]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/rtlanal.c
pr40835.c: Require a thumb1 target, do not force -march=armv5e.
[thirdparty/gcc.git] / gcc / rtlanal.c
CommitLineData
af082de3 1/* Analyze RTL for GNU compiler.
af841dbd 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
66647d44
JJ
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
2c88418c 5
1322177d 6This file is part of GCC.
2c88418c 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
2c88418c 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
2c88418c
RS
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
2c88418c
RS
21
22
23#include "config.h"
670ee920 24#include "system.h"
4977bab6
ZW
25#include "coretypes.h"
26#include "tm.h"
e35b9579 27#include "toplev.h"
2c88418c 28#include "rtl.h"
3335f1d9 29#include "hard-reg-set.h"
bc204393
RH
30#include "insn-config.h"
31#include "recog.h"
f894b69b
PB
32#include "target.h"
33#include "output.h"
91ea4f8d 34#include "tm_p.h"
f5eb5fd0 35#include "flags.h"
52bfebf0 36#include "real.h"
66fd46b6 37#include "regs.h"
2f93eea8 38#include "function.h"
6fb5fa3c 39#include "df.h"
7ffb5e78 40#include "tree.h"
2c88418c 41
e2373f95 42/* Forward declarations */
7bc980e1 43static void set_of_1 (rtx, const_rtx, void *);
f7d504c2
KG
44static bool covers_regno_p (const_rtx, unsigned int);
45static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
0c20a65f 46static int rtx_referenced_p_1 (rtx *, void *);
f7d504c2 47static int computed_jump_p_1 (const_rtx);
7bc980e1 48static void parms_set (rtx, const_rtx, void *);
2a1777af 49
fa233e34
KG
50static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
2f93eea8 52 unsigned HOST_WIDE_INT);
fa233e34
KG
53static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
2f93eea8 55 unsigned HOST_WIDE_INT);
fa233e34 56static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
2f93eea8
PB
57 enum machine_mode,
58 unsigned int);
fa233e34 59static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
2f93eea8
PB
60 enum machine_mode, unsigned int);
61
cf94b0fc
PB
62/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64static int non_rtx_starting_operands[NUM_RTX_CODE];
65
2c88418c
RS
66/* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
69
70int target_flags;
b12cbf2c
AN
71
72/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
76
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
84
85static unsigned int
86num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
2c88418c
RS
87\f
88/* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
92
93int
f7d504c2 94rtx_unstable_p (const_rtx x)
2c88418c 95{
f7d504c2 96 const RTX_CODE code = GET_CODE (x);
b3694847
SS
97 int i;
98 const char *fmt;
2c88418c 99
ae0fb1b9
JW
100 switch (code)
101 {
102 case MEM:
389fdba0 103 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
2c88418c 104
ae0fb1b9
JW
105 case CONST:
106 case CONST_INT:
107 case CONST_DOUBLE:
091a3ac7 108 case CONST_FIXED:
69ef87e2 109 case CONST_VECTOR:
ae0fb1b9
JW
110 case SYMBOL_REF:
111 case LABEL_REF:
112 return 0;
2c88418c 113
ae0fb1b9
JW
114 case REG:
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
c0fc376b 116 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9 117 /* The arg pointer varies if it is not a fixed register. */
389fdba0 118 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b
RH
119 return 0;
120#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x == pic_offset_table_rtx)
125 return 0;
126#endif
127 return 1;
ae0fb1b9
JW
128
129 case ASM_OPERANDS:
130 if (MEM_VOLATILE_P (x))
131 return 1;
132
5d3cc252 133 /* Fall through. */
ae0fb1b9
JW
134
135 default:
136 break;
137 }
2c88418c
RS
138
139 fmt = GET_RTX_FORMAT (code);
140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
141 if (fmt[i] == 'e')
9c82ac6b
JW
142 {
143 if (rtx_unstable_p (XEXP (x, i)))
144 return 1;
145 }
146 else if (fmt[i] == 'E')
147 {
148 int j;
149 for (j = 0; j < XVECLEN (x, i); j++)
150 if (rtx_unstable_p (XVECEXP (x, i, j)))
151 return 1;
152 }
153
2c88418c
RS
154 return 0;
155}
156
157/* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
e38fe8e0
BS
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
2c88418c
RS
162 The frame pointer and the arg pointer are considered constant. */
163
4f588890
KG
164bool
165rtx_varies_p (const_rtx x, bool for_alias)
2c88418c 166{
e978d62e 167 RTX_CODE code;
b3694847
SS
168 int i;
169 const char *fmt;
2c88418c 170
e978d62e
PB
171 if (!x)
172 return 0;
173
174 code = GET_CODE (x);
2c88418c
RS
175 switch (code)
176 {
177 case MEM:
389fdba0 178 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
55efb413 179
2c88418c
RS
180 case CONST:
181 case CONST_INT:
182 case CONST_DOUBLE:
091a3ac7 183 case CONST_FIXED:
69ef87e2 184 case CONST_VECTOR:
2c88418c
RS
185 case SYMBOL_REF:
186 case LABEL_REF:
187 return 0;
188
189 case REG:
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
193 for pseudos. */
c0fc376b 194 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3335f1d9
JL
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
c0fc376b 197 return 0;
e38fe8e0
BS
198 if (x == pic_offset_table_rtx
199#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
204 && for_alias
c0fc376b 205#endif
e38fe8e0
BS
206 )
207 return 0;
c0fc376b 208 return 1;
2c88418c
RS
209
210 case LO_SUM:
211 /* The operand 0 of a LO_SUM is considered constant
e7d96a83
JW
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
215 || rtx_varies_p (XEXP (x, 1), for_alias);
a6a2274a 216
ae0fb1b9
JW
217 case ASM_OPERANDS:
218 if (MEM_VOLATILE_P (x))
219 return 1;
220
5d3cc252 221 /* Fall through. */
ae0fb1b9 222
e9a25f70
JL
223 default:
224 break;
2c88418c
RS
225 }
226
227 fmt = GET_RTX_FORMAT (code);
228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
229 if (fmt[i] == 'e')
9c82ac6b 230 {
e38fe8e0 231 if (rtx_varies_p (XEXP (x, i), for_alias))
9c82ac6b
JW
232 return 1;
233 }
234 else if (fmt[i] == 'E')
235 {
236 int j;
237 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 238 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
9c82ac6b
JW
239 return 1;
240 }
241
2c88418c
RS
242 return 0;
243}
244
2358ff91
EB
245/* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
2c88418c 249
2358ff91 250static int
48e8382e
PB
251rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
252 enum machine_mode mode, bool unaligned_mems)
2c88418c 253{
b3694847 254 enum rtx_code code = GET_CODE (x);
2c88418c 255
48e8382e
PB
256 if (STRICT_ALIGNMENT
257 && unaligned_mems
258 && GET_MODE_SIZE (mode) != 0)
259 {
260 HOST_WIDE_INT actual_offset = offset;
261#ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
267 actual_offset -= STACK_POINTER_OFFSET;
268#endif
269
65a74b5d
PB
270 if (actual_offset % GET_MODE_SIZE (mode) != 0)
271 return 1;
48e8382e
PB
272 }
273
2c88418c
RS
274 switch (code)
275 {
276 case SYMBOL_REF:
48e8382e
PB
277 if (SYMBOL_REF_WEAK (x))
278 return 1;
279 if (!CONSTANT_POOL_ADDRESS_P (x))
280 {
281 tree decl;
282 HOST_WIDE_INT decl_size;
283
284 if (offset < 0)
285 return 1;
286 if (size == 0)
287 size = GET_MODE_SIZE (mode);
288 if (size == 0)
289 return offset != 0;
290
291 /* If the size of the access or of the symbol is unknown,
292 assume the worst. */
293 decl = SYMBOL_REF_DECL (x);
294
295 /* Else check that the access is in bounds. TODO: restructure
71c00b5c 296 expr_size/tree_expr_size/int_expr_size and just use the latter. */
48e8382e
PB
297 if (!decl)
298 decl_size = -1;
299 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
300 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
302 : -1);
303 else if (TREE_CODE (decl) == STRING_CST)
304 decl_size = TREE_STRING_LENGTH (decl);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
306 decl_size = int_size_in_bytes (TREE_TYPE (decl));
307 else
308 decl_size = -1;
309
310 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
311 }
312
313 return 0;
ff0b6b99 314
2c88418c 315 case LABEL_REF:
2c88418c
RS
316 return 0;
317
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
4f73495e
RH
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
324 return 0;
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
328 return 0;
329 return 1;
2c88418c
RS
330
331 case CONST:
48e8382e
PB
332 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
333 mode, unaligned_mems);
2c88418c
RS
334
335 case PLUS:
2358ff91 336 /* An address is assumed not to trap if:
48e8382e
PB
337 - it is the pic register plus a constant. */
338 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
339 return 0;
340
341 /* - or it is an address that can't trap plus a constant integer,
2358ff91
EB
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
481683e1 344 if (CONST_INT_P (XEXP (x, 1))
48e8382e
PB
345 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 size, mode, unaligned_mems))
2358ff91
EB
347 return 0;
348
349 return 1;
2c88418c
RS
350
351 case LO_SUM:
4f73495e 352 case PRE_MODIFY:
48e8382e
PB
353 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 mode, unaligned_mems);
4f73495e
RH
355
356 case PRE_DEC:
357 case PRE_INC:
358 case POST_DEC:
359 case POST_INC:
360 case POST_MODIFY:
48e8382e
PB
361 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 mode, unaligned_mems);
4f73495e 363
e9a25f70
JL
364 default:
365 break;
2c88418c
RS
366 }
367
368 /* If it isn't one of the case above, it can cause a trap. */
369 return 1;
370}
371
2358ff91
EB
372/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
373
374int
f7d504c2 375rtx_addr_can_trap_p (const_rtx x)
2358ff91 376{
48e8382e 377 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
2358ff91
EB
378}
379
4977bab6
ZW
380/* Return true if X is an address that is known to not be zero. */
381
382bool
f7d504c2 383nonzero_address_p (const_rtx x)
4977bab6 384{
f7d504c2 385 const enum rtx_code code = GET_CODE (x);
4977bab6
ZW
386
387 switch (code)
388 {
389 case SYMBOL_REF:
390 return !SYMBOL_REF_WEAK (x);
391
392 case LABEL_REF:
393 return true;
394
4977bab6
ZW
395 case REG:
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 || x == stack_pointer_rtx
399 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 return true;
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 return true;
405 return false;
406
407 case CONST:
408 return nonzero_address_p (XEXP (x, 0));
409
410 case PLUS:
481683e1 411 if (CONST_INT_P (XEXP (x, 1)))
942d7821 412 return nonzero_address_p (XEXP (x, 0));
4977bab6
ZW
413 /* Handle PIC references. */
414 else if (XEXP (x, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x, 1)))
416 return true;
417 return false;
418
419 case PRE_MODIFY:
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
422 pointer. */
481683e1 423 if (CONST_INT_P (XEXP (x, 1))
4977bab6
ZW
424 && INTVAL (XEXP (x, 1)) > 0)
425 return true;
426 return nonzero_address_p (XEXP (x, 0));
427
428 case PRE_INC:
429 /* Similarly. Further, the offset is always positive. */
430 return true;
431
432 case PRE_DEC:
433 case POST_DEC:
434 case POST_INC:
435 case POST_MODIFY:
436 return nonzero_address_p (XEXP (x, 0));
437
438 case LO_SUM:
439 return nonzero_address_p (XEXP (x, 1));
440
441 default:
442 break;
443 }
444
445 /* If it isn't one of the case above, might be zero. */
446 return false;
447}
448
a6a2274a 449/* Return 1 if X refers to a memory location whose address
2c88418c 450 cannot be compared reliably with constant addresses,
a6a2274a 451 or if X refers to a BLKmode memory object.
e38fe8e0
BS
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
2c88418c 454
4f588890
KG
455bool
456rtx_addr_varies_p (const_rtx x, bool for_alias)
2c88418c 457{
b3694847
SS
458 enum rtx_code code;
459 int i;
460 const char *fmt;
2c88418c
RS
461
462 if (x == 0)
463 return 0;
464
465 code = GET_CODE (x);
466 if (code == MEM)
e38fe8e0 467 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
2c88418c
RS
468
469 fmt = GET_RTX_FORMAT (code);
470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
833c0b26 472 {
e38fe8e0 473 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
833c0b26
RK
474 return 1;
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
e38fe8e0 480 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
833c0b26
RK
481 return 1;
482 }
2c88418c
RS
483 return 0;
484}
485\f
486/* Return the value of the integer term in X, if one is apparent;
487 otherwise return 0.
488 Only obvious integer terms are detected.
3ef42a0c 489 This is used in cse.c with the `related_value' field. */
2c88418c 490
c166a311 491HOST_WIDE_INT
f7d504c2 492get_integer_term (const_rtx x)
2c88418c
RS
493{
494 if (GET_CODE (x) == CONST)
495 x = XEXP (x, 0);
496
497 if (GET_CODE (x) == MINUS
481683e1 498 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
499 return - INTVAL (XEXP (x, 1));
500 if (GET_CODE (x) == PLUS
481683e1 501 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
502 return INTVAL (XEXP (x, 1));
503 return 0;
504}
505
506/* If X is a constant, return the value sans apparent integer term;
507 otherwise return 0.
508 Only obvious integer terms are detected. */
509
510rtx
f7d504c2 511get_related_value (const_rtx x)
2c88418c
RS
512{
513 if (GET_CODE (x) != CONST)
514 return 0;
515 x = XEXP (x, 0);
516 if (GET_CODE (x) == PLUS
481683e1 517 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
518 return XEXP (x, 0);
519 else if (GET_CODE (x) == MINUS
481683e1 520 && CONST_INT_P (XEXP (x, 1)))
2c88418c
RS
521 return XEXP (x, 0);
522 return 0;
523}
524\f
7ffb5e78
RS
525/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
527
528bool
f7d504c2 529offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
7ffb5e78
RS
530{
531 tree decl;
532
533 if (GET_CODE (symbol) != SYMBOL_REF)
534 return false;
535
536 if (offset == 0)
537 return true;
538
539 if (offset > 0)
540 {
541 if (CONSTANT_POOL_ADDRESS_P (symbol)
542 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
543 return true;
544
545 decl = SYMBOL_REF_DECL (symbol);
546 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
547 return true;
548 }
549
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
551 && SYMBOL_REF_BLOCK (symbol)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
553 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
554 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
555 return true;
556
557 return false;
558}
559
560/* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
562
563void
564split_const (rtx x, rtx *base_out, rtx *offset_out)
565{
566 if (GET_CODE (x) == CONST)
567 {
568 x = XEXP (x, 0);
481683e1 569 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
7ffb5e78
RS
570 {
571 *base_out = XEXP (x, 0);
572 *offset_out = XEXP (x, 1);
573 return;
574 }
575 }
576 *base_out = x;
577 *offset_out = const0_rtx;
578}
579\f
4b983fdc
RH
580/* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
582
583int
f7d504c2 584count_occurrences (const_rtx x, const_rtx find, int count_dest)
4b983fdc
RH
585{
586 int i, j;
587 enum rtx_code code;
588 const char *format_ptr;
589 int count;
590
591 if (x == find)
592 return 1;
593
594 code = GET_CODE (x);
595
596 switch (code)
597 {
598 case REG:
599 case CONST_INT:
600 case CONST_DOUBLE:
091a3ac7 601 case CONST_FIXED:
69ef87e2 602 case CONST_VECTOR:
4b983fdc
RH
603 case SYMBOL_REF:
604 case CODE_LABEL:
605 case PC:
606 case CC0:
607 return 0;
608
2372a062
BS
609 case EXPR_LIST:
610 count = count_occurrences (XEXP (x, 0), find, count_dest);
611 if (XEXP (x, 1))
612 count += count_occurrences (XEXP (x, 1), find, count_dest);
613 return count;
614
4b983fdc 615 case MEM:
3c0cb5de 616 if (MEM_P (find) && rtx_equal_p (x, find))
4b983fdc
RH
617 return 1;
618 break;
619
620 case SET:
621 if (SET_DEST (x) == find && ! count_dest)
622 return count_occurrences (SET_SRC (x), find, count_dest);
623 break;
624
625 default:
626 break;
627 }
628
629 format_ptr = GET_RTX_FORMAT (code);
630 count = 0;
631
632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
633 {
634 switch (*format_ptr++)
635 {
636 case 'e':
637 count += count_occurrences (XEXP (x, i), find, count_dest);
638 break;
639
640 case 'E':
641 for (j = 0; j < XVECLEN (x, i); j++)
642 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
643 break;
644 }
645 }
646 return count;
647}
6fb5fa3c 648
4b983fdc 649\f
2c88418c
RS
650/* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
653
654int
f7d504c2 655reg_mentioned_p (const_rtx reg, const_rtx in)
2c88418c 656{
b3694847
SS
657 const char *fmt;
658 int i;
659 enum rtx_code code;
2c88418c
RS
660
661 if (in == 0)
662 return 0;
663
664 if (reg == in)
665 return 1;
666
667 if (GET_CODE (in) == LABEL_REF)
668 return reg == XEXP (in, 0);
669
670 code = GET_CODE (in);
671
672 switch (code)
673 {
674 /* Compare registers by number. */
675 case REG:
f8cfc6aa 676 return REG_P (reg) && REGNO (in) == REGNO (reg);
2c88418c
RS
677
678 /* These codes have no constituent expressions
679 and are unique. */
680 case SCRATCH:
681 case CC0:
682 case PC:
683 return 0;
684
685 case CONST_INT:
69ef87e2 686 case CONST_VECTOR:
2c88418c 687 case CONST_DOUBLE:
091a3ac7 688 case CONST_FIXED:
2c88418c
RS
689 /* These are kept unique for a given value. */
690 return 0;
a6a2274a 691
e9a25f70
JL
692 default:
693 break;
2c88418c
RS
694 }
695
696 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
697 return 1;
698
699 fmt = GET_RTX_FORMAT (code);
700
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
702 {
703 if (fmt[i] == 'E')
704 {
b3694847 705 int j;
2c88418c
RS
706 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
707 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
708 return 1;
709 }
710 else if (fmt[i] == 'e'
711 && reg_mentioned_p (reg, XEXP (in, i)))
712 return 1;
713 }
714 return 0;
715}
716\f
717/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
719
720int
f7d504c2 721no_labels_between_p (const_rtx beg, const_rtx end)
2c88418c 722{
b3694847 723 rtx p;
978f547f
JH
724 if (beg == end)
725 return 0;
2c88418c 726 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
4b4bf941 727 if (LABEL_P (p))
2c88418c
RS
728 return 0;
729 return 1;
730}
731
732/* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
734
735int
f7d504c2 736reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
2c88418c 737{
b3694847 738 rtx insn;
2c88418c
RS
739
740 if (from_insn == to_insn)
741 return 0;
742
743 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
b5b8b0ac 744 if (NONDEBUG_INSN_P (insn)
8f3e7a26 745 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
76dd5923 746 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
2c88418c
RS
747 return 1;
748 return 0;
749}
750\f
751/* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
754
755int
f7d504c2 756reg_referenced_p (const_rtx x, const_rtx body)
2c88418c
RS
757{
758 int i;
759
760 switch (GET_CODE (body))
761 {
762 case SET:
763 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
764 return 1;
765
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body)) != CC0
770 && GET_CODE (SET_DEST (body)) != PC
f8cfc6aa 771 && !REG_P (SET_DEST (body))
2c88418c 772 && ! (GET_CODE (SET_DEST (body)) == SUBREG
f8cfc6aa 773 && REG_P (SUBREG_REG (SET_DEST (body)))
2c88418c
RS
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
775 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
777 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
778 && reg_overlap_mentioned_p (x, SET_DEST (body)))
779 return 1;
e9a25f70 780 return 0;
2c88418c
RS
781
782 case ASM_OPERANDS:
783 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
784 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
785 return 1;
e9a25f70 786 return 0;
2c88418c
RS
787
788 case CALL:
789 case USE:
14a774a9 790 case IF_THEN_ELSE:
2c88418c
RS
791 return reg_overlap_mentioned_p (x, body);
792
793 case TRAP_IF:
794 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
795
21b8482a
JJ
796 case PREFETCH:
797 return reg_overlap_mentioned_p (x, XEXP (body, 0));
798
2ac4fed0
RK
799 case UNSPEC:
800 case UNSPEC_VOLATILE:
2f9fb4c2
R
801 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
802 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
803 return 1;
804 return 0;
805
2c88418c
RS
806 case PARALLEL:
807 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
808 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
809 return 1;
e9a25f70 810 return 0;
a6a2274a 811
0d3ffb5a 812 case CLOBBER:
3c0cb5de 813 if (MEM_P (XEXP (body, 0)))
0d3ffb5a
GK
814 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
815 return 1;
816 return 0;
817
0c99ec5c
RH
818 case COND_EXEC:
819 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
820 return 1;
821 return reg_referenced_p (x, COND_EXEC_CODE (body));
822
e9a25f70
JL
823 default:
824 return 0;
2c88418c 825 }
2c88418c 826}
2c88418c
RS
827\f
828/* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
830
831int
ed7a4b4b 832reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
2c88418c 833{
ed7a4b4b 834 const_rtx insn;
2c88418c
RS
835
836 if (from_insn == to_insn)
837 return 0;
838
839 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
2c3c49de 840 if (INSN_P (insn) && reg_set_p (reg, insn))
2c88418c
RS
841 return 1;
842 return 0;
843}
844
845/* Internals of reg_set_between_p. */
2c88418c 846int
ed7a4b4b 847reg_set_p (const_rtx reg, const_rtx insn)
2c88418c 848{
2c88418c
RS
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
4977bab6
ZW
851 if (INSN_P (insn)
852 && (FIND_REG_INC_NOTE (insn, reg)
4b4bf941 853 || (CALL_P (insn)
f8cfc6aa 854 && ((REG_P (reg)
4f1605d2 855 && REGNO (reg) < FIRST_PSEUDO_REGISTER
5da20cfe
RS
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
857 GET_MODE (reg), REGNO (reg)))
3c0cb5de 858 || MEM_P (reg)
4977bab6
ZW
859 || find_reg_fusage (insn, CLOBBER, reg)))))
860 return 1;
2c88418c 861
91b2d119 862 return set_of (reg, insn) != NULL_RTX;
2c88418c
RS
863}
864
865/* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
fa10beec 867 X contains a MEM; this routine does use memory aliasing. */
2c88418c
RS
868
869int
9678086d 870modified_between_p (const_rtx x, const_rtx start, const_rtx end)
2c88418c 871{
9678086d 872 const enum rtx_code code = GET_CODE (x);
6f7d635c 873 const char *fmt;
f8163c92 874 int i, j;
7b52eede
JH
875 rtx insn;
876
877 if (start == end)
878 return 0;
2c88418c
RS
879
880 switch (code)
881 {
882 case CONST_INT:
883 case CONST_DOUBLE:
091a3ac7 884 case CONST_FIXED:
69ef87e2 885 case CONST_VECTOR:
2c88418c
RS
886 case CONST:
887 case SYMBOL_REF:
888 case LABEL_REF:
889 return 0;
890
891 case PC:
892 case CC0:
893 return 1;
894
895 case MEM:
7b52eede 896 if (modified_between_p (XEXP (x, 0), start, end))
2c88418c 897 return 1;
550b7784
KK
898 if (MEM_READONLY_P (x))
899 return 0;
7b52eede
JH
900 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
901 if (memory_modified_in_insn_p (x, insn))
902 return 1;
903 return 0;
2c88418c
RS
904 break;
905
906 case REG:
907 return reg_set_between_p (x, start, end);
a6a2274a 908
e9a25f70
JL
909 default:
910 break;
2c88418c
RS
911 }
912
913 fmt = GET_RTX_FORMAT (code);
914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
f8163c92
RK
915 {
916 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
917 return 1;
918
d4757e6a 919 else if (fmt[i] == 'E')
f8163c92
RK
920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
921 if (modified_between_p (XVECEXP (x, i, j), start, end))
922 return 1;
923 }
924
925 return 0;
926}
927
928/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
7b52eede 930 does use memory aliasing. */
f8163c92
RK
931
932int
9678086d 933modified_in_p (const_rtx x, const_rtx insn)
f8163c92 934{
9678086d 935 const enum rtx_code code = GET_CODE (x);
6f7d635c 936 const char *fmt;
f8163c92
RK
937 int i, j;
938
939 switch (code)
940 {
941 case CONST_INT:
942 case CONST_DOUBLE:
091a3ac7 943 case CONST_FIXED:
69ef87e2 944 case CONST_VECTOR:
f8163c92
RK
945 case CONST:
946 case SYMBOL_REF:
947 case LABEL_REF:
948 return 0;
949
950 case PC:
951 case CC0:
2c88418c
RS
952 return 1;
953
f8163c92 954 case MEM:
7b52eede 955 if (modified_in_p (XEXP (x, 0), insn))
f8163c92 956 return 1;
550b7784
KK
957 if (MEM_READONLY_P (x))
958 return 0;
7b52eede
JH
959 if (memory_modified_in_insn_p (x, insn))
960 return 1;
961 return 0;
f8163c92
RK
962 break;
963
964 case REG:
965 return reg_set_p (x, insn);
e9a25f70
JL
966
967 default:
968 break;
f8163c92
RK
969 }
970
971 fmt = GET_RTX_FORMAT (code);
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
973 {
974 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
975 return 1;
976
d4757e6a 977 else if (fmt[i] == 'E')
f8163c92
RK
978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
979 if (modified_in_p (XVECEXP (x, i, j), insn))
980 return 1;
981 }
982
2c88418c
RS
983 return 0;
984}
985\f
91b2d119
JH
986/* Helper function for set_of. */
987struct set_of_data
988 {
7bc980e1
KG
989 const_rtx found;
990 const_rtx pat;
91b2d119
JH
991 };
992
993static void
7bc980e1 994set_of_1 (rtx x, const_rtx pat, void *data1)
91b2d119 995{
7bc980e1
KG
996 struct set_of_data *const data = (struct set_of_data *) (data1);
997 if (rtx_equal_p (x, data->pat)
998 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
999 data->found = pat;
91b2d119
JH
1000}
1001
1002/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
eaec9b3d 1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
7bc980e1
KG
1004const_rtx
1005set_of (const_rtx pat, const_rtx insn)
91b2d119
JH
1006{
1007 struct set_of_data data;
1008 data.found = NULL_RTX;
1009 data.pat = pat;
1010 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1011 return data.found;
1012}
1013\f
2c88418c
RS
1014/* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1017
1018rtx
f7d504c2 1019single_set_2 (const_rtx insn, const_rtx pat)
2c88418c 1020{
c9b89a21
JH
1021 rtx set = NULL;
1022 int set_verified = 1;
2c88418c 1023 int i;
c9b89a21 1024
b1cdafbb 1025 if (GET_CODE (pat) == PARALLEL)
2c88418c 1026 {
c9b89a21 1027 for (i = 0; i < XVECLEN (pat, 0); i++)
b1cdafbb 1028 {
c9b89a21
JH
1029 rtx sub = XVECEXP (pat, 0, i);
1030 switch (GET_CODE (sub))
1031 {
1032 case USE:
1033 case CLOBBER:
1034 break;
1035
1036 case SET:
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
f63d1bf7 1040 to avoid checking for REG_UNUSED notes unless necessary.
c9b89a21
JH
1041
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1045 if (!set_verified)
1046 {
1047 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1048 && !side_effects_p (set))
1049 set = NULL;
1050 else
1051 set_verified = 1;
1052 }
1053 if (!set)
1054 set = sub, set_verified = 0;
1055 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1056 || side_effects_p (sub))
1057 return NULL_RTX;
1058 break;
1059
1060 default:
1061 return NULL_RTX;
1062 }
787ccee0 1063 }
2c88418c 1064 }
c9b89a21 1065 return set;
2c88418c 1066}
941c63ac
JL
1067
1068/* Given an INSN, return nonzero if it has more than one SET, else return
1069 zero. */
1070
5f7d3786 1071int
f7d504c2 1072multiple_sets (const_rtx insn)
941c63ac 1073{
cae8acdd 1074 int found;
941c63ac 1075 int i;
a6a2274a 1076
941c63ac 1077 /* INSN must be an insn. */
2c3c49de 1078 if (! INSN_P (insn))
941c63ac
JL
1079 return 0;
1080
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1083 {
1084 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1086 {
1087 /* If we have already found a SET, then return now. */
1088 if (found)
1089 return 1;
1090 else
1091 found = 1;
1092 }
1093 }
a6a2274a 1094
941c63ac
JL
1095 /* Either zero or one SET. */
1096 return 0;
1097}
2c88418c 1098\f
7142e318
JW
1099/* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1101
1102int
f7d504c2 1103set_noop_p (const_rtx set)
7142e318
JW
1104{
1105 rtx src = SET_SRC (set);
1106 rtx dst = SET_DEST (set);
1107
371b8fc0
JH
1108 if (dst == pc_rtx && src == pc_rtx)
1109 return 1;
1110
3c0cb5de 1111 if (MEM_P (dst) && MEM_P (src))
cd648cec
JH
1112 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1113
46d096a3 1114 if (GET_CODE (dst) == ZERO_EXTRACT)
7142e318 1115 return rtx_equal_p (XEXP (dst, 0), src)
cd648cec
JH
1116 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1117 && !side_effects_p (src);
7142e318
JW
1118
1119 if (GET_CODE (dst) == STRICT_LOW_PART)
1120 dst = XEXP (dst, 0);
1121
1122 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1123 {
1124 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1125 return 0;
1126 src = SUBREG_REG (src);
1127 dst = SUBREG_REG (dst);
1128 }
1129
f8cfc6aa 1130 return (REG_P (src) && REG_P (dst)
7142e318
JW
1131 && REGNO (src) == REGNO (dst));
1132}
0005550b
JH
1133\f
1134/* Return nonzero if an insn consists only of SETs, each of which only sets a
1135 value to itself. */
1136
1137int
fa233e34 1138noop_move_p (const_rtx insn)
0005550b
JH
1139{
1140 rtx pat = PATTERN (insn);
1141
b5832b43
JH
1142 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1143 return 1;
1144
0005550b
JH
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1147 return 0;
1148
1149 if (GET_CODE (pat) == SET && set_noop_p (pat))
1150 return 1;
1151
1152 if (GET_CODE (pat) == PARALLEL)
1153 {
1154 int i;
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i = 0; i < XVECLEN (pat, 0); i++)
1158 {
1159 rtx tem = XVECEXP (pat, 0, i);
1160
1161 if (GET_CODE (tem) == USE
1162 || GET_CODE (tem) == CLOBBER)
1163 continue;
1164
1165 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1166 return 0;
1167 }
1168
1169 return 1;
1170 }
1171 return 0;
1172}
1173\f
7142e318 1174
63be01fb
JW
1175/* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1180 be the src. */
2c88418c
RS
1181
1182rtx
0c20a65f 1183find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
2c88418c
RS
1184{
1185 rtx p;
1186
4b4bf941 1187 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
2c88418c 1188 p = PREV_INSN (p))
2c3c49de 1189 if (INSN_P (p))
2c88418c
RS
1190 {
1191 rtx set = single_set (p);
c166a311 1192 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
2c88418c
RS
1193
1194 if (set && rtx_equal_p (x, SET_DEST (set)))
1195 {
1196 rtx src = SET_SRC (set);
1197
1198 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1199 src = XEXP (note, 0);
1200
63be01fb
JW
1201 if ((valid_to == NULL_RTX
1202 || ! modified_between_p (src, PREV_INSN (p), valid_to))
2c88418c
RS
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
f8cfc6aa 1205 && (! (REG_P (src)
89d3d442 1206 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
2c88418c
RS
1207 {
1208 *pinsn = p;
1209 return src;
1210 }
1211 }
a6a2274a 1212
2c88418c
RS
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x, p))
1215 break;
1216 }
1217
1218 return x;
a6a2274a 1219}
2c88418c
RS
1220\f
1221/* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1224
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1227
1228int
f7d504c2 1229refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
0c20a65f 1230 rtx *loc)
2c88418c 1231{
770ae6cc
RK
1232 int i;
1233 unsigned int x_regno;
1234 RTX_CODE code;
1235 const char *fmt;
2c88418c
RS
1236
1237 repeat:
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1240 if (x == 0)
1241 return 0;
1242
1243 code = GET_CODE (x);
1244
1245 switch (code)
1246 {
1247 case REG:
770ae6cc 1248 x_regno = REGNO (x);
f8163c92
RK
1249
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
770ae6cc 1253 if ((x_regno == STACK_POINTER_REGNUM
f8163c92 1254#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
770ae6cc 1255 || x_regno == ARG_POINTER_REGNUM
f8163c92 1256#endif
770ae6cc 1257 || x_regno == FRAME_POINTER_REGNUM)
f8163c92
RK
1258 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1259 return 1;
1260
09e18274 1261 return endregno > x_regno && regno < END_REGNO (x);
2c88418c
RS
1262
1263 case SUBREG:
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
f8cfc6aa 1266 if (REG_P (SUBREG_REG (x))
2c88418c
RS
1267 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1268 {
ddef6bc7 1269 unsigned int inner_regno = subreg_regno (x);
770ae6cc 1270 unsigned int inner_endregno
403c659c 1271 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
f1f4e530 1272 ? subreg_nregs (x) : 1);
2c88418c
RS
1273
1274 return endregno > inner_regno && regno < inner_endregno;
1275 }
1276 break;
1277
1278 case CLOBBER:
1279 case SET:
1280 if (&SET_DEST (x) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x)) == SUBREG
1285 && loc != &SUBREG_REG (SET_DEST (x))
f8cfc6aa 1286 && REG_P (SUBREG_REG (SET_DEST (x)))
2c88418c
RS
1287 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno, endregno,
1289 SUBREG_REG (SET_DEST (x)), loc))
f8cfc6aa 1290 || (!REG_P (SET_DEST (x))
2c88418c
RS
1291 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1292 return 1;
1293
1294 if (code == CLOBBER || loc == &SET_SRC (x))
1295 return 0;
1296 x = SET_SRC (x);
1297 goto repeat;
e9a25f70
JL
1298
1299 default:
1300 break;
2c88418c
RS
1301 }
1302
1303 /* X does not match, so try its subexpressions. */
1304
1305 fmt = GET_RTX_FORMAT (code);
1306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1307 {
1308 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1309 {
1310 if (i == 0)
1311 {
1312 x = XEXP (x, 0);
1313 goto repeat;
1314 }
1315 else
1316 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1317 return 1;
1318 }
1319 else if (fmt[i] == 'E')
1320 {
b3694847 1321 int j;
6a87d634 1322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2c88418c
RS
1323 if (loc != &XVECEXP (x, i, j)
1324 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1325 return 1;
1326 }
1327 }
1328 return 0;
1329}
1330
1331/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1336
1337int
f7d504c2 1338reg_overlap_mentioned_p (const_rtx x, const_rtx in)
2c88418c 1339{
770ae6cc 1340 unsigned int regno, endregno;
2c88418c 1341
6f626d1b
PB
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in))
b98b49ac 1346 return 0;
0c99ec5c 1347
6f626d1b 1348 recurse:
0c99ec5c 1349 switch (GET_CODE (x))
2c88418c 1350 {
6f626d1b
PB
1351 case STRICT_LOW_PART:
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 /* Overly conservative. */
1355 x = XEXP (x, 0);
1356 goto recurse;
1357
0c99ec5c 1358 case SUBREG:
2c88418c
RS
1359 regno = REGNO (SUBREG_REG (x));
1360 if (regno < FIRST_PSEUDO_REGISTER)
ddef6bc7 1361 regno = subreg_regno (x);
f1f4e530
JM
1362 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x) : 1);
0c99ec5c 1364 goto do_reg;
2c88418c 1365
0c99ec5c
RH
1366 case REG:
1367 regno = REGNO (x);
09e18274 1368 endregno = END_REGNO (x);
f1f4e530 1369 do_reg:
8e2e89f7 1370 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
2c88418c 1371
0c99ec5c
RH
1372 case MEM:
1373 {
1374 const char *fmt;
1375 int i;
2c88418c 1376
3c0cb5de 1377 if (MEM_P (in))
2c88418c
RS
1378 return 1;
1379
0c99ec5c
RH
1380 fmt = GET_RTX_FORMAT (GET_CODE (in));
1381 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
3b009185
RH
1382 if (fmt[i] == 'e')
1383 {
1384 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1385 return 1;
1386 }
1387 else if (fmt[i] == 'E')
1388 {
1389 int j;
1390 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1391 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1392 return 1;
1393 }
c0222c21 1394
0c99ec5c
RH
1395 return 0;
1396 }
1397
1398 case SCRATCH:
1399 case PC:
1400 case CC0:
1401 return reg_mentioned_p (x, in);
1402
1403 case PARALLEL:
37ceff9d 1404 {
90d036a0 1405 int i;
37ceff9d
RH
1406
1407 /* If any register in here refers to it we return true. */
7193d1dc
RK
1408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1409 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
6f626d1b 1411 return 1;
7193d1dc 1412 return 0;
37ceff9d 1413 }
2c88418c 1414
0c99ec5c 1415 default:
41374e13 1416 gcc_assert (CONSTANT_P (x));
6f626d1b
PB
1417 return 0;
1418 }
2c88418c
RS
1419}
1420\f
2c88418c 1421/* Call FUN on each register or MEM that is stored into or clobbered by X.
c3a1ef9d
MM
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1424
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
2c88418c
RS
1429
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
a6a2274a 1432
2c88418c 1433void
7bc980e1 1434note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
2c88418c 1435{
aa317c97 1436 int i;
90d036a0 1437
aa317c97
KG
1438 if (GET_CODE (x) == COND_EXEC)
1439 x = COND_EXEC_CODE (x);
90d036a0 1440
aa317c97
KG
1441 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1442 {
1443 rtx dest = SET_DEST (x);
1444
1445 while ((GET_CODE (dest) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest))
1447 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1448 || GET_CODE (dest) == ZERO_EXTRACT
1449 || GET_CODE (dest) == STRICT_LOW_PART)
1450 dest = XEXP (dest, 0);
1451
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest) == PARALLEL)
1455 {
1456 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1457 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1458 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1459 }
1460 else
1461 (*fun) (dest, x, data);
1462 }
770ae6cc 1463
aa317c97
KG
1464 else if (GET_CODE (x) == PARALLEL)
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 note_stores (XVECEXP (x, 0, i), fun, data);
1467}
2c88418c 1468\f
e2373f95
RK
1469/* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1473
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1477
1478void
0c20a65f 1479note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
e2373f95
RK
1480{
1481 rtx body = *pbody;
1482 int i;
1483
1484 switch (GET_CODE (body))
1485 {
1486 case COND_EXEC:
1487 (*fun) (&COND_EXEC_TEST (body), data);
1488 note_uses (&COND_EXEC_CODE (body), fun, data);
1489 return;
1490
1491 case PARALLEL:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 note_uses (&XVECEXP (body, 0, i), fun, data);
1494 return;
1495
bbbc206e
BS
1496 case SEQUENCE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1499 return;
1500
e2373f95
RK
1501 case USE:
1502 (*fun) (&XEXP (body, 0), data);
1503 return;
1504
1505 case ASM_OPERANDS:
1506 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1507 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1508 return;
1509
1510 case TRAP_IF:
1511 (*fun) (&TRAP_CONDITION (body), data);
1512 return;
1513
21b8482a
JJ
1514 case PREFETCH:
1515 (*fun) (&XEXP (body, 0), data);
1516 return;
1517
e2373f95
RK
1518 case UNSPEC:
1519 case UNSPEC_VOLATILE:
1520 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1521 (*fun) (&XVECEXP (body, 0, i), data);
1522 return;
1523
1524 case CLOBBER:
3c0cb5de 1525 if (MEM_P (XEXP (body, 0)))
e2373f95
RK
1526 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1527 return;
1528
1529 case SET:
1530 {
1531 rtx dest = SET_DEST (body);
1532
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun) (&SET_SRC (body), data);
1536
1537 if (GET_CODE (dest) == ZERO_EXTRACT)
1538 {
1539 (*fun) (&XEXP (dest, 1), data);
1540 (*fun) (&XEXP (dest, 2), data);
1541 }
1542
1543 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1544 dest = XEXP (dest, 0);
1545
3c0cb5de 1546 if (MEM_P (dest))
e2373f95
RK
1547 (*fun) (&XEXP (dest, 0), data);
1548 }
1549 return;
1550
1551 default:
1552 /* All the other possibilities never store. */
1553 (*fun) (pbody, data);
1554 return;
1555 }
1556}
1557\f
2c88418c
RS
1558/* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1561
46d096a3
SB
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
2c88418c
RS
1564 Likewise, REG_INC does not count.
1565
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
6fb5fa3c 1569 at any time after deaths have been computed.
2c88418c
RS
1570
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1573 by INSN. */
1574
1575int
f7d504c2 1576dead_or_set_p (const_rtx insn, const_rtx x)
2c88418c 1577{
09e18274 1578 unsigned int regno, end_regno;
770ae6cc 1579 unsigned int i;
2c88418c
RS
1580
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x) == CC0)
1583 return 1;
1584
41374e13 1585 gcc_assert (REG_P (x));
2c88418c
RS
1586
1587 regno = REGNO (x);
09e18274
RS
1588 end_regno = END_REGNO (x);
1589 for (i = regno; i < end_regno; i++)
2c88418c
RS
1590 if (! dead_or_set_regno_p (insn, i))
1591 return 0;
1592
1593 return 1;
1594}
1595
194acded
HPN
1596/* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1599
1600static bool
f7d504c2 1601covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
1602{
1603 unsigned int regno, endregno;
1604
1605 if (GET_CODE (dest) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest))
1607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1610 dest = SUBREG_REG (dest);
1611
1612 if (!REG_P (dest))
1613 return false;
1614
1615 regno = REGNO (dest);
09e18274 1616 endregno = END_REGNO (dest);
194acded
HPN
1617 return (test_regno >= regno && test_regno < endregno);
1618}
1619
1620/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1622
1623static bool
f7d504c2 1624covers_regno_p (const_rtx dest, unsigned int test_regno)
194acded
HPN
1625{
1626 if (GET_CODE (dest) == PARALLEL)
1627 {
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1631 int i;
1632
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1634 {
1635 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1636 if (inner != NULL_RTX
1637 && covers_regno_no_parallel_p (inner, test_regno))
1638 return true;
1639 }
1640
1641 return false;
1642 }
1643 else
1644 return covers_regno_no_parallel_p (dest, test_regno);
1645}
1646
6fb5fa3c 1647/* Utility function for dead_or_set_p to check an individual register. */
2c88418c
RS
1648
1649int
f7d504c2 1650dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2c88418c 1651{
f7d504c2 1652 const_rtx pattern;
2c88418c 1653
0a2287bf
RH
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn, REG_DEAD, test_regno))
1656 return 1;
2c88418c 1657
4b4bf941 1658 if (CALL_P (insn)
8f3e7a26
RK
1659 && find_regno_fusage (insn, CLOBBER, test_regno))
1660 return 1;
1661
0c99ec5c
RH
1662 pattern = PATTERN (insn);
1663
1664 if (GET_CODE (pattern) == COND_EXEC)
1665 pattern = COND_EXEC_CODE (pattern);
1666
1667 if (GET_CODE (pattern) == SET)
194acded 1668 return covers_regno_p (SET_DEST (pattern), test_regno);
0c99ec5c 1669 else if (GET_CODE (pattern) == PARALLEL)
2c88418c 1670 {
b3694847 1671 int i;
2c88418c 1672
0c99ec5c 1673 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2c88418c 1674 {
0c99ec5c
RH
1675 rtx body = XVECEXP (pattern, 0, i);
1676
1677 if (GET_CODE (body) == COND_EXEC)
1678 body = COND_EXEC_CODE (body);
2c88418c 1679
194acded
HPN
1680 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1681 && covers_regno_p (SET_DEST (body), test_regno))
1682 return 1;
2c88418c
RS
1683 }
1684 }
1685
1686 return 0;
1687}
1688
1689/* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1691
1692rtx
f7d504c2 1693find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2c88418c 1694{
b3694847 1695 rtx link;
2c88418c 1696
af082de3
BE
1697 gcc_assert (insn);
1698
ae78d276 1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 1700 if (! INSN_P (insn))
ae78d276 1701 return 0;
cd798543
AP
1702 if (datum == 0)
1703 {
1704 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1705 if (REG_NOTE_KIND (link) == kind)
1706 return link;
1707 return 0;
1708 }
ae78d276 1709
2c88418c 1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cd798543 1711 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2c88418c
RS
1712 return link;
1713 return 0;
1714}
1715
1716/* Return the reg-note of kind KIND in insn INSN which applies to register
99309f3b
RK
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
2c88418c
RS
1720
1721rtx
f7d504c2 1722find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2c88418c 1723{
b3694847 1724 rtx link;
2c88418c 1725
ae78d276 1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2c3c49de 1727 if (! INSN_P (insn))
ae78d276
MM
1728 return 0;
1729
2c88418c
RS
1730 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1731 if (REG_NOTE_KIND (link) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1733 problem here. */
f8cfc6aa 1734 && REG_P (XEXP (link, 0))
99309f3b 1735 && REGNO (XEXP (link, 0)) <= regno
09e18274 1736 && END_REGNO (XEXP (link, 0)) > regno)
2c88418c
RS
1737 return link;
1738 return 0;
1739}
8f3e7a26 1740
d9c695ff
RK
1741/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1742 has such a note. */
1743
1744rtx
f7d504c2 1745find_reg_equal_equiv_note (const_rtx insn)
d9c695ff 1746{
cd648cec 1747 rtx link;
d9c695ff 1748
cd648cec 1749 if (!INSN_P (insn))
d9c695ff 1750 return 0;
ea8f106d 1751
cd648cec
JH
1752 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1753 if (REG_NOTE_KIND (link) == REG_EQUAL
1754 || REG_NOTE_KIND (link) == REG_EQUIV)
1755 {
ea8f106d
SB
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1760
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
cd648cec
JH
1763 return 0;
1764 return link;
1765 }
1766 return NULL;
d9c695ff
RK
1767}
1768
2a450639
RS
1769/* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1771 return null. */
1772
1773rtx
f7d504c2 1774find_constant_src (const_rtx insn)
2a450639
RS
1775{
1776 rtx note, set, x;
1777
1778 set = single_set (insn);
1779 if (set)
1780 {
1781 x = avoid_constant_pool_reference (SET_SRC (set));
1782 if (CONSTANT_P (x))
1783 return x;
1784 }
1785
1786 note = find_reg_equal_equiv_note (insn);
1787 if (note && CONSTANT_P (XEXP (note, 0)))
1788 return XEXP (note, 0);
1789
1790 return NULL_RTX;
1791}
1792
8f3e7a26
RK
1793/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1795
1796int
f7d504c2 1797find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
8f3e7a26
RK
1798{
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
4b4bf941 1801 if (!CALL_P (insn))
8f3e7a26
RK
1802 return 0;
1803
41374e13 1804 gcc_assert (datum);
8f3e7a26 1805
f8cfc6aa 1806 if (!REG_P (datum))
8f3e7a26 1807 {
b3694847 1808 rtx link;
8f3e7a26
RK
1809
1810 for (link = CALL_INSN_FUNCTION_USAGE (insn);
a6a2274a 1811 link;
8f3e7a26 1812 link = XEXP (link, 1))
a6a2274a 1813 if (GET_CODE (XEXP (link, 0)) == code
cc863bea 1814 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
a6a2274a 1815 return 1;
8f3e7a26
RK
1816 }
1817 else
1818 {
770ae6cc 1819 unsigned int regno = REGNO (datum);
8f3e7a26
RK
1820
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1823
1824 if (regno < FIRST_PSEUDO_REGISTER)
a6a2274a 1825 {
09e18274 1826 unsigned int end_regno = END_HARD_REGNO (datum);
770ae6cc 1827 unsigned int i;
8f3e7a26
RK
1828
1829 for (i = regno; i < end_regno; i++)
1830 if (find_regno_fusage (insn, code, i))
1831 return 1;
a6a2274a 1832 }
8f3e7a26
RK
1833 }
1834
1835 return 0;
1836}
1837
1838/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1840
1841int
f7d504c2 1842find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
8f3e7a26 1843{
b3694847 1844 rtx link;
8f3e7a26
RK
1845
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1848
1849 if (regno >= FIRST_PSEUDO_REGISTER
4b4bf941 1850 || !CALL_P (insn) )
8f3e7a26
RK
1851 return 0;
1852
1853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
83ab3839 1854 {
770ae6cc 1855 rtx op, reg;
83ab3839
RH
1856
1857 if (GET_CODE (op = XEXP (link, 0)) == code
f8cfc6aa 1858 && REG_P (reg = XEXP (op, 0))
09e18274
RS
1859 && REGNO (reg) <= regno
1860 && END_HARD_REGNO (reg) > regno)
83ab3839
RH
1861 return 1;
1862 }
8f3e7a26
RK
1863
1864 return 0;
1865}
a6a063b8 1866
2c88418c 1867\f
efc0b2bd
ILT
1868/* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
65c5f2a6 1870
efc0b2bd
ILT
1871rtx
1872alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
65c5f2a6
ILT
1873{
1874 rtx note;
1875
1876 switch (kind)
1877 {
1878 case REG_CC_SETTER:
1879 case REG_CC_USER:
1880 case REG_LABEL_TARGET:
1881 case REG_LABEL_OPERAND:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1884 better. */
efc0b2bd 1885 note = alloc_INSN_LIST (datum, list);
65c5f2a6
ILT
1886 PUT_REG_NOTE_KIND (note, kind);
1887 break;
1888
1889 default:
efc0b2bd 1890 note = alloc_EXPR_LIST (kind, datum, list);
65c5f2a6
ILT
1891 break;
1892 }
1893
efc0b2bd
ILT
1894 return note;
1895}
1896
1897/* Add register note with kind KIND and datum DATUM to INSN. */
1898
1899void
1900add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1901{
1902 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
65c5f2a6
ILT
1903}
1904
2c88418c
RS
1905/* Remove register note NOTE from the REG_NOTES of INSN. */
1906
1907void
f7d504c2 1908remove_note (rtx insn, const_rtx note)
2c88418c 1909{
b3694847 1910 rtx link;
2c88418c 1911
49c3bb12
RH
1912 if (note == NULL_RTX)
1913 return;
1914
2c88418c 1915 if (REG_NOTES (insn) == note)
6fb5fa3c
DB
1916 REG_NOTES (insn) = XEXP (note, 1);
1917 else
1918 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1919 if (XEXP (link, 1) == note)
1920 {
1921 XEXP (link, 1) = XEXP (note, 1);
1922 break;
1923 }
1924
1925 switch (REG_NOTE_KIND (note))
2c88418c 1926 {
6fb5fa3c
DB
1927 case REG_EQUAL:
1928 case REG_EQUIV:
1929 df_notes_rescan (insn);
1930 break;
1931 default:
1932 break;
2c88418c 1933 }
2c88418c 1934}
55a98783 1935
7cd689bc
SB
1936/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1937
1938void
1939remove_reg_equal_equiv_notes (rtx insn)
1940{
1941 rtx *loc;
1942
1943 loc = &REG_NOTES (insn);
1944 while (*loc)
1945 {
1946 enum reg_note kind = REG_NOTE_KIND (*loc);
1947 if (kind == REG_EQUAL || kind == REG_EQUIV)
1948 *loc = XEXP (*loc, 1);
1949 else
1950 loc = &XEXP (*loc, 1);
1951 }
1952}
1953
5f0d2358
RK
1954/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1956 NODE matches. */
1957
1958int
f7d504c2 1959in_expr_list_p (const_rtx listp, const_rtx node)
5f0d2358 1960{
f7d504c2 1961 const_rtx x;
5f0d2358
RK
1962
1963 for (x = listp; x; x = XEXP (x, 1))
1964 if (node == XEXP (x, 0))
1965 return 1;
1966
1967 return 0;
1968}
1969
dd248abd
RK
1970/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
55a98783 1972
dd248abd 1973 A simple equality test is used to determine if NODE matches. */
55a98783
JL
1974
1975void
f7d504c2 1976remove_node_from_expr_list (const_rtx node, rtx *listp)
55a98783
JL
1977{
1978 rtx temp = *listp;
1979 rtx prev = NULL_RTX;
1980
1981 while (temp)
1982 {
1983 if (node == XEXP (temp, 0))
1984 {
1985 /* Splice the node out of the list. */
1986 if (prev)
1987 XEXP (prev, 1) = XEXP (temp, 1);
1988 else
1989 *listp = XEXP (temp, 1);
1990
1991 return;
1992 }
dd248abd
RK
1993
1994 prev = temp;
55a98783
JL
1995 temp = XEXP (temp, 1);
1996 }
1997}
2c88418c 1998\f
2b067faf
RS
1999/* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2003
2004int
f7d504c2 2005volatile_insn_p (const_rtx x)
2b067faf 2006{
f7d504c2 2007 const RTX_CODE code = GET_CODE (x);
2b067faf
RS
2008 switch (code)
2009 {
2010 case LABEL_REF:
2011 case SYMBOL_REF:
2012 case CONST_INT:
2013 case CONST:
2014 case CONST_DOUBLE:
091a3ac7 2015 case CONST_FIXED:
69ef87e2 2016 case CONST_VECTOR:
2b067faf
RS
2017 case CC0:
2018 case PC:
2019 case REG:
2020 case SCRATCH:
2021 case CLOBBER:
2b067faf
RS
2022 case ADDR_VEC:
2023 case ADDR_DIFF_VEC:
2024 case CALL:
2025 case MEM:
2026 return 0;
2027
2028 case UNSPEC_VOLATILE:
2029 /* case TRAP_IF: This isn't clear yet. */
2030 return 1;
2031
4c46ea23 2032 case ASM_INPUT:
2b067faf
RS
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 1;
e9a25f70
JL
2036
2037 default:
2038 break;
2b067faf
RS
2039 }
2040
2041 /* Recursively scan the operands of this expression. */
2042
2043 {
f7d504c2 2044 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2045 int i;
a6a2274a 2046
2b067faf
RS
2047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2048 {
2049 if (fmt[i] == 'e')
2050 {
31001f72 2051 if (volatile_insn_p (XEXP (x, i)))
2b067faf
RS
2052 return 1;
2053 }
d4757e6a 2054 else if (fmt[i] == 'E')
2b067faf 2055 {
b3694847 2056 int j;
2b067faf 2057 for (j = 0; j < XVECLEN (x, i); j++)
31001f72 2058 if (volatile_insn_p (XVECEXP (x, i, j)))
2b067faf
RS
2059 return 1;
2060 }
2061 }
2062 }
2063 return 0;
2064}
2065
2c88418c 2066/* Nonzero if X contains any volatile memory references
2ac4fed0 2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2c88418c
RS
2068
2069int
f7d504c2 2070volatile_refs_p (const_rtx x)
2c88418c 2071{
f7d504c2 2072 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2073 switch (code)
2074 {
2075 case LABEL_REF:
2076 case SYMBOL_REF:
2077 case CONST_INT:
2078 case CONST:
2079 case CONST_DOUBLE:
091a3ac7 2080 case CONST_FIXED:
69ef87e2 2081 case CONST_VECTOR:
2c88418c
RS
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2c88418c
RS
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 return 0;
2090
2ac4fed0 2091 case UNSPEC_VOLATILE:
2c88418c
RS
2092 return 1;
2093
2094 case MEM:
4c46ea23 2095 case ASM_INPUT:
2c88418c
RS
2096 case ASM_OPERANDS:
2097 if (MEM_VOLATILE_P (x))
2098 return 1;
e9a25f70
JL
2099
2100 default:
2101 break;
2c88418c
RS
2102 }
2103
2104 /* Recursively scan the operands of this expression. */
2105
2106 {
f7d504c2 2107 const char *const fmt = GET_RTX_FORMAT (code);
b3694847 2108 int i;
a6a2274a 2109
2c88418c
RS
2110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2111 {
2112 if (fmt[i] == 'e')
2113 {
2114 if (volatile_refs_p (XEXP (x, i)))
2115 return 1;
2116 }
d4757e6a 2117 else if (fmt[i] == 'E')
2c88418c 2118 {
b3694847 2119 int j;
2c88418c
RS
2120 for (j = 0; j < XVECLEN (x, i); j++)
2121 if (volatile_refs_p (XVECEXP (x, i, j)))
2122 return 1;
2123 }
2124 }
2125 }
2126 return 0;
2127}
2128
2129/* Similar to above, except that it also rejects register pre- and post-
2130 incrementing. */
2131
2132int
f7d504c2 2133side_effects_p (const_rtx x)
2c88418c 2134{
f7d504c2 2135 const RTX_CODE code = GET_CODE (x);
2c88418c
RS
2136 switch (code)
2137 {
2138 case LABEL_REF:
2139 case SYMBOL_REF:
2140 case CONST_INT:
2141 case CONST:
2142 case CONST_DOUBLE:
091a3ac7 2143 case CONST_FIXED:
69ef87e2 2144 case CONST_VECTOR:
2c88418c
RS
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2c88418c
RS
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
b5b8b0ac 2151 case VAR_LOCATION:
2c88418c
RS
2152 return 0;
2153
2154 case CLOBBER:
2155 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2156 when some combination can't be done. If we see one, don't think
2157 that we can simplify the expression. */
2158 return (GET_MODE (x) != VOIDmode);
2159
2160 case PRE_INC:
2161 case PRE_DEC:
2162 case POST_INC:
2163 case POST_DEC:
1fb9c5cd
MH
2164 case PRE_MODIFY:
2165 case POST_MODIFY:
2c88418c 2166 case CALL:
2ac4fed0 2167 case UNSPEC_VOLATILE:
2c88418c
RS
2168 /* case TRAP_IF: This isn't clear yet. */
2169 return 1;
2170
2171 case MEM:
4c46ea23 2172 case ASM_INPUT:
2c88418c
RS
2173 case ASM_OPERANDS:
2174 if (MEM_VOLATILE_P (x))
2175 return 1;
e9a25f70
JL
2176
2177 default:
2178 break;
2c88418c
RS
2179 }
2180
2181 /* Recursively scan the operands of this expression. */
2182
2183 {
b3694847
SS
2184 const char *fmt = GET_RTX_FORMAT (code);
2185 int i;
a6a2274a 2186
2c88418c
RS
2187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2188 {
2189 if (fmt[i] == 'e')
2190 {
2191 if (side_effects_p (XEXP (x, i)))
2192 return 1;
2193 }
d4757e6a 2194 else if (fmt[i] == 'E')
2c88418c 2195 {
b3694847 2196 int j;
2c88418c
RS
2197 for (j = 0; j < XVECLEN (x, i); j++)
2198 if (side_effects_p (XVECEXP (x, i, j)))
2199 return 1;
2200 }
2201 }
2202 }
2203 return 0;
2204}
2205\f
e755fcf5 2206/* Return nonzero if evaluating rtx X might cause a trap.
48e8382e
PB
2207 FLAGS controls how to consider MEMs. A nonzero means the context
2208 of the access may have changed from the original, such that the
2209 address may have become invalid. */
2c88418c 2210
215b063c 2211int
f7d504c2 2212may_trap_p_1 (const_rtx x, unsigned flags)
2c88418c
RS
2213{
2214 int i;
2215 enum rtx_code code;
6f7d635c 2216 const char *fmt;
48e8382e
PB
2217
2218 /* We make no distinction currently, but this function is part of
2219 the internal target-hooks ABI so we keep the parameter as
2220 "unsigned flags". */
2221 bool code_changed = flags != 0;
2c88418c
RS
2222
2223 if (x == 0)
2224 return 0;
2225 code = GET_CODE (x);
2226 switch (code)
2227 {
2228 /* Handle these cases quickly. */
2229 case CONST_INT:
2230 case CONST_DOUBLE:
091a3ac7 2231 case CONST_FIXED:
69ef87e2 2232 case CONST_VECTOR:
2c88418c
RS
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CONST:
2236 case PC:
2237 case CC0:
2238 case REG:
2239 case SCRATCH:
2240 return 0;
2241
215b063c 2242 case UNSPEC:
2ac4fed0 2243 case UNSPEC_VOLATILE:
215b063c
PB
2244 return targetm.unspec_may_trap_p (x, flags);
2245
2246 case ASM_INPUT:
2c88418c
RS
2247 case TRAP_IF:
2248 return 1;
2249
22aa60a1
RH
2250 case ASM_OPERANDS:
2251 return MEM_VOLATILE_P (x);
2252
2c88418c
RS
2253 /* Memory ref can trap unless it's a static var or a stack slot. */
2254 case MEM:
d809253a
EB
2255 /* Recognize specific pattern of stack checking probes. */
2256 if (flag_stack_check
2257 && MEM_VOLATILE_P (x)
2258 && XEXP (x, 0) == stack_pointer_rtx)
2259 return 1;
e755fcf5 2260 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
48e8382e
PB
2261 reference; moving it out of context such as when moving code
2262 when optimizing, might cause its address to become invalid. */
2263 code_changed
2264 || !MEM_NOTRAP_P (x))
2265 {
2266 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2267 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2268 GET_MODE (x), code_changed);
2269 }
2270
2271 return 0;
2c88418c
RS
2272
2273 /* Division by a non-constant might trap. */
2274 case DIV:
2275 case MOD:
2276 case UDIV:
2277 case UMOD:
52bfebf0
RS
2278 if (HONOR_SNANS (GET_MODE (x)))
2279 return 1;
3d8bf70f 2280 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
f9013075
DE
2281 return flag_trapping_math;
2282 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2c88418c 2283 return 1;
e9a25f70
JL
2284 break;
2285
b278301b
RK
2286 case EXPR_LIST:
2287 /* An EXPR_LIST is used to represent a function call. This
2288 certainly may trap. */
2289 return 1;
e9a25f70 2290
734508ea
JW
2291 case GE:
2292 case GT:
2293 case LE:
2294 case LT:
19aec195 2295 case LTGT:
55143861 2296 case COMPARE:
734508ea 2297 /* Some floating point comparisons may trap. */
f5eb5fd0
JH
2298 if (!flag_trapping_math)
2299 break;
734508ea
JW
2300 /* ??? There is no machine independent way to check for tests that trap
2301 when COMPARE is used, though many targets do make this distinction.
2302 For instance, sparc uses CCFPE for compares which generate exceptions
2303 and CCFP for compares which do not generate exceptions. */
52bfebf0 2304 if (HONOR_NANS (GET_MODE (x)))
55143861
JJ
2305 return 1;
2306 /* But often the compare has some CC mode, so check operand
2307 modes as well. */
52bfebf0
RS
2308 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2309 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2310 return 1;
2311 break;
2312
2313 case EQ:
2314 case NE:
2315 if (HONOR_SNANS (GET_MODE (x)))
2316 return 1;
2317 /* Often comparison is CC mode, so check operand modes. */
2318 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2319 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
55143861
JJ
2320 return 1;
2321 break;
2322
22fd5743
FH
2323 case FIX:
2324 /* Conversion of floating point might trap. */
2325 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2326 return 1;
2327 break;
2328
05cc23e8
RH
2329 case NEG:
2330 case ABS:
e3947b34 2331 case SUBREG:
05cc23e8
RH
2332 /* These operations don't trap even with floating point. */
2333 break;
2334
2c88418c
RS
2335 default:
2336 /* Any floating arithmetic may trap. */
3d8bf70f 2337 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
f5eb5fd0 2338 && flag_trapping_math)
2c88418c
RS
2339 return 1;
2340 }
2341
2342 fmt = GET_RTX_FORMAT (code);
2343 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2344 {
2345 if (fmt[i] == 'e')
2346 {
e755fcf5 2347 if (may_trap_p_1 (XEXP (x, i), flags))
2c88418c
RS
2348 return 1;
2349 }
2350 else if (fmt[i] == 'E')
2351 {
b3694847 2352 int j;
2c88418c 2353 for (j = 0; j < XVECLEN (x, i); j++)
e755fcf5 2354 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2c88418c
RS
2355 return 1;
2356 }
2357 }
2358 return 0;
2359}
2358ff91
EB
2360
2361/* Return nonzero if evaluating rtx X might cause a trap. */
2362
2363int
f7d504c2 2364may_trap_p (const_rtx x)
2358ff91 2365{
e755fcf5
ZD
2366 return may_trap_p_1 (x, 0);
2367}
2368
c0220ea4 2369/* Same as above, but additionally return nonzero if evaluating rtx X might
2358ff91
EB
2370 cause a fault. We define a fault for the purpose of this function as a
2371 erroneous execution condition that cannot be encountered during the normal
2372 execution of a valid program; the typical example is an unaligned memory
2373 access on a strict alignment machine. The compiler guarantees that it
2374 doesn't generate code that will fault from a valid program, but this
2375 guarantee doesn't mean anything for individual instructions. Consider
2376 the following example:
2377
2378 struct S { int d; union { char *cp; int *ip; }; };
2379
2380 int foo(struct S *s)
2381 {
2382 if (s->d == 1)
2383 return *s->ip;
2384 else
2385 return *s->cp;
2386 }
2387
2388 on a strict alignment machine. In a valid program, foo will never be
2389 invoked on a structure for which d is equal to 1 and the underlying
2390 unique field of the union not aligned on a 4-byte boundary, but the
2391 expression *s->ip might cause a fault if considered individually.
2392
2393 At the RTL level, potentially problematic expressions will almost always
2394 verify may_trap_p; for example, the above dereference can be emitted as
2395 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2396 However, suppose that foo is inlined in a caller that causes s->cp to
2397 point to a local character variable and guarantees that s->d is not set
2398 to 1; foo may have been effectively translated into pseudo-RTL as:
2399
2400 if ((reg:SI) == 1)
2401 (set (reg:SI) (mem:SI (%fp - 7)))
2402 else
2403 (set (reg:QI) (mem:QI (%fp - 7)))
2404
2405 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2406 memory reference to a stack slot, but it will certainly cause a fault
2407 on a strict alignment machine. */
2408
2409int
f7d504c2 2410may_trap_or_fault_p (const_rtx x)
2358ff91 2411{
48e8382e 2412 return may_trap_p_1 (x, 1);
2358ff91 2413}
2c88418c
RS
2414\f
2415/* Return nonzero if X contains a comparison that is not either EQ or NE,
2416 i.e., an inequality. */
2417
2418int
f7d504c2 2419inequality_comparisons_p (const_rtx x)
2c88418c 2420{
b3694847
SS
2421 const char *fmt;
2422 int len, i;
f7d504c2 2423 const enum rtx_code code = GET_CODE (x);
2c88418c
RS
2424
2425 switch (code)
2426 {
2427 case REG:
2428 case SCRATCH:
2429 case PC:
2430 case CC0:
2431 case CONST_INT:
2432 case CONST_DOUBLE:
091a3ac7 2433 case CONST_FIXED:
69ef87e2 2434 case CONST_VECTOR:
2c88418c
RS
2435 case CONST:
2436 case LABEL_REF:
2437 case SYMBOL_REF:
2438 return 0;
2439
2440 case LT:
2441 case LTU:
2442 case GT:
2443 case GTU:
2444 case LE:
2445 case LEU:
2446 case GE:
2447 case GEU:
2448 return 1;
a6a2274a 2449
e9a25f70
JL
2450 default:
2451 break;
2c88418c
RS
2452 }
2453
2454 len = GET_RTX_LENGTH (code);
2455 fmt = GET_RTX_FORMAT (code);
2456
2457 for (i = 0; i < len; i++)
2458 {
2459 if (fmt[i] == 'e')
2460 {
2461 if (inequality_comparisons_p (XEXP (x, i)))
2462 return 1;
2463 }
2464 else if (fmt[i] == 'E')
2465 {
b3694847 2466 int j;
2c88418c
RS
2467 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2468 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2469 return 1;
2470 }
2471 }
a6a2274a 2472
2c88418c
RS
2473 return 0;
2474}
2475\f
1ed0205e
VM
2476/* Replace any occurrence of FROM in X with TO. The function does
2477 not enter into CONST_DOUBLE for the replace.
2c88418c
RS
2478
2479 Note that copying is not done so X must not be shared unless all copies
2480 are to be modified. */
2481
2482rtx
0c20a65f 2483replace_rtx (rtx x, rtx from, rtx to)
2c88418c 2484{
b3694847
SS
2485 int i, j;
2486 const char *fmt;
2c88418c 2487
1ed0205e 2488 /* The following prevents loops occurrence when we change MEM in
dc297297 2489 CONST_DOUBLE onto the same CONST_DOUBLE. */
1ed0205e
VM
2490 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2491 return x;
2492
2c88418c
RS
2493 if (x == from)
2494 return to;
2495
2496 /* Allow this function to make replacements in EXPR_LISTs. */
2497 if (x == 0)
2498 return 0;
2499
9dd791c8
AO
2500 if (GET_CODE (x) == SUBREG)
2501 {
55d796da 2502 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
9dd791c8 2503
481683e1 2504 if (CONST_INT_P (new_rtx))
9dd791c8 2505 {
55d796da 2506 x = simplify_subreg (GET_MODE (x), new_rtx,
9dd791c8
AO
2507 GET_MODE (SUBREG_REG (x)),
2508 SUBREG_BYTE (x));
41374e13 2509 gcc_assert (x);
9dd791c8
AO
2510 }
2511 else
55d796da 2512 SUBREG_REG (x) = new_rtx;
9dd791c8
AO
2513
2514 return x;
2515 }
2516 else if (GET_CODE (x) == ZERO_EXTEND)
2517 {
55d796da 2518 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
9dd791c8 2519
481683e1 2520 if (CONST_INT_P (new_rtx))
9dd791c8
AO
2521 {
2522 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
55d796da 2523 new_rtx, GET_MODE (XEXP (x, 0)));
41374e13 2524 gcc_assert (x);
9dd791c8
AO
2525 }
2526 else
55d796da 2527 XEXP (x, 0) = new_rtx;
9dd791c8
AO
2528
2529 return x;
2530 }
2531
2c88418c
RS
2532 fmt = GET_RTX_FORMAT (GET_CODE (x));
2533 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2534 {
2535 if (fmt[i] == 'e')
2536 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2537 else if (fmt[i] == 'E')
2538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2539 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2540 }
2541
2542 return x;
a6a2274a 2543}
2c88418c 2544\f
39811184 2545/* Replace occurrences of the old label in *X with the new one.
4af16369 2546 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
39811184
JZ
2547
2548int
0c20a65f 2549replace_label (rtx *x, void *data)
39811184
JZ
2550{
2551 rtx l = *x;
4af16369
JZ
2552 rtx old_label = ((replace_label_data *) data)->r1;
2553 rtx new_label = ((replace_label_data *) data)->r2;
2554 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
39811184
JZ
2555
2556 if (l == NULL_RTX)
2557 return 0;
2558
173cd571
JZ
2559 if (GET_CODE (l) == SYMBOL_REF
2560 && CONSTANT_POOL_ADDRESS_P (l))
4af16369 2561 {
173cd571 2562 rtx c = get_pool_constant (l);
4af16369
JZ
2563 if (rtx_referenced_p (old_label, c))
2564 {
2565 rtx new_c, new_l;
2566 replace_label_data *d = (replace_label_data *) data;
0c20a65f 2567
4af16369
JZ
2568 /* Create a copy of constant C; replace the label inside
2569 but do not update LABEL_NUSES because uses in constant pool
2570 are not counted. */
2571 new_c = copy_rtx (c);
2572 d->update_label_nuses = false;
2573 for_each_rtx (&new_c, replace_label, data);
2574 d->update_label_nuses = update_label_nuses;
2575
2576 /* Add the new constant NEW_C to constant pool and replace
2577 the old reference to constant by new reference. */
173cd571 2578 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
4af16369
JZ
2579 *x = replace_rtx (l, l, new_l);
2580 }
2581 return 0;
2582 }
2583
39811184
JZ
2584 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2585 field. This is not handled by for_each_rtx because it doesn't
2586 handle unprinted ('0') fields. */
4b4bf941 2587 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
39811184 2588 JUMP_LABEL (l) = new_label;
39811184 2589
4af16369
JZ
2590 if ((GET_CODE (l) == LABEL_REF
2591 || GET_CODE (l) == INSN_LIST)
2592 && XEXP (l, 0) == old_label)
2593 {
2594 XEXP (l, 0) = new_label;
2595 if (update_label_nuses)
2596 {
2597 ++LABEL_NUSES (new_label);
2598 --LABEL_NUSES (old_label);
2599 }
2600 return 0;
2601 }
39811184
JZ
2602
2603 return 0;
2604}
2605
4af16369
JZ
2606/* When *BODY is equal to X or X is directly referenced by *BODY
2607 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2608 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
39811184
JZ
2609
2610static int
0c20a65f 2611rtx_referenced_p_1 (rtx *body, void *x)
39811184 2612{
4af16369
JZ
2613 rtx y = (rtx) x;
2614
2615 if (*body == NULL_RTX)
2616 return y == NULL_RTX;
2617
2618 /* Return true if a label_ref *BODY refers to label Y. */
4b4bf941 2619 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
4af16369
JZ
2620 return XEXP (*body, 0) == y;
2621
2622 /* If *BODY is a reference to pool constant traverse the constant. */
2623 if (GET_CODE (*body) == SYMBOL_REF
2624 && CONSTANT_POOL_ADDRESS_P (*body))
2625 return rtx_referenced_p (y, get_pool_constant (*body));
2626
2627 /* By default, compare the RTL expressions. */
2628 return rtx_equal_p (*body, y);
39811184
JZ
2629}
2630
4af16369 2631/* Return true if X is referenced in BODY. */
39811184
JZ
2632
2633int
0c20a65f 2634rtx_referenced_p (rtx x, rtx body)
39811184 2635{
4af16369 2636 return for_each_rtx (&body, rtx_referenced_p_1, x);
39811184
JZ
2637}
2638
ee735eef
JZ
2639/* If INSN is a tablejump return true and store the label (before jump table) to
2640 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
39811184
JZ
2641
2642bool
f7d504c2 2643tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
39811184 2644{
ee735eef
JZ
2645 rtx label, table;
2646
4b4bf941 2647 if (JUMP_P (insn)
ee735eef
JZ
2648 && (label = JUMP_LABEL (insn)) != NULL_RTX
2649 && (table = next_active_insn (label)) != NULL_RTX
481683e1 2650 && JUMP_TABLE_DATA_P (table))
39811184 2651 {
ee735eef
JZ
2652 if (labelp)
2653 *labelp = label;
2654 if (tablep)
2655 *tablep = table;
39811184
JZ
2656 return true;
2657 }
2658 return false;
2659}
2660
fce7e199
RH
2661/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2662 constant that is not in the constant pool and not in the condition
2663 of an IF_THEN_ELSE. */
2a1777af
JL
2664
2665static int
f7d504c2 2666computed_jump_p_1 (const_rtx x)
2a1777af 2667{
f7d504c2 2668 const enum rtx_code code = GET_CODE (x);
2a1777af 2669 int i, j;
6f7d635c 2670 const char *fmt;
2a1777af
JL
2671
2672 switch (code)
2673 {
2a1777af
JL
2674 case LABEL_REF:
2675 case PC:
2676 return 0;
2677
fce7e199
RH
2678 case CONST:
2679 case CONST_INT:
2680 case CONST_DOUBLE:
091a3ac7 2681 case CONST_FIXED:
69ef87e2 2682 case CONST_VECTOR:
fce7e199 2683 case SYMBOL_REF:
2a1777af
JL
2684 case REG:
2685 return 1;
2686
2687 case MEM:
2688 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2689 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2690
2691 case IF_THEN_ELSE:
fce7e199
RH
2692 return (computed_jump_p_1 (XEXP (x, 1))
2693 || computed_jump_p_1 (XEXP (x, 2)));
1d300e19
KG
2694
2695 default:
2696 break;
2a1777af
JL
2697 }
2698
2699 fmt = GET_RTX_FORMAT (code);
2700 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2701 {
2702 if (fmt[i] == 'e'
fce7e199 2703 && computed_jump_p_1 (XEXP (x, i)))
2a1777af
JL
2704 return 1;
2705
d4757e6a 2706 else if (fmt[i] == 'E')
2a1777af 2707 for (j = 0; j < XVECLEN (x, i); j++)
fce7e199 2708 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2a1777af
JL
2709 return 1;
2710 }
2711
2712 return 0;
2713}
2714
2715/* Return nonzero if INSN is an indirect jump (aka computed jump).
2716
2717 Tablejumps and casesi insns are not considered indirect jumps;
4eb00163 2718 we can recognize them by a (use (label_ref)). */
2a1777af
JL
2719
2720int
f7d504c2 2721computed_jump_p (const_rtx insn)
2a1777af
JL
2722{
2723 int i;
4b4bf941 2724 if (JUMP_P (insn))
2a1777af
JL
2725 {
2726 rtx pat = PATTERN (insn);
2a1777af 2727
cf7c4aa6
HPN
2728 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2729 if (JUMP_LABEL (insn) != NULL)
f759eb8b 2730 return 0;
cf7c4aa6
HPN
2731
2732 if (GET_CODE (pat) == PARALLEL)
2a1777af
JL
2733 {
2734 int len = XVECLEN (pat, 0);
2735 int has_use_labelref = 0;
2736
2737 for (i = len - 1; i >= 0; i--)
2738 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2739 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2740 == LABEL_REF))
2741 has_use_labelref = 1;
2742
2743 if (! has_use_labelref)
2744 for (i = len - 1; i >= 0; i--)
2745 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2746 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
fce7e199 2747 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2a1777af
JL
2748 return 1;
2749 }
2750 else if (GET_CODE (pat) == SET
2751 && SET_DEST (pat) == pc_rtx
fce7e199 2752 && computed_jump_p_1 (SET_SRC (pat)))
2a1777af
JL
2753 return 1;
2754 }
2755 return 0;
2756}
ccc2d6d0 2757
cf94b0fc
PB
2758/* Optimized loop of for_each_rtx, trying to avoid useless recursive
2759 calls. Processes the subexpressions of EXP and passes them to F. */
2760static int
2761for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2762{
2763 int result, i, j;
2764 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2765 rtx *x;
2766
2767 for (; format[n] != '\0'; n++)
2768 {
2769 switch (format[n])
2770 {
2771 case 'e':
2772 /* Call F on X. */
2773 x = &XEXP (exp, n);
2774 result = (*f) (x, data);
2775 if (result == -1)
2776 /* Do not traverse sub-expressions. */
2777 continue;
2778 else if (result != 0)
2779 /* Stop the traversal. */
2780 return result;
2781
2782 if (*x == NULL_RTX)
2783 /* There are no sub-expressions. */
2784 continue;
2785
2786 i = non_rtx_starting_operands[GET_CODE (*x)];
2787 if (i >= 0)
2788 {
2789 result = for_each_rtx_1 (*x, i, f, data);
2790 if (result != 0)
2791 return result;
2792 }
2793 break;
2794
2795 case 'V':
2796 case 'E':
2797 if (XVEC (exp, n) == 0)
2798 continue;
2799 for (j = 0; j < XVECLEN (exp, n); ++j)
2800 {
2801 /* Call F on X. */
2802 x = &XVECEXP (exp, n, j);
2803 result = (*f) (x, data);
2804 if (result == -1)
2805 /* Do not traverse sub-expressions. */
2806 continue;
2807 else if (result != 0)
2808 /* Stop the traversal. */
2809 return result;
2810
2811 if (*x == NULL_RTX)
2812 /* There are no sub-expressions. */
2813 continue;
2814
2815 i = non_rtx_starting_operands[GET_CODE (*x)];
2816 if (i >= 0)
2817 {
2818 result = for_each_rtx_1 (*x, i, f, data);
2819 if (result != 0)
2820 return result;
2821 }
2822 }
2823 break;
2824
2825 default:
2826 /* Nothing to do. */
2827 break;
2828 }
2829 }
2830
2831 return 0;
2832}
2833
ccc2d6d0
MM
2834/* Traverse X via depth-first search, calling F for each
2835 sub-expression (including X itself). F is also passed the DATA.
2836 If F returns -1, do not traverse sub-expressions, but continue
2837 traversing the rest of the tree. If F ever returns any other
40f03658 2838 nonzero value, stop the traversal, and return the value returned
ccc2d6d0
MM
2839 by F. Otherwise, return 0. This function does not traverse inside
2840 tree structure that contains RTX_EXPRs, or into sub-expressions
2841 whose format code is `0' since it is not known whether or not those
2842 codes are actually RTL.
2843
2844 This routine is very general, and could (should?) be used to
2845 implement many of the other routines in this file. */
2846
ae0b51ef 2847int
0c20a65f 2848for_each_rtx (rtx *x, rtx_function f, void *data)
ccc2d6d0
MM
2849{
2850 int result;
ccc2d6d0
MM
2851 int i;
2852
2853 /* Call F on X. */
b987f237 2854 result = (*f) (x, data);
ccc2d6d0
MM
2855 if (result == -1)
2856 /* Do not traverse sub-expressions. */
2857 return 0;
2858 else if (result != 0)
2859 /* Stop the traversal. */
2860 return result;
2861
2862 if (*x == NULL_RTX)
2863 /* There are no sub-expressions. */
2864 return 0;
2865
cf94b0fc
PB
2866 i = non_rtx_starting_operands[GET_CODE (*x)];
2867 if (i < 0)
2868 return 0;
ccc2d6d0 2869
cf94b0fc 2870 return for_each_rtx_1 (*x, i, f, data);
ccc2d6d0 2871}
3ec2b590 2872
cf94b0fc 2873
777b1b71
RH
2874/* Searches X for any reference to REGNO, returning the rtx of the
2875 reference found if any. Otherwise, returns NULL_RTX. */
2876
2877rtx
0c20a65f 2878regno_use_in (unsigned int regno, rtx x)
777b1b71 2879{
b3694847 2880 const char *fmt;
777b1b71
RH
2881 int i, j;
2882 rtx tem;
2883
f8cfc6aa 2884 if (REG_P (x) && REGNO (x) == regno)
777b1b71
RH
2885 return x;
2886
2887 fmt = GET_RTX_FORMAT (GET_CODE (x));
2888 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2889 {
2890 if (fmt[i] == 'e')
2891 {
2892 if ((tem = regno_use_in (regno, XEXP (x, i))))
2893 return tem;
2894 }
2895 else if (fmt[i] == 'E')
2896 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2897 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2898 return tem;
2899 }
2900
2901 return NULL_RTX;
2902}
2dfa9a87 2903
e5c56fd9
JH
2904/* Return a value indicating whether OP, an operand of a commutative
2905 operation, is preferred as the first or second operand. The higher
2906 the value, the stronger the preference for being the first operand.
2907 We use negative values to indicate a preference for the first operand
2908 and positive values for the second operand. */
2909
9b3bd424 2910int
0c20a65f 2911commutative_operand_precedence (rtx op)
e5c56fd9 2912{
e3d6e740 2913 enum rtx_code code = GET_CODE (op);
e3d6e740 2914
e5c56fd9 2915 /* Constants always come the second operand. Prefer "nice" constants. */
e3d6e740 2916 if (code == CONST_INT)
7e0b4eae 2917 return -8;
e3d6e740 2918 if (code == CONST_DOUBLE)
7e0b4eae 2919 return -7;
091a3ac7
CF
2920 if (code == CONST_FIXED)
2921 return -7;
9ce79a7a 2922 op = avoid_constant_pool_reference (op);
79b82df3 2923 code = GET_CODE (op);
ec8e098d
PB
2924
2925 switch (GET_RTX_CLASS (code))
2926 {
2927 case RTX_CONST_OBJ:
2928 if (code == CONST_INT)
7e0b4eae 2929 return -6;
ec8e098d 2930 if (code == CONST_DOUBLE)
7e0b4eae 2931 return -5;
091a3ac7
CF
2932 if (code == CONST_FIXED)
2933 return -5;
7e0b4eae 2934 return -4;
ec8e098d
PB
2935
2936 case RTX_EXTRA:
2937 /* SUBREGs of objects should come second. */
2938 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
7e0b4eae 2939 return -3;
6fb5fa3c 2940 return 0;
ec8e098d
PB
2941
2942 case RTX_OBJ:
2943 /* Complex expressions should be the first, so decrease priority
7e0b4eae
PB
2944 of objects. Prefer pointer objects over non pointer objects. */
2945 if ((REG_P (op) && REG_POINTER (op))
2946 || (MEM_P (op) && MEM_POINTER (op)))
2947 return -1;
2948 return -2;
ec8e098d
PB
2949
2950 case RTX_COMM_ARITH:
2951 /* Prefer operands that are themselves commutative to be first.
2952 This helps to make things linear. In particular,
2953 (and (and (reg) (reg)) (not (reg))) is canonical. */
2954 return 4;
2955
2956 case RTX_BIN_ARITH:
2957 /* If only one operand is a binary expression, it will be the first
2958 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2959 is canonical, although it will usually be further simplified. */
2960 return 2;
e3d6e740 2961
ec8e098d
PB
2962 case RTX_UNARY:
2963 /* Then prefer NEG and NOT. */
2964 if (code == NEG || code == NOT)
2965 return 1;
e5c56fd9 2966
ec8e098d
PB
2967 default:
2968 return 0;
2969 }
e5c56fd9
JH
2970}
2971
f63d1bf7 2972/* Return 1 iff it is necessary to swap operands of commutative operation
e5c56fd9
JH
2973 in order to canonicalize expression. */
2974
7e0b4eae 2975bool
0c20a65f 2976swap_commutative_operands_p (rtx x, rtx y)
e5c56fd9 2977{
9b3bd424
RH
2978 return (commutative_operand_precedence (x)
2979 < commutative_operand_precedence (y));
e5c56fd9 2980}
2dfa9a87
MH
2981
2982/* Return 1 if X is an autoincrement side effect and the register is
2983 not the stack pointer. */
2984int
f7d504c2 2985auto_inc_p (const_rtx x)
2dfa9a87
MH
2986{
2987 switch (GET_CODE (x))
2988 {
2989 case PRE_INC:
2990 case POST_INC:
2991 case PRE_DEC:
2992 case POST_DEC:
2993 case PRE_MODIFY:
2994 case POST_MODIFY:
2995 /* There are no REG_INC notes for SP. */
2996 if (XEXP (x, 0) != stack_pointer_rtx)
2997 return 1;
2998 default:
2999 break;
3000 }
3001 return 0;
3002}
3b10cf4b 3003
f9da5064 3004/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
db7ba742 3005int
f7d504c2 3006loc_mentioned_in_p (rtx *loc, const_rtx in)
db7ba742 3007{
a52b023a
PB
3008 enum rtx_code code;
3009 const char *fmt;
db7ba742
R
3010 int i, j;
3011
a52b023a
PB
3012 if (!in)
3013 return 0;
3014
3015 code = GET_CODE (in);
3016 fmt = GET_RTX_FORMAT (code);
db7ba742
R
3017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3018 {
db7ba742
R
3019 if (fmt[i] == 'e')
3020 {
e0651058 3021 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
db7ba742
R
3022 return 1;
3023 }
3024 else if (fmt[i] == 'E')
3025 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
e0651058
AO
3026 if (loc == &XVECEXP (in, i, j)
3027 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
db7ba742
R
3028 return 1;
3029 }
3030 return 0;
3031}
ddef6bc7 3032
bb51e270
RS
3033/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3034 and SUBREG_BYTE, return the bit offset where the subreg begins
3035 (counting from the least significant bit of the operand). */
33aceff2
JW
3036
3037unsigned int
bb51e270
RS
3038subreg_lsb_1 (enum machine_mode outer_mode,
3039 enum machine_mode inner_mode,
3040 unsigned int subreg_byte)
33aceff2 3041{
33aceff2
JW
3042 unsigned int bitpos;
3043 unsigned int byte;
3044 unsigned int word;
3045
3046 /* A paradoxical subreg begins at bit position 0. */
bb51e270 3047 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
33aceff2
JW
3048 return 0;
3049
3050 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3051 /* If the subreg crosses a word boundary ensure that
3052 it also begins and ends on a word boundary. */
41374e13
NS
3053 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3054 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3055 && (subreg_byte % UNITS_PER_WORD
3056 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
33aceff2
JW
3057
3058 if (WORDS_BIG_ENDIAN)
3059 word = (GET_MODE_SIZE (inner_mode)
bb51e270 3060 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
33aceff2 3061 else
bb51e270 3062 word = subreg_byte / UNITS_PER_WORD;
33aceff2
JW
3063 bitpos = word * BITS_PER_WORD;
3064
3065 if (BYTES_BIG_ENDIAN)
3066 byte = (GET_MODE_SIZE (inner_mode)
bb51e270 3067 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
33aceff2 3068 else
bb51e270 3069 byte = subreg_byte % UNITS_PER_WORD;
33aceff2
JW
3070 bitpos += byte * BITS_PER_UNIT;
3071
3072 return bitpos;
3073}
3074
bb51e270
RS
3075/* Given a subreg X, return the bit offset where the subreg begins
3076 (counting from the least significant bit of the reg). */
3077
3078unsigned int
f7d504c2 3079subreg_lsb (const_rtx x)
bb51e270
RS
3080{
3081 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3082 SUBREG_BYTE (x));
3083}
3084
f1f4e530 3085/* Fill in information about a subreg of a hard register.
ddef6bc7
JJ
3086 xregno - A regno of an inner hard subreg_reg (or what will become one).
3087 xmode - The mode of xregno.
3088 offset - The byte offset.
3089 ymode - The mode of a top level SUBREG (or what may become one).
f1f4e530 3090 info - Pointer to structure to fill in. */
c619e982 3091void
f1f4e530
JM
3092subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3093 unsigned int offset, enum machine_mode ymode,
3094 struct subreg_info *info)
04c5580f 3095{
8521c414 3096 int nregs_xmode, nregs_ymode;
04c5580f 3097 int mode_multiple, nregs_multiple;
f1f4e530 3098 int offset_adj, y_offset, y_offset_adj;
8521c414 3099 int regsize_xmode, regsize_ymode;
f1f4e530 3100 bool rknown;
04c5580f 3101
41374e13 3102 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
04c5580f 3103
f1f4e530
JM
3104 rknown = false;
3105
dd79bb7e
GK
3106 /* If there are holes in a non-scalar mode in registers, we expect
3107 that it is made up of its units concatenated together. */
8521c414 3108 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
dd79bb7e 3109 {
8521c414
JM
3110 enum machine_mode xmode_unit;
3111
3112 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3113 if (GET_MODE_INNER (xmode) == VOIDmode)
3114 xmode_unit = xmode;
3115 else
3116 xmode_unit = GET_MODE_INNER (xmode);
3117 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3118 gcc_assert (nregs_xmode
3119 == (GET_MODE_NUNITS (xmode)
3120 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3121 gcc_assert (hard_regno_nregs[xregno][xmode]
3122 == (hard_regno_nregs[xregno][xmode_unit]
3123 * GET_MODE_NUNITS (xmode)));
dd79bb7e
GK
3124
3125 /* You can only ask for a SUBREG of a value with holes in the middle
3126 if you don't cross the holes. (Such a SUBREG should be done by
3127 picking a different register class, or doing it in memory if
3128 necessary.) An example of a value with holes is XCmode on 32-bit
3129 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3130 3 for each part, but in memory it's two 128-bit parts.
3131 Padding is assumed to be at the end (not necessarily the 'high part')
3132 of each unit. */
8521c414
JM
3133 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3134 < GET_MODE_NUNITS (xmode))
3135 && (offset / GET_MODE_SIZE (xmode_unit)
dd79bb7e 3136 != ((offset + GET_MODE_SIZE (ymode) - 1)
8521c414 3137 / GET_MODE_SIZE (xmode_unit))))
f1f4e530
JM
3138 {
3139 info->representable_p = false;
3140 rknown = true;
3141 }
dd79bb7e
GK
3142 }
3143 else
3144 nregs_xmode = hard_regno_nregs[xregno][xmode];
3145
66fd46b6 3146 nregs_ymode = hard_regno_nregs[xregno][ymode];
04c5580f 3147
dd79bb7e 3148 /* Paradoxical subregs are otherwise valid. */
f1f4e530
JM
3149 if (!rknown
3150 && offset == 0
3151 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3152 {
3153 info->representable_p = true;
3154 /* If this is a big endian paradoxical subreg, which uses more
3155 actual hard registers than the original register, we must
3156 return a negative offset so that we find the proper highpart
3157 of the register. */
3158 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3159 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3160 info->offset = nregs_xmode - nregs_ymode;
3161 else
3162 info->offset = 0;
3163 info->nregs = nregs_ymode;
3164 return;
3165 }
04c5580f 3166
8521c414
JM
3167 /* If registers store different numbers of bits in the different
3168 modes, we cannot generally form this subreg. */
f1f4e530 3169 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
5f7fc2b8
JM
3170 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3171 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3172 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
f1f4e530
JM
3173 {
3174 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
f1f4e530 3175 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
f1f4e530
JM
3176 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3177 {
3178 info->representable_p = false;
3179 info->nregs
3180 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3181 info->offset = offset / regsize_xmode;
3182 return;
3183 }
3184 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3185 {
3186 info->representable_p = false;
3187 info->nregs
3188 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3189 info->offset = offset / regsize_xmode;
3190 return;
3191 }
3192 }
8521c414 3193
dd79bb7e 3194 /* Lowpart subregs are otherwise valid. */
f1f4e530
JM
3195 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3196 {
3197 info->representable_p = true;
3198 rknown = true;
a446b4e8
JM
3199
3200 if (offset == 0 || nregs_xmode == nregs_ymode)
3201 {
3202 info->offset = 0;
3203 info->nregs = nregs_ymode;
3204 return;
3205 }
f1f4e530 3206 }
04c5580f 3207
dd79bb7e
GK
3208 /* This should always pass, otherwise we don't know how to verify
3209 the constraint. These conditions may be relaxed but
3210 subreg_regno_offset would need to be redesigned. */
41374e13 3211 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
41374e13 3212 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
04c5580f 3213
b20b352b 3214 /* The XMODE value can be seen as a vector of NREGS_XMODE
dcc24678 3215 values. The subreg must represent a lowpart of given field.
04c5580f 3216 Compute what field it is. */
f1f4e530
JM
3217 offset_adj = offset;
3218 offset_adj -= subreg_lowpart_offset (ymode,
3219 mode_for_size (GET_MODE_BITSIZE (xmode)
3220 / nregs_xmode,
3221 MODE_INT, 0));
04c5580f 3222
dd79bb7e 3223 /* Size of ymode must not be greater than the size of xmode. */
04c5580f 3224 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
41374e13 3225 gcc_assert (mode_multiple != 0);
04c5580f
JH
3226
3227 y_offset = offset / GET_MODE_SIZE (ymode);
f1f4e530
JM
3228 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3229 nregs_multiple = nregs_xmode / nregs_ymode;
41374e13 3230
f1f4e530 3231 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
41374e13
NS
3232 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3233
f1f4e530
JM
3234 if (!rknown)
3235 {
3236 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3237 rknown = true;
3238 }
3239 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3240 info->nregs = nregs_ymode;
3241}
3242
3243/* This function returns the regno offset of a subreg expression.
3244 xregno - A regno of an inner hard subreg_reg (or what will become one).
3245 xmode - The mode of xregno.
3246 offset - The byte offset.
3247 ymode - The mode of a top level SUBREG (or what may become one).
3248 RETURN - The regno offset which would be used. */
3249unsigned int
3250subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3251 unsigned int offset, enum machine_mode ymode)
3252{
3253 struct subreg_info info;
3254 subreg_get_info (xregno, xmode, offset, ymode, &info);
3255 return info.offset;
3256}
3257
3258/* This function returns true when the offset is representable via
3259 subreg_offset in the given regno.
3260 xregno - A regno of an inner hard subreg_reg (or what will become one).
3261 xmode - The mode of xregno.
3262 offset - The byte offset.
3263 ymode - The mode of a top level SUBREG (or what may become one).
3264 RETURN - Whether the offset is representable. */
3265bool
3266subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3267 unsigned int offset, enum machine_mode ymode)
3268{
3269 struct subreg_info info;
3270 subreg_get_info (xregno, xmode, offset, ymode, &info);
05cee290 3271 return info.representable_p;
04c5580f
JH
3272}
3273
eef302d2
RS
3274/* Return the number of a YMODE register to which
3275
3276 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3277
3278 can be simplified. Return -1 if the subreg can't be simplified.
3279
3280 XREGNO is a hard register number. */
3281
3282int
3283simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3284 unsigned int offset, enum machine_mode ymode)
3285{
3286 struct subreg_info info;
3287 unsigned int yregno;
3288
3289#ifdef CANNOT_CHANGE_MODE_CLASS
3290 /* Give the backend a chance to disallow the mode change. */
3291 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3292 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3293 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3294 return -1;
3295#endif
3296
3297 /* We shouldn't simplify stack-related registers. */
3298 if ((!reload_completed || frame_pointer_needed)
3299 && (xregno == FRAME_POINTER_REGNUM
3300 || xregno == HARD_FRAME_POINTER_REGNUM))
3301 return -1;
3302
3303 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3304 && xregno == ARG_POINTER_REGNUM)
3305 return -1;
3306
3307 if (xregno == STACK_POINTER_REGNUM)
3308 return -1;
3309
3310 /* Try to get the register offset. */
3311 subreg_get_info (xregno, xmode, offset, ymode, &info);
3312 if (!info.representable_p)
3313 return -1;
3314
3315 /* Make sure that the offsetted register value is in range. */
3316 yregno = xregno + info.offset;
3317 if (!HARD_REGISTER_NUM_P (yregno))
3318 return -1;
3319
3320 /* See whether (reg:YMODE YREGNO) is valid.
3321
3322 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3323 This is a kludge to work around how float/complex arguments are passed
3324 on 32-bit SPARC and should be fixed. */
3325 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3326 && HARD_REGNO_MODE_OK (xregno, xmode))
3327 return -1;
3328
3329 return (int) yregno;
3330}
3331
dc297297 3332/* Return the final regno that a subreg expression refers to. */
a6a2274a 3333unsigned int
f7d504c2 3334subreg_regno (const_rtx x)
ddef6bc7
JJ
3335{
3336 unsigned int ret;
3337 rtx subreg = SUBREG_REG (x);
3338 int regno = REGNO (subreg);
3339
a6a2274a
KH
3340 ret = regno + subreg_regno_offset (regno,
3341 GET_MODE (subreg),
ddef6bc7
JJ
3342 SUBREG_BYTE (x),
3343 GET_MODE (x));
3344 return ret;
3345
3346}
f1f4e530
JM
3347
3348/* Return the number of registers that a subreg expression refers
3349 to. */
3350unsigned int
f7d504c2 3351subreg_nregs (const_rtx x)
ba49cb7b
KZ
3352{
3353 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3354}
3355
3356/* Return the number of registers that a subreg REG with REGNO
3357 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3358 changed so that the regno can be passed in. */
3359
3360unsigned int
3361subreg_nregs_with_regno (unsigned int regno, const_rtx x)
f1f4e530
JM
3362{
3363 struct subreg_info info;
3364 rtx subreg = SUBREG_REG (x);
f1f4e530
JM
3365
3366 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3367 &info);
3368 return info.nregs;
3369}
3370
ba49cb7b 3371
833366d6
JH
3372struct parms_set_data
3373{
3374 int nregs;
3375 HARD_REG_SET regs;
3376};
3377
3378/* Helper function for noticing stores to parameter registers. */
3379static void
7bc980e1 3380parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
833366d6 3381{
1634b18f 3382 struct parms_set_data *const d = (struct parms_set_data *) data;
833366d6
JH
3383 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3384 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3385 {
3386 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3387 d->nregs--;
3388 }
3389}
3390
a6a2274a 3391/* Look backward for first parameter to be loaded.
b2df20b4
DJ
3392 Note that loads of all parameters will not necessarily be
3393 found if CSE has eliminated some of them (e.g., an argument
3394 to the outer function is passed down as a parameter).
833366d6
JH
3395 Do not skip BOUNDARY. */
3396rtx
0c20a65f 3397find_first_parameter_load (rtx call_insn, rtx boundary)
833366d6
JH
3398{
3399 struct parms_set_data parm;
b2df20b4 3400 rtx p, before, first_set;
833366d6
JH
3401
3402 /* Since different machines initialize their parameter registers
3403 in different orders, assume nothing. Collect the set of all
3404 parameter registers. */
3405 CLEAR_HARD_REG_SET (parm.regs);
3406 parm.nregs = 0;
3407 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3408 if (GET_CODE (XEXP (p, 0)) == USE
f8cfc6aa 3409 && REG_P (XEXP (XEXP (p, 0), 0)))
833366d6 3410 {
41374e13 3411 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
833366d6
JH
3412
3413 /* We only care about registers which can hold function
3414 arguments. */
3415 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3416 continue;
3417
3418 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3419 parm.nregs++;
3420 }
3421 before = call_insn;
b2df20b4 3422 first_set = call_insn;
833366d6
JH
3423
3424 /* Search backward for the first set of a register in this set. */
3425 while (parm.nregs && before != boundary)
3426 {
3427 before = PREV_INSN (before);
3428
3429 /* It is possible that some loads got CSEed from one call to
3430 another. Stop in that case. */
4b4bf941 3431 if (CALL_P (before))
833366d6
JH
3432 break;
3433
dbc1a163 3434 /* Our caller needs either ensure that we will find all sets
833366d6 3435 (in case code has not been optimized yet), or take care
eaec9b3d 3436 for possible labels in a way by setting boundary to preceding
833366d6 3437 CODE_LABEL. */
4b4bf941 3438 if (LABEL_P (before))
dbc1a163 3439 {
41374e13 3440 gcc_assert (before == boundary);
dbc1a163
RH
3441 break;
3442 }
833366d6 3443
0d025d43 3444 if (INSN_P (before))
b2df20b4
DJ
3445 {
3446 int nregs_old = parm.nregs;
3447 note_stores (PATTERN (before), parms_set, &parm);
3448 /* If we found something that did not set a parameter reg,
3449 we're done. Do not keep going, as that might result
3450 in hoisting an insn before the setting of a pseudo
3451 that is used by the hoisted insn. */
3452 if (nregs_old != parm.nregs)
3453 first_set = before;
3454 else
3455 break;
3456 }
833366d6 3457 }
b2df20b4 3458 return first_set;
833366d6 3459}
3dec4024 3460
14b493d6 3461/* Return true if we should avoid inserting code between INSN and preceding
3dec4024
JH
3462 call instruction. */
3463
3464bool
9678086d 3465keep_with_call_p (const_rtx insn)
3dec4024
JH
3466{
3467 rtx set;
3468
3469 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3470 {
f8cfc6aa 3471 if (REG_P (SET_DEST (set))
5df533b3 3472 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3dec4024
JH
3473 && fixed_regs[REGNO (SET_DEST (set))]
3474 && general_operand (SET_SRC (set), VOIDmode))
3475 return true;
f8cfc6aa 3476 if (REG_P (SET_SRC (set))
3dec4024 3477 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
f8cfc6aa 3478 && REG_P (SET_DEST (set))
3dec4024
JH
3479 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3480 return true;
bc204393
RH
3481 /* There may be a stack pop just after the call and before the store
3482 of the return register. Search for the actual store when deciding
3483 if we can break or not. */
3dec4024
JH
3484 if (SET_DEST (set) == stack_pointer_rtx)
3485 {
75547801 3486 /* This CONST_CAST is okay because next_nonnote_insn just
4e9b57fa 3487 returns its argument and we assign it to a const_rtx
75547801 3488 variable. */
b1d5455a 3489 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
bc204393 3490 if (i2 && keep_with_call_p (i2))
3dec4024
JH
3491 return true;
3492 }
3493 }
3494 return false;
3495}
71d2c5bd 3496
432f982f
JH
3497/* Return true if LABEL is a target of JUMP_INSN. This applies only
3498 to non-complex jumps. That is, direct unconditional, conditional,
3499 and tablejumps, but not computed jumps or returns. It also does
3500 not apply to the fallthru case of a conditional jump. */
3501
3502bool
f7d504c2 3503label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
432f982f
JH
3504{
3505 rtx tmp = JUMP_LABEL (jump_insn);
3506
3507 if (label == tmp)
3508 return true;
3509
3510 if (tablejump_p (jump_insn, NULL, &tmp))
3511 {
3512 rtvec vec = XVEC (PATTERN (tmp),
3513 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3514 int i, veclen = GET_NUM_ELEM (vec);
3515
3516 for (i = 0; i < veclen; ++i)
3517 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3518 return true;
3519 }
3520
cb2f563b
HPN
3521 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3522 return true;
3523
432f982f
JH
3524 return false;
3525}
3526
f894b69b
PB
3527\f
3528/* Return an estimate of the cost of computing rtx X.
3529 One use is in cse, to decide which expression to keep in the hash table.
3530 Another is in rtl generation, to pick the cheapest way to multiply.
f40751dd
JH
3531 Other uses like the latter are expected in the future.
3532
3533 SPEED parameter specify whether costs optimized for speed or size should
3534 be returned. */
f894b69b
PB
3535
3536int
f40751dd 3537rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
f894b69b
PB
3538{
3539 int i, j;
3540 enum rtx_code code;
3541 const char *fmt;
3542 int total;
3543
3544 if (x == 0)
3545 return 0;
3546
3547 /* Compute the default costs of certain things.
3548 Note that targetm.rtx_costs can override the defaults. */
3549
3550 code = GET_CODE (x);
3551 switch (code)
3552 {
3553 case MULT:
3554 total = COSTS_N_INSNS (5);
3555 break;
3556 case DIV:
3557 case UDIV:
3558 case MOD:
3559 case UMOD:
3560 total = COSTS_N_INSNS (7);
3561 break;
3562 case USE:
db3edc20 3563 /* Used in combine.c as a marker. */
f894b69b
PB
3564 total = 0;
3565 break;
3566 default:
3567 total = COSTS_N_INSNS (1);
3568 }
3569
3570 switch (code)
3571 {
3572 case REG:
3573 return 0;
3574
3575 case SUBREG:
edb81165 3576 total = 0;
f894b69b
PB
3577 /* If we can't tie these modes, make this expensive. The larger
3578 the mode, the more expensive it is. */
3579 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3580 return COSTS_N_INSNS (2
3581 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3582 break;
3583
3584 default:
f40751dd 3585 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
f894b69b
PB
3586 return total;
3587 break;
3588 }
3589
3590 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3591 which is already in total. */
3592
3593 fmt = GET_RTX_FORMAT (code);
3594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3595 if (fmt[i] == 'e')
f40751dd 3596 total += rtx_cost (XEXP (x, i), code, speed);
f894b69b
PB
3597 else if (fmt[i] == 'E')
3598 for (j = 0; j < XVECLEN (x, i); j++)
f40751dd 3599 total += rtx_cost (XVECEXP (x, i, j), code, speed);
f894b69b
PB
3600
3601 return total;
3602}
3603\f
3604/* Return cost of address expression X.
f40751dd
JH
3605 Expect that X is properly formed address reference.
3606
3607 SPEED parameter specify whether costs optimized for speed or size should
3608 be returned. */
f894b69b
PB
3609
3610int
09e881c9 3611address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
f894b69b 3612{
f894b69b
PB
3613 /* We may be asked for cost of various unusual addresses, such as operands
3614 of push instruction. It is not worthwhile to complicate writing
3615 of the target hook by such cases. */
3616
09e881c9 3617 if (!memory_address_addr_space_p (mode, x, as))
f894b69b
PB
3618 return 1000;
3619
f40751dd 3620 return targetm.address_cost (x, speed);
f894b69b
PB
3621}
3622
3623/* If the target doesn't override, compute the cost as with arithmetic. */
3624
3625int
f40751dd 3626default_address_cost (rtx x, bool speed)
f894b69b 3627{
f40751dd 3628 return rtx_cost (x, MEM, speed);
f894b69b 3629}
2f93eea8
PB
3630\f
3631
3632unsigned HOST_WIDE_INT
fa233e34 3633nonzero_bits (const_rtx x, enum machine_mode mode)
2f93eea8
PB
3634{
3635 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3636}
3637
3638unsigned int
fa233e34 3639num_sign_bit_copies (const_rtx x, enum machine_mode mode)
2f93eea8
PB
3640{
3641 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3642}
3643
3644/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3645 It avoids exponential behavior in nonzero_bits1 when X has
3646 identical subexpressions on the first or the second level. */
3647
3648static unsigned HOST_WIDE_INT
fa233e34 3649cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
3650 enum machine_mode known_mode,
3651 unsigned HOST_WIDE_INT known_ret)
3652{
3653 if (x == known_x && mode == known_mode)
3654 return known_ret;
3655
3656 /* Try to find identical subexpressions. If found call
3657 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3658 precomputed value for the subexpression as KNOWN_RET. */
3659
3660 if (ARITHMETIC_P (x))
3661 {
3662 rtx x0 = XEXP (x, 0);
3663 rtx x1 = XEXP (x, 1);
3664
3665 /* Check the first level. */
3666 if (x0 == x1)
3667 return nonzero_bits1 (x, mode, x0, mode,
3668 cached_nonzero_bits (x0, mode, known_x,
3669 known_mode, known_ret));
3670
3671 /* Check the second level. */
3672 if (ARITHMETIC_P (x0)
3673 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3674 return nonzero_bits1 (x, mode, x1, mode,
3675 cached_nonzero_bits (x1, mode, known_x,
3676 known_mode, known_ret));
3677
3678 if (ARITHMETIC_P (x1)
3679 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3680 return nonzero_bits1 (x, mode, x0, mode,
3681 cached_nonzero_bits (x0, mode, known_x,
3682 known_mode, known_ret));
3683 }
3684
3685 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3686}
3687
3688/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3689 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3690 is less useful. We can't allow both, because that results in exponential
3691 run time recursion. There is a nullstone testcase that triggered
3692 this. This macro avoids accidental uses of num_sign_bit_copies. */
3693#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3694
3695/* Given an expression, X, compute which bits in X can be nonzero.
3696 We don't care about bits outside of those defined in MODE.
3697
3698 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3699 an arithmetic operation, we can do better. */
3700
3701static unsigned HOST_WIDE_INT
fa233e34 3702nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
3703 enum machine_mode known_mode,
3704 unsigned HOST_WIDE_INT known_ret)
3705{
3706 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3707 unsigned HOST_WIDE_INT inner_nz;
3708 enum rtx_code code;
3709 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3710
ff596cd2
RL
3711 /* For floating-point and vector values, assume all bits are needed. */
3712 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3713 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
3714 return nonzero;
3715
3716 /* If X is wider than MODE, use its mode instead. */
3717 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3718 {
3719 mode = GET_MODE (x);
3720 nonzero = GET_MODE_MASK (mode);
3721 mode_width = GET_MODE_BITSIZE (mode);
3722 }
3723
3724 if (mode_width > HOST_BITS_PER_WIDE_INT)
3725 /* Our only callers in this case look for single bit values. So
3726 just return the mode mask. Those tests will then be false. */
3727 return nonzero;
3728
3729#ifndef WORD_REGISTER_OPERATIONS
3730 /* If MODE is wider than X, but both are a single word for both the host
3731 and target machines, we can compute this from which bits of the
3732 object might be nonzero in its own mode, taking into account the fact
3733 that on many CISC machines, accessing an object in a wider mode
3734 causes the high-order bits to become undefined. So they are
3735 not known to be zero. */
3736
3737 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3738 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3739 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3740 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3741 {
3742 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3743 known_x, known_mode, known_ret);
3744 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3745 return nonzero;
3746 }
3747#endif
3748
3749 code = GET_CODE (x);
3750 switch (code)
3751 {
3752 case REG:
3753#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3754 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3755 all the bits above ptr_mode are known to be zero. */
d4ebfa65
BE
3756 /* As we do not know which address space the pointer is refering to,
3757 we can do this only if the target does not support different pointer
3758 or address modes depending on the address space. */
3759 if (target_default_pointer_address_modes_p ()
3760 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2f93eea8
PB
3761 && REG_POINTER (x))
3762 nonzero &= GET_MODE_MASK (ptr_mode);
3763#endif
3764
3765 /* Include declared information about alignment of pointers. */
3766 /* ??? We don't properly preserve REG_POINTER changes across
3767 pointer-to-integer casts, so we can't trust it except for
3768 things that we know must be pointers. See execute/960116-1.c. */
3769 if ((x == stack_pointer_rtx
3770 || x == frame_pointer_rtx
3771 || x == arg_pointer_rtx)
3772 && REGNO_POINTER_ALIGN (REGNO (x)))
3773 {
3774 unsigned HOST_WIDE_INT alignment
3775 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3776
3777#ifdef PUSH_ROUNDING
3778 /* If PUSH_ROUNDING is defined, it is possible for the
3779 stack to be momentarily aligned only to that amount,
3780 so we pick the least alignment. */
3781 if (x == stack_pointer_rtx && PUSH_ARGS)
3782 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3783 alignment);
3784#endif
3785
3786 nonzero &= ~(alignment - 1);
3787 }
3788
3789 {
3790 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
55d796da 3791 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
2f93eea8
PB
3792 known_mode, known_ret,
3793 &nonzero_for_hook);
3794
55d796da
KG
3795 if (new_rtx)
3796 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
2f93eea8
PB
3797 known_mode, known_ret);
3798
3799 return nonzero_for_hook;
3800 }
3801
3802 case CONST_INT:
3803#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3804 /* If X is negative in MODE, sign-extend the value. */
3805 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3806 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3807 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3808#endif
3809
3810 return INTVAL (x);
3811
3812 case MEM:
3813#ifdef LOAD_EXTEND_OP
3814 /* In many, if not most, RISC machines, reading a byte from memory
3815 zeros the rest of the register. Noticing that fact saves a lot
3816 of extra zero-extends. */
3817 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3818 nonzero &= GET_MODE_MASK (GET_MODE (x));
3819#endif
3820 break;
3821
3822 case EQ: case NE:
3823 case UNEQ: case LTGT:
3824 case GT: case GTU: case UNGT:
3825 case LT: case LTU: case UNLT:
3826 case GE: case GEU: case UNGE:
3827 case LE: case LEU: case UNLE:
3828 case UNORDERED: case ORDERED:
2f93eea8
PB
3829 /* If this produces an integer result, we know which bits are set.
3830 Code here used to clear bits outside the mode of X, but that is
3831 now done above. */
505ac507
RH
3832 /* Mind that MODE is the mode the caller wants to look at this
3833 operation in, and not the actual operation mode. We can wind
3834 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3835 that describes the results of a vector compare. */
3836 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
2f93eea8
PB
3837 && mode_width <= HOST_BITS_PER_WIDE_INT)
3838 nonzero = STORE_FLAG_VALUE;
3839 break;
3840
3841 case NEG:
3842#if 0
3843 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3844 and num_sign_bit_copies. */
3845 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3846 == GET_MODE_BITSIZE (GET_MODE (x)))
3847 nonzero = 1;
3848#endif
3849
3850 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3851 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3852 break;
3853
3854 case ABS:
3855#if 0
3856 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3857 and num_sign_bit_copies. */
3858 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3859 == GET_MODE_BITSIZE (GET_MODE (x)))
3860 nonzero = 1;
3861#endif
3862 break;
3863
3864 case TRUNCATE:
3865 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3866 known_x, known_mode, known_ret)
3867 & GET_MODE_MASK (mode));
3868 break;
3869
3870 case ZERO_EXTEND:
3871 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3872 known_x, known_mode, known_ret);
3873 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3874 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3875 break;
3876
3877 case SIGN_EXTEND:
3878 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3879 Otherwise, show all the bits in the outer mode but not the inner
3880 may be nonzero. */
3881 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3882 known_x, known_mode, known_ret);
3883 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3884 {
3885 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3886 if (inner_nz
3887 & (((HOST_WIDE_INT) 1
3888 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3889 inner_nz |= (GET_MODE_MASK (mode)
3890 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3891 }
3892
3893 nonzero &= inner_nz;
3894 break;
3895
3896 case AND:
3897 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3898 known_x, known_mode, known_ret)
3899 & cached_nonzero_bits (XEXP (x, 1), mode,
3900 known_x, known_mode, known_ret);
3901 break;
3902
3903 case XOR: case IOR:
3904 case UMIN: case UMAX: case SMIN: case SMAX:
3905 {
3906 unsigned HOST_WIDE_INT nonzero0 =
3907 cached_nonzero_bits (XEXP (x, 0), mode,
3908 known_x, known_mode, known_ret);
3909
3910 /* Don't call nonzero_bits for the second time if it cannot change
3911 anything. */
3912 if ((nonzero & nonzero0) != nonzero)
3913 nonzero &= nonzero0
3914 | cached_nonzero_bits (XEXP (x, 1), mode,
3915 known_x, known_mode, known_ret);
3916 }
3917 break;
3918
3919 case PLUS: case MINUS:
3920 case MULT:
3921 case DIV: case UDIV:
3922 case MOD: case UMOD:
3923 /* We can apply the rules of arithmetic to compute the number of
3924 high- and low-order zero bits of these operations. We start by
3925 computing the width (position of the highest-order nonzero bit)
3926 and the number of low-order zero bits for each value. */
3927 {
3928 unsigned HOST_WIDE_INT nz0 =
3929 cached_nonzero_bits (XEXP (x, 0), mode,
3930 known_x, known_mode, known_ret);
3931 unsigned HOST_WIDE_INT nz1 =
3932 cached_nonzero_bits (XEXP (x, 1), mode,
3933 known_x, known_mode, known_ret);
3934 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3935 int width0 = floor_log2 (nz0) + 1;
3936 int width1 = floor_log2 (nz1) + 1;
3937 int low0 = floor_log2 (nz0 & -nz0);
3938 int low1 = floor_log2 (nz1 & -nz1);
3939 HOST_WIDE_INT op0_maybe_minusp
3940 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3941 HOST_WIDE_INT op1_maybe_minusp
3942 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3943 unsigned int result_width = mode_width;
3944 int result_low = 0;
3945
3946 switch (code)
3947 {
3948 case PLUS:
3949 result_width = MAX (width0, width1) + 1;
3950 result_low = MIN (low0, low1);
3951 break;
3952 case MINUS:
3953 result_low = MIN (low0, low1);
3954 break;
3955 case MULT:
3956 result_width = width0 + width1;
3957 result_low = low0 + low1;
3958 break;
3959 case DIV:
3960 if (width1 == 0)
3961 break;
3962 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3963 result_width = width0;
3964 break;
3965 case UDIV:
3966 if (width1 == 0)
3967 break;
3968 result_width = width0;
3969 break;
3970 case MOD:
3971 if (width1 == 0)
3972 break;
3973 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3974 result_width = MIN (width0, width1);
3975 result_low = MIN (low0, low1);
3976 break;
3977 case UMOD:
3978 if (width1 == 0)
3979 break;
3980 result_width = MIN (width0, width1);
3981 result_low = MIN (low0, low1);
3982 break;
3983 default:
41374e13 3984 gcc_unreachable ();
2f93eea8
PB
3985 }
3986
3987 if (result_width < mode_width)
3988 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3989
3990 if (result_low > 0)
3991 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3992
3993#ifdef POINTERS_EXTEND_UNSIGNED
3994 /* If pointers extend unsigned and this is an addition or subtraction
3995 to a pointer in Pmode, all the bits above ptr_mode are known to be
3996 zero. */
d4ebfa65
BE
3997 /* As we do not know which address space the pointer is refering to,
3998 we can do this only if the target does not support different pointer
3999 or address modes depending on the address space. */
4000 if (target_default_pointer_address_modes_p ()
4001 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
2f93eea8 4002 && (code == PLUS || code == MINUS)
f8cfc6aa 4003 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
2f93eea8
PB
4004 nonzero &= GET_MODE_MASK (ptr_mode);
4005#endif
4006 }
4007 break;
4008
4009 case ZERO_EXTRACT:
481683e1 4010 if (CONST_INT_P (XEXP (x, 1))
2f93eea8
PB
4011 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4012 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4013 break;
4014
4015 case SUBREG:
4016 /* If this is a SUBREG formed for a promoted variable that has
4017 been zero-extended, we know that at least the high-order bits
4018 are zero, though others might be too. */
4019
4020 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4021 nonzero = GET_MODE_MASK (GET_MODE (x))
4022 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4023 known_x, known_mode, known_ret);
4024
4025 /* If the inner mode is a single word for both the host and target
4026 machines, we can compute this from which bits of the inner
4027 object might be nonzero. */
4028 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4029 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4030 <= HOST_BITS_PER_WIDE_INT))
4031 {
4032 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4033 known_x, known_mode, known_ret);
4034
4035#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4036 /* If this is a typical RISC machine, we only have to worry
4037 about the way loads are extended. */
4038 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4039 ? (((nonzero
4040 & (((unsigned HOST_WIDE_INT) 1
4041 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4042 != 0))
4043 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3c0cb5de 4044 || !MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4045#endif
4046 {
4047 /* On many CISC machines, accessing an object in a wider mode
4048 causes the high-order bits to become undefined. So they are
4049 not known to be zero. */
4050 if (GET_MODE_SIZE (GET_MODE (x))
4051 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4052 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4053 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4054 }
4055 }
4056 break;
4057
4058 case ASHIFTRT:
4059 case LSHIFTRT:
4060 case ASHIFT:
4061 case ROTATE:
4062 /* The nonzero bits are in two classes: any bits within MODE
4063 that aren't in GET_MODE (x) are always significant. The rest of the
4064 nonzero bits are those that are significant in the operand of
4065 the shift when shifted the appropriate number of bits. This
4066 shows that high-order bits are cleared by the right shift and
4067 low-order bits by left shifts. */
481683e1 4068 if (CONST_INT_P (XEXP (x, 1))
2f93eea8 4069 && INTVAL (XEXP (x, 1)) >= 0
39b2ac74
JJ
4070 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4071 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
2f93eea8
PB
4072 {
4073 enum machine_mode inner_mode = GET_MODE (x);
4074 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4075 int count = INTVAL (XEXP (x, 1));
4076 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4077 unsigned HOST_WIDE_INT op_nonzero =
4078 cached_nonzero_bits (XEXP (x, 0), mode,
4079 known_x, known_mode, known_ret);
4080 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4081 unsigned HOST_WIDE_INT outer = 0;
4082
4083 if (mode_width > width)
4084 outer = (op_nonzero & nonzero & ~mode_mask);
4085
4086 if (code == LSHIFTRT)
4087 inner >>= count;
4088 else if (code == ASHIFTRT)
4089 {
4090 inner >>= count;
4091
4092 /* If the sign bit may have been nonzero before the shift, we
4093 need to mark all the places it could have been copied to
4094 by the shift as possibly nonzero. */
4095 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4096 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4097 }
4098 else if (code == ASHIFT)
4099 inner <<= count;
4100 else
4101 inner = ((inner << (count % width)
4102 | (inner >> (width - (count % width)))) & mode_mask);
4103
4104 nonzero &= (outer | inner);
4105 }
4106 break;
4107
4108 case FFS:
4109 case POPCOUNT:
4110 /* This is at most the number of bits in the mode. */
4111 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4112 break;
4113
4114 case CLZ:
4115 /* If CLZ has a known value at zero, then the nonzero bits are
4116 that value, plus the number of bits in the mode minus one. */
4117 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4118 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4119 else
4120 nonzero = -1;
4121 break;
4122
4123 case CTZ:
4124 /* If CTZ has a known value at zero, then the nonzero bits are
4125 that value, plus the number of bits in the mode minus one. */
4126 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4127 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4128 else
4129 nonzero = -1;
4130 break;
4131
4132 case PARITY:
4133 nonzero = 1;
4134 break;
4135
4136 case IF_THEN_ELSE:
4137 {
4138 unsigned HOST_WIDE_INT nonzero_true =
4139 cached_nonzero_bits (XEXP (x, 1), mode,
4140 known_x, known_mode, known_ret);
4141
4142 /* Don't call nonzero_bits for the second time if it cannot change
4143 anything. */
4144 if ((nonzero & nonzero_true) != nonzero)
4145 nonzero &= nonzero_true
4146 | cached_nonzero_bits (XEXP (x, 2), mode,
4147 known_x, known_mode, known_ret);
4148 }
4149 break;
4150
4151 default:
4152 break;
4153 }
4154
4155 return nonzero;
4156}
4157
4158/* See the macro definition above. */
4159#undef cached_num_sign_bit_copies
4160
4161\f
4162/* The function cached_num_sign_bit_copies is a wrapper around
4163 num_sign_bit_copies1. It avoids exponential behavior in
4164 num_sign_bit_copies1 when X has identical subexpressions on the
4165 first or the second level. */
4166
4167static unsigned int
fa233e34 4168cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
4169 enum machine_mode known_mode,
4170 unsigned int known_ret)
4171{
4172 if (x == known_x && mode == known_mode)
4173 return known_ret;
4174
4175 /* Try to find identical subexpressions. If found call
4176 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4177 the precomputed value for the subexpression as KNOWN_RET. */
4178
4179 if (ARITHMETIC_P (x))
4180 {
4181 rtx x0 = XEXP (x, 0);
4182 rtx x1 = XEXP (x, 1);
4183
4184 /* Check the first level. */
4185 if (x0 == x1)
4186 return
4187 num_sign_bit_copies1 (x, mode, x0, mode,
4188 cached_num_sign_bit_copies (x0, mode, known_x,
4189 known_mode,
4190 known_ret));
4191
4192 /* Check the second level. */
4193 if (ARITHMETIC_P (x0)
4194 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4195 return
4196 num_sign_bit_copies1 (x, mode, x1, mode,
4197 cached_num_sign_bit_copies (x1, mode, known_x,
4198 known_mode,
4199 known_ret));
4200
4201 if (ARITHMETIC_P (x1)
4202 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4203 return
4204 num_sign_bit_copies1 (x, mode, x0, mode,
4205 cached_num_sign_bit_copies (x0, mode, known_x,
4206 known_mode,
4207 known_ret));
4208 }
4209
4210 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4211}
4212
4213/* Return the number of bits at the high-order end of X that are known to
4214 be equal to the sign bit. X will be used in mode MODE; if MODE is
4215 VOIDmode, X will be used in its own mode. The returned value will always
4216 be between 1 and the number of bits in MODE. */
4217
4218static unsigned int
fa233e34 4219num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
2f93eea8
PB
4220 enum machine_mode known_mode,
4221 unsigned int known_ret)
4222{
4223 enum rtx_code code = GET_CODE (x);
4224 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4225 int num0, num1, result;
4226 unsigned HOST_WIDE_INT nonzero;
4227
4228 /* If we weren't given a mode, use the mode of X. If the mode is still
4229 VOIDmode, we don't know anything. Likewise if one of the modes is
4230 floating-point. */
4231
4232 if (mode == VOIDmode)
4233 mode = GET_MODE (x);
4234
ff596cd2
RL
4235 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4236 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
2f93eea8
PB
4237 return 1;
4238
4239 /* For a smaller object, just ignore the high bits. */
4240 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4241 {
4242 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4243 known_x, known_mode, known_ret);
4244 return MAX (1,
4245 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4246 }
4247
4248 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4249 {
4250#ifndef WORD_REGISTER_OPERATIONS
4251 /* If this machine does not do all register operations on the entire
4252 register and MODE is wider than the mode of X, we can say nothing
4253 at all about the high-order bits. */
4254 return 1;
4255#else
4256 /* Likewise on machines that do, if the mode of the object is smaller
4257 than a word and loads of that size don't sign extend, we can say
4258 nothing about the high order bits. */
4259 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4260#ifdef LOAD_EXTEND_OP
4261 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4262#endif
4263 )
4264 return 1;
4265#endif
4266 }
4267
4268 switch (code)
4269 {
4270 case REG:
4271
4272#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4273 /* If pointers extend signed and this is a pointer in Pmode, say that
4274 all the bits above ptr_mode are known to be sign bit copies. */
d4ebfa65
BE
4275 /* As we do not know which address space the pointer is refering to,
4276 we can do this only if the target does not support different pointer
4277 or address modes depending on the address space. */
4278 if (target_default_pointer_address_modes_p ()
4279 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4280 && mode == Pmode && REG_POINTER (x))
2f93eea8
PB
4281 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4282#endif
4283
4284 {
4285 unsigned int copies_for_hook = 1, copies = 1;
55d796da 4286 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
2f93eea8
PB
4287 known_mode, known_ret,
4288 &copies_for_hook);
4289
55d796da
KG
4290 if (new_rtx)
4291 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
2f93eea8
PB
4292 known_mode, known_ret);
4293
4294 if (copies > 1 || copies_for_hook > 1)
4295 return MAX (copies, copies_for_hook);
4296
4297 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4298 }
4299 break;
4300
4301 case MEM:
4302#ifdef LOAD_EXTEND_OP
4303 /* Some RISC machines sign-extend all loads of smaller than a word. */
4304 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4305 return MAX (1, ((int) bitwidth
4306 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4307#endif
4308 break;
4309
4310 case CONST_INT:
4311 /* If the constant is negative, take its 1's complement and remask.
4312 Then see how many zero bits we have. */
4313 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4314 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4315 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4316 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4317
4318 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4319
4320 case SUBREG:
4321 /* If this is a SUBREG for a promoted object that is sign-extended
4322 and we are looking at it in a wider mode, we know that at least the
4323 high-order bits are known to be sign bit copies. */
4324
4325 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4326 {
4327 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4328 known_x, known_mode, known_ret);
4329 return MAX ((int) bitwidth
4330 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4331 num0);
4332 }
4333
4334 /* For a smaller object, just ignore the high bits. */
4335 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4336 {
4337 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4338 known_x, known_mode, known_ret);
4339 return MAX (1, (num0
4340 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4341 - bitwidth)));
4342 }
4343
4344#ifdef WORD_REGISTER_OPERATIONS
4345#ifdef LOAD_EXTEND_OP
4346 /* For paradoxical SUBREGs on machines where all register operations
4347 affect the entire register, just look inside. Note that we are
4348 passing MODE to the recursive call, so the number of sign bit copies
4349 will remain relative to that mode, not the inner mode. */
4350
4351 /* This works only if loads sign extend. Otherwise, if we get a
4352 reload for the inner part, it may be loaded from the stack, and
4353 then we lose all sign bit copies that existed before the store
4354 to the stack. */
4355
4356 if ((GET_MODE_SIZE (GET_MODE (x))
4357 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4358 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3c0cb5de 4359 && MEM_P (SUBREG_REG (x)))
2f93eea8
PB
4360 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4361 known_x, known_mode, known_ret);
4362#endif
4363#endif
4364 break;
4365
4366 case SIGN_EXTRACT:
481683e1 4367 if (CONST_INT_P (XEXP (x, 1)))
2f93eea8
PB
4368 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4369 break;
4370
4371 case SIGN_EXTEND:
4372 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4373 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4374 known_x, known_mode, known_ret));
4375
4376 case TRUNCATE:
4377 /* For a smaller object, just ignore the high bits. */
4378 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4379 known_x, known_mode, known_ret);
4380 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4381 - bitwidth)));
4382
4383 case NOT:
4384 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4385 known_x, known_mode, known_ret);
4386
4387 case ROTATE: case ROTATERT:
4388 /* If we are rotating left by a number of bits less than the number
4389 of sign bit copies, we can just subtract that amount from the
4390 number. */
481683e1 4391 if (CONST_INT_P (XEXP (x, 1))
2f93eea8
PB
4392 && INTVAL (XEXP (x, 1)) >= 0
4393 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4394 {
4395 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4396 known_x, known_mode, known_ret);
4397 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4398 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4399 }
4400 break;
4401
4402 case NEG:
4403 /* In general, this subtracts one sign bit copy. But if the value
4404 is known to be positive, the number of sign bit copies is the
4405 same as that of the input. Finally, if the input has just one bit
4406 that might be nonzero, all the bits are copies of the sign bit. */
4407 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4408 known_x, known_mode, known_ret);
4409 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4410 return num0 > 1 ? num0 - 1 : 1;
4411
4412 nonzero = nonzero_bits (XEXP (x, 0), mode);
4413 if (nonzero == 1)
4414 return bitwidth;
4415
4416 if (num0 > 1
4417 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4418 num0--;
4419
4420 return num0;
4421
4422 case IOR: case AND: case XOR:
4423 case SMIN: case SMAX: case UMIN: case UMAX:
4424 /* Logical operations will preserve the number of sign-bit copies.
4425 MIN and MAX operations always return one of the operands. */
4426 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4427 known_x, known_mode, known_ret);
4428 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4429 known_x, known_mode, known_ret);
22761ec3
AN
4430
4431 /* If num1 is clearing some of the top bits then regardless of
4432 the other term, we are guaranteed to have at least that many
4433 high-order zero bits. */
4434 if (code == AND
4435 && num1 > 1
4436 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4437 && CONST_INT_P (XEXP (x, 1))
22761ec3
AN
4438 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4439 return num1;
4440
4441 /* Similarly for IOR when setting high-order bits. */
4442 if (code == IOR
4443 && num1 > 1
4444 && bitwidth <= HOST_BITS_PER_WIDE_INT
481683e1 4445 && CONST_INT_P (XEXP (x, 1))
22761ec3
AN
4446 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4447 return num1;
4448
2f93eea8
PB
4449 return MIN (num0, num1);
4450
4451 case PLUS: case MINUS:
4452 /* For addition and subtraction, we can have a 1-bit carry. However,
4453 if we are subtracting 1 from a positive number, there will not
4454 be such a carry. Furthermore, if the positive number is known to
4455 be 0 or 1, we know the result is either -1 or 0. */
4456
4457 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4458 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4459 {
4460 nonzero = nonzero_bits (XEXP (x, 0), mode);
4461 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4462 return (nonzero == 1 || nonzero == 0 ? bitwidth
4463 : bitwidth - floor_log2 (nonzero) - 1);
4464 }
4465
4466 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4467 known_x, known_mode, known_ret);
4468 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4469 known_x, known_mode, known_ret);
4470 result = MAX (1, MIN (num0, num1) - 1);
4471
4472#ifdef POINTERS_EXTEND_UNSIGNED
4473 /* If pointers extend signed and this is an addition or subtraction
4474 to a pointer in Pmode, all the bits above ptr_mode are known to be
4475 sign bit copies. */
d4ebfa65
BE
4476 /* As we do not know which address space the pointer is refering to,
4477 we can do this only if the target does not support different pointer
4478 or address modes depending on the address space. */
4479 if (target_default_pointer_address_modes_p ()
4480 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
2f93eea8 4481 && (code == PLUS || code == MINUS)
f8cfc6aa 4482 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
2f93eea8
PB
4483 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4484 - GET_MODE_BITSIZE (ptr_mode) + 1),
4485 result);
4486#endif
4487 return result;
4488
4489 case MULT:
4490 /* The number of bits of the product is the sum of the number of
4491 bits of both terms. However, unless one of the terms if known
4492 to be positive, we must allow for an additional bit since negating
4493 a negative number can remove one sign bit copy. */
4494
4495 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4496 known_x, known_mode, known_ret);
4497 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4498 known_x, known_mode, known_ret);
4499
4500 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4501 if (result > 0
4502 && (bitwidth > HOST_BITS_PER_WIDE_INT
4503 || (((nonzero_bits (XEXP (x, 0), mode)
4504 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4505 && ((nonzero_bits (XEXP (x, 1), mode)
4506 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4507 result--;
4508
4509 return MAX (1, result);
4510
4511 case UDIV:
4512 /* The result must be <= the first operand. If the first operand
4513 has the high bit set, we know nothing about the number of sign
4514 bit copies. */
4515 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4516 return 1;
4517 else if ((nonzero_bits (XEXP (x, 0), mode)
4518 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4519 return 1;
4520 else
4521 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4522 known_x, known_mode, known_ret);
4523
4524 case UMOD:
24d179b4
JJ
4525 /* The result must be <= the second operand. If the second operand
4526 has (or just might have) the high bit set, we know nothing about
4527 the number of sign bit copies. */
4528 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4529 return 1;
4530 else if ((nonzero_bits (XEXP (x, 1), mode)
4531 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4532 return 1;
4533 else
4534 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
2f93eea8
PB
4535 known_x, known_mode, known_ret);
4536
4537 case DIV:
4538 /* Similar to unsigned division, except that we have to worry about
4539 the case where the divisor is negative, in which case we have
4540 to add 1. */
4541 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4542 known_x, known_mode, known_ret);
4543 if (result > 1
4544 && (bitwidth > HOST_BITS_PER_WIDE_INT
4545 || (nonzero_bits (XEXP (x, 1), mode)
4546 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4547 result--;
4548
4549 return result;
4550
4551 case MOD:
4552 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4553 known_x, known_mode, known_ret);
4554 if (result > 1
4555 && (bitwidth > HOST_BITS_PER_WIDE_INT
4556 || (nonzero_bits (XEXP (x, 1), mode)
4557 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4558 result--;
4559
4560 return result;
4561
4562 case ASHIFTRT:
4563 /* Shifts by a constant add to the number of bits equal to the
4564 sign bit. */
4565 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4566 known_x, known_mode, known_ret);
481683e1 4567 if (CONST_INT_P (XEXP (x, 1))
39b2ac74
JJ
4568 && INTVAL (XEXP (x, 1)) > 0
4569 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
2f93eea8
PB
4570 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4571
4572 return num0;
4573
4574 case ASHIFT:
4575 /* Left shifts destroy copies. */
481683e1 4576 if (!CONST_INT_P (XEXP (x, 1))
2f93eea8 4577 || INTVAL (XEXP (x, 1)) < 0
39b2ac74
JJ
4578 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4579 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
2f93eea8
PB
4580 return 1;
4581
4582 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4583 known_x, known_mode, known_ret);
4584 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4585
4586 case IF_THEN_ELSE:
4587 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4588 known_x, known_mode, known_ret);
4589 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4590 known_x, known_mode, known_ret);
4591 return MIN (num0, num1);
4592
4593 case EQ: case NE: case GE: case GT: case LE: case LT:
4594 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4595 case GEU: case GTU: case LEU: case LTU:
4596 case UNORDERED: case ORDERED:
4597 /* If the constant is negative, take its 1's complement and remask.
4598 Then see how many zero bits we have. */
4599 nonzero = STORE_FLAG_VALUE;
4600 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4601 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4602 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4603
4604 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4605
4606 default:
4607 break;
4608 }
4609
4610 /* If we haven't been able to figure it out by one of the above rules,
4611 see if some of the high-order bits are known to be zero. If so,
4612 count those bits and return one less than that amount. If we can't
4613 safely compute the mask for this mode, always return BITWIDTH. */
4614
4615 bitwidth = GET_MODE_BITSIZE (mode);
4616 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4617 return 1;
4618
4619 nonzero = nonzero_bits (x, mode);
4620 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4621 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4622}
6fd21094
RS
4623
4624/* Calculate the rtx_cost of a single instruction. A return value of
4625 zero indicates an instruction pattern without a known cost. */
4626
4627int
f40751dd 4628insn_rtx_cost (rtx pat, bool speed)
6fd21094
RS
4629{
4630 int i, cost;
4631 rtx set;
4632
4633 /* Extract the single set rtx from the instruction pattern.
4634 We can't use single_set since we only have the pattern. */
4635 if (GET_CODE (pat) == SET)
4636 set = pat;
4637 else if (GET_CODE (pat) == PARALLEL)
4638 {
4639 set = NULL_RTX;
4640 for (i = 0; i < XVECLEN (pat, 0); i++)
4641 {
4642 rtx x = XVECEXP (pat, 0, i);
4643 if (GET_CODE (x) == SET)
4644 {
4645 if (set)
4646 return 0;
4647 set = x;
4648 }
4649 }
4650 if (!set)
4651 return 0;
4652 }
4653 else
4654 return 0;
4655
f40751dd 4656 cost = rtx_cost (SET_SRC (set), SET, speed);
6fd21094
RS
4657 return cost > 0 ? cost : COSTS_N_INSNS (1);
4658}
75473b02
SB
4659
4660/* Given an insn INSN and condition COND, return the condition in a
4661 canonical form to simplify testing by callers. Specifically:
4662
4663 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4664 (2) Both operands will be machine operands; (cc0) will have been replaced.
4665 (3) If an operand is a constant, it will be the second operand.
4666 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4667 for GE, GEU, and LEU.
4668
4669 If the condition cannot be understood, or is an inequality floating-point
4670 comparison which needs to be reversed, 0 will be returned.
4671
4672 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4673
4674 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4675 insn used in locating the condition was found. If a replacement test
4676 of the condition is desired, it should be placed in front of that
4677 insn and we will be sure that the inputs are still valid.
4678
4679 If WANT_REG is nonzero, we wish the condition to be relative to that
4680 register, if possible. Therefore, do not canonicalize the condition
4681 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4682 to be a compare to a CC mode register.
4683
4684 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4685 and at INSN. */
4686
4687rtx
4688canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4689 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4690{
4691 enum rtx_code code;
4692 rtx prev = insn;
f7d504c2 4693 const_rtx set;
75473b02
SB
4694 rtx tem;
4695 rtx op0, op1;
4696 int reverse_code = 0;
4697 enum machine_mode mode;
569f8d98 4698 basic_block bb = BLOCK_FOR_INSN (insn);
75473b02
SB
4699
4700 code = GET_CODE (cond);
4701 mode = GET_MODE (cond);
4702 op0 = XEXP (cond, 0);
4703 op1 = XEXP (cond, 1);
4704
4705 if (reverse)
4706 code = reversed_comparison_code (cond, insn);
4707 if (code == UNKNOWN)
4708 return 0;
4709
4710 if (earliest)
4711 *earliest = insn;
4712
4713 /* If we are comparing a register with zero, see if the register is set
4714 in the previous insn to a COMPARE or a comparison operation. Perform
4715 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4716 in cse.c */
4717
4718 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4719 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4720 && op1 == CONST0_RTX (GET_MODE (op0))
4721 && op0 != want_reg)
4722 {
4723 /* Set nonzero when we find something of interest. */
4724 rtx x = 0;
4725
4726#ifdef HAVE_cc0
4727 /* If comparison with cc0, import actual comparison from compare
4728 insn. */
4729 if (op0 == cc0_rtx)
4730 {
4731 if ((prev = prev_nonnote_insn (prev)) == 0
4732 || !NONJUMP_INSN_P (prev)
4733 || (set = single_set (prev)) == 0
4734 || SET_DEST (set) != cc0_rtx)
4735 return 0;
4736
4737 op0 = SET_SRC (set);
4738 op1 = CONST0_RTX (GET_MODE (op0));
4739 if (earliest)
4740 *earliest = prev;
4741 }
4742#endif
4743
4744 /* If this is a COMPARE, pick up the two things being compared. */
4745 if (GET_CODE (op0) == COMPARE)
4746 {
4747 op1 = XEXP (op0, 1);
4748 op0 = XEXP (op0, 0);
4749 continue;
4750 }
4751 else if (!REG_P (op0))
4752 break;
4753
4754 /* Go back to the previous insn. Stop if it is not an INSN. We also
4755 stop if it isn't a single set or if it has a REG_INC note because
4756 we don't want to bother dealing with it. */
4757
b5b8b0ac
AO
4758 do
4759 prev = prev_nonnote_insn (prev);
4760 while (prev && DEBUG_INSN_P (prev));
4761
4762 if (prev == 0
75473b02 4763 || !NONJUMP_INSN_P (prev)
569f8d98
ZD
4764 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4765 /* In cfglayout mode, there do not have to be labels at the
4766 beginning of a block, or jumps at the end, so the previous
4767 conditions would not stop us when we reach bb boundary. */
4768 || BLOCK_FOR_INSN (prev) != bb)
75473b02
SB
4769 break;
4770
4771 set = set_of (op0, prev);
4772
4773 if (set
4774 && (GET_CODE (set) != SET
4775 || !rtx_equal_p (SET_DEST (set), op0)))
4776 break;
4777
4778 /* If this is setting OP0, get what it sets it to if it looks
4779 relevant. */
4780 if (set)
4781 {
4782 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4783#ifdef FLOAT_STORE_FLAG_VALUE
4784 REAL_VALUE_TYPE fsfv;
4785#endif
4786
4787 /* ??? We may not combine comparisons done in a CCmode with
4788 comparisons not done in a CCmode. This is to aid targets
4789 like Alpha that have an IEEE compliant EQ instruction, and
4790 a non-IEEE compliant BEQ instruction. The use of CCmode is
4791 actually artificial, simply to prevent the combination, but
4792 should not affect other platforms.
4793
4794 However, we must allow VOIDmode comparisons to match either
4795 CCmode or non-CCmode comparison, because some ports have
4796 modeless comparisons inside branch patterns.
4797
4798 ??? This mode check should perhaps look more like the mode check
4799 in simplify_comparison in combine. */
4800
4801 if ((GET_CODE (SET_SRC (set)) == COMPARE
4802 || (((code == NE
4803 || (code == LT
4804 && GET_MODE_CLASS (inner_mode) == MODE_INT
4805 && (GET_MODE_BITSIZE (inner_mode)
4806 <= HOST_BITS_PER_WIDE_INT)
4807 && (STORE_FLAG_VALUE
4808 & ((HOST_WIDE_INT) 1
4809 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4810#ifdef FLOAT_STORE_FLAG_VALUE
4811 || (code == LT
3d8bf70f 4812 && SCALAR_FLOAT_MODE_P (inner_mode)
75473b02
SB
4813 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4814 REAL_VALUE_NEGATIVE (fsfv)))
4815#endif
4816 ))
4817 && COMPARISON_P (SET_SRC (set))))
4818 && (((GET_MODE_CLASS (mode) == MODE_CC)
4819 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4820 || mode == VOIDmode || inner_mode == VOIDmode))
4821 x = SET_SRC (set);
4822 else if (((code == EQ
4823 || (code == GE
4824 && (GET_MODE_BITSIZE (inner_mode)
4825 <= HOST_BITS_PER_WIDE_INT)
4826 && GET_MODE_CLASS (inner_mode) == MODE_INT
4827 && (STORE_FLAG_VALUE
4828 & ((HOST_WIDE_INT) 1
4829 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4830#ifdef FLOAT_STORE_FLAG_VALUE
4831 || (code == GE
3d8bf70f 4832 && SCALAR_FLOAT_MODE_P (inner_mode)
75473b02
SB
4833 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4834 REAL_VALUE_NEGATIVE (fsfv)))
4835#endif
4836 ))
4837 && COMPARISON_P (SET_SRC (set))
4838 && (((GET_MODE_CLASS (mode) == MODE_CC)
4839 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4840 || mode == VOIDmode || inner_mode == VOIDmode))
4841
4842 {
4843 reverse_code = 1;
4844 x = SET_SRC (set);
4845 }
4846 else
4847 break;
4848 }
4849
4850 else if (reg_set_p (op0, prev))
4851 /* If this sets OP0, but not directly, we have to give up. */
4852 break;
4853
4854 if (x)
4855 {
4856 /* If the caller is expecting the condition to be valid at INSN,
4857 make sure X doesn't change before INSN. */
4858 if (valid_at_insn_p)
4859 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4860 break;
4861 if (COMPARISON_P (x))
4862 code = GET_CODE (x);
4863 if (reverse_code)
4864 {
4865 code = reversed_comparison_code (x, prev);
4866 if (code == UNKNOWN)
4867 return 0;
4868 reverse_code = 0;
4869 }
4870
4871 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4872 if (earliest)
4873 *earliest = prev;
4874 }
4875 }
4876
4877 /* If constant is first, put it last. */
4878 if (CONSTANT_P (op0))
4879 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4880
4881 /* If OP0 is the result of a comparison, we weren't able to find what
4882 was really being compared, so fail. */
4883 if (!allow_cc_mode
4884 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4885 return 0;
4886
4887 /* Canonicalize any ordered comparison with integers involving equality
4888 if we can do computations in the relevant mode and we do not
4889 overflow. */
4890
4891 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
481683e1 4892 && CONST_INT_P (op1)
75473b02
SB
4893 && GET_MODE (op0) != VOIDmode
4894 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4895 {
4896 HOST_WIDE_INT const_val = INTVAL (op1);
4897 unsigned HOST_WIDE_INT uconst_val = const_val;
4898 unsigned HOST_WIDE_INT max_val
4899 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4900
4901 switch (code)
4902 {
4903 case LE:
4904 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4905 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4906 break;
4907
4908 /* When cross-compiling, const_val might be sign-extended from
4909 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4910 case GE:
4911 if ((HOST_WIDE_INT) (const_val & max_val)
4912 != (((HOST_WIDE_INT) 1
4913 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4914 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4915 break;
4916
4917 case LEU:
4918 if (uconst_val < max_val)
4919 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4920 break;
4921
4922 case GEU:
4923 if (uconst_val != 0)
4924 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4925 break;
4926
4927 default:
4928 break;
4929 }
4930 }
4931
4932 /* Never return CC0; return zero instead. */
4933 if (CC0_P (op0))
4934 return 0;
4935
4936 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4937}
4938
4939/* Given a jump insn JUMP, return the condition that will cause it to branch
4940 to its JUMP_LABEL. If the condition cannot be understood, or is an
4941 inequality floating-point comparison which needs to be reversed, 0 will
4942 be returned.
4943
4944 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4945 insn used in locating the condition was found. If a replacement test
4946 of the condition is desired, it should be placed in front of that
4947 insn and we will be sure that the inputs are still valid. If EARLIEST
4948 is null, the returned condition will be valid at INSN.
4949
4950 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4951 compare CC mode register.
4952
4953 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4954
4955rtx
4956get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4957{
4958 rtx cond;
4959 int reverse;
4960 rtx set;
4961
4962 /* If this is not a standard conditional jump, we can't parse it. */
4963 if (!JUMP_P (jump)
4964 || ! any_condjump_p (jump))
4965 return 0;
4966 set = pc_set (jump);
4967
4968 cond = XEXP (SET_SRC (set), 0);
4969
4970 /* If this branches to JUMP_LABEL when the condition is false, reverse
4971 the condition. */
4972 reverse
4973 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4974 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4975
4976 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4977 allow_cc_mode, valid_at_insn_p);
4978}
4979
b12cbf2c
AN
4980/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4981 TARGET_MODE_REP_EXTENDED.
4982
4983 Note that we assume that the property of
4984 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4985 narrower than mode B. I.e., if A is a mode narrower than B then in
4986 order to be able to operate on it in mode B, mode A needs to
4987 satisfy the requirements set by the representation of mode B. */
4988
4989static void
4990init_num_sign_bit_copies_in_rep (void)
4991{
4992 enum machine_mode mode, in_mode;
4993
4994 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4995 in_mode = GET_MODE_WIDER_MODE (mode))
4996 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4997 mode = GET_MODE_WIDER_MODE (mode))
4998 {
4999 enum machine_mode i;
5000
5001 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5002 extends to the next widest mode. */
5003 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5004 || GET_MODE_WIDER_MODE (mode) == in_mode);
5005
5006 /* We are in in_mode. Count how many bits outside of mode
5007 have to be copies of the sign-bit. */
5008 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5009 {
5010 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5011
5012 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5013 /* We can only check sign-bit copies starting from the
5014 top-bit. In order to be able to check the bits we
5015 have already seen we pretend that subsequent bits
5016 have to be sign-bit copies too. */
5017 || num_sign_bit_copies_in_rep [in_mode][mode])
5018 num_sign_bit_copies_in_rep [in_mode][mode]
5019 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5020 }
5021 }
5022}
5023
d3b72690
PB
5024/* Suppose that truncation from the machine mode of X to MODE is not a
5025 no-op. See if there is anything special about X so that we can
5026 assume it already contains a truncated value of MODE. */
5027
5028bool
fa233e34 5029truncated_to_mode (enum machine_mode mode, const_rtx x)
d3b72690 5030{
b12cbf2c
AN
5031 /* This register has already been used in MODE without explicit
5032 truncation. */
5033 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5034 return true;
5035
5036 /* See if we already satisfy the requirements of MODE. If yes we
5037 can just switch to MODE. */
5038 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5039 && (num_sign_bit_copies (x, GET_MODE (x))
5040 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5041 return true;
d3b72690 5042
b12cbf2c
AN
5043 return false;
5044}
cf94b0fc
PB
5045\f
5046/* Initialize non_rtx_starting_operands, which is used to speed up
5047 for_each_rtx. */
5048void
5049init_rtlanal (void)
5050{
5051 int i;
5052 for (i = 0; i < NUM_RTX_CODE; i++)
5053 {
5054 const char *format = GET_RTX_FORMAT (i);
5055 const char *first = strpbrk (format, "eEV");
5056 non_rtx_starting_operands[i] = first ? first - format : -1;
5057 }
b12cbf2c
AN
5058
5059 init_num_sign_bit_copies_in_rep ();
cf94b0fc 5060}
3d8504ac
RS
5061\f
5062/* Check whether this is a constant pool constant. */
5063bool
5064constant_pool_constant_p (rtx x)
5065{
5066 x = avoid_constant_pool_reference (x);
5067 return GET_CODE (x) == CONST_DOUBLE;
5068}
842e098c
AN
5069\f
5070/* If M is a bitmask that selects a field of low-order bits within an item but
5071 not the entire word, return the length of the field. Return -1 otherwise.
5072 M is used in machine mode MODE. */
5073
5074int
5075low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5076{
5077 if (mode != VOIDmode)
5078 {
5079 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5080 return -1;
5081 m &= GET_MODE_MASK (mode);
5082 }
5083
5084 return exact_log2 (m + 1);
5085}