 return value;
2085}
2086\f
2087/* This page contains subroutines used mainly for determining
2088 whether the IN or an OUT of a reload can serve as the
2089 reload register. */
2090
3e561fd5 2091/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2092
92c7a85c 2093int
3ad4992f 2094earlyclobber_operand_p (rtx x)
3e561fd5 2095{
2096 int i;
2097
2098 for (i = 0; i < n_earlyclobbers; i++)
2099 if (reload_earlyclobbers[i] == x)
2100 return 1;
2101
2102 return 0;
2103}
2104
42c63e4d 2105/* Return 1 if expression X alters a hard reg in the range
2106 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2107 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2108 X should be the body of an instruction. */
2109
2110static int
3ad4992f 2111hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
42c63e4d 2112{
2113 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2114 {
19cb6b50 2115 rtx op0 = SET_DEST (x);
02e7a332 2116
42c63e4d 2117 while (GET_CODE (op0) == SUBREG)
2118 op0 = SUBREG_REG (op0);
8ad4c111 2119 if (REG_P (op0))
42c63e4d 2120 {
02e7a332 2121 unsigned int r = REGNO (op0);
2122
42c63e4d 2123 /* See if this reg overlaps range under consideration. */
2124 if (r < end_regno
a2c6f0b7 2125 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
42c63e4d 2126 return 1;
2127 }
2128 }
2129 else if (GET_CODE (x) == PARALLEL)
2130 {
19cb6b50 2131 int i = XVECLEN (x, 0) - 1;
02e7a332 2132
42c63e4d 2133 for (; i >= 0; i--)
2134 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2135 return 1;
2136 }
2137
2138 return 0;
2139}
2140
bd1a81f7 2141/* Return 1 if ADDR is a valid memory address for mode MODE
2142 in address space AS, and check that each pseudo reg has the
2143 proper kind of hard reg. */
42c63e4d 2144
2145int
bd1a81f7 2146strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2147 rtx addr, addr_space_t as)
42c63e4d 2148{
fd50b071 2149#ifdef GO_IF_LEGITIMATE_ADDRESS
bd1a81f7 2150 gcc_assert (ADDR_SPACE_GENERIC_P (as));
42c63e4d 2151 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2152 return 0;
2153
2154 win:
2155 return 1;
fd50b071 2156#else
bd1a81f7 2157 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
fd50b071 2158#endif
42c63e4d 2159}
42c63e4d 2160\f
2161/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2162 if they are the same hard reg, and has special hacks for
2163 autoincrement and autodecrement.
2164 This is specifically intended for find_reloads to use
2165 in determining whether two operands match.
2166 X is the operand whose number is the lower of the two.
2167
2168 The value is 2 if Y contains a pre-increment that matches
2169 a non-incrementing address in X. */
2170
2171/* ??? To be completely correct, we should arrange to pass
2172 for X the output operand and for Y the input operand.
2173 For now, we assume that the output operand has the lower number
2174 because that is natural in (SET output (... input ...)). */
2175
2176int
3ad4992f 2177operands_match_p (rtx x, rtx y)
42c63e4d 2178{
19cb6b50 2179 int i;
2180 RTX_CODE code = GET_CODE (x);
2181 const char *fmt;
42c63e4d 2182 int success_2;
5bb2f919 2183
42c63e4d 2184 if (x == y)
2185 return 1;
8ad4c111 2186 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2187 && (REG_P (y) || (GET_CODE (y) == SUBREG
2188 && REG_P (SUBREG_REG (y)))))
42c63e4d 2189 {
19cb6b50 2190 int j;
42c63e4d 2191
2192 if (code == SUBREG)
2193 {
2194 i = REGNO (SUBREG_REG (x));
2195 if (i >= FIRST_PSEUDO_REGISTER)
2196 goto slow;
701e46d0 2197 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2198 GET_MODE (SUBREG_REG (x)),
2199 SUBREG_BYTE (x),
2200 GET_MODE (x));
42c63e4d 2201 }
2202 else
2203 i = REGNO (x);
2204
2205 if (GET_CODE (y) == SUBREG)
2206 {
2207 j = REGNO (SUBREG_REG (y));
2208 if (j >= FIRST_PSEUDO_REGISTER)
2209 goto slow;
701e46d0 2210 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2211 GET_MODE (SUBREG_REG (y)),
2212 SUBREG_BYTE (y),
2213 GET_MODE (y));
42c63e4d 2214 }
2215 else
2216 j = REGNO (y);
2217
76c64076 2218 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
627decb0 2219 multiple hard register group of scalar integer registers, so that
2220 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2221 register. */
76c64076 2222 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
627decb0 2223 && SCALAR_INT_MODE_P (GET_MODE (x))
98c941f7 2224 && i < FIRST_PSEUDO_REGISTER)
67d6c12b 2225 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
76c64076 2226 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
627decb0 2227 && SCALAR_INT_MODE_P (GET_MODE (y))
98c941f7 2228 && j < FIRST_PSEUDO_REGISTER)
67d6c12b 2229 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
98c941f7 2230
42c63e4d 2231 return i == j;
2232 }
2233 /* If two operands must match, because they are really a single
2234 operand of an assembler insn, then two postincrements are invalid
2235 because the assembler insn would increment only once.
edc2a478 2236 On the other hand, a postincrement matches ordinary indexing
42c63e4d 2237 if the postincrement is the output operand. */
40988080 2238 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
42c63e4d 2239 return operands_match_p (XEXP (x, 0), y);
2240 /* Two preincrements are invalid
2241 because the assembler insn would increment only once.
edc2a478 2242 On the other hand, a preincrement matches ordinary indexing
42c63e4d 2243 if the preincrement is the input operand.
2244 In this case, return 2, since some callers need to do special
2245 things when this happens. */
40988080 2246 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2247 || GET_CODE (y) == PRE_MODIFY)
42c63e4d 2248 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2249
2250 slow:
2251
d618034b 2252 /* Now we have disposed of all the cases in which different rtx codes
2253 can match. */
42c63e4d 2254 if (code != GET_CODE (y))
2255 return 0;
42c63e4d 2256
2257 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
42c63e4d 2258 if (GET_MODE (x) != GET_MODE (y))
2259 return 0;
2260
bd1a81f7 2261 /* MEMs refering to different address space are not equivalent. */
2262 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2263 return 0;
2264
d618034b 2265 switch (code)
2266 {
2267 case CONST_INT:
2268 case CONST_DOUBLE:
e397ad8e 2269 case CONST_FIXED:
d618034b 2270 return 0;
2271
2272 case LABEL_REF:
2273 return XEXP (x, 0) == XEXP (y, 0);
2274 case SYMBOL_REF:
2275 return XSTR (x, 0) == XSTR (y, 0);
2276
2277 default:
2278 break;
2279 }
2280
42c63e4d 2281 /* Compare the elements. If any pair of corresponding elements
2282 fail to match, return 0 for the whole things. */
2283
2284 success_2 = 0;
2285 fmt = GET_RTX_FORMAT (code);
2286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2287 {
4e39a270 2288 int val, j;
42c63e4d 2289 switch (fmt[i])
2290 {
e5fdd564 2291 case 'w':
2292 if (XWINT (x, i) != XWINT (y, i))
2293 return 0;
2294 break;
2295
42c63e4d 2296 case 'i':
2297 if (XINT (x, i) != XINT (y, i))
2298 return 0;
2299 break;
2300
2301 case 'e':
2302 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2303 if (val == 0)
2304 return 0;
2305 /* If any subexpression returns 2,
2306 we should return 2 if we are successful. */
2307 if (val == 2)
2308 success_2 = 1;
2309 break;
2310
2311 case '0':
2312 break;
2313
4e39a270 2314 case 'E':
2315 if (XVECLEN (x, i) != XVECLEN (y, i))
2316 return 0;
2317 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2318 {
2319 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2320 if (val == 0)
2321 return 0;
2322 if (val == 2)
2323 success_2 = 1;
2324 }
2325 break;
2326
42c63e4d 2327 /* It is believed that rtx's at this level will never
2328 contain anything but integers and other rtx's,
2329 except for within LABEL_REFs and SYMBOL_REFs. */
2330 default:
04e579b6 2331 gcc_unreachable ();
42c63e4d 2332 }
2333 }
2334 return 1 + success_2;
2335}
2336\f
42c63e4d 2337/* Describe the range of registers or memory referenced by X.
5bb2f919 2338 If X is a register, set REG_FLAG and put the first register
42c63e4d 2339 number into START and the last plus one into END.
5bb2f919 2340 If X is a memory reference, put a base address into BASE
42c63e4d 2341 and a range of integer offsets into START and END.
5bb2f919 2342 If X is pushing on the stack, we can assume it causes no trouble,
42c63e4d 2343 so we set the SAFE field. */
2344
2345static struct decomposition
3ad4992f 2346decompose (rtx x)
42c63e4d 2347{
2348 struct decomposition val;
2349 int all_const = 0;
2350
4ee9c684 2351 memset (&val, 0, sizeof (val));
2352
04e579b6 2353 switch (GET_CODE (x))
42c63e4d 2354 {
04e579b6 2355 case MEM:
2356 {
2357 rtx base = NULL_RTX, offset = 0;
2358 rtx addr = XEXP (x, 0);
48e1416a 2359
04e579b6 2360 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2361 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2362 {
2363 val.base = XEXP (addr, 0);
2364 val.start = -GET_MODE_SIZE (GET_MODE (x));
2365 val.end = GET_MODE_SIZE (GET_MODE (x));
2366 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2367 return val;
2368 }
48e1416a 2369
04e579b6 2370 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2371 {
2372 if (GET_CODE (XEXP (addr, 1)) == PLUS
2373 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2374 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2375 {
2376 val.base = XEXP (addr, 0);
2377 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2378 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2379 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2380 return val;
2381 }
2382 }
48e1416a 2383
04e579b6 2384 if (GET_CODE (addr) == CONST)
2385 {
2386 addr = XEXP (addr, 0);
2387 all_const = 1;
2388 }
2389 if (GET_CODE (addr) == PLUS)
2390 {
2391 if (CONSTANT_P (XEXP (addr, 0)))
2392 {
2393 base = XEXP (addr, 1);
2394 offset = XEXP (addr, 0);
2395 }
2396 else if (CONSTANT_P (XEXP (addr, 1)))
2397 {
2398 base = XEXP (addr, 0);
2399 offset = XEXP (addr, 1);
2400 }
2401 }
48e1416a 2402
04e579b6 2403 if (offset == 0)
2404 {
2405 base = addr;
2406 offset = const0_rtx;
2407 }
2408 if (GET_CODE (offset) == CONST)
2409 offset = XEXP (offset, 0);
2410 if (GET_CODE (offset) == PLUS)
2411 {
971ba038 2412 if (CONST_INT_P (XEXP (offset, 0)))
04e579b6 2413 {
2414 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2415 offset = XEXP (offset, 0);
2416 }
971ba038 2417 else if (CONST_INT_P (XEXP (offset, 1)))
04e579b6 2418 {
2419 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2420 offset = XEXP (offset, 1);
2421 }
2422 else
2423 {
2424 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2425 offset = const0_rtx;
2426 }
2427 }
971ba038 2428 else if (!CONST_INT_P (offset))
04e579b6 2429 {
2430 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2431 offset = const0_rtx;
2432 }
48e1416a 2433
04e579b6 2434 if (all_const && GET_CODE (base) == PLUS)
2435 base = gen_rtx_CONST (GET_MODE (base), base);
48e1416a 2436
971ba038 2437 gcc_assert (CONST_INT_P (offset));
48e1416a 2438
04e579b6 2439 val.start = INTVAL (offset);
2440 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2441 val.base = base;
2442 }
2443 break;
48e1416a 2444
04e579b6 2445 case REG:
42c63e4d 2446 val.reg_flag = 1;
5bb2f919 2447 val.start = true_regnum (x);
0ed5554e 2448 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
42c63e4d 2449 {
2450 /* A pseudo with no hard reg. */
2451 val.start = REGNO (x);
2452 val.end = val.start + 1;
2453 }
2454 else
2455 /* A hard reg. */
a2c6f0b7 2456 val.end = end_hard_regno (GET_MODE (x), val.start);
04e579b6 2457 break;
2458
2459 case SUBREG:
8ad4c111 2460 if (!REG_P (SUBREG_REG (x)))
42c63e4d 2461 /* This could be more precise, but it's good enough. */
2462 return decompose (SUBREG_REG (x));
2463 val.reg_flag = 1;
5bb2f919 2464 val.start = true_regnum (x);
0ed5554e 2465 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
42c63e4d 2466 return decompose (SUBREG_REG (x));
2467 else
2468 /* A hard reg. */
fe2ebfc8 2469 val.end = val.start + subreg_nregs (x);
04e579b6 2470 break;
2471
2472 case SCRATCH:
2473 /* This hasn't been assigned yet, so it can't conflict yet. */
2474 val.safe = 1;
2475 break;
2476
2477 default:
2478 gcc_assert (CONSTANT_P (x));
2479 val.safe = 1;
2480 break;
42c63e4d 2481 }
42c63e4d 2482 return val;
2483}
2484
2485/* Return 1 if altering Y will not modify the value of X.
2486 Y is also described by YDATA, which should be decompose (Y). */
2487
2488static int
3ad4992f 2489immune_p (rtx x, rtx y, struct decomposition ydata)
42c63e4d 2490{
2491 struct decomposition xdata;
2492
2493 if (ydata.reg_flag)
33181afc 2494 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
42c63e4d 2495 if (ydata.safe)
2496 return 1;
2497
04e579b6 2498 gcc_assert (MEM_P (y));
42c63e4d 2499 /* If Y is memory and X is not, Y can't affect X. */
e16ceb8e 2500 if (!MEM_P (x))
42c63e4d 2501 return 1;
2502
67610d42 2503 xdata = decompose (x);
42c63e4d 2504
2505 if (! rtx_equal_p (xdata.base, ydata.base))
2506 {
2507 /* If bases are distinct symbolic constants, there is no overlap. */
2508 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2509 return 1;
2510 /* Constants and stack slots never overlap. */
2511 if (CONSTANT_P (xdata.base)
2512 && (ydata.base == frame_pointer_rtx
7c4f6442 2513 || ydata.base == hard_frame_pointer_rtx
42c63e4d 2514 || ydata.base == stack_pointer_rtx))
2515 return 1;
2516 if (CONSTANT_P (ydata.base)
2517 && (xdata.base == frame_pointer_rtx
7c4f6442 2518 || xdata.base == hard_frame_pointer_rtx
42c63e4d 2519 || xdata.base == stack_pointer_rtx))
2520 return 1;
2521 /* If either base is variable, we don't know anything. */
2522 return 0;
2523 }
2524
42c63e4d 2525 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2526}
d7acad9f 2527
eb2f80f3 2528/* Similar, but calls decompose. */
d7acad9f 2529
2530int
3ad4992f 2531safe_from_earlyclobber (rtx op, rtx clobber)
d7acad9f 2532{
2533 struct decomposition early_data;
2534
2535 early_data = decompose (clobber);
2536 return immune_p (op, clobber, early_data);
2537}
42c63e4d 2538\f
2539/* Main entry point of this file: search the body of INSN
2540 for values that need reloading and record them with push_reload.
2541 REPLACE nonzero means record also where the values occur
2542 so that subst_reloads can be used.
2543
2544 IND_LEVELS says how many levels of indirection are supported by this
2545 machine; a value of zero means that a memory reference is not a valid
2546 memory address.
2547
2548 LIVE_KNOWN says we have valid information about which hard
2549 regs are live at each point in the program; this is true when
2550 we are called from global_alloc but false when stupid register
2551 allocation has been done.
2552
2553 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2554 which is nonnegative if the reg has been commandeered for reloading into.
2555 It is copied into STATIC_RELOAD_REG_P and referenced from there
93c7b06e 2556 by various subroutines.
42c63e4d 2557
93c7b06e 2558 Return TRUE if some operands need to be changed, because of swapping
2559 commutative operands, reg_equiv_address substitution, or whatever. */
2560
2561int
3ad4992f 2562find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2563 short *reload_reg_p)
42c63e4d 2564{
19cb6b50 2565 int insn_code_number;
2566 int i, j;
42c63e4d 2567 int noperands;
42c63e4d 2568 /* These start out as the constraints for the insn
2569 and they are chewed up as we consider alternatives. */
39a1a66f 2570 const char *constraints[MAX_RECOG_OPERANDS];
42c63e4d 2571 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2572 a register. */
2573 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2574 char pref_or_nothing[MAX_RECOG_OPERANDS];
48e1416a 2575 /* Nonzero for a MEM operand whose entire address needs a reload.
e4542435 2576 May be -1 to indicate the entire address may or may not need a reload. */
42c63e4d 2577 int address_reloaded[MAX_RECOG_OPERANDS];
e4542435 2578 /* Nonzero for an address operand that needs to be completely reloaded.
2579 May be -1 to indicate the entire operand may or may not need a reload. */
27d1c91f 2580 int address_operand_reloaded[MAX_RECOG_OPERANDS];
70457512 2581 /* Value of enum reload_type to use for operand. */
2582 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2583 /* Value of enum reload_type to use within address of operand. */
2584 enum reload_type address_type[MAX_RECOG_OPERANDS];
2585 /* Save the usage of each operand. */
2586 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
42c63e4d 2587 int no_input_reloads = 0, no_output_reloads = 0;
2588 int n_alternatives;
71db0d8b 2589 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
1aa1d9da 2590 char this_alternative_match_win[MAX_RECOG_OPERANDS];
42c63e4d 2591 char this_alternative_win[MAX_RECOG_OPERANDS];
2592 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2593 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2594 int this_alternative_matches[MAX_RECOG_OPERANDS];
2595 int swapped;
09a17585 2596 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
42c63e4d 2597 int this_alternative_number;
ef2c4a29 2598 int goal_alternative_number = 0;
42c63e4d 2599 int operand_reloadnum[MAX_RECOG_OPERANDS];
2600 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2601 int goal_alternative_matched[MAX_RECOG_OPERANDS];
1aa1d9da 2602 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
42c63e4d 2603 char goal_alternative_win[MAX_RECOG_OPERANDS];
2604 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2605 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2606 int goal_alternative_swapped;
42c63e4d 2607 int best;
2608 int commutative;
2609 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2610 rtx substed_operand[MAX_RECOG_OPERANDS];
2611 rtx body = PATTERN (insn);
2612 rtx set = single_set (insn);
ef2c4a29 2613 int goal_earlyclobber = 0, this_earlyclobber;
42c63e4d 2614 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
93c7b06e 2615 int retval = 0;
42c63e4d 2616
2617 this_insn = insn;
42c63e4d 2618 n_reloads = 0;
2619 n_replacements = 0;
42c63e4d 2620 n_earlyclobbers = 0;
2621 replace_reloads = replace;
2622 hard_regs_live_known = live_known;
2623 static_reload_reg_p = reload_reg_p;
2624
2625 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2626 neither are insns that SET cc0. Insns that use CC0 are not allowed
2627 to have any input reloads. */
6d7dc5b9 2628 if (JUMP_P (insn) || CALL_P (insn))
42c63e4d 2629 no_output_reloads = 1;
2630
2631#ifdef HAVE_cc0
2632 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2633 no_input_reloads = 1;
2634 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2635 no_output_reloads = 1;
2636#endif
5bb2f919 2637
c538053c 2638#ifdef SECONDARY_MEMORY_NEEDED
2639 /* The eliminated forms of any secondary memory locations are per-insn, so
2640 clear them out here. */
2641
605e65d9 2642 if (secondary_memlocs_elim_used)
2643 {
2644 memset (secondary_memlocs_elim, 0,
2645 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2646 secondary_memlocs_elim_used = 0;
2647 }
c538053c 2648#endif
2649
5d07813e 2650 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2651 is cheap to move between them. If it is not, there may not be an insn
2652 to do the copy, so we may need a reload. */
2653 if (GET_CODE (body) == SET
8ad4c111 2654 && REG_P (SET_DEST (body))
5d07813e 2655 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
8ad4c111 2656 && REG_P (SET_SRC (body))
5d07813e 2657 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
e6078fbb 2658 && register_move_cost (GET_MODE (SET_SRC (body)),
0ac516dc 2659 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
5d07813e 2660 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2661 return 0;
42c63e4d 2662
5d07813e 2663 extract_insn (insn);
42c63e4d 2664
ed420a25 2665 noperands = reload_n_operands = recog_data.n_operands;
2666 n_alternatives = recog_data.n_alternatives;
42c63e4d 2667
5d07813e 2668 /* Just return "no reloads" if insn has no operands with constraints. */
2669 if (noperands == 0 || n_alternatives == 0)
2670 return 0;
42c63e4d 2671
5d07813e 2672 insn_code_number = INSN_CODE (insn);
2673 this_insn_is_asm = insn_code_number < 0;
42c63e4d 2674
d844aacc 2675 memcpy (operand_mode, recog_data.operand_mode,
2676 noperands * sizeof (enum machine_mode));
39a1a66f 2677 memcpy (constraints, recog_data.constraints,
2678 noperands * sizeof (const char *));
42c63e4d 2679
2680 commutative = -1;
2681
2682 /* If we will need to know, later, whether some pair of operands
2683 are the same, we must compare them now and save the result.
2684 Reloading the base and index registers will clobber them
2685 and afterward they will fail to match. */
2686
2687 for (i = 0; i < noperands; i++)
2688 {
39a1a66f 2689 const char *p;
19cb6b50 2690 int c;
39a1a66f 2691 char *end;
42c63e4d 2692
ed420a25 2693 substed_operand[i] = recog_data.operand[i];
42c63e4d 2694 p = constraints[i];
2695
70457512 2696 modified[i] = RELOAD_READ;
2697
5bb2f919 2698 /* Scan this operand's constraint to see if it is an output operand,
70457512 2699 an in-out operand, is commutative, or should match another. */
42c63e4d 2700
48ea5577 2701 while ((c = *p))
70457512 2702 {
48ea5577 2703 p += CONSTRAINT_LEN (c, p);
adee86a0 2704 switch (c)
70457512 2705 {
adee86a0 2706 case '=':
2707 modified[i] = RELOAD_WRITE;
2708 break;
2709 case '+':
2710 modified[i] = RELOAD_READ_WRITE;
2711 break;
2712 case '%':
2713 {
2714 /* The last operand should not be marked commutative. */
04e579b6 2715 gcc_assert (i != noperands - 1);
adee86a0 2716
2717 /* We currently only support one commutative pair of
2718 operands. Some existing asm code currently uses more
2719 than one pair. Previously, that would usually work,
2720 but sometimes it would crash the compiler. We
2721 continue supporting that case as well as we can by
2722 silently ignoring all but the first pair. In the
2723 future we may handle it correctly. */
2724 if (commutative < 0)
2725 commutative = i;
04e579b6 2726 else
2727 gcc_assert (this_insn_is_asm);
adee86a0 2728 }
2729 break;
2730 /* Use of ISDIGIT is tempting here, but it may get expensive because
2731 of locale support we don't want. */
2732 case '0': case '1': case '2': case '3': case '4':
2733 case '5': case '6': case '7': case '8': case '9':
2734 {
39a1a66f 2735 c = strtoul (p - 1, &end, 10);
2736 p = end;
adee86a0 2737
2738 operands_match[c][i]
2739 = operands_match_p (recog_data.operand[c],
2740 recog_data.operand[i]);
2741
2742 /* An operand may not match itself. */
04e579b6 2743 gcc_assert (c != i);
adee86a0 2744
2745 /* If C can be commuted with C+1, and C might need to match I,
2746 then C+1 might also need to match I. */
2747 if (commutative >= 0)
2748 {
2749 if (c == commutative || c == commutative + 1)
2750 {
2751 int other = c + (c == commutative ? 1 : -1);
2752 operands_match[other][i]
2753 = operands_match_p (recog_data.operand[other],
2754 recog_data.operand[i]);
2755 }
2756 if (i == commutative || i == commutative + 1)
2757 {
2758 int other = i + (i == commutative ? 1 : -1);
2759 operands_match[c][other]
2760 = operands_match_p (recog_data.operand[c],
2761 recog_data.operand[other]);
2762 }
2763 /* Note that C is supposed to be less than I.
2764 No need to consider altering both C and I because in
2765 that case we would alter one into the other. */
2766 }
2767 }
70457512 2768 }
2769 }
42c63e4d 2770 }
2771
2772 /* Examine each operand that is a memory reference or memory address
2773 and reload parts of the addresses into index registers.
42c63e4d 2774 Also here any references to pseudo regs that didn't get hard regs
2775 but are equivalent to constants get replaced in the insn itself
5bb2f919 2776 with those constants. Nobody will ever see them again.
42c63e4d 2777
2778 Finally, set up the preferred classes of each operand. */
2779
2780 for (i = 0; i < noperands; i++)
2781 {
19cb6b50 2782 RTX_CODE code = GET_CODE (recog_data.operand[i]);
70457512 2783
42c63e4d 2784 address_reloaded[i] = 0;
27d1c91f 2785 address_operand_reloaded[i] = 0;
70457512 2786 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2787 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2788 : RELOAD_OTHER);
2789 address_type[i]
2790 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2791 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2792 : RELOAD_OTHER);
42c63e4d 2793
bfe0e25e 2794 if (*constraints[i] == 0)
2795 /* Ignore things like match_operator operands. */
2796 ;
a5004c3d 2797 else if (constraints[i][0] == 'p'
48ea5577 2798 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
42c63e4d 2799 {
27d1c91f 2800 address_operand_reloaded[i]
2801 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2802 recog_data.operand[i],
2803 recog_data.operand_loc[i],
2804 i, operand_type[i], ind_levels, insn);
1a922356 2805
5bb2f919 2806 /* If we now have a simple operand where we used to have a
1a922356 2807 PLUS or MULT, re-recognize and try again. */
6720e96c 2808 if ((OBJECT_P (*recog_data.operand_loc[i])
ed420a25 2809 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2810 && (GET_CODE (recog_data.operand[i]) == MULT
2811 || GET_CODE (recog_data.operand[i]) == PLUS))
1a922356 2812 {
2813 INSN_CODE (insn) = -1;
93c7b06e 2814 retval = find_reloads (insn, replace, ind_levels, live_known,
2815 reload_reg_p);
2816 return retval;
1a922356 2817 }
2818
ed420a25 2819 recog_data.operand[i] = *recog_data.operand_loc[i];
2820 substed_operand[i] = recog_data.operand[i];
27d1c91f 2821
2822 /* Address operands are reloaded in their existing mode,
2823 no matter what is specified in the machine description. */
2824 operand_mode[i] = GET_MODE (recog_data.operand[i]);
fe42ff4b 2825
2826 /* If the address is a single CONST_INT pick address mode
2827 instead otherwise we will later not know in which mode
2828 the reload should be performed. */
2829 if (operand_mode[i] == VOIDmode)
2830 operand_mode[i] = Pmode;
2831
42c63e4d 2832 }
2833 else if (code == MEM)
2834 {
be2828ce 2835 address_reloaded[i]
ed420a25 2836 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2837 recog_data.operand_loc[i],
2838 XEXP (recog_data.operand[i], 0),
2839 &XEXP (recog_data.operand[i], 0),
be2828ce 2840 i, address_type[i], ind_levels, insn);
ed420a25 2841 recog_data.operand[i] = *recog_data.operand_loc[i];
2842 substed_operand[i] = recog_data.operand[i];
42c63e4d 2843 }
2844 else if (code == SUBREG)
6aed5e78 2845 {
ed420a25 2846 rtx reg = SUBREG_REG (recog_data.operand[i]);
6aed5e78 2847 rtx op
ed420a25 2848 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
6aed5e78 2849 ind_levels,
2850 set != 0
ed420a25 2851 && &SET_DEST (set) == recog_data.operand_loc[i],
1aa90c62 2852 insn,
2853 &address_reloaded[i]);
6aed5e78 2854
2855 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2856 that didn't get a hard register, emit a USE with a REG_EQUAL
2857 note in front so that we might inherit a previous, possibly
2858 wider reload. */
5bb2f919 2859
93c7b06e 2860 if (replace
e16ceb8e 2861 && MEM_P (op)
8ad4c111 2862 && REG_P (reg)
6aed5e78 2863 && (GET_MODE_SIZE (GET_MODE (reg))
8a72adf4 2864 >= GET_MODE_SIZE (GET_MODE (op)))
1c654ff1 2865 && reg_equiv_constant (REGNO (reg)) == 0)
c080d8f0 2866 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2867 insn),
1c654ff1 2868 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
6aed5e78 2869
ed420a25 2870 substed_operand[i] = recog_data.operand[i] = op;
6aed5e78 2871 }
6720e96c 2872 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
de0fdb4f 2873 /* We can get a PLUS as an "operand" as a result of register
2874 elimination. See eliminate_regs and gen_reload. We handle
2875 a unary operator by reloading the operand. */
ed420a25 2876 substed_operand[i] = recog_data.operand[i]
2877 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
1aa90c62 2878 ind_levels, 0, insn,
2879 &address_reloaded[i]);
42c63e4d 2880 else if (code == REG)
2881 {
2882 /* This is equivalent to calling find_reloads_toplev.
2883 The code is duplicated for speed.
2884 When we find a pseudo always equivalent to a constant,
2885 we replace it by the constant. We must be sure, however,
2886 that we don't try to replace it in the insn in which it
1e625a2e 2887 is being set. */
19cb6b50 2888 int regno = REGNO (recog_data.operand[i]);
1c654ff1 2889 if (reg_equiv_constant (regno) != 0
ed420a25 2890 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
a6979111 2891 {
2892 /* Record the existing mode so that the check if constants are
48666d2c 2893 allowed will work when operand_mode isn't specified. */
a6979111 2894
2895 if (operand_mode[i] == VOIDmode)
ed420a25 2896 operand_mode[i] = GET_MODE (recog_data.operand[i]);
a6979111 2897
ed420a25 2898 substed_operand[i] = recog_data.operand[i]
1c654ff1 2899 = reg_equiv_constant (regno);
a6979111 2900 }
1c654ff1 2901 if (reg_equiv_memory_loc (regno) != 0
2902 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
93c7b06e 2903 /* We need not give a valid is_set_dest argument since the case
2904 of a constant equivalence was checked above. */
ed420a25 2905 substed_operand[i] = recog_data.operand[i]
2906 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
1aa90c62 2907 ind_levels, 0, insn,
2908 &address_reloaded[i]);
42c63e4d 2909 }
41b91e61 2910 /* If the operand is still a register (we didn't replace it with an
2911 equivalent), get the preferred class to reload it into. */
ed420a25 2912 code = GET_CODE (recog_data.operand[i]);
41b91e61 2913 preferred_class[i]
ed420a25 2914 = ((code == REG && REGNO (recog_data.operand[i])
2915 >= FIRST_PSEUDO_REGISTER)
2916 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2917 : NO_REGS);
41b91e61 2918 pref_or_nothing[i]
ed420a25 2919 = (code == REG
2920 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2921 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
42c63e4d 2922 }
2923
2924 /* If this is simply a copy from operand 1 to operand 0, merge the
2925 preferred classes for the operands. */
ed420a25 2926 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2927 && recog_data.operand[1] == SET_SRC (set))
42c63e4d 2928 {
2929 preferred_class[0] = preferred_class[1]
2930 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2931 pref_or_nothing[0] |= pref_or_nothing[1];
2932 pref_or_nothing[1] |= pref_or_nothing[0];
2933 }
2934
2935 /* Now see what we need for pseudo-regs that didn't get hard regs
2936 or got the wrong kind of hard reg. For this, we must consider
2937 all the operands together against the register constraints. */
2938
c988df6a 2939 best = MAX_RECOG_OPERANDS * 2 + 600;
42c63e4d 2940
2941 swapped = 0;
2942 goal_alternative_swapped = 0;
2943 try_swapped:
2944
2945 /* The constraints are made of several alternatives.
2946 Each operand's constraint looks like foo,bar,... with commas
2947 separating the alternatives. The first alternatives for all
2948 operands go together, the second alternatives go together, etc.
2949
2950 First loop over alternatives. */
2951
2952 for (this_alternative_number = 0;
2953 this_alternative_number < n_alternatives;
2954 this_alternative_number++)
2955 {
2956 /* Loop over operands for one constraint alternative. */
2957 /* LOSERS counts those that don't fit this alternative
2958 and would require loading. */
2959 int losers = 0;
2960 /* BAD is set to 1 if it some operand can't fit this alternative
2961 even after reloading. */
2962 int bad = 0;
2963 /* REJECT is a count of how undesirable this alternative says it is
2964 if any reloading is required. If the alternative matches exactly
2965 then REJECT is ignored, but otherwise it gets this much
5bb2f919 2966 counted against it in addition to the reloading needed. Each
42c63e4d 2967 ? counts three times here since we want the disparaging caused by
2968 a bad register class to only count 1/3 as much. */
2969 int reject = 0;
2970
39a1a66f 2971 if (!recog_data.alternative_enabled_p[this_alternative_number])
2972 {
2973 int i;
2974
2975 for (i = 0; i < recog_data.n_operands; i++)
2976 constraints[i] = skip_alternative (constraints[i]);
2977
2978 continue;
2979 }
2980
42c63e4d 2981 this_earlyclobber = 0;
2982
2983 for (i = 0; i < noperands; i++)
2984 {
39a1a66f 2985 const char *p = constraints[i];
48ea5577 2986 char *end;
2987 int len;
19cb6b50 2988 int win = 0;
1aa1d9da 2989 int did_match = 0;
aa35b87f 2990 /* 0 => this operand can be reloaded somehow for this alternative. */
42c63e4d 2991 int badop = 1;
2992 /* 0 => this operand can be reloaded if the alternative allows regs. */
2993 int winreg = 0;
2994 int c;
48ea5577 2995 int m;
19cb6b50 2996 rtx operand = recog_data.operand[i];
42c63e4d 2997 int offset = 0;
2998 /* Nonzero means this is a MEM that must be reloaded into a reg
2999 regardless of what the constraint says. */
3000 int force_reload = 0;
3001 int offmemok = 0;
f630a9b6 3002 /* Nonzero if a constant forced into memory would be OK for this
3003 operand. */
3004 int constmemok = 0;
42c63e4d 3005 int earlyclobber = 0;
3006
de0fdb4f 3007 /* If the predicate accepts a unary operator, it means that
5bb2f919 3008 we need to reload the operand, but do not do this for
6c1df11b 3009 match_operator and friends. */
6720e96c 3010 if (UNARY_P (operand) && *p != 0)
de0fdb4f 3011 operand = XEXP (operand, 0);
3012
42c63e4d 3013 /* If the operand is a SUBREG, extract
3014 the REG or MEM (or maybe even a constant) within.
3015 (Constants can occur as a result of reg_equiv_constant.) */
3016
3017 while (GET_CODE (operand) == SUBREG)
3018 {
701e46d0 3019 /* Offset only matters when operand is a REG and
3020 it is a hard reg. This is because it is passed
3021 to reg_fits_class_p if it is a REG and all pseudos
3022 return 0 from that function. */
8ad4c111 3023 if (REG_P (SUBREG_REG (operand))
701e46d0 3024 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3025 {
5992d16a 3026 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3027 GET_MODE (SUBREG_REG (operand)),
3028 SUBREG_BYTE (operand),
3029 GET_MODE (operand)) < 0)
3030 force_reload = 1;
701e46d0 3031 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3032 GET_MODE (SUBREG_REG (operand)),
3033 SUBREG_BYTE (operand),
3034 GET_MODE (operand));
3035 }
42c63e4d 3036 operand = SUBREG_REG (operand);
3398e91d 3037 /* Force reload if this is a constant or PLUS or if there may
cbcb19b7 3038 be a problem accessing OPERAND in the outer mode. */
3039 if (CONSTANT_P (operand)
7bc1bb34 3040 || GET_CODE (operand) == PLUS
011d1afd 3041 /* We must force a reload of paradoxical SUBREGs
3042 of a MEM because the alignment of the inner value
1d793270 3043 may not be enough to do the outer reference. On
3044 big-endian machines, it may also reference outside
3045 the object.
011d1afd 3046
3047 On machines that extend byte operations and we have a
bfdb517e 3048 SUBREG where both the inner and outer modes are no wider
3049 than a word and the inner mode is narrower, is integral,
3050 and gets extended when loaded from memory, combine.c has
3051 made assumptions about the behavior of the machine in such
011d1afd 3052 register access. If the data is, in fact, in memory we
3053 must always load using the size assumed to be in the
5bb2f919 3054 register and let the insn do the different-sized
d743d4f7 3055 accesses.
3056
5bb2f919 3057 This is doubly true if WORD_REGISTER_OPERATIONS. In
d743d4f7 3058 this case eliminate_regs has left non-paradoxical
5cd86fd9 3059 subregs for push_reload to see. Make sure it does
d743d4f7 3060 by forcing the reload.
3061
3062 ??? When is it right at this stage to have a subreg
de132707 3063 of a mem that is _not_ to be handled specially? IMO
d743d4f7 3064 those should have been reduced to just a mem. */
e16ceb8e 3065 || ((MEM_P (operand)
8ad4c111 3066 || (REG_P (operand)
cbcb19b7 3067 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
d743d4f7 3068#ifndef WORD_REGISTER_OPERATIONS
011d1afd 3069 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3070 < BIGGEST_ALIGNMENT)
3071 && (GET_MODE_SIZE (operand_mode[i])
3072 > GET_MODE_SIZE (GET_MODE (operand))))
9f00769c 3073 || BYTES_BIG_ENDIAN
011d1afd 3074#ifdef LOAD_EXTEND_OP
3075 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3076 && (GET_MODE_SIZE (GET_MODE (operand))
3077 <= UNITS_PER_WORD)
3078 && (GET_MODE_SIZE (operand_mode[i])
bfdb517e 3079 > GET_MODE_SIZE (GET_MODE (operand)))
3080 && INTEGRAL_MODE_P (GET_MODE (operand))
21f1e711 3081 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
9d435639 3082#endif
d743d4f7 3083 )
3084#endif
3085 )
701e46d0 3086 )
42c63e4d 3087 force_reload = 1;
3088 }
3089
b9c74b4d 3090 this_alternative[i] = NO_REGS;
42c63e4d 3091 this_alternative_win[i] = 0;
1aa1d9da 3092 this_alternative_match_win[i] = 0;
42c63e4d 3093 this_alternative_offmemok[i] = 0;
3094 this_alternative_earlyclobber[i] = 0;
3095 this_alternative_matches[i] = -1;
3096
3097 /* An empty constraint or empty alternative
3098 allows anything which matched the pattern. */
3099 if (*p == 0 || *p == ',')
3100 win = 1, badop = 0;
3101
3102 /* Scan this alternative's specs for this operand;
3103 set WIN if the operand fits any letter in this alternative.
3104 Otherwise, clear BADOP if this operand could
3105 fit some letter after reloads,
3106 or set WINREG if this operand could fit after reloads
3107 provided the constraint allows some registers. */
3108
48ea5577 3109 do
3110 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
42c63e4d 3111 {
48ea5577 3112 case '\0':
3113 len = 0;
3114 break;
3115 case ',':
3116 c = '\0';
3117 break;
3118
7014838c 3119 case '=': case '+': case '*':
42c63e4d 3120 break;
3121
3122 case '%':
a336c79a 3123 /* We only support one commutative marker, the first
3124 one. We already set commutative above. */
42c63e4d 3125 break;
3126
3127 case '?':
c988df6a 3128 reject += 6;
42c63e4d 3129 break;
3130
3131 case '!':
c988df6a 3132 reject = 600;
42c63e4d 3133 break;
3134
3135 case '#':
3136 /* Ignore rest of this alternative as far as
3137 reloading is concerned. */
48ea5577 3138 do
67610d42 3139 p++;
48ea5577 3140 while (*p && *p != ',');
3141 len = 0;
42c63e4d 3142 break;
3143
7014838c 3144 case '0': case '1': case '2': case '3': case '4':
3145 case '5': case '6': case '7': case '8': case '9':
48ea5577 3146 m = strtoul (p, &end, 10);
3147 p = end;
3148 len = 0;
7014838c 3149
48ea5577 3150 this_alternative_matches[i] = m;
42c63e4d 3151 /* We are supposed to match a previous operand.
3152 If we do, we win if that one did.
3153 If we do not, count both of the operands as losers.
3154 (This is too conservative, since most of the time
3155 only a single reload insn will be needed to make
3156 the two operands win. As a result, this alternative
3157 may be rejected when it is actually desirable.) */
48ea5577 3158 if ((swapped && (m != commutative || i != commutative + 1))
42c63e4d 3159 /* If we are matching as if two operands were swapped,
3160 also pretend that operands_match had been computed
3161 with swapped.
3162 But if I is the second of those and C is the first,
3163 don't exchange them, because operands_match is valid
3164 only on one side of its diagonal. */
3165 ? (operands_match
48ea5577 3166 [(m == commutative || m == commutative + 1)
3167 ? 2 * commutative + 1 - m : m]
5bb2f919 3168 [(i == commutative || i == commutative + 1)
67610d42 3169 ? 2 * commutative + 1 - i : i])
48ea5577 3170 : operands_match[m][i])
7840126a 3171 {
3172 /* If we are matching a non-offsettable address where an
3173 offsettable address was expected, then we must reject
3174 this combination, because we can't reload it. */
48ea5577 3175 if (this_alternative_offmemok[m]
e16ceb8e 3176 && MEM_P (recog_data.operand[m])
b9c74b4d 3177 && this_alternative[m] == NO_REGS
48ea5577 3178 && ! this_alternative_win[m])
7840126a 3179 bad = 1;
3180
48ea5577 3181 did_match = this_alternative_win[m];
7840126a 3182 }
42c63e4d 3183 else
3184 {
3185 /* Operands don't match. */
3186 rtx value;
c166bf3d 3187 int loc1, loc2;
42c63e4d 3188 /* Retroactively mark the operand we had to match
3189 as a loser, if it wasn't already. */
48ea5577 3190 if (this_alternative_win[m])
42c63e4d 3191 losers++;
48ea5577 3192 this_alternative_win[m] = 0;
b9c74b4d 3193 if (this_alternative[m] == NO_REGS)
42c63e4d 3194 bad = 1;
3195 /* But count the pair only once in the total badness of
c166bf3d 3196 this alternative, if the pair can be a dummy reload.
3197 The pointers in operand_loc are not swapped; swap
3198 them by hand if necessary. */
3199 if (swapped && i == commutative)
3200 loc1 = commutative + 1;
3201 else if (swapped && i == commutative + 1)
3202 loc1 = commutative;
3203 else
3204 loc1 = i;
3205 if (swapped && m == commutative)
3206 loc2 = commutative + 1;
3207 else if (swapped && m == commutative + 1)
3208 loc2 = commutative;
3209 else
3210 loc2 = m;
42c63e4d 3211 value
ed420a25 3212 = find_dummy_reload (recog_data.operand[i],
48ea5577 3213 recog_data.operand[m],
c166bf3d 3214 recog_data.operand_loc[loc1],
3215 recog_data.operand_loc[loc2],
48ea5577 3216 operand_mode[i], operand_mode[m],
3217 this_alternative[m], -1,
3218 this_alternative_earlyclobber[m]);
42c63e4d 3219
3220 if (value != 0)
3221 losers--;
3222 }
3223 /* This can be fixed with reloads if the operand
3224 we are supposed to match can be fixed with reloads. */
3225 badop = 0;
48ea5577 3226 this_alternative[i] = this_alternative[m];
8fe0deab 3227
3228 /* If we have to reload this operand and some previous
3229 operand also had to match the same thing as this
3230 operand, we don't know how to do that. So reject this
3231 alternative. */
1aa1d9da 3232 if (! did_match || force_reload)
8fe0deab 3233 for (j = 0; j < i; j++)
3234 if (this_alternative_matches[j]
3235 == this_alternative_matches[i])
3236 badop = 1;
42c63e4d 3237 break;
3238
3239 case 'p':
3240 /* All necessary reloads for an address_operand
3241 were handled in find_reloads_address. */
f8a8fc7b 3242 this_alternative[i]
3243 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3244 ADDRESS, SCRATCH);
42c63e4d 3245 win = 1;
7d262d85 3246 badop = 0;
42c63e4d 3247 break;
3248
e9ff93b1 3249 case TARGET_MEM_CONSTRAINT:
42c63e4d 3250 if (force_reload)
3251 break;
e16ceb8e 3252 if (MEM_P (operand)
8ad4c111 3253 || (REG_P (operand)
42c63e4d 3254 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3255 && reg_renumber[REGNO (operand)] < 0))
3256 win = 1;
7d7d7bd2 3257 if (CONST_POOL_OK_P (operand_mode[i], operand))
42c63e4d 3258 badop = 0;
f630a9b6 3259 constmemok = 1;
42c63e4d 3260 break;
3261
3262 case '<':
e16ceb8e 3263 if (MEM_P (operand)
42c63e4d 3264 && ! address_reloaded[i]
3265 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3266 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3267 win = 1;
3268 break;
3269
3270 case '>':
e16ceb8e 3271 if (MEM_P (operand)
42c63e4d 3272 && ! address_reloaded[i]
3273 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3274 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3275 win = 1;
3276 break;
3277
3278 /* Memory operand whose address is not offsettable. */
3279 case 'V':
3280 if (force_reload)
3281 break;
e16ceb8e 3282 if (MEM_P (operand)
42c63e4d 3283 && ! (ind_levels ? offsettable_memref_p (operand)
3284 : offsettable_nonstrict_memref_p (operand))
3285 /* Certain mem addresses will become offsettable
3286 after they themselves are reloaded. This is important;
3287 we don't want our own handling of unoffsettables
3288 to override the handling of reg_equiv_address. */
8ad4c111 3289 && !(REG_P (XEXP (operand, 0))
42c63e4d 3290 && (ind_levels == 0
1c654ff1 3291 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
42c63e4d 3292 win = 1;
3293 break;
3294
3295 /* Memory operand whose address is offsettable. */
3296 case 'o':
3297 if (force_reload)
3298 break;
e16ceb8e 3299 if ((MEM_P (operand)
42c63e4d 3300 /* If IND_LEVELS, find_reloads_address won't reload a
3301 pseudo that didn't get a hard reg, so we have to
3302 reject that case. */
be2828ce 3303 && ((ind_levels ? offsettable_memref_p (operand)
3304 : offsettable_nonstrict_memref_p (operand))
3305 /* A reloaded address is offsettable because it is now
3306 just a simple register indirect. */
e4542435 3307 || address_reloaded[i] == 1))
8ad4c111 3308 || (REG_P (operand)
42c63e4d 3309 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
f57d22b8 3310 && reg_renumber[REGNO (operand)] < 0
3311 /* If reg_equiv_address is nonzero, we will be
3312 loading it into a register; hence it will be
3313 offsettable, but we cannot say that reg_equiv_mem
3314 is offsettable without checking. */
1c654ff1 3315 && ((reg_equiv_mem (REGNO (operand)) != 0
3316 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3317 || (reg_equiv_address (REGNO (operand)) != 0))))
42c63e4d 3318 win = 1;
7d7d7bd2 3319 if (CONST_POOL_OK_P (operand_mode[i], operand)
e16ceb8e 3320 || MEM_P (operand))
42c63e4d 3321 badop = 0;
f630a9b6 3322 constmemok = 1;
42c63e4d 3323 offmemok = 1;
3324 break;
3325
3326 case '&':
3327 /* Output operand that is stored before the need for the
3328 input operands (and their index registers) is over. */
3329 earlyclobber = 1, this_earlyclobber = 1;
3330 break;
3331
3332 case 'E':
42c63e4d 3333 case 'F':
22dd8d0e 3334 if (GET_CODE (operand) == CONST_DOUBLE
3335 || (GET_CODE (operand) == CONST_VECTOR
3336 && (GET_MODE_CLASS (GET_MODE (operand))
3337 == MODE_VECTOR_FLOAT)))
42c63e4d 3338 win = 1;
3339 break;
3340
3341 case 'G':
3342 case 'H':
3343 if (GET_CODE (operand) == CONST_DOUBLE
48ea5577 3344 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
42c63e4d 3345 win = 1;
3346 break;
3347
3348 case 's':
971ba038 3349 if (CONST_INT_P (operand)
42c63e4d 3350 || (GET_CODE (operand) == CONST_DOUBLE
3351 && GET_MODE (operand) == VOIDmode))
3352 break;
3353 case 'i':
3354 if (CONSTANT_P (operand)
7151fd0e 3355 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
42c63e4d 3356 win = 1;
3357 break;
3358
3359 case 'n':
971ba038 3360 if (CONST_INT_P (operand)
42c63e4d 3361 || (GET_CODE (operand) == CONST_DOUBLE
3362 && GET_MODE (operand) == VOIDmode))
3363 win = 1;
3364 break;
3365
3366 case 'I':
3367 case 'J':
3368 case 'K':
3369 case 'L':
3370 case 'M':
3371 case 'N':
3372 case 'O':
3373 case 'P':
971ba038 3374 if (CONST_INT_P (operand)
48ea5577 3375 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
42c63e4d 3376 win = 1;
3377 break;
3378
3379 case 'X':
5f2bd98f 3380 force_reload = 0;
42c63e4d 3381 win = 1;
3382 break;
3383
3384 case 'g':
3385 if (! force_reload
3386 /* A PLUS is never a valid operand, but reload can make
3387 it from a register when eliminating registers. */
3388 && GET_CODE (operand) != PLUS
3389 /* A SCRATCH is not a valid operand. */
3390 && GET_CODE (operand) != SCRATCH
5bb2f919 3391 && (! CONSTANT_P (operand)
3392 || ! flag_pic
42c63e4d 3393 || LEGITIMATE_PIC_OPERAND_P (operand))
42c63e4d 3394 && (GENERAL_REGS == ALL_REGS
8ad4c111 3395 || !REG_P (operand)
42c63e4d 3396 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3397 && reg_renumber[REGNO (operand)] < 0)))
3398 win = 1;
aa35b87f 3399 /* Drop through into 'r' case. */
42c63e4d 3400
3401 case 'r':
3402 this_alternative[i]
b9c74b4d 3403 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
42c63e4d 3404 goto reg;
3405
f3653a64 3406 default:
48ea5577 3407 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
f3653a64 3408 {
48ea5577 3409#ifdef EXTRA_CONSTRAINT_STR
3410 if (EXTRA_MEMORY_CONSTRAINT (c, p))
a5004c3d 3411 {
3412 if (force_reload)
3413 break;
48ea5577 3414 if (EXTRA_CONSTRAINT_STR (operand, c, p))
a5004c3d 3415 win = 1;
3416 /* If the address was already reloaded,
3417 we win as well. */
e16ceb8e 3418 else if (MEM_P (operand)
e4542435 3419 && address_reloaded[i] == 1)
a5004c3d 3420 win = 1;
3421 /* Likewise if the address will be reloaded because
3422 reg_equiv_address is nonzero. For reg_equiv_mem
3423 we have to check. */
8ad4c111 3424 else if (REG_P (operand)
76cfd4f9 3425 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3426 && reg_renumber[REGNO (operand)] < 0
1c654ff1 3427 && ((reg_equiv_mem (REGNO (operand)) != 0
3428 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3429 || (reg_equiv_address (REGNO (operand)) != 0)))
a5004c3d 3430 win = 1;
3431
3432 /* If we didn't already win, we can reload
3433 constants via force_const_mem, and other
3434 MEMs by reloading the address like for 'o'. */
7d7d7bd2 3435 if (CONST_POOL_OK_P (operand_mode[i], operand)
e16ceb8e 3436 || MEM_P (operand))
a5004c3d 3437 badop = 0;
3438 constmemok = 1;
3439 offmemok = 1;
3440 break;
3441 }
48ea5577 3442 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
a5004c3d 3443 {
48ea5577 3444 if (EXTRA_CONSTRAINT_STR (operand, c, p))
a5004c3d 3445 win = 1;
3446
3447 /* If we didn't already win, we can reload
3448 the address into a base register. */
f8a8fc7b 3449 this_alternative[i]
3450 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3451 ADDRESS, SCRATCH);
a5004c3d 3452 badop = 0;
3453 break;
3454 }
3455
48ea5577 3456 if (EXTRA_CONSTRAINT_STR (operand, c, p))
f3653a64 3457 win = 1;
42c63e4d 3458#endif
f3653a64 3459 break;
3460 }
5bb2f919 3461
42c63e4d 3462 this_alternative[i]
b9c74b4d 3463 = (reg_class_subunion
3464 [this_alternative[i]]
3465 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
42c63e4d 3466 reg:
3467 if (GET_MODE (operand) == BLKmode)
3468 break;
3469 winreg = 1;
8ad4c111 3470 if (REG_P (operand)
42c63e4d 3471 && reg_fits_class_p (operand, this_alternative[i],
ed420a25 3472 offset, GET_MODE (recog_data.operand[i])))
42c63e4d 3473 win = 1;
3474 break;
3475 }
48ea5577 3476 while ((p += len), c);
42c63e4d 3477
3478 constraints[i] = p;
3479
3480 /* If this operand could be handled with a reg,
3481 and some reg is allowed, then this operand can be handled. */
bccb5444 3482 if (winreg && this_alternative[i] != NO_REGS
3483 && (win || !class_only_fixed_regs[this_alternative[i]]))
42c63e4d 3484 badop = 0;
3485
3486 /* Record which operands fit this alternative. */
3487 this_alternative_earlyclobber[i] = earlyclobber;
3488 if (win && ! force_reload)
3489 this_alternative_win[i] = 1;
1aa1d9da 3490 else if (did_match && ! force_reload)
3491 this_alternative_match_win[i] = 1;
42c63e4d 3492 else
3493 {
f630a9b6 3494 int const_to_mem = 0;
3495
42c63e4d 3496 this_alternative_offmemok[i] = offmemok;
3497 losers++;
3498 if (badop)
3499 bad = 1;
3500 /* Alternative loses if it has no regs for a reg operand. */
8ad4c111 3501 if (REG_P (operand)
b9c74b4d 3502 && this_alternative[i] == NO_REGS
42c63e4d 3503 && this_alternative_matches[i] < 0)
3504 bad = 1;
3505
f57d22b8 3506 /* If this is a constant that is reloaded into the desired
3507 class by copying it to memory first, count that as another
3508 reload. This is consistent with other code and is
df4c0ecd 3509 required to avoid choosing another alternative when
f57d22b8 3510 the constant is moved into memory by this function on
5bb2f919 3511 an early reload pass. Note that the test here is
f57d22b8 3512 precisely the same as in the code below that calls
3513 force_const_mem. */
7d7d7bd2 3514 if (CONST_POOL_OK_P (operand_mode[i], operand)
09a17585 3515 && ((targetm.preferred_reload_class (operand,
3516 this_alternative[i])
997d68fe 3517 == NO_REGS)
7d7d7bd2 3518 || no_input_reloads))
f630a9b6 3519 {
3520 const_to_mem = 1;
b9c74b4d 3521 if (this_alternative[i] != NO_REGS)
f630a9b6 3522 losers++;
3523 }
f57d22b8 3524
997d68fe 3525 /* Alternative loses if it requires a type of reload not
3526 permitted for this insn. We can always reload SCRATCH
3527 and objects with a REG_UNUSED note. */
897f76b2 3528 if (GET_CODE (operand) != SCRATCH
5bb2f919 3529 && modified[i] != RELOAD_READ && no_output_reloads
3530 && ! find_reg_note (insn, REG_UNUSED, operand))
997d68fe 3531 bad = 1;
3532 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3533 && ! const_to_mem)
3534 bad = 1;
3535
897f76b2 3536 /* If we can't reload this value at all, reject this
3537 alternative. Note that we could also lose due to
3538 LIMIT_RELOAD_CLASS, but we don't check that
3539 here. */
3540
b9c74b4d 3541 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
897f76b2 3542 {
09a17585 3543 if (targetm.preferred_reload_class (operand, this_alternative[i])
897f76b2 3544 == NO_REGS)
3545 reject = 600;
3546
897f76b2 3547 if (operand_type[i] == RELOAD_FOR_OUTPUT
71db0d8b 3548 && (targetm.preferred_output_reload_class (operand,
3549 this_alternative[i])
b9c74b4d 3550 == NO_REGS))
897f76b2 3551 reject = 600;
897f76b2 3552 }
3553
42c63e4d 3554 /* We prefer to reload pseudos over reloading other things,
3555 since such reloads may be able to be eliminated later.
3556 If we are reloading a SCRATCH, we won't be generating any
5bb2f919 3557 insns, just using a register, so it is also preferred.
f630a9b6 3558 So bump REJECT in other cases. Don't do this in the
3559 case where we are forcing a constant into memory and
3560 it will then win since we don't want to have a different
3561 alternative match then. */
8ad4c111 3562 if (! (REG_P (operand)
9f27e2b4 3563 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
f630a9b6 3564 && GET_CODE (operand) != SCRATCH
3565 && ! (const_to_mem && constmemok))
c988df6a 3566 reject += 2;
3567
3568 /* Input reloads can be inherited more often than output
3569 reloads can be removed, so penalize output reloads. */
c63a4c84 3570 if (operand_type[i] != RELOAD_FOR_INPUT
3571 && GET_CODE (operand) != SCRATCH)
42c63e4d 3572 reject++;
3573 }
3574
5bb2f919 3575 /* If this operand is a pseudo register that didn't get a hard
42c63e4d 3576 reg and this alternative accepts some register, see if the
3577 class that we want is a subset of the preferred class for this
3578 register. If not, but it intersects that class, use the
3579 preferred class instead. If it does not intersect the preferred
3580 class, show that usage of this alternative should be discouraged;
3581 it will be discouraged more still if the register is `preferred
3582 or nothing'. We do this because it increases the chance of
3583 reusing our spill register in a later insn and avoiding a pair
3584 of memory stores and loads.
3585
3586 Don't bother with this if this alternative will accept this
3587 operand.
3588
d5705e3f 3589 Don't do this for a multiword operand, since it is only a
3590 small win and has the risk of requiring more spill registers,
3591 which could cause a large loss.
a2f33c6e 3592
42c63e4d 3593 Don't do this if the preferred class has only one register
3594 because we might otherwise exhaust the class. */
3595
1aa1d9da 3596 if (! win && ! did_match
b9c74b4d 3597 && this_alternative[i] != NO_REGS
a2f33c6e 3598 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
be77efb1 3599 && reg_class_size [(int) preferred_class[i]] > 0
24dd0668 3600 && ! small_register_class_p (preferred_class[i]))
42c63e4d 3601 {
3602 if (! reg_class_subset_p (this_alternative[i],
3603 preferred_class[i]))
3604 {
3605 /* Since we don't have a way of forming the intersection,
3606 we just do something special if the preferred class
5bb2f919 3607 is a subset of the class we have; that's the most
42c63e4d 3608 common case anyway. */
3609 if (reg_class_subset_p (preferred_class[i],
3610 this_alternative[i]))
b9c74b4d 3611 this_alternative[i] = preferred_class[i];
42c63e4d 3612 else
c988df6a 3613 reject += (2 + 2 * pref_or_nothing[i]);
42c63e4d 3614 }
3615 }
3616 }
3617
3618 /* Now see if any output operands that are marked "earlyclobber"
3619 in this alternative conflict with any input operands
3620 or any memory addresses. */
3621
3622 for (i = 0; i < noperands; i++)
3623 if (this_alternative_earlyclobber[i]
1aa1d9da 3624 && (this_alternative_win[i] || this_alternative_match_win[i]))
42c63e4d 3625 {
5bb2f919 3626 struct decomposition early_data;
42c63e4d 3627
ed420a25 3628 early_data = decompose (recog_data.operand[i]);
42c63e4d 3629
04e579b6 3630 gcc_assert (modified[i] != RELOAD_READ);
5bb2f919 3631
42c63e4d 3632 if (this_alternative[i] == NO_REGS)
3633 {
3634 this_alternative_earlyclobber[i] = 0;
04e579b6 3635 gcc_assert (this_insn_is_asm);
3636 error_for_asm (this_insn,
eb586f2c 3637 "%<&%> constraint used with no register class");
42c63e4d 3638 }
3639
3640 for (j = 0; j < noperands; j++)
3641 /* Is this an input operand or a memory ref? */
e16ceb8e 3642 if ((MEM_P (recog_data.operand[j])
42c63e4d 3643 || modified[j] != RELOAD_WRITE)
3644 && j != i
3645 /* Ignore things like match_operator operands. */
a67a82ef 3646 && !recog_data.is_operator[j]
42c63e4d 3647 /* Don't count an input operand that is constrained to match
3648 the early clobber operand. */
3649 && ! (this_alternative_matches[j] == i
ed420a25 3650 && rtx_equal_p (recog_data.operand[i],
3651 recog_data.operand[j]))
42c63e4d 3652 /* Is it altered by storing the earlyclobber operand? */
ed420a25 3653 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3654 early_data))
42c63e4d 3655 {
be77efb1 3656 /* If the output is in a non-empty few-regs class,
42c63e4d 3657 it's costly to reload it, so reload the input instead. */
24dd0668 3658 if (small_register_class_p (this_alternative[i])
8ad4c111 3659 && (REG_P (recog_data.operand[j])
ed420a25 3660 || GET_CODE (recog_data.operand[j]) == SUBREG))
42c63e4d 3661 {
3662 losers++;
3663 this_alternative_win[j] = 0;
1aa1d9da 3664 this_alternative_match_win[j] = 0;
42c63e4d 3665 }
3666 else
3667 break;
3668 }
3669 /* If an earlyclobber operand conflicts with something,
3670 it must be reloaded, so request this and count the cost. */
3671 if (j != noperands)
3672 {
3673 losers++;
3674 this_alternative_win[i] = 0;
1aa1d9da 3675 this_alternative_match_win[j] = 0;
42c63e4d 3676 for (j = 0; j < noperands; j++)
3677 if (this_alternative_matches[j] == i
1aa1d9da 3678 && this_alternative_match_win[j])
42c63e4d 3679 {
3680 this_alternative_win[j] = 0;
1aa1d9da 3681 this_alternative_match_win[j] = 0;
42c63e4d 3682 losers++;
3683 }
3684 }
3685 }
3686
3687 /* If one alternative accepts all the operands, no reload required,
3688 choose that alternative; don't consider the remaining ones. */
3689 if (losers == 0)
3690 {
3691 /* Unswap these so that they are never swapped at `finish'. */
3692 if (commutative >= 0)
3693 {
ed420a25 3694 recog_data.operand[commutative] = substed_operand[commutative];
3695 recog_data.operand[commutative + 1]
42c63e4d 3696 = substed_operand[commutative + 1];
3697 }
3698 for (i = 0; i < noperands; i++)
3699 {
1aa1d9da 3700 goal_alternative_win[i] = this_alternative_win[i];
3701 goal_alternative_match_win[i] = this_alternative_match_win[i];
71db0d8b 3702 goal_alternative[i] = this_alternative[i];
42c63e4d 3703 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3704 goal_alternative_matches[i] = this_alternative_matches[i];
3705 goal_alternative_earlyclobber[i]
3706 = this_alternative_earlyclobber[i];
3707 }
3708 goal_alternative_number = this_alternative_number;
3709 goal_alternative_swapped = swapped;
3710 goal_earlyclobber = this_earlyclobber;
3711 goto finish;
3712 }
3713
3714 /* REJECT, set by the ! and ? constraint characters and when a register
3715 would be reloaded into a non-preferred class, discourages the use of
c988df6a 3716 this alternative for a reload goal. REJECT is incremented by six
3717 for each ? and two for each non-preferred class. */
3718 losers = losers * 6 + reject;
42c63e4d 3719
3720 /* If this alternative can be made to work by reloading,
3721 and it needs less reloading than the others checked so far,
3722 record it as the chosen goal for reloading. */
a7dcf969 3723 if (! bad)
42c63e4d 3724 {
9b14e0fd 3725 if (best > losers)
a7dcf969 3726 {
3727 for (i = 0; i < noperands; i++)
3728 {
71db0d8b 3729 goal_alternative[i] = this_alternative[i];
a7dcf969 3730 goal_alternative_win[i] = this_alternative_win[i];
3731 goal_alternative_match_win[i]
3732 = this_alternative_match_win[i];
3733 goal_alternative_offmemok[i]
3734 = this_alternative_offmemok[i];
3735 goal_alternative_matches[i] = this_alternative_matches[i];
3736 goal_alternative_earlyclobber[i]
3737 = this_alternative_earlyclobber[i];
3738 }
3739 goal_alternative_swapped = swapped;
3740 best = losers;
a7dcf969 3741 goal_alternative_number = this_alternative_number;
3742 goal_earlyclobber = this_earlyclobber;
42c63e4d 3743 }
42c63e4d 3744 }
3745 }
3746
3747 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3748 then we need to try each alternative twice,
3749 the second time matching those two operands
3750 as if we had exchanged them.
3751 To do this, really exchange them in operands.
3752
3753 If we have just tried the alternatives the second time,
3754 return operands to normal and drop through. */
3755
3756 if (commutative >= 0)
3757 {
3758 swapped = !swapped;
3759 if (swapped)
3760 {
19cb6b50 3761 enum reg_class tclass;
3762 int t;
42c63e4d 3763
ed420a25 3764 recog_data.operand[commutative] = substed_operand[commutative + 1];
3765 recog_data.operand[commutative + 1] = substed_operand[commutative];
6964f998 3766 /* Swap the duplicates too. */
3767 for (i = 0; i < recog_data.n_dups; i++)
3768 if (recog_data.dup_num[i] == commutative
3769 || recog_data.dup_num[i] == commutative + 1)
3770 *recog_data.dup_loc[i]
3771 = recog_data.operand[(int) recog_data.dup_num[i]];
42c63e4d 3772
3773 tclass = preferred_class[commutative];
3774 preferred_class[commutative] = preferred_class[commutative + 1];
3775 preferred_class[commutative + 1] = tclass;
3776
3777 t = pref_or_nothing[commutative];
3778 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3779 pref_or_nothing[commutative + 1] = t;
3780
565720f3 3781 t = address_reloaded[commutative];
3782 address_reloaded[commutative] = address_reloaded[commutative + 1];
3783 address_reloaded[commutative + 1] = t;
3784
d844aacc 3785 memcpy (constraints, recog_data.constraints,
39a1a66f 3786 noperands * sizeof (const char *));
42c63e4d 3787 goto try_swapped;
3788 }
3789 else
3790 {
ed420a25 3791 recog_data.operand[commutative] = substed_operand[commutative];
3792 recog_data.operand[commutative + 1]
3793 = substed_operand[commutative + 1];
6964f998 3794 /* Unswap the duplicates too. */
3795 for (i = 0; i < recog_data.n_dups; i++)
3796 if (recog_data.dup_num[i] == commutative
3797 || recog_data.dup_num[i] == commutative + 1)
3798 *recog_data.dup_loc[i]
3799 = recog_data.operand[(int) recog_data.dup_num[i]];
42c63e4d 3800 }
3801 }
3802
3803 /* The operands don't meet the constraints.
3804 goal_alternative describes the alternative
3805 that we could reach by reloading the fewest operands.
3806 Reload so as to fit it. */
3807
9c74cd6d 3808 if (best == MAX_RECOG_OPERANDS * 2 + 600)
42c63e4d 3809 {
3810 /* No alternative works with reloads?? */
3811 if (insn_code_number >= 0)
cb8bacb6 3812 fatal_insn ("unable to generate reloads for:", insn);
eb586f2c 3813 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
42c63e4d 3814 /* Avoid further trouble with this insn. */
941522d6 3815 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
42c63e4d 3816 n_reloads = 0;
93c7b06e 3817 return 0;
42c63e4d 3818 }
3819
3820 /* Jump to `finish' from above if all operands are valid already.
3821 In that case, goal_alternative_win is all 1. */
3822 finish:
3823
3824 /* Right now, for any pair of operands I and J that are required to match,
3825 with I < J,
3826 goal_alternative_matches[J] is I.
3827 Set up goal_alternative_matched as the inverse function:
3828 goal_alternative_matched[I] = J. */
3829
3830 for (i = 0; i < noperands; i++)
3831 goal_alternative_matched[i] = -1;
2617fe26 3832
42c63e4d 3833 for (i = 0; i < noperands; i++)
3834 if (! goal_alternative_win[i]
3835 && goal_alternative_matches[i] >= 0)
3836 goal_alternative_matched[goal_alternative_matches[i]] = i;
3837
1aa1d9da 3838 for (i = 0; i < noperands; i++)
3839 goal_alternative_win[i] |= goal_alternative_match_win[i];
3840
42c63e4d 3841 /* If the best alternative is with operands 1 and 2 swapped,
70457512 3842 consider them swapped before reporting the reloads. Update the
3843 operand numbers of any reloads already pushed. */
42c63e4d 3844
3845 if (goal_alternative_swapped)
3846 {
19cb6b50 3847 rtx tem;
42c63e4d 3848
3849 tem = substed_operand[commutative];
3850 substed_operand[commutative] = substed_operand[commutative + 1];
3851 substed_operand[commutative + 1] = tem;
ed420a25 3852 tem = recog_data.operand[commutative];
3853 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3854 recog_data.operand[commutative + 1] = tem;
3855 tem = *recog_data.operand_loc[commutative];
3856 *recog_data.operand_loc[commutative]
3857 = *recog_data.operand_loc[commutative + 1];
67610d42 3858 *recog_data.operand_loc[commutative + 1] = tem;
70457512 3859
3860 for (i = 0; i < n_reloads; i++)
3861 {
48666d2c 3862 if (rld[i].opnum == commutative)
3863 rld[i].opnum = commutative + 1;
3864 else if (rld[i].opnum == commutative + 1)
3865 rld[i].opnum = commutative;
70457512 3866 }
42c63e4d 3867 }
3868
42c63e4d 3869 for (i = 0; i < noperands; i++)
3870 {
42c63e4d 3871 operand_reloadnum[i] = -1;
70457512 3872
3873 /* If this is an earlyclobber operand, we need to widen the scope.
3874 The reload must remain valid from the start of the insn being
3875 reloaded until after the operand is stored into its destination.
3876 We approximate this with RELOAD_OTHER even though we know that we
3877 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3878
3879 One special case that is worth checking is when we have an
3880 output that is earlyclobber but isn't used past the insn (typically
5bb2f919 3881 a SCRATCH). In this case, we only need have the reload live
70457512 3882 through the insn itself, but not for any of our input or output
5bb2f919 3883 reloads.
5596d410 3884 But we must not accidentally narrow the scope of an existing
3885 RELOAD_OTHER reload - leave these alone.
70457512 3886
3887 In any case, anything needed to address this operand can remain
3888 however they were previously categorized. */
3889
5596d410 3890 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
70457512 3891 operand_type[i]
ed420a25 3892 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
70457512 3893 ? RELOAD_FOR_INSN : RELOAD_OTHER);
42c63e4d 3894 }
3895
3896 /* Any constants that aren't allowed and can't be reloaded
3897 into registers are here changed into memory references. */
3898 for (i = 0; i < noperands; i++)
7721da81 3899 if (! goal_alternative_win[i])
42c63e4d 3900 {
7721da81 3901 rtx op = recog_data.operand[i];
3902 rtx subreg = NULL_RTX;
3903 rtx plus = NULL_RTX;
3904 enum machine_mode mode = operand_mode[i];
3905
3906 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3907 push_reload so we have to let them pass here. */
3908 if (GET_CODE (op) == SUBREG)
3909 {
3910 subreg = op;
3911 op = SUBREG_REG (op);
3912 mode = GET_MODE (op);
3913 }
53716799 3914
7721da81 3915 if (GET_CODE (op) == PLUS)
3916 {
3917 plus = op;
3918 op = XEXP (op, 1);
3919 }
42c63e4d 3920
7d7d7bd2 3921 if (CONST_POOL_OK_P (mode, op)
09a17585 3922 && ((targetm.preferred_reload_class (op, goal_alternative[i])
7721da81 3923 == NO_REGS)
7d7d7bd2 3924 || no_input_reloads))
7721da81 3925 {
3926 int this_address_reloaded;
3927 rtx tem = force_const_mem (mode, op);
b3c5ca3e 3928
7721da81 3929 /* If we stripped a SUBREG or a PLUS above add it back. */
3930 if (plus != NULL_RTX)
3931 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3932
3933 if (subreg != NULL_RTX)
3934 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3935
3936 this_address_reloaded = 0;
3937 substed_operand[i] = recog_data.operand[i]
3938 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3939 0, insn, &this_address_reloaded);
3940
3941 /* If the alternative accepts constant pool refs directly
3942 there will be no reload needed at all. */
3943 if (plus == NULL_RTX
3944 && subreg == NULL_RTX
3945 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3946 ? substed_operand[i]
3947 : NULL,
3948 recog_data.constraints[i],
3949 goal_alternative_number))
3950 goal_alternative_win[i] = 1;
3951 }
b3c5ca3e 3952 }
3953
3e561fd5 3954 /* Record the values of the earlyclobber operands for the caller. */
3955 if (goal_earlyclobber)
3956 for (i = 0; i < noperands; i++)
3957 if (goal_alternative_earlyclobber[i])
ed420a25 3958 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3e561fd5 3959
42c63e4d 3960 /* Now record reloads for all the operands that need them. */
3961 for (i = 0; i < noperands; i++)
3962 if (! goal_alternative_win[i])
3963 {
3964 /* Operands that match previous ones have already been handled. */
3965 if (goal_alternative_matches[i] >= 0)
3966 ;
3967 /* Handle an operand with a nonoffsettable address
3968 appearing where an offsettable address will do
f57d22b8 3969 by reloading the address into a base register.
3970
3971 ??? We can also do this when the operand is a register and
3972 reg_equiv_mem is not offsettable, but this is a bit tricky,
3973 so we don't bother with it. It may not be worth doing. */
42c63e4d 3974 else if (goal_alternative_matched[i] == -1
3975 && goal_alternative_offmemok[i]
e16ceb8e 3976 && MEM_P (recog_data.operand[i]))
42c63e4d 3977 {
91e1886d 3978 /* If the address to be reloaded is a VOIDmode constant,
98155838 3979 use the default address mode as mode of the reload register,
3980 as would have been done by find_reloads_address. */
f8a8fc7b 3981 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
91e1886d 3982 enum machine_mode address_mode;
3983 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3984 if (address_mode == VOIDmode)
f8a8fc7b 3985 address_mode = targetm.addr_space.address_mode (as);
91e1886d 3986
42c63e4d 3987 operand_reloadnum[i]
ed420a25 3988 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
33181afc 3989 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
f8a8fc7b 3990 base_reg_class (VOIDmode, as, MEM, SCRATCH),
91e1886d 3991 address_mode,
70457512 3992 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
48666d2c 3993 rld[operand_reloadnum[i]].inc
ed420a25 3994 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
70457512 3995
3996 /* If this operand is an output, we will have made any
3997 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3998 now we are treating part of the operand as an input, so
3999 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4000
6d7ad5dc 4001 if (modified[i] == RELOAD_WRITE)
9e53d777 4002 {
4003 for (j = 0; j < n_reloads; j++)
4004 {
48666d2c 4005 if (rld[j].opnum == i)
9e53d777 4006 {
48666d2c 4007 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4008 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4009 else if (rld[j].when_needed
9e53d777 4010 == RELOAD_FOR_OUTADDR_ADDRESS)
48666d2c 4011 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
9e53d777 4012 }
4013 }
4014 }
42c63e4d 4015 }
4016 else if (goal_alternative_matched[i] == -1)
9e042f31 4017 {
4018 operand_reloadnum[i]
4019 = push_reload ((modified[i] != RELOAD_WRITE
ed420a25 4020 ? recog_data.operand[i] : 0),
4021 (modified[i] != RELOAD_READ
4022 ? recog_data.operand[i] : 0),
9e042f31 4023 (modified[i] != RELOAD_WRITE
ed420a25 4024 ? recog_data.operand_loc[i] : 0),
9e042f31 4025 (modified[i] != RELOAD_READ
ed420a25 4026 ? recog_data.operand_loc[i] : 0),
9e042f31 4027 (enum reg_class) goal_alternative[i],
4028 (modified[i] == RELOAD_WRITE
4029 ? VOIDmode : operand_mode[i]),
4030 (modified[i] == RELOAD_READ
4031 ? VOIDmode : operand_mode[i]),
4032 (insn_code_number < 0 ? 0
6357eaae 4033 : insn_data[insn_code_number].operand[i].strict_low),
9e042f31 4034 0, i, operand_type[i]);
9e042f31 4035 }
42c63e4d 4036 /* In a matching pair of operands, one must be input only
4037 and the other must be output only.
4038 Pass the input operand as IN and the other as OUT. */
4039 else if (modified[i] == RELOAD_READ
4040 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4041 {
4042 operand_reloadnum[i]
ed420a25 4043 = push_reload (recog_data.operand[i],
4044 recog_data.operand[goal_alternative_matched[i]],
4045 recog_data.operand_loc[i],
4046 recog_data.operand_loc[goal_alternative_matched[i]],
42c63e4d 4047 (enum reg_class) goal_alternative[i],
4048 operand_mode[i],
4049 operand_mode[goal_alternative_matched[i]],
70457512 4050 0, 0, i, RELOAD_OTHER);
42c63e4d 4051 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4052 }
4053 else if (modified[i] == RELOAD_WRITE
4054 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4055 {
4056 operand_reloadnum[goal_alternative_matched[i]]
ed420a25 4057 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4058 recog_data.operand[i],
4059 recog_data.operand_loc[goal_alternative_matched[i]],
4060 recog_data.operand_loc[i],
42c63e4d 4061 (enum reg_class) goal_alternative[i],
4062 operand_mode[goal_alternative_matched[i]],
4063 operand_mode[i],
70457512 4064 0, 0, i, RELOAD_OTHER);
42c63e4d 4065 operand_reloadnum[i] = output_reloadnum;
4066 }
42c63e4d 4067 else
4068 {
04e579b6 4069 gcc_assert (insn_code_number < 0);
eb586f2c 4070 error_for_asm (insn, "inconsistent operand constraints "
4071 "in an %<asm%>");
42c63e4d 4072 /* Avoid further trouble with this insn. */
941522d6 4073 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
42c63e4d 4074 n_reloads = 0;
93c7b06e 4075 return 0;
42c63e4d 4076 }
4077 }
4078 else if (goal_alternative_matched[i] < 0
b43a3b62 4079 && goal_alternative_matches[i] < 0
e4542435 4080 && address_operand_reloaded[i] != 1
b43a3b62 4081 && optimize)
42c63e4d 4082 {
5bb2f919 4083 /* For each non-matching operand that's a MEM or a pseudo-register
42c63e4d 4084 that didn't get a hard register, make an optional reload.
4085 This may get done even if the insn needs no reloads otherwise. */
70457512 4086
ed420a25 4087 rtx operand = recog_data.operand[i];
70457512 4088
42c63e4d 4089 while (GET_CODE (operand) == SUBREG)
701e46d0 4090 operand = SUBREG_REG (operand);
e16ceb8e 4091 if ((MEM_P (operand)
8ad4c111 4092 || (REG_P (operand)
70457512 4093 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
93c7b06e 4094 /* If this is only for an output, the optional reload would not
4095 actually cause us to use a register now, just note that
4096 something is stored here. */
09a17585 4097 && (goal_alternative[i] != NO_REGS
93c7b06e 4098 || modified[i] == RELOAD_WRITE)
70457512 4099 && ! no_input_reloads
93c7b06e 4100 /* An optional output reload might allow to delete INSN later.
4101 We mustn't make in-out reloads on insns that are not permitted
4102 output reloads.
4103 If this is an asm, we can't delete it; we must not even call
4104 push_reload for an optional output reload in this case,
4105 because we can't be sure that the constraint allows a register,
4106 and push_reload verifies the constraints for asms. */
42c63e4d 4107 && (modified[i] == RELOAD_READ
93c7b06e 4108 || (! no_output_reloads && ! this_insn_is_asm)))
42c63e4d 4109 operand_reloadnum[i]
ed420a25 4110 = push_reload ((modified[i] != RELOAD_WRITE
4111 ? recog_data.operand[i] : 0),
4112 (modified[i] != RELOAD_READ
4113 ? recog_data.operand[i] : 0),
70457512 4114 (modified[i] != RELOAD_WRITE
ed420a25 4115 ? recog_data.operand_loc[i] : 0),
70457512 4116 (modified[i] != RELOAD_READ
ed420a25 4117 ? recog_data.operand_loc[i] : 0),
42c63e4d 4118 (enum reg_class) goal_alternative[i],
70457512 4119 (modified[i] == RELOAD_WRITE
4120 ? VOIDmode : operand_mode[i]),
4121 (modified[i] == RELOAD_READ
4122 ? VOIDmode : operand_mode[i]),
42c63e4d 4123 (insn_code_number < 0 ? 0
6357eaae 4124 : insn_data[insn_code_number].operand[i].strict_low),
70457512 4125 1, i, operand_type[i]);
b26819b2 4126 /* If a memory reference remains (either as a MEM or a pseudo that
4127 did not get a hard register), yet we can't make an optional
93c7b06e 4128 reload, check if this is actually a pseudo register reference;
4129 we then need to emit a USE and/or a CLOBBER so that reload
4130 inheritance will do the right thing. */
b43a3b62 4131 else if (replace
e16ceb8e 4132 && (MEM_P (operand)
8ad4c111 4133 || (REG_P (operand)
b43a3b62 4134 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4135 && reg_renumber [REGNO (operand)] < 0)))
93c7b06e 4136 {
ed420a25 4137 operand = *recog_data.operand_loc[i];
93c7b06e 4138
4139 while (GET_CODE (operand) == SUBREG)
701e46d0 4140 operand = SUBREG_REG (operand);
8ad4c111 4141 if (REG_P (operand))
93c7b06e 4142 {
4143 if (modified[i] != RELOAD_WRITE)
b2920130 4144 /* We mark the USE with QImode so that we recognize
4145 it as one that can be safely deleted at the end
4146 of reload. */
4147 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4148 insn), QImode);
93c7b06e 4149 if (modified[i] != RELOAD_READ)
18b42941 4150 emit_insn_after (gen_clobber (operand), insn);
93c7b06e 4151 }
4152 }
42c63e4d 4153 }
70457512 4154 else if (goal_alternative_matches[i] >= 0
4155 && goal_alternative_win[goal_alternative_matches[i]]
4156 && modified[i] == RELOAD_READ
4157 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
b43a3b62 4158 && ! no_input_reloads && ! no_output_reloads
4159 && optimize)
70457512 4160 {
4161 /* Similarly, make an optional reload for a pair of matching
4162 objects that are in MEM or a pseudo that didn't get a hard reg. */
42c63e4d 4163
ed420a25 4164 rtx operand = recog_data.operand[i];
70457512 4165
4166 while (GET_CODE (operand) == SUBREG)
701e46d0 4167 operand = SUBREG_REG (operand);
e16ceb8e 4168 if ((MEM_P (operand)
8ad4c111 4169 || (REG_P (operand)
70457512 4170 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
09a17585 4171 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
70457512 4172 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
ed420a25 4173 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4174 recog_data.operand[i],
4175 recog_data.operand_loc[goal_alternative_matches[i]],
4176 recog_data.operand_loc[i],
70457512 4177 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4178 operand_mode[goal_alternative_matches[i]],
4179 operand_mode[i],
4180 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4181 }
5bb2f919 4182
93c7b06e 4183 /* Perform whatever substitutions on the operands we are supposed
4184 to make due to commutativity or replacement of registers
4185 with equivalent constants or memory slots. */
4186
4187 for (i = 0; i < noperands; i++)
4188 {
4189 /* We only do this on the last pass through reload, because it is
5bb2f919 4190 possible for some data (like reg_equiv_address) to be changed during
caebd015 4191 later passes. Moreover, we lose the opportunity to get a useful
5bb2f919 4192 reload_{in,out}_reg when we do these replacements. */
93c7b06e 4193
4194 if (replace)
e32e621c 4195 {
4196 rtx substitution = substed_operand[i];
4197
ed420a25 4198 *recog_data.operand_loc[i] = substitution;
e32e621c 4199
19d2fe05 4200 /* If we're replacing an operand with a LABEL_REF, we need to
4201 make sure that there's a REG_LABEL_OPERAND note attached to
e32e621c 4202 this instruction. */
19d2fe05 4203 if (GET_CODE (substitution) == LABEL_REF
4204 && !find_reg_note (insn, REG_LABEL_OPERAND,
4205 XEXP (substitution, 0))
4206 /* For a JUMP_P, if it was a branch target it must have
4207 already been recorded as such. */
4208 && (!JUMP_P (insn)
4209 || !label_is_jump_target_p (XEXP (substitution, 0),
4210 insn)))
a1ddb869 4211 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
e32e621c 4212 }
93c7b06e 4213 else
ed420a25 4214 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
93c7b06e 4215 }
4216
42c63e4d 4217 /* If this insn pattern contains any MATCH_DUP's, make sure that
4218 they will be substituted if the operands they match are substituted.
4219 Also do now any substitutions we already did on the operands.
4220
4221 Don't do this if we aren't making replacements because we might be
4222 propagating things allocated by frame pointer elimination into places
4223 it doesn't expect. */
4224
4225 if (insn_code_number >= 0 && replace)
6357eaae 4226 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
42c63e4d 4227 {
ed420a25 4228 int opno = recog_data.dup_num[i];
4229 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
520be5a2 4230 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
42c63e4d 4231 }
4232
4233#if 0
4234 /* This loses because reloading of prior insns can invalidate the equivalence
4235 (or at least find_equiv_reg isn't smart enough to find it any more),
4236 causing this insn to need more reload regs than it needed before.
4237 It may be too late to make the reload regs available.
4238 Now this optimization is done safely in choose_reload_regs. */
4239
4240 /* For each reload of a reg into some other class of reg,
4241 search for an existing equivalent reg (same value now) in the right class.
4242 We can use it as long as we don't need to change its contents. */
4243 for (i = 0; i < n_reloads; i++)
48666d2c 4244 if (rld[i].reg_rtx == 0
4245 && rld[i].in != 0
8ad4c111 4246 && REG_P (rld[i].in)
48666d2c 4247 && rld[i].out == 0)
42c63e4d 4248 {
48666d2c 4249 rld[i].reg_rtx
c32319fc 4250 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
48666d2c 4251 static_reload_reg_p, 0, rld[i].inmode);
42c63e4d 4252 /* Prevent generation of insn to load the value
4253 because the one we found already has the value. */
48666d2c 4254 if (rld[i].reg_rtx)
4255 rld[i].in = rld[i].reg_rtx;
42c63e4d 4256 }
4257#endif
4258
7c679c65 4259 /* If we detected error and replaced asm instruction by USE, forget about the
4260 reloads. */
4261 if (GET_CODE (PATTERN (insn)) == USE
971ba038 4262 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
7c679c65 4263 n_reloads = 0;
4264
70457512 4265 /* Perhaps an output reload can be combined with another
4266 to reduce needs by one. */
4267 if (!goal_earlyclobber)
4268 combine_reloads ();
4269
4270 /* If we have a pair of reloads for parts of an address, they are reloading
4271 the same object, the operands themselves were not reloaded, and they
4272 are for two operands that are supposed to match, merge the reloads and
a92771b8 4273 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
70457512 4274
4275 for (i = 0; i < n_reloads; i++)
4276 {
4277 int k;
4278
4279 for (j = i + 1; j < n_reloads; j++)
48666d2c 4280 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4281 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4282 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4283 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4284 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4285 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4286 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4287 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4288 && rtx_equal_p (rld[i].in, rld[j].in)
4289 && (operand_reloadnum[rld[i].opnum] < 0
4290 || rld[operand_reloadnum[rld[i].opnum]].optional)
4291 && (operand_reloadnum[rld[j].opnum] < 0
4292 || rld[operand_reloadnum[rld[j].opnum]].optional)
4293 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4294 || (goal_alternative_matches[rld[j].opnum]
4295 == rld[i].opnum)))
70457512 4296 {
4297 for (k = 0; k < n_replacements; k++)
4298 if (replacements[k].what == j)
4299 replacements[k].what = i;
4300
48666d2c 4301 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4302 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4303 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
9e53d777 4304 else
48666d2c 4305 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4306 rld[j].in = 0;
70457512 4307 }
4308 }
4309
5bb2f919 4310 /* Scan all the reloads and update their type.
70457512 4311 If a reload is for the address of an operand and we didn't reload
4312 that operand, change the type. Similarly, change the operand number
4313 of a reload when two operands match. If a reload is optional, treat it
4314 as though the operand isn't reloaded.
4315
4316 ??? This latter case is somewhat odd because if we do the optional
4317 reload, it means the object is hanging around. Thus we need only
4318 do the address reload if the optional reload was NOT done.
4319
4320 Change secondary reloads to be the address type of their operand, not
4321 the normal type.
4322
4323 If an operand's reload is now RELOAD_OTHER, change any
4324 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4325 RELOAD_FOR_OTHER_ADDRESS. */
4326
4327 for (i = 0; i < n_reloads; i++)
4328 {
48666d2c 4329 if (rld[i].secondary_p
83669f96 4330 && rld[i].when_needed == operand_type[rld[i].opnum])
4331 rld[i].when_needed = address_type[rld[i].opnum];
48666d2c 4332
4333 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4334 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4335 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4336 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4337 && (operand_reloadnum[rld[i].opnum] < 0
4338 || rld[operand_reloadnum[rld[i].opnum]].optional))
4d998c92 4339 {
4340 /* If we have a secondary reload to go along with this reload,
a92771b8 4341 change its type to RELOAD_FOR_OPADDR_ADDR. */
4d998c92 4342
48666d2c 4343 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4344 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4345 && rld[i].secondary_in_reload != -1)
4d998c92 4346 {
48666d2c 4347 int secondary_in_reload = rld[i].secondary_in_reload;
4d998c92 4348
67610d42 4349 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4d998c92 4350
a92771b8 4351 /* If there's a tertiary reload we have to change it also. */
4d998c92 4352 if (secondary_in_reload > 0
48666d2c 4353 && rld[secondary_in_reload].secondary_in_reload != -1)
4354 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
83669f96 4355 = RELOAD_FOR_OPADDR_ADDR;
4d998c92 4356 }
4357
48666d2c 4358 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4359 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4360 && rld[i].secondary_out_reload != -1)
4d998c92 4361 {
48666d2c 4362 int secondary_out_reload = rld[i].secondary_out_reload;
4d998c92 4363
67610d42 4364 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4d998c92 4365
a92771b8 4366 /* If there's a tertiary reload we have to change it also. */
4d998c92 4367 if (secondary_out_reload
48666d2c 4368 && rld[secondary_out_reload].secondary_out_reload != -1)
4369 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
83669f96 4370 = RELOAD_FOR_OPADDR_ADDR;
4d998c92 4371 }
997d68fe 4372
48666d2c 4373 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4374 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4375 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
93c7b06e 4376 else
48666d2c 4377 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4d998c92 4378 }
70457512 4379
48666d2c 4380 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4381 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4382 && operand_reloadnum[rld[i].opnum] >= 0
4383 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
70457512 4384 == RELOAD_OTHER))
48666d2c 4385 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
70457512 4386
48666d2c 4387 if (goal_alternative_matches[rld[i].opnum] >= 0)
4388 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
70457512 4389 }
4390
4429ee8b 4391 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4392 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4393 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4394
4395 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4396 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4397 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4398 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4399 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4400 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4401 This is complicated by the fact that a single operand can have more
4402 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4403 choose_reload_regs without affecting code quality, and cases that
4404 actually fail are extremely rare, so it turns out to be better to fix
4405 the problem here by not generating cases that choose_reload_regs will
4406 fail for. */
ab3d0862 4407 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
45700efb 4408 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4409 a single operand.
4410 We can reduce the register pressure by exploiting that a
4411 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
d2eaccc2 4412 does not conflict with any of them, if it is only used for the first of
4413 the RELOAD_FOR_X_ADDRESS reloads. */
4429ee8b 4414 {
45700efb 4415 int first_op_addr_num = -2;
4416 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4417 int first_outpaddr_num[MAX_RECOG_OPERANDS];
67610d42 4418 int need_change = 0;
45700efb 4419 /* We use last_op_addr_reload and the contents of the above arrays
4420 first as flags - -2 means no instance encountered, -1 means exactly
4421 one instance encountered.
4422 If more than one instance has been encountered, we store the reload
4423 number of the first reload of the kind in question; reload numbers
4424 are known to be non-negative. */
4425 for (i = 0; i < noperands; i++)
4426 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4427 for (i = n_reloads - 1; i >= 0; i--)
4428 {
48666d2c 4429 switch (rld[i].when_needed)
45700efb 4430 {
4431 case RELOAD_FOR_OPERAND_ADDRESS:
d2eaccc2 4432 if (++first_op_addr_num >= 0)
45700efb 4433 {
d2eaccc2 4434 first_op_addr_num = i;
45700efb 4435 need_change = 1;
4436 }
4437 break;
4438 case RELOAD_FOR_INPUT_ADDRESS:
48666d2c 4439 if (++first_inpaddr_num[rld[i].opnum] >= 0)
45700efb 4440 {
48666d2c 4441 first_inpaddr_num[rld[i].opnum] = i;
45700efb 4442 need_change = 1;
4443 }
4444 break;
4445 case RELOAD_FOR_OUTPUT_ADDRESS:
48666d2c 4446 if (++first_outpaddr_num[rld[i].opnum] >= 0)
45700efb 4447 {
48666d2c 4448 first_outpaddr_num[rld[i].opnum] = i;
45700efb 4449 need_change = 1;
4450 }
4451 break;
4452 default:
4453 break;
4454 }
4455 }
4429ee8b 4456
45700efb 4457 if (need_change)
4458 {
4459 for (i = 0; i < n_reloads; i++)
4460 {
29768226 4461 int first_num;
4462 enum reload_type type;
45700efb 4463
48666d2c 4464 switch (rld[i].when_needed)
45700efb 4465 {
4466 case RELOAD_FOR_OPADDR_ADDR:
4467 first_num = first_op_addr_num;
4468 type = RELOAD_FOR_OPERAND_ADDRESS;
4469 break;
4470 case RELOAD_FOR_INPADDR_ADDRESS:
48666d2c 4471 first_num = first_inpaddr_num[rld[i].opnum];
45700efb 4472 type = RELOAD_FOR_INPUT_ADDRESS;
4473 break;
4474 case RELOAD_FOR_OUTADDR_ADDRESS:
48666d2c 4475 first_num = first_outpaddr_num[rld[i].opnum];
45700efb 4476 type = RELOAD_FOR_OUTPUT_ADDRESS;
4477 break;
4478 default:
4479 continue;
4480 }
d2eaccc2 4481 if (first_num < 0)
4482 continue;
4483 else if (i > first_num)
48666d2c 4484 rld[i].when_needed = type;
d2eaccc2 4485 else
4486 {
4487 /* Check if the only TYPE reload that uses reload I is
4488 reload FIRST_NUM. */
4489 for (j = n_reloads - 1; j > first_num; j--)
4490 {
48666d2c 4491 if (rld[j].when_needed == type
4492 && (rld[i].secondary_p
4493 ? rld[j].secondary_in_reload == i
4494 : reg_mentioned_p (rld[i].in, rld[j].in)))
d2eaccc2 4495 {
48666d2c 4496 rld[i].when_needed = type;
d2eaccc2 4497 break;
4498 }
4499 }
4500 }
45700efb 4501 }
4502 }
4429ee8b 4503 }
4504
70457512 4505 /* See if we have any reloads that are now allowed to be merged
4506 because we've changed when the reload is needed to
4507 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4508 check for the most common cases. */
4509
4510 for (i = 0; i < n_reloads; i++)
48666d2c 4511 if (rld[i].in != 0 && rld[i].out == 0
4512 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4513 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4514 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
70457512 4515 for (j = 0; j < n_reloads; j++)
48666d2c 4516 if (i != j && rld[j].in != 0 && rld[j].out == 0
4517 && rld[j].when_needed == rld[i].when_needed
4518 && MATCHES (rld[i].in, rld[j].in)
c32319fc 4519 && rld[i].rclass == rld[j].rclass
48666d2c 4520 && !rld[i].nocombine && !rld[j].nocombine
4521 && rld[i].reg_rtx == rld[j].reg_rtx)
70457512 4522 {
48666d2c 4523 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
70457512 4524 transfer_replacements (i, j);
48666d2c 4525 rld[j].in = 0;
70457512 4526 }
4527
155b05dc 4528#ifdef HAVE_cc0
4529 /* If we made any reloads for addresses, see if they violate a
4530 "no input reloads" requirement for this insn. But loads that we
4531 do after the insn (such as for output addresses) are fine. */
4532 if (no_input_reloads)
4533 for (i = 0; i < n_reloads; i++)
04e579b6 4534 gcc_assert (rld[i].in == 0
4535 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4536 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
155b05dc 4537#endif
4538
456b6b44 4539 /* Compute reload_mode and reload_nregs. */
4540 for (i = 0; i < n_reloads; i++)
4541 {
4542 rld[i].mode
4543 = (rld[i].inmode == VOIDmode
4544 || (GET_MODE_SIZE (rld[i].outmode)
4545 > GET_MODE_SIZE (rld[i].inmode)))
4546 ? rld[i].outmode : rld[i].inmode;
4547
d3ba22dc 4548 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
456b6b44 4549 }
4550
483fd82f 4551 /* Special case a simple move with an input reload and a
4552 destination of a hard reg, if the hard reg is ok, use it. */
4553 for (i = 0; i < n_reloads; i++)
4554 if (rld[i].when_needed == RELOAD_FOR_INPUT
4555 && GET_CODE (PATTERN (insn)) == SET
8ad4c111 4556 && REG_P (SET_DEST (PATTERN (insn)))
a5f1b756 4557 && (SET_SRC (PATTERN (insn)) == rld[i].in
4558 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
eca883d1 4559 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
483fd82f 4560 {
3ad4992f 4561 rtx dest = SET_DEST (PATTERN (insn));
483fd82f 4562 unsigned int regno = REGNO (dest);
4563
3ad4992f 4564 if (regno < FIRST_PSEUDO_REGISTER
c32319fc 4565 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
3ad4992f 4566 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
7497bc17 4567 {
67d6c12b 4568 int nr = hard_regno_nregs[regno][rld[i].mode];
7497bc17 4569 int ok = 1, nri;
4570
4571 for (nri = 1; nri < nr; nri ++)
c32319fc 4572 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
7497bc17 4573 ok = 0;
4574
4575 if (ok)
4576 rld[i].reg_rtx = dest;
4577 }
483fd82f 4578 }
4579
93c7b06e 4580 return retval;
42c63e4d 4581}
4582
53716799 4583/* Return true if alternative number ALTNUM in constraint-string
4584 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4585 MEM gives the reference if it didn't need any reloads, otherwise it
4586 is null. */
42c63e4d 4587
53716799 4588static bool
6577bf6b 4589alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4590 const char *constraint, int altnum)
42c63e4d 4591{
19cb6b50 4592 int c;
53716799 4593
42c63e4d 4594 /* Skip alternatives before the one requested. */
4595 while (altnum > 0)
4596 {
3c802a1e 4597 while (*constraint++ != ',')
4598 ;
42c63e4d 4599 altnum--;
4600 }
e9ff93b1 4601 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
53716799 4602 If one of them is present, this alternative accepts the result of
4603 passing a constant-pool reference through find_reloads_toplev.
4604
4605 The same is true of extra memory constraints if the address
4606 was reloaded into a register. However, the target may elect
4607 to disallow the original constant address, forcing it to be
4608 reloaded into a register instead. */
48ea5577 4609 for (; (c = *constraint) && c != ',' && c != '#';
4610 constraint += CONSTRAINT_LEN (c, constraint))
53716799 4611 {
e9ff93b1 4612 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
53716799 4613 return true;
4614#ifdef EXTRA_CONSTRAINT_STR
4615 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4616 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4617 return true;
4618#endif
4619 }
4620 return false;
42c63e4d 4621}
4622\f
4623/* Scan X for memory references and scan the addresses for reloading.
4624 Also checks for references to "constant" regs that we want to eliminate
4625 and replaces them with the values they stand for.
4bbea254 4626 We may alter X destructively if it contains a reference to such.
42c63e4d 4627 If X is just a constant reg, we return the equivalent value
4628 instead of X.
4629
4630 IND_LEVELS says how many levels of indirect addressing this machine
4631 supports.
4632
70457512 4633 OPNUM and TYPE identify the purpose of the reload.
4634
42c63e4d 4635 IS_SET_DEST is true if X is the destination of a SET, which is not
93c7b06e 4636 appropriate to be replaced by a constant.
4637
4638 INSN, if nonzero, is the insn in which we do the reload. It is used
4639 to determine if we may generate output reloads, and where to put USEs
1aa90c62 4640 for pseudos that we have to replace with stack slots.
4641
4642 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4643 result of find_reloads_address. */
42c63e4d 4644
4645static rtx
3ad4992f 4646find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4647 int ind_levels, int is_set_dest, rtx insn,
4648 int *address_reloaded)
42c63e4d 4649{
19cb6b50 4650 RTX_CODE code = GET_CODE (x);
42c63e4d 4651
19cb6b50 4652 const char *fmt = GET_RTX_FORMAT (code);
4653 int i;
a60f4869 4654 int copied;
42c63e4d 4655
4656 if (code == REG)
4657 {
4658 /* This code is duplicated for speed in find_reloads. */
19cb6b50 4659 int regno = REGNO (x);
1c654ff1 4660 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4661 x = reg_equiv_constant (regno);
42c63e4d 4662#if 0
5bb2f919 4663 /* This creates (subreg (mem...)) which would cause an unnecessary
4664 reload of the mem. */
1c654ff1 4665 else if (reg_equiv_mem (regno) != 0)
4666 x = reg_equiv_mem (regno);
42c63e4d 4667#endif
1c654ff1 4668 else if (reg_equiv_memory_loc (regno)
4669 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
42c63e4d 4670 {
93c7b06e 4671 rtx mem = make_memloc (x, regno);
1c654ff1 4672 if (reg_equiv_address (regno)
4673 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
93c7b06e 4674 {
4675 /* If this is not a toplevel operand, find_reloads doesn't see
4676 this substitution. We have to emit a USE of the pseudo so
4677 that delete_output_reload can see it. */
ed420a25 4678 if (replace_reloads && recog_data.operand[opnum] != x)
b2920130 4679 /* We mark the USE with QImode so that we recognize it
4680 as one that can be safely deleted at the end of
4681 reload. */
4682 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4683 QImode);
93c7b06e 4684 x = mem;
1aa90c62 4685 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4686 opnum, type, ind_levels, insn);
c89e828f 4687 if (!rtx_equal_p (x, mem))
d51b37c2 4688 push_reg_equiv_alt_mem (regno, x);
1aa90c62 4689 if (address_reloaded)
4690 *address_reloaded = i;
93c7b06e 4691 }
42c63e4d 4692 }
4693 return x;
4694 }
4695 if (code == MEM)
4696 {
4697 rtx tem = x;
1aa90c62 4698
4699 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4700 opnum, type, ind_levels, insn);
4701 if (address_reloaded)
4702 *address_reloaded = i;
4703
42c63e4d 4704 return tem;
4705 }
4706
8ad4c111 4707 if (code == SUBREG && REG_P (SUBREG_REG (x)))
42c63e4d 4708 {
1fa3a8f6 4709 /* Check for SUBREG containing a REG that's equivalent to a
4710 constant. If the constant has a known value, truncate it
4711 right now. Similarly if we are extracting a single-word of a
4712 multi-word constant. If the constant is symbolic, allow it
4713 to be substituted normally. push_reload will strip the
4714 subreg later. The constant must not be VOIDmode, because we
4715 will lose the mode of the register (this should never happen
4716 because one of the cases above should handle it). */
42c63e4d 4717
19cb6b50 4718 int regno = REGNO (SUBREG_REG (x));
42c63e4d 4719 rtx tem;
4720
9f1a815a 4721 if (regno >= FIRST_PSEUDO_REGISTER
4722 && reg_renumber[regno] < 0
1c654ff1 4723 && reg_equiv_constant (regno) != 0)
c16f995d 4724 {
c736a837 4725 tem =
1c654ff1 4726 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
c736a837 4727 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
04e579b6 4728 gcc_assert (tem);
ca316360 4729 if (CONSTANT_P (tem)
4730 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
8a72adf4 4731 {
4732 tem = force_const_mem (GET_MODE (x), tem);
4733 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4734 &XEXP (tem, 0), opnum, type,
4735 ind_levels, insn);
4736 if (address_reloaded)
4737 *address_reloaded = i;
4738 }
622e3537 4739 return tem;
c16f995d 4740 }
42c63e4d 4741
42c63e4d 4742 /* If the subreg contains a reg that will be converted to a mem,
4743 convert the subreg to a narrower memref now.
4744 Otherwise, we would get (subreg (mem ...) ...),
4745 which would force reload of the mem.
4746
4747 We also need to do this if there is an equivalent MEM that is
4748 not offsettable. In that case, alter_subreg would produce an
4749 invalid address on big-endian machines.
4750
9d435639 4751 For machines that extend byte loads, we must not reload using
42c63e4d 4752 a wider mode if we have a paradoxical SUBREG. find_reloads will
4753 force a reload in that case. So we should not do anything here. */
4754
9f1a815a 4755 if (regno >= FIRST_PSEUDO_REGISTER
41619c31 4756#ifdef LOAD_EXTEND_OP
b537bfdb 4757 && !paradoxical_subreg_p (x)
42c63e4d 4758#endif
b537bfdb 4759 && (reg_equiv_address (regno) != 0
4760 || (reg_equiv_mem (regno) != 0
4761 && (! strict_memory_address_addr_space_p
4762 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
4763 MEM_ADDR_SPACE (reg_equiv_mem (regno)))
4764 || ! offsettable_memref_p (reg_equiv_mem (regno))
4765 || num_not_at_initial_offset))))
37f7956e 4766 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
b5fe590a 4767 insn, address_reloaded);
42c63e4d 4768 }
4769
a60f4869 4770 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
42c63e4d 4771 {
4772 if (fmt[i] == 'e')
a60f4869 4773 {
4774 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
1aa90c62 4775 ind_levels, is_set_dest, insn,
4776 address_reloaded);
a60f4869 4777 /* If we have replaced a reg with it's equivalent memory loc -
4778 that can still be handled here e.g. if it's in a paradoxical
4779 subreg - we must make the change in a copy, rather than using
4780 a destructive change. This way, find_reloads can still elect
4781 not to do the change. */
4782 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4783 {
57ff0c05 4784 x = shallow_copy_rtx (x);
a60f4869 4785 copied = 1;
4786 }
4787 XEXP (x, i) = new_part;
4788 }
42c63e4d 4789 }
4790 return x;
4791}
4792
b763f6ee 4793/* Return a mem ref for the memory equivalent of reg REGNO.
4794 This mem ref is not shared with anything. */
4795
42c63e4d 4796static rtx
3ad4992f 4797make_memloc (rtx ad, int regno)
42c63e4d 4798{
d4a46c88 4799 /* We must rerun eliminate_regs, in case the elimination
4800 offsets have changed. */
93c7b06e 4801 rtx tem
1c654ff1 4802 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
b9c74b4d 4803 0);
42c63e4d 4804
4805 /* If TEM might contain a pseudo, we must copy it to avoid
4806 modifying it when we do the substitution for the reload. */
ea087693 4807 if (rtx_varies_p (tem, 0))
42c63e4d 4808 tem = copy_rtx (tem);
4809
1c654ff1 4810 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
f6ada591 4811 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4812
4813 /* Copy the result if it's still the same as the equivalence, to avoid
4814 modifying it when we do the substitution for the reload. */
1c654ff1 4815 if (tem == reg_equiv_memory_loc (regno))
f6ada591 4816 tem = copy_rtx (tem);
4817 return tem;
42c63e4d 4818}
4819
b51061d4 4820/* Returns true if AD could be turned into a valid memory reference
bd1a81f7 4821 to mode MODE in address space AS by reloading the part pointed to
4822 by PART into a register. */
b51061d4 4823
4824static int
bd1a81f7 4825maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4826 addr_space_t as, rtx *part)
b51061d4 4827{
4828 int retv;
4829 rtx tem = *part;
4830 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4831
4832 *part = reg;
bd1a81f7 4833 retv = memory_address_addr_space_p (mode, ad, as);
b51061d4 4834 *part = tem;
4835
4836 return retv;
4837}
4838
42c63e4d 4839/* Record all reloads needed for handling memory address AD
4840 which appears in *LOC in a memory reference to mode MODE
4841 which itself is found in location *MEMREFLOC.
4842 Note that we take shortcuts assuming that no multi-reg machine mode
4843 occurs as part of an address.
4844
70457512 4845 OPNUM and TYPE specify the purpose of this reload.
42c63e4d 4846
4847 IND_LEVELS says how many levels of indirect addressing this machine
4848 supports.
4849
d59f2d23 4850 INSN, if nonzero, is the insn in which we do the reload. It is used
93c7b06e 4851 to determine if we may generate output reloads, and where to put USEs
4852 for pseudos that we have to replace with stack slots.
d59f2d23 4853
e4542435 4854 Value is one if this address is reloaded or replaced as a whole; it is
4855 zero if the top level of this address was not reloaded or replaced, and
4856 it is -1 if it may or may not have been reloaded or replaced.
42c63e4d 4857
4858 Note that there is no verification that the address will be valid after
4859 this routine does its work. Instead, we rely on the fact that the address
4860 was valid when reload started. So we need only undo things that reload
4861 could have broken. These are wrong register types, pseudos not allocated
4862 to a hard register, and frame pointer elimination. */
4863
4864static int
3ad4992f 4865find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4866 rtx *loc, int opnum, enum reload_type type,
4867 int ind_levels, rtx insn)
42c63e4d 4868{
bd1a81f7 4869 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4870 : ADDR_SPACE_GENERIC;
19cb6b50 4871 int regno;
be2828ce 4872 int removed_and = 0;
f25bee5a 4873 int op_index;
42c63e4d 4874 rtx tem;
4875
4876 /* If the address is a register, see if it is a legitimate address and
4877 reload if not. We first handle the cases where we need not reload
4878 or where we must reload in a non-standard way. */
4879
8ad4c111 4880 if (REG_P (ad))
42c63e4d 4881 {
4882 regno = REGNO (ad);
4883
1c654ff1 4884 if (reg_equiv_constant (regno) != 0)
42c63e4d 4885 {
1c654ff1 4886 find_reloads_address_part (reg_equiv_constant (regno), loc,
f8a8fc7b 4887 base_reg_class (mode, as, MEM, SCRATCH),
cd6659e3 4888 GET_MODE (ad), opnum, type, ind_levels);
4889 return 1;
42c63e4d 4890 }
4891
1c654ff1 4892 tem = reg_equiv_memory_loc (regno);
93c7b06e 4893 if (tem != 0)
42c63e4d 4894 {
1c654ff1 4895 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
93c7b06e 4896 {
4897 tem = make_memloc (ad, regno);
bd1a81f7 4898 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4899 XEXP (tem, 0),
4900 MEM_ADDR_SPACE (tem)))
93c7b06e 4901 {
d51b37c2 4902 rtx orig = tem;
4903
e9bf6953 4904 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4905 &XEXP (tem, 0), opnum,
4906 ADDR_TYPE (type), ind_levels, insn);
c89e828f 4907 if (!rtx_equal_p (tem, orig))
d51b37c2 4908 push_reg_equiv_alt_mem (regno, tem);
93c7b06e 4909 }
4910 /* We can avoid a reload if the register's equivalent memory
4911 expression is valid as an indirect memory address.
4912 But not all addresses are valid in a mem used as an indirect
4913 address: only reg or reg+constant. */
4914
4915 if (ind_levels > 0
bd1a81f7 4916 && strict_memory_address_addr_space_p (mode, tem, as)
8ad4c111 4917 && (REG_P (XEXP (tem, 0))
93c7b06e 4918 || (GET_CODE (XEXP (tem, 0)) == PLUS
8ad4c111 4919 && REG_P (XEXP (XEXP (tem, 0), 0))
93c7b06e 4920 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4921 {
4922 /* TEM is not the same as what we'll be replacing the
4923 pseudo with after reload, put a USE in front of INSN
4924 in the final reload pass. */
4925 if (replace_reloads
4926 && num_not_at_initial_offset
1c654ff1 4927 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
93c7b06e 4928 {
4929 *loc = tem;
b2920130 4930 /* We mark the USE with QImode so that we
4931 recognize it as one that can be safely
4932 deleted at the end of reload. */
4933 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4934 insn), QImode);
4935
93c7b06e 4936 /* This doesn't really count as replacing the address
4937 as a whole, since it is still a memory access. */
4938 }
4939 return 0;
4940 }
4941 ad = tem;
4942 }
42c63e4d 4943 }
4944
42c63e4d 4945 /* The only remaining case where we can avoid a reload is if this is a
4946 hard register that is valid as a base register and which is not the
4947 subject of a CLOBBER in this insn. */
4948
7166ebd0 4949 else if (regno < FIRST_PSEUDO_REGISTER
f8a8fc7b 4950 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
ab7883ae 4951 && ! regno_clobbered_p (regno, this_insn, mode, 0))
42c63e4d 4952 return 0;
4953
4954 /* If we do not have one of the cases above, we must do the reload. */
f8a8fc7b 4955 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4956 base_reg_class (mode, as, MEM, SCRATCH),
70457512 4957 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
42c63e4d 4958 return 1;
4959 }
4960
bd1a81f7 4961 if (strict_memory_address_addr_space_p (mode, ad, as))
42c63e4d 4962 {
4963 /* The address appears valid, so reloads are not needed.
4964 But the address may contain an eliminable register.
4965 This can happen because a machine with indirect addressing
4966 may consider a pseudo register by itself a valid address even when
4967 it has failed to get a hard reg.
4968 So do a tree-walk to find and eliminate all such regs. */
4969
4970 /* But first quickly dispose of a common case. */
4971 if (GET_CODE (ad) == PLUS
971ba038 4972 && CONST_INT_P (XEXP (ad, 1))
8ad4c111 4973 && REG_P (XEXP (ad, 0))
1c654ff1 4974 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
42c63e4d 4975 return 0;
4976
4977 subst_reg_equivs_changed = 0;
93c7b06e 4978 *loc = subst_reg_equivs (ad, insn);
42c63e4d 4979
4980 if (! subst_reg_equivs_changed)
4981 return 0;
4982
4983 /* Check result for validity after substitution. */
bd1a81f7 4984 if (strict_memory_address_addr_space_p (mode, ad, as))
42c63e4d 4985 return 0;
4986 }
4987
f64bc32a 4988#ifdef LEGITIMIZE_RELOAD_ADDRESS
4989 do
4990 {
bd1a81f7 4991 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
f64bc32a 4992 {
4993 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4994 ind_levels, win);
4995 }
4996 break;
4997 win:
4998 *memrefloc = copy_rtx (*memrefloc);
4999 XEXP (*memrefloc, 0) = ad;
5000 move_replacements (&ad, &XEXP (*memrefloc, 0));
e4542435 5001 return -1;
f64bc32a 5002 }
5003 while (0);
5004#endif
5005
be2828ce 5006 /* The address is not valid. We have to figure out why. First see if
5007 we have an outer AND and remove it if so. Then analyze what's inside. */
5008
5009 if (GET_CODE (ad) == AND)
5010 {
5011 removed_and = 1;
5012 loc = &XEXP (ad, 0);
5013 ad = *loc;
5014 }
5015
5016 /* One possibility for why the address is invalid is that it is itself
5017 a MEM. This can happen when the frame pointer is being eliminated, a
5018 pseudo is not allocated to a hard register, and the offset between the
5019 frame and stack pointers is not its initial value. In that case the
5020 pseudo will have been replaced by a MEM referring to the
5021 stack pointer. */
e16ceb8e 5022 if (MEM_P (ad))
42c63e4d 5023 {
5024 /* First ensure that the address in this MEM is valid. Then, unless
5025 indirect addresses are valid, reload the MEM into a register. */
5026 tem = ad;
5027 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
9e53d777 5028 opnum, ADDR_TYPE (type),
d59f2d23 5029 ind_levels == 0 ? 0 : ind_levels - 1, insn);
e6d2ff12 5030
5031 /* If tem was changed, then we must create a new memory reference to
5032 hold it and store it back into memrefloc. */
5033 if (tem != ad && memrefloc)
6949ad11 5034 {
6949ad11 5035 *memrefloc = copy_rtx (*memrefloc);
05c8c31e 5036 copy_replacements (tem, XEXP (*memrefloc, 0));
6949ad11 5037 loc = &XEXP (*memrefloc, 0);
be2828ce 5038 if (removed_and)
5039 loc = &XEXP (*loc, 0);
6949ad11 5040 }
e6d2ff12 5041
42c63e4d 5042 /* Check similar cases as for indirect addresses as above except
5043 that we can allow pseudos and a MEM since they should have been
5044 taken care of above. */
5045
5046 if (ind_levels == 0
5047 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
e16ceb8e 5048 || MEM_P (XEXP (tem, 0))
8ad4c111 5049 || ! (REG_P (XEXP (tem, 0))
42c63e4d 5050 || (GET_CODE (XEXP (tem, 0)) == PLUS
8ad4c111 5051 && REG_P (XEXP (XEXP (tem, 0), 0))
971ba038 5052 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
42c63e4d 5053 {
5054 /* Must use TEM here, not AD, since it is the one that will
5055 have any subexpressions reloaded, if needed. */
33181afc 5056 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
f8a8fc7b 5057 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
494ebe4d 5058 VOIDmode, 0,
70457512 5059 0, opnum, type);
be2828ce 5060 return ! removed_and;
42c63e4d 5061 }
5062 else
5063 return 0;
5064 }
5065
d9891733 5066 /* If we have address of a stack slot but it's not valid because the
5067 displacement is too large, compute the sum in a register.
5068 Handle all base registers here, not just fp/ap/sp, because on some
5069 targets (namely SH) we can also get too large displacements from
5070 big-endian corrections. */
42c63e4d 5071 else if (GET_CODE (ad) == PLUS
8ad4c111 5072 && REG_P (XEXP (ad, 0))
d9891733 5073 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
971ba038 5074 && CONST_INT_P (XEXP (ad, 1))
f8a8fc7b 5075 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
8e4f36fa 5076 CONST_INT)
5077 /* Similarly, if we were to reload the base register and the
5078 mem+offset address is still invalid, then we want to reload
5079 the whole address, not just the base register. */
5080 || ! maybe_memory_address_addr_space_p
5081 (mode, ad, as, &(XEXP (ad, 0)))))
00cb30dc 5082
42c63e4d 5083 {
5084 /* Unshare the MEM rtx so we can safely alter it. */
5085 if (memrefloc)
5086 {
42c63e4d 5087 *memrefloc = copy_rtx (*memrefloc);
5088 loc = &XEXP (*memrefloc, 0);
be2828ce 5089 if (removed_and)
5090 loc = &XEXP (*loc, 0);
42c63e4d 5091 }
be2828ce 5092
8e4f36fa 5093 if (double_reg_address_ok
f8a8fc7b 5094 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
8e4f36fa 5095 PLUS, CONST_INT))
42c63e4d 5096 {
5097 /* Unshare the sum as well. */
5098 *loc = ad = copy_rtx (ad);
be2828ce 5099
42c63e4d 5100 /* Reload the displacement into an index reg.
5101 We assume the frame pointer or arg pointer is a base reg. */
5102 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
dab171c5 5103 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5104 type, ind_levels);
be2828ce 5105 return 0;
42c63e4d 5106 }
5107 else
5108 {
5109 /* If the sum of two regs is not necessarily valid,
5110 reload the sum into a base reg.
5111 That will at least work. */
00cb30dc 5112 find_reloads_address_part (ad, loc,
f8a8fc7b 5113 base_reg_class (mode, as, MEM, SCRATCH),
98155838 5114 GET_MODE (ad), opnum, type, ind_levels);
42c63e4d 5115 }
be2828ce 5116 return ! removed_and;
42c63e4d 5117 }
5118
5119 /* If we have an indexed stack slot, there are three possible reasons why
5120 it might be invalid: The index might need to be reloaded, the address
5121 might have been made by frame pointer elimination and hence have a
5bb2f919 5122 constant out of range, or both reasons might apply.
42c63e4d 5123
5124 We can easily check for an index needing reload, but even if that is the
5125 case, we might also have an invalid constant. To avoid making the
5126 conservative assumption and requiring two reloads, we see if this address
5127 is valid when not interpreted strictly. If it is, the only problem is
5128 that the index needs a reload and find_reloads_address_1 will take care
5129 of it.
5130
ab2a6bdb 5131 Handle all base registers here, not just fp/ap/sp, because on some
7ef5b942 5132 targets (namely SPARC) we can also get invalid addresses from preventive
f25bee5a 5133 subreg big-endian corrections made by find_reloads_toplev. We
5134 can also get expressions involving LO_SUM (rather than PLUS) from
5135 find_reloads_subreg_address.
ab2a6bdb 5136
5137 If we decide to do something, it must be that `double_reg_address_ok'
5138 is true. We generate a reload of the base register + constant and
42c63e4d 5139 rework the sum so that the reload register will be added to the index.
5140 This is safe because we know the address isn't shared.
5141
ab2a6bdb 5142 We check for the base register as both the first and second operand of
f25bee5a 5143 the innermost PLUS and/or LO_SUM. */
5144
5145 for (op_index = 0; op_index < 2; ++op_index)
42c63e4d 5146 {
00cb30dc 5147 rtx operand, addend;
5148 enum rtx_code inner_code;
5149
5150 if (GET_CODE (ad) != PLUS)
5151 continue;
42c63e4d 5152
00cb30dc 5153 inner_code = GET_CODE (XEXP (ad, 0));
48e1416a 5154 if (!(GET_CODE (ad) == PLUS
971ba038 5155 && CONST_INT_P (XEXP (ad, 1))
00cb30dc 5156 && (inner_code == PLUS || inner_code == LO_SUM)))
f25bee5a 5157 continue;
5bb2f919 5158
f25bee5a 5159 operand = XEXP (XEXP (ad, 0), op_index);
ee90634d 5160 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
f25bee5a 5161 continue;
5162
00cb30dc 5163 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5164
f8a8fc7b 5165 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
00cb30dc 5166 GET_CODE (addend))
f25bee5a 5167 || operand == frame_pointer_rtx
5ae82d58 5168#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
f25bee5a 5169 || operand == hard_frame_pointer_rtx
2843e223 5170#endif
5171#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
f25bee5a 5172 || operand == arg_pointer_rtx
2843e223 5173#endif
f25bee5a 5174 || operand == stack_pointer_rtx)
bd1a81f7 5175 && ! maybe_memory_address_addr_space_p
5176 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
f25bee5a 5177 {
5178 rtx offset_reg;
00cb30dc 5179 enum reg_class cls;
f25bee5a 5180
5181 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
00cb30dc 5182
f25bee5a 5183 /* Form the adjusted address. */
5184 if (GET_CODE (XEXP (ad, 0)) == PLUS)
48e1416a 5185 ad = gen_rtx_PLUS (GET_MODE (ad),
5186 op_index == 0 ? offset_reg : addend,
f25bee5a 5187 op_index == 0 ? addend : offset_reg);
5188 else
48e1416a 5189 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5190 op_index == 0 ? offset_reg : addend,
f25bee5a 5191 op_index == 0 ? addend : offset_reg);
5192 *loc = ad;
5193
f8a8fc7b 5194 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
48e1416a 5195 find_reloads_address_part (XEXP (ad, op_index),
00cb30dc 5196 &XEXP (ad, op_index), cls,
f25bee5a 5197 GET_MODE (ad), opnum, type, ind_levels);
f8a8fc7b 5198 find_reloads_address_1 (mode, as,
00cb30dc 5199 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5200 GET_CODE (XEXP (ad, op_index)),
f25bee5a 5201 &XEXP (ad, 1 - op_index), opnum,
5202 type, 0, insn);
42c63e4d 5203
f25bee5a 5204 return 0;
5205 }
42c63e4d 5206 }
5bb2f919 5207
42c63e4d 5208 /* See if address becomes valid when an eliminable register
5209 in a sum is replaced. */
5210
5211 tem = ad;
5212 if (GET_CODE (ad) == PLUS)
5213 tem = subst_indexed_address (ad);
bd1a81f7 5214 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
42c63e4d 5215 {
5216 /* Ok, we win that way. Replace any additional eliminable
5217 registers. */
5218
5219 subst_reg_equivs_changed = 0;
93c7b06e 5220 tem = subst_reg_equivs (tem, insn);
42c63e4d 5221
5222 /* Make sure that didn't make the address invalid again. */
5223
bd1a81f7 5224 if (! subst_reg_equivs_changed
5225 || strict_memory_address_addr_space_p (mode, tem, as))
42c63e4d 5226 {
5227 *loc = tem;
5228 return 0;
5229 }
5230 }
5231
5232 /* If constants aren't valid addresses, reload the constant address
5233 into a register. */
bd1a81f7 5234 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
42c63e4d 5235 {
98155838 5236 enum machine_mode address_mode = GET_MODE (ad);
7c079699 5237 if (address_mode == VOIDmode)
98155838 5238 address_mode = targetm.addr_space.address_mode (as);
5239
4822deca 5240 /* If AD is an address in the constant pool, the MEM rtx may be shared.
42c63e4d 5241 Unshare it so we can safely alter it. */
5242 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5243 && CONSTANT_POOL_ADDRESS_P (ad))
5244 {
42c63e4d 5245 *memrefloc = copy_rtx (*memrefloc);
5246 loc = &XEXP (*memrefloc, 0);
be2828ce 5247 if (removed_and)
5248 loc = &XEXP (*loc, 0);
42c63e4d 5249 }
5250
f8a8fc7b 5251 find_reloads_address_part (ad, loc,
5252 base_reg_class (mode, as, MEM, SCRATCH),
98155838 5253 address_mode, opnum, type, ind_levels);
be2828ce 5254 return ! removed_and;
42c63e4d 5255 }
5256
f8a8fc7b 5257 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5258 opnum, type, ind_levels, insn);
42c63e4d 5259}
5260\f
5261/* Find all pseudo regs appearing in AD
5262 that are eliminable in favor of equivalent values
93c7b06e 5263 and do not have hard regs; replace them by their equivalents.
5264 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5265 front of it for pseudos that we have to replace with stack slots. */
42c63e4d 5266
5267static rtx
3ad4992f 5268subst_reg_equivs (rtx ad, rtx insn)
42c63e4d 5269{
19cb6b50 5270 RTX_CODE code = GET_CODE (ad);
5271 int i;
5272 const char *fmt;
42c63e4d 5273
5274 switch (code)
5275 {
5276 case HIGH:
5277 case CONST_INT:
5278 case CONST:
5279 case CONST_DOUBLE:
e397ad8e 5280 case CONST_FIXED:
886cfd4f 5281 case CONST_VECTOR:
42c63e4d 5282 case SYMBOL_REF:
5283 case LABEL_REF:
5284 case PC:
5285 case CC0:
5286 return ad;
5287
5288 case REG:
5289 {
19cb6b50 5290 int regno = REGNO (ad);
42c63e4d 5291
1c654ff1 5292 if (reg_equiv_constant (regno) != 0)
42c63e4d 5293 {
5294 subst_reg_equivs_changed = 1;
1c654ff1 5295 return reg_equiv_constant (regno);
42c63e4d 5296 }
1c654ff1 5297 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
93c7b06e 5298 {
5299 rtx mem = make_memloc (ad, regno);
1c654ff1 5300 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
93c7b06e 5301 {
5302 subst_reg_equivs_changed = 1;
b2920130 5303 /* We mark the USE with QImode so that we recognize it
5304 as one that can be safely deleted at the end of
5305 reload. */
5306 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5307 QImode);
93c7b06e 5308 return mem;
5309 }
5310 }
42c63e4d 5311 }
5312 return ad;
5313
5314 case PLUS:
5315 /* Quickly dispose of a common case. */
5316 if (XEXP (ad, 0) == frame_pointer_rtx
971ba038 5317 && CONST_INT_P (XEXP (ad, 1)))
42c63e4d 5318 return ad;
0dbd1c74 5319 break;
5bb2f919 5320
0dbd1c74 5321 default:
5322 break;
42c63e4d 5323 }
5324
5325 fmt = GET_RTX_FORMAT (code);
5326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5327 if (fmt[i] == 'e')
93c7b06e 5328 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
42c63e4d 5329 return ad;
5330}
5331\f
5332/* Compute the sum of X and Y, making canonicalizations assumed in an
5333 address, namely: sum constant integers, surround the sum of two
5334 constants with a CONST, put the constant as the second operand, and
5335 group the constant on the outermost sum.
5336
5337 This routine assumes both inputs are already in canonical form. */
5338
5339rtx
98155838 5340form_sum (enum machine_mode mode, rtx x, rtx y)
42c63e4d 5341{
5342 rtx tem;
5639a241 5343
98155838 5344 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5345 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
42c63e4d 5346
971ba038 5347 if (CONST_INT_P (x))
42c63e4d 5348 return plus_constant (y, INTVAL (x));
971ba038 5349 else if (CONST_INT_P (y))
42c63e4d 5350 return plus_constant (x, INTVAL (y));
5351 else if (CONSTANT_P (x))
5352 tem = x, x = y, y = tem;
5353
5354 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
98155838 5355 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
42c63e4d 5356
5357 /* Note that if the operands of Y are specified in the opposite
5358 order in the recursive calls below, infinite recursion will occur. */
76fd2b65 5359 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
98155838 5360 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
42c63e4d 5361
5362 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5363 constant will have been placed second. */
5364 if (CONSTANT_P (x) && CONSTANT_P (y))
5365 {
5366 if (GET_CODE (x) == CONST)
5367 x = XEXP (x, 0);
5368 if (GET_CODE (y) == CONST)
5369 y = XEXP (y, 0);
5370
941522d6 5371 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
42c63e4d 5372 }
5373
941522d6 5374 return gen_rtx_PLUS (mode, x, y);
42c63e4d 5375}
5376\f
5377/* If ADDR is a sum containing a pseudo register that should be
5378 replaced with a constant (from reg_equiv_constant),
5379 return the result of doing so, and also apply the associative
5380 law so that the result is more likely to be a valid address.
5381 (But it is not guaranteed to be one.)
5382
5383 Note that at most one register is replaced, even if more are
5384 replaceable. Also, we try to put the result into a canonical form
5385 so it is more likely to be a valid address.
5386
5387 In all other cases, return ADDR. */
5388
5389static rtx
3ad4992f 5390subst_indexed_address (rtx addr)
42c63e4d 5391{
5392 rtx op0 = 0, op1 = 0, op2 = 0;
5393 rtx tem;
5394 int regno;
5395
5396 if (GET_CODE (addr) == PLUS)
5397 {
5398 /* Try to find a register to replace. */
5399 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
8ad4c111 5400 if (REG_P (op0)
42c63e4d 5401 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5402 && reg_renumber[regno] < 0
1c654ff1 5403 && reg_equiv_constant (regno) != 0)
5404 op0 = reg_equiv_constant (regno);
8ad4c111 5405 else if (REG_P (op1)
5bb2f919 5406 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5407 && reg_renumber[regno] < 0
1c654ff1 5408 && reg_equiv_constant (regno) != 0)
5409 op1 = reg_equiv_constant (regno);
42c63e4d 5410 else if (GET_CODE (op0) == PLUS
5411 && (tem = subst_indexed_address (op0)) != op0)
5412 op0 = tem;
5413 else if (GET_CODE (op1) == PLUS
5414 && (tem = subst_indexed_address (op1)) != op1)
5415 op1 = tem;
5416 else
5417 return addr;
5418
5419 /* Pick out up to three things to add. */
5420 if (GET_CODE (op1) == PLUS)
5421 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5422 else if (GET_CODE (op0) == PLUS)
5423 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5424
5425 /* Compute the sum. */
5426 if (op2 != 0)
98155838 5427 op1 = form_sum (GET_MODE (addr), op1, op2);
42c63e4d 5428 if (op1 != 0)
98155838 5429 op0 = form_sum (GET_MODE (addr), op0, op1);
42c63e4d 5430
5431 return op0;
5432 }
5433 return addr;
5434}
5435\f
f15e7e72 5436/* Update the REG_INC notes for an insn. It updates all REG_INC
5437 notes for the instruction which refer to REGNO the to refer
5438 to the reload number.
5439
5440 INSN is the insn for which any REG_INC notes need updating.
5441
5442 REGNO is the register number which has been reloaded.
5443
5444 RELOADNUM is the reload number. */
5445
5446static void
3ad4992f 5447update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5448 int reloadnum ATTRIBUTE_UNUSED)
f15e7e72 5449{
5450#ifdef AUTO_INC_DEC
5451 rtx link;
5452
5453 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5454 if (REG_NOTE_KIND (link) == REG_INC
3473aefe 5455 && (int) REGNO (XEXP (link, 0)) == regno)
f15e7e72 5456 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5457#endif
5458}
5459\f
7166ebd0 5460/* Record the pseudo registers we must reload into hard registers in a
5461 subexpression of a would-be memory address, X referring to a value
5462 in mode MODE. (This function is not called if the address we find
5463 is strictly valid.)
5464
42c63e4d 5465 CONTEXT = 1 means we are considering regs as index regs,
00cb30dc 5466 = 0 means we are considering them as base regs.
5467 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5468 or an autoinc code.
5469 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5470 is the code of the index part of the address. Otherwise, pass SCRATCH
5471 for this argument.
70457512 5472 OPNUM and TYPE specify the purpose of any reloads made.
42c63e4d 5473
5474 IND_LEVELS says how many levels of indirect addressing are
5475 supported at this point in the address.
5476
d59f2d23 5477 INSN, if nonzero, is the insn in which we do the reload. It is used
5478 to determine if we may generate output reloads.
5479
42c63e4d 5480 We return nonzero if X, as a whole, is reloaded or replaced. */
5481
5482/* Note that we take shortcuts assuming that no multi-reg machine mode
5483 occurs as part of an address.
5484 Also, this is not fully machine-customizable; it works for machines
6c842310 5485 such as VAXen and 68000's and 32000's, but other possible machines
6af46e97 5486 could have addressing modes that this does not handle right.
5487 If you add push_reload calls here, you need to make sure gen_reload
5488 handles those cases gracefully. */
42c63e4d 5489
5490static int
f8a8fc7b 5491find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5492 rtx x, int context,
00cb30dc 5493 enum rtx_code outer_code, enum rtx_code index_code,
3ad4992f 5494 rtx *loc, int opnum, enum reload_type type,
5495 int ind_levels, rtx insn)
42c63e4d 5496{
f8a8fc7b 5497#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
00cb30dc 5498 ((CONTEXT) == 0 \
f8a8fc7b 5499 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
48e1416a 5500 : REGNO_OK_FOR_INDEX_P (REGNO))
6006f9fd 5501
5502 enum reg_class context_reg_class;
19cb6b50 5503 RTX_CODE code = GET_CODE (x);
42c63e4d 5504
00cb30dc 5505 if (context == 1)
6006f9fd 5506 context_reg_class = INDEX_REG_CLASS;
5507 else
f8a8fc7b 5508 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
6006f9fd 5509
d5705e3f 5510 switch (code)
42c63e4d 5511 {
d5705e3f 5512 case PLUS:
5513 {
19cb6b50 5514 rtx orig_op0 = XEXP (x, 0);
5515 rtx orig_op1 = XEXP (x, 1);
5516 RTX_CODE code0 = GET_CODE (orig_op0);
5517 RTX_CODE code1 = GET_CODE (orig_op1);
5518 rtx op0 = orig_op0;
5519 rtx op1 = orig_op1;
d5705e3f 5520
5521 if (GET_CODE (op0) == SUBREG)
5522 {
5523 op0 = SUBREG_REG (op0);
5524 code0 = GET_CODE (op0);
d21539ca 5525 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
941522d6 5526 op0 = gen_rtx_REG (word_mode,
701e46d0 5527 (REGNO (op0) +
5528 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5529 GET_MODE (SUBREG_REG (orig_op0)),
5530 SUBREG_BYTE (orig_op0),
5531 GET_MODE (orig_op0))));
d5705e3f 5532 }
70c3bfbb 5533
d5705e3f 5534 if (GET_CODE (op1) == SUBREG)
5535 {
5536 op1 = SUBREG_REG (op1);
5537 code1 = GET_CODE (op1);
d21539ca 5538 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
701e46d0 5539 /* ??? Why is this given op1's mode and above for
5540 ??? op0 SUBREGs we use word_mode? */
941522d6 5541 op1 = gen_rtx_REG (GET_MODE (op1),
701e46d0 5542 (REGNO (op1) +
5543 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5544 GET_MODE (SUBREG_REG (orig_op1)),
5545 SUBREG_BYTE (orig_op1),
5546 GET_MODE (orig_op1))));
d5705e3f 5547 }
d9b3752c 5548 /* Plus in the index register may be created only as a result of
554f2707 5549 register rematerialization for expression like &localvar*4. Reload it.
d9b3752c 5550 It may be possible to combine the displacement on the outer level,
5551 but it is probably not worthwhile to do so. */
6006f9fd 5552 if (context == 1)
d9b3752c 5553 {
5554 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5555 opnum, ADDR_TYPE (type), ind_levels, insn);
5556 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
6006f9fd 5557 context_reg_class,
d9b3752c 5558 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5559 return 1;
5560 }
d5705e3f 5561
5bb2f919 5562 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
0afe8fd5 5563 || code0 == ZERO_EXTEND || code1 == MEM)
d5705e3f 5564 {
f8a8fc7b 5565 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
00cb30dc 5566 &XEXP (x, 0), opnum, type, ind_levels,
5567 insn);
f8a8fc7b 5568 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
00cb30dc 5569 &XEXP (x, 1), opnum, type, ind_levels,
5570 insn);
d5705e3f 5571 }
5572
0afe8fd5 5573 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5574 || code1 == ZERO_EXTEND || code0 == MEM)
d5705e3f 5575 {
f8a8fc7b 5576 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
00cb30dc 5577 &XEXP (x, 0), opnum, type, ind_levels,
5578 insn);
f8a8fc7b 5579 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
00cb30dc 5580 &XEXP (x, 1), opnum, type, ind_levels,
5581 insn);
d5705e3f 5582 }
5583
5584 else if (code0 == CONST_INT || code0 == CONST
5585 || code0 == SYMBOL_REF || code0 == LABEL_REF)
f8a8fc7b 5586 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
00cb30dc 5587 &XEXP (x, 1), opnum, type, ind_levels,
5588 insn);
d5705e3f 5589
5590 else if (code1 == CONST_INT || code1 == CONST
5591 || code1 == SYMBOL_REF || code1 == LABEL_REF)
f8a8fc7b 5592 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
00cb30dc 5593 &XEXP (x, 0), opnum, type, ind_levels,
5594 insn);
d5705e3f 5595
5596 else if (code0 == REG && code1 == REG)
5597 {
ce0d0c3a 5598 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
f8a8fc7b 5599 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
d5705e3f 5600 return 0;
ce0d0c3a 5601 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
f8a8fc7b 5602 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
d5705e3f 5603 return 0;
f8a8fc7b 5604 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5605 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
00cb30dc 5606 &XEXP (x, 1), opnum, type, ind_levels,
5607 insn);
5608 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
f8a8fc7b 5609 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
00cb30dc 5610 &XEXP (x, 0), opnum, type, ind_levels,
5611 insn);
f8a8fc7b 5612 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5613 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
ce0d0c3a 5614 &XEXP (x, 0), opnum, type, ind_levels,
5615 insn);
00cb30dc 5616 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
f8a8fc7b 5617 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
00cb30dc 5618 &XEXP (x, 1), opnum, type, ind_levels,
5619 insn);
d5705e3f 5620 else
5621 {
f8a8fc7b 5622 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
00cb30dc 5623 &XEXP (x, 0), opnum, type, ind_levels,
5624 insn);
f8a8fc7b 5625 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
00cb30dc 5626 &XEXP (x, 1), opnum, type, ind_levels,
5627 insn);
d5705e3f 5628 }
5629 }
5630
5631 else if (code0 == REG)
5632 {
f8a8fc7b 5633 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
00cb30dc 5634 &XEXP (x, 0), opnum, type, ind_levels,
5635 insn);
f8a8fc7b 5636 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
00cb30dc 5637 &XEXP (x, 1), opnum, type, ind_levels,
5638 insn);
d5705e3f 5639 }
5640
5641 else if (code1 == REG)
5642 {
f8a8fc7b 5643 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
00cb30dc 5644 &XEXP (x, 1), opnum, type, ind_levels,
5645 insn);
f8a8fc7b 5646 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
00cb30dc 5647 &XEXP (x, 0), opnum, type, ind_levels,
5648 insn);
d5705e3f 5649 }
5650 }
5651
5652 return 0;
5653
40988080 5654 case POST_MODIFY:
5655 case PRE_MODIFY:
5656 {
5657 rtx op0 = XEXP (x, 0);
5658 rtx op1 = XEXP (x, 1);
00cb30dc 5659 enum rtx_code index_code;
04e579b6 5660 int regno;
5661 int reloadnum;
40988080 5662
5663 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5664 return 0;
5665
5666 /* Currently, we only support {PRE,POST}_MODIFY constructs
5667 where a base register is {inc,dec}remented by the contents
5668 of another register or by a constant value. Thus, these
5669 operands must match. */
04e579b6 5670 gcc_assert (op0 == XEXP (op1, 0));
40988080 5671
5672 /* Require index register (or constant). Let's just handle the
5673 register case in the meantime... If the target allows
5674 auto-modify by a constant then we could try replacing a pseudo
23c79c0f 5675 register with its equivalent constant where applicable.
5676
cc6757ec 5677 We also handle the case where the register was eliminated
5678 resulting in a PLUS subexpression.
5679
23c79c0f 5680 If we later decide to reload the whole PRE_MODIFY or
5681 POST_MODIFY, inc_for_reload might clobber the reload register
5682 before reading the index. The index register might therefore
5683 need to live longer than a TYPE reload normally would, so be
5684 conservative and class it as RELOAD_OTHER. */
cc6757ec 5685 if ((REG_P (XEXP (op1, 1))
5686 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5687 || GET_CODE (XEXP (op1, 1)) == PLUS)
f8a8fc7b 5688 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
cc6757ec 5689 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5690 ind_levels, insn);
40988080 5691
04e579b6 5692 gcc_assert (REG_P (XEXP (op1, 0)));
40988080 5693
04e579b6 5694 regno = REGNO (XEXP (op1, 0));
00cb30dc 5695 index_code = GET_CODE (XEXP (op1, 1));
04e579b6 5696
5697 /* A register that is incremented cannot be constant! */
5698 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1c654ff1 5699 || reg_equiv_constant (regno) == 0);
40988080 5700
04e579b6 5701 /* Handle a register that is equivalent to a memory location
5702 which cannot be addressed directly. */
1c654ff1 5703 if (reg_equiv_memory_loc (regno) != 0
5704 && (reg_equiv_address (regno) != 0
04e579b6 5705 || num_not_at_initial_offset))
5706 {
5707 rtx tem = make_memloc (XEXP (x, 0), regno);
40988080 5708
1c654ff1 5709 if (reg_equiv_address (regno)
5710 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
40988080 5711 {
d51b37c2 5712 rtx orig = tem;
5713
04e579b6 5714 /* First reload the memory location's address.
5715 We can't use ADDR_TYPE (type) here, because we need to
5716 write back the value after reading it, hence we actually
5717 need two registers. */
5718 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5719 &XEXP (tem, 0), opnum,
5720 RELOAD_OTHER,
5721 ind_levels, insn);
5722
c89e828f 5723 if (!rtx_equal_p (tem, orig))
d51b37c2 5724 push_reg_equiv_alt_mem (regno, tem);
5725
04e579b6 5726 /* Then reload the memory location into a base
00cb30dc 5727 register. */
04e579b6 5728 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
00cb30dc 5729 &XEXP (op1, 0),
f8a8fc7b 5730 base_reg_class (mode, as,
5731 code, index_code),
00cb30dc 5732 GET_MODE (x), GET_MODE (x), 0,
5733 0, opnum, RELOAD_OTHER);
ab7883ae 5734
f15e7e72 5735 update_auto_inc_notes (this_insn, regno, reloadnum);
5736 return 0;
5737 }
40988080 5738 }
04e579b6 5739
5740 if (reg_renumber[regno] >= 0)
5741 regno = reg_renumber[regno];
5742
5743 /* We require a base register here... */
f8a8fc7b 5744 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
04e579b6 5745 {
5746 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
00cb30dc 5747 &XEXP (op1, 0), &XEXP (x, 0),
f8a8fc7b 5748 base_reg_class (mode, as,
5749 code, index_code),
00cb30dc 5750 GET_MODE (x), GET_MODE (x), 0, 0,
5751 opnum, RELOAD_OTHER);
04e579b6 5752
5753 update_auto_inc_notes (this_insn, regno, reloadnum);
5754 return 0;
5755 }
40988080 5756 }
5757 return 0;
5758
d5705e3f 5759 case POST_INC:
5760 case POST_DEC:
5761 case PRE_INC:
5762 case PRE_DEC:
8ad4c111 5763 if (REG_P (XEXP (x, 0)))
42c63e4d 5764 {
19cb6b50 5765 int regno = REGNO (XEXP (x, 0));
42c63e4d 5766 int value = 0;
5767 rtx x_orig = x;
5768
5769 /* A register that is incremented cannot be constant! */
04e579b6 5770 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1c654ff1 5771 || reg_equiv_constant (regno) == 0);
42c63e4d 5772
5773 /* Handle a register that is equivalent to a memory location
5774 which cannot be addressed directly. */
1c654ff1 5775 if (reg_equiv_memory_loc (regno) != 0
5776 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
42c63e4d 5777 {
5778 rtx tem = make_memloc (XEXP (x, 0), regno);
1c654ff1 5779 if (reg_equiv_address (regno)
5780 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
93c7b06e 5781 {
d51b37c2 5782 rtx orig = tem;
5783
93c7b06e 5784 /* First reload the memory location's address.
5785 We can't use ADDR_TYPE (type) here, because we need to
5786 write back the value after reading it, hence we actually
5787 need two registers. */
5788 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5789 &XEXP (tem, 0), opnum, type,
5790 ind_levels, insn);
c89e828f 5791 if (!rtx_equal_p (tem, orig))
d51b37c2 5792 push_reg_equiv_alt_mem (regno, tem);
93c7b06e 5793 /* Put this inside a new increment-expression. */
5794 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5795 /* Proceed to reload that, as if it contained a register. */
5796 }
42c63e4d 5797 }
5798
d938b513 5799 /* If we have a hard register that is ok in this incdec context,
5800 don't make a reload. If the register isn't nice enough for
5801 autoincdec, we can reload it. But, if an autoincrement of a
5802 register that we here verified as playing nice, still outside
42c63e4d 5803 isn't "valid", it must be that no autoincrement is "valid".
5804 If that is true and something made an autoincrement anyway,
5805 this must be a special context where one is allowed.
5806 (For example, a "push" instruction.)
5807 We can't improve this address, so leave it alone. */
5808
5809 /* Otherwise, reload the autoincrement into a suitable hard reg
5810 and record how much to increment by. */
5811
5812 if (reg_renumber[regno] >= 0)
5813 regno = reg_renumber[regno];
6006f9fd 5814 if (regno >= FIRST_PSEUDO_REGISTER
f8a8fc7b 5815 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
00cb30dc 5816 index_code))
42c63e4d 5817 {
d59f2d23 5818 int reloadnum;
5819
5820 /* If we can output the register afterwards, do so, this
5821 saves the extra update.
5822 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5823 CALL_INSN - and it does not set CC0.
5824 But don't do this if we cannot directly address the
5825 memory location, since this will make it harder to
ad87de1e 5826 reuse address reloads, and increases register pressure.
d59f2d23 5827 Also don't do this if we can probably update x directly. */
e16ceb8e 5828 rtx equiv = (MEM_P (XEXP (x, 0))
93c7b06e 5829 ? XEXP (x, 0)
1c654ff1 5830 : reg_equiv_mem (regno));
39c56a89 5831 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
6d7dc5b9 5832 if (insn && NONJUMP_INSN_P (insn) && equiv
93c7b06e 5833 && memory_operand (equiv, GET_MODE (equiv))
d59f2d23 5834#ifdef HAVE_cc0
5835 && ! sets_cc0_p (PATTERN (insn))
5836#endif
5837 && ! (icode != CODE_FOR_nothing
39c56a89 5838 && insn_operand_matches (icode, 0, equiv)
5839 && insn_operand_matches (icode, 1, equiv)))
d59f2d23 5840 {
2b1e2054 5841 /* We use the original pseudo for loc, so that
5842 emit_reload_insns() knows which pseudo this
5843 reload refers to and updates the pseudo rtx, not
5844 its equivalent memory location, as well as the
5845 corresponding entry in reg_last_reload_reg. */
5846 loc = &XEXP (x_orig, 0);
d59f2d23 5847 x = XEXP (x, 0);
5848 reloadnum
5849 = push_reload (x, x, loc, loc,
6006f9fd 5850 context_reg_class,
5bb2f919 5851 GET_MODE (x), GET_MODE (x), 0, 0,
5852 opnum, RELOAD_OTHER);
d59f2d23 5853 }
5854 else
5855 {
5856 reloadnum
45a0ce77 5857 = push_reload (x, x, loc, (rtx*) 0,
6006f9fd 5858 context_reg_class,
0dbd1c74 5859 GET_MODE (x), GET_MODE (x), 0, 0,
d59f2d23 5860 opnum, type);
48666d2c 5861 rld[reloadnum].inc
d59f2d23 5862 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5bb2f919 5863
d59f2d23 5864 value = 1;
5865 }
42c63e4d 5866
f15e7e72 5867 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5868 reloadnum);
42c63e4d 5869 }
5870 return value;
5871 }
d5705e3f 5872 return 0;
5873
d4b16ceb 5874 case TRUNCATE:
5875 case SIGN_EXTEND:
5876 case ZERO_EXTEND:
5877 /* Look for parts to reload in the inner expression and reload them
5878 too, in addition to this operation. Reloading all inner parts in
5879 addition to this one shouldn't be necessary, but at this point,
5880 we don't know if we can possibly omit any part that *can* be
5881 reloaded. Targets that are better off reloading just either part
5882 (or perhaps even a different part of an outer expression), should
5883 define LEGITIMIZE_RELOAD_ADDRESS. */
f8a8fc7b 5884 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
00cb30dc 5885 context, code, SCRATCH, &XEXP (x, 0), opnum,
d4b16ceb 5886 type, ind_levels, insn);
5887 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5888 context_reg_class,
5889 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5890 return 1;
5891
d5705e3f 5892 case MEM:
5893 /* This is probably the result of a substitution, by eliminate_regs, of
5894 an equivalent address for a pseudo that was not allocated to a hard
5895 register. Verify that the specified address is valid and reload it
5896 into a register.
42c63e4d 5897
d5705e3f 5898 Since we know we are going to reload this item, don't decrement for
5899 the indirection level.
42c63e4d 5900
5901 Note that this is actually conservative: it would be slightly more
5902 efficient to use the value of SPILL_INDIRECT_LEVELS from
5903 reload1.c here. */
5904
5905 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
d59f2d23 5906 opnum, ADDR_TYPE (type), ind_levels, insn);
33181afc 5907 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
6006f9fd 5908 context_reg_class,
70457512 5909 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
42c63e4d 5910 return 1;
42c63e4d 5911
d5705e3f 5912 case REG:
5913 {
19cb6b50 5914 int regno = REGNO (x);
d5705e3f 5915
1c654ff1 5916 if (reg_equiv_constant (regno) != 0)
d5705e3f 5917 {
1c654ff1 5918 find_reloads_address_part (reg_equiv_constant (regno), loc,
6006f9fd 5919 context_reg_class,
d5705e3f 5920 GET_MODE (x), opnum, type, ind_levels);
5921 return 1;
5922 }
42c63e4d 5923
5924#if 0 /* This might screw code in reload1.c to delete prior output-reload
5925 that feeds this insn. */
1c654ff1 5926 if (reg_equiv_mem (regno) != 0)
d5705e3f 5927 {
1c654ff1 5928 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
6006f9fd 5929 context_reg_class,
d5705e3f 5930 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5931 return 1;
5932 }
42c63e4d 5933#endif
42c63e4d 5934
1c654ff1 5935 if (reg_equiv_memory_loc (regno)
5936 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
d5705e3f 5937 {
93c7b06e 5938 rtx tem = make_memloc (x, regno);
1c654ff1 5939 if (reg_equiv_address (regno) != 0
5940 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
93c7b06e 5941 {
5942 x = tem;
5943 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5944 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5945 ind_levels, insn);
c89e828f 5946 if (!rtx_equal_p (x, tem))
d51b37c2 5947 push_reg_equiv_alt_mem (regno, x);
93c7b06e 5948 }
d5705e3f 5949 }
42c63e4d 5950
d5705e3f 5951 if (reg_renumber[regno] >= 0)
5952 regno = reg_renumber[regno];
5953
6006f9fd 5954 if (regno >= FIRST_PSEUDO_REGISTER
f8a8fc7b 5955 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
00cb30dc 5956 index_code))
d5705e3f 5957 {
33181afc 5958 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6006f9fd 5959 context_reg_class,
d5705e3f 5960 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5961 return 1;
5962 }
5963
5964 /* If a register appearing in an address is the subject of a CLOBBER
5965 in this insn, reload it into some other register to be safe.
5966 The CLOBBER is supposed to make the register unavailable
5967 from before this insn to after it. */
ab7883ae 5968 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
d5705e3f 5969 {
33181afc 5970 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6006f9fd 5971 context_reg_class,
d5705e3f 5972 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5973 return 1;
5974 }
5975 }
5976 return 0;
5977
5978 case SUBREG:
8ad4c111 5979 if (REG_P (SUBREG_REG (x)))
42c63e4d 5980 {
d21539ca 5981 /* If this is a SUBREG of a hard register and the resulting register
5982 is of the wrong class, reload the whole SUBREG. This avoids
5983 needless copies if SUBREG_REG is multi-word. */
5984 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5985 {
805e22b2 5986 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
d5705e3f 5987
f8a8fc7b 5988 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
00cb30dc 5989 index_code))
d21539ca 5990 {
33181afc 5991 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6006f9fd 5992 context_reg_class,
d21539ca 5993 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5994 return 1;
5995 }
5996 }
b090827b 5997 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
d21539ca 5998 is larger than the class size, then reload the whole SUBREG. */
5999 else
d5705e3f 6000 {
47cfb7f4 6001 enum reg_class rclass = context_reg_class;
d3ba22dc 6002 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6003 > reg_class_size[(int) rclass])
d21539ca 6004 {
48e1416a 6005 x = find_reloads_subreg_address (x, 0, opnum,
b3425ed6 6006 ADDR_TYPE (type),
b5fe590a 6007 ind_levels, insn, NULL);
47cfb7f4 6008 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
d21539ca 6009 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6010 return 1;
6011 }
d5705e3f 6012 }
42c63e4d 6013 }
d5705e3f 6014 break;
5bb2f919 6015
0dbd1c74 6016 default:
6017 break;
42c63e4d 6018 }
6019
d5705e3f 6020 {
19cb6b50 6021 const char *fmt = GET_RTX_FORMAT (code);
6022 int i;
d5705e3f 6023
6024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6025 {
6026 if (fmt[i] == 'e')
00cb30dc 6027 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6028 we get here. */
f8a8fc7b 6029 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6030 code, SCRATCH, &XEXP (x, i),
6031 opnum, type, ind_levels, insn);
d5705e3f 6032 }
6033 }
6034
6006f9fd 6035#undef REG_OK_FOR_CONTEXT
42c63e4d 6036 return 0;
6037}
6038\f
6039/* X, which is found at *LOC, is a part of an address that needs to be
47cfb7f4 6040 reloaded into a register of class RCLASS. If X is a constant, or if
42c63e4d 6041 X is a PLUS that contains a constant, check that the constant is a
6042 legitimate operand and that we are supposed to be able to load
6043 it into the register.
6044
6045 If not, force the constant into memory and reload the MEM instead.
6046
6047 MODE is the mode to use, in case X is an integer constant.
6048
70457512 6049 OPNUM and TYPE describe the purpose of any reloads made.
42c63e4d 6050
6051 IND_LEVELS says how many levels of indirect addressing this machine
6052 supports. */
6053
6054static void
47cfb7f4 6055find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
3ad4992f 6056 enum machine_mode mode, int opnum,
6057 enum reload_type type, int ind_levels)
42c63e4d 6058{
6059 if (CONSTANT_P (x)
ca316360 6060 && (!targetm.legitimate_constant_p (mode, x)
09a17585 6061 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
42c63e4d 6062 {
7c88646f 6063 x = force_const_mem (mode, x);
6064 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
d59f2d23 6065 opnum, type, ind_levels, 0);
42c63e4d 6066 }
6067
6068 else if (GET_CODE (x) == PLUS
6069 && CONSTANT_P (XEXP (x, 1))
ca316360 6070 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
09a17585 6071 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6072 == NO_REGS))
42c63e4d 6073 {
10b31fee 6074 rtx tem;
6075
1ab50266 6076 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
941522d6 6077 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
7c88646f 6078 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
d59f2d23 6079 opnum, type, ind_levels, 0);
42c63e4d 6080 }
6081
47cfb7f4 6082 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
70457512 6083 mode, VOIDmode, 0, 0, opnum, type);
42c63e4d 6084}
6085\f
37f7956e 6086/* X, a subreg of a pseudo, is a part of an address that needs to be
6087 reloaded.
6088
6089 If the pseudo is equivalent to a memory location that cannot be directly
6090 addressed, make the necessary address reloads.
6091
6092 If address reloads have been necessary, or if the address is changed
6093 by register elimination, return the rtx of the memory location;
6094 otherwise, return X.
6095
6096 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6097 memory location.
6098
6099 OPNUM and TYPE identify the purpose of the reload.
6100
6101 IND_LEVELS says how many levels of indirect addressing are
6102 supported at this point in the address.
6103
6104 INSN, if nonzero, is the insn in which we do the reload. It is used
6105 to determine where to put USEs for pseudos that we have to replace with
6106 stack slots. */
6107
6108static rtx
3ad4992f 6109find_reloads_subreg_address (rtx x, int force_replace, int opnum,
b5fe590a 6110 enum reload_type type, int ind_levels, rtx insn,
6111 int *address_reloaded)
37f7956e 6112{
6113 int regno = REGNO (SUBREG_REG (x));
b5fe590a 6114 int reloaded = 0;
37f7956e 6115
1c654ff1 6116 if (reg_equiv_memory_loc (regno))
37f7956e 6117 {
6118 /* If the address is not directly addressable, or if the address is not
6119 offsettable, then it must be replaced. */
6120 if (! force_replace
1c654ff1 6121 && (reg_equiv_address (regno)
6122 || ! offsettable_memref_p (reg_equiv_mem (regno))))
37f7956e 6123 force_replace = 1;
6124
6125 if (force_replace || num_not_at_initial_offset)
6126 {
6127 rtx tem = make_memloc (SUBREG_REG (x), regno);
6128
6129 /* If the address changes because of register elimination, then
f94acda8 6130 it must be replaced. */
37f7956e 6131 if (force_replace
1c654ff1 6132 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
37f7956e 6133 {
2eceb392 6134 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6135 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
0afbf57d 6136 int offset;
d51b37c2 6137 rtx orig = tem;
0afbf57d 6138
6139 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6140 hold the correct (negative) byte offset. */
6141 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6142 offset = inner_size - outer_size;
6143 else
6144 offset = SUBREG_BYTE (x);
37f7956e 6145
37f7956e 6146 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6147 PUT_MODE (tem, GET_MODE (x));
da443c27 6148 if (MEM_OFFSET_KNOWN_P (tem))
6149 set_mem_offset (tem, MEM_OFFSET (tem) + offset);
5b2a69fa 6150 if (MEM_SIZE_KNOWN_P (tem)
6151 && MEM_SIZE (tem) != (HOST_WIDE_INT) outer_size)
6152 set_mem_size (tem, outer_size);
2eceb392 6153
6154 /* If this was a paradoxical subreg that we replaced, the
6155 resulting memory must be sufficiently aligned to allow
6156 us to widen the mode of the memory. */
c2c4c18b 6157 if (outer_size > inner_size)
2eceb392 6158 {
6159 rtx base;
6160
6161 base = XEXP (tem, 0);
6162 if (GET_CODE (base) == PLUS)
6163 {
971ba038 6164 if (CONST_INT_P (XEXP (base, 1))
2eceb392 6165 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6166 return x;
6167 base = XEXP (base, 0);
6168 }
8ad4c111 6169 if (!REG_P (base)
2eceb392 6170 || (REGNO_POINTER_ALIGN (REGNO (base))
6171 < outer_size * BITS_PER_UNIT))
6172 return x;
6173 }
6174
8d91a9b7 6175 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6176 XEXP (tem, 0), &XEXP (tem, 0),
6177 opnum, type, ind_levels, insn);
d51b37c2 6178 /* ??? Do we need to handle nonzero offsets somehow? */
c89e828f 6179 if (!offset && !rtx_equal_p (tem, orig))
d51b37c2 6180 push_reg_equiv_alt_mem (regno, tem);
2eceb392 6181
8d91a9b7 6182 /* For some processors an address may be valid in the
6183 original mode but not in a smaller mode. For
6184 example, ARM accepts a scaled index register in
79141aaa 6185 SImode but not in HImode. Note that this is only
6186 a problem if the address in reg_equiv_mem is already
6187 invalid in the new mode; other cases would be fixed
6188 by find_reloads_address as usual.
6189
6190 ??? We attempt to handle such cases here by doing an
6191 additional reload of the full address after the
6192 usual processing by find_reloads_address. Note that
6193 this may not work in the general case, but it seems
6194 to cover the cases where this situation currently
6195 occurs. A more general fix might be to reload the
6196 *value* instead of the address, but this would not
6197 be expected by the callers of this routine as-is.
6198
6199 If find_reloads_address already completed replaced
6200 the address, there is nothing further to do. */
25fe2cca 6201 if (reloaded == 0
1c654ff1 6202 && reg_equiv_mem (regno) != 0
bd1a81f7 6203 && !strict_memory_address_addr_space_p
1c654ff1 6204 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6205 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
b5fe590a 6206 {
6207 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
f8a8fc7b 6208 base_reg_class (GET_MODE (tem),
6209 MEM_ADDR_SPACE (tem),
6210 MEM, SCRATCH),
b5fe590a 6211 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6212 opnum, type);
6213 reloaded = 1;
6214 }
37f7956e 6215 /* If this is not a toplevel operand, find_reloads doesn't see
6216 this substitution. We have to emit a USE of the pseudo so
6217 that delete_output_reload can see it. */
ed420a25 6218 if (replace_reloads && recog_data.operand[opnum] != x)
b2920130 6219 /* We mark the USE with QImode so that we recognize it
6220 as one that can be safely deleted at the end of
6221 reload. */
6222 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6223 SUBREG_REG (x)),
6224 insn), QImode);
85afee82 6225 x = tem;
37f7956e 6226 }
6227 }
6228 }
b5fe590a 6229 if (reloaded && address_reloaded)
6230 *address_reloaded = 1;
6231
37f7956e 6232 return x;
6233}
6234\f
70457512 6235/* Substitute into the current INSN the registers into which we have reloaded
42c63e4d 6236 the things that need reloading. The array `replacements'
f2382343 6237 contains the locations of all pointers that must be changed
42c63e4d 6238 and says what to replace them with.
6239
6240 Return the rtx that X translates into; usually X, but modified. */
6241
6242void
3ad4992f 6243subst_reloads (rtx insn)
42c63e4d 6244{
19cb6b50 6245 int i;
42c63e4d 6246
6247 for (i = 0; i < n_replacements; i++)
6248 {
19cb6b50 6249 struct replacement *r = &replacements[i];
6250 rtx reloadreg = rld[r->what].reg_rtx;
42c63e4d 6251 if (reloadreg)
6252 {
455ca9be 6253#ifdef DEBUG_RELOAD
6254 /* This checking takes a very long time on some platforms
6255 causing the gcc.c-torture/compile/limits-fnargs.c test
6256 to time out during testing. See PR 31850.
6257
6258 Internal consistency test. Check that we don't modify
f6ada591 6259 anything in the equivalence arrays. Whenever something from
6260 those arrays needs to be reloaded, it must be unshared before
6261 being substituted into; the equivalence must not be modified.
6262 Otherwise, if the equivalence is used after that, it will
6263 have been modified, and the thing substituted (probably a
6264 register) is likely overwritten and not a usable equivalence. */
6265 int check_regno;
6266
6267 for (check_regno = 0; check_regno < max_regno; check_regno++)
6268 {
6269#define CHECK_MODF(ARRAY) \
1c654ff1 6270 gcc_assert (!VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY \
04e579b6 6271 || !loc_mentioned_in_p (r->where, \
1c654ff1 6272 VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY))
f6ada591 6273
1c654ff1 6274 CHECK_MODF (equiv_constant);
6275 CHECK_MODF (equiv_memory_loc);
6276 CHECK_MODF (equiv_address);
6277 CHECK_MODF (equiv_mem);
f6ada591 6278#undef CHECK_MODF
6279 }
455ca9be 6280#endif /* DEBUG_RELOAD */
f6ada591 6281
19d2fe05 6282 /* If we're replacing a LABEL_REF with a register, there must
6283 already be an indication (to e.g. flow) which label this
d3ff0f75 6284 register refers to. */
19d2fe05 6285 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6286 || !JUMP_P (insn)
6287 || find_reg_note (insn,
6288 REG_LABEL_OPERAND,
6289 XEXP (*r->where, 0))
6290 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
d3ff0f75 6291
42c63e4d 6292 /* Encapsulate RELOADREG so its machine mode matches what
d971a7cf 6293 used to be there. Note that gen_lowpart_common will
6294 do the wrong thing if RELOADREG is multi-word. RELOADREG
6295 will always be a REG here. */
42c63e4d 6296 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
fd3ac62f 6297 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
42c63e4d 6298
41356f5a 6299 *r->where = reloadreg;
42c63e4d 6300 }
6301 /* If reload got no reg and isn't optional, something's wrong. */
04e579b6 6302 else
6303 gcc_assert (rld[r->what].optional);
42c63e4d 6304 }
6305}
6306\f
8e2f6d6b 6307/* Make a copy of any replacements being done into X and move those
6308 copies to locations in Y, a copy of X. */
42c63e4d 6309
6310void
3ad4992f 6311copy_replacements (rtx x, rtx y)
42c63e4d 6312{
8e2f6d6b 6313 copy_replacements_1 (&x, &y, n_replacements);
6314}
6315
6316static void
3ad4992f 6317copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
8e2f6d6b 6318{
6319 int i, j;
6320 rtx x, y;
6321 struct replacement *r;
6322 enum rtx_code code;
6323 const char *fmt;
6324
6325 for (j = 0; j < orig_replacements; j++)
41356f5a 6326 if (replacements[j].where == px)
6327 {
6328 r = &replacements[n_replacements++];
6329 r->where = py;
6330 r->what = replacements[j].what;
6331 r->mode = replacements[j].mode;
6332 }
8e2f6d6b 6333
6334 x = *px;
6335 y = *py;
6336 code = GET_CODE (x);
6337 fmt = GET_RTX_FORMAT (code);
6338
6339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6340 {
6341 if (fmt[i] == 'e')
6342 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6343 else if (fmt[i] == 'E')
6344 for (j = XVECLEN (x, i); --j >= 0; )
6345 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6346 orig_replacements);
6347 }
42c63e4d 6348}
f64bc32a 6349
45498ea1 6350/* Change any replacements being done to *X to be done to *Y. */
f64bc32a 6351
6352void
3ad4992f 6353move_replacements (rtx *x, rtx *y)
f64bc32a 6354{
6355 int i;
6356
6357 for (i = 0; i < n_replacements; i++)
41356f5a 6358 if (replacements[i].where == x)
6359 replacements[i].where = y;
f64bc32a 6360}
42c63e4d 6361\f
8a7a0a5a 6362/* If LOC was scheduled to be replaced by something, return the replacement.
6363 Otherwise, return *LOC. */
6364
6365rtx
3ad4992f 6366find_replacement (rtx *loc)
8a7a0a5a 6367{
6368 struct replacement *r;
6369
6370 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6371 {
48666d2c 6372 rtx reloadreg = rld[r->what].reg_rtx;
8a7a0a5a 6373
6374 if (reloadreg && r->where == loc)
6375 {
6376 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
41356f5a 6377 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
8a7a0a5a 6378
6379 return reloadreg;
6380 }
41356f5a 6381 else if (reloadreg && GET_CODE (*loc) == SUBREG
6382 && r->where == &SUBREG_REG (*loc))
8a7a0a5a 6383 {
41356f5a 6384 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6385 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6386
6387 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6388 GET_MODE (SUBREG_REG (*loc)),
6389 SUBREG_BYTE (*loc));
8a7a0a5a 6390 }
6391 }
6392
ad87de1e 6393 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6394 what's inside and make a new rtl if so. */
6395 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6396 || GET_CODE (*loc) == MULT)
6397 {
6398 rtx x = find_replacement (&XEXP (*loc, 0));
6399 rtx y = find_replacement (&XEXP (*loc, 1));
6400
6401 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
941522d6 6402 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
ad87de1e 6403 }
6404
8a7a0a5a 6405 return *loc;
6406}
6407\f
42c63e4d 6408/* Return nonzero if register in range [REGNO, ENDREGNO)
6409 appears either explicitly or implicitly in X
3e561fd5 6410 other than being stored into (except for earlyclobber operands).
42c63e4d 6411
6412 References contained within the substructure at LOC do not count.
6413 LOC may be zero, meaning don't ignore anything.
6414
6415 This is similar to refers_to_regno_p in rtlanal.c except that we
6416 look at equivalences for pseudos that didn't get hard registers. */
6417
6e707336 6418static int
3ad4992f 6419refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6420 rtx x, rtx *loc)
42c63e4d 6421{
02e7a332 6422 int i;
6423 unsigned int r;
6424 RTX_CODE code;
6425 const char *fmt;
42c63e4d 6426
6427 if (x == 0)
6428 return 0;
6429
6430 repeat:
6431 code = GET_CODE (x);
6432
6433 switch (code)
6434 {
6435 case REG:
02e7a332 6436 r = REGNO (x);
42c63e4d 6437
c548e550 6438 /* If this is a pseudo, a hard register must not have been allocated.
6439 X must therefore either be a constant or be in memory. */
02e7a332 6440 if (r >= FIRST_PSEUDO_REGISTER)
c548e550 6441 {
1c654ff1 6442 if (reg_equiv_memory_loc (r))
c548e550 6443 return refers_to_regno_for_reload_p (regno, endregno,
1c654ff1 6444 reg_equiv_memory_loc (r),
33181afc 6445 (rtx*) 0);
c548e550 6446
1c654ff1 6447 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
04e579b6 6448 return 0;
c548e550 6449 }
42c63e4d 6450
02e7a332 6451 return (endregno > r
6452 && regno < r + (r < FIRST_PSEUDO_REGISTER
67d6c12b 6453 ? hard_regno_nregs[r][GET_MODE (x)]
42c63e4d 6454 : 1));
6455
6456 case SUBREG:
6457 /* If this is a SUBREG of a hard reg, we can see exactly which
6458 registers are being modified. Otherwise, handle normally. */
8ad4c111 6459 if (REG_P (SUBREG_REG (x))
42c63e4d 6460 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6461 {
701e46d0 6462 unsigned int inner_regno = subreg_regno (x);
02e7a332 6463 unsigned int inner_endregno
aee171c8 6464 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
fe2ebfc8 6465 ? subreg_nregs (x) : 1);
42c63e4d 6466
6467 return endregno > inner_regno && regno < inner_endregno;
6468 }
6469 break;
6470
6471 case CLOBBER:
6472 case SET:
6473 if (&SET_DEST (x) != loc
6474 /* Note setting a SUBREG counts as referring to the REG it is in for
6475 a pseudo but not for hard registers since we can
6476 treat each word individually. */
6477 && ((GET_CODE (SET_DEST (x)) == SUBREG
6478 && loc != &SUBREG_REG (SET_DEST (x))
8ad4c111 6479 && REG_P (SUBREG_REG (SET_DEST (x)))
42c63e4d 6480 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6481 && refers_to_regno_for_reload_p (regno, endregno,
6482 SUBREG_REG (SET_DEST (x)),
6483 loc))
b090827b 6484 /* If the output is an earlyclobber operand, this is
3e561fd5 6485 a conflict. */
8ad4c111 6486 || ((!REG_P (SET_DEST (x))
3e561fd5 6487 || earlyclobber_operand_p (SET_DEST (x)))
42c63e4d 6488 && refers_to_regno_for_reload_p (regno, endregno,
6489 SET_DEST (x), loc))))
6490 return 1;
6491
6492 if (code == CLOBBER || loc == &SET_SRC (x))
6493 return 0;
6494 x = SET_SRC (x);
6495 goto repeat;
5bb2f919 6496
0dbd1c74 6497 default:
6498 break;
42c63e4d 6499 }
6500
6501 /* X does not match, so try its subexpressions. */
6502
6503 fmt = GET_RTX_FORMAT (code);
6504 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6505 {
6506 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6507 {
6508 if (i == 0)
6509 {
6510 x = XEXP (x, 0);
6511 goto repeat;
6512 }
6513 else
6514 if (refers_to_regno_for_reload_p (regno, endregno,
6515 XEXP (x, i), loc))
6516 return 1;
6517 }
6518 else if (fmt[i] == 'E')
6519 {
19cb6b50 6520 int j;
67610d42 6521 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
42c63e4d 6522 if (loc != &XVECEXP (x, i, j)
6523 && refers_to_regno_for_reload_p (regno, endregno,
6524 XVECEXP (x, i, j), loc))
6525 return 1;
6526 }
6527 }
6528 return 0;
6529}
d3862ba2 6530
6531/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6532 we check if any register number in X conflicts with the relevant register
6533 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6534 contains a MEM (we don't bother checking for memory addresses that can't
5bb2f919 6535 conflict because we expect this to be a rare case.
d3862ba2 6536
4822deca 6537 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
d3862ba2 6538 that we look at equivalences for pseudos that didn't get hard registers. */
6539
6540int
3ad4992f 6541reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
d3862ba2 6542{
6543 int regno, endregno;
6544
8eb7d6fc 6545 /* Overly conservative. */
57148e48 6546 if (GET_CODE (x) == STRICT_LOW_PART
6720e96c 6547 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
8eb7d6fc 6548 x = XEXP (x, 0);
6549
6550 /* If either argument is a constant, then modifying X can not affect IN. */
6551 if (CONSTANT_P (x) || CONSTANT_P (in))
6552 return 0;
971ba038 6553 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
f31ff3d8 6554 return refers_to_mem_for_reload_p (in);
8eb7d6fc 6555 else if (GET_CODE (x) == SUBREG)
d3862ba2 6556 {
6557 regno = REGNO (SUBREG_REG (x));
6558 if (regno < FIRST_PSEUDO_REGISTER)
701e46d0 6559 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6560 GET_MODE (SUBREG_REG (x)),
6561 SUBREG_BYTE (x),
6562 GET_MODE (x));
fe2ebfc8 6563 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6564 ? subreg_nregs (x) : 1);
6565
6566 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
d3862ba2 6567 }
8ad4c111 6568 else if (REG_P (x))
d3862ba2 6569 {
6570 regno = REGNO (x);
c548e550 6571
6572 /* If this is a pseudo, it must not have been assigned a hard register.
6573 Therefore, it must either be in memory or be a constant. */
6574
6575 if (regno >= FIRST_PSEUDO_REGISTER)
6576 {
1c654ff1 6577 if (reg_equiv_memory_loc (regno))
c548e550 6578 return refers_to_mem_for_reload_p (in);
1c654ff1 6579 gcc_assert (reg_equiv_constant (regno));
04e579b6 6580 return 0;
c548e550 6581 }
fe2ebfc8 6582
a2c6f0b7 6583 endregno = END_HARD_REGNO (x);
fe2ebfc8 6584
6585 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
d3862ba2 6586 }
e16ceb8e 6587 else if (MEM_P (x))
c548e550 6588 return refers_to_mem_for_reload_p (in);
d3862ba2 6589 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6590 || GET_CODE (x) == CC0)
6591 return reg_mentioned_p (x, in);
48e1416a 6592 else
821e1d0d 6593 {
04e579b6 6594 gcc_assert (GET_CODE (x) == PLUS);
6595
821e1d0d 6596 /* We actually want to know if X is mentioned somewhere inside IN.
6597 We must not say that (plus (sp) (const_int 124)) is in
6598 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6599 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6600 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
e16ceb8e 6601 while (MEM_P (in))
821e1d0d 6602 in = XEXP (in, 0);
8ad4c111 6603 if (REG_P (in))
821e1d0d 6604 return 0;
6605 else if (GET_CODE (in) == PLUS)
1121ac6f 6606 return (rtx_equal_p (x, in)
6607 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
821e1d0d 6608 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6609 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6610 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6611 }
d3862ba2 6612
fe2ebfc8 6613 gcc_unreachable ();
d3862ba2 6614}
c548e550 6615
6616/* Return nonzero if anything in X contains a MEM. Look also for pseudo
6617 registers. */
6618
6e707336 6619static int
3ad4992f 6620refers_to_mem_for_reload_p (rtx x)
c548e550 6621{
d2ca078f 6622 const char *fmt;
c548e550 6623 int i;
6624
e16ceb8e 6625 if (MEM_P (x))
c548e550 6626 return 1;
6627
8ad4c111 6628 if (REG_P (x))
c548e550 6629 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
1c654ff1 6630 && reg_equiv_memory_loc (REGNO (x)));
5bb2f919 6631
c548e550 6632 fmt = GET_RTX_FORMAT (GET_CODE (x));
6633 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6634 if (fmt[i] == 'e'
e16ceb8e 6635 && (MEM_P (XEXP (x, i))
c548e550 6636 || refers_to_mem_for_reload_p (XEXP (x, i))))
6637 return 1;
5bb2f919 6638
c548e550 6639 return 0;
6640}
42c63e4d 6641\f
42c63e4d 6642/* Check the insns before INSN to see if there is a suitable register
6643 containing the same value as GOAL.
47cfb7f4 6644 If OTHER is -1, look for a register in class RCLASS.
42c63e4d 6645 Otherwise, just see if register number OTHER shares GOAL's value.
6646
6647 Return an rtx for the register found, or zero if none is found.
6648
6649 If RELOAD_REG_P is (short *)1,
6650 we reject any hard reg that appears in reload_reg_rtx
6651 because such a hard reg is also needed coming into this insn.
6652
6653 If RELOAD_REG_P is any other nonzero value,
6654 it is a vector indexed by hard reg number
6655 and we reject any hard reg whose element in the vector is nonnegative
6656 as well as any that appears in reload_reg_rtx.
6657
6658 If GOAL is zero, then GOALREG is a register number; we look
6659 for an equivalent for that register.
6660
6661 MODE is the machine mode of the value we want an equivalence for.
6662 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6663
6664 This function is used by jump.c as well as in the reload pass.
6665
6666 If GOAL is the sum of the stack pointer and a constant, we treat it
6667 as if it were a constant except that sp is required to be unchanging. */
6668
6669rtx
47cfb7f4 6670find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
3ad4992f 6671 short *reload_reg_p, int goalreg, enum machine_mode mode)
42c63e4d 6672{
19cb6b50 6673 rtx p = insn;
1fbf42c7 6674 rtx goaltry, valtry, value, where;
19cb6b50 6675 rtx pat;
6676 int regno = -1;
42c63e4d 6677 int valueno;
6678 int goal_mem = 0;
6679 int goal_const = 0;
6680 int goal_mem_addr_varies = 0;
6681 int need_stable_sp = 0;
6682 int nregs;
6683 int valuenregs;
c15bc0ce 6684 int num = 0;
42c63e4d 6685
6686 if (goal == 0)
6687 regno = goalreg;
8ad4c111 6688 else if (REG_P (goal))
42c63e4d 6689 regno = REGNO (goal);
e16ceb8e 6690 else if (MEM_P (goal))
42c63e4d 6691 {
6692 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6693 if (MEM_VOLATILE_P (goal))
6694 return 0;
cee7491d 6695 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
42c63e4d 6696 return 0;
6697 /* An address with side effects must be reexecuted. */
6698 switch (code)
6699 {
6700 case POST_INC:
6701 case PRE_INC:
6702 case POST_DEC:
6703 case PRE_DEC:
40988080 6704 case POST_MODIFY:
6705 case PRE_MODIFY:
42c63e4d 6706 return 0;
0dbd1c74 6707 default:
6708 break;
42c63e4d 6709 }
6710 goal_mem = 1;
6711 }
6712 else if (CONSTANT_P (goal))
6713 goal_const = 1;
6714 else if (GET_CODE (goal) == PLUS
6715 && XEXP (goal, 0) == stack_pointer_rtx
6716 && CONSTANT_P (XEXP (goal, 1)))
6717 goal_const = need_stable_sp = 1;
c988df6a 6718 else if (GET_CODE (goal) == PLUS
6719 && XEXP (goal, 0) == frame_pointer_rtx
6720 && CONSTANT_P (XEXP (goal, 1)))
6721 goal_const = 1;
42c63e4d 6722 else
6723 return 0;
6724
c15bc0ce 6725 num = 0;
42c63e4d 6726 /* Scan insns back from INSN, looking for one that copies
6727 a value into or out of GOAL.
6728 Stop and give up if we reach a label. */
6729
6730 while (1)
6731 {
6732 p = PREV_INSN (p);
9845d120 6733 if (p && DEBUG_INSN_P (p))
6734 continue;
c15bc0ce 6735 num++;
6d7dc5b9 6736 if (p == 0 || LABEL_P (p)
c15bc0ce 6737 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
42c63e4d 6738 return 0;
02e7a332 6739
fd7a154d 6740 /* Don't reuse register contents from before a setjmp-type
6741 function call; on the second return (from the longjmp) it
6742 might have been clobbered by a later reuse. It doesn't
6743 seem worthwhile to actually go and see if it is actually
6744 reused even if that information would be readily available;
6745 just don't reuse it across the setjmp call. */
6746 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6747 return 0;
6748
6d7dc5b9 6749 if (NONJUMP_INSN_P (p)
a92771b8 6750 /* If we don't want spill regs ... */
70457512 6751 && (! (reload_reg_p != 0
6752 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
02e7a332 6753 /* ... then ignore insns introduced by reload; they aren't
6754 useful and can cause results in reload_as_needed to be
6755 different from what they were when calculating the need for
6756 spills. If we notice an input-reload insn here, we will
6757 reject it below, but it might hide a usable equivalent.
1fa3a8f6 6758 That makes bad code. It may even fail: perhaps no reg was
02e7a332 6759 spilled for this insn because it was assumed we would find
6760 that equivalent. */
42c63e4d 6761 || INSN_UID (p) < reload_first_uid))
6762 {
f22495be 6763 rtx tem;
42c63e4d 6764 pat = single_set (p);
02e7a332 6765
42c63e4d 6766 /* First check for something that sets some reg equal to GOAL. */
6767 if (pat != 0
6768 && ((regno >= 0
6769 && true_regnum (SET_SRC (pat)) == regno
6770 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6771 ||
6772 (regno >= 0
6773 && true_regnum (SET_DEST (pat)) == regno
6774 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6775 ||
6776 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
c9814adb 6777 /* When looking for stack pointer + const,
6778 make sure we don't use a stack adjust. */
6779 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
42c63e4d 6780 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6781 || (goal_mem
6782 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6783 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6784 || (goal_mem
6785 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
f22495be 6786 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6787 /* If we are looking for a constant,
6788 and something equivalent to that constant was copied
6789 into a reg, we can use that reg. */
d6cb6164 6790 || (goal_const && REG_NOTES (p) != 0
6791 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6792 && ((rtx_equal_p (XEXP (tem, 0), goal)
6793 && (valueno
6794 = true_regnum (valtry = SET_DEST (pat))) >= 0)
8ad4c111 6795 || (REG_P (SET_DEST (pat))
d6cb6164 6796 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
cee7491d 6797 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
971ba038 6798 && CONST_INT_P (goal)
d6cb6164 6799 && 0 != (goaltry
6800 = operand_subword (XEXP (tem, 0), 0, 0,
1fbf42c7 6801 VOIDmode))
d6cb6164 6802 && rtx_equal_p (goal, goaltry)
6803 && (valtry
6804 = operand_subword (SET_DEST (pat), 0, 0,
6805 VOIDmode))
6806 && (valueno = true_regnum (valtry)) >= 0)))
e5fdd564 6807 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6808 NULL_RTX))
8ad4c111 6809 && REG_P (SET_DEST (pat))
f22495be 6810 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
cee7491d 6811 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
971ba038 6812 && CONST_INT_P (goal)
1fbf42c7 6813 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6814 VOIDmode))
6815 && rtx_equal_p (goal, goaltry)
f22495be 6816 && (valtry
6817 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
03604f92 6818 && (valueno = true_regnum (valtry)) >= 0)))
066034a1 6819 {
6820 if (other >= 0)
6821 {
6822 if (valueno != other)
6823 continue;
6824 }
6825 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6826 continue;
47cfb7f4 6827 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
a2c6f0b7 6828 mode, valueno))
6829 continue;
066034a1 6830 value = valtry;
6831 where = p;
6832 break;
6833 }
42c63e4d 6834 }
6835 }
6836
6837 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6838 (or copying VALUE into GOAL, if GOAL is also a register).
6839 Now verify that VALUE is really valid. */
6840
6841 /* VALUENO is the register number of VALUE; a hard register. */
6842
6843 /* Don't try to re-use something that is killed in this insn. We want
6844 to be able to trust REG_UNUSED notes. */
d6cb6164 6845 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
42c63e4d 6846 return 0;
6847
6848 /* If we propose to get the value from the stack pointer or if GOAL is
6849 a MEM based on the stack pointer, we need a stable SP. */
d8e97895 6850 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
d3862ba2 6851 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6852 goal)))
42c63e4d 6853 need_stable_sp = 1;
6854
6855 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6856 if (GET_MODE (value) != mode)
6857 return 0;
6858
6859 /* Reject VALUE if it was loaded from GOAL
6860 and is also a register that appears in the address of GOAL. */
6861
5aee73e6 6862 if (goal_mem && value == SET_DEST (single_set (where))
a2c6f0b7 6863 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
33181afc 6864 goal, (rtx*) 0))
42c63e4d 6865 return 0;
6866
6867 /* Reject registers that overlap GOAL. */
6868
67d6c12b 6869 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6870 nregs = hard_regno_nregs[regno][mode];
6871 else
6872 nregs = 1;
6873 valuenregs = hard_regno_nregs[valueno][mode];
54741f4a 6874
900c3c49 6875 if (!goal_mem && !goal_const
6876 && regno + nregs > valueno && regno < valueno + valuenregs)
6877 return 0;
6878
42c63e4d 6879 /* Reject VALUE if it is one of the regs reserved for reloads.
6880 Reload1 knows how to reuse them anyway, and it would get
6881 confused if we allocated one without its knowledge.
6882 (Now that insns introduced by reload are ignored above,
6883 this case shouldn't happen, but I'm not positive.) */
6884
54741f4a 6885 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6886 {
6887 int i;
6888 for (i = 0; i < valuenregs; ++i)
6889 if (reload_reg_p[valueno + i] >= 0)
6890 return 0;
6891 }
42c63e4d 6892
6893 /* Reject VALUE if it is a register being used for an input reload
6894 even if it is not one of those reserved. */
6895
6896 if (reload_reg_p != 0)
6897 {
6898 int i;
6899 for (i = 0; i < n_reloads; i++)
48666d2c 6900 if (rld[i].reg_rtx != 0 && rld[i].in)
42c63e4d 6901 {
48666d2c 6902 int regno1 = REGNO (rld[i].reg_rtx);
67d6c12b 6903 int nregs1 = hard_regno_nregs[regno1]
6904 [GET_MODE (rld[i].reg_rtx)];
42c63e4d 6905 if (regno1 < valueno + valuenregs
6906 && regno1 + nregs1 > valueno)
6907 return 0;
6908 }
6909 }
6910
6911 if (goal_mem)
f7f0a0c6 6912 /* We must treat frame pointer as varying here,
6913 since it can vary--in a nonlocal goto as generated by expand_goto. */
6914 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
42c63e4d 6915
6916 /* Now verify that the values of GOAL and VALUE remain unaltered
6917 until INSN is reached. */
6918
6919 p = insn;
6920 while (1)
6921 {
6922 p = PREV_INSN (p);
6923 if (p == where)
6924 return value;
6925
6926 /* Don't trust the conversion past a function call
6927 if either of the two is in a call-clobbered register, or memory. */
6d7dc5b9 6928 if (CALL_P (p))
517c712f 6929 {
6930 int i;
67610d42 6931
517c712f 6932 if (goal_mem || need_stable_sp)
6933 return 0;
67610d42 6934
517c712f 6935 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6936 for (i = 0; i < nregs; ++i)
154bfd13 6937 if (call_used_regs[regno + i]
6938 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
517c712f 6939 return 0;
6940
6941 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6942 for (i = 0; i < valuenregs; ++i)
154bfd13 6943 if (call_used_regs[valueno + i]
6944 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
517c712f 6945 return 0;
9239aee6 6946 }
99ea4b55 6947
9204e736 6948 if (INSN_P (p))
42c63e4d 6949 {
e5da2403 6950 pat = PATTERN (p);
6951
5bb2f919 6952 /* Watch out for unspec_volatile, and volatile asms. */
6953 if (volatile_insn_p (pat))
e5da2403 6954 return 0;
6955
42c63e4d 6956 /* If this insn P stores in either GOAL or VALUE, return 0.
6957 If GOAL is a memory ref and this insn writes memory, return 0.
6958 If GOAL is a memory ref and its address is not constant,
6959 and this insn P changes a register used in GOAL, return 0. */
6960
406034fa 6961 if (GET_CODE (pat) == COND_EXEC)
6962 pat = COND_EXEC_CODE (pat);
42c63e4d 6963 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6964 {
19cb6b50 6965 rtx dest = SET_DEST (pat);
42c63e4d 6966 while (GET_CODE (dest) == SUBREG
6967 || GET_CODE (dest) == ZERO_EXTRACT
42c63e4d 6968 || GET_CODE (dest) == STRICT_LOW_PART)
6969 dest = XEXP (dest, 0);
8ad4c111 6970 if (REG_P (dest))
42c63e4d 6971 {
19cb6b50 6972 int xregno = REGNO (dest);
42c63e4d 6973 int xnregs;
6974 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
67d6c12b 6975 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
42c63e4d 6976 else
6977 xnregs = 1;
6978 if (xregno < regno + nregs && xregno + xnregs > regno)
6979 return 0;
6980 if (xregno < valueno + valuenregs
6981 && xregno + xnregs > valueno)
6982 return 0;
6983 if (goal_mem_addr_varies
d3862ba2 6984 && reg_overlap_mentioned_for_reload_p (dest, goal))
42c63e4d 6985 return 0;
e43114ec 6986 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6987 return 0;
42c63e4d 6988 }
e16ceb8e 6989 else if (goal_mem && MEM_P (dest)
42c63e4d 6990 && ! push_operand (dest, GET_MODE (dest)))
6991 return 0;
e16ceb8e 6992 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
1c654ff1 6993 && reg_equiv_memory_loc (regno) != 0)
4c0fba30 6994 return 0;
42c63e4d 6995 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6996 return 0;
6997 }
6998 else if (GET_CODE (pat) == PARALLEL)
6999 {
19cb6b50 7000 int i;
42c63e4d 7001 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7002 {
19cb6b50 7003 rtx v1 = XVECEXP (pat, 0, i);
406034fa 7004 if (GET_CODE (v1) == COND_EXEC)
7005 v1 = COND_EXEC_CODE (v1);
42c63e4d 7006 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7007 {
19cb6b50 7008 rtx dest = SET_DEST (v1);
42c63e4d 7009 while (GET_CODE (dest) == SUBREG
7010 || GET_CODE (dest) == ZERO_EXTRACT
42c63e4d 7011 || GET_CODE (dest) == STRICT_LOW_PART)
7012 dest = XEXP (dest, 0);
8ad4c111 7013 if (REG_P (dest))
42c63e4d 7014 {
19cb6b50 7015 int xregno = REGNO (dest);
42c63e4d 7016 int xnregs;
7017 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
67d6c12b 7018 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
42c63e4d 7019 else
7020 xnregs = 1;
7021 if (xregno < regno + nregs
7022 && xregno + xnregs > regno)
7023 return 0;
7024 if (xregno < valueno + valuenregs
7025 && xregno + xnregs > valueno)
7026 return 0;
7027 if (goal_mem_addr_varies
d3862ba2 7028 && reg_overlap_mentioned_for_reload_p (dest,
7029 goal))
42c63e4d 7030 return 0;
a7657823 7031 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7032 return 0;
42c63e4d 7033 }
e16ceb8e 7034 else if (goal_mem && MEM_P (dest)
42c63e4d 7035 && ! push_operand (dest, GET_MODE (dest)))
7036 return 0;
e16ceb8e 7037 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
1c654ff1 7038 && reg_equiv_memory_loc (regno) != 0)
0dbd1c74 7039 return 0;
99b6f742 7040 else if (need_stable_sp
7041 && push_operand (dest, GET_MODE (dest)))
7042 return 0;
7043 }
7044 }
7045 }
7046
6d7dc5b9 7047 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
99b6f742 7048 {
7049 rtx link;
7050
7051 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7052 link = XEXP (link, 1))
7053 {
7054 pat = XEXP (link, 0);
7055 if (GET_CODE (pat) == CLOBBER)
7056 {
19cb6b50 7057 rtx dest = SET_DEST (pat);
38219f2f 7058
8ad4c111 7059 if (REG_P (dest))
99b6f742 7060 {
19cb6b50 7061 int xregno = REGNO (dest);
38219f2f 7062 int xnregs
67d6c12b 7063 = hard_regno_nregs[xregno][GET_MODE (dest)];
38219f2f 7064
99b6f742 7065 if (xregno < regno + nregs
7066 && xregno + xnregs > regno)
7067 return 0;
38219f2f 7068 else if (xregno < valueno + valuenregs
67610d42 7069 && xregno + xnregs > valueno)
99b6f742 7070 return 0;
38219f2f 7071 else if (goal_mem_addr_varies
7072 && reg_overlap_mentioned_for_reload_p (dest,
99b6f742 7073 goal))
7074 return 0;
7075 }
38219f2f 7076
e16ceb8e 7077 else if (goal_mem && MEM_P (dest)
99b6f742 7078 && ! push_operand (dest, GET_MODE (dest)))
7079 return 0;
42c63e4d 7080 else if (need_stable_sp
7081 && push_operand (dest, GET_MODE (dest)))
7082 return 0;
7083 }
7084 }
7085 }
7086
7087#ifdef AUTO_INC_DEC
7088 /* If this insn auto-increments or auto-decrements
7089 either regno or valueno, return 0 now.
7090 If GOAL is a memory ref and its address is not constant,
7091 and this insn P increments a register used in GOAL, return 0. */
7092 {
19cb6b50 7093 rtx link;
42c63e4d 7094
7095 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7096 if (REG_NOTE_KIND (link) == REG_INC
8ad4c111 7097 && REG_P (XEXP (link, 0)))
42c63e4d 7098 {
19cb6b50 7099 int incno = REGNO (XEXP (link, 0));
42c63e4d 7100 if (incno < regno + nregs && incno >= regno)
7101 return 0;
7102 if (incno < valueno + valuenregs && incno >= valueno)
7103 return 0;
7104 if (goal_mem_addr_varies
d3862ba2 7105 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7106 goal))
42c63e4d 7107 return 0;
7108 }
7109 }
7110#endif
7111 }
7112 }
7113}
7114\f
7115/* Find a place where INCED appears in an increment or decrement operator
7116 within X, and return the amount INCED is incremented or decremented by.
7117 The value is always positive. */
7118
7119static int
3ad4992f 7120find_inc_amount (rtx x, rtx inced)
42c63e4d 7121{
19cb6b50 7122 enum rtx_code code = GET_CODE (x);
7123 const char *fmt;
7124 int i;
42c63e4d 7125
7126 if (code == MEM)
7127 {
19cb6b50 7128 rtx addr = XEXP (x, 0);
42c63e4d 7129 if ((GET_CODE (addr) == PRE_DEC
7130 || GET_CODE (addr) == POST_DEC
7131 || GET_CODE (addr) == PRE_INC
7132 || GET_CODE (addr) == POST_INC)
7133 && XEXP (addr, 0) == inced)
7134 return GET_MODE_SIZE (GET_MODE (x));
40988080 7135 else if ((GET_CODE (addr) == PRE_MODIFY
7136 || GET_CODE (addr) == POST_MODIFY)
7137 && GET_CODE (XEXP (addr, 1)) == PLUS
7138 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7139 && XEXP (addr, 0) == inced
971ba038 7140 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
67610d42 7141 {
7142 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7143 return i < 0 ? -i : i;
7144 }
7145 }
42c63e4d 7146
7147 fmt = GET_RTX_FORMAT (code);
7148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7149 {
7150 if (fmt[i] == 'e')
7151 {
19cb6b50 7152 int tem = find_inc_amount (XEXP (x, i), inced);
42c63e4d 7153 if (tem != 0)
7154 return tem;
7155 }
7156 if (fmt[i] == 'E')
7157 {
19cb6b50 7158 int j;
42c63e4d 7159 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7160 {
19cb6b50 7161 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
42c63e4d 7162 if (tem != 0)
7163 return tem;
7164 }
7165 }
7166 }
7167
7168 return 0;
7169}
7170\f
a80cd853 7171/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7172 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7173
7174#ifdef AUTO_INC_DEC
48e1416a 7175static int
a80cd853 7176reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7177 rtx insn)
7178{
7179 rtx link;
7180
7181 gcc_assert (insn);
7182
7183 if (! INSN_P (insn))
7184 return 0;
48e1416a 7185
a80cd853 7186 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7187 if (REG_NOTE_KIND (link) == REG_INC)
7188 {
7189 unsigned int test = (int) REGNO (XEXP (link, 0));
7190 if (test >= regno && test < endregno)
48e1416a 7191 return 1;
a80cd853 7192 }
7193 return 0;
7194}
7195#else
7196
7197#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7198
48e1416a 7199#endif
a80cd853 7200
ab7883ae 7201/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
a80cd853 7202 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7203 REG_INC. REGNO must refer to a hard register. */
42c63e4d 7204
7205int
3ad4992f 7206regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7207 int sets)
42c63e4d 7208{
3b1e12de 7209 unsigned int nregs, endregno;
7210
7211 /* regno must be a hard register. */
7212 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7213
7214 nregs = hard_regno_nregs[regno][mode];
7215 endregno = regno + nregs;
0d40c9f5 7216
ab7883ae 7217 if ((GET_CODE (PATTERN (insn)) == CLOBBER
a80cd853 7218 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
8ad4c111 7219 && REG_P (XEXP (PATTERN (insn), 0)))
0d40c9f5 7220 {
97b330ca 7221 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
0d40c9f5 7222
9a86bc1b 7223 return test >= regno && test < endregno;
0d40c9f5 7224 }
42c63e4d 7225
a80cd853 7226 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
48e1416a 7227 return 1;
7228
42c63e4d 7229 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7230 {
7231 int i = XVECLEN (PATTERN (insn), 0) - 1;
7232
7233 for (; i >= 0; i--)
7234 {
7235 rtx elt = XVECEXP (PATTERN (insn), 0, i);
ab7883ae 7236 if ((GET_CODE (elt) == CLOBBER
3ea04b3a 7237 || (sets == 1 && GET_CODE (elt) == SET))
8ad4c111 7238 && REG_P (XEXP (elt, 0)))
0d40c9f5 7239 {
97b330ca 7240 unsigned int test = REGNO (XEXP (elt, 0));
2617fe26 7241
9a86bc1b 7242 if (test >= regno && test < endregno)
0d40c9f5 7243 return 1;
7244 }
a80cd853 7245 if (sets == 2
7246 && reg_inc_found_and_valid_p (regno, endregno, elt))
48e1416a 7247 return 1;
42c63e4d 7248 }
7249 }
7250
7251 return 0;
7252}
00e753ce 7253
fd3ac62f 7254/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7255rtx
3ad4992f 7256reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
fd3ac62f 7257{
7258 int regno;
7259
7260 if (GET_MODE (reloadreg) == mode)
7261 return reloadreg;
7262
7263 regno = REGNO (reloadreg);
7264
76c64076 7265 if (REG_WORDS_BIG_ENDIAN)
67d6c12b 7266 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7267 - (int) hard_regno_nregs[regno][mode];
fd3ac62f 7268
7269 return gen_rtx_REG (mode, regno);
7270}
7271
35823b64 7272static const char *const reload_when_needed_name[] =
00e753ce 7273{
5bb2f919 7274 "RELOAD_FOR_INPUT",
7275 "RELOAD_FOR_OUTPUT",
00e753ce 7276 "RELOAD_FOR_INSN",
9e53d777 7277 "RELOAD_FOR_INPUT_ADDRESS",
7278 "RELOAD_FOR_INPADDR_ADDRESS",
00e753ce 7279 "RELOAD_FOR_OUTPUT_ADDRESS",
9e53d777 7280 "RELOAD_FOR_OUTADDR_ADDRESS",
5bb2f919 7281 "RELOAD_FOR_OPERAND_ADDRESS",
00e753ce 7282 "RELOAD_FOR_OPADDR_ADDR",
5bb2f919 7283 "RELOAD_OTHER",
00e753ce 7284 "RELOAD_FOR_OTHER_ADDRESS"
7285};
7286
2d35393b 7287/* These functions are used to print the variables set by 'find_reloads' */
00e753ce 7288
4b987fac 7289DEBUG_FUNCTION void
3ad4992f 7290debug_reload_to_stream (FILE *f)
00e753ce 7291{
7292 int r;
d2ca078f 7293 const char *prefix;
00e753ce 7294
2d35393b 7295 if (! f)
7296 f = stderr;
00e753ce 7297 for (r = 0; r < n_reloads; r++)
7298 {
2d35393b 7299 fprintf (f, "Reload %d: ", r);
00e753ce 7300
48666d2c 7301 if (rld[r].in != 0)
00e753ce 7302 {
2d35393b 7303 fprintf (f, "reload_in (%s) = ",
48666d2c 7304 GET_MODE_NAME (rld[r].inmode));
7305 print_inline_rtx (f, rld[r].in, 24);
2d35393b 7306 fprintf (f, "\n\t");
00e753ce 7307 }
7308
48666d2c 7309 if (rld[r].out != 0)
00e753ce 7310 {
2d35393b 7311 fprintf (f, "reload_out (%s) = ",
48666d2c 7312 GET_MODE_NAME (rld[r].outmode));
7313 print_inline_rtx (f, rld[r].out, 24);
2d35393b 7314 fprintf (f, "\n\t");
00e753ce 7315 }
7316
c32319fc 7317 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
00e753ce 7318
2d35393b 7319 fprintf (f, "%s (opnum = %d)",
48666d2c 7320 reload_when_needed_name[(int) rld[r].when_needed],
7321 rld[r].opnum);
00e753ce 7322
48666d2c 7323 if (rld[r].optional)
2d35393b 7324 fprintf (f, ", optional");
00e753ce 7325
48666d2c 7326 if (rld[r].nongroup)
e4c251eb 7327 fprintf (f, ", nongroup");
c5aa1e92 7328
48666d2c 7329 if (rld[r].inc != 0)
7330 fprintf (f, ", inc by %d", rld[r].inc);
00e753ce 7331
48666d2c 7332 if (rld[r].nocombine)
2d35393b 7333 fprintf (f, ", can't combine");
00e753ce 7334
48666d2c 7335 if (rld[r].secondary_p)
2d35393b 7336 fprintf (f, ", secondary_reload_p");
00e753ce 7337
48666d2c 7338 if (rld[r].in_reg != 0)
00e753ce 7339 {
2d35393b 7340 fprintf (f, "\n\treload_in_reg: ");
48666d2c 7341 print_inline_rtx (f, rld[r].in_reg, 24);
00e753ce 7342 }
7343
48666d2c 7344 if (rld[r].out_reg != 0)
93c7b06e 7345 {
7346 fprintf (f, "\n\treload_out_reg: ");
48666d2c 7347 print_inline_rtx (f, rld[r].out_reg, 24);
93c7b06e 7348 }
7349
48666d2c 7350 if (rld[r].reg_rtx != 0)
00e753ce 7351 {
2d35393b 7352 fprintf (f, "\n\treload_reg_rtx: ");
48666d2c 7353 print_inline_rtx (f, rld[r].reg_rtx, 24);
00e753ce 7354 }
7355
b1aaeff9 7356 prefix = "\n\t";
48666d2c 7357 if (rld[r].secondary_in_reload != -1)
00e753ce 7358 {
2d35393b 7359 fprintf (f, "%ssecondary_in_reload = %d",
48666d2c 7360 prefix, rld[r].secondary_in_reload);
b1aaeff9 7361 prefix = ", ";
00e753ce 7362 }
7363
48666d2c 7364 if (rld[r].secondary_out_reload != -1)
2d35393b 7365 fprintf (f, "%ssecondary_out_reload = %d\n",
48666d2c 7366 prefix, rld[r].secondary_out_reload);
00e753ce 7367
b1aaeff9 7368 prefix = "\n\t";
48666d2c 7369 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
00e753ce 7370 {
e4c251eb 7371 fprintf (f, "%ssecondary_in_icode = %s", prefix,
48666d2c 7372 insn_data[rld[r].secondary_in_icode].name);
b1aaeff9 7373 prefix = ", ";
00e753ce 7374 }
7375
48666d2c 7376 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
e4c251eb 7377 fprintf (f, "%ssecondary_out_icode = %s", prefix,
48666d2c 7378 insn_data[rld[r].secondary_out_icode].name);
00e753ce 7379
2d35393b 7380 fprintf (f, "\n");
00e753ce 7381 }
00e753ce 7382}
2d35393b 7383
4b987fac 7384DEBUG_FUNCTION void
3ad4992f 7385debug_reload (void)
2d35393b 7386{
7387 debug_reload_to_stream (stderr);
7388}