]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/resource.c
re PR target/37170 (gcc.dg/weak/weak-1.c)
[thirdparty/gcc.git] / gcc / resource.c
CommitLineData
6a73406e 1/* Definitions for computing resource usage of specific insns.
6fb5fa3c 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
0c20a65f 3 Free Software Foundation, Inc.
6a73406e 4
1322177d 5This file is part of GCC.
6a73406e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
6a73406e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
6a73406e
RH
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6a73406e 20
ca545bb5 21#include "config.h"
8ce25479 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
01198c2f 25#include "toplev.h"
ca545bb5 26#include "rtl.h"
6baf1cc8 27#include "tm_p.h"
ca545bb5 28#include "hard-reg-set.h"
49ad7cfa 29#include "function.h"
ca545bb5
BM
30#include "regs.h"
31#include "flags.h"
32#include "output.h"
33#include "resource.h"
d80eb1e1 34#include "except.h"
7bdb32b9 35#include "insn-attr.h"
d5d063d7 36#include "params.h"
6fb5fa3c 37#include "df.h"
ca545bb5
BM
38
39/* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
43
44struct target_info
45{
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
51};
52
53#define TARGET_HASH_PRIME 257
54
55/* Indicates what resources are required at the beginning of the epilogue. */
56static struct resources start_of_epilogue_needs;
57
58/* Indicates what resources are required at function end. */
59static struct resources end_of_function_needs;
60
61/* Define the hash table itself. */
62static struct target_info **target_hash_table = NULL;
63
64/* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
68
69static int *bb_ticks;
70
71/* Marks registers possibly live at the current place being scanned by
d5d063d7 72 mark_target_live_regs. Also used by update_live_status. */
ca545bb5
BM
73
74static HARD_REG_SET current_live_regs;
75
76/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
78
79static HARD_REG_SET pending_dead_regs;
6a73406e 80\f
7bc980e1 81static void update_live_status (rtx, const_rtx, void *);
0c20a65f
AJ
82static int find_basic_block (rtx, int);
83static rtx next_insn_no_annul (rtx);
84static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
6a73406e 87\f
ca545bb5
BM
88/* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
90
91static void
7bc980e1 92update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
ca545bb5
BM
93{
94 int first_regno, last_regno;
95 int i;
96
f8cfc6aa
JQ
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
ca545bb5
BM
99 return;
100
101 if (GET_CODE (dest) == SUBREG)
f1f4e530
JM
102 {
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
ca545bb5 105
f1f4e530
JM
106 }
107 else
108 {
109 first_regno = REGNO (dest);
09e18274 110 last_regno = END_HARD_REGNO (dest);
f1f4e530 111 }
ca545bb5
BM
112
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
118 {
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121 }
122}
d5d063d7
JO
123
124/* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
129
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
925fa227
RH
134
135static int
0c20a65f 136find_basic_block (rtx insn, int search_limit)
925fa227 137{
e0082a72 138 basic_block bb;
925fa227
RH
139
140 /* Scan backwards to the previous BARRIER. Then see if we can find a
141 label that starts a basic block. Return the basic block number. */
925fa227 142 for (insn = prev_nonnote_insn (insn);
4b4bf941 143 insn && !BARRIER_P (insn) && search_limit != 0;
d5d063d7 144 insn = prev_nonnote_insn (insn), --search_limit)
925fa227
RH
145 ;
146
d5d063d7
JO
147 /* The closest BARRIER is too far away. */
148 if (search_limit == 0)
149 return -1;
150
f6366fc7 151 /* The start of the function. */
d5d063d7 152 else if (insn == 0)
f6366fc7 153 return ENTRY_BLOCK_PTR->next_bb->index;
925fa227
RH
154
155 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
156 anything other than a CODE_LABEL or note, we can't find this code. */
157 for (insn = next_nonnote_insn (insn);
4b4bf941 158 insn && LABEL_P (insn);
925fa227
RH
159 insn = next_nonnote_insn (insn))
160 {
e0082a72 161 FOR_EACH_BB (bb)
a813c111 162 if (insn == BB_HEAD (bb))
e0082a72 163 return bb->index;
925fa227
RH
164 }
165
166 return -1;
167}
ca545bb5
BM
168\f
169/* Similar to next_insn, but ignores insns in the delay slots of
170 an annulled branch. */
171
172static rtx
0c20a65f 173next_insn_no_annul (rtx insn)
ca545bb5
BM
174{
175 if (insn)
176 {
177 /* If INSN is an annulled branch, skip any insns from the target
178 of the branch. */
4b4bf941 179 if (INSN_P (insn)
cf40ea15 180 && INSN_ANNULLED_BRANCH_P (insn)
ca545bb5 181 && NEXT_INSN (PREV_INSN (insn)) != insn)
cf40ea15
DM
182 {
183 rtx next = NEXT_INSN (insn);
184 enum rtx_code code = GET_CODE (next);
185
186 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
187 && INSN_FROM_TARGET_P (next))
188 {
189 insn = next;
190 next = NEXT_INSN (insn);
191 code = GET_CODE (next);
192 }
193 }
ca545bb5
BM
194
195 insn = NEXT_INSN (insn);
4b4bf941 196 if (insn && NONJUMP_INSN_P (insn)
ca545bb5
BM
197 && GET_CODE (PATTERN (insn)) == SEQUENCE)
198 insn = XVECEXP (PATTERN (insn), 0, 0);
199 }
200
201 return insn;
202}
203\f
204/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
f5df2e8c 205 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
ca545bb5
BM
206 is TRUE, resources used by the called routine will be included for
207 CALL_INSNs. */
208
209void
0c20a65f
AJ
210mark_referenced_resources (rtx x, struct resources *res,
211 int include_delayed_effects)
ca545bb5 212{
770ae6cc
RK
213 enum rtx_code code = GET_CODE (x);
214 int i, j;
215 unsigned int r;
b3694847 216 const char *format_ptr;
ca545bb5
BM
217
218 /* Handle leaf items for which we set resource flags. Also, special-case
219 CALL, SET and CLOBBER operators. */
220 switch (code)
221 {
222 case CONST:
223 case CONST_INT:
224 case CONST_DOUBLE:
091a3ac7 225 case CONST_FIXED:
69ef87e2 226 case CONST_VECTOR:
ca545bb5
BM
227 case PC:
228 case SYMBOL_REF:
229 case LABEL_REF:
230 return;
231
232 case SUBREG:
f8cfc6aa 233 if (!REG_P (SUBREG_REG (x)))
ca545bb5
BM
234 mark_referenced_resources (SUBREG_REG (x), res, 0);
235 else
236 {
ddef6bc7 237 unsigned int regno = subreg_regno (x);
f1f4e530 238 unsigned int last_regno = regno + subreg_nregs (x);
770ae6cc 239
41374e13 240 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770ae6cc
RK
241 for (r = regno; r < last_regno; r++)
242 SET_HARD_REG_BIT (res->regs, r);
ca545bb5
BM
243 }
244 return;
245
246 case REG:
09e18274
RS
247 gcc_assert (HARD_REGISTER_P (x));
248 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
ca545bb5
BM
249 return;
250
251 case MEM:
252 /* If this memory shouldn't change, it really isn't referencing
253 memory. */
389fdba0 254 if (MEM_READONLY_P (x))
ca545bb5
BM
255 res->unch_memory = 1;
256 else
257 res->memory = 1;
a5045352 258 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
259
260 /* Mark registers used to access memory. */
261 mark_referenced_resources (XEXP (x, 0), res, 0);
262 return;
263
264 case CC0:
265 res->cc = 1;
266 return;
267
268 case UNSPEC_VOLATILE:
1b929c9a 269 case TRAP_IF:
ca545bb5
BM
270 case ASM_INPUT:
271 /* Traditional asm's are always volatile. */
ca545bb5
BM
272 res->volatil = 1;
273 break;
274
275 case ASM_OPERANDS:
a5045352 276 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
277
278 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
279 We can not just fall through here since then we would be confused
280 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
281 traditional asms unlike their normal usage. */
a6a2274a 282
ca545bb5
BM
283 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
284 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
285 return;
286
287 case CALL:
288 /* The first operand will be a (MEM (xxx)) but doesn't really reference
289 memory. The second operand may be referenced, though. */
290 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
291 mark_referenced_resources (XEXP (x, 1), res, 0);
292 return;
293
294 case SET:
295 /* Usually, the first operand of SET is set, not referenced. But
296 registers used to access memory are referenced. SET_DEST is
46d096a3 297 also referenced if it is a ZERO_EXTRACT. */
ca545bb5
BM
298
299 mark_referenced_resources (SET_SRC (x), res, 0);
300
301 x = SET_DEST (x);
46d096a3 302 if (GET_CODE (x) == ZERO_EXTRACT
07570c39 303 || GET_CODE (x) == STRICT_LOW_PART)
ca545bb5
BM
304 mark_referenced_resources (x, res, 0);
305 else if (GET_CODE (x) == SUBREG)
306 x = SUBREG_REG (x);
3c0cb5de 307 if (MEM_P (x))
ca545bb5
BM
308 mark_referenced_resources (XEXP (x, 0), res, 0);
309 return;
310
311 case CLOBBER:
312 return;
313
314 case CALL_INSN:
315 if (include_delayed_effects)
316 {
317 /* A CALL references memory, the frame pointer if it exists, the
318 stack pointer, any global registers and any registers given in
319 USE insns immediately in front of the CALL.
320
321 However, we may have moved some of the parameter loading insns
322 into the delay slot of this CALL. If so, the USE's for them
323 don't count and should be skipped. */
324 rtx insn = PREV_INSN (x);
325 rtx sequence = 0;
326 int seq_size = 0;
ca545bb5
BM
327 int i;
328
329 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
330 if (NEXT_INSN (insn) != x)
331 {
ca545bb5
BM
332 sequence = PATTERN (NEXT_INSN (insn));
333 seq_size = XVECLEN (sequence, 0);
41374e13 334 gcc_assert (GET_CODE (sequence) == SEQUENCE);
ca545bb5
BM
335 }
336
337 res->memory = 1;
338 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
339 if (frame_pointer_needed)
340 {
341 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
342#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
343 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
344#endif
345 }
346
347 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
348 if (global_regs[i])
349 SET_HARD_REG_BIT (res->regs, i);
350
570a98eb 351 /* Check for a REG_SETJMP. If it exists, then we must
ca545bb5
BM
352 assume that this call can need any register.
353
354 This is done to be more conservative about how we handle setjmp.
355 We assume that they both use and set all registers. Using all
356 registers ensures that a register will not be considered dead
357 just because it crosses a setjmp call. A register should be
40f03658 358 considered dead only if the setjmp call returns nonzero. */
570a98eb 359 if (find_reg_note (x, REG_SETJMP, NULL))
ca545bb5
BM
360 SET_HARD_REG_SET (res->regs);
361
362 {
363 rtx link;
364
365 for (link = CALL_INSN_FUNCTION_USAGE (x);
366 link;
367 link = XEXP (link, 1))
368 if (GET_CODE (XEXP (link, 0)) == USE)
369 {
370 for (i = 1; i < seq_size; i++)
371 {
372 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
373 if (GET_CODE (slot_pat) == SET
374 && rtx_equal_p (SET_DEST (slot_pat),
0cb5d81c 375 XEXP (XEXP (link, 0), 0)))
ca545bb5
BM
376 break;
377 }
378 if (i >= seq_size)
0cb5d81c 379 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
ca545bb5
BM
380 res, 0);
381 }
382 }
383 }
384
385 /* ... fall through to other INSN processing ... */
386
387 case INSN:
388 case JUMP_INSN:
389
390#ifdef INSN_REFERENCES_ARE_DELAYED
391 if (! include_delayed_effects
392 && INSN_REFERENCES_ARE_DELAYED (x))
393 return;
394#endif
395
396 /* No special processing, just speed up. */
397 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
398 return;
399
400 default:
401 break;
402 }
403
404 /* Process each sub-expression and flag what it needs. */
405 format_ptr = GET_RTX_FORMAT (code);
406 for (i = 0; i < GET_RTX_LENGTH (code); i++)
407 switch (*format_ptr++)
408 {
409 case 'e':
410 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
411 break;
412
413 case 'E':
414 for (j = 0; j < XVECLEN (x, i); j++)
415 mark_referenced_resources (XVECEXP (x, i, j), res,
416 include_delayed_effects);
417 break;
418 }
419}
420\f
421/* A subroutine of mark_target_live_regs. Search forward from TARGET
a6a2274a 422 looking for registers that are set before they are used. These are dead.
ca545bb5
BM
423 Stop after passing a few conditional jumps, and/or a small
424 number of unconditional branches. */
425
426static rtx
0c20a65f
AJ
427find_dead_or_set_registers (rtx target, struct resources *res,
428 rtx *jump_target, int jump_count,
429 struct resources set, struct resources needed)
ca545bb5
BM
430{
431 HARD_REG_SET scratch;
432 rtx insn, next;
433 rtx jump_insn = 0;
434 int i;
435
436 for (insn = target; insn; insn = next)
437 {
438 rtx this_jump_insn = insn;
439
440 next = NEXT_INSN (insn);
0519ce30
MM
441
442 /* If this instruction can throw an exception, then we don't
443 know where we might end up next. That means that we have to
444 assume that whatever we have already marked as live really is
445 live. */
54590688 446 if (can_throw_internal (insn))
0519ce30
MM
447 break;
448
ca545bb5
BM
449 switch (GET_CODE (insn))
450 {
451 case CODE_LABEL:
452 /* After a label, any pending dead registers that weren't yet
453 used can be made dead. */
454 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
455 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
456 CLEAR_HARD_REG_SET (pending_dead_regs);
457
458 continue;
459
460 case BARRIER:
461 case NOTE:
462 continue;
463
464 case INSN:
465 if (GET_CODE (PATTERN (insn)) == USE)
466 {
467 /* If INSN is a USE made by update_block, we care about the
468 underlying insn. Any registers set by the underlying insn
469 are live since the insn is being done somewhere else. */
2c3c49de 470 if (INSN_P (XEXP (PATTERN (insn), 0)))
73780b74
SC
471 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
472 MARK_SRC_DEST_CALL);
ca545bb5
BM
473
474 /* All other USE insns are to be ignored. */
475 continue;
476 }
477 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
478 continue;
479 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
480 {
481 /* An unconditional jump can be used to fill the delay slot
482 of a call, so search for a JUMP_INSN in any position. */
483 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
484 {
485 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
4b4bf941 486 if (JUMP_P (this_jump_insn))
ca545bb5
BM
487 break;
488 }
489 }
490
491 default:
492 break;
493 }
494
4b4bf941 495 if (JUMP_P (this_jump_insn))
ca545bb5
BM
496 {
497 if (jump_count++ < 10)
498 {
7f1c097d 499 if (any_uncondjump_p (this_jump_insn)
ca545bb5
BM
500 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
501 {
502 next = JUMP_LABEL (this_jump_insn);
503 if (jump_insn == 0)
504 {
505 jump_insn = insn;
506 if (jump_target)
507 *jump_target = JUMP_LABEL (this_jump_insn);
508 }
509 }
7f1c097d 510 else if (any_condjump_p (this_jump_insn))
ca545bb5
BM
511 {
512 struct resources target_set, target_res;
513 struct resources fallthrough_res;
514
515 /* We can handle conditional branches here by following
516 both paths, and then IOR the results of the two paths
517 together, which will give us registers that are dead
518 on both paths. Since this is expensive, we give it
519 a much higher cost than unconditional branches. The
520 cost was chosen so that we will follow at most 1
521 conditional branch. */
522
523 jump_count += 4;
524 if (jump_count >= 10)
525 break;
526
527 mark_referenced_resources (insn, &needed, 1);
528
529 /* For an annulled branch, mark_set_resources ignores slots
530 filled by instructions from the target. This is correct
531 if the branch is not taken. Since we are following both
532 paths from the branch, we must also compute correct info
533 if the branch is taken. We do this by inverting all of
534 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
535 and then inverting the INSN_FROM_TARGET_P bits again. */
536
537 if (GET_CODE (PATTERN (insn)) == SEQUENCE
538 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
539 {
540 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
541 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
542 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
543
544 target_set = set;
73780b74
SC
545 mark_set_resources (insn, &target_set, 0,
546 MARK_SRC_DEST_CALL);
ca545bb5
BM
547
548 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
549 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
550 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
551
73780b74 552 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
553 }
554 else
555 {
73780b74 556 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
557 target_set = set;
558 }
559
560 target_res = *res;
561 COPY_HARD_REG_SET (scratch, target_set.regs);
562 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
563 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
564
565 fallthrough_res = *res;
566 COPY_HARD_REG_SET (scratch, set.regs);
567 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
568 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
569
570 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
571 &target_res, 0, jump_count,
572 target_set, needed);
573 find_dead_or_set_registers (next,
574 &fallthrough_res, 0, jump_count,
575 set, needed);
576 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
577 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
578 break;
579 }
580 else
581 break;
582 }
583 else
584 {
585 /* Don't try this optimization if we expired our jump count
586 above, since that would mean there may be an infinite loop
587 in the function being compiled. */
588 jump_insn = 0;
589 break;
590 }
591 }
592
593 mark_referenced_resources (insn, &needed, 1);
73780b74 594 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
595
596 COPY_HARD_REG_SET (scratch, set.regs);
597 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
598 AND_COMPL_HARD_REG_SET (res->regs, scratch);
599 }
600
601 return jump_insn;
602}
603\f
604/* Given X, a part of an insn, and a pointer to a `struct resource',
605 RES, indicate which resources are modified by the insn. If
73780b74 606 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
73fb6466 607 set by the called routine.
ca545bb5
BM
608
609 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
610 objects are being referenced instead of set.
611
612 We never mark the insn as modifying the condition code unless it explicitly
613 SETs CC0 even though this is not totally correct. The reason for this is
614 that we require a SET of CC0 to immediately precede the reference to CC0.
615 So if some other insn sets CC0 as a side-effect, we know it cannot affect
6d2f8887 616 our computation and thus may be placed in a delay slot. */
ca545bb5
BM
617
618void
0c20a65f
AJ
619mark_set_resources (rtx x, struct resources *res, int in_dest,
620 enum mark_resource_type mark_type)
ca545bb5 621{
770ae6cc
RK
622 enum rtx_code code;
623 int i, j;
624 unsigned int r;
625 const char *format_ptr;
ca545bb5
BM
626
627 restart:
628
629 code = GET_CODE (x);
630
631 switch (code)
632 {
633 case NOTE:
634 case BARRIER:
635 case CODE_LABEL:
636 case USE:
637 case CONST_INT:
638 case CONST_DOUBLE:
091a3ac7 639 case CONST_FIXED:
69ef87e2 640 case CONST_VECTOR:
ca545bb5
BM
641 case LABEL_REF:
642 case SYMBOL_REF:
643 case CONST:
644 case PC:
645 /* These don't set any resources. */
646 return;
647
648 case CC0:
649 if (in_dest)
650 res->cc = 1;
651 return;
652
653 case CALL_INSN:
654 /* Called routine modifies the condition code, memory, any registers
655 that aren't saved across calls, global registers and anything
656 explicitly CLOBBERed immediately after the CALL_INSN. */
657
73780b74 658 if (mark_type == MARK_SRC_DEST_CALL)
ca545bb5 659 {
ca545bb5
BM
660 rtx link;
661
662 res->cc = res->memory = 1;
eef75f5e
RS
663
664 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
ca545bb5 665
ca545bb5
BM
666 for (link = CALL_INSN_FUNCTION_USAGE (x);
667 link; link = XEXP (link, 1))
668 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
73780b74
SC
669 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
670 MARK_SRC_DEST);
ca545bb5 671
570a98eb 672 /* Check for a REG_SETJMP. If it exists, then we must
ca545bb5 673 assume that this call can clobber any register. */
570a98eb 674 if (find_reg_note (x, REG_SETJMP, NULL))
ca545bb5
BM
675 SET_HARD_REG_SET (res->regs);
676 }
677
678 /* ... and also what its RTL says it modifies, if anything. */
679
680 case JUMP_INSN:
681 case INSN:
682
683 /* An insn consisting of just a CLOBBER (or USE) is just for flow
684 and doesn't actually do anything, so we ignore it. */
685
686#ifdef INSN_SETS_ARE_DELAYED
73780b74 687 if (mark_type != MARK_SRC_DEST_CALL
ca545bb5
BM
688 && INSN_SETS_ARE_DELAYED (x))
689 return;
690#endif
691
692 x = PATTERN (x);
693 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
694 goto restart;
695 return;
696
697 case SET:
698 /* If the source of a SET is a CALL, this is actually done by
699 the called routine. So only include it if we are to include the
700 effects of the calling routine. */
701
702 mark_set_resources (SET_DEST (x), res,
73780b74 703 (mark_type == MARK_SRC_DEST_CALL
ca545bb5 704 || GET_CODE (SET_SRC (x)) != CALL),
73780b74 705 mark_type);
ca545bb5 706
73fb6466 707 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
ca545bb5
BM
708 return;
709
710 case CLOBBER:
73780b74 711 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
ca545bb5 712 return;
a6a2274a 713
ca545bb5
BM
714 case SEQUENCE:
715 for (i = 0; i < XVECLEN (x, 0); i++)
716 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
717 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
73780b74 718 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
ca545bb5
BM
719 return;
720
721 case POST_INC:
722 case PRE_INC:
723 case POST_DEC:
724 case PRE_DEC:
73780b74 725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
ca545bb5
BM
726 return;
727
4b983fdc
RH
728 case PRE_MODIFY:
729 case POST_MODIFY:
1fb9c5cd
MH
730 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
731 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
732 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
4b983fdc
RH
733 return;
734
73780b74 735 case SIGN_EXTRACT:
ca545bb5 736 case ZERO_EXTRACT:
73fb6466
HPN
737 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
738 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
739 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
ca545bb5
BM
740 return;
741
742 case MEM:
743 if (in_dest)
744 {
745 res->memory = 1;
389fdba0 746 res->unch_memory |= MEM_READONLY_P (x);
a5045352 747 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
748 }
749
73780b74 750 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
ca545bb5
BM
751 return;
752
753 case SUBREG:
754 if (in_dest)
755 {
f8cfc6aa 756 if (!REG_P (SUBREG_REG (x)))
73780b74 757 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
ca545bb5
BM
758 else
759 {
ddef6bc7 760 unsigned int regno = subreg_regno (x);
f1f4e530 761 unsigned int last_regno = regno + subreg_nregs (x);
770ae6cc 762
41374e13 763 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770ae6cc
RK
764 for (r = regno; r < last_regno; r++)
765 SET_HARD_REG_BIT (res->regs, r);
ca545bb5
BM
766 }
767 }
768 return;
769
770 case REG:
771 if (in_dest)
1d2215fe 772 {
09e18274
RS
773 gcc_assert (HARD_REGISTER_P (x));
774 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
1d2215fe 775 }
ca545bb5
BM
776 return;
777
3d298f8f
MM
778 case UNSPEC_VOLATILE:
779 case ASM_INPUT:
780 /* Traditional asm's are always volatile. */
781 res->volatil = 1;
782 return;
783
784 case TRAP_IF:
785 res->volatil = 1;
786 break;
787
788 case ASM_OPERANDS:
a5045352 789 res->volatil |= MEM_VOLATILE_P (x);
3d298f8f
MM
790
791 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
792 We can not just fall through here since then we would be confused
793 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
794 traditional asms unlike their normal usage. */
a6a2274a 795
3d298f8f 796 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
73780b74
SC
797 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
798 MARK_SRC_DEST);
3d298f8f
MM
799 return;
800
ca545bb5
BM
801 default:
802 break;
803 }
804
805 /* Process each sub-expression and flag what it needs. */
806 format_ptr = GET_RTX_FORMAT (code);
807 for (i = 0; i < GET_RTX_LENGTH (code); i++)
808 switch (*format_ptr++)
809 {
810 case 'e':
73780b74 811 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
ca545bb5
BM
812 break;
813
814 case 'E':
815 for (j = 0; j < XVECLEN (x, i); j++)
73780b74 816 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
ca545bb5
BM
817 break;
818 }
819}
820\f
6e456a10
EB
821/* Return TRUE if INSN is a return, possibly with a filled delay slot. */
822
823static bool
ed7a4b4b 824return_insn_p (const_rtx insn)
6e456a10 825{
2ca202e7 826 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
6e456a10
EB
827 return true;
828
2ca202e7 829 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
6e456a10
EB
830 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
831
832 return false;
833}
834
ca545bb5
BM
835/* Set the resources that are live at TARGET.
836
837 If TARGET is zero, we refer to the end of the current function and can
838 return our precomputed value.
839
840 Otherwise, we try to find out what is live by consulting the basic block
841 information. This is tricky, because we must consider the actions of
842 reload and jump optimization, which occur after the basic block information
843 has been computed.
844
845 Accordingly, we proceed as follows::
846
847 We find the previous BARRIER and look at all immediately following labels
848 (with no intervening active insns) to see if any of them start a basic
849 block. If we hit the start of the function first, we use block 0.
850
851 Once we have found a basic block and a corresponding first insns, we can
852 accurately compute the live status from basic_block_live_regs and
853 reg_renumber. (By starting at a label following a BARRIER, we are immune
854 to actions taken by reload and jump.) Then we scan all insns between
855 that point and our target. For each CLOBBER (or for call-clobbered regs
856 when we pass a CALL_INSN), mark the appropriate registers are dead. For
857 a SET, mark them as live.
858
859 We have to be careful when using REG_DEAD notes because they are not
860 updated by such things as find_equiv_reg. So keep track of registers
861 marked as dead that haven't been assigned to, and mark them dead at the
862 next CODE_LABEL since reload and jump won't propagate values across labels.
863
864 If we cannot find the start of a basic block (should be a very rare
865 case, if it can happen at all), mark everything as potentially live.
866
867 Next, scan forward from TARGET looking for things set or clobbered
868 before they are used. These are not live.
869
870 Because we can be called many times on the same target, save our results
871 in a hash table indexed by INSN_UID. This is only done if the function
872 init_resource_info () was invoked before we are called. */
873
874void
0c20a65f 875mark_target_live_regs (rtx insns, rtx target, struct resources *res)
ca545bb5
BM
876{
877 int b = -1;
5197bd50 878 unsigned int i;
ca545bb5
BM
879 struct target_info *tinfo = NULL;
880 rtx insn;
881 rtx jump_insn = 0;
882 rtx jump_target;
883 HARD_REG_SET scratch;
884 struct resources set, needed;
885
886 /* Handle end of function. */
887 if (target == 0)
888 {
889 *res = end_of_function_needs;
890 return;
891 }
892
6e456a10
EB
893 /* Handle return insn. */
894 else if (return_insn_p (target))
895 {
896 *res = end_of_function_needs;
897 mark_referenced_resources (target, res, 0);
898 return;
899 }
900
ca545bb5
BM
901 /* We have to assume memory is needed, but the CC isn't. */
902 res->memory = 1;
903 res->volatil = res->unch_memory = 0;
904 res->cc = 0;
905
906 /* See if we have computed this value already. */
907 if (target_hash_table != NULL)
908 {
909 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
910 tinfo; tinfo = tinfo->next)
911 if (tinfo->uid == INSN_UID (target))
912 break;
913
914 /* Start by getting the basic block number. If we have saved
915 information, we can get it from there unless the insn at the
916 start of the basic block has been deleted. */
917 if (tinfo && tinfo->block != -1
a813c111 918 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
ca545bb5
BM
919 b = tinfo->block;
920 }
921
925fa227 922 if (b == -1)
d5d063d7 923 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
ca545bb5
BM
924
925 if (target_hash_table != NULL)
926 {
927 if (tinfo)
928 {
929 /* If the information is up-to-date, use it. Otherwise, we will
930 update it below. */
931 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
932 {
933 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
934 return;
935 }
936 }
937 else
938 {
a6a2274a 939 /* Allocate a place to put our results and chain it into the
ca545bb5 940 hash table. */
5ed6ace5 941 tinfo = XNEW (struct target_info);
ca545bb5
BM
942 tinfo->uid = INSN_UID (target);
943 tinfo->block = b;
5197bd50
RK
944 tinfo->next
945 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
ca545bb5
BM
946 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
947 }
948 }
949
950 CLEAR_HARD_REG_SET (pending_dead_regs);
951
952 /* If we found a basic block, get the live registers from it and update
953 them with anything set or killed between its start and the insn before
954 TARGET. Otherwise, we must assume everything is live. */
955 if (b != -1)
956 {
30c6f45d 957 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
ca545bb5
BM
958 rtx start_insn, stop_insn;
959
960 /* Compute hard regs live at start of block -- this is the real hard regs
961 marked live, plus live pseudo regs that have been renumbered to
962 hard regs. */
963
964 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
965
ca545bb5
BM
966 /* Get starting and ending insn, handling the case where each might
967 be a SEQUENCE. */
6fb5fa3c
DB
968 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
969 insns : BB_HEAD (BASIC_BLOCK (b)));
ca545bb5
BM
970 stop_insn = target;
971
4b4bf941 972 if (NONJUMP_INSN_P (start_insn)
ca545bb5
BM
973 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
974 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
975
4b4bf941 976 if (NONJUMP_INSN_P (stop_insn)
ca545bb5
BM
977 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
978 stop_insn = next_insn (PREV_INSN (stop_insn));
979
980 for (insn = start_insn; insn != stop_insn;
981 insn = next_insn_no_annul (insn))
982 {
983 rtx link;
984 rtx real_insn = insn;
cf40ea15 985 enum rtx_code code = GET_CODE (insn);
ca545bb5
BM
986
987 /* If this insn is from the target of a branch, it isn't going to
988 be used in the sequel. If it is used in both cases, this
989 test will not be true. */
cf40ea15
DM
990 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
991 && INSN_FROM_TARGET_P (insn))
ca545bb5
BM
992 continue;
993
994 /* If this insn is a USE made by update_block, we care about the
995 underlying insn. */
cf40ea15 996 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
2c3c49de 997 && INSN_P (XEXP (PATTERN (insn), 0)))
ca545bb5
BM
998 real_insn = XEXP (PATTERN (insn), 0);
999
4b4bf941 1000 if (CALL_P (real_insn))
ca545bb5
BM
1001 {
1002 /* CALL clobbers all call-used regs that aren't fixed except
1003 sp, ap, and fp. Do this before setting the result of the
1004 call live. */
12beba6f
RH
1005 AND_COMPL_HARD_REG_SET (current_live_regs,
1006 regs_invalidated_by_call);
ca545bb5
BM
1007
1008 /* A CALL_INSN sets any global register live, since it may
1009 have been modified by the call. */
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (global_regs[i])
1012 SET_HARD_REG_BIT (current_live_regs, i);
1013 }
1014
1015 /* Mark anything killed in an insn to be deadened at the next
1016 label. Ignore USE insns; the only REG_DEAD notes will be for
1017 parameters. But they might be early. A CALL_INSN will usually
1018 clobber registers used for parameters. It isn't worth bothering
1019 with the unlikely case when it won't. */
4b4bf941 1020 if ((NONJUMP_INSN_P (real_insn)
ca545bb5
BM
1021 && GET_CODE (PATTERN (real_insn)) != USE
1022 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
4b4bf941
JQ
1023 || JUMP_P (real_insn)
1024 || CALL_P (real_insn))
ca545bb5
BM
1025 {
1026 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1027 if (REG_NOTE_KIND (link) == REG_DEAD
f8cfc6aa 1028 && REG_P (XEXP (link, 0))
ca545bb5 1029 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
09e18274
RS
1030 add_to_hard_reg_set (&pending_dead_regs,
1031 GET_MODE (XEXP (link, 0)),
1032 REGNO (XEXP (link, 0)));
ca545bb5 1033
84832317 1034 note_stores (PATTERN (real_insn), update_live_status, NULL);
ca545bb5
BM
1035
1036 /* If any registers were unused after this insn, kill them.
1037 These notes will always be accurate. */
1038 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1039 if (REG_NOTE_KIND (link) == REG_UNUSED
f8cfc6aa 1040 && REG_P (XEXP (link, 0))
ca545bb5 1041 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
09e18274
RS
1042 remove_from_hard_reg_set (&current_live_regs,
1043 GET_MODE (XEXP (link, 0)),
1044 REGNO (XEXP (link, 0)));
ca545bb5
BM
1045 }
1046
4b4bf941 1047 else if (LABEL_P (real_insn))
ca545bb5
BM
1048 {
1049 /* A label clobbers the pending dead registers since neither
1050 reload nor jump will propagate a value across a label. */
1051 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1052 CLEAR_HARD_REG_SET (pending_dead_regs);
1053 }
1054
1055 /* The beginning of the epilogue corresponds to the end of the
1056 RTL chain when there are no epilogue insns. Certain resources
1057 are implicitly required at that point. */
4b4bf941 1058 else if (NOTE_P (real_insn)
a38e7aa5 1059 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
ca545bb5
BM
1060 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1061 }
1062
1063 COPY_HARD_REG_SET (res->regs, current_live_regs);
1064 if (tinfo != NULL)
1065 {
1066 tinfo->block = b;
1067 tinfo->bb_tick = bb_ticks[b];
1068 }
1069 }
1070 else
1071 /* We didn't find the start of a basic block. Assume everything
1072 in use. This should happen only extremely rarely. */
1073 SET_HARD_REG_SET (res->regs);
1074
1075 CLEAR_RESOURCE (&set);
1076 CLEAR_RESOURCE (&needed);
1077
1078 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1079 set, needed);
1080
1081 /* If we hit an unconditional branch, we have another way of finding out
1082 what is live: we can see what is live at the branch target and include
96e9c98d 1083 anything used but not set before the branch. We add the live
dc297297 1084 resources found using the test below to those found until now. */
ca545bb5
BM
1085
1086 if (jump_insn)
1087 {
1088 struct resources new_resources;
1089 rtx stop_insn = next_active_insn (jump_insn);
1090
1091 mark_target_live_regs (insns, next_active_insn (jump_target),
1092 &new_resources);
1093 CLEAR_RESOURCE (&set);
1094 CLEAR_RESOURCE (&needed);
1095
1096 /* Include JUMP_INSN in the needed registers. */
1097 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1098 {
1099 mark_referenced_resources (insn, &needed, 1);
1100
1101 COPY_HARD_REG_SET (scratch, needed.regs);
1102 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1103 IOR_HARD_REG_SET (new_resources.regs, scratch);
1104
73780b74 1105 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
1106 }
1107
96e9c98d 1108 IOR_HARD_REG_SET (res->regs, new_resources.regs);
ca545bb5
BM
1109 }
1110
1111 if (tinfo != NULL)
1112 {
1113 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1114 }
1115}
1116\f
1117/* Initialize the resources required by mark_target_live_regs ().
1118 This should be invoked before the first call to mark_target_live_regs. */
1119
1120void
0c20a65f 1121init_resource_info (rtx epilogue_insn)
ca545bb5
BM
1122{
1123 int i;
1124
1125 /* Indicate what resources are required to be valid at the end of the current
1126 function. The condition code never is and memory always is. If the
1127 frame pointer is needed, it is and so is the stack pointer unless
40f03658 1128 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
ca545bb5
BM
1129 stack pointer is. Registers used to return the function value are
1130 needed. Registers holding global variables are needed. */
1131
1132 end_of_function_needs.cc = 0;
1133 end_of_function_needs.memory = 1;
1134 end_of_function_needs.unch_memory = 0;
1135 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1136
1137 if (frame_pointer_needed)
1138 {
1139 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1140#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1141 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1142#endif
ca545bb5
BM
1143 if (! EXIT_IGNORE_STACK
1144 || current_function_sp_is_unchanging)
ca545bb5
BM
1145 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1146 }
1147 else
1148 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1149
38173d38
JH
1150 if (crtl->return_rtx != 0)
1151 mark_referenced_resources (crtl->return_rtx,
ca545bb5
BM
1152 &end_of_function_needs, 1);
1153
1154 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1155 if (global_regs[i]
1156#ifdef EPILOGUE_USES
1157 || EPILOGUE_USES (i)
1158#endif
1159 )
1160 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1161
1162 /* The registers required to be live at the end of the function are
1163 represented in the flow information as being dead just prior to
1164 reaching the end of the function. For example, the return of a value
1165 might be represented by a USE of the return register immediately
1166 followed by an unconditional jump to the return label where the
1167 return label is the end of the RTL chain. The end of the RTL chain
1168 is then taken to mean that the return register is live.
1169
1170 This sequence is no longer maintained when epilogue instructions are
1171 added to the RTL chain. To reconstruct the original meaning, the
1172 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1173 point where these registers become live (start_of_epilogue_needs).
1174 If epilogue instructions are present, the registers set by those
1175 instructions won't have been processed by flow. Thus, those
1176 registers are additionally required at the end of the RTL chain
1177 (end_of_function_needs). */
1178
1179 start_of_epilogue_needs = end_of_function_needs;
1180
1181 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
6e456a10
EB
1182 {
1183 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1184 MARK_SRC_DEST_CALL);
1185 if (return_insn_p (epilogue_insn))
1186 break;
1187 }
ca545bb5
BM
1188
1189 /* Allocate and initialize the tables used by mark_target_live_regs. */
5ed6ace5
MD
1190 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1191 bb_ticks = XCNEWVEC (int, last_basic_block);
ca545bb5
BM
1192}
1193\f
14b493d6 1194/* Free up the resources allocated to mark_target_live_regs (). This
ca545bb5
BM
1195 should be invoked after the last call to mark_target_live_regs (). */
1196
1197void
0c20a65f 1198free_resource_info (void)
ca545bb5
BM
1199{
1200 if (target_hash_table != NULL)
1201 {
1f8f4a0b 1202 int i;
a6a2274a
KH
1203
1204 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1f8f4a0b
MM
1205 {
1206 struct target_info *ti = target_hash_table[i];
1207
a6a2274a 1208 while (ti)
1f8f4a0b
MM
1209 {
1210 struct target_info *next = ti->next;
1211 free (ti);
1212 ti = next;
1213 }
1214 }
1215
ca545bb5
BM
1216 free (target_hash_table);
1217 target_hash_table = NULL;
1218 }
1219
1220 if (bb_ticks != NULL)
1221 {
1222 free (bb_ticks);
1223 bb_ticks = NULL;
1224 }
1225}
1226\f
1227/* Clear any hashed information that we have stored for INSN. */
1228
1229void
0c20a65f 1230clear_hashed_info_for_insn (rtx insn)
ca545bb5
BM
1231{
1232 struct target_info *tinfo;
a6a2274a 1233
ca545bb5
BM
1234 if (target_hash_table != NULL)
1235 {
1236 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1237 tinfo; tinfo = tinfo->next)
1238 if (tinfo->uid == INSN_UID (insn))
1239 break;
1240
1241 if (tinfo)
1242 tinfo->block = -1;
1243 }
1244}
1245\f
1246/* Increment the tick count for the basic block that contains INSN. */
1247
1248void
0c20a65f 1249incr_ticks_for_insn (rtx insn)
ca545bb5 1250{
d5d063d7 1251 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
ca545bb5
BM
1252
1253 if (b != -1)
1254 bb_ticks[b]++;
1255}
1256\f
1257/* Add TRIAL to the set of resources used at the end of the current
dc297297 1258 function. */
ca545bb5 1259void
0c20a65f 1260mark_end_of_function_resources (rtx trial, int include_delayed_effects)
ca545bb5
BM
1261{
1262 mark_referenced_resources (trial, &end_of_function_needs,
1263 include_delayed_effects);
1264}