]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/resource.c
invoke.texi (-fvar-tracking-assignments): New.
[thirdparty/gcc.git] / gcc / resource.c
CommitLineData
6a73406e 1/* Definitions for computing resource usage of specific insns.
675f99c9
ILT
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009 Free Software Foundation, Inc.
6a73406e 4
1322177d 5This file is part of GCC.
6a73406e 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
6a73406e 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
6a73406e
RH
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6a73406e 20
ca545bb5 21#include "config.h"
8ce25479 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
01198c2f 25#include "toplev.h"
ca545bb5 26#include "rtl.h"
6baf1cc8 27#include "tm_p.h"
ca545bb5 28#include "hard-reg-set.h"
49ad7cfa 29#include "function.h"
ca545bb5
BM
30#include "regs.h"
31#include "flags.h"
32#include "output.h"
33#include "resource.h"
d80eb1e1 34#include "except.h"
7bdb32b9 35#include "insn-attr.h"
d5d063d7 36#include "params.h"
6fb5fa3c 37#include "df.h"
ca545bb5
BM
38
39/* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
43
44struct target_info
45{
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
51};
52
53#define TARGET_HASH_PRIME 257
54
55/* Indicates what resources are required at the beginning of the epilogue. */
56static struct resources start_of_epilogue_needs;
57
58/* Indicates what resources are required at function end. */
59static struct resources end_of_function_needs;
60
61/* Define the hash table itself. */
62static struct target_info **target_hash_table = NULL;
63
64/* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
68
69static int *bb_ticks;
70
71/* Marks registers possibly live at the current place being scanned by
d5d063d7 72 mark_target_live_regs. Also used by update_live_status. */
ca545bb5
BM
73
74static HARD_REG_SET current_live_regs;
75
76/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
78
79static HARD_REG_SET pending_dead_regs;
6a73406e 80\f
7bc980e1 81static void update_live_status (rtx, const_rtx, void *);
0c20a65f
AJ
82static int find_basic_block (rtx, int);
83static rtx next_insn_no_annul (rtx);
84static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
6a73406e 87\f
ca545bb5
BM
88/* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
90
91static void
7bc980e1 92update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
ca545bb5
BM
93{
94 int first_regno, last_regno;
95 int i;
96
f8cfc6aa
JQ
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
ca545bb5
BM
99 return;
100
101 if (GET_CODE (dest) == SUBREG)
f1f4e530
JM
102 {
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
ca545bb5 105
f1f4e530
JM
106 }
107 else
108 {
109 first_regno = REGNO (dest);
09e18274 110 last_regno = END_HARD_REGNO (dest);
f1f4e530 111 }
ca545bb5
BM
112
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
118 {
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121 }
122}
d5d063d7
JO
123
124/* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
129
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
925fa227
RH
134
135static int
0c20a65f 136find_basic_block (rtx insn, int search_limit)
925fa227 137{
925fa227
RH
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
925fa227 140 for (insn = prev_nonnote_insn (insn);
4b4bf941 141 insn && !BARRIER_P (insn) && search_limit != 0;
d5d063d7 142 insn = prev_nonnote_insn (insn), --search_limit)
925fa227
RH
143 ;
144
d5d063d7
JO
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
148
f6366fc7 149 /* The start of the function. */
d5d063d7 150 else if (insn == 0)
f6366fc7 151 return ENTRY_BLOCK_PTR->next_bb->index;
925fa227
RH
152
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
4b4bf941 156 insn && LABEL_P (insn);
925fa227 157 insn = next_nonnote_insn (insn))
a1fa3e79
EB
158 if (BLOCK_FOR_INSN (insn))
159 return BLOCK_FOR_INSN (insn)->index;
925fa227
RH
160
161 return -1;
162}
ca545bb5
BM
163\f
164/* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
166
167static rtx
0c20a65f 168next_insn_no_annul (rtx insn)
ca545bb5
BM
169{
170 if (insn)
171 {
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
4b4bf941 174 if (INSN_P (insn)
cf40ea15 175 && INSN_ANNULLED_BRANCH_P (insn)
ca545bb5 176 && NEXT_INSN (PREV_INSN (insn)) != insn)
cf40ea15
DM
177 {
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
180
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
183 {
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
187 }
188 }
ca545bb5
BM
189
190 insn = NEXT_INSN (insn);
4b4bf941 191 if (insn && NONJUMP_INSN_P (insn)
ca545bb5
BM
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
194 }
195
196 return insn;
197}
198\f
199/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
f5df2e8c 200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
ca545bb5
BM
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
203
204void
0c20a65f 205mark_referenced_resources (rtx x, struct resources *res,
675f99c9 206 bool include_delayed_effects)
ca545bb5 207{
770ae6cc
RK
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
b3694847 211 const char *format_ptr;
ca545bb5
BM
212
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
216 {
217 case CONST:
218 case CONST_INT:
219 case CONST_DOUBLE:
091a3ac7 220 case CONST_FIXED:
69ef87e2 221 case CONST_VECTOR:
ca545bb5
BM
222 case PC:
223 case SYMBOL_REF:
224 case LABEL_REF:
225 return;
226
227 case SUBREG:
f8cfc6aa 228 if (!REG_P (SUBREG_REG (x)))
675f99c9 229 mark_referenced_resources (SUBREG_REG (x), res, false);
ca545bb5
BM
230 else
231 {
ddef6bc7 232 unsigned int regno = subreg_regno (x);
f1f4e530 233 unsigned int last_regno = regno + subreg_nregs (x);
770ae6cc 234
41374e13 235 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770ae6cc
RK
236 for (r = regno; r < last_regno; r++)
237 SET_HARD_REG_BIT (res->regs, r);
ca545bb5
BM
238 }
239 return;
240
241 case REG:
09e18274
RS
242 gcc_assert (HARD_REGISTER_P (x));
243 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
ca545bb5
BM
244 return;
245
246 case MEM:
247 /* If this memory shouldn't change, it really isn't referencing
248 memory. */
389fdba0 249 if (MEM_READONLY_P (x))
ca545bb5
BM
250 res->unch_memory = 1;
251 else
252 res->memory = 1;
a5045352 253 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
254
255 /* Mark registers used to access memory. */
675f99c9 256 mark_referenced_resources (XEXP (x, 0), res, false);
ca545bb5
BM
257 return;
258
259 case CC0:
260 res->cc = 1;
261 return;
262
263 case UNSPEC_VOLATILE:
1b929c9a 264 case TRAP_IF:
ca545bb5
BM
265 case ASM_INPUT:
266 /* Traditional asm's are always volatile. */
ca545bb5
BM
267 res->volatil = 1;
268 break;
269
270 case ASM_OPERANDS:
a5045352 271 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
272
273 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274 We can not just fall through here since then we would be confused
275 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276 traditional asms unlike their normal usage. */
a6a2274a 277
ca545bb5 278 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
675f99c9 279 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
ca545bb5
BM
280 return;
281
282 case CALL:
283 /* The first operand will be a (MEM (xxx)) but doesn't really reference
284 memory. The second operand may be referenced, though. */
675f99c9
ILT
285 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
286 mark_referenced_resources (XEXP (x, 1), res, false);
ca545bb5
BM
287 return;
288
289 case SET:
290 /* Usually, the first operand of SET is set, not referenced. But
291 registers used to access memory are referenced. SET_DEST is
46d096a3 292 also referenced if it is a ZERO_EXTRACT. */
ca545bb5 293
675f99c9 294 mark_referenced_resources (SET_SRC (x), res, false);
ca545bb5
BM
295
296 x = SET_DEST (x);
46d096a3 297 if (GET_CODE (x) == ZERO_EXTRACT
07570c39 298 || GET_CODE (x) == STRICT_LOW_PART)
675f99c9 299 mark_referenced_resources (x, res, false);
ca545bb5
BM
300 else if (GET_CODE (x) == SUBREG)
301 x = SUBREG_REG (x);
3c0cb5de 302 if (MEM_P (x))
675f99c9 303 mark_referenced_resources (XEXP (x, 0), res, false);
ca545bb5
BM
304 return;
305
306 case CLOBBER:
307 return;
308
309 case CALL_INSN:
310 if (include_delayed_effects)
311 {
312 /* A CALL references memory, the frame pointer if it exists, the
313 stack pointer, any global registers and any registers given in
314 USE insns immediately in front of the CALL.
315
316 However, we may have moved some of the parameter loading insns
317 into the delay slot of this CALL. If so, the USE's for them
318 don't count and should be skipped. */
319 rtx insn = PREV_INSN (x);
320 rtx sequence = 0;
321 int seq_size = 0;
ca545bb5
BM
322 int i;
323
324 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
325 if (NEXT_INSN (insn) != x)
326 {
ca545bb5
BM
327 sequence = PATTERN (NEXT_INSN (insn));
328 seq_size = XVECLEN (sequence, 0);
41374e13 329 gcc_assert (GET_CODE (sequence) == SEQUENCE);
ca545bb5
BM
330 }
331
332 res->memory = 1;
333 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334 if (frame_pointer_needed)
335 {
336 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
338 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339#endif
340 }
341
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 if (global_regs[i])
344 SET_HARD_REG_BIT (res->regs, i);
345
570a98eb 346 /* Check for a REG_SETJMP. If it exists, then we must
ca545bb5
BM
347 assume that this call can need any register.
348
349 This is done to be more conservative about how we handle setjmp.
350 We assume that they both use and set all registers. Using all
351 registers ensures that a register will not be considered dead
352 just because it crosses a setjmp call. A register should be
40f03658 353 considered dead only if the setjmp call returns nonzero. */
570a98eb 354 if (find_reg_note (x, REG_SETJMP, NULL))
ca545bb5
BM
355 SET_HARD_REG_SET (res->regs);
356
357 {
358 rtx link;
359
360 for (link = CALL_INSN_FUNCTION_USAGE (x);
361 link;
362 link = XEXP (link, 1))
363 if (GET_CODE (XEXP (link, 0)) == USE)
364 {
365 for (i = 1; i < seq_size; i++)
366 {
367 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368 if (GET_CODE (slot_pat) == SET
369 && rtx_equal_p (SET_DEST (slot_pat),
0cb5d81c 370 XEXP (XEXP (link, 0), 0)))
ca545bb5
BM
371 break;
372 }
373 if (i >= seq_size)
0cb5d81c 374 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
675f99c9 375 res, false);
ca545bb5
BM
376 }
377 }
378 }
379
380 /* ... fall through to other INSN processing ... */
381
382 case INSN:
383 case JUMP_INSN:
384
385#ifdef INSN_REFERENCES_ARE_DELAYED
386 if (! include_delayed_effects
387 && INSN_REFERENCES_ARE_DELAYED (x))
388 return;
389#endif
390
391 /* No special processing, just speed up. */
392 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393 return;
394
395 default:
396 break;
397 }
398
399 /* Process each sub-expression and flag what it needs. */
400 format_ptr = GET_RTX_FORMAT (code);
401 for (i = 0; i < GET_RTX_LENGTH (code); i++)
402 switch (*format_ptr++)
403 {
404 case 'e':
405 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406 break;
407
408 case 'E':
409 for (j = 0; j < XVECLEN (x, i); j++)
410 mark_referenced_resources (XVECEXP (x, i, j), res,
411 include_delayed_effects);
412 break;
413 }
414}
415\f
416/* A subroutine of mark_target_live_regs. Search forward from TARGET
a6a2274a 417 looking for registers that are set before they are used. These are dead.
ca545bb5
BM
418 Stop after passing a few conditional jumps, and/or a small
419 number of unconditional branches. */
420
421static rtx
0c20a65f
AJ
422find_dead_or_set_registers (rtx target, struct resources *res,
423 rtx *jump_target, int jump_count,
424 struct resources set, struct resources needed)
ca545bb5
BM
425{
426 HARD_REG_SET scratch;
427 rtx insn, next;
428 rtx jump_insn = 0;
429 int i;
430
431 for (insn = target; insn; insn = next)
432 {
433 rtx this_jump_insn = insn;
434
435 next = NEXT_INSN (insn);
0519ce30
MM
436
437 /* If this instruction can throw an exception, then we don't
438 know where we might end up next. That means that we have to
439 assume that whatever we have already marked as live really is
440 live. */
54590688 441 if (can_throw_internal (insn))
0519ce30
MM
442 break;
443
ca545bb5
BM
444 switch (GET_CODE (insn))
445 {
446 case CODE_LABEL:
447 /* After a label, any pending dead registers that weren't yet
448 used can be made dead. */
449 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451 CLEAR_HARD_REG_SET (pending_dead_regs);
452
453 continue;
454
455 case BARRIER:
456 case NOTE:
457 continue;
458
459 case INSN:
460 if (GET_CODE (PATTERN (insn)) == USE)
461 {
462 /* If INSN is a USE made by update_block, we care about the
463 underlying insn. Any registers set by the underlying insn
464 are live since the insn is being done somewhere else. */
2c3c49de 465 if (INSN_P (XEXP (PATTERN (insn), 0)))
73780b74
SC
466 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467 MARK_SRC_DEST_CALL);
ca545bb5
BM
468
469 /* All other USE insns are to be ignored. */
470 continue;
471 }
472 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473 continue;
474 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
475 {
476 /* An unconditional jump can be used to fill the delay slot
477 of a call, so search for a JUMP_INSN in any position. */
478 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
479 {
480 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
4b4bf941 481 if (JUMP_P (this_jump_insn))
ca545bb5
BM
482 break;
483 }
484 }
485
486 default:
487 break;
488 }
489
4b4bf941 490 if (JUMP_P (this_jump_insn))
ca545bb5
BM
491 {
492 if (jump_count++ < 10)
493 {
7f1c097d 494 if (any_uncondjump_p (this_jump_insn)
ca545bb5
BM
495 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
496 {
497 next = JUMP_LABEL (this_jump_insn);
498 if (jump_insn == 0)
499 {
500 jump_insn = insn;
501 if (jump_target)
502 *jump_target = JUMP_LABEL (this_jump_insn);
503 }
504 }
7f1c097d 505 else if (any_condjump_p (this_jump_insn))
ca545bb5
BM
506 {
507 struct resources target_set, target_res;
508 struct resources fallthrough_res;
509
510 /* We can handle conditional branches here by following
511 both paths, and then IOR the results of the two paths
512 together, which will give us registers that are dead
513 on both paths. Since this is expensive, we give it
514 a much higher cost than unconditional branches. The
515 cost was chosen so that we will follow at most 1
516 conditional branch. */
517
518 jump_count += 4;
519 if (jump_count >= 10)
520 break;
521
675f99c9 522 mark_referenced_resources (insn, &needed, true);
ca545bb5
BM
523
524 /* For an annulled branch, mark_set_resources ignores slots
525 filled by instructions from the target. This is correct
526 if the branch is not taken. Since we are following both
527 paths from the branch, we must also compute correct info
528 if the branch is taken. We do this by inverting all of
529 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
530 and then inverting the INSN_FROM_TARGET_P bits again. */
531
532 if (GET_CODE (PATTERN (insn)) == SEQUENCE
533 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
534 {
535 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
536 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
537 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
538
539 target_set = set;
73780b74
SC
540 mark_set_resources (insn, &target_set, 0,
541 MARK_SRC_DEST_CALL);
ca545bb5
BM
542
543 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
546
73780b74 547 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
548 }
549 else
550 {
73780b74 551 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
552 target_set = set;
553 }
554
555 target_res = *res;
556 COPY_HARD_REG_SET (scratch, target_set.regs);
557 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
558 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
559
560 fallthrough_res = *res;
561 COPY_HARD_REG_SET (scratch, set.regs);
562 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
563 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
564
565 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
566 &target_res, 0, jump_count,
567 target_set, needed);
568 find_dead_or_set_registers (next,
569 &fallthrough_res, 0, jump_count,
570 set, needed);
571 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
572 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
573 break;
574 }
575 else
576 break;
577 }
578 else
579 {
580 /* Don't try this optimization if we expired our jump count
581 above, since that would mean there may be an infinite loop
582 in the function being compiled. */
583 jump_insn = 0;
584 break;
585 }
586 }
587
675f99c9 588 mark_referenced_resources (insn, &needed, true);
73780b74 589 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
590
591 COPY_HARD_REG_SET (scratch, set.regs);
592 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
593 AND_COMPL_HARD_REG_SET (res->regs, scratch);
594 }
595
596 return jump_insn;
597}
598\f
599/* Given X, a part of an insn, and a pointer to a `struct resource',
600 RES, indicate which resources are modified by the insn. If
73780b74 601 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
73fb6466 602 set by the called routine.
ca545bb5
BM
603
604 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
605 objects are being referenced instead of set.
606
607 We never mark the insn as modifying the condition code unless it explicitly
608 SETs CC0 even though this is not totally correct. The reason for this is
609 that we require a SET of CC0 to immediately precede the reference to CC0.
610 So if some other insn sets CC0 as a side-effect, we know it cannot affect
6d2f8887 611 our computation and thus may be placed in a delay slot. */
ca545bb5
BM
612
613void
0c20a65f
AJ
614mark_set_resources (rtx x, struct resources *res, int in_dest,
615 enum mark_resource_type mark_type)
ca545bb5 616{
770ae6cc
RK
617 enum rtx_code code;
618 int i, j;
619 unsigned int r;
620 const char *format_ptr;
ca545bb5
BM
621
622 restart:
623
624 code = GET_CODE (x);
625
626 switch (code)
627 {
628 case NOTE:
629 case BARRIER:
630 case CODE_LABEL:
631 case USE:
632 case CONST_INT:
633 case CONST_DOUBLE:
091a3ac7 634 case CONST_FIXED:
69ef87e2 635 case CONST_VECTOR:
ca545bb5
BM
636 case LABEL_REF:
637 case SYMBOL_REF:
638 case CONST:
639 case PC:
640 /* These don't set any resources. */
641 return;
642
643 case CC0:
644 if (in_dest)
645 res->cc = 1;
646 return;
647
648 case CALL_INSN:
649 /* Called routine modifies the condition code, memory, any registers
650 that aren't saved across calls, global registers and anything
651 explicitly CLOBBERed immediately after the CALL_INSN. */
652
73780b74 653 if (mark_type == MARK_SRC_DEST_CALL)
ca545bb5 654 {
ca545bb5
BM
655 rtx link;
656
657 res->cc = res->memory = 1;
eef75f5e
RS
658
659 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
ca545bb5 660
ca545bb5
BM
661 for (link = CALL_INSN_FUNCTION_USAGE (x);
662 link; link = XEXP (link, 1))
663 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
73780b74
SC
664 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
665 MARK_SRC_DEST);
ca545bb5 666
570a98eb 667 /* Check for a REG_SETJMP. If it exists, then we must
ca545bb5 668 assume that this call can clobber any register. */
570a98eb 669 if (find_reg_note (x, REG_SETJMP, NULL))
ca545bb5
BM
670 SET_HARD_REG_SET (res->regs);
671 }
672
673 /* ... and also what its RTL says it modifies, if anything. */
674
675 case JUMP_INSN:
676 case INSN:
677
678 /* An insn consisting of just a CLOBBER (or USE) is just for flow
679 and doesn't actually do anything, so we ignore it. */
680
681#ifdef INSN_SETS_ARE_DELAYED
73780b74 682 if (mark_type != MARK_SRC_DEST_CALL
ca545bb5
BM
683 && INSN_SETS_ARE_DELAYED (x))
684 return;
685#endif
686
687 x = PATTERN (x);
688 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
689 goto restart;
690 return;
691
692 case SET:
693 /* If the source of a SET is a CALL, this is actually done by
694 the called routine. So only include it if we are to include the
695 effects of the calling routine. */
696
697 mark_set_resources (SET_DEST (x), res,
73780b74 698 (mark_type == MARK_SRC_DEST_CALL
ca545bb5 699 || GET_CODE (SET_SRC (x)) != CALL),
73780b74 700 mark_type);
ca545bb5 701
73fb6466 702 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
ca545bb5
BM
703 return;
704
705 case CLOBBER:
73780b74 706 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
ca545bb5 707 return;
a6a2274a 708
ca545bb5
BM
709 case SEQUENCE:
710 for (i = 0; i < XVECLEN (x, 0); i++)
711 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
712 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
73780b74 713 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
ca545bb5
BM
714 return;
715
716 case POST_INC:
717 case PRE_INC:
718 case POST_DEC:
719 case PRE_DEC:
73780b74 720 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
ca545bb5
BM
721 return;
722
4b983fdc
RH
723 case PRE_MODIFY:
724 case POST_MODIFY:
1fb9c5cd
MH
725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
727 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
4b983fdc
RH
728 return;
729
73780b74 730 case SIGN_EXTRACT:
ca545bb5 731 case ZERO_EXTRACT:
73fb6466
HPN
732 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
733 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
734 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
ca545bb5
BM
735 return;
736
737 case MEM:
738 if (in_dest)
739 {
740 res->memory = 1;
389fdba0 741 res->unch_memory |= MEM_READONLY_P (x);
a5045352 742 res->volatil |= MEM_VOLATILE_P (x);
ca545bb5
BM
743 }
744
73780b74 745 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
ca545bb5
BM
746 return;
747
748 case SUBREG:
749 if (in_dest)
750 {
f8cfc6aa 751 if (!REG_P (SUBREG_REG (x)))
73780b74 752 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
ca545bb5
BM
753 else
754 {
ddef6bc7 755 unsigned int regno = subreg_regno (x);
f1f4e530 756 unsigned int last_regno = regno + subreg_nregs (x);
770ae6cc 757
41374e13 758 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770ae6cc
RK
759 for (r = regno; r < last_regno; r++)
760 SET_HARD_REG_BIT (res->regs, r);
ca545bb5
BM
761 }
762 }
763 return;
764
765 case REG:
766 if (in_dest)
1d2215fe 767 {
09e18274
RS
768 gcc_assert (HARD_REGISTER_P (x));
769 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
1d2215fe 770 }
ca545bb5
BM
771 return;
772
3d298f8f
MM
773 case UNSPEC_VOLATILE:
774 case ASM_INPUT:
775 /* Traditional asm's are always volatile. */
776 res->volatil = 1;
777 return;
778
779 case TRAP_IF:
780 res->volatil = 1;
781 break;
782
783 case ASM_OPERANDS:
a5045352 784 res->volatil |= MEM_VOLATILE_P (x);
3d298f8f
MM
785
786 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
787 We can not just fall through here since then we would be confused
788 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
789 traditional asms unlike their normal usage. */
a6a2274a 790
3d298f8f 791 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
73780b74
SC
792 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
793 MARK_SRC_DEST);
3d298f8f
MM
794 return;
795
ca545bb5
BM
796 default:
797 break;
798 }
799
800 /* Process each sub-expression and flag what it needs. */
801 format_ptr = GET_RTX_FORMAT (code);
802 for (i = 0; i < GET_RTX_LENGTH (code); i++)
803 switch (*format_ptr++)
804 {
805 case 'e':
73780b74 806 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
ca545bb5
BM
807 break;
808
809 case 'E':
810 for (j = 0; j < XVECLEN (x, i); j++)
73780b74 811 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
ca545bb5
BM
812 break;
813 }
814}
815\f
6e456a10
EB
816/* Return TRUE if INSN is a return, possibly with a filled delay slot. */
817
818static bool
ed7a4b4b 819return_insn_p (const_rtx insn)
6e456a10 820{
2ca202e7 821 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
6e456a10
EB
822 return true;
823
2ca202e7 824 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
6e456a10
EB
825 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
826
827 return false;
828}
829
ca545bb5
BM
830/* Set the resources that are live at TARGET.
831
832 If TARGET is zero, we refer to the end of the current function and can
833 return our precomputed value.
834
835 Otherwise, we try to find out what is live by consulting the basic block
836 information. This is tricky, because we must consider the actions of
837 reload and jump optimization, which occur after the basic block information
838 has been computed.
839
840 Accordingly, we proceed as follows::
841
842 We find the previous BARRIER and look at all immediately following labels
843 (with no intervening active insns) to see if any of them start a basic
844 block. If we hit the start of the function first, we use block 0.
845
a1fa3e79
EB
846 Once we have found a basic block and a corresponding first insn, we can
847 accurately compute the live status (by starting at a label following a
848 BARRIER, we are immune to actions taken by reload and jump.) Then we
849 scan all insns between that point and our target. For each CLOBBER (or
850 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
851 registers are dead. For a SET, mark them as live.
ca545bb5
BM
852
853 We have to be careful when using REG_DEAD notes because they are not
854 updated by such things as find_equiv_reg. So keep track of registers
855 marked as dead that haven't been assigned to, and mark them dead at the
856 next CODE_LABEL since reload and jump won't propagate values across labels.
857
858 If we cannot find the start of a basic block (should be a very rare
859 case, if it can happen at all), mark everything as potentially live.
860
861 Next, scan forward from TARGET looking for things set or clobbered
862 before they are used. These are not live.
863
864 Because we can be called many times on the same target, save our results
865 in a hash table indexed by INSN_UID. This is only done if the function
866 init_resource_info () was invoked before we are called. */
867
868void
0c20a65f 869mark_target_live_regs (rtx insns, rtx target, struct resources *res)
ca545bb5
BM
870{
871 int b = -1;
5197bd50 872 unsigned int i;
ca545bb5
BM
873 struct target_info *tinfo = NULL;
874 rtx insn;
875 rtx jump_insn = 0;
876 rtx jump_target;
877 HARD_REG_SET scratch;
878 struct resources set, needed;
879
880 /* Handle end of function. */
881 if (target == 0)
882 {
883 *res = end_of_function_needs;
884 return;
885 }
886
6e456a10
EB
887 /* Handle return insn. */
888 else if (return_insn_p (target))
889 {
890 *res = end_of_function_needs;
675f99c9 891 mark_referenced_resources (target, res, false);
6e456a10
EB
892 return;
893 }
894
ca545bb5
BM
895 /* We have to assume memory is needed, but the CC isn't. */
896 res->memory = 1;
897 res->volatil = res->unch_memory = 0;
898 res->cc = 0;
899
900 /* See if we have computed this value already. */
901 if (target_hash_table != NULL)
902 {
903 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
904 tinfo; tinfo = tinfo->next)
905 if (tinfo->uid == INSN_UID (target))
906 break;
907
908 /* Start by getting the basic block number. If we have saved
909 information, we can get it from there unless the insn at the
910 start of the basic block has been deleted. */
911 if (tinfo && tinfo->block != -1
a813c111 912 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
ca545bb5
BM
913 b = tinfo->block;
914 }
915
925fa227 916 if (b == -1)
d5d063d7 917 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
ca545bb5
BM
918
919 if (target_hash_table != NULL)
920 {
921 if (tinfo)
922 {
923 /* If the information is up-to-date, use it. Otherwise, we will
924 update it below. */
925 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
926 {
927 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
928 return;
929 }
930 }
931 else
932 {
a6a2274a 933 /* Allocate a place to put our results and chain it into the
ca545bb5 934 hash table. */
5ed6ace5 935 tinfo = XNEW (struct target_info);
ca545bb5
BM
936 tinfo->uid = INSN_UID (target);
937 tinfo->block = b;
5197bd50
RK
938 tinfo->next
939 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
ca545bb5
BM
940 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
941 }
942 }
943
944 CLEAR_HARD_REG_SET (pending_dead_regs);
945
946 /* If we found a basic block, get the live registers from it and update
947 them with anything set or killed between its start and the insn before
9d2bb902
EB
948 TARGET; this custom life analysis is really about registers so we need
949 to use the LR problem. Otherwise, we must assume everything is live. */
ca545bb5
BM
950 if (b != -1)
951 {
9d2bb902 952 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
ca545bb5
BM
953 rtx start_insn, stop_insn;
954
a1fa3e79 955 /* Compute hard regs live at start of block. */
ca545bb5
BM
956 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
957
ca545bb5
BM
958 /* Get starting and ending insn, handling the case where each might
959 be a SEQUENCE. */
6fb5fa3c
DB
960 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
961 insns : BB_HEAD (BASIC_BLOCK (b)));
ca545bb5
BM
962 stop_insn = target;
963
4b4bf941 964 if (NONJUMP_INSN_P (start_insn)
ca545bb5
BM
965 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
966 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
967
4b4bf941 968 if (NONJUMP_INSN_P (stop_insn)
ca545bb5
BM
969 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
970 stop_insn = next_insn (PREV_INSN (stop_insn));
971
972 for (insn = start_insn; insn != stop_insn;
973 insn = next_insn_no_annul (insn))
974 {
975 rtx link;
976 rtx real_insn = insn;
cf40ea15 977 enum rtx_code code = GET_CODE (insn);
ca545bb5 978
b5b8b0ac
AO
979 if (DEBUG_INSN_P (insn))
980 continue;
981
ca545bb5
BM
982 /* If this insn is from the target of a branch, it isn't going to
983 be used in the sequel. If it is used in both cases, this
984 test will not be true. */
cf40ea15
DM
985 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
986 && INSN_FROM_TARGET_P (insn))
ca545bb5
BM
987 continue;
988
989 /* If this insn is a USE made by update_block, we care about the
990 underlying insn. */
cf40ea15 991 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
2c3c49de 992 && INSN_P (XEXP (PATTERN (insn), 0)))
ca545bb5
BM
993 real_insn = XEXP (PATTERN (insn), 0);
994
4b4bf941 995 if (CALL_P (real_insn))
ca545bb5
BM
996 {
997 /* CALL clobbers all call-used regs that aren't fixed except
998 sp, ap, and fp. Do this before setting the result of the
999 call live. */
12beba6f
RH
1000 AND_COMPL_HARD_REG_SET (current_live_regs,
1001 regs_invalidated_by_call);
ca545bb5
BM
1002
1003 /* A CALL_INSN sets any global register live, since it may
1004 have been modified by the call. */
1005 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1006 if (global_regs[i])
1007 SET_HARD_REG_BIT (current_live_regs, i);
1008 }
1009
1010 /* Mark anything killed in an insn to be deadened at the next
1011 label. Ignore USE insns; the only REG_DEAD notes will be for
1012 parameters. But they might be early. A CALL_INSN will usually
1013 clobber registers used for parameters. It isn't worth bothering
1014 with the unlikely case when it won't. */
4b4bf941 1015 if ((NONJUMP_INSN_P (real_insn)
ca545bb5
BM
1016 && GET_CODE (PATTERN (real_insn)) != USE
1017 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
4b4bf941
JQ
1018 || JUMP_P (real_insn)
1019 || CALL_P (real_insn))
ca545bb5
BM
1020 {
1021 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1022 if (REG_NOTE_KIND (link) == REG_DEAD
f8cfc6aa 1023 && REG_P (XEXP (link, 0))
ca545bb5 1024 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
09e18274
RS
1025 add_to_hard_reg_set (&pending_dead_regs,
1026 GET_MODE (XEXP (link, 0)),
1027 REGNO (XEXP (link, 0)));
ca545bb5 1028
84832317 1029 note_stores (PATTERN (real_insn), update_live_status, NULL);
ca545bb5
BM
1030
1031 /* If any registers were unused after this insn, kill them.
1032 These notes will always be accurate. */
1033 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1034 if (REG_NOTE_KIND (link) == REG_UNUSED
f8cfc6aa 1035 && REG_P (XEXP (link, 0))
ca545bb5 1036 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
09e18274
RS
1037 remove_from_hard_reg_set (&current_live_regs,
1038 GET_MODE (XEXP (link, 0)),
1039 REGNO (XEXP (link, 0)));
ca545bb5
BM
1040 }
1041
4b4bf941 1042 else if (LABEL_P (real_insn))
ca545bb5 1043 {
a1fa3e79
EB
1044 basic_block bb;
1045
ca545bb5
BM
1046 /* A label clobbers the pending dead registers since neither
1047 reload nor jump will propagate a value across a label. */
1048 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1049 CLEAR_HARD_REG_SET (pending_dead_regs);
a1fa3e79
EB
1050
1051 /* We must conservatively assume that all registers that used
1052 to be live here still are. The fallthrough edge may have
1053 left a live register uninitialized. */
1054 bb = BLOCK_FOR_INSN (real_insn);
1055 if (bb)
1056 {
1057 HARD_REG_SET extra_live;
1058
9d2bb902 1059 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
a1fa3e79
EB
1060 IOR_HARD_REG_SET (current_live_regs, extra_live);
1061 }
ca545bb5
BM
1062 }
1063
1064 /* The beginning of the epilogue corresponds to the end of the
1065 RTL chain when there are no epilogue insns. Certain resources
1066 are implicitly required at that point. */
4b4bf941 1067 else if (NOTE_P (real_insn)
a38e7aa5 1068 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
ca545bb5
BM
1069 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1070 }
1071
1072 COPY_HARD_REG_SET (res->regs, current_live_regs);
1073 if (tinfo != NULL)
1074 {
1075 tinfo->block = b;
1076 tinfo->bb_tick = bb_ticks[b];
1077 }
1078 }
1079 else
1080 /* We didn't find the start of a basic block. Assume everything
1081 in use. This should happen only extremely rarely. */
1082 SET_HARD_REG_SET (res->regs);
1083
1084 CLEAR_RESOURCE (&set);
1085 CLEAR_RESOURCE (&needed);
1086
1087 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1088 set, needed);
1089
1090 /* If we hit an unconditional branch, we have another way of finding out
1091 what is live: we can see what is live at the branch target and include
96e9c98d 1092 anything used but not set before the branch. We add the live
dc297297 1093 resources found using the test below to those found until now. */
ca545bb5
BM
1094
1095 if (jump_insn)
1096 {
1097 struct resources new_resources;
1098 rtx stop_insn = next_active_insn (jump_insn);
1099
1100 mark_target_live_regs (insns, next_active_insn (jump_target),
1101 &new_resources);
1102 CLEAR_RESOURCE (&set);
1103 CLEAR_RESOURCE (&needed);
1104
1105 /* Include JUMP_INSN in the needed registers. */
1106 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1107 {
675f99c9 1108 mark_referenced_resources (insn, &needed, true);
ca545bb5
BM
1109
1110 COPY_HARD_REG_SET (scratch, needed.regs);
1111 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1112 IOR_HARD_REG_SET (new_resources.regs, scratch);
1113
73780b74 1114 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
ca545bb5
BM
1115 }
1116
96e9c98d 1117 IOR_HARD_REG_SET (res->regs, new_resources.regs);
ca545bb5
BM
1118 }
1119
1120 if (tinfo != NULL)
1121 {
1122 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1123 }
1124}
1125\f
1126/* Initialize the resources required by mark_target_live_regs ().
1127 This should be invoked before the first call to mark_target_live_regs. */
1128
1129void
0c20a65f 1130init_resource_info (rtx epilogue_insn)
ca545bb5
BM
1131{
1132 int i;
a1fa3e79 1133 basic_block bb;
ca545bb5
BM
1134
1135 /* Indicate what resources are required to be valid at the end of the current
1136 function. The condition code never is and memory always is. If the
1137 frame pointer is needed, it is and so is the stack pointer unless
40f03658 1138 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
ca545bb5
BM
1139 stack pointer is. Registers used to return the function value are
1140 needed. Registers holding global variables are needed. */
1141
1142 end_of_function_needs.cc = 0;
1143 end_of_function_needs.memory = 1;
1144 end_of_function_needs.unch_memory = 0;
1145 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1146
1147 if (frame_pointer_needed)
1148 {
1149 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1150#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1151 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1152#endif
ca545bb5
BM
1153 if (! EXIT_IGNORE_STACK
1154 || current_function_sp_is_unchanging)
ca545bb5
BM
1155 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1156 }
1157 else
1158 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1159
38173d38
JH
1160 if (crtl->return_rtx != 0)
1161 mark_referenced_resources (crtl->return_rtx,
675f99c9 1162 &end_of_function_needs, true);
ca545bb5
BM
1163
1164 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1165 if (global_regs[i]
1166#ifdef EPILOGUE_USES
1167 || EPILOGUE_USES (i)
1168#endif
1169 )
1170 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1171
1172 /* The registers required to be live at the end of the function are
1173 represented in the flow information as being dead just prior to
1174 reaching the end of the function. For example, the return of a value
1175 might be represented by a USE of the return register immediately
1176 followed by an unconditional jump to the return label where the
1177 return label is the end of the RTL chain. The end of the RTL chain
1178 is then taken to mean that the return register is live.
1179
1180 This sequence is no longer maintained when epilogue instructions are
1181 added to the RTL chain. To reconstruct the original meaning, the
1182 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1183 point where these registers become live (start_of_epilogue_needs).
1184 If epilogue instructions are present, the registers set by those
1185 instructions won't have been processed by flow. Thus, those
1186 registers are additionally required at the end of the RTL chain
1187 (end_of_function_needs). */
1188
1189 start_of_epilogue_needs = end_of_function_needs;
1190
1191 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
6e456a10
EB
1192 {
1193 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1194 MARK_SRC_DEST_CALL);
1195 if (return_insn_p (epilogue_insn))
1196 break;
1197 }
ca545bb5
BM
1198
1199 /* Allocate and initialize the tables used by mark_target_live_regs. */
5ed6ace5
MD
1200 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1201 bb_ticks = XCNEWVEC (int, last_basic_block);
a1fa3e79
EB
1202
1203 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1204 FOR_EACH_BB (bb)
1205 if (LABEL_P (BB_HEAD (bb)))
1206 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
ca545bb5
BM
1207}
1208\f
14b493d6 1209/* Free up the resources allocated to mark_target_live_regs (). This
ca545bb5
BM
1210 should be invoked after the last call to mark_target_live_regs (). */
1211
1212void
0c20a65f 1213free_resource_info (void)
ca545bb5 1214{
a1fa3e79
EB
1215 basic_block bb;
1216
ca545bb5
BM
1217 if (target_hash_table != NULL)
1218 {
1f8f4a0b 1219 int i;
a6a2274a
KH
1220
1221 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1f8f4a0b
MM
1222 {
1223 struct target_info *ti = target_hash_table[i];
1224
a6a2274a 1225 while (ti)
1f8f4a0b
MM
1226 {
1227 struct target_info *next = ti->next;
1228 free (ti);
1229 ti = next;
1230 }
1231 }
1232
ca545bb5
BM
1233 free (target_hash_table);
1234 target_hash_table = NULL;
1235 }
1236
1237 if (bb_ticks != NULL)
1238 {
1239 free (bb_ticks);
1240 bb_ticks = NULL;
1241 }
a1fa3e79
EB
1242
1243 FOR_EACH_BB (bb)
1244 if (LABEL_P (BB_HEAD (bb)))
1245 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
ca545bb5
BM
1246}
1247\f
1248/* Clear any hashed information that we have stored for INSN. */
1249
1250void
0c20a65f 1251clear_hashed_info_for_insn (rtx insn)
ca545bb5
BM
1252{
1253 struct target_info *tinfo;
a6a2274a 1254
ca545bb5
BM
1255 if (target_hash_table != NULL)
1256 {
1257 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1258 tinfo; tinfo = tinfo->next)
1259 if (tinfo->uid == INSN_UID (insn))
1260 break;
1261
1262 if (tinfo)
1263 tinfo->block = -1;
1264 }
1265}
1266\f
1267/* Increment the tick count for the basic block that contains INSN. */
1268
1269void
0c20a65f 1270incr_ticks_for_insn (rtx insn)
ca545bb5 1271{
d5d063d7 1272 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
ca545bb5
BM
1273
1274 if (b != -1)
1275 bb_ticks[b]++;
1276}
1277\f
1278/* Add TRIAL to the set of resources used at the end of the current
dc297297 1279 function. */
ca545bb5 1280void
675f99c9 1281mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
ca545bb5
BM
1282{
1283 mark_referenced_resources (trial, &end_of_function_needs,
1284 include_delayed_effects);
1285}