]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/resource.c
re PR testsuite/27476 (ACATS: Ada testsuite Bourne shell compatibility problem on...
[thirdparty/gcc.git] / gcc / resource.c
CommitLineData
6a73406e 1/* Definitions for computing resource usage of specific insns.
ad616de1 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
0c20a65f 3 Free Software Foundation, Inc.
6a73406e 4
1322177d 5This file is part of GCC.
6a73406e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
6a73406e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
6a73406e
RH
16
17You should have received a copy of the GNU General Public License
1322177d 18along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA. */
6a73406e 21
ca545bb5 22#include "config.h"
8ce25479 23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
01198c2f 26#include "toplev.h"
ca545bb5 27#include "rtl.h"
6baf1cc8 28#include "tm_p.h"
ca545bb5 29#include "hard-reg-set.h"
49ad7cfa 30#include "function.h"
ca545bb5
BM
31#include "regs.h"
32#include "flags.h"
33#include "output.h"
34#include "resource.h"
d80eb1e1 35#include "except.h"
7bdb32b9 36#include "insn-attr.h"
d5d063d7 37#include "params.h"
ca545bb5
BM
38
39/* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
43
44struct target_info
45{
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
51};
52
53#define TARGET_HASH_PRIME 257
54
55/* Indicates what resources are required at the beginning of the epilogue. */
56static struct resources start_of_epilogue_needs;
57
58/* Indicates what resources are required at function end. */
59static struct resources end_of_function_needs;
60
61/* Define the hash table itself. */
62static struct target_info **target_hash_table = NULL;
63
64/* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
68
69static int *bb_ticks;
70
71/* Marks registers possibly live at the current place being scanned by
d5d063d7 72 mark_target_live_regs. Also used by update_live_status. */
ca545bb5
BM
73
74static HARD_REG_SET current_live_regs;
75
76/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
78
79static HARD_REG_SET pending_dead_regs;
6a73406e 80\f
0c20a65f
AJ
81static void update_live_status (rtx, rtx, void *);
82static int find_basic_block (rtx, int);
83static rtx next_insn_no_annul (rtx);
84static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
6a73406e 87\f
ca545bb5
BM
88/* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
90
91static void
0c20a65f 92update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
ca545bb5
BM
93{
94 int first_regno, last_regno;
95 int i;
96
f8cfc6aa
JQ
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
ca545bb5
BM
99 return;
100
101 if (GET_CODE (dest) == SUBREG)
ddef6bc7 102 first_regno = subreg_regno (dest);
ca545bb5
BM
103 else
104 first_regno = REGNO (dest);
105
66fd46b6 106 last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
ca545bb5
BM
107
108 if (GET_CODE (x) == CLOBBER)
109 for (i = first_regno; i < last_regno; i++)
110 CLEAR_HARD_REG_BIT (current_live_regs, i);
111 else
112 for (i = first_regno; i < last_regno; i++)
113 {
114 SET_HARD_REG_BIT (current_live_regs, i);
115 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
116 }
117}
d5d063d7
JO
118
119/* Find the number of the basic block with correct live register
120 information that starts closest to INSN. Return -1 if we couldn't
121 find such a basic block or the beginning is more than
122 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
123 an unlimited search.
124
125 The delay slot filling code destroys the control-flow graph so,
126 instead of finding the basic block containing INSN, we search
127 backwards toward a BARRIER where the live register information is
128 correct. */
925fa227
RH
129
130static int
0c20a65f 131find_basic_block (rtx insn, int search_limit)
925fa227 132{
e0082a72 133 basic_block bb;
925fa227
RH
134
135 /* Scan backwards to the previous BARRIER. Then see if we can find a
136 label that starts a basic block. Return the basic block number. */
925fa227 137 for (insn = prev_nonnote_insn (insn);
4b4bf941 138 insn && !BARRIER_P (insn) && search_limit != 0;
d5d063d7 139 insn = prev_nonnote_insn (insn), --search_limit)
925fa227
RH
140 ;
141
d5d063d7
JO
142 /* The closest BARRIER is too far away. */
143 if (search_limit == 0)
144 return -1;
145
f6366fc7 146 /* The start of the function. */
d5d063d7 147 else if (insn == 0)
f6366fc7 148 return ENTRY_BLOCK_PTR->next_bb->index;
925fa227
RH
149
150 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
151 anything other than a CODE_LABEL or note, we can't find this code. */
152 for (insn = next_nonnote_insn (insn);
4b4bf941 153 insn && LABEL_P (insn);
925fa227
RH
154 insn = next_nonnote_insn (insn))
155 {
e0082a72 156 FOR_EACH_BB (bb)
a813c111 157 if (insn == BB_HEAD (bb))
e0082a72 158 return bb->index;
925fa227
RH
159 }
160
161 return -1;
162}
ca545bb5
BM
163\f
164/* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
166
167static rtx
0c20a65f 168next_insn_no_annul (rtx insn)
ca545bb5
BM
169{
170 if (insn)
171 {
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
4b4bf941 174 if (INSN_P (insn)
cf40ea15 175 && INSN_ANNULLED_BRANCH_P (insn)
ca545bb5 176 && NEXT_INSN (PREV_INSN (insn)) != insn)
cf40ea15
DM
177 {
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
180
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
183 {
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
187 }
188 }
ca545bb5
BM
189
190 insn = NEXT_INSN (insn);
4b4bf941 191 if (insn && NONJUMP_INSN_P (insn)
ca545bb5
BM
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
194 }
195
196 return insn;
197}
198\f
199/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
f5df2e8c 200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
ca545bb5
BM
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
203
204void
0c20a65f
AJ
205mark_referenced_resources (rtx x, struct resources *res,
206 int include_delayed_effects)
ca545bb5 207{
770ae6cc
RK
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
b3694847 211 const char *format_ptr;
ca545bb5
BM
212
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
216 {
217 case CONST:
218 case CONST_INT:
219 case CONST_DOUBLE:
69ef87e2 220 case CONST_VECTOR:
ca545bb5
BM
221 case PC:
222 case SYMBOL_REF:
223 case LABEL_REF:
224 return;
225
226 case SUBREG:
f8cfc6aa 227 if (!REG_P (SUBREG_REG (x)))
ca545bb5
BM
228 mark_referenced_resources (SUBREG_REG (x), res, 0);
229 else
230 {
ddef6bc7 231 unsigned int regno = subreg_regno (x);
770ae6cc 232 unsigned int last_regno
66fd46b6 233 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 234
41374e13 235 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770ae6cc
RK
236 for (r = regno; r < last_regno; r++)
237 SET_HARD_REG_BIT (res->regs, r);
ca545bb5
BM
238 }
239 return;
240
241 case REG:
1d2215fe
AO
242 {
243 unsigned int regno = REGNO (x);
244 unsigned int last_regno
66fd46b6 245 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1d2215fe 246
41374e13 247 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
1d2215fe
AO
248 for (r = regno; r < last_regno; r++)
249 SET_HARD_REG_BIT (res->regs, r);
250 }
ca545bb5
BM
251 return;
252
253 case MEM:
254 /* If this memory shouldn't change, it really isn't referencing
255 memory. */
389fdba0 256 if (MEM_READONLY_P (x))
ca545bb5
BM
257 res->unch_memory = 1;
258 else
259 res->memory = 1;
a5045352 260 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
261
262 /* Mark registers used to access memory. */
263 mark_referenced_resources (XEXP (x, 0), res, 0);
264 return;
265
266 case CC0:
267 res->cc = 1;
268 return;
269
270 case UNSPEC_VOLATILE:
271 case ASM_INPUT:
272 /* Traditional asm's are always volatile. */
273 res->volatil = 1;
274 return;
275
276 case TRAP_IF:
277 res->volatil = 1;
278 break;
279
280 case ASM_OPERANDS:
a5045352 281 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
282
283 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
284 We can not just fall through here since then we would be confused
285 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
286 traditional asms unlike their normal usage. */
a6a2274a 287
ca545bb5
BM
288 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
289 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
290 return;
291
292 case CALL:
293 /* The first operand will be a (MEM (xxx)) but doesn't really reference
294 memory. The second operand may be referenced, though. */
295 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
296 mark_referenced_resources (XEXP (x, 1), res, 0);
297 return;
298
299 case SET:
300 /* Usually, the first operand of SET is set, not referenced. But
301 registers used to access memory are referenced. SET_DEST is
46d096a3 302 also referenced if it is a ZERO_EXTRACT. */
ca545bb5
BM
303
304 mark_referenced_resources (SET_SRC (x), res, 0);
305
306 x = SET_DEST (x);
46d096a3 307 if (GET_CODE (x) == ZERO_EXTRACT
07570c39 308 || GET_CODE (x) == STRICT_LOW_PART)
ca545bb5
BM
309 mark_referenced_resources (x, res, 0);
310 else if (GET_CODE (x) == SUBREG)
311 x = SUBREG_REG (x);
3c0cb5de 312 if (MEM_P (x))
ca545bb5
BM
313 mark_referenced_resources (XEXP (x, 0), res, 0);
314 return;
315
316 case CLOBBER:
317 return;
318
319 case CALL_INSN:
320 if (include_delayed_effects)
321 {
322 /* A CALL references memory, the frame pointer if it exists, the
323 stack pointer, any global registers and any registers given in
324 USE insns immediately in front of the CALL.
325
326 However, we may have moved some of the parameter loading insns
327 into the delay slot of this CALL. If so, the USE's for them
328 don't count and should be skipped. */
329 rtx insn = PREV_INSN (x);
330 rtx sequence = 0;
331 int seq_size = 0;
ca545bb5
BM
332 int i;
333
334 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
335 if (NEXT_INSN (insn) != x)
336 {
ca545bb5
BM
337 sequence = PATTERN (NEXT_INSN (insn));
338 seq_size = XVECLEN (sequence, 0);
41374e13 339 gcc_assert (GET_CODE (sequence) == SEQUENCE);
ca545bb5
BM
340 }
341
342 res->memory = 1;
343 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
344 if (frame_pointer_needed)
345 {
346 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
347#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
348 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
349#endif
350 }
351
352 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
353 if (global_regs[i])
354 SET_HARD_REG_BIT (res->regs, i);
355
570a98eb 356 /* Check for a REG_SETJMP. If it exists, then we must
ca545bb5
BM
357 assume that this call can need any register.
358
359 This is done to be more conservative about how we handle setjmp.
360 We assume that they both use and set all registers. Using all
361 registers ensures that a register will not be considered dead
362 just because it crosses a setjmp call. A register should be
40f03658 363 considered dead only if the setjmp call returns nonzero. */
570a98eb 364 if (find_reg_note (x, REG_SETJMP, NULL))
ca545bb5
BM
365 SET_HARD_REG_SET (res->regs);
366
367 {
368 rtx link;
369
370 for (link = CALL_INSN_FUNCTION_USAGE (x);
371 link;
372 link = XEXP (link, 1))
373 if (GET_CODE (XEXP (link, 0)) == USE)
374 {
375 for (i = 1; i < seq_size; i++)
376 {
377 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
378 if (GET_CODE (slot_pat) == SET
379 && rtx_equal_p (SET_DEST (slot_pat),
0cb5d81c 380 XEXP (XEXP (link, 0), 0)))
ca545bb5
BM
381 break;
382 }
383 if (i >= seq_size)
0cb5d81c 384 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
ca545bb5
BM
385 res, 0);
386 }
387 }
388 }
389
390 /* ... fall through to other INSN processing ... */
391
392 case INSN:
393 case JUMP_INSN:
394
395#ifdef INSN_REFERENCES_ARE_DELAYED
396 if (! include_delayed_effects
397 && INSN_REFERENCES_ARE_DELAYED (x))
398 return;
399#endif
400
401 /* No special processing, just speed up. */
402 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
403 return;
404
405 default:
406 break;
407 }
408
409 /* Process each sub-expression and flag what it needs. */
410 format_ptr = GET_RTX_FORMAT (code);
411 for (i = 0; i < GET_RTX_LENGTH (code); i++)
412 switch (*format_ptr++)
413 {
414 case 'e':
415 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
416 break;
417
418 case 'E':
419 for (j = 0; j < XVECLEN (x, i); j++)
420 mark_referenced_resources (XVECEXP (x, i, j), res,
421 include_delayed_effects);
422 break;
423 }
424}
425\f
426/* A subroutine of mark_target_live_regs. Search forward from TARGET
a6a2274a 427 looking for registers that are set before they are used. These are dead.
ca545bb5
BM
428 Stop after passing a few conditional jumps, and/or a small
429 number of unconditional branches. */
430
431static rtx
0c20a65f
AJ
432find_dead_or_set_registers (rtx target, struct resources *res,
433 rtx *jump_target, int jump_count,
434 struct resources set, struct resources needed)
ca545bb5
BM
435{
436 HARD_REG_SET scratch;
437 rtx insn, next;
438 rtx jump_insn = 0;
439 int i;
440
441 for (insn = target; insn; insn = next)
442 {
443 rtx this_jump_insn = insn;
444
445 next = NEXT_INSN (insn);
0519ce30
MM
446
447 /* If this instruction can throw an exception, then we don't
448 know where we might end up next. That means that we have to
449 assume that whatever we have already marked as live really is
450 live. */
54590688 451 if (can_throw_internal (insn))
0519ce30
MM
452 break;
453
ca545bb5
BM
454 switch (GET_CODE (insn))
455 {
456 case CODE_LABEL:
457 /* After a label, any pending dead registers that weren't yet
458 used can be made dead. */
459 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
460 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
461 CLEAR_HARD_REG_SET (pending_dead_regs);
462
463 continue;
464
465 case BARRIER:
466 case NOTE:
467 continue;
468
469 case INSN:
470 if (GET_CODE (PATTERN (insn)) == USE)
471 {
472 /* If INSN is a USE made by update_block, we care about the
473 underlying insn. Any registers set by the underlying insn
474 are live since the insn is being done somewhere else. */
2c3c49de 475 if (INSN_P (XEXP (PATTERN (insn), 0)))
73780b74
SC
476 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
477 MARK_SRC_DEST_CALL);
ca545bb5
BM
478
479 /* All other USE insns are to be ignored. */
480 continue;
481 }
482 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
483 continue;
484 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
485 {
486 /* An unconditional jump can be used to fill the delay slot
487 of a call, so search for a JUMP_INSN in any position. */
488 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
489 {
490 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
4b4bf941 491 if (JUMP_P (this_jump_insn))
ca545bb5
BM
492 break;
493 }
494 }
495
496 default:
497 break;
498 }
499
4b4bf941 500 if (JUMP_P (this_jump_insn))
ca545bb5
BM
501 {
502 if (jump_count++ < 10)
503 {
7f1c097d 504 if (any_uncondjump_p (this_jump_insn)
ca545bb5
BM
505 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
506 {
507 next = JUMP_LABEL (this_jump_insn);
508 if (jump_insn == 0)
509 {
510 jump_insn = insn;
511 if (jump_target)
512 *jump_target = JUMP_LABEL (this_jump_insn);
513 }
514 }
7f1c097d 515 else if (any_condjump_p (this_jump_insn))
ca545bb5
BM
516 {
517 struct resources target_set, target_res;
518 struct resources fallthrough_res;
519
520 /* We can handle conditional branches here by following
521 both paths, and then IOR the results of the two paths
522 together, which will give us registers that are dead
523 on both paths. Since this is expensive, we give it
524 a much higher cost than unconditional branches. The
525 cost was chosen so that we will follow at most 1
526 conditional branch. */
527
528 jump_count += 4;
529 if (jump_count >= 10)
530 break;
531
532 mark_referenced_resources (insn, &needed, 1);
533
534 /* For an annulled branch, mark_set_resources ignores slots
535 filled by instructions from the target. This is correct
536 if the branch is not taken. Since we are following both
537 paths from the branch, we must also compute correct info
538 if the branch is taken. We do this by inverting all of
539 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
540 and then inverting the INSN_FROM_TARGET_P bits again. */
541
542 if (GET_CODE (PATTERN (insn)) == SEQUENCE
543 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
544 {
545 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
548
549 target_set = set;
73780b74
SC
550 mark_set_resources (insn, &target_set, 0,
551 MARK_SRC_DEST_CALL);
ca545bb5
BM
552
553 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
554 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
555 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
556
73780b74 557 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
558 }
559 else
560 {
73780b74 561 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
562 target_set = set;
563 }
564
565 target_res = *res;
566 COPY_HARD_REG_SET (scratch, target_set.regs);
567 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
568 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
569
570 fallthrough_res = *res;
571 COPY_HARD_REG_SET (scratch, set.regs);
572 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
573 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
574
575 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
576 &target_res, 0, jump_count,
577 target_set, needed);
578 find_dead_or_set_registers (next,
579 &fallthrough_res, 0, jump_count,
580 set, needed);
581 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
582 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
583 break;
584 }
585 else
586 break;
587 }
588 else
589 {
590 /* Don't try this optimization if we expired our jump count
591 above, since that would mean there may be an infinite loop
592 in the function being compiled. */
593 jump_insn = 0;
594 break;
595 }
596 }
597
598 mark_referenced_resources (insn, &needed, 1);
73780b74 599 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
600
601 COPY_HARD_REG_SET (scratch, set.regs);
602 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
603 AND_COMPL_HARD_REG_SET (res->regs, scratch);
604 }
605
606 return jump_insn;
607}
608\f
609/* Given X, a part of an insn, and a pointer to a `struct resource',
610 RES, indicate which resources are modified by the insn. If
73780b74 611 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
73fb6466 612 set by the called routine.
ca545bb5
BM
613
614 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
615 objects are being referenced instead of set.
616
617 We never mark the insn as modifying the condition code unless it explicitly
618 SETs CC0 even though this is not totally correct. The reason for this is
619 that we require a SET of CC0 to immediately precede the reference to CC0.
620 So if some other insn sets CC0 as a side-effect, we know it cannot affect
6d2f8887 621 our computation and thus may be placed in a delay slot. */
ca545bb5
BM
622
623void
0c20a65f
AJ
624mark_set_resources (rtx x, struct resources *res, int in_dest,
625 enum mark_resource_type mark_type)
ca545bb5 626{
770ae6cc
RK
627 enum rtx_code code;
628 int i, j;
629 unsigned int r;
630 const char *format_ptr;
ca545bb5
BM
631
632 restart:
633
634 code = GET_CODE (x);
635
636 switch (code)
637 {
638 case NOTE:
639 case BARRIER:
640 case CODE_LABEL:
641 case USE:
642 case CONST_INT:
643 case CONST_DOUBLE:
69ef87e2 644 case CONST_VECTOR:
ca545bb5
BM
645 case LABEL_REF:
646 case SYMBOL_REF:
647 case CONST:
648 case PC:
649 /* These don't set any resources. */
650 return;
651
652 case CC0:
653 if (in_dest)
654 res->cc = 1;
655 return;
656
657 case CALL_INSN:
658 /* Called routine modifies the condition code, memory, any registers
659 that aren't saved across calls, global registers and anything
660 explicitly CLOBBERed immediately after the CALL_INSN. */
661
73780b74 662 if (mark_type == MARK_SRC_DEST_CALL)
ca545bb5 663 {
ca545bb5
BM
664 rtx link;
665
666 res->cc = res->memory = 1;
770ae6cc
RK
667 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
668 if (call_used_regs[r] || global_regs[r])
669 SET_HARD_REG_BIT (res->regs, r);
ca545bb5 670
ca545bb5
BM
671 for (link = CALL_INSN_FUNCTION_USAGE (x);
672 link; link = XEXP (link, 1))
673 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
73780b74
SC
674 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
675 MARK_SRC_DEST);
ca545bb5 676
570a98eb 677 /* Check for a REG_SETJMP. If it exists, then we must
ca545bb5 678 assume that this call can clobber any register. */
570a98eb 679 if (find_reg_note (x, REG_SETJMP, NULL))
ca545bb5
BM
680 SET_HARD_REG_SET (res->regs);
681 }
682
683 /* ... and also what its RTL says it modifies, if anything. */
684
685 case JUMP_INSN:
686 case INSN:
687
688 /* An insn consisting of just a CLOBBER (or USE) is just for flow
689 and doesn't actually do anything, so we ignore it. */
690
691#ifdef INSN_SETS_ARE_DELAYED
73780b74 692 if (mark_type != MARK_SRC_DEST_CALL
ca545bb5
BM
693 && INSN_SETS_ARE_DELAYED (x))
694 return;
695#endif
696
697 x = PATTERN (x);
698 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
699 goto restart;
700 return;
701
702 case SET:
703 /* If the source of a SET is a CALL, this is actually done by
704 the called routine. So only include it if we are to include the
705 effects of the calling routine. */
706
707 mark_set_resources (SET_DEST (x), res,
73780b74 708 (mark_type == MARK_SRC_DEST_CALL
ca545bb5 709 || GET_CODE (SET_SRC (x)) != CALL),
73780b74 710 mark_type);
ca545bb5 711
73fb6466 712 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
ca545bb5
BM
713 return;
714
715 case CLOBBER:
73780b74 716 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
ca545bb5 717 return;
a6a2274a 718
ca545bb5
BM
719 case SEQUENCE:
720 for (i = 0; i < XVECLEN (x, 0); i++)
721 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
722 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
73780b74 723 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
ca545bb5
BM
724 return;
725
726 case POST_INC:
727 case PRE_INC:
728 case POST_DEC:
729 case PRE_DEC:
73780b74 730 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
ca545bb5
BM
731 return;
732
4b983fdc
RH
733 case PRE_MODIFY:
734 case POST_MODIFY:
1fb9c5cd
MH
735 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
736 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
737 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
4b983fdc
RH
738 return;
739
73780b74 740 case SIGN_EXTRACT:
ca545bb5 741 case ZERO_EXTRACT:
73fb6466
HPN
742 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
743 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
744 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
ca545bb5
BM
745 return;
746
747 case MEM:
748 if (in_dest)
749 {
750 res->memory = 1;
389fdba0 751 res->unch_memory |= MEM_READONLY_P (x);
a5045352 752 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
753 }
754
73780b74 755 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
ca545bb5
BM
756 return;
757
758 case SUBREG:
759 if (in_dest)
760 {
f8cfc6aa 761 if (!REG_P (SUBREG_REG (x)))
73780b74 762 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
ca545bb5
BM
763 else
764 {
ddef6bc7 765 unsigned int regno = subreg_regno (x);
770ae6cc 766 unsigned int last_regno
66fd46b6 767 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770ae6cc 768
41374e13 769 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770ae6cc
RK
770 for (r = regno; r < last_regno; r++)
771 SET_HARD_REG_BIT (res->regs, r);
ca545bb5
BM
772 }
773 }
774 return;
775
776 case REG:
777 if (in_dest)
1d2215fe
AO
778 {
779 unsigned int regno = REGNO (x);
780 unsigned int last_regno
66fd46b6 781 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1d2215fe 782
41374e13 783 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
1d2215fe
AO
784 for (r = regno; r < last_regno; r++)
785 SET_HARD_REG_BIT (res->regs, r);
786 }
ca545bb5
BM
787 return;
788
3d298f8f
MM
789 case UNSPEC_VOLATILE:
790 case ASM_INPUT:
791 /* Traditional asm's are always volatile. */
792 res->volatil = 1;
793 return;
794
795 case TRAP_IF:
796 res->volatil = 1;
797 break;
798
799 case ASM_OPERANDS:
a5045352 800 res->volatil |= MEM_VOLATILE_P (x);
3d298f8f
MM
801
802 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
803 We can not just fall through here since then we would be confused
804 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
805 traditional asms unlike their normal usage. */
a6a2274a 806
3d298f8f 807 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
73780b74
SC
808 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
809 MARK_SRC_DEST);
3d298f8f
MM
810 return;
811
ca545bb5
BM
812 default:
813 break;
814 }
815
816 /* Process each sub-expression and flag what it needs. */
817 format_ptr = GET_RTX_FORMAT (code);
818 for (i = 0; i < GET_RTX_LENGTH (code); i++)
819 switch (*format_ptr++)
820 {
821 case 'e':
73780b74 822 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
ca545bb5
BM
823 break;
824
825 case 'E':
826 for (j = 0; j < XVECLEN (x, i); j++)
73780b74 827 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
ca545bb5
BM
828 break;
829 }
830}
831\f
6e456a10
EB
832/* Return TRUE if INSN is a return, possibly with a filled delay slot. */
833
834static bool
835return_insn_p (rtx insn)
836{
2ca202e7 837 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
6e456a10
EB
838 return true;
839
2ca202e7 840 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
6e456a10
EB
841 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
842
843 return false;
844}
845
ca545bb5
BM
846/* Set the resources that are live at TARGET.
847
848 If TARGET is zero, we refer to the end of the current function and can
849 return our precomputed value.
850
851 Otherwise, we try to find out what is live by consulting the basic block
852 information. This is tricky, because we must consider the actions of
853 reload and jump optimization, which occur after the basic block information
854 has been computed.
855
856 Accordingly, we proceed as follows::
857
858 We find the previous BARRIER and look at all immediately following labels
859 (with no intervening active insns) to see if any of them start a basic
860 block. If we hit the start of the function first, we use block 0.
861
862 Once we have found a basic block and a corresponding first insns, we can
863 accurately compute the live status from basic_block_live_regs and
864 reg_renumber. (By starting at a label following a BARRIER, we are immune
865 to actions taken by reload and jump.) Then we scan all insns between
866 that point and our target. For each CLOBBER (or for call-clobbered regs
867 when we pass a CALL_INSN), mark the appropriate registers are dead. For
868 a SET, mark them as live.
869
870 We have to be careful when using REG_DEAD notes because they are not
871 updated by such things as find_equiv_reg. So keep track of registers
872 marked as dead that haven't been assigned to, and mark them dead at the
873 next CODE_LABEL since reload and jump won't propagate values across labels.
874
875 If we cannot find the start of a basic block (should be a very rare
876 case, if it can happen at all), mark everything as potentially live.
877
878 Next, scan forward from TARGET looking for things set or clobbered
879 before they are used. These are not live.
880
881 Because we can be called many times on the same target, save our results
882 in a hash table indexed by INSN_UID. This is only done if the function
883 init_resource_info () was invoked before we are called. */
884
885void
0c20a65f 886mark_target_live_regs (rtx insns, rtx target, struct resources *res)
ca545bb5
BM
887{
888 int b = -1;
5197bd50 889 unsigned int i;
ca545bb5
BM
890 struct target_info *tinfo = NULL;
891 rtx insn;
892 rtx jump_insn = 0;
893 rtx jump_target;
894 HARD_REG_SET scratch;
895 struct resources set, needed;
896
897 /* Handle end of function. */
898 if (target == 0)
899 {
900 *res = end_of_function_needs;
901 return;
902 }
903
6e456a10
EB
904 /* Handle return insn. */
905 else if (return_insn_p (target))
906 {
907 *res = end_of_function_needs;
908 mark_referenced_resources (target, res, 0);
909 return;
910 }
911
ca545bb5
BM
912 /* We have to assume memory is needed, but the CC isn't. */
913 res->memory = 1;
914 res->volatil = res->unch_memory = 0;
915 res->cc = 0;
916
917 /* See if we have computed this value already. */
918 if (target_hash_table != NULL)
919 {
920 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
921 tinfo; tinfo = tinfo->next)
922 if (tinfo->uid == INSN_UID (target))
923 break;
924
925 /* Start by getting the basic block number. If we have saved
926 information, we can get it from there unless the insn at the
927 start of the basic block has been deleted. */
928 if (tinfo && tinfo->block != -1
a813c111 929 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
ca545bb5
BM
930 b = tinfo->block;
931 }
932
925fa227 933 if (b == -1)
d5d063d7 934 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
ca545bb5
BM
935
936 if (target_hash_table != NULL)
937 {
938 if (tinfo)
939 {
940 /* If the information is up-to-date, use it. Otherwise, we will
941 update it below. */
942 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
943 {
944 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
945 return;
946 }
947 }
948 else
949 {
a6a2274a 950 /* Allocate a place to put our results and chain it into the
ca545bb5 951 hash table. */
5ed6ace5 952 tinfo = XNEW (struct target_info);
ca545bb5
BM
953 tinfo->uid = INSN_UID (target);
954 tinfo->block = b;
5197bd50
RK
955 tinfo->next
956 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
ca545bb5
BM
957 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
958 }
959 }
960
961 CLEAR_HARD_REG_SET (pending_dead_regs);
962
963 /* If we found a basic block, get the live registers from it and update
964 them with anything set or killed between its start and the insn before
965 TARGET. Otherwise, we must assume everything is live. */
966 if (b != -1)
967 {
5e2d947c 968 regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
770ae6cc
RK
969 unsigned int j;
970 unsigned int regno;
ca545bb5 971 rtx start_insn, stop_insn;
a2041967 972 reg_set_iterator rsi;
ca545bb5
BM
973
974 /* Compute hard regs live at start of block -- this is the real hard regs
975 marked live, plus live pseudo regs that have been renumbered to
976 hard regs. */
977
978 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
979
a2041967
KH
980 EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
981 {
982 if (reg_renumber[i] >= 0)
983 {
984 regno = reg_renumber[i];
985 for (j = regno;
986 j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
987 j++)
988 SET_HARD_REG_BIT (current_live_regs, j);
989 }
990 }
ca545bb5
BM
991
992 /* Get starting and ending insn, handling the case where each might
993 be a SEQUENCE. */
a813c111 994 start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
ca545bb5
BM
995 stop_insn = target;
996
4b4bf941 997 if (NONJUMP_INSN_P (start_insn)
ca545bb5
BM
998 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
999 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
1000
4b4bf941 1001 if (NONJUMP_INSN_P (stop_insn)
ca545bb5
BM
1002 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1003 stop_insn = next_insn (PREV_INSN (stop_insn));
1004
1005 for (insn = start_insn; insn != stop_insn;
1006 insn = next_insn_no_annul (insn))
1007 {
1008 rtx link;
1009 rtx real_insn = insn;
cf40ea15 1010 enum rtx_code code = GET_CODE (insn);
ca545bb5
BM
1011
1012 /* If this insn is from the target of a branch, it isn't going to
1013 be used in the sequel. If it is used in both cases, this
1014 test will not be true. */
cf40ea15
DM
1015 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1016 && INSN_FROM_TARGET_P (insn))
ca545bb5
BM
1017 continue;
1018
1019 /* If this insn is a USE made by update_block, we care about the
1020 underlying insn. */
cf40ea15 1021 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
2c3c49de 1022 && INSN_P (XEXP (PATTERN (insn), 0)))
ca545bb5
BM
1023 real_insn = XEXP (PATTERN (insn), 0);
1024
4b4bf941 1025 if (CALL_P (real_insn))
ca545bb5
BM
1026 {
1027 /* CALL clobbers all call-used regs that aren't fixed except
1028 sp, ap, and fp. Do this before setting the result of the
1029 call live. */
12beba6f
RH
1030 AND_COMPL_HARD_REG_SET (current_live_regs,
1031 regs_invalidated_by_call);
ca545bb5
BM
1032
1033 /* A CALL_INSN sets any global register live, since it may
1034 have been modified by the call. */
1035 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1036 if (global_regs[i])
1037 SET_HARD_REG_BIT (current_live_regs, i);
1038 }
1039
1040 /* Mark anything killed in an insn to be deadened at the next
1041 label. Ignore USE insns; the only REG_DEAD notes will be for
1042 parameters. But they might be early. A CALL_INSN will usually
1043 clobber registers used for parameters. It isn't worth bothering
1044 with the unlikely case when it won't. */
4b4bf941 1045 if ((NONJUMP_INSN_P (real_insn)
ca545bb5
BM
1046 && GET_CODE (PATTERN (real_insn)) != USE
1047 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
4b4bf941
JQ
1048 || JUMP_P (real_insn)
1049 || CALL_P (real_insn))
ca545bb5
BM
1050 {
1051 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1052 if (REG_NOTE_KIND (link) == REG_DEAD
f8cfc6aa 1053 && REG_P (XEXP (link, 0))
ca545bb5
BM
1054 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1055 {
5197bd50
RK
1056 unsigned int first_regno = REGNO (XEXP (link, 0));
1057 unsigned int last_regno
ca545bb5 1058 = (first_regno
66fd46b6
JH
1059 + hard_regno_nregs[first_regno]
1060 [GET_MODE (XEXP (link, 0))]);
a6a2274a 1061
ca545bb5
BM
1062 for (i = first_regno; i < last_regno; i++)
1063 SET_HARD_REG_BIT (pending_dead_regs, i);
1064 }
1065
84832317 1066 note_stores (PATTERN (real_insn), update_live_status, NULL);
ca545bb5
BM
1067
1068 /* If any registers were unused after this insn, kill them.
1069 These notes will always be accurate. */
1070 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1071 if (REG_NOTE_KIND (link) == REG_UNUSED
f8cfc6aa 1072 && REG_P (XEXP (link, 0))
ca545bb5
BM
1073 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1074 {
5197bd50
RK
1075 unsigned int first_regno = REGNO (XEXP (link, 0));
1076 unsigned int last_regno
ca545bb5 1077 = (first_regno
66fd46b6
JH
1078 + hard_regno_nregs[first_regno]
1079 [GET_MODE (XEXP (link, 0))]);
a6a2274a 1080
ca545bb5
BM
1081 for (i = first_regno; i < last_regno; i++)
1082 CLEAR_HARD_REG_BIT (current_live_regs, i);
1083 }
1084 }
1085
4b4bf941 1086 else if (LABEL_P (real_insn))
ca545bb5
BM
1087 {
1088 /* A label clobbers the pending dead registers since neither
1089 reload nor jump will propagate a value across a label. */
1090 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1091 CLEAR_HARD_REG_SET (pending_dead_regs);
1092 }
1093
1094 /* The beginning of the epilogue corresponds to the end of the
1095 RTL chain when there are no epilogue insns. Certain resources
1096 are implicitly required at that point. */
4b4bf941 1097 else if (NOTE_P (real_insn)
a6a2274a 1098 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
ca545bb5
BM
1099 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1100 }
1101
1102 COPY_HARD_REG_SET (res->regs, current_live_regs);
1103 if (tinfo != NULL)
1104 {
1105 tinfo->block = b;
1106 tinfo->bb_tick = bb_ticks[b];
1107 }
1108 }
1109 else
1110 /* We didn't find the start of a basic block. Assume everything
1111 in use. This should happen only extremely rarely. */
1112 SET_HARD_REG_SET (res->regs);
1113
1114 CLEAR_RESOURCE (&set);
1115 CLEAR_RESOURCE (&needed);
1116
1117 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1118 set, needed);
1119
1120 /* If we hit an unconditional branch, we have another way of finding out
1121 what is live: we can see what is live at the branch target and include
96e9c98d 1122 anything used but not set before the branch. We add the live
dc297297 1123 resources found using the test below to those found until now. */
ca545bb5
BM
1124
1125 if (jump_insn)
1126 {
1127 struct resources new_resources;
1128 rtx stop_insn = next_active_insn (jump_insn);
1129
1130 mark_target_live_regs (insns, next_active_insn (jump_target),
1131 &new_resources);
1132 CLEAR_RESOURCE (&set);
1133 CLEAR_RESOURCE (&needed);
1134
1135 /* Include JUMP_INSN in the needed registers. */
1136 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1137 {
1138 mark_referenced_resources (insn, &needed, 1);
1139
1140 COPY_HARD_REG_SET (scratch, needed.regs);
1141 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1142 IOR_HARD_REG_SET (new_resources.regs, scratch);
1143
73780b74 1144 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
1145 }
1146
96e9c98d 1147 IOR_HARD_REG_SET (res->regs, new_resources.regs);
ca545bb5
BM
1148 }
1149
1150 if (tinfo != NULL)
1151 {
1152 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1153 }
1154}
1155\f
1156/* Initialize the resources required by mark_target_live_regs ().
1157 This should be invoked before the first call to mark_target_live_regs. */
1158
1159void
0c20a65f 1160init_resource_info (rtx epilogue_insn)
ca545bb5
BM
1161{
1162 int i;
1163
1164 /* Indicate what resources are required to be valid at the end of the current
1165 function. The condition code never is and memory always is. If the
1166 frame pointer is needed, it is and so is the stack pointer unless
40f03658 1167 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
ca545bb5
BM
1168 stack pointer is. Registers used to return the function value are
1169 needed. Registers holding global variables are needed. */
1170
1171 end_of_function_needs.cc = 0;
1172 end_of_function_needs.memory = 1;
1173 end_of_function_needs.unch_memory = 0;
1174 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1175
1176 if (frame_pointer_needed)
1177 {
1178 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1179#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1180 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1181#endif
ca545bb5
BM
1182 if (! EXIT_IGNORE_STACK
1183 || current_function_sp_is_unchanging)
ca545bb5
BM
1184 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1185 }
1186 else
1187 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1188
1189 if (current_function_return_rtx != 0)
1190 mark_referenced_resources (current_function_return_rtx,
1191 &end_of_function_needs, 1);
1192
1193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1194 if (global_regs[i]
1195#ifdef EPILOGUE_USES
1196 || EPILOGUE_USES (i)
1197#endif
1198 )
1199 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1200
1201 /* The registers required to be live at the end of the function are
1202 represented in the flow information as being dead just prior to
1203 reaching the end of the function. For example, the return of a value
1204 might be represented by a USE of the return register immediately
1205 followed by an unconditional jump to the return label where the
1206 return label is the end of the RTL chain. The end of the RTL chain
1207 is then taken to mean that the return register is live.
1208
1209 This sequence is no longer maintained when epilogue instructions are
1210 added to the RTL chain. To reconstruct the original meaning, the
1211 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1212 point where these registers become live (start_of_epilogue_needs).
1213 If epilogue instructions are present, the registers set by those
1214 instructions won't have been processed by flow. Thus, those
1215 registers are additionally required at the end of the RTL chain
1216 (end_of_function_needs). */
1217
1218 start_of_epilogue_needs = end_of_function_needs;
1219
1220 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
6e456a10
EB
1221 {
1222 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1223 MARK_SRC_DEST_CALL);
1224 if (return_insn_p (epilogue_insn))
1225 break;
1226 }
ca545bb5
BM
1227
1228 /* Allocate and initialize the tables used by mark_target_live_regs. */
5ed6ace5
MD
1229 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1230 bb_ticks = XCNEWVEC (int, last_basic_block);
ca545bb5
BM
1231}
1232\f
14b493d6 1233/* Free up the resources allocated to mark_target_live_regs (). This
ca545bb5
BM
1234 should be invoked after the last call to mark_target_live_regs (). */
1235
1236void
0c20a65f 1237free_resource_info (void)
ca545bb5
BM
1238{
1239 if (target_hash_table != NULL)
1240 {
1f8f4a0b 1241 int i;
a6a2274a
KH
1242
1243 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1f8f4a0b
MM
1244 {
1245 struct target_info *ti = target_hash_table[i];
1246
a6a2274a 1247 while (ti)
1f8f4a0b
MM
1248 {
1249 struct target_info *next = ti->next;
1250 free (ti);
1251 ti = next;
1252 }
1253 }
1254
ca545bb5
BM
1255 free (target_hash_table);
1256 target_hash_table = NULL;
1257 }
1258
1259 if (bb_ticks != NULL)
1260 {
1261 free (bb_ticks);
1262 bb_ticks = NULL;
1263 }
1264}
1265\f
1266/* Clear any hashed information that we have stored for INSN. */
1267
1268void
0c20a65f 1269clear_hashed_info_for_insn (rtx insn)
ca545bb5
BM
1270{
1271 struct target_info *tinfo;
a6a2274a 1272
ca545bb5
BM
1273 if (target_hash_table != NULL)
1274 {
1275 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1276 tinfo; tinfo = tinfo->next)
1277 if (tinfo->uid == INSN_UID (insn))
1278 break;
1279
1280 if (tinfo)
1281 tinfo->block = -1;
1282 }
1283}
1284\f
1285/* Increment the tick count for the basic block that contains INSN. */
1286
1287void
0c20a65f 1288incr_ticks_for_insn (rtx insn)
ca545bb5 1289{
d5d063d7 1290 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
ca545bb5
BM
1291
1292 if (b != -1)
1293 bb_ticks[b]++;
1294}
1295\f
1296/* Add TRIAL to the set of resources used at the end of the current
dc297297 1297 function. */
ca545bb5 1298void
0c20a65f 1299mark_end_of_function_resources (rtx trial, int include_delayed_effects)
ca545bb5
BM
1300{
1301 mark_referenced_resources (trial, &end_of_function_needs,
1302 include_delayed_effects);
1303}