]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/rtlanal.c
2015-06-04 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / rtlanal.c
CommitLineData
62d6a022 1/* Analyze RTL for GNU compiler.
d353bf18 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
635aff97 3
f12b58b3 4This file is part of GCC.
635aff97 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
635aff97 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
635aff97 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
635aff97 19
20
21#include "config.h"
405711de 22#include "system.h"
805e22b2 23#include "coretypes.h"
24#include "tm.h"
0b205f4c 25#include "diagnostic-core.h"
b8011969 26#include "hard-reg-set.h"
b2528b76 27#include "rtl.h"
aee989f5 28#include "insn-config.h"
29#include "recog.h"
26619827 30#include "target.h"
31#include "output.h"
77ec0c64 32#include "tm_p.h"
350b17ef 33#include "flags.h"
67d6c12b 34#include "regs.h"
a3020f2f 35#include "hashtab.h"
36#include "hash-set.h"
37#include "vec.h"
a3020f2f 38#include "input.h"
d263732c 39#include "function.h"
94ea8568 40#include "predict.h"
41#include "basic-block.h"
3072d30e 42#include "df.h"
b20a8bb4 43#include "symtab.h"
b20a8bb4 44#include "inchash.h"
e0ab7256 45#include "tree.h"
06f9d6ef 46#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
1efe9e9d 47#include "addresses.h"
69924e56 48#include "rtl-iter.h"
635aff97 49
99b86c05 50/* Forward declarations */
81a410b1 51static void set_of_1 (rtx, const_rtx, void *);
dd9b9fc5 52static bool covers_regno_p (const_rtx, unsigned int);
53static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
dd9b9fc5 54static int computed_jump_p_1 (const_rtx);
81a410b1 55static void parms_set (rtx, const_rtx, void *);
ca6d6e84 56
3754d046 57static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
58 const_rtx, machine_mode,
d263732c 59 unsigned HOST_WIDE_INT);
3754d046 60static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
61 const_rtx, machine_mode,
d263732c 62 unsigned HOST_WIDE_INT);
3754d046 63static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
64 machine_mode,
d263732c 65 unsigned int);
3754d046 66static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
67 machine_mode, unsigned int);
d263732c 68
69924e56 69rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
70rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
71
4956440a 72/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
76
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
84
85static unsigned int
86num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
635aff97 87\f
69924e56 88/* Store X into index I of ARRAY. ARRAY is known to have at least I
89 elements. Return the new base of ARRAY. */
90
91template <typename T>
92typename T::value_type *
93generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
94 value_type *base,
95 size_t i, value_type x)
96{
97 if (base == array.stack)
98 {
99 if (i < LOCAL_ELEMS)
100 {
101 base[i] = x;
102 return base;
103 }
104 gcc_checking_assert (i == LOCAL_ELEMS);
4f7f3b39 105 /* A previous iteration might also have moved from the stack to the
106 heap, in which case the heap array will already be big enough. */
107 if (vec_safe_length (array.heap) <= i)
108 vec_safe_grow (array.heap, i + 1);
69924e56 109 base = array.heap->address ();
110 memcpy (base, array.stack, sizeof (array.stack));
111 base[LOCAL_ELEMS] = x;
112 return base;
113 }
114 unsigned int length = array.heap->length ();
115 if (length > i)
116 {
117 gcc_checking_assert (base == array.heap->address ());
118 base[i] = x;
119 return base;
120 }
121 else
122 {
123 gcc_checking_assert (i == length);
124 vec_safe_push (array.heap, x);
125 return array.heap->address ();
126 }
127}
128
129/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
130 number of elements added to the worklist. */
131
132template <typename T>
133size_t
134generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
135 value_type *base,
136 size_t end, rtx_type x)
137{
e43f6e8c 138 enum rtx_code code = GET_CODE (x);
139 const char *format = GET_RTX_FORMAT (code);
69924e56 140 size_t orig_end = end;
e43f6e8c 141 if (__builtin_expect (INSN_P (x), false))
142 {
143 /* Put the pattern at the top of the queue, since that's what
144 we're likely to want most. It also allows for the SEQUENCE
145 code below. */
146 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
147 if (format[i] == 'e')
148 {
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
154 }
155 }
156 else
157 for (int i = 0; format[i]; ++i)
158 if (format[i] == 'e')
159 {
160 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
161 if (__builtin_expect (end < LOCAL_ELEMS, true))
162 base[end++] = subx;
163 else
164 base = add_single_to_queue (array, base, end++, subx);
165 }
166 else if (format[i] == 'E')
167 {
168 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
169 rtx *vec = x->u.fld[i].rt_rtvec->elem;
170 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
171 for (unsigned int j = 0; j < length; j++)
172 base[end++] = T::get_value (vec[j]);
173 else
174 for (unsigned int j = 0; j < length; j++)
175 base = add_single_to_queue (array, base, end++,
176 T::get_value (vec[j]));
177 if (code == SEQUENCE && end == length)
178 /* If the subrtxes of the sequence fill the entire array then
179 we know that no other parts of a containing insn are queued.
180 The caller is therefore iterating over the sequence as a
181 PATTERN (...), so we also want the patterns of the
182 subinstructions. */
183 for (unsigned int j = 0; j < length; j++)
184 {
185 typename T::rtx_type x = T::get_rtx (base[j]);
186 if (INSN_P (x))
187 base[j] = T::get_value (PATTERN (x));
188 }
189 }
69924e56 190 return end - orig_end;
191}
192
193template <typename T>
194void
195generic_subrtx_iterator <T>::free_array (array_type &array)
196{
197 vec_free (array.heap);
198}
199
200template <typename T>
201const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
202
203template class generic_subrtx_iterator <const_rtx_accessor>;
204template class generic_subrtx_iterator <rtx_var_accessor>;
205template class generic_subrtx_iterator <rtx_ptr_accessor>;
206
635aff97 207/* Return 1 if the value of X is unstable
208 (would be different at a different point in the program).
209 The frame pointer, arg pointer, etc. are considered stable
210 (within one function) and so is anything marked `unchanging'. */
211
212int
dd9b9fc5 213rtx_unstable_p (const_rtx x)
635aff97 214{
dd9b9fc5 215 const RTX_CODE code = GET_CODE (x);
19cb6b50 216 int i;
217 const char *fmt;
635aff97 218
a3c6603a 219 switch (code)
220 {
221 case MEM:
b04fab2a 222 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
635aff97 223
a3c6603a 224 case CONST:
0349edce 225 CASE_CONST_ANY:
a3c6603a 226 case SYMBOL_REF:
227 case LABEL_REF:
228 return 0;
635aff97 229
a3c6603a 230 case REG:
231 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
d9c8e13d 232 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
b8011969 233 /* The arg pointer varies if it is not a fixed register. */
b04fab2a 234 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
d9c8e13d 235 return 0;
d9c8e13d 236 /* ??? When call-clobbered, the value is stable modulo the restore
237 that must happen after a call. This currently screws up local-alloc
238 into believing that the restore is not needed. */
260e669e 239 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
d9c8e13d 240 return 0;
d9c8e13d 241 return 1;
a3c6603a 242
243 case ASM_OPERANDS:
244 if (MEM_VOLATILE_P (x))
245 return 1;
246
d632b59a 247 /* Fall through. */
a3c6603a 248
249 default:
250 break;
251 }
635aff97 252
253 fmt = GET_RTX_FORMAT (code);
254 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
255 if (fmt[i] == 'e')
cac0c8c9 256 {
257 if (rtx_unstable_p (XEXP (x, i)))
258 return 1;
259 }
260 else if (fmt[i] == 'E')
261 {
262 int j;
263 for (j = 0; j < XVECLEN (x, i); j++)
264 if (rtx_unstable_p (XVECEXP (x, i, j)))
265 return 1;
266 }
267
635aff97 268 return 0;
269}
270
271/* Return 1 if X has a value that can vary even between two
272 executions of the program. 0 means X can be compared reliably
273 against certain constants or near-constants.
ea087693 274 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
275 zero, we are slightly more conservative.
635aff97 276 The frame pointer and the arg pointer are considered constant. */
277
52d07779 278bool
279rtx_varies_p (const_rtx x, bool for_alias)
635aff97 280{
70f5822c 281 RTX_CODE code;
19cb6b50 282 int i;
283 const char *fmt;
635aff97 284
70f5822c 285 if (!x)
286 return 0;
287
288 code = GET_CODE (x);
635aff97 289 switch (code)
290 {
291 case MEM:
b04fab2a 292 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
002fe3cb 293
635aff97 294 case CONST:
0349edce 295 CASE_CONST_ANY:
635aff97 296 case SYMBOL_REF:
297 case LABEL_REF:
298 return 0;
299
300 case REG:
301 /* Note that we have to test for the actual rtx used for the frame
302 and arg pointers and not just the register number in case we have
303 eliminated the frame and/or arg pointer and are using it
304 for pseudos. */
d9c8e13d 305 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
b8011969 306 /* The arg pointer varies if it is not a fixed register. */
307 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
d9c8e13d 308 return 0;
ea087693 309 if (x == pic_offset_table_rtx
ea087693 310 /* ??? When call-clobbered, the value is stable modulo the restore
311 that must happen after a call. This currently screws up
312 local-alloc into believing that the restore is not needed, so we
313 must return 0 only if we are called from alias analysis. */
260e669e 314 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
ea087693 315 return 0;
d9c8e13d 316 return 1;
635aff97 317
318 case LO_SUM:
319 /* The operand 0 of a LO_SUM is considered constant
f7cd7994 320 (in fact it is related specifically to operand 1)
321 during alias analysis. */
322 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
323 || rtx_varies_p (XEXP (x, 1), for_alias);
2617fe26 324
a3c6603a 325 case ASM_OPERANDS:
326 if (MEM_VOLATILE_P (x))
327 return 1;
328
d632b59a 329 /* Fall through. */
a3c6603a 330
0dbd1c74 331 default:
332 break;
635aff97 333 }
334
335 fmt = GET_RTX_FORMAT (code);
336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
337 if (fmt[i] == 'e')
cac0c8c9 338 {
ea087693 339 if (rtx_varies_p (XEXP (x, i), for_alias))
cac0c8c9 340 return 1;
341 }
342 else if (fmt[i] == 'E')
343 {
344 int j;
345 for (j = 0; j < XVECLEN (x, i); j++)
ea087693 346 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
cac0c8c9 347 return 1;
348 }
349
635aff97 350 return 0;
351}
352
be8108ee 353/* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
354 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
355 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
356 references on strict alignment machines. */
635aff97 357
1aecae7f 358static int
0eee494e 359rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
3754d046 360 machine_mode mode, bool unaligned_mems)
635aff97 361{
19cb6b50 362 enum rtx_code code = GET_CODE (x);
635aff97 363
be8108ee 364 /* The offset must be a multiple of the mode size if we are considering
365 unaligned memory references on strict alignment machines. */
366 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
0eee494e 367 {
368 HOST_WIDE_INT actual_offset = offset;
be8108ee 369
0eee494e 370#ifdef SPARC_STACK_BOUNDARY_HACK
371 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
372 the real alignment of %sp. However, when it does this, the
373 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
374 if (SPARC_STACK_BOUNDARY_HACK
375 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
376 actual_offset -= STACK_POINTER_OFFSET;
377#endif
378
99e9b19f 379 if (actual_offset % GET_MODE_SIZE (mode) != 0)
380 return 1;
0eee494e 381 }
382
635aff97 383 switch (code)
384 {
385 case SYMBOL_REF:
0eee494e 386 if (SYMBOL_REF_WEAK (x))
387 return 1;
388 if (!CONSTANT_POOL_ADDRESS_P (x))
389 {
390 tree decl;
391 HOST_WIDE_INT decl_size;
392
393 if (offset < 0)
394 return 1;
395 if (size == 0)
396 size = GET_MODE_SIZE (mode);
397 if (size == 0)
398 return offset != 0;
399
400 /* If the size of the access or of the symbol is unknown,
401 assume the worst. */
402 decl = SYMBOL_REF_DECL (x);
403
404 /* Else check that the access is in bounds. TODO: restructure
92ddcd97 405 expr_size/tree_expr_size/int_expr_size and just use the latter. */
0eee494e 406 if (!decl)
407 decl_size = -1;
408 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
e913b5cd 409 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
410 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
0eee494e 411 : -1);
412 else if (TREE_CODE (decl) == STRING_CST)
413 decl_size = TREE_STRING_LENGTH (decl);
414 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
415 decl_size = int_size_in_bytes (TREE_TYPE (decl));
416 else
417 decl_size = -1;
418
419 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
420 }
421
422 return 0;
67f79732 423
635aff97 424 case LABEL_REF:
635aff97 425 return 0;
426
427 case REG:
be8108ee 428 /* Stack references are assumed not to trap, but we need to deal with
429 nonsensical offsets. */
430 if (x == frame_pointer_rtx)
431 {
432 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
433 if (size == 0)
434 size = GET_MODE_SIZE (mode);
435 if (FRAME_GROWS_DOWNWARD)
436 {
437 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
438 return 1;
439 }
440 else
441 {
442 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
443 return 1;
444 }
445 return 0;
446 }
447 /* ??? Need to add a similar guard for nonsensical offsets. */
448 if (x == hard_frame_pointer_rtx
c0c2b734 449 || x == stack_pointer_rtx
450 /* The arg pointer varies if it is not a fixed register. */
451 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
452 return 0;
453 /* All of the virtual frame registers are stack references. */
454 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
455 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
456 return 0;
457 return 1;
635aff97 458
459 case CONST:
0eee494e 460 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
461 mode, unaligned_mems);
635aff97 462
463 case PLUS:
1aecae7f 464 /* An address is assumed not to trap if:
0eee494e 465 - it is the pic register plus a constant. */
466 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
467 return 0;
468
be8108ee 469 /* - or it is an address that can't trap plus a constant integer. */
971ba038 470 if (CONST_INT_P (XEXP (x, 1))
0eee494e 471 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
472 size, mode, unaligned_mems))
1aecae7f 473 return 0;
474
475 return 1;
635aff97 476
477 case LO_SUM:
c0c2b734 478 case PRE_MODIFY:
0eee494e 479 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
480 mode, unaligned_mems);
c0c2b734 481
482 case PRE_DEC:
483 case PRE_INC:
484 case POST_DEC:
485 case POST_INC:
486 case POST_MODIFY:
0eee494e 487 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
488 mode, unaligned_mems);
c0c2b734 489
0dbd1c74 490 default:
491 break;
635aff97 492 }
493
494 /* If it isn't one of the case above, it can cause a trap. */
495 return 1;
496}
497
1aecae7f 498/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
499
500int
dd9b9fc5 501rtx_addr_can_trap_p (const_rtx x)
1aecae7f 502{
0eee494e 503 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
1aecae7f 504}
505
805e22b2 506/* Return true if X is an address that is known to not be zero. */
507
508bool
dd9b9fc5 509nonzero_address_p (const_rtx x)
805e22b2 510{
dd9b9fc5 511 const enum rtx_code code = GET_CODE (x);
805e22b2 512
513 switch (code)
514 {
515 case SYMBOL_REF:
516 return !SYMBOL_REF_WEAK (x);
517
518 case LABEL_REF:
519 return true;
520
805e22b2 521 case REG:
522 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
523 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
524 || x == stack_pointer_rtx
525 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
526 return true;
527 /* All of the virtual frame registers are stack references. */
528 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
529 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
530 return true;
531 return false;
532
533 case CONST:
534 return nonzero_address_p (XEXP (x, 0));
535
536 case PLUS:
805e22b2 537 /* Handle PIC references. */
f1c575eb 538 if (XEXP (x, 0) == pic_offset_table_rtx
805e22b2 539 && CONSTANT_P (XEXP (x, 1)))
540 return true;
541 return false;
542
543 case PRE_MODIFY:
544 /* Similar to the above; allow positive offsets. Further, since
545 auto-inc is only allowed in memories, the register must be a
546 pointer. */
971ba038 547 if (CONST_INT_P (XEXP (x, 1))
805e22b2 548 && INTVAL (XEXP (x, 1)) > 0)
549 return true;
550 return nonzero_address_p (XEXP (x, 0));
551
552 case PRE_INC:
553 /* Similarly. Further, the offset is always positive. */
554 return true;
555
556 case PRE_DEC:
557 case POST_DEC:
558 case POST_INC:
559 case POST_MODIFY:
560 return nonzero_address_p (XEXP (x, 0));
561
562 case LO_SUM:
563 return nonzero_address_p (XEXP (x, 1));
564
565 default:
566 break;
567 }
568
569 /* If it isn't one of the case above, might be zero. */
570 return false;
571}
572
2617fe26 573/* Return 1 if X refers to a memory location whose address
635aff97 574 cannot be compared reliably with constant addresses,
2617fe26 575 or if X refers to a BLKmode memory object.
ea087693 576 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
577 zero, we are slightly more conservative. */
635aff97 578
52d07779 579bool
580rtx_addr_varies_p (const_rtx x, bool for_alias)
635aff97 581{
19cb6b50 582 enum rtx_code code;
583 int i;
584 const char *fmt;
635aff97 585
586 if (x == 0)
587 return 0;
588
589 code = GET_CODE (x);
590 if (code == MEM)
ea087693 591 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
635aff97 592
593 fmt = GET_RTX_FORMAT (code);
594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
595 if (fmt[i] == 'e')
cbea2709 596 {
ea087693 597 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
cbea2709 598 return 1;
599 }
600 else if (fmt[i] == 'E')
601 {
602 int j;
603 for (j = 0; j < XVECLEN (x, i); j++)
ea087693 604 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
cbea2709 605 return 1;
606 }
635aff97 607 return 0;
608}
609\f
cf7fb72d 610/* Return the CALL in X if there is one. */
611
612rtx
613get_call_rtx_from (rtx x)
614{
615 if (INSN_P (x))
616 x = PATTERN (x);
617 if (GET_CODE (x) == PARALLEL)
618 x = XVECEXP (x, 0, 0);
619 if (GET_CODE (x) == SET)
620 x = SET_SRC (x);
621 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
622 return x;
623 return NULL_RTX;
624}
625\f
635aff97 626/* Return the value of the integer term in X, if one is apparent;
627 otherwise return 0.
628 Only obvious integer terms are detected.
04641143 629 This is used in cse.c with the `related_value' field. */
635aff97 630
d3115c90 631HOST_WIDE_INT
dd9b9fc5 632get_integer_term (const_rtx x)
635aff97 633{
634 if (GET_CODE (x) == CONST)
635 x = XEXP (x, 0);
636
637 if (GET_CODE (x) == MINUS
971ba038 638 && CONST_INT_P (XEXP (x, 1)))
635aff97 639 return - INTVAL (XEXP (x, 1));
640 if (GET_CODE (x) == PLUS
971ba038 641 && CONST_INT_P (XEXP (x, 1)))
635aff97 642 return INTVAL (XEXP (x, 1));
643 return 0;
644}
645
646/* If X is a constant, return the value sans apparent integer term;
647 otherwise return 0.
648 Only obvious integer terms are detected. */
649
650rtx
dd9b9fc5 651get_related_value (const_rtx x)
635aff97 652{
653 if (GET_CODE (x) != CONST)
654 return 0;
655 x = XEXP (x, 0);
656 if (GET_CODE (x) == PLUS
971ba038 657 && CONST_INT_P (XEXP (x, 1)))
635aff97 658 return XEXP (x, 0);
659 else if (GET_CODE (x) == MINUS
971ba038 660 && CONST_INT_P (XEXP (x, 1)))
635aff97 661 return XEXP (x, 0);
662 return 0;
663}
664\f
e0ab7256 665/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
666 to somewhere in the same object or object_block as SYMBOL. */
667
668bool
dd9b9fc5 669offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
e0ab7256 670{
671 tree decl;
672
673 if (GET_CODE (symbol) != SYMBOL_REF)
674 return false;
675
676 if (offset == 0)
677 return true;
678
679 if (offset > 0)
680 {
681 if (CONSTANT_POOL_ADDRESS_P (symbol)
682 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
683 return true;
684
685 decl = SYMBOL_REF_DECL (symbol);
686 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
687 return true;
688 }
689
690 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
691 && SYMBOL_REF_BLOCK (symbol)
692 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
693 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
694 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
695 return true;
696
697 return false;
698}
699
700/* Split X into a base and a constant offset, storing them in *BASE_OUT
701 and *OFFSET_OUT respectively. */
702
703void
704split_const (rtx x, rtx *base_out, rtx *offset_out)
705{
706 if (GET_CODE (x) == CONST)
707 {
708 x = XEXP (x, 0);
971ba038 709 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
e0ab7256 710 {
711 *base_out = XEXP (x, 0);
712 *offset_out = XEXP (x, 1);
713 return;
714 }
715 }
716 *base_out = x;
717 *offset_out = const0_rtx;
718}
719\f
40988080 720/* Return the number of places FIND appears within X. If COUNT_DEST is
721 zero, we do not count occurrences inside the destination of a SET. */
722
723int
dd9b9fc5 724count_occurrences (const_rtx x, const_rtx find, int count_dest)
40988080 725{
726 int i, j;
727 enum rtx_code code;
728 const char *format_ptr;
729 int count;
730
731 if (x == find)
732 return 1;
733
734 code = GET_CODE (x);
735
736 switch (code)
737 {
738 case REG:
0349edce 739 CASE_CONST_ANY:
40988080 740 case SYMBOL_REF:
741 case CODE_LABEL:
742 case PC:
743 case CC0:
744 return 0;
745
ac6a6c76 746 case EXPR_LIST:
747 count = count_occurrences (XEXP (x, 0), find, count_dest);
748 if (XEXP (x, 1))
749 count += count_occurrences (XEXP (x, 1), find, count_dest);
750 return count;
48e1416a 751
40988080 752 case MEM:
e16ceb8e 753 if (MEM_P (find) && rtx_equal_p (x, find))
40988080 754 return 1;
755 break;
756
757 case SET:
758 if (SET_DEST (x) == find && ! count_dest)
759 return count_occurrences (SET_SRC (x), find, count_dest);
760 break;
761
762 default:
763 break;
764 }
765
766 format_ptr = GET_RTX_FORMAT (code);
767 count = 0;
768
769 for (i = 0; i < GET_RTX_LENGTH (code); i++)
770 {
771 switch (*format_ptr++)
772 {
773 case 'e':
774 count += count_occurrences (XEXP (x, i), find, count_dest);
775 break;
776
777 case 'E':
778 for (j = 0; j < XVECLEN (x, i); j++)
779 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
780 break;
781 }
782 }
783 return count;
784}
3072d30e 785
0a98b6d9 786\f
787/* Return TRUE if OP is a register or subreg of a register that
788 holds an unsigned quantity. Otherwise, return FALSE. */
789
790bool
791unsigned_reg_p (rtx op)
792{
793 if (REG_P (op)
794 && REG_EXPR (op)
795 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
796 return true;
797
798 if (GET_CODE (op) == SUBREG
e8629f9e 799 && SUBREG_PROMOTED_SIGN (op))
0a98b6d9 800 return true;
801
802 return false;
803}
804
40988080 805\f
635aff97 806/* Nonzero if register REG appears somewhere within IN.
807 Also works if REG is not a register; in this case it checks
808 for a subexpression of IN that is Lisp "equal" to REG. */
809
810int
dd9b9fc5 811reg_mentioned_p (const_rtx reg, const_rtx in)
635aff97 812{
19cb6b50 813 const char *fmt;
814 int i;
815 enum rtx_code code;
635aff97 816
817 if (in == 0)
818 return 0;
819
820 if (reg == in)
821 return 1;
822
823 if (GET_CODE (in) == LABEL_REF)
b49f2e4b 824 return reg == LABEL_REF_LABEL (in);
635aff97 825
826 code = GET_CODE (in);
827
828 switch (code)
829 {
830 /* Compare registers by number. */
831 case REG:
8ad4c111 832 return REG_P (reg) && REGNO (in) == REGNO (reg);
635aff97 833
834 /* These codes have no constituent expressions
835 and are unique. */
836 case SCRATCH:
837 case CC0:
838 case PC:
839 return 0;
840
0349edce 841 CASE_CONST_ANY:
635aff97 842 /* These are kept unique for a given value. */
843 return 0;
2617fe26 844
0dbd1c74 845 default:
846 break;
635aff97 847 }
848
849 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
850 return 1;
851
852 fmt = GET_RTX_FORMAT (code);
853
854 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
855 {
856 if (fmt[i] == 'E')
857 {
19cb6b50 858 int j;
635aff97 859 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
860 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
861 return 1;
862 }
863 else if (fmt[i] == 'e'
864 && reg_mentioned_p (reg, XEXP (in, i)))
865 return 1;
866 }
867 return 0;
868}
869\f
870/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
871 no CODE_LABEL insn. */
872
873int
91a55c11 874no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
635aff97 875{
91a55c11 876 rtx_insn *p;
62de2472 877 if (beg == end)
878 return 0;
635aff97 879 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
6d7dc5b9 880 if (LABEL_P (p))
635aff97 881 return 0;
882 return 1;
883}
884
885/* Nonzero if register REG is used in an insn between
886 FROM_INSN and TO_INSN (exclusive of those two). */
887
888int
91a55c11 889reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
890 const rtx_insn *to_insn)
635aff97 891{
200c2a8f 892 rtx_insn *insn;
635aff97 893
894 if (from_insn == to_insn)
895 return 0;
896
897 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
9845d120 898 if (NONDEBUG_INSN_P (insn)
0c7201ca 899 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
ecbd66eb 900 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
635aff97 901 return 1;
902 return 0;
903}
904\f
905/* Nonzero if the old value of X, a register, is referenced in BODY. If X
906 is entirely replaced by a new value and the only use is as a SET_DEST,
907 we do not consider it a reference. */
908
909int
dd9b9fc5 910reg_referenced_p (const_rtx x, const_rtx body)
635aff97 911{
912 int i;
913
914 switch (GET_CODE (body))
915 {
916 case SET:
917 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
918 return 1;
919
920 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
921 of a REG that occupies all of the REG, the insn references X if
922 it is mentioned in the destination. */
923 if (GET_CODE (SET_DEST (body)) != CC0
924 && GET_CODE (SET_DEST (body)) != PC
8ad4c111 925 && !REG_P (SET_DEST (body))
635aff97 926 && ! (GET_CODE (SET_DEST (body)) == SUBREG
8ad4c111 927 && REG_P (SUBREG_REG (SET_DEST (body)))
635aff97 928 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
929 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
930 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
931 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
932 && reg_overlap_mentioned_p (x, SET_DEST (body)))
933 return 1;
0dbd1c74 934 return 0;
635aff97 935
936 case ASM_OPERANDS:
937 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
938 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
939 return 1;
0dbd1c74 940 return 0;
635aff97 941
942 case CALL:
943 case USE:
155b05dc 944 case IF_THEN_ELSE:
635aff97 945 return reg_overlap_mentioned_p (x, body);
946
947 case TRAP_IF:
948 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
949
9f449ed6 950 case PREFETCH:
951 return reg_overlap_mentioned_p (x, XEXP (body, 0));
952
3384a30e 953 case UNSPEC:
954 case UNSPEC_VOLATILE:
57d44d09 955 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
956 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
957 return 1;
958 return 0;
959
635aff97 960 case PARALLEL:
961 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
962 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
963 return 1;
0dbd1c74 964 return 0;
2617fe26 965
cccfd0f9 966 case CLOBBER:
e16ceb8e 967 if (MEM_P (XEXP (body, 0)))
cccfd0f9 968 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
969 return 1;
970 return 0;
971
406034fa 972 case COND_EXEC:
973 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
974 return 1;
975 return reg_referenced_p (x, COND_EXEC_CODE (body));
976
0dbd1c74 977 default:
978 return 0;
635aff97 979 }
635aff97 980}
635aff97 981\f
982/* Nonzero if register REG is set or clobbered in an insn between
983 FROM_INSN and TO_INSN (exclusive of those two). */
984
985int
311f821c 986reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
987 const rtx_insn *to_insn)
635aff97 988{
200c2a8f 989 const rtx_insn *insn;
635aff97 990
991 if (from_insn == to_insn)
992 return 0;
993
994 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
9204e736 995 if (INSN_P (insn) && reg_set_p (reg, insn))
635aff97 996 return 1;
997 return 0;
998}
999
1000/* Internals of reg_set_between_p. */
635aff97 1001int
7ecb5bb2 1002reg_set_p (const_rtx reg, const_rtx insn)
635aff97 1003{
8624ddf6 1004 /* After delay slot handling, call and branch insns might be in a
1005 sequence. Check all the elements there. */
1006 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1007 {
1008 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1009 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1010 return true;
1011
1012 return false;
1013 }
1014
635aff97 1015 /* We can be passed an insn or part of one. If we are passed an insn,
1016 check if a side-effect of the insn clobbers REG. */
805e22b2 1017 if (INSN_P (insn)
1018 && (FIND_REG_INC_NOTE (insn, reg)
6d7dc5b9 1019 || (CALL_P (insn)
8ad4c111 1020 && ((REG_P (reg)
3c71a5cc 1021 && REGNO (reg) < FIRST_PSEUDO_REGISTER
20128b13 1022 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1023 GET_MODE (reg), REGNO (reg)))
e16ceb8e 1024 || MEM_P (reg)
805e22b2 1025 || find_reg_fusage (insn, CLOBBER, reg)))))
8624ddf6 1026 return true;
635aff97 1027
b7995d54 1028 return set_of (reg, insn) != NULL_RTX;
635aff97 1029}
1030
1031/* Similar to reg_set_between_p, but check all registers in X. Return 0
1032 only if none of them are modified between START and END. Return 1 if
f0b5f617 1033 X contains a MEM; this routine does use memory aliasing. */
635aff97 1034
1035int
32482209 1036modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
635aff97 1037{
5493cb9a 1038 const enum rtx_code code = GET_CODE (x);
d2ca078f 1039 const char *fmt;
2c18b47c 1040 int i, j;
200c2a8f 1041 rtx_insn *insn;
c7bf7428 1042
1043 if (start == end)
1044 return 0;
635aff97 1045
1046 switch (code)
1047 {
0349edce 1048 CASE_CONST_ANY:
635aff97 1049 case CONST:
1050 case SYMBOL_REF:
1051 case LABEL_REF:
1052 return 0;
1053
1054 case PC:
1055 case CC0:
1056 return 1;
1057
1058 case MEM:
c7bf7428 1059 if (modified_between_p (XEXP (x, 0), start, end))
635aff97 1060 return 1;
bf0ee60a 1061 if (MEM_READONLY_P (x))
1062 return 0;
c7bf7428 1063 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1064 if (memory_modified_in_insn_p (x, insn))
1065 return 1;
1066 return 0;
635aff97 1067 break;
1068
1069 case REG:
1070 return reg_set_between_p (x, start, end);
2617fe26 1071
0dbd1c74 1072 default:
1073 break;
635aff97 1074 }
1075
1076 fmt = GET_RTX_FORMAT (code);
1077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2c18b47c 1078 {
1079 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1080 return 1;
1081
1bd8ca86 1082 else if (fmt[i] == 'E')
2c18b47c 1083 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1084 if (modified_between_p (XVECEXP (x, i, j), start, end))
1085 return 1;
1086 }
1087
1088 return 0;
1089}
1090
1091/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1092 of them are modified in INSN. Return 1 if X contains a MEM; this routine
c7bf7428 1093 does use memory aliasing. */
2c18b47c 1094
1095int
5493cb9a 1096modified_in_p (const_rtx x, const_rtx insn)
2c18b47c 1097{
5493cb9a 1098 const enum rtx_code code = GET_CODE (x);
d2ca078f 1099 const char *fmt;
2c18b47c 1100 int i, j;
1101
1102 switch (code)
1103 {
0349edce 1104 CASE_CONST_ANY:
2c18b47c 1105 case CONST:
1106 case SYMBOL_REF:
1107 case LABEL_REF:
1108 return 0;
1109
1110 case PC:
1111 case CC0:
635aff97 1112 return 1;
1113
2c18b47c 1114 case MEM:
c7bf7428 1115 if (modified_in_p (XEXP (x, 0), insn))
2c18b47c 1116 return 1;
bf0ee60a 1117 if (MEM_READONLY_P (x))
1118 return 0;
c7bf7428 1119 if (memory_modified_in_insn_p (x, insn))
1120 return 1;
1121 return 0;
2c18b47c 1122 break;
1123
1124 case REG:
1125 return reg_set_p (x, insn);
0dbd1c74 1126
1127 default:
1128 break;
2c18b47c 1129 }
1130
1131 fmt = GET_RTX_FORMAT (code);
1132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1133 {
1134 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1135 return 1;
1136
1bd8ca86 1137 else if (fmt[i] == 'E')
2c18b47c 1138 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1139 if (modified_in_p (XVECEXP (x, i, j), insn))
1140 return 1;
1141 }
1142
635aff97 1143 return 0;
1144}
1145\f
b7995d54 1146/* Helper function for set_of. */
1147struct set_of_data
1148 {
81a410b1 1149 const_rtx found;
1150 const_rtx pat;
b7995d54 1151 };
1152
1153static void
81a410b1 1154set_of_1 (rtx x, const_rtx pat, void *data1)
b7995d54 1155{
81a410b1 1156 struct set_of_data *const data = (struct set_of_data *) (data1);
1157 if (rtx_equal_p (x, data->pat)
1158 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1159 data->found = pat;
b7995d54 1160}
1161
1162/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
4a82352a 1163 (either directly or via STRICT_LOW_PART and similar modifiers). */
81a410b1 1164const_rtx
1165set_of (const_rtx pat, const_rtx insn)
b7995d54 1166{
1167 struct set_of_data data;
1168 data.found = NULL_RTX;
1169 data.pat = pat;
1170 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1171 return data.found;
1172}
effd1640 1173
e4442dc5 1174/* Add all hard register in X to *PSET. */
1175void
1176find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1177{
1178 subrtx_iterator::array_type array;
1179 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1180 {
1181 const_rtx x = *iter;
1182 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1183 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1184 }
1185}
1186
effd1640 1187/* This function, called through note_stores, collects sets and
1188 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1189 by DATA. */
1190void
1191record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1192{
1193 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1194 if (REG_P (x) && HARD_REGISTER_P (x))
1195 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1196}
1197
1198/* Examine INSN, and compute the set of hard registers written by it.
1199 Store it in *PSET. Should only be called after reload. */
1200void
b9452872 1201find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
effd1640 1202{
1203 rtx link;
1204
1205 CLEAR_HARD_REG_SET (*pset);
1206 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1207 if (CALL_P (insn))
6792947d 1208 {
1209 if (implicit)
1210 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1211
1212 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1213 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1214 }
effd1640 1215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1216 if (REG_NOTE_KIND (link) == REG_INC)
1217 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1218}
1219
effd1640 1220/* Like record_hard_reg_sets, but called through note_uses. */
1221void
1222record_hard_reg_uses (rtx *px, void *data)
1223{
e4442dc5 1224 find_all_hard_regs (*px, (HARD_REG_SET *) data);
effd1640 1225}
b7995d54 1226\f
635aff97 1227/* Given an INSN, return a SET expression if this insn has only a single SET.
1228 It may also have CLOBBERs, USEs, or SET whose output
1229 will not be used, which we ignore. */
1230
1231rtx
50fc2d35 1232single_set_2 (const rtx_insn *insn, const_rtx pat)
635aff97 1233{
b6590daa 1234 rtx set = NULL;
1235 int set_verified = 1;
635aff97 1236 int i;
b6590daa 1237
6531eca9 1238 if (GET_CODE (pat) == PARALLEL)
635aff97 1239 {
b6590daa 1240 for (i = 0; i < XVECLEN (pat, 0); i++)
6531eca9 1241 {
b6590daa 1242 rtx sub = XVECEXP (pat, 0, i);
1243 switch (GET_CODE (sub))
1244 {
1245 case USE:
1246 case CLOBBER:
1247 break;
1248
1249 case SET:
1250 /* We can consider insns having multiple sets, where all
1251 but one are dead as single set insns. In common case
1252 only single set is present in the pattern so we want
dd5b4b36 1253 to avoid checking for REG_UNUSED notes unless necessary.
b6590daa 1254
1255 When we reach set first time, we just expect this is
1256 the single set we are looking for and only when more
1257 sets are found in the insn, we check them. */
1258 if (!set_verified)
1259 {
1260 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1261 && !side_effects_p (set))
1262 set = NULL;
1263 else
1264 set_verified = 1;
1265 }
1266 if (!set)
1267 set = sub, set_verified = 0;
1268 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1269 || side_effects_p (sub))
1270 return NULL_RTX;
1271 break;
1272
1273 default:
1274 return NULL_RTX;
1275 }
93127143 1276 }
635aff97 1277 }
b6590daa 1278 return set;
635aff97 1279}
e6cae665 1280
1281/* Given an INSN, return nonzero if it has more than one SET, else return
1282 zero. */
1283
21b510d8 1284int
dd9b9fc5 1285multiple_sets (const_rtx insn)
e6cae665 1286{
2c641110 1287 int found;
e6cae665 1288 int i;
2617fe26 1289
e6cae665 1290 /* INSN must be an insn. */
9204e736 1291 if (! INSN_P (insn))
e6cae665 1292 return 0;
1293
1294 /* Only a PARALLEL can have multiple SETs. */
1295 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1296 {
1297 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1298 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1299 {
1300 /* If we have already found a SET, then return now. */
1301 if (found)
1302 return 1;
1303 else
1304 found = 1;
1305 }
1306 }
2617fe26 1307
e6cae665 1308 /* Either zero or one SET. */
1309 return 0;
1310}
635aff97 1311\f
c955554c 1312/* Return nonzero if the destination of SET equals the source
1313 and there are no side effects. */
1314
1315int
dd9b9fc5 1316set_noop_p (const_rtx set)
c955554c 1317{
1318 rtx src = SET_SRC (set);
1319 rtx dst = SET_DEST (set);
1320
675b92cc 1321 if (dst == pc_rtx && src == pc_rtx)
1322 return 1;
1323
e16ceb8e 1324 if (MEM_P (dst) && MEM_P (src))
53fffe66 1325 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1326
476d094d 1327 if (GET_CODE (dst) == ZERO_EXTRACT)
c955554c 1328 return rtx_equal_p (XEXP (dst, 0), src)
53fffe66 1329 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1330 && !side_effects_p (src);
c955554c 1331
1332 if (GET_CODE (dst) == STRICT_LOW_PART)
1333 dst = XEXP (dst, 0);
1334
1335 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1336 {
1337 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1338 return 0;
1339 src = SUBREG_REG (src);
1340 dst = SUBREG_REG (dst);
1341 }
1342
b2bb3848 1343 /* It is a NOOP if destination overlaps with selected src vector
1344 elements. */
1345 if (GET_CODE (src) == VEC_SELECT
1346 && REG_P (XEXP (src, 0)) && REG_P (dst)
1347 && HARD_REGISTER_P (XEXP (src, 0))
1348 && HARD_REGISTER_P (dst))
1349 {
1350 int i;
1351 rtx par = XEXP (src, 1);
1352 rtx src0 = XEXP (src, 0);
1353 int c0 = INTVAL (XVECEXP (par, 0, 0));
1354 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1355
1356 for (i = 1; i < XVECLEN (par, 0); i++)
1357 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1358 return 0;
1359 return
1360 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1361 offset, GET_MODE (dst)) == (int) REGNO (dst);
1362 }
1363
8ad4c111 1364 return (REG_P (src) && REG_P (dst)
c955554c 1365 && REGNO (src) == REGNO (dst));
1366}
b08cd584 1367\f
1368/* Return nonzero if an insn consists only of SETs, each of which only sets a
1369 value to itself. */
1370
1371int
e79ab52b 1372noop_move_p (const rtx_insn *insn)
b08cd584 1373{
1374 rtx pat = PATTERN (insn);
1375
1805c35c 1376 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1377 return 1;
1378
b08cd584 1379 /* Insns carrying these notes are useful later on. */
1380 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1381 return 0;
1382
3f0def8e 1383 /* Check the code to be executed for COND_EXEC. */
1384 if (GET_CODE (pat) == COND_EXEC)
1385 pat = COND_EXEC_CODE (pat);
1386
b08cd584 1387 if (GET_CODE (pat) == SET && set_noop_p (pat))
1388 return 1;
1389
1390 if (GET_CODE (pat) == PARALLEL)
1391 {
1392 int i;
1393 /* If nothing but SETs of registers to themselves,
1394 this insn can also be deleted. */
1395 for (i = 0; i < XVECLEN (pat, 0); i++)
1396 {
1397 rtx tem = XVECEXP (pat, 0, i);
1398
1399 if (GET_CODE (tem) == USE
1400 || GET_CODE (tem) == CLOBBER)
1401 continue;
1402
1403 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1404 return 0;
1405 }
1406
1407 return 1;
1408 }
1409 return 0;
1410}
1411\f
c955554c 1412
635aff97 1413/* Return nonzero if register in range [REGNO, ENDREGNO)
1414 appears either explicitly or implicitly in X
1415 other than being stored into.
1416
1417 References contained within the substructure at LOC do not count.
1418 LOC may be zero, meaning don't ignore anything. */
1419
2ec77a7c 1420bool
dd9b9fc5 1421refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
3ad4992f 1422 rtx *loc)
635aff97 1423{
02e7a332 1424 int i;
1425 unsigned int x_regno;
1426 RTX_CODE code;
1427 const char *fmt;
635aff97 1428
1429 repeat:
1430 /* The contents of a REG_NONNEG note is always zero, so we must come here
1431 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1432 if (x == 0)
2ec77a7c 1433 return false;
635aff97 1434
1435 code = GET_CODE (x);
1436
1437 switch (code)
1438 {
1439 case REG:
02e7a332 1440 x_regno = REGNO (x);
2c18b47c 1441
1442 /* If we modifying the stack, frame, or argument pointer, it will
1443 clobber a virtual register. In fact, we could be more precise,
1444 but it isn't worth it. */
02e7a332 1445 if ((x_regno == STACK_POINTER_REGNUM
c6bb296a 1446 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1447 && x_regno == ARG_POINTER_REGNUM)
02e7a332 1448 || x_regno == FRAME_POINTER_REGNUM)
2c18b47c 1449 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
2ec77a7c 1450 return true;
2c18b47c 1451
a2c6f0b7 1452 return endregno > x_regno && regno < END_REGNO (x);
635aff97 1453
1454 case SUBREG:
1455 /* If this is a SUBREG of a hard reg, we can see exactly which
1456 registers are being modified. Otherwise, handle normally. */
8ad4c111 1457 if (REG_P (SUBREG_REG (x))
635aff97 1458 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1459 {
701e46d0 1460 unsigned int inner_regno = subreg_regno (x);
02e7a332 1461 unsigned int inner_endregno
aee171c8 1462 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
fe2ebfc8 1463 ? subreg_nregs (x) : 1);
635aff97 1464
1465 return endregno > inner_regno && regno < inner_endregno;
1466 }
1467 break;
1468
1469 case CLOBBER:
1470 case SET:
1471 if (&SET_DEST (x) != loc
1472 /* Note setting a SUBREG counts as referring to the REG it is in for
1473 a pseudo but not for hard registers since we can
1474 treat each word individually. */
1475 && ((GET_CODE (SET_DEST (x)) == SUBREG
1476 && loc != &SUBREG_REG (SET_DEST (x))
8ad4c111 1477 && REG_P (SUBREG_REG (SET_DEST (x)))
635aff97 1478 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1479 && refers_to_regno_p (regno, endregno,
1480 SUBREG_REG (SET_DEST (x)), loc))
8ad4c111 1481 || (!REG_P (SET_DEST (x))
635aff97 1482 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
2ec77a7c 1483 return true;
635aff97 1484
1485 if (code == CLOBBER || loc == &SET_SRC (x))
2ec77a7c 1486 return false;
635aff97 1487 x = SET_SRC (x);
1488 goto repeat;
0dbd1c74 1489
1490 default:
1491 break;
635aff97 1492 }
1493
1494 /* X does not match, so try its subexpressions. */
1495
1496 fmt = GET_RTX_FORMAT (code);
1497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1498 {
1499 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1500 {
1501 if (i == 0)
1502 {
1503 x = XEXP (x, 0);
1504 goto repeat;
1505 }
1506 else
1507 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
2ec77a7c 1508 return true;
635aff97 1509 }
1510 else if (fmt[i] == 'E')
1511 {
19cb6b50 1512 int j;
ea0041f4 1513 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635aff97 1514 if (loc != &XVECEXP (x, i, j)
1515 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
2ec77a7c 1516 return true;
635aff97 1517 }
1518 }
2ec77a7c 1519 return false;
635aff97 1520}
1521
1522/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1523 we check if any register number in X conflicts with the relevant register
1524 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1525 contains a MEM (we don't bother checking for memory addresses that can't
1526 conflict because we expect this to be a rare case. */
1527
1528int
dd9b9fc5 1529reg_overlap_mentioned_p (const_rtx x, const_rtx in)
635aff97 1530{
02e7a332 1531 unsigned int regno, endregno;
635aff97 1532
2f3f2ddf 1533 /* If either argument is a constant, then modifying X can not
1534 affect IN. Here we look at IN, we can profitably combine
1535 CONSTANT_P (x) with the switch statement below. */
1536 if (CONSTANT_P (in))
8eb7d6fc 1537 return 0;
406034fa 1538
2f3f2ddf 1539 recurse:
406034fa 1540 switch (GET_CODE (x))
635aff97 1541 {
2f3f2ddf 1542 case STRICT_LOW_PART:
1543 case ZERO_EXTRACT:
1544 case SIGN_EXTRACT:
1545 /* Overly conservative. */
1546 x = XEXP (x, 0);
1547 goto recurse;
1548
406034fa 1549 case SUBREG:
635aff97 1550 regno = REGNO (SUBREG_REG (x));
1551 if (regno < FIRST_PSEUDO_REGISTER)
701e46d0 1552 regno = subreg_regno (x);
fe2ebfc8 1553 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1554 ? subreg_nregs (x) : 1);
406034fa 1555 goto do_reg;
635aff97 1556
406034fa 1557 case REG:
1558 regno = REGNO (x);
a2c6f0b7 1559 endregno = END_REGNO (x);
fe2ebfc8 1560 do_reg:
337d789b 1561 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
635aff97 1562
406034fa 1563 case MEM:
1564 {
1565 const char *fmt;
1566 int i;
635aff97 1567
e16ceb8e 1568 if (MEM_P (in))
635aff97 1569 return 1;
1570
406034fa 1571 fmt = GET_RTX_FORMAT (GET_CODE (in));
1572 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
bc99e194 1573 if (fmt[i] == 'e')
1574 {
1575 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1576 return 1;
1577 }
1578 else if (fmt[i] == 'E')
1579 {
1580 int j;
1581 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1582 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1583 return 1;
1584 }
3a1b2351 1585
406034fa 1586 return 0;
1587 }
1588
1589 case SCRATCH:
1590 case PC:
1591 case CC0:
1592 return reg_mentioned_p (x, in);
1593
1594 case PARALLEL:
e291e4ee 1595 {
216b2683 1596 int i;
e291e4ee 1597
1598 /* If any register in here refers to it we return true. */
4b303227 1599 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1600 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1601 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
2f3f2ddf 1602 return 1;
4b303227 1603 return 0;
e291e4ee 1604 }
635aff97 1605
406034fa 1606 default:
04e579b6 1607 gcc_assert (CONSTANT_P (x));
2f3f2ddf 1608 return 0;
1609 }
635aff97 1610}
1611\f
635aff97 1612/* Call FUN on each register or MEM that is stored into or clobbered by X.
02a63053 1613 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1614 ignored by note_stores, but passed to FUN.
1615
1616 FUN receives three arguments:
1617 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1618 2. the SET or CLOBBER rtx that does the store,
1619 3. the pointer DATA provided to note_stores.
635aff97 1620
1621 If the item being stored in or clobbered is a SUBREG of a hard register,
1622 the SUBREG will be passed. */
2617fe26 1623
635aff97 1624void
81a410b1 1625note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
635aff97 1626{
a80f1c6c 1627 int i;
216b2683 1628
a80f1c6c 1629 if (GET_CODE (x) == COND_EXEC)
1630 x = COND_EXEC_CODE (x);
216b2683 1631
a80f1c6c 1632 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1633 {
1634 rtx dest = SET_DEST (x);
1635
1636 while ((GET_CODE (dest) == SUBREG
1637 && (!REG_P (SUBREG_REG (dest))
1638 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1639 || GET_CODE (dest) == ZERO_EXTRACT
1640 || GET_CODE (dest) == STRICT_LOW_PART)
1641 dest = XEXP (dest, 0);
1642
1643 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1644 each of whose first operand is a register. */
1645 if (GET_CODE (dest) == PARALLEL)
1646 {
1647 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1648 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1649 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1650 }
1651 else
1652 (*fun) (dest, x, data);
1653 }
02e7a332 1654
a80f1c6c 1655 else if (GET_CODE (x) == PARALLEL)
1656 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1657 note_stores (XVECEXP (x, 0, i), fun, data);
1658}
635aff97 1659\f
99b86c05 1660/* Like notes_stores, but call FUN for each expression that is being
1661 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1662 FUN for each expression, not any interior subexpressions. FUN receives a
1663 pointer to the expression and the DATA passed to this function.
1664
1665 Note that this is not quite the same test as that done in reg_referenced_p
1666 since that considers something as being referenced if it is being
1667 partially set, while we do not. */
1668
1669void
3ad4992f 1670note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
99b86c05 1671{
1672 rtx body = *pbody;
1673 int i;
1674
1675 switch (GET_CODE (body))
1676 {
1677 case COND_EXEC:
1678 (*fun) (&COND_EXEC_TEST (body), data);
1679 note_uses (&COND_EXEC_CODE (body), fun, data);
1680 return;
1681
1682 case PARALLEL:
1683 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1684 note_uses (&XVECEXP (body, 0, i), fun, data);
1685 return;
1686
48df5a7f 1687 case SEQUENCE:
1688 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1689 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1690 return;
1691
99b86c05 1692 case USE:
1693 (*fun) (&XEXP (body, 0), data);
1694 return;
1695
1696 case ASM_OPERANDS:
1697 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1698 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1699 return;
1700
1701 case TRAP_IF:
1702 (*fun) (&TRAP_CONDITION (body), data);
1703 return;
1704
9f449ed6 1705 case PREFETCH:
1706 (*fun) (&XEXP (body, 0), data);
1707 return;
1708
99b86c05 1709 case UNSPEC:
1710 case UNSPEC_VOLATILE:
1711 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1712 (*fun) (&XVECEXP (body, 0, i), data);
1713 return;
1714
1715 case CLOBBER:
e16ceb8e 1716 if (MEM_P (XEXP (body, 0)))
99b86c05 1717 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1718 return;
1719
1720 case SET:
1721 {
1722 rtx dest = SET_DEST (body);
1723
1724 /* For sets we replace everything in source plus registers in memory
1725 expression in store and operands of a ZERO_EXTRACT. */
1726 (*fun) (&SET_SRC (body), data);
1727
1728 if (GET_CODE (dest) == ZERO_EXTRACT)
1729 {
1730 (*fun) (&XEXP (dest, 1), data);
1731 (*fun) (&XEXP (dest, 2), data);
1732 }
1733
1734 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1735 dest = XEXP (dest, 0);
1736
e16ceb8e 1737 if (MEM_P (dest))
99b86c05 1738 (*fun) (&XEXP (dest, 0), data);
1739 }
1740 return;
1741
1742 default:
1743 /* All the other possibilities never store. */
1744 (*fun) (pbody, data);
1745 return;
1746 }
1747}
1748\f
635aff97 1749/* Return nonzero if X's old contents don't survive after INSN.
1750 This will be true if X is (cc0) or if X is a register and
1751 X dies in INSN or because INSN entirely sets X.
1752
476d094d 1753 "Entirely set" means set directly and not through a SUBREG, or
1754 ZERO_EXTRACT, so no trace of the old contents remains.
635aff97 1755 Likewise, REG_INC does not count.
1756
1757 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1758 but for this use that makes no difference, since regs don't overlap
1759 during their lifetimes. Therefore, this function may be used
3072d30e 1760 at any time after deaths have been computed.
635aff97 1761
1762 If REG is a hard reg that occupies multiple machine registers, this
1763 function will only return 1 if each of those registers will be replaced
1764 by INSN. */
1765
1766int
dd9b9fc5 1767dead_or_set_p (const_rtx insn, const_rtx x)
635aff97 1768{
a2c6f0b7 1769 unsigned int regno, end_regno;
02e7a332 1770 unsigned int i;
635aff97 1771
1772 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1773 if (GET_CODE (x) == CC0)
1774 return 1;
1775
04e579b6 1776 gcc_assert (REG_P (x));
635aff97 1777
1778 regno = REGNO (x);
a2c6f0b7 1779 end_regno = END_REGNO (x);
1780 for (i = regno; i < end_regno; i++)
635aff97 1781 if (! dead_or_set_regno_p (insn, i))
1782 return 0;
1783
1784 return 1;
1785}
1786
30c74f6d 1787/* Return TRUE iff DEST is a register or subreg of a register and
1788 doesn't change the number of words of the inner register, and any
1789 part of the register is TEST_REGNO. */
1790
1791static bool
dd9b9fc5 1792covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
30c74f6d 1793{
1794 unsigned int regno, endregno;
1795
1796 if (GET_CODE (dest) == SUBREG
1797 && (((GET_MODE_SIZE (GET_MODE (dest))
1798 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1799 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1800 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1801 dest = SUBREG_REG (dest);
1802
1803 if (!REG_P (dest))
1804 return false;
1805
1806 regno = REGNO (dest);
a2c6f0b7 1807 endregno = END_REGNO (dest);
30c74f6d 1808 return (test_regno >= regno && test_regno < endregno);
1809}
1810
1811/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1812 any member matches the covers_regno_no_parallel_p criteria. */
1813
1814static bool
dd9b9fc5 1815covers_regno_p (const_rtx dest, unsigned int test_regno)
30c74f6d 1816{
1817 if (GET_CODE (dest) == PARALLEL)
1818 {
1819 /* Some targets place small structures in registers for return
1820 values of functions, and those registers are wrapped in
1821 PARALLELs that we may see as the destination of a SET. */
1822 int i;
1823
1824 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1825 {
1826 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1827 if (inner != NULL_RTX
1828 && covers_regno_no_parallel_p (inner, test_regno))
1829 return true;
1830 }
1831
1832 return false;
1833 }
1834 else
1835 return covers_regno_no_parallel_p (dest, test_regno);
1836}
1837
3072d30e 1838/* Utility function for dead_or_set_p to check an individual register. */
635aff97 1839
1840int
dd9b9fc5 1841dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
635aff97 1842{
dd9b9fc5 1843 const_rtx pattern;
635aff97 1844
eb1c92fb 1845 /* See if there is a death note for something that includes TEST_REGNO. */
1846 if (find_regno_note (insn, REG_DEAD, test_regno))
1847 return 1;
635aff97 1848
6d7dc5b9 1849 if (CALL_P (insn)
0c7201ca 1850 && find_regno_fusage (insn, CLOBBER, test_regno))
1851 return 1;
1852
406034fa 1853 pattern = PATTERN (insn);
1854
d6e8850f 1855 /* If a COND_EXEC is not executed, the value survives. */
406034fa 1856 if (GET_CODE (pattern) == COND_EXEC)
d6e8850f 1857 return 0;
406034fa 1858
1859 if (GET_CODE (pattern) == SET)
30c74f6d 1860 return covers_regno_p (SET_DEST (pattern), test_regno);
406034fa 1861 else if (GET_CODE (pattern) == PARALLEL)
635aff97 1862 {
19cb6b50 1863 int i;
635aff97 1864
406034fa 1865 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
635aff97 1866 {
406034fa 1867 rtx body = XVECEXP (pattern, 0, i);
1868
1869 if (GET_CODE (body) == COND_EXEC)
1870 body = COND_EXEC_CODE (body);
635aff97 1871
30c74f6d 1872 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1873 && covers_regno_p (SET_DEST (body), test_regno))
1874 return 1;
635aff97 1875 }
1876 }
1877
1878 return 0;
1879}
1880
1881/* Return the reg-note of kind KIND in insn INSN, if there is one.
1882 If DATUM is nonzero, look for one whose datum is DATUM. */
1883
1884rtx
dd9b9fc5 1885find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
635aff97 1886{
19cb6b50 1887 rtx link;
635aff97 1888
0ea2d350 1889 gcc_checking_assert (insn);
62d6a022 1890
49a945b8 1891 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
9204e736 1892 if (! INSN_P (insn))
49a945b8 1893 return 0;
b2a24b6f 1894 if (datum == 0)
1895 {
1896 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1897 if (REG_NOTE_KIND (link) == kind)
1898 return link;
1899 return 0;
1900 }
49a945b8 1901
635aff97 1902 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
b2a24b6f 1903 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
635aff97 1904 return link;
1905 return 0;
1906}
1907
1908/* Return the reg-note of kind KIND in insn INSN which applies to register
da5c9e5f 1909 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1910 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1911 it might be the case that the note overlaps REGNO. */
635aff97 1912
1913rtx
dd9b9fc5 1914find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
635aff97 1915{
19cb6b50 1916 rtx link;
635aff97 1917
49a945b8 1918 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
9204e736 1919 if (! INSN_P (insn))
49a945b8 1920 return 0;
1921
635aff97 1922 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1923 if (REG_NOTE_KIND (link) == kind
1924 /* Verify that it is a register, so that scratch and MEM won't cause a
1925 problem here. */
8ad4c111 1926 && REG_P (XEXP (link, 0))
da5c9e5f 1927 && REGNO (XEXP (link, 0)) <= regno
a2c6f0b7 1928 && END_REGNO (XEXP (link, 0)) > regno)
635aff97 1929 return link;
1930 return 0;
1931}
0c7201ca 1932
53cb61a7 1933/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1934 has such a note. */
1935
1936rtx
dd9b9fc5 1937find_reg_equal_equiv_note (const_rtx insn)
53cb61a7 1938{
53fffe66 1939 rtx link;
53cb61a7 1940
53fffe66 1941 if (!INSN_P (insn))
53cb61a7 1942 return 0;
e4f51d19 1943
53fffe66 1944 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1945 if (REG_NOTE_KIND (link) == REG_EQUAL
1946 || REG_NOTE_KIND (link) == REG_EQUIV)
1947 {
e4f51d19 1948 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1949 insns that have multiple sets. Checking single_set to
1950 make sure of this is not the proper check, as explained
1951 in the comment in set_unique_reg_note.
1952
1953 This should be changed into an assert. */
1954 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
53fffe66 1955 return 0;
1956 return link;
1957 }
1958 return NULL;
53cb61a7 1959}
1960
3aba99c8 1961/* Check whether INSN is a single_set whose source is known to be
1962 equivalent to a constant. Return that constant if so, otherwise
1963 return null. */
1964
1965rtx
93ee8dfb 1966find_constant_src (const rtx_insn *insn)
3aba99c8 1967{
1968 rtx note, set, x;
1969
1970 set = single_set (insn);
1971 if (set)
1972 {
1973 x = avoid_constant_pool_reference (SET_SRC (set));
1974 if (CONSTANT_P (x))
1975 return x;
1976 }
1977
1978 note = find_reg_equal_equiv_note (insn);
1979 if (note && CONSTANT_P (XEXP (note, 0)))
1980 return XEXP (note, 0);
1981
1982 return NULL_RTX;
1983}
1984
0c7201ca 1985/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1986 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1987
1988int
dd9b9fc5 1989find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
0c7201ca 1990{
1991 /* If it's not a CALL_INSN, it can't possibly have a
1992 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
6d7dc5b9 1993 if (!CALL_P (insn))
0c7201ca 1994 return 0;
1995
04e579b6 1996 gcc_assert (datum);
0c7201ca 1997
8ad4c111 1998 if (!REG_P (datum))
0c7201ca 1999 {
19cb6b50 2000 rtx link;
0c7201ca 2001
2002 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2617fe26 2003 link;
0c7201ca 2004 link = XEXP (link, 1))
2617fe26 2005 if (GET_CODE (XEXP (link, 0)) == code
ff90a874 2006 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2617fe26 2007 return 1;
0c7201ca 2008 }
2009 else
2010 {
02e7a332 2011 unsigned int regno = REGNO (datum);
0c7201ca 2012
2013 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2014 to pseudo registers, so don't bother checking. */
2015
2016 if (regno < FIRST_PSEUDO_REGISTER)
2617fe26 2017 {
788bed51 2018 unsigned int end_regno = END_REGNO (datum);
02e7a332 2019 unsigned int i;
0c7201ca 2020
2021 for (i = regno; i < end_regno; i++)
2022 if (find_regno_fusage (insn, code, i))
2023 return 1;
2617fe26 2024 }
0c7201ca 2025 }
2026
2027 return 0;
2028}
2029
2030/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2031 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2032
2033int
dd9b9fc5 2034find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
0c7201ca 2035{
19cb6b50 2036 rtx link;
0c7201ca 2037
2038 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2039 to pseudo registers, so don't bother checking. */
2040
2041 if (regno >= FIRST_PSEUDO_REGISTER
6d7dc5b9 2042 || !CALL_P (insn) )
0c7201ca 2043 return 0;
2044
2045 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
005d995b 2046 {
02e7a332 2047 rtx op, reg;
005d995b 2048
2049 if (GET_CODE (op = XEXP (link, 0)) == code
8ad4c111 2050 && REG_P (reg = XEXP (op, 0))
a2c6f0b7 2051 && REGNO (reg) <= regno
788bed51 2052 && END_REGNO (reg) > regno)
005d995b 2053 return 1;
2054 }
0c7201ca 2055
2056 return 0;
2057}
ef15379a 2058
635aff97 2059\f
9eb946de 2060/* Return true if KIND is an integer REG_NOTE. */
2061
2062static bool
2063int_reg_note_p (enum reg_note kind)
2064{
2065 return kind == REG_BR_PROB;
2066}
2067
5859ee98 2068/* Allocate a register note with kind KIND and datum DATUM. LIST is
2069 stored as the pointer to the next register note. */
a1ddb869 2070
5859ee98 2071rtx
2072alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
a1ddb869 2073{
2074 rtx note;
2075
9eb946de 2076 gcc_checking_assert (!int_reg_note_p (kind));
a1ddb869 2077 switch (kind)
2078 {
2079 case REG_CC_SETTER:
2080 case REG_CC_USER:
2081 case REG_LABEL_TARGET:
2082 case REG_LABEL_OPERAND:
4c0315d0 2083 case REG_TM:
a1ddb869 2084 /* These types of register notes use an INSN_LIST rather than an
2085 EXPR_LIST, so that copying is done right and dumps look
2086 better. */
5859ee98 2087 note = alloc_INSN_LIST (datum, list);
a1ddb869 2088 PUT_REG_NOTE_KIND (note, kind);
2089 break;
2090
2091 default:
5859ee98 2092 note = alloc_EXPR_LIST (kind, datum, list);
a1ddb869 2093 break;
2094 }
2095
5859ee98 2096 return note;
2097}
2098
2099/* Add register note with kind KIND and datum DATUM to INSN. */
2100
2101void
2102add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2103{
2104 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
a1ddb869 2105}
2106
9eb946de 2107/* Add an integer register note with kind KIND and datum DATUM to INSN. */
2108
2109void
2110add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2111{
2112 gcc_checking_assert (int_reg_note_p (kind));
3754d046 2113 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
9eb946de 2114 datum, REG_NOTES (insn));
2115}
2116
2117/* Add a register note like NOTE to INSN. */
2118
2119void
ca336a81 2120add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
9eb946de 2121{
2122 if (GET_CODE (note) == INT_LIST)
2123 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2124 else
2125 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2126}
2127
635aff97 2128/* Remove register note NOTE from the REG_NOTES of INSN. */
2129
2130void
dd9b9fc5 2131remove_note (rtx insn, const_rtx note)
635aff97 2132{
19cb6b50 2133 rtx link;
635aff97 2134
def93098 2135 if (note == NULL_RTX)
2136 return;
2137
635aff97 2138 if (REG_NOTES (insn) == note)
3072d30e 2139 REG_NOTES (insn) = XEXP (note, 1);
2140 else
2141 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2142 if (XEXP (link, 1) == note)
2143 {
2144 XEXP (link, 1) = XEXP (note, 1);
2145 break;
2146 }
2147
2148 switch (REG_NOTE_KIND (note))
635aff97 2149 {
3072d30e 2150 case REG_EQUAL:
2151 case REG_EQUIV:
e149ca56 2152 df_notes_rescan (as_a <rtx_insn *> (insn));
3072d30e 2153 break;
2154 default:
2155 break;
635aff97 2156 }
635aff97 2157}
13d60e7c 2158
f16feee2 2159/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2160
2161void
6dbed5c7 2162remove_reg_equal_equiv_notes (rtx_insn *insn)
f16feee2 2163{
2164 rtx *loc;
2165
2166 loc = &REG_NOTES (insn);
2167 while (*loc)
2168 {
2169 enum reg_note kind = REG_NOTE_KIND (*loc);
2170 if (kind == REG_EQUAL || kind == REG_EQUIV)
2171 *loc = XEXP (*loc, 1);
2172 else
2173 loc = &XEXP (*loc, 1);
2174 }
2175}
09669349 2176
2177/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2178
2179void
2180remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2181{
2182 df_ref eq_use;
2183
2184 if (!df)
2185 return;
2186
2187 /* This loop is a little tricky. We cannot just go down the chain because
2188 it is being modified by some actions in the loop. So we just iterate
2189 over the head. We plan to drain the list anyway. */
2190 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2191 {
200c2a8f 2192 rtx_insn *insn = DF_REF_INSN (eq_use);
09669349 2193 rtx note = find_reg_equal_equiv_note (insn);
2194
2195 /* This assert is generally triggered when someone deletes a REG_EQUAL
2196 or REG_EQUIV note by hacking the list manually rather than calling
2197 remove_note. */
2198 gcc_assert (note);
2199
2200 remove_note (insn, note);
2201 }
2202}
f16feee2 2203
5cc577b6 2204/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2205 return 1 if it is found. A simple equality test is used to determine if
2206 NODE matches. */
2207
7a680a39 2208bool
2209in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
5cc577b6 2210{
dd9b9fc5 2211 const_rtx x;
5cc577b6 2212
2213 for (x = listp; x; x = XEXP (x, 1))
2214 if (node == XEXP (x, 0))
7a680a39 2215 return true;
5cc577b6 2216
7a680a39 2217 return false;
5cc577b6 2218}
2219
badb6da9 2220/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2221 remove that entry from the list if it is found.
13d60e7c 2222
badb6da9 2223 A simple equality test is used to determine if NODE matches. */
13d60e7c 2224
2225void
6e16e157 2226remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
13d60e7c 2227{
6e16e157 2228 rtx_expr_list *temp = *listp;
13d60e7c 2229 rtx prev = NULL_RTX;
2230
2231 while (temp)
2232 {
6e16e157 2233 if (node == temp->element ())
13d60e7c 2234 {
2235 /* Splice the node out of the list. */
2236 if (prev)
6e16e157 2237 XEXP (prev, 1) = temp->next ();
13d60e7c 2238 else
6e16e157 2239 *listp = temp->next ();
13d60e7c 2240
2241 return;
2242 }
badb6da9 2243
2244 prev = temp;
6e16e157 2245 temp = temp->next ();
13d60e7c 2246 }
2247}
a4de1c23 2248
2249/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2250 remove that entry from the list if it is found.
2251
2252 A simple equality test is used to determine if NODE matches. */
2253
2254void
2255remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2256{
2257 rtx_insn_list *temp = *listp;
2258 rtx prev = NULL;
2259
2260 while (temp)
2261 {
2262 if (node == temp->insn ())
2263 {
2264 /* Splice the node out of the list. */
2265 if (prev)
2266 XEXP (prev, 1) = temp->next ();
2267 else
2268 *listp = temp->next ();
2269
2270 return;
2271 }
2272
2273 prev = temp;
2274 temp = temp->next ();
2275 }
2276}
635aff97 2277\f
ea275ef9 2278/* Nonzero if X contains any volatile instructions. These are instructions
2279 which may cause unpredictable machine state instructions, and thus no
e12b44a3 2280 instructions or register uses should be moved or combined across them.
2281 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
ea275ef9 2282
2283int
dd9b9fc5 2284volatile_insn_p (const_rtx x)
ea275ef9 2285{
dd9b9fc5 2286 const RTX_CODE code = GET_CODE (x);
ea275ef9 2287 switch (code)
2288 {
2289 case LABEL_REF:
2290 case SYMBOL_REF:
ea275ef9 2291 case CONST:
0349edce 2292 CASE_CONST_ANY:
ea275ef9 2293 case CC0:
2294 case PC:
2295 case REG:
2296 case SCRATCH:
2297 case CLOBBER:
ea275ef9 2298 case ADDR_VEC:
2299 case ADDR_DIFF_VEC:
2300 case CALL:
2301 case MEM:
2302 return 0;
2303
2304 case UNSPEC_VOLATILE:
ea275ef9 2305 return 1;
2306
c52051b7 2307 case ASM_INPUT:
ea275ef9 2308 case ASM_OPERANDS:
2309 if (MEM_VOLATILE_P (x))
2310 return 1;
0dbd1c74 2311
2312 default:
2313 break;
ea275ef9 2314 }
2315
2316 /* Recursively scan the operands of this expression. */
2317
2318 {
dd9b9fc5 2319 const char *const fmt = GET_RTX_FORMAT (code);
19cb6b50 2320 int i;
2617fe26 2321
ea275ef9 2322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2323 {
2324 if (fmt[i] == 'e')
2325 {
c1dadb43 2326 if (volatile_insn_p (XEXP (x, i)))
ea275ef9 2327 return 1;
2328 }
1bd8ca86 2329 else if (fmt[i] == 'E')
ea275ef9 2330 {
19cb6b50 2331 int j;
ea275ef9 2332 for (j = 0; j < XVECLEN (x, i); j++)
c1dadb43 2333 if (volatile_insn_p (XVECEXP (x, i, j)))
ea275ef9 2334 return 1;
2335 }
2336 }
2337 }
2338 return 0;
2339}
2340
635aff97 2341/* Nonzero if X contains any volatile memory references
3384a30e 2342 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
635aff97 2343
2344int
dd9b9fc5 2345volatile_refs_p (const_rtx x)
635aff97 2346{
dd9b9fc5 2347 const RTX_CODE code = GET_CODE (x);
635aff97 2348 switch (code)
2349 {
2350 case LABEL_REF:
2351 case SYMBOL_REF:
635aff97 2352 case CONST:
0349edce 2353 CASE_CONST_ANY:
635aff97 2354 case CC0:
2355 case PC:
2356 case REG:
2357 case SCRATCH:
2358 case CLOBBER:
635aff97 2359 case ADDR_VEC:
2360 case ADDR_DIFF_VEC:
2361 return 0;
2362
3384a30e 2363 case UNSPEC_VOLATILE:
635aff97 2364 return 1;
2365
2366 case MEM:
c52051b7 2367 case ASM_INPUT:
635aff97 2368 case ASM_OPERANDS:
2369 if (MEM_VOLATILE_P (x))
2370 return 1;
0dbd1c74 2371
2372 default:
2373 break;
635aff97 2374 }
2375
2376 /* Recursively scan the operands of this expression. */
2377
2378 {
dd9b9fc5 2379 const char *const fmt = GET_RTX_FORMAT (code);
19cb6b50 2380 int i;
2617fe26 2381
635aff97 2382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2383 {
2384 if (fmt[i] == 'e')
2385 {
2386 if (volatile_refs_p (XEXP (x, i)))
2387 return 1;
2388 }
1bd8ca86 2389 else if (fmt[i] == 'E')
635aff97 2390 {
19cb6b50 2391 int j;
635aff97 2392 for (j = 0; j < XVECLEN (x, i); j++)
2393 if (volatile_refs_p (XVECEXP (x, i, j)))
2394 return 1;
2395 }
2396 }
2397 }
2398 return 0;
2399}
2400
2401/* Similar to above, except that it also rejects register pre- and post-
2402 incrementing. */
2403
2404int
dd9b9fc5 2405side_effects_p (const_rtx x)
635aff97 2406{
dd9b9fc5 2407 const RTX_CODE code = GET_CODE (x);
635aff97 2408 switch (code)
2409 {
2410 case LABEL_REF:
2411 case SYMBOL_REF:
635aff97 2412 case CONST:
0349edce 2413 CASE_CONST_ANY:
635aff97 2414 case CC0:
2415 case PC:
2416 case REG:
2417 case SCRATCH:
635aff97 2418 case ADDR_VEC:
2419 case ADDR_DIFF_VEC:
9845d120 2420 case VAR_LOCATION:
635aff97 2421 return 0;
2422
2423 case CLOBBER:
2424 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2425 when some combination can't be done. If we see one, don't think
2426 that we can simplify the expression. */
2427 return (GET_MODE (x) != VOIDmode);
2428
2429 case PRE_INC:
2430 case PRE_DEC:
2431 case POST_INC:
2432 case POST_DEC:
a3da8215 2433 case PRE_MODIFY:
2434 case POST_MODIFY:
635aff97 2435 case CALL:
3384a30e 2436 case UNSPEC_VOLATILE:
635aff97 2437 return 1;
2438
2439 case MEM:
c52051b7 2440 case ASM_INPUT:
635aff97 2441 case ASM_OPERANDS:
2442 if (MEM_VOLATILE_P (x))
2443 return 1;
0dbd1c74 2444
2445 default:
2446 break;
635aff97 2447 }
2448
2449 /* Recursively scan the operands of this expression. */
2450
2451 {
19cb6b50 2452 const char *fmt = GET_RTX_FORMAT (code);
2453 int i;
2617fe26 2454
635aff97 2455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2456 {
2457 if (fmt[i] == 'e')
2458 {
2459 if (side_effects_p (XEXP (x, i)))
2460 return 1;
2461 }
1bd8ca86 2462 else if (fmt[i] == 'E')
635aff97 2463 {
19cb6b50 2464 int j;
635aff97 2465 for (j = 0; j < XVECLEN (x, i); j++)
2466 if (side_effects_p (XVECEXP (x, i, j)))
2467 return 1;
2468 }
2469 }
2470 }
2471 return 0;
2472}
2473\f
5ed26a34 2474/* Return nonzero if evaluating rtx X might cause a trap.
0eee494e 2475 FLAGS controls how to consider MEMs. A nonzero means the context
2476 of the access may have changed from the original, such that the
2477 address may have become invalid. */
635aff97 2478
77ad8e5a 2479int
dd9b9fc5 2480may_trap_p_1 (const_rtx x, unsigned flags)
635aff97 2481{
2482 int i;
2483 enum rtx_code code;
d2ca078f 2484 const char *fmt;
0eee494e 2485
2486 /* We make no distinction currently, but this function is part of
2487 the internal target-hooks ABI so we keep the parameter as
2488 "unsigned flags". */
2489 bool code_changed = flags != 0;
635aff97 2490
2491 if (x == 0)
2492 return 0;
2493 code = GET_CODE (x);
2494 switch (code)
2495 {
2496 /* Handle these cases quickly. */
0349edce 2497 CASE_CONST_ANY:
635aff97 2498 case SYMBOL_REF:
2499 case LABEL_REF:
2500 case CONST:
2501 case PC:
2502 case CC0:
2503 case REG:
2504 case SCRATCH:
2505 return 0;
2506
77ad8e5a 2507 case UNSPEC:
77ad8e5a 2508 return targetm.unspec_may_trap_p (x, flags);
2509
bcbfcebe 2510 case UNSPEC_VOLATILE:
77ad8e5a 2511 case ASM_INPUT:
635aff97 2512 case TRAP_IF:
2513 return 1;
2514
d18a3f6d 2515 case ASM_OPERANDS:
2516 return MEM_VOLATILE_P (x);
2517
635aff97 2518 /* Memory ref can trap unless it's a static var or a stack slot. */
2519 case MEM:
42982f3e 2520 /* Recognize specific pattern of stack checking probes. */
2521 if (flag_stack_check
2522 && MEM_VOLATILE_P (x)
2523 && XEXP (x, 0) == stack_pointer_rtx)
2524 return 1;
5ed26a34 2525 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
0eee494e 2526 reference; moving it out of context such as when moving code
2527 when optimizing, might cause its address to become invalid. */
2528 code_changed
2529 || !MEM_NOTRAP_P (x))
2530 {
5b2a69fa 2531 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
0eee494e 2532 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2533 GET_MODE (x), code_changed);
2534 }
2535
2536 return 0;
635aff97 2537
2538 /* Division by a non-constant might trap. */
2539 case DIV:
2540 case MOD:
2541 case UDIV:
2542 case UMOD:
fe994837 2543 if (HONOR_SNANS (x))
0a8176f3 2544 return 1;
cee7491d 2545 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
8e97b017 2546 return flag_trapping_math;
2547 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
635aff97 2548 return 1;
0dbd1c74 2549 break;
2550
4c3aec45 2551 case EXPR_LIST:
2552 /* An EXPR_LIST is used to represent a function call. This
2553 certainly may trap. */
2554 return 1;
0dbd1c74 2555
27ea6d28 2556 case GE:
2557 case GT:
2558 case LE:
2559 case LT:
f1278f7e 2560 case LTGT:
51ba663d 2561 case COMPARE:
27ea6d28 2562 /* Some floating point comparisons may trap. */
350b17ef 2563 if (!flag_trapping_math)
2564 break;
27ea6d28 2565 /* ??? There is no machine independent way to check for tests that trap
2566 when COMPARE is used, though many targets do make this distinction.
2567 For instance, sparc uses CCFPE for compares which generate exceptions
2568 and CCFP for compares which do not generate exceptions. */
93633022 2569 if (HONOR_NANS (x))
51ba663d 2570 return 1;
2571 /* But often the compare has some CC mode, so check operand
2572 modes as well. */
93633022 2573 if (HONOR_NANS (XEXP (x, 0))
2574 || HONOR_NANS (XEXP (x, 1)))
0a8176f3 2575 return 1;
2576 break;
2577
2578 case EQ:
2579 case NE:
fe994837 2580 if (HONOR_SNANS (x))
0a8176f3 2581 return 1;
2582 /* Often comparison is CC mode, so check operand modes. */
fe994837 2583 if (HONOR_SNANS (XEXP (x, 0))
2584 || HONOR_SNANS (XEXP (x, 1)))
51ba663d 2585 return 1;
2586 break;
2587
d0a099f8 2588 case FIX:
2589 /* Conversion of floating point might trap. */
93633022 2590 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
d0a099f8 2591 return 1;
2592 break;
2593
4f63c6d1 2594 case NEG:
2595 case ABS:
f0fbc1cd 2596 case SUBREG:
4f63c6d1 2597 /* These operations don't trap even with floating point. */
2598 break;
2599
635aff97 2600 default:
2601 /* Any floating arithmetic may trap. */
bcbfcebe 2602 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
635aff97 2603 return 1;
2604 }
2605
2606 fmt = GET_RTX_FORMAT (code);
2607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2608 {
2609 if (fmt[i] == 'e')
2610 {
5ed26a34 2611 if (may_trap_p_1 (XEXP (x, i), flags))
635aff97 2612 return 1;
2613 }
2614 else if (fmt[i] == 'E')
2615 {
19cb6b50 2616 int j;
635aff97 2617 for (j = 0; j < XVECLEN (x, i); j++)
5ed26a34 2618 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
635aff97 2619 return 1;
2620 }
2621 }
2622 return 0;
2623}
1aecae7f 2624
2625/* Return nonzero if evaluating rtx X might cause a trap. */
2626
2627int
dd9b9fc5 2628may_trap_p (const_rtx x)
1aecae7f 2629{
5ed26a34 2630 return may_trap_p_1 (x, 0);
2631}
2632
334ec2d8 2633/* Same as above, but additionally return nonzero if evaluating rtx X might
1aecae7f 2634 cause a fault. We define a fault for the purpose of this function as a
2635 erroneous execution condition that cannot be encountered during the normal
2636 execution of a valid program; the typical example is an unaligned memory
2637 access on a strict alignment machine. The compiler guarantees that it
2638 doesn't generate code that will fault from a valid program, but this
2639 guarantee doesn't mean anything for individual instructions. Consider
2640 the following example:
2641
2642 struct S { int d; union { char *cp; int *ip; }; };
2643
2644 int foo(struct S *s)
2645 {
2646 if (s->d == 1)
2647 return *s->ip;
2648 else
2649 return *s->cp;
2650 }
2651
2652 on a strict alignment machine. In a valid program, foo will never be
2653 invoked on a structure for which d is equal to 1 and the underlying
2654 unique field of the union not aligned on a 4-byte boundary, but the
2655 expression *s->ip might cause a fault if considered individually.
2656
2657 At the RTL level, potentially problematic expressions will almost always
2658 verify may_trap_p; for example, the above dereference can be emitted as
2659 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2660 However, suppose that foo is inlined in a caller that causes s->cp to
2661 point to a local character variable and guarantees that s->d is not set
2662 to 1; foo may have been effectively translated into pseudo-RTL as:
2663
2664 if ((reg:SI) == 1)
2665 (set (reg:SI) (mem:SI (%fp - 7)))
2666 else
2667 (set (reg:QI) (mem:QI (%fp - 7)))
2668
2669 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2670 memory reference to a stack slot, but it will certainly cause a fault
2671 on a strict alignment machine. */
2672
2673int
dd9b9fc5 2674may_trap_or_fault_p (const_rtx x)
1aecae7f 2675{
0eee494e 2676 return may_trap_p_1 (x, 1);
1aecae7f 2677}
635aff97 2678\f
2679/* Return nonzero if X contains a comparison that is not either EQ or NE,
2680 i.e., an inequality. */
2681
2682int
dd9b9fc5 2683inequality_comparisons_p (const_rtx x)
635aff97 2684{
19cb6b50 2685 const char *fmt;
2686 int len, i;
dd9b9fc5 2687 const enum rtx_code code = GET_CODE (x);
635aff97 2688
2689 switch (code)
2690 {
2691 case REG:
2692 case SCRATCH:
2693 case PC:
2694 case CC0:
0349edce 2695 CASE_CONST_ANY:
635aff97 2696 case CONST:
2697 case LABEL_REF:
2698 case SYMBOL_REF:
2699 return 0;
2700
2701 case LT:
2702 case LTU:
2703 case GT:
2704 case GTU:
2705 case LE:
2706 case LEU:
2707 case GE:
2708 case GEU:
2709 return 1;
2617fe26 2710
0dbd1c74 2711 default:
2712 break;
635aff97 2713 }
2714
2715 len = GET_RTX_LENGTH (code);
2716 fmt = GET_RTX_FORMAT (code);
2717
2718 for (i = 0; i < len; i++)
2719 {
2720 if (fmt[i] == 'e')
2721 {
2722 if (inequality_comparisons_p (XEXP (x, i)))
2723 return 1;
2724 }
2725 else if (fmt[i] == 'E')
2726 {
19cb6b50 2727 int j;
635aff97 2728 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2729 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2730 return 1;
2731 }
2732 }
2617fe26 2733
635aff97 2734 return 0;
2735}
2736\f
0a20afb5 2737/* Replace any occurrence of FROM in X with TO. The function does
2738 not enter into CONST_DOUBLE for the replace.
635aff97 2739
2740 Note that copying is not done so X must not be shared unless all copies
2741 are to be modified. */
2742
2743rtx
3ad4992f 2744replace_rtx (rtx x, rtx from, rtx to)
635aff97 2745{
19cb6b50 2746 int i, j;
2747 const char *fmt;
635aff97 2748
2749 if (x == from)
2750 return to;
2751
2752 /* Allow this function to make replacements in EXPR_LISTs. */
2753 if (x == 0)
2754 return 0;
2755
11896b36 2756 if (GET_CODE (x) == SUBREG)
2757 {
47cfb7f4 2758 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
11896b36 2759
971ba038 2760 if (CONST_INT_P (new_rtx))
11896b36 2761 {
47cfb7f4 2762 x = simplify_subreg (GET_MODE (x), new_rtx,
11896b36 2763 GET_MODE (SUBREG_REG (x)),
2764 SUBREG_BYTE (x));
04e579b6 2765 gcc_assert (x);
11896b36 2766 }
2767 else
47cfb7f4 2768 SUBREG_REG (x) = new_rtx;
11896b36 2769
2770 return x;
2771 }
2772 else if (GET_CODE (x) == ZERO_EXTEND)
2773 {
47cfb7f4 2774 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
11896b36 2775
971ba038 2776 if (CONST_INT_P (new_rtx))
11896b36 2777 {
2778 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
47cfb7f4 2779 new_rtx, GET_MODE (XEXP (x, 0)));
04e579b6 2780 gcc_assert (x);
11896b36 2781 }
2782 else
47cfb7f4 2783 XEXP (x, 0) = new_rtx;
11896b36 2784
2785 return x;
2786 }
2787
635aff97 2788 fmt = GET_RTX_FORMAT (GET_CODE (x));
2789 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2790 {
2791 if (fmt[i] == 'e')
2792 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2793 else if (fmt[i] == 'E')
2794 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2795 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2796 }
2797
2798 return x;
2617fe26 2799}
635aff97 2800\f
956816a2 2801/* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2802 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
f2756aab 2803
956816a2 2804void
2805replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
f2756aab 2806{
956816a2 2807 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2808 rtx x = *loc;
2809 if (JUMP_TABLE_DATA_P (x))
cda612f5 2810 {
956816a2 2811 x = PATTERN (x);
2812 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2813 int len = GET_NUM_ELEM (vec);
2814 for (int i = 0; i < len; ++i)
cda612f5 2815 {
956816a2 2816 rtx ref = RTVEC_ELT (vec, i);
2817 if (XEXP (ref, 0) == old_label)
2818 {
2819 XEXP (ref, 0) = new_label;
2820 if (update_label_nuses)
2821 {
2822 ++LABEL_NUSES (new_label);
2823 --LABEL_NUSES (old_label);
2824 }
2825 }
cda612f5 2826 }
956816a2 2827 return;
cda612f5 2828 }
2829
f2756aab 2830 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
956816a2 2831 field. This is not handled by the iterator because it doesn't
f2756aab 2832 handle unprinted ('0') fields. */
956816a2 2833 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2834 JUMP_LABEL (x) = new_label;
f2756aab 2835
956816a2 2836 subrtx_ptr_iterator::array_type array;
2837 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
cda612f5 2838 {
956816a2 2839 rtx *loc = *iter;
2840 if (rtx x = *loc)
cda612f5 2841 {
956816a2 2842 if (GET_CODE (x) == SYMBOL_REF
2843 && CONSTANT_POOL_ADDRESS_P (x))
2844 {
2845 rtx c = get_pool_constant (x);
2846 if (rtx_referenced_p (old_label, c))
2847 {
2848 /* Create a copy of constant C; replace the label inside
2849 but do not update LABEL_NUSES because uses in constant pool
2850 are not counted. */
2851 rtx new_c = copy_rtx (c);
2852 replace_label (&new_c, old_label, new_label, false);
2853
2854 /* Add the new constant NEW_C to constant pool and replace
2855 the old reference to constant by new reference. */
2856 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2857 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2858 }
2859 }
2860
2861 if ((GET_CODE (x) == LABEL_REF
2862 || GET_CODE (x) == INSN_LIST)
2863 && XEXP (x, 0) == old_label)
2864 {
2865 XEXP (x, 0) = new_label;
2866 if (update_label_nuses)
2867 {
2868 ++LABEL_NUSES (new_label);
2869 --LABEL_NUSES (old_label);
2870 }
2871 }
cda612f5 2872 }
cda612f5 2873 }
956816a2 2874}
f2756aab 2875
956816a2 2876void
2877replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2878 bool update_label_nuses)
2879{
2880 rtx insn_as_rtx = insn;
2881 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2882 gcc_checking_assert (insn_as_rtx == insn);
f2756aab 2883}
2884
db184797 2885/* Return true if X is referenced in BODY. */
f2756aab 2886
db184797 2887bool
2888rtx_referenced_p (const_rtx x, const_rtx body)
f2756aab 2889{
db184797 2890 subrtx_iterator::array_type array;
2891 FOR_EACH_SUBRTX (iter, array, body, ALL)
2892 if (const_rtx y = *iter)
2893 {
2894 /* Check if a label_ref Y refers to label X. */
b49f2e4b 2895 if (GET_CODE (y) == LABEL_REF
2896 && LABEL_P (x)
2897 && LABEL_REF_LABEL (y) == x)
db184797 2898 return true;
f2756aab 2899
db184797 2900 if (rtx_equal_p (x, y))
2901 return true;
f2756aab 2902
db184797 2903 /* If Y is a reference to pool constant traverse the constant. */
2904 if (GET_CODE (y) == SYMBOL_REF
2905 && CONSTANT_POOL_ADDRESS_P (y))
2906 iter.substitute (get_pool_constant (y));
2907 }
2908 return false;
f2756aab 2909}
2910
afff715a 2911/* If INSN is a tablejump return true and store the label (before jump table) to
2912 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
f2756aab 2913
2914bool
28fbb2b5 2915tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
f2756aab 2916{
f9a00e9e 2917 rtx label;
2918 rtx_insn *table;
afff715a 2919
4115ac36 2920 if (!JUMP_P (insn))
2921 return false;
2922
2923 label = JUMP_LABEL (insn);
2924 if (label != NULL_RTX && !ANY_RETURN_P (label)
91a55c11 2925 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
971ba038 2926 && JUMP_TABLE_DATA_P (table))
f2756aab 2927 {
afff715a 2928 if (labelp)
2929 *labelp = label;
2930 if (tablep)
c86d86ff 2931 *tablep = as_a <rtx_jump_table_data *> (table);
f2756aab 2932 return true;
2933 }
2934 return false;
2935}
2936
4e44a132 2937/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2938 constant that is not in the constant pool and not in the condition
2939 of an IF_THEN_ELSE. */
ca6d6e84 2940
2941static int
dd9b9fc5 2942computed_jump_p_1 (const_rtx x)
ca6d6e84 2943{
dd9b9fc5 2944 const enum rtx_code code = GET_CODE (x);
ca6d6e84 2945 int i, j;
d2ca078f 2946 const char *fmt;
ca6d6e84 2947
2948 switch (code)
2949 {
ca6d6e84 2950 case LABEL_REF:
2951 case PC:
2952 return 0;
2953
4e44a132 2954 case CONST:
0349edce 2955 CASE_CONST_ANY:
4e44a132 2956 case SYMBOL_REF:
ca6d6e84 2957 case REG:
2958 return 1;
2959
2960 case MEM:
2961 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2962 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2963
2964 case IF_THEN_ELSE:
4e44a132 2965 return (computed_jump_p_1 (XEXP (x, 1))
2966 || computed_jump_p_1 (XEXP (x, 2)));
99c14947 2967
2968 default:
2969 break;
ca6d6e84 2970 }
2971
2972 fmt = GET_RTX_FORMAT (code);
2973 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2974 {
2975 if (fmt[i] == 'e'
4e44a132 2976 && computed_jump_p_1 (XEXP (x, i)))
ca6d6e84 2977 return 1;
2978
1bd8ca86 2979 else if (fmt[i] == 'E')
ca6d6e84 2980 for (j = 0; j < XVECLEN (x, i); j++)
4e44a132 2981 if (computed_jump_p_1 (XVECEXP (x, i, j)))
ca6d6e84 2982 return 1;
2983 }
2984
2985 return 0;
2986}
2987
2988/* Return nonzero if INSN is an indirect jump (aka computed jump).
2989
2990 Tablejumps and casesi insns are not considered indirect jumps;
9588521d 2991 we can recognize them by a (use (label_ref)). */
ca6d6e84 2992
2993int
181908bb 2994computed_jump_p (const rtx_insn *insn)
ca6d6e84 2995{
2996 int i;
6d7dc5b9 2997 if (JUMP_P (insn))
ca6d6e84 2998 {
2999 rtx pat = PATTERN (insn);
ca6d6e84 3000
19d2fe05 3001 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3002 if (JUMP_LABEL (insn) != NULL)
d3ff0f75 3003 return 0;
19d2fe05 3004
3005 if (GET_CODE (pat) == PARALLEL)
ca6d6e84 3006 {
3007 int len = XVECLEN (pat, 0);
3008 int has_use_labelref = 0;
3009
3010 for (i = len - 1; i >= 0; i--)
3011 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3012 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3013 == LABEL_REF))
b766ccbc 3014 {
3015 has_use_labelref = 1;
3016 break;
3017 }
ca6d6e84 3018
3019 if (! has_use_labelref)
3020 for (i = len - 1; i >= 0; i--)
3021 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3022 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
4e44a132 3023 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
ca6d6e84 3024 return 1;
3025 }
3026 else if (GET_CODE (pat) == SET
3027 && SET_DEST (pat) == pc_rtx
4e44a132 3028 && computed_jump_p_1 (SET_SRC (pat)))
ca6d6e84 3029 return 1;
3030 }
3031 return 0;
3032}
fb8acade 3033
1f864115 3034\f
3035
623ad592 3036/* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3037 the equivalent add insn and pass the result to FN, using DATA as the
3038 final argument. */
1f864115 3039
3040static int
623ad592 3041for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
1f864115 3042{
623ad592 3043 rtx x = XEXP (mem, 0);
1f864115 3044 switch (GET_CODE (x))
3045 {
3046 case PRE_INC:
3047 case POST_INC:
3048 {
623ad592 3049 int size = GET_MODE_SIZE (GET_MODE (mem));
1f864115 3050 rtx r1 = XEXP (x, 0);
3051 rtx c = gen_int_mode (size, GET_MODE (r1));
623ad592 3052 return fn (mem, x, r1, r1, c, data);
1f864115 3053 }
3054
3055 case PRE_DEC:
3056 case POST_DEC:
3057 {
623ad592 3058 int size = GET_MODE_SIZE (GET_MODE (mem));
1f864115 3059 rtx r1 = XEXP (x, 0);
3060 rtx c = gen_int_mode (-size, GET_MODE (r1));
623ad592 3061 return fn (mem, x, r1, r1, c, data);
1f864115 3062 }
3063
3064 case PRE_MODIFY:
3065 case POST_MODIFY:
3066 {
3067 rtx r1 = XEXP (x, 0);
3068 rtx add = XEXP (x, 1);
623ad592 3069 return fn (mem, x, r1, add, NULL, data);
1f864115 3070 }
3071
3072 default:
623ad592 3073 gcc_unreachable ();
1f864115 3074 }
3075}
3076
623ad592 3077/* Traverse *LOC looking for MEMs that have autoinc addresses.
3078 For each such autoinc operation found, call FN, passing it
1f864115 3079 the innermost enclosing MEM, the operation itself, the RTX modified
3080 by the operation, two RTXs (the second may be NULL) that, once
3081 added, represent the value to be held by the modified RTX
623ad592 3082 afterwards, and DATA. FN is to return 0 to continue the
3083 traversal or any other value to have it returned to the caller of
1f864115 3084 for_each_inc_dec. */
3085
3086int
623ad592 3087for_each_inc_dec (rtx x,
1f864115 3088 for_each_inc_dec_fn fn,
623ad592 3089 void *data)
1f864115 3090{
623ad592 3091 subrtx_var_iterator::array_type array;
3092 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3093 {
3094 rtx mem = *iter;
3095 if (mem
3096 && MEM_P (mem)
3097 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3098 {
3099 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3100 if (res != 0)
3101 return res;
3102 iter.skip_subrtxes ();
3103 }
3104 }
3105 return 0;
1f864115 3106}
3107
3108\f
0919e10f 3109/* Searches X for any reference to REGNO, returning the rtx of the
3110 reference found if any. Otherwise, returns NULL_RTX. */
3111
3112rtx
3ad4992f 3113regno_use_in (unsigned int regno, rtx x)
0919e10f 3114{
19cb6b50 3115 const char *fmt;
0919e10f 3116 int i, j;
3117 rtx tem;
3118
8ad4c111 3119 if (REG_P (x) && REGNO (x) == regno)
0919e10f 3120 return x;
3121
3122 fmt = GET_RTX_FORMAT (GET_CODE (x));
3123 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3124 {
3125 if (fmt[i] == 'e')
3126 {
3127 if ((tem = regno_use_in (regno, XEXP (x, i))))
3128 return tem;
3129 }
3130 else if (fmt[i] == 'E')
3131 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3132 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3133 return tem;
3134 }
3135
3136 return NULL_RTX;
3137}
c4f0a530 3138
09f800b9 3139/* Return a value indicating whether OP, an operand of a commutative
3140 operation, is preferred as the first or second operand. The higher
3141 the value, the stronger the preference for being the first operand.
3142 We use negative values to indicate a preference for the first operand
3143 and positive values for the second operand. */
3144
f4ad60b7 3145int
3ad4992f 3146commutative_operand_precedence (rtx op)
09f800b9 3147{
b147a3b4 3148 enum rtx_code code = GET_CODE (op);
48e1416a 3149
09f800b9 3150 /* Constants always come the second operand. Prefer "nice" constants. */
b147a3b4 3151 if (code == CONST_INT)
1f3b83af 3152 return -8;
e913b5cd 3153 if (code == CONST_WIDE_INT)
3154 return -8;
b147a3b4 3155 if (code == CONST_DOUBLE)
1f3b83af 3156 return -7;
e397ad8e 3157 if (code == CONST_FIXED)
3158 return -7;
efbc8128 3159 op = avoid_constant_pool_reference (op);
57260f80 3160 code = GET_CODE (op);
6720e96c 3161
3162 switch (GET_RTX_CLASS (code))
3163 {
3164 case RTX_CONST_OBJ:
3165 if (code == CONST_INT)
1f3b83af 3166 return -6;
e913b5cd 3167 if (code == CONST_WIDE_INT)
3168 return -6;
6720e96c 3169 if (code == CONST_DOUBLE)
1f3b83af 3170 return -5;
e397ad8e 3171 if (code == CONST_FIXED)
3172 return -5;
1f3b83af 3173 return -4;
6720e96c 3174
3175 case RTX_EXTRA:
3176 /* SUBREGs of objects should come second. */
3177 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
1f3b83af 3178 return -3;
3072d30e 3179 return 0;
6720e96c 3180
3181 case RTX_OBJ:
3182 /* Complex expressions should be the first, so decrease priority
1f3b83af 3183 of objects. Prefer pointer objects over non pointer objects. */
3184 if ((REG_P (op) && REG_POINTER (op))
3185 || (MEM_P (op) && MEM_POINTER (op)))
3186 return -1;
3187 return -2;
6720e96c 3188
3189 case RTX_COMM_ARITH:
3190 /* Prefer operands that are themselves commutative to be first.
3191 This helps to make things linear. In particular,
3192 (and (and (reg) (reg)) (not (reg))) is canonical. */
3193 return 4;
3194
3195 case RTX_BIN_ARITH:
3196 /* If only one operand is a binary expression, it will be the first
3197 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3198 is canonical, although it will usually be further simplified. */
3199 return 2;
48e1416a 3200
6720e96c 3201 case RTX_UNARY:
3202 /* Then prefer NEG and NOT. */
3203 if (code == NEG || code == NOT)
3204 return 1;
09f800b9 3205
6720e96c 3206 default:
3207 return 0;
3208 }
09f800b9 3209}
3210
dd5b4b36 3211/* Return 1 iff it is necessary to swap operands of commutative operation
09f800b9 3212 in order to canonicalize expression. */
3213
1f3b83af 3214bool
3ad4992f 3215swap_commutative_operands_p (rtx x, rtx y)
09f800b9 3216{
f4ad60b7 3217 return (commutative_operand_precedence (x)
3218 < commutative_operand_precedence (y));
09f800b9 3219}
c4f0a530 3220
3221/* Return 1 if X is an autoincrement side effect and the register is
3222 not the stack pointer. */
3223int
dd9b9fc5 3224auto_inc_p (const_rtx x)
c4f0a530 3225{
3226 switch (GET_CODE (x))
3227 {
3228 case PRE_INC:
3229 case POST_INC:
3230 case PRE_DEC:
3231 case POST_DEC:
3232 case PRE_MODIFY:
3233 case POST_MODIFY:
3234 /* There are no REG_INC notes for SP. */
3235 if (XEXP (x, 0) != stack_pointer_rtx)
3236 return 1;
3237 default:
3238 break;
3239 }
3240 return 0;
3241}
b067e925 3242
2358393e 3243/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2c663070 3244int
dd9b9fc5 3245loc_mentioned_in_p (rtx *loc, const_rtx in)
2c663070 3246{
42a3a38b 3247 enum rtx_code code;
3248 const char *fmt;
2c663070 3249 int i, j;
3250
42a3a38b 3251 if (!in)
3252 return 0;
3253
3254 code = GET_CODE (in);
3255 fmt = GET_RTX_FORMAT (code);
2c663070 3256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3257 {
2c663070 3258 if (fmt[i] == 'e')
3259 {
c8707f08 3260 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
2c663070 3261 return 1;
3262 }
3263 else if (fmt[i] == 'E')
3264 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
c8707f08 3265 if (loc == &XVECEXP (in, i, j)
3266 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2c663070 3267 return 1;
3268 }
3269 return 0;
3270}
701e46d0 3271
f36eb1e9 3272/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3273 and SUBREG_BYTE, return the bit offset where the subreg begins
3274 (counting from the least significant bit of the operand). */
ef4e6755 3275
3276unsigned int
3754d046 3277subreg_lsb_1 (machine_mode outer_mode,
3278 machine_mode inner_mode,
f36eb1e9 3279 unsigned int subreg_byte)
ef4e6755 3280{
ef4e6755 3281 unsigned int bitpos;
3282 unsigned int byte;
3283 unsigned int word;
3284
3285 /* A paradoxical subreg begins at bit position 0. */
ded805e6 3286 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
ef4e6755 3287 return 0;
3288
3289 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3290 /* If the subreg crosses a word boundary ensure that
3291 it also begins and ends on a word boundary. */
04e579b6 3292 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3293 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3294 && (subreg_byte % UNITS_PER_WORD
3295 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
ef4e6755 3296
3297 if (WORDS_BIG_ENDIAN)
3298 word = (GET_MODE_SIZE (inner_mode)
f36eb1e9 3299 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
ef4e6755 3300 else
f36eb1e9 3301 word = subreg_byte / UNITS_PER_WORD;
ef4e6755 3302 bitpos = word * BITS_PER_WORD;
3303
3304 if (BYTES_BIG_ENDIAN)
3305 byte = (GET_MODE_SIZE (inner_mode)
f36eb1e9 3306 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
ef4e6755 3307 else
f36eb1e9 3308 byte = subreg_byte % UNITS_PER_WORD;
ef4e6755 3309 bitpos += byte * BITS_PER_UNIT;
3310
3311 return bitpos;
3312}
3313
f36eb1e9 3314/* Given a subreg X, return the bit offset where the subreg begins
3315 (counting from the least significant bit of the reg). */
3316
3317unsigned int
dd9b9fc5 3318subreg_lsb (const_rtx x)
f36eb1e9 3319{
3320 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3321 SUBREG_BYTE (x));
3322}
3323
fe2ebfc8 3324/* Fill in information about a subreg of a hard register.
701e46d0 3325 xregno - A regno of an inner hard subreg_reg (or what will become one).
3326 xmode - The mode of xregno.
3327 offset - The byte offset.
3328 ymode - The mode of a top level SUBREG (or what may become one).
5ccab9d4 3329 info - Pointer to structure to fill in.
3330
3331 Rather than considering one particular inner register (and thus one
3332 particular "outer" register) in isolation, this function really uses
3333 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3334 function does not check whether adding INFO->offset to XREGNO gives
3335 a valid hard register; even if INFO->offset + XREGNO is out of range,
3336 there might be another register of the same type that is in range.
3337 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3338 register, since that can depend on things like whether the final
3339 register number is even or odd. Callers that want to check whether
3340 this particular subreg can be replaced by a simple (reg ...) should
3341 use simplify_subreg_regno. */
3342
9680c846 3343void
3754d046 3344subreg_get_info (unsigned int xregno, machine_mode xmode,
3345 unsigned int offset, machine_mode ymode,
fe2ebfc8 3346 struct subreg_info *info)
d9b3752c 3347{
695595bc 3348 int nregs_xmode, nregs_ymode;
d9b3752c 3349 int mode_multiple, nregs_multiple;
fe2ebfc8 3350 int offset_adj, y_offset, y_offset_adj;
695595bc 3351 int regsize_xmode, regsize_ymode;
fe2ebfc8 3352 bool rknown;
d9b3752c 3353
04e579b6 3354 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
d9b3752c 3355
fe2ebfc8 3356 rknown = false;
3357
ed21e7ff 3358 /* If there are holes in a non-scalar mode in registers, we expect
3359 that it is made up of its units concatenated together. */
695595bc 3360 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
ed21e7ff 3361 {
3754d046 3362 machine_mode xmode_unit;
695595bc 3363
3364 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3365 if (GET_MODE_INNER (xmode) == VOIDmode)
3366 xmode_unit = xmode;
3367 else
3368 xmode_unit = GET_MODE_INNER (xmode);
3369 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3370 gcc_assert (nregs_xmode
3371 == (GET_MODE_NUNITS (xmode)
3372 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3373 gcc_assert (hard_regno_nregs[xregno][xmode]
3374 == (hard_regno_nregs[xregno][xmode_unit]
3375 * GET_MODE_NUNITS (xmode)));
ed21e7ff 3376
3377 /* You can only ask for a SUBREG of a value with holes in the middle
3378 if you don't cross the holes. (Such a SUBREG should be done by
3379 picking a different register class, or doing it in memory if
3380 necessary.) An example of a value with holes is XCmode on 32-bit
3381 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
48e1416a 3382 3 for each part, but in memory it's two 128-bit parts.
ed21e7ff 3383 Padding is assumed to be at the end (not necessarily the 'high part')
3384 of each unit. */
48e1416a 3385 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
695595bc 3386 < GET_MODE_NUNITS (xmode))
3387 && (offset / GET_MODE_SIZE (xmode_unit)
ed21e7ff 3388 != ((offset + GET_MODE_SIZE (ymode) - 1)
695595bc 3389 / GET_MODE_SIZE (xmode_unit))))
fe2ebfc8 3390 {
3391 info->representable_p = false;
3392 rknown = true;
3393 }
ed21e7ff 3394 }
3395 else
3396 nregs_xmode = hard_regno_nregs[xregno][xmode];
48e1416a 3397
67d6c12b 3398 nregs_ymode = hard_regno_nregs[xregno][ymode];
d9b3752c 3399
ed21e7ff 3400 /* Paradoxical subregs are otherwise valid. */
fe2ebfc8 3401 if (!rknown
3402 && offset == 0
ded805e6 3403 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
fe2ebfc8 3404 {
3405 info->representable_p = true;
3406 /* If this is a big endian paradoxical subreg, which uses more
3407 actual hard registers than the original register, we must
3408 return a negative offset so that we find the proper highpart
3409 of the register. */
3410 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
76c64076 3411 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
fe2ebfc8 3412 info->offset = nregs_xmode - nregs_ymode;
3413 else
3414 info->offset = 0;
3415 info->nregs = nregs_ymode;
3416 return;
3417 }
d9b3752c 3418
695595bc 3419 /* If registers store different numbers of bits in the different
3420 modes, we cannot generally form this subreg. */
fe2ebfc8 3421 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
a100ece7 3422 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3423 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3424 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
fe2ebfc8 3425 {
3426 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
fe2ebfc8 3427 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
fe2ebfc8 3428 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3429 {
3430 info->representable_p = false;
3431 info->nregs
3432 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3433 info->offset = offset / regsize_xmode;
3434 return;
3435 }
3436 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3437 {
3438 info->representable_p = false;
3439 info->nregs
3440 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3441 info->offset = offset / regsize_xmode;
3442 return;
3443 }
ef8a7a52 3444 /* Quick exit for the simple and common case of extracting whole
3445 subregisters from a multiregister value. */
3446 /* ??? It would be better to integrate this into the code below,
3447 if we can generalize the concept enough and figure out how
3448 odd-sized modes can coexist with the other weird cases we support. */
3449 if (!rknown
3450 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3451 && regsize_xmode == regsize_ymode
3452 && (offset % regsize_ymode) == 0)
3453 {
3454 info->representable_p = true;
3455 info->nregs = nregs_ymode;
3456 info->offset = offset / regsize_ymode;
3457 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3458 return;
3459 }
fe2ebfc8 3460 }
695595bc 3461
ed21e7ff 3462 /* Lowpart subregs are otherwise valid. */
fe2ebfc8 3463 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3464 {
3465 info->representable_p = true;
3466 rknown = true;
8ef3d190 3467
3468 if (offset == 0 || nregs_xmode == nregs_ymode)
3469 {
3470 info->offset = 0;
3471 info->nregs = nregs_ymode;
3472 return;
3473 }
fe2ebfc8 3474 }
d9b3752c 3475
ed21e7ff 3476 /* This should always pass, otherwise we don't know how to verify
3477 the constraint. These conditions may be relaxed but
3478 subreg_regno_offset would need to be redesigned. */
04e579b6 3479 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
04e579b6 3480 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
d9b3752c 3481
76c64076 3482 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3483 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3484 {
3485 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3486 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3487 HOST_WIDE_INT off_low = offset & (ysize - 1);
3488 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3489 offset = (xsize - ysize - off_high) | off_low;
3490 }
df07c3ae 3491 /* The XMODE value can be seen as a vector of NREGS_XMODE
845bebef 3492 values. The subreg must represent a lowpart of given field.
d9b3752c 3493 Compute what field it is. */
fe2ebfc8 3494 offset_adj = offset;
3495 offset_adj -= subreg_lowpart_offset (ymode,
3496 mode_for_size (GET_MODE_BITSIZE (xmode)
3497 / nregs_xmode,
3498 MODE_INT, 0));
d9b3752c 3499
ed21e7ff 3500 /* Size of ymode must not be greater than the size of xmode. */
d9b3752c 3501 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
04e579b6 3502 gcc_assert (mode_multiple != 0);
d9b3752c 3503
3504 y_offset = offset / GET_MODE_SIZE (ymode);
fe2ebfc8 3505 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3506 nregs_multiple = nregs_xmode / nregs_ymode;
04e579b6 3507
fe2ebfc8 3508 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
04e579b6 3509 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3510
fe2ebfc8 3511 if (!rknown)
3512 {
3513 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3514 rknown = true;
3515 }
3516 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3517 info->nregs = nregs_ymode;
3518}
3519
3520/* This function returns the regno offset of a subreg expression.
3521 xregno - A regno of an inner hard subreg_reg (or what will become one).
3522 xmode - The mode of xregno.
3523 offset - The byte offset.
3524 ymode - The mode of a top level SUBREG (or what may become one).
3525 RETURN - The regno offset which would be used. */
3526unsigned int
3754d046 3527subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3528 unsigned int offset, machine_mode ymode)
fe2ebfc8 3529{
3530 struct subreg_info info;
3531 subreg_get_info (xregno, xmode, offset, ymode, &info);
3532 return info.offset;
3533}
3534
3535/* This function returns true when the offset is representable via
3536 subreg_offset in the given regno.
3537 xregno - A regno of an inner hard subreg_reg (or what will become one).
3538 xmode - The mode of xregno.
3539 offset - The byte offset.
3540 ymode - The mode of a top level SUBREG (or what may become one).
3541 RETURN - Whether the offset is representable. */
3542bool
3754d046 3543subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3544 unsigned int offset, machine_mode ymode)
fe2ebfc8 3545{
3546 struct subreg_info info;
3547 subreg_get_info (xregno, xmode, offset, ymode, &info);
949bf6a9 3548 return info.representable_p;
d9b3752c 3549}
3550
5992d16a 3551/* Return the number of a YMODE register to which
3552
3553 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3554
3555 can be simplified. Return -1 if the subreg can't be simplified.
3556
3557 XREGNO is a hard register number. */
3558
3559int
3754d046 3560simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3561 unsigned int offset, machine_mode ymode)
5992d16a 3562{
3563 struct subreg_info info;
3564 unsigned int yregno;
3565
3566#ifdef CANNOT_CHANGE_MODE_CLASS
3567 /* Give the backend a chance to disallow the mode change. */
3568 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3569 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
c6a6cdaa 3570 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3571 /* We can use mode change in LRA for some transformations. */
3572 && ! lra_in_progress)
5992d16a 3573 return -1;
3574#endif
3575
3576 /* We shouldn't simplify stack-related registers. */
3577 if ((!reload_completed || frame_pointer_needed)
c461d390 3578 && xregno == FRAME_POINTER_REGNUM)
5992d16a 3579 return -1;
3580
3581 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
c78ae7d1 3582 && xregno == ARG_POINTER_REGNUM)
5992d16a 3583 return -1;
3584
c6a6cdaa 3585 if (xregno == STACK_POINTER_REGNUM
3586 /* We should convert hard stack register in LRA if it is
3587 possible. */
3588 && ! lra_in_progress)
5992d16a 3589 return -1;
3590
3591 /* Try to get the register offset. */
3592 subreg_get_info (xregno, xmode, offset, ymode, &info);
3593 if (!info.representable_p)
3594 return -1;
3595
3596 /* Make sure that the offsetted register value is in range. */
3597 yregno = xregno + info.offset;
3598 if (!HARD_REGISTER_NUM_P (yregno))
3599 return -1;
3600
3601 /* See whether (reg:YMODE YREGNO) is valid.
3602
3603 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
7cb63246 3604 This is a kludge to work around how complex FP arguments are passed
3605 on IA-64 and should be fixed. See PR target/49226. */
5992d16a 3606 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3607 && HARD_REGNO_MODE_OK (xregno, xmode))
3608 return -1;
3609
3610 return (int) yregno;
3611}
3612
aa40f561 3613/* Return the final regno that a subreg expression refers to. */
2617fe26 3614unsigned int
dd9b9fc5 3615subreg_regno (const_rtx x)
701e46d0 3616{
3617 unsigned int ret;
3618 rtx subreg = SUBREG_REG (x);
3619 int regno = REGNO (subreg);
3620
2617fe26 3621 ret = regno + subreg_regno_offset (regno,
3622 GET_MODE (subreg),
701e46d0 3623 SUBREG_BYTE (x),
3624 GET_MODE (x));
3625 return ret;
3626
3627}
fe2ebfc8 3628
3629/* Return the number of registers that a subreg expression refers
3630 to. */
3631unsigned int
dd9b9fc5 3632subreg_nregs (const_rtx x)
dea7b504 3633{
3634 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3635}
3636
3637/* Return the number of registers that a subreg REG with REGNO
3638 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3639 changed so that the regno can be passed in. */
3640
3641unsigned int
3642subreg_nregs_with_regno (unsigned int regno, const_rtx x)
fe2ebfc8 3643{
3644 struct subreg_info info;
3645 rtx subreg = SUBREG_REG (x);
fe2ebfc8 3646
3647 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3648 &info);
3649 return info.nregs;
3650}
3651
dea7b504 3652
7c2cc97e 3653struct parms_set_data
3654{
3655 int nregs;
3656 HARD_REG_SET regs;
3657};
3658
3659/* Helper function for noticing stores to parameter registers. */
3660static void
81a410b1 3661parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7c2cc97e 3662{
f7f3687c 3663 struct parms_set_data *const d = (struct parms_set_data *) data;
7c2cc97e 3664 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3665 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3666 {
3667 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3668 d->nregs--;
3669 }
3670}
3671
2617fe26 3672/* Look backward for first parameter to be loaded.
a6971e98 3673 Note that loads of all parameters will not necessarily be
3674 found if CSE has eliminated some of them (e.g., an argument
3675 to the outer function is passed down as a parameter).
7c2cc97e 3676 Do not skip BOUNDARY. */
3ccd8550 3677rtx_insn *
35f8d1c2 3678find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
7c2cc97e 3679{
3680 struct parms_set_data parm;
35f8d1c2 3681 rtx p;
3682 rtx_insn *before, *first_set;
7c2cc97e 3683
3684 /* Since different machines initialize their parameter registers
3685 in different orders, assume nothing. Collect the set of all
3686 parameter registers. */
3687 CLEAR_HARD_REG_SET (parm.regs);
3688 parm.nregs = 0;
3689 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3690 if (GET_CODE (XEXP (p, 0)) == USE
8ad4c111 3691 && REG_P (XEXP (XEXP (p, 0), 0)))
7c2cc97e 3692 {
04e579b6 3693 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
7c2cc97e 3694
3695 /* We only care about registers which can hold function
3696 arguments. */
3697 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3698 continue;
3699
3700 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3701 parm.nregs++;
3702 }
3703 before = call_insn;
a6971e98 3704 first_set = call_insn;
7c2cc97e 3705
3706 /* Search backward for the first set of a register in this set. */
3707 while (parm.nregs && before != boundary)
3708 {
3709 before = PREV_INSN (before);
3710
3711 /* It is possible that some loads got CSEed from one call to
3712 another. Stop in that case. */
6d7dc5b9 3713 if (CALL_P (before))
7c2cc97e 3714 break;
3715
26551efd 3716 /* Our caller needs either ensure that we will find all sets
7c2cc97e 3717 (in case code has not been optimized yet), or take care
4a82352a 3718 for possible labels in a way by setting boundary to preceding
7c2cc97e 3719 CODE_LABEL. */
6d7dc5b9 3720 if (LABEL_P (before))
26551efd 3721 {
04e579b6 3722 gcc_assert (before == boundary);
26551efd 3723 break;
3724 }
7c2cc97e 3725
bd10a7cd 3726 if (INSN_P (before))
a6971e98 3727 {
3728 int nregs_old = parm.nregs;
3729 note_stores (PATTERN (before), parms_set, &parm);
3730 /* If we found something that did not set a parameter reg,
3731 we're done. Do not keep going, as that might result
3732 in hoisting an insn before the setting of a pseudo
3733 that is used by the hoisted insn. */
3734 if (nregs_old != parm.nregs)
3735 first_set = before;
3736 else
3737 break;
3738 }
7c2cc97e 3739 }
35f8d1c2 3740 return first_set;
7c2cc97e 3741}
fb20d6fa 3742
de132707 3743/* Return true if we should avoid inserting code between INSN and preceding
fb20d6fa 3744 call instruction. */
3745
3746bool
2eb8c261 3747keep_with_call_p (const rtx_insn *insn)
fb20d6fa 3748{
3749 rtx set;
3750
3751 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3752 {
8ad4c111 3753 if (REG_P (SET_DEST (set))
0c08cb26 3754 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
fb20d6fa 3755 && fixed_regs[REGNO (SET_DEST (set))]
3756 && general_operand (SET_SRC (set), VOIDmode))
3757 return true;
8ad4c111 3758 if (REG_P (SET_SRC (set))
e1ce1485 3759 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
8ad4c111 3760 && REG_P (SET_DEST (set))
fb20d6fa 3761 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3762 return true;
aee989f5 3763 /* There may be a stack pop just after the call and before the store
3764 of the return register. Search for the actual store when deciding
3765 if we can break or not. */
fb20d6fa 3766 if (SET_DEST (set) == stack_pointer_rtx)
3767 {
ce4469fa 3768 /* This CONST_CAST is okay because next_nonnote_insn just
5ca94202 3769 returns its argument and we assign it to a const_rtx
ce4469fa 3770 variable. */
2eb8c261 3771 const rtx_insn *i2
3772 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
aee989f5 3773 if (i2 && keep_with_call_p (i2))
fb20d6fa 3774 return true;
3775 }
3776 }
3777 return false;
3778}
fa3cb24d 3779
b9de5542 3780/* Return true if LABEL is a target of JUMP_INSN. This applies only
3781 to non-complex jumps. That is, direct unconditional, conditional,
3782 and tablejumps, but not computed jumps or returns. It also does
3783 not apply to the fallthru case of a conditional jump. */
3784
3785bool
28fbb2b5 3786label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
b9de5542 3787{
3788 rtx tmp = JUMP_LABEL (jump_insn);
c86d86ff 3789 rtx_jump_table_data *table;
b9de5542 3790
3791 if (label == tmp)
3792 return true;
3793
c86d86ff 3794 if (tablejump_p (jump_insn, NULL, &table))
b9de5542 3795 {
b77639be 3796 rtvec vec = table->get_labels ();
b9de5542 3797 int i, veclen = GET_NUM_ELEM (vec);
3798
3799 for (i = 0; i < veclen; ++i)
3800 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3801 return true;
3802 }
3803
a8d1dae0 3804 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3805 return true;
3806
b9de5542 3807 return false;
3808}
3809
26619827 3810\f
3811/* Return an estimate of the cost of computing rtx X.
3812 One use is in cse, to decide which expression to keep in the hash table.
3813 Another is in rtl generation, to pick the cheapest way to multiply.
48e1416a 3814 Other uses like the latter are expected in the future.
f529eb25 3815
20d892d1 3816 X appears as operand OPNO in an expression with code OUTER_CODE.
3817 SPEED specifies whether costs optimized for speed or size should
f529eb25 3818 be returned. */
26619827 3819
3820int
20d892d1 3821rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
26619827 3822{
3823 int i, j;
3824 enum rtx_code code;
3825 const char *fmt;
3826 int total;
3b3b530a 3827 int factor;
26619827 3828
3829 if (x == 0)
3830 return 0;
3831
3b3b530a 3832 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3833 many insns, taking N times as long. */
3834 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3835 if (factor == 0)
3836 factor = 1;
3837
26619827 3838 /* Compute the default costs of certain things.
3839 Note that targetm.rtx_costs can override the defaults. */
3840
3841 code = GET_CODE (x);
3842 switch (code)
3843 {
3844 case MULT:
3b3b530a 3845 /* Multiplication has time-complexity O(N*N), where N is the
3846 number of units (translated from digits) when using
3847 schoolbook long multiplication. */
3848 total = factor * factor * COSTS_N_INSNS (5);
26619827 3849 break;
3850 case DIV:
3851 case UDIV:
3852 case MOD:
3853 case UMOD:
3b3b530a 3854 /* Similarly, complexity for schoolbook long division. */
3855 total = factor * factor * COSTS_N_INSNS (7);
26619827 3856 break;
3857 case USE:
67a5e20a 3858 /* Used in combine.c as a marker. */
26619827 3859 total = 0;
3860 break;
3b3b530a 3861 case SET:
3862 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3863 the mode for the factor. */
3864 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3865 if (factor == 0)
3866 factor = 1;
3867 /* Pass through. */
26619827 3868 default:
3b3b530a 3869 total = factor * COSTS_N_INSNS (1);
26619827 3870 }
3871
3872 switch (code)
3873 {
3874 case REG:
3875 return 0;
3876
3877 case SUBREG:
8eb9bb0e 3878 total = 0;
26619827 3879 /* If we can't tie these modes, make this expensive. The larger
3880 the mode, the more expensive it is. */
3881 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3b3b530a 3882 return COSTS_N_INSNS (2 + factor);
26619827 3883 break;
3884
3885 default:
20d892d1 3886 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
26619827 3887 return total;
3888 break;
3889 }
3890
3891 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3892 which is already in total. */
3893
3894 fmt = GET_RTX_FORMAT (code);
3895 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3896 if (fmt[i] == 'e')
20d892d1 3897 total += rtx_cost (XEXP (x, i), code, i, speed);
26619827 3898 else if (fmt[i] == 'E')
3899 for (j = 0; j < XVECLEN (x, i); j++)
20d892d1 3900 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
26619827 3901
3902 return total;
3903}
c9a03487 3904
3905/* Fill in the structure C with information about both speed and size rtx
20d892d1 3906 costs for X, which is operand OPNO in an expression with code OUTER. */
c9a03487 3907
3908void
20d892d1 3909get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3910 struct full_rtx_costs *c)
c9a03487 3911{
20d892d1 3912 c->speed = rtx_cost (x, outer, opno, true);
3913 c->size = rtx_cost (x, outer, opno, false);
c9a03487 3914}
3915
26619827 3916\f
3917/* Return cost of address expression X.
48e1416a 3918 Expect that X is properly formed address reference.
f529eb25 3919
3920 SPEED parameter specify whether costs optimized for speed or size should
3921 be returned. */
26619827 3922
3923int
3754d046 3924address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
26619827 3925{
26619827 3926 /* We may be asked for cost of various unusual addresses, such as operands
3927 of push instruction. It is not worthwhile to complicate writing
3928 of the target hook by such cases. */
3929
bd1a81f7 3930 if (!memory_address_addr_space_p (mode, x, as))
26619827 3931 return 1000;
3932
d9c5e5f4 3933 return targetm.address_cost (x, mode, as, speed);
26619827 3934}
3935
3936/* If the target doesn't override, compute the cost as with arithmetic. */
3937
3938int
3754d046 3939default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
26619827 3940{
20d892d1 3941 return rtx_cost (x, MEM, 0, speed);
26619827 3942}
d263732c 3943\f
3944
3945unsigned HOST_WIDE_INT
3754d046 3946nonzero_bits (const_rtx x, machine_mode mode)
d263732c 3947{
3948 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3949}
3950
3951unsigned int
3754d046 3952num_sign_bit_copies (const_rtx x, machine_mode mode)
d263732c 3953{
3954 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3955}
3956
3957/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3958 It avoids exponential behavior in nonzero_bits1 when X has
3959 identical subexpressions on the first or the second level. */
3960
3961static unsigned HOST_WIDE_INT
3754d046 3962cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
3963 machine_mode known_mode,
d263732c 3964 unsigned HOST_WIDE_INT known_ret)
3965{
3966 if (x == known_x && mode == known_mode)
3967 return known_ret;
3968
3969 /* Try to find identical subexpressions. If found call
3970 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3971 precomputed value for the subexpression as KNOWN_RET. */
3972
3973 if (ARITHMETIC_P (x))
3974 {
3975 rtx x0 = XEXP (x, 0);
3976 rtx x1 = XEXP (x, 1);
3977
3978 /* Check the first level. */
3979 if (x0 == x1)
3980 return nonzero_bits1 (x, mode, x0, mode,
3981 cached_nonzero_bits (x0, mode, known_x,
3982 known_mode, known_ret));
3983
3984 /* Check the second level. */
3985 if (ARITHMETIC_P (x0)
3986 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3987 return nonzero_bits1 (x, mode, x1, mode,
3988 cached_nonzero_bits (x1, mode, known_x,
3989 known_mode, known_ret));
3990
3991 if (ARITHMETIC_P (x1)
3992 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3993 return nonzero_bits1 (x, mode, x0, mode,
3994 cached_nonzero_bits (x0, mode, known_x,
3995 known_mode, known_ret));
3996 }
3997
3998 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3999}
4000
4001/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4002 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4003 is less useful. We can't allow both, because that results in exponential
4004 run time recursion. There is a nullstone testcase that triggered
4005 this. This macro avoids accidental uses of num_sign_bit_copies. */
4006#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4007
4008/* Given an expression, X, compute which bits in X can be nonzero.
4009 We don't care about bits outside of those defined in MODE.
4010
4011 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4012 an arithmetic operation, we can do better. */
4013
4014static unsigned HOST_WIDE_INT
3754d046 4015nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4016 machine_mode known_mode,
d263732c 4017 unsigned HOST_WIDE_INT known_ret)
4018{
4019 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4020 unsigned HOST_WIDE_INT inner_nz;
4021 enum rtx_code code;
3754d046 4022 machine_mode inner_mode;
ded805e6 4023 unsigned int mode_width = GET_MODE_PRECISION (mode);
d263732c 4024
6d5136ab 4025 /* For floating-point and vector values, assume all bits are needed. */
4026 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4027 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
d263732c 4028 return nonzero;
4029
4030 /* If X is wider than MODE, use its mode instead. */
ded805e6 4031 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
d263732c 4032 {
4033 mode = GET_MODE (x);
4034 nonzero = GET_MODE_MASK (mode);
ded805e6 4035 mode_width = GET_MODE_PRECISION (mode);
d263732c 4036 }
4037
4038 if (mode_width > HOST_BITS_PER_WIDE_INT)
4039 /* Our only callers in this case look for single bit values. So
4040 just return the mode mask. Those tests will then be false. */
4041 return nonzero;
4042
4043#ifndef WORD_REGISTER_OPERATIONS
4044 /* If MODE is wider than X, but both are a single word for both the host
4045 and target machines, we can compute this from which bits of the
4046 object might be nonzero in its own mode, taking into account the fact
4047 that on many CISC machines, accessing an object in a wider mode
4048 causes the high-order bits to become undefined. So they are
4049 not known to be zero. */
4050
4051 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
ded805e6 4052 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4053 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4054 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4055 {
4056 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4057 known_x, known_mode, known_ret);
4058 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4059 return nonzero;
4060 }
4061#endif
4062
4063 code = GET_CODE (x);
4064 switch (code)
4065 {
4066 case REG:
4067#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4068 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4069 all the bits above ptr_mode are known to be zero. */
04ec15fa 4070 /* As we do not know which address space the pointer is referring to,
98155838 4071 we can do this only if the target does not support different pointer
4072 or address modes depending on the address space. */
4073 if (target_default_pointer_address_modes_p ()
4074 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
d263732c 4075 && REG_POINTER (x))
4076 nonzero &= GET_MODE_MASK (ptr_mode);
4077#endif
4078
4079 /* Include declared information about alignment of pointers. */
4080 /* ??? We don't properly preserve REG_POINTER changes across
4081 pointer-to-integer casts, so we can't trust it except for
4082 things that we know must be pointers. See execute/960116-1.c. */
4083 if ((x == stack_pointer_rtx
4084 || x == frame_pointer_rtx
4085 || x == arg_pointer_rtx)
4086 && REGNO_POINTER_ALIGN (REGNO (x)))
4087 {
4088 unsigned HOST_WIDE_INT alignment
4089 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4090
4091#ifdef PUSH_ROUNDING
4092 /* If PUSH_ROUNDING is defined, it is possible for the
4093 stack to be momentarily aligned only to that amount,
4094 so we pick the least alignment. */
4095 if (x == stack_pointer_rtx && PUSH_ARGS)
4096 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4097 alignment);
4098#endif
4099
4100 nonzero &= ~(alignment - 1);
4101 }
4102
4103 {
4104 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
47cfb7f4 4105 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
d263732c 4106 known_mode, known_ret,
4107 &nonzero_for_hook);
4108
47cfb7f4 4109 if (new_rtx)
4110 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
d263732c 4111 known_mode, known_ret);
4112
4113 return nonzero_for_hook;
4114 }
4115
4116 case CONST_INT:
4117#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4118 /* If X is negative in MODE, sign-extend the value. */
9d8859f1 4119 if (INTVAL (x) > 0
4120 && mode_width < BITS_PER_WORD
4121 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4122 != 0)
561f0ec8 4123 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
d263732c 4124#endif
4125
9d8859f1 4126 return UINTVAL (x);
d263732c 4127
4128 case MEM:
4129#ifdef LOAD_EXTEND_OP
4130 /* In many, if not most, RISC machines, reading a byte from memory
4131 zeros the rest of the register. Noticing that fact saves a lot
4132 of extra zero-extends. */
4133 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4134 nonzero &= GET_MODE_MASK (GET_MODE (x));
4135#endif
4136 break;
4137
4138 case EQ: case NE:
4139 case UNEQ: case LTGT:
4140 case GT: case GTU: case UNGT:
4141 case LT: case LTU: case UNLT:
4142 case GE: case GEU: case UNGE:
4143 case LE: case LEU: case UNLE:
4144 case UNORDERED: case ORDERED:
d263732c 4145 /* If this produces an integer result, we know which bits are set.
4146 Code here used to clear bits outside the mode of X, but that is
4147 now done above. */
48e1416a 4148 /* Mind that MODE is the mode the caller wants to look at this
4149 operation in, and not the actual operation mode. We can wind
8850c3db 4150 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4151 that describes the results of a vector compare. */
4152 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
d263732c 4153 && mode_width <= HOST_BITS_PER_WIDE_INT)
4154 nonzero = STORE_FLAG_VALUE;
4155 break;
4156
4157 case NEG:
4158#if 0
4159 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4160 and num_sign_bit_copies. */
4161 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
ded805e6 4162 == GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4163 nonzero = 1;
4164#endif
4165
b0676cad 4166 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
d263732c 4167 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4168 break;
4169
4170 case ABS:
4171#if 0
4172 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4173 and num_sign_bit_copies. */
4174 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
ded805e6 4175 == GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4176 nonzero = 1;
4177#endif
4178 break;
4179
4180 case TRUNCATE:
4181 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4182 known_x, known_mode, known_ret)
4183 & GET_MODE_MASK (mode));
4184 break;
4185
4186 case ZERO_EXTEND:
4187 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4188 known_x, known_mode, known_ret);
4189 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4190 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4191 break;
4192
4193 case SIGN_EXTEND:
4194 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4195 Otherwise, show all the bits in the outer mode but not the inner
4196 may be nonzero. */
4197 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4198 known_x, known_mode, known_ret);
4199 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4200 {
4201 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
f92430e0 4202 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
d263732c 4203 inner_nz |= (GET_MODE_MASK (mode)
4204 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4205 }
4206
4207 nonzero &= inner_nz;
4208 break;
4209
4210 case AND:
4211 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4212 known_x, known_mode, known_ret)
4213 & cached_nonzero_bits (XEXP (x, 1), mode,
4214 known_x, known_mode, known_ret);
4215 break;
4216
4217 case XOR: case IOR:
4218 case UMIN: case UMAX: case SMIN: case SMAX:
4219 {
9d8859f1 4220 unsigned HOST_WIDE_INT nonzero0
4221 = cached_nonzero_bits (XEXP (x, 0), mode,
4222 known_x, known_mode, known_ret);
d263732c 4223
4224 /* Don't call nonzero_bits for the second time if it cannot change
4225 anything. */
4226 if ((nonzero & nonzero0) != nonzero)
4227 nonzero &= nonzero0
4228 | cached_nonzero_bits (XEXP (x, 1), mode,
4229 known_x, known_mode, known_ret);
4230 }
4231 break;
4232
4233 case PLUS: case MINUS:
4234 case MULT:
4235 case DIV: case UDIV:
4236 case MOD: case UMOD:
4237 /* We can apply the rules of arithmetic to compute the number of
4238 high- and low-order zero bits of these operations. We start by
4239 computing the width (position of the highest-order nonzero bit)
4240 and the number of low-order zero bits for each value. */
4241 {
9d8859f1 4242 unsigned HOST_WIDE_INT nz0
4243 = cached_nonzero_bits (XEXP (x, 0), mode,
4244 known_x, known_mode, known_ret);
4245 unsigned HOST_WIDE_INT nz1
4246 = cached_nonzero_bits (XEXP (x, 1), mode,
4247 known_x, known_mode, known_ret);
ded805e6 4248 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
d263732c 4249 int width0 = floor_log2 (nz0) + 1;
4250 int width1 = floor_log2 (nz1) + 1;
4251 int low0 = floor_log2 (nz0 & -nz0);
4252 int low1 = floor_log2 (nz1 & -nz1);
9d8859f1 4253 unsigned HOST_WIDE_INT op0_maybe_minusp
4254 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4255 unsigned HOST_WIDE_INT op1_maybe_minusp
4256 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
d263732c 4257 unsigned int result_width = mode_width;
4258 int result_low = 0;
4259
4260 switch (code)
4261 {
4262 case PLUS:
4263 result_width = MAX (width0, width1) + 1;
4264 result_low = MIN (low0, low1);
4265 break;
4266 case MINUS:
4267 result_low = MIN (low0, low1);
4268 break;
4269 case MULT:
4270 result_width = width0 + width1;
4271 result_low = low0 + low1;
4272 break;
4273 case DIV:
4274 if (width1 == 0)
4275 break;
9d8859f1 4276 if (!op0_maybe_minusp && !op1_maybe_minusp)
d263732c 4277 result_width = width0;
4278 break;
4279 case UDIV:
4280 if (width1 == 0)
4281 break;
4282 result_width = width0;
4283 break;
4284 case MOD:
4285 if (width1 == 0)
4286 break;
9d8859f1 4287 if (!op0_maybe_minusp && !op1_maybe_minusp)
d263732c 4288 result_width = MIN (width0, width1);
4289 result_low = MIN (low0, low1);
4290 break;
4291 case UMOD:
4292 if (width1 == 0)
4293 break;
4294 result_width = MIN (width0, width1);
4295 result_low = MIN (low0, low1);
4296 break;
4297 default:
04e579b6 4298 gcc_unreachable ();
d263732c 4299 }
4300
4301 if (result_width < mode_width)
9d8859f1 4302 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
d263732c 4303
4304 if (result_low > 0)
9d8859f1 4305 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
d263732c 4306 }
4307 break;
4308
4309 case ZERO_EXTRACT:
971ba038 4310 if (CONST_INT_P (XEXP (x, 1))
d263732c 4311 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9d8859f1 4312 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
d263732c 4313 break;
4314
4315 case SUBREG:
4316 /* If this is a SUBREG formed for a promoted variable that has
4317 been zero-extended, we know that at least the high-order bits
4318 are zero, though others might be too. */
4319
e8629f9e 4320 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
d263732c 4321 nonzero = GET_MODE_MASK (GET_MODE (x))
4322 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4323 known_x, known_mode, known_ret);
4324
f92430e0 4325 inner_mode = GET_MODE (SUBREG_REG (x));
d263732c 4326 /* If the inner mode is a single word for both the host and target
4327 machines, we can compute this from which bits of the inner
4328 object might be nonzero. */
ded805e6 4329 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4330 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
d263732c 4331 {
4332 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4333 known_x, known_mode, known_ret);
4334
4335#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4336 /* If this is a typical RISC machine, we only have to worry
4337 about the way loads are extended. */
f92430e0 4338 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4339 ? val_signbit_known_set_p (inner_mode, nonzero)
4340 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
e16ceb8e 4341 || !MEM_P (SUBREG_REG (x)))
d263732c 4342#endif
4343 {
4344 /* On many CISC machines, accessing an object in a wider mode
4345 causes the high-order bits to become undefined. So they are
4346 not known to be zero. */
ded805e6 4347 if (GET_MODE_PRECISION (GET_MODE (x))
4348 > GET_MODE_PRECISION (inner_mode))
d263732c 4349 nonzero |= (GET_MODE_MASK (GET_MODE (x))
f92430e0 4350 & ~GET_MODE_MASK (inner_mode));
d263732c 4351 }
4352 }
4353 break;
4354
4355 case ASHIFTRT:
4356 case LSHIFTRT:
4357 case ASHIFT:
4358 case ROTATE:
4359 /* The nonzero bits are in two classes: any bits within MODE
4360 that aren't in GET_MODE (x) are always significant. The rest of the
4361 nonzero bits are those that are significant in the operand of
4362 the shift when shifted the appropriate number of bits. This
4363 shows that high-order bits are cleared by the right shift and
4364 low-order bits by left shifts. */
971ba038 4365 if (CONST_INT_P (XEXP (x, 1))
d263732c 4366 && INTVAL (XEXP (x, 1)) >= 0
6026d749 4367 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
ded805e6 4368 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4369 {
3754d046 4370 machine_mode inner_mode = GET_MODE (x);
ded805e6 4371 unsigned int width = GET_MODE_PRECISION (inner_mode);
d263732c 4372 int count = INTVAL (XEXP (x, 1));
4373 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
9d8859f1 4374 unsigned HOST_WIDE_INT op_nonzero
4375 = cached_nonzero_bits (XEXP (x, 0), mode,
4376 known_x, known_mode, known_ret);
d263732c 4377 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4378 unsigned HOST_WIDE_INT outer = 0;
4379
4380 if (mode_width > width)
4381 outer = (op_nonzero & nonzero & ~mode_mask);
4382
4383 if (code == LSHIFTRT)
4384 inner >>= count;
4385 else if (code == ASHIFTRT)
4386 {
4387 inner >>= count;
4388
4389 /* If the sign bit may have been nonzero before the shift, we
4390 need to mark all the places it could have been copied to
4391 by the shift as possibly nonzero. */
9d8859f1 4392 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4393 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4394 << (width - count);
d263732c 4395 }
4396 else if (code == ASHIFT)
4397 inner <<= count;
4398 else
4399 inner = ((inner << (count % width)
4400 | (inner >> (width - (count % width)))) & mode_mask);
4401
4402 nonzero &= (outer | inner);
4403 }
4404 break;
4405
4406 case FFS:
4407 case POPCOUNT:
4408 /* This is at most the number of bits in the mode. */
9d8859f1 4409 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
d263732c 4410 break;
4411
4412 case CLZ:
4413 /* If CLZ has a known value at zero, then the nonzero bits are
4414 that value, plus the number of bits in the mode minus one. */
4415 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
9d8859f1 4416 nonzero
4417 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
d263732c 4418 else
4419 nonzero = -1;
4420 break;
4421
4422 case CTZ:
4423 /* If CTZ has a known value at zero, then the nonzero bits are
4424 that value, plus the number of bits in the mode minus one. */
4425 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
9d8859f1 4426 nonzero
4427 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
d263732c 4428 else
4429 nonzero = -1;
4430 break;
4431
3b23b4cc 4432 case CLRSB:
4433 /* This is at most the number of bits in the mode minus 1. */
4434 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4435 break;
4436
d263732c 4437 case PARITY:
4438 nonzero = 1;
4439 break;
4440
4441 case IF_THEN_ELSE:
4442 {
9d8859f1 4443 unsigned HOST_WIDE_INT nonzero_true
4444 = cached_nonzero_bits (XEXP (x, 1), mode,
4445 known_x, known_mode, known_ret);
d263732c 4446
4447 /* Don't call nonzero_bits for the second time if it cannot change
4448 anything. */
4449 if ((nonzero & nonzero_true) != nonzero)
4450 nonzero &= nonzero_true
4451 | cached_nonzero_bits (XEXP (x, 2), mode,
4452 known_x, known_mode, known_ret);
4453 }
4454 break;
4455
4456 default:
4457 break;
4458 }
4459
4460 return nonzero;
4461}
4462
4463/* See the macro definition above. */
4464#undef cached_num_sign_bit_copies
4465
4466\f
4467/* The function cached_num_sign_bit_copies is a wrapper around
4468 num_sign_bit_copies1. It avoids exponential behavior in
4469 num_sign_bit_copies1 when X has identical subexpressions on the
4470 first or the second level. */
4471
4472static unsigned int
3754d046 4473cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4474 machine_mode known_mode,
d263732c 4475 unsigned int known_ret)
4476{
4477 if (x == known_x && mode == known_mode)
4478 return known_ret;
4479
4480 /* Try to find identical subexpressions. If found call
4481 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4482 the precomputed value for the subexpression as KNOWN_RET. */
4483
4484 if (ARITHMETIC_P (x))
4485 {
4486 rtx x0 = XEXP (x, 0);
4487 rtx x1 = XEXP (x, 1);
4488
4489 /* Check the first level. */
4490 if (x0 == x1)
4491 return
4492 num_sign_bit_copies1 (x, mode, x0, mode,
4493 cached_num_sign_bit_copies (x0, mode, known_x,
4494 known_mode,
4495 known_ret));
4496
4497 /* Check the second level. */
4498 if (ARITHMETIC_P (x0)
4499 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4500 return
4501 num_sign_bit_copies1 (x, mode, x1, mode,
4502 cached_num_sign_bit_copies (x1, mode, known_x,
4503 known_mode,
4504 known_ret));
4505
4506 if (ARITHMETIC_P (x1)
4507 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4508 return
4509 num_sign_bit_copies1 (x, mode, x0, mode,
4510 cached_num_sign_bit_copies (x0, mode, known_x,
4511 known_mode,
4512 known_ret));
4513 }
4514
4515 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4516}
4517
4518/* Return the number of bits at the high-order end of X that are known to
4519 be equal to the sign bit. X will be used in mode MODE; if MODE is
4520 VOIDmode, X will be used in its own mode. The returned value will always
4521 be between 1 and the number of bits in MODE. */
4522
4523static unsigned int
3754d046 4524num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4525 machine_mode known_mode,
d263732c 4526 unsigned int known_ret)
4527{
4528 enum rtx_code code = GET_CODE (x);
ded805e6 4529 unsigned int bitwidth = GET_MODE_PRECISION (mode);
d263732c 4530 int num0, num1, result;
4531 unsigned HOST_WIDE_INT nonzero;
4532
4533 /* If we weren't given a mode, use the mode of X. If the mode is still
4534 VOIDmode, we don't know anything. Likewise if one of the modes is
4535 floating-point. */
4536
4537 if (mode == VOIDmode)
4538 mode = GET_MODE (x);
4539
6d5136ab 4540 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4541 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
d263732c 4542 return 1;
4543
4544 /* For a smaller object, just ignore the high bits. */
ded805e6 4545 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4546 {
4547 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4548 known_x, known_mode, known_ret);
4549 return MAX (1,
ded805e6 4550 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
d263732c 4551 }
4552
ded805e6 4553 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4554 {
4555#ifndef WORD_REGISTER_OPERATIONS
ded805e6 4556 /* If this machine does not do all register operations on the entire
4557 register and MODE is wider than the mode of X, we can say nothing
4558 at all about the high-order bits. */
d263732c 4559 return 1;
4560#else
4561 /* Likewise on machines that do, if the mode of the object is smaller
4562 than a word and loads of that size don't sign extend, we can say
4563 nothing about the high order bits. */
ded805e6 4564 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
d263732c 4565#ifdef LOAD_EXTEND_OP
4566 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4567#endif
4568 )
4569 return 1;
4570#endif
4571 }
4572
4573 switch (code)
4574 {
4575 case REG:
4576
4577#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4578 /* If pointers extend signed and this is a pointer in Pmode, say that
4579 all the bits above ptr_mode are known to be sign bit copies. */
04ec15fa 4580 /* As we do not know which address space the pointer is referring to,
98155838 4581 we can do this only if the target does not support different pointer
4582 or address modes depending on the address space. */
4583 if (target_default_pointer_address_modes_p ()
4584 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4585 && mode == Pmode && REG_POINTER (x))
ded805e6 4586 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
d263732c 4587#endif
4588
4589 {
4590 unsigned int copies_for_hook = 1, copies = 1;
47cfb7f4 4591 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
d263732c 4592 known_mode, known_ret,
4593 &copies_for_hook);
4594
47cfb7f4 4595 if (new_rtx)
4596 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
d263732c 4597 known_mode, known_ret);
4598
4599 if (copies > 1 || copies_for_hook > 1)
4600 return MAX (copies, copies_for_hook);
4601
4602 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4603 }
4604 break;
4605
4606 case MEM:
4607#ifdef LOAD_EXTEND_OP
4608 /* Some RISC machines sign-extend all loads of smaller than a word. */
4609 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4610 return MAX (1, ((int) bitwidth
ded805e6 4611 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
d263732c 4612#endif
4613 break;
4614
4615 case CONST_INT:
4616 /* If the constant is negative, take its 1's complement and remask.
4617 Then see how many zero bits we have. */
9d8859f1 4618 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
d263732c 4619 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9d8859f1 4620 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
d263732c 4621 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4622
4623 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4624
4625 case SUBREG:
4626 /* If this is a SUBREG for a promoted object that is sign-extended
4627 and we are looking at it in a wider mode, we know that at least the
4628 high-order bits are known to be sign bit copies. */
4629
e8629f9e 4630 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
d263732c 4631 {
4632 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4633 known_x, known_mode, known_ret);
4634 return MAX ((int) bitwidth
ded805e6 4635 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
d263732c 4636 num0);
4637 }
4638
4639 /* For a smaller object, just ignore the high bits. */
ded805e6 4640 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
d263732c 4641 {
4642 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4643 known_x, known_mode, known_ret);
4644 return MAX (1, (num0
ded805e6 4645 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
d263732c 4646 - bitwidth)));
4647 }
4648
4649#ifdef WORD_REGISTER_OPERATIONS
4650#ifdef LOAD_EXTEND_OP
4651 /* For paradoxical SUBREGs on machines where all register operations
4652 affect the entire register, just look inside. Note that we are
4653 passing MODE to the recursive call, so the number of sign bit copies
4654 will remain relative to that mode, not the inner mode. */
4655
4656 /* This works only if loads sign extend. Otherwise, if we get a
4657 reload for the inner part, it may be loaded from the stack, and
4658 then we lose all sign bit copies that existed before the store
4659 to the stack. */
4660
b537bfdb 4661 if (paradoxical_subreg_p (x)
d263732c 4662 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
e16ceb8e 4663 && MEM_P (SUBREG_REG (x)))
d263732c 4664 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4665 known_x, known_mode, known_ret);
4666#endif
4667#endif
4668 break;
4669
4670 case SIGN_EXTRACT:
971ba038 4671 if (CONST_INT_P (XEXP (x, 1)))
d263732c 4672 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4673 break;
4674
4675 case SIGN_EXTEND:
ded805e6 4676 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
d263732c 4677 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4678 known_x, known_mode, known_ret));
4679
4680 case TRUNCATE:
4681 /* For a smaller object, just ignore the high bits. */
4682 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4683 known_x, known_mode, known_ret);
ded805e6 4684 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
d263732c 4685 - bitwidth)));
4686
4687 case NOT:
4688 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4689 known_x, known_mode, known_ret);
4690
4691 case ROTATE: case ROTATERT:
4692 /* If we are rotating left by a number of bits less than the number
4693 of sign bit copies, we can just subtract that amount from the
4694 number. */
971ba038 4695 if (CONST_INT_P (XEXP (x, 1))
d263732c 4696 && INTVAL (XEXP (x, 1)) >= 0
4697 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4698 {
4699 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4700 known_x, known_mode, known_ret);
4701 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4702 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4703 }
4704 break;
4705
4706 case NEG:
4707 /* In general, this subtracts one sign bit copy. But if the value
4708 is known to be positive, the number of sign bit copies is the
4709 same as that of the input. Finally, if the input has just one bit
4710 that might be nonzero, all the bits are copies of the sign bit. */
4711 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4712 known_x, known_mode, known_ret);
4713 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4714 return num0 > 1 ? num0 - 1 : 1;
4715
4716 nonzero = nonzero_bits (XEXP (x, 0), mode);
4717 if (nonzero == 1)
4718 return bitwidth;
4719
4720 if (num0 > 1
9d8859f1 4721 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
d263732c 4722 num0--;
4723
4724 return num0;
4725
4726 case IOR: case AND: case XOR:
4727 case SMIN: case SMAX: case UMIN: case UMAX:
4728 /* Logical operations will preserve the number of sign-bit copies.
4729 MIN and MAX operations always return one of the operands. */
4730 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4731 known_x, known_mode, known_ret);
4732 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4733 known_x, known_mode, known_ret);
c07054e9 4734
4735 /* If num1 is clearing some of the top bits then regardless of
4736 the other term, we are guaranteed to have at least that many
4737 high-order zero bits. */
4738 if (code == AND
4739 && num1 > 1
4740 && bitwidth <= HOST_BITS_PER_WIDE_INT
971ba038 4741 && CONST_INT_P (XEXP (x, 1))
9d8859f1 4742 && (UINTVAL (XEXP (x, 1))
4743 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
c07054e9 4744 return num1;
4745
4746 /* Similarly for IOR when setting high-order bits. */
4747 if (code == IOR
4748 && num1 > 1
4749 && bitwidth <= HOST_BITS_PER_WIDE_INT
971ba038 4750 && CONST_INT_P (XEXP (x, 1))
9d8859f1 4751 && (UINTVAL (XEXP (x, 1))
4752 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
c07054e9 4753 return num1;
4754
d263732c 4755 return MIN (num0, num1);
4756
4757 case PLUS: case MINUS:
4758 /* For addition and subtraction, we can have a 1-bit carry. However,
4759 if we are subtracting 1 from a positive number, there will not
4760 be such a carry. Furthermore, if the positive number is known to
4761 be 0 or 1, we know the result is either -1 or 0. */
4762
4763 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4764 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4765 {
4766 nonzero = nonzero_bits (XEXP (x, 0), mode);
9d8859f1 4767 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
d263732c 4768 return (nonzero == 1 || nonzero == 0 ? bitwidth
4769 : bitwidth - floor_log2 (nonzero) - 1);
4770 }
4771
4772 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4773 known_x, known_mode, known_ret);
4774 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4775 known_x, known_mode, known_ret);
4776 result = MAX (1, MIN (num0, num1) - 1);
4777
d263732c 4778 return result;
4779
4780 case MULT:
4781 /* The number of bits of the product is the sum of the number of
4782 bits of both terms. However, unless one of the terms if known
4783 to be positive, we must allow for an additional bit since negating
4784 a negative number can remove one sign bit copy. */
4785
4786 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4787 known_x, known_mode, known_ret);
4788 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4789 known_x, known_mode, known_ret);
4790
4791 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4792 if (result > 0
4793 && (bitwidth > HOST_BITS_PER_WIDE_INT
4794 || (((nonzero_bits (XEXP (x, 0), mode)
9d8859f1 4795 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
d263732c 4796 && ((nonzero_bits (XEXP (x, 1), mode)
9d8859f1 4797 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4798 != 0))))
d263732c 4799 result--;
4800
4801 return MAX (1, result);
4802
4803 case UDIV:
4804 /* The result must be <= the first operand. If the first operand
4805 has the high bit set, we know nothing about the number of sign
4806 bit copies. */
4807 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4808 return 1;
4809 else if ((nonzero_bits (XEXP (x, 0), mode)
9d8859f1 4810 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
d263732c 4811 return 1;
4812 else
4813 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4814 known_x, known_mode, known_ret);
4815
4816 case UMOD:
3c2a960d 4817 /* The result must be <= the second operand. If the second operand
4818 has (or just might have) the high bit set, we know nothing about
4819 the number of sign bit copies. */
4820 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4821 return 1;
4822 else if ((nonzero_bits (XEXP (x, 1), mode)
9d8859f1 4823 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
3c2a960d 4824 return 1;
4825 else
4826 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
d263732c 4827 known_x, known_mode, known_ret);
4828
4829 case DIV:
4830 /* Similar to unsigned division, except that we have to worry about
4831 the case where the divisor is negative, in which case we have
4832 to add 1. */
4833 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4834 known_x, known_mode, known_ret);
4835 if (result > 1
4836 && (bitwidth > HOST_BITS_PER_WIDE_INT
4837 || (nonzero_bits (XEXP (x, 1), mode)
9d8859f1 4838 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
d263732c 4839 result--;
4840
4841 return result;
4842
4843 case MOD:
4844 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4845 known_x, known_mode, known_ret);
4846 if (result > 1
4847 && (bitwidth > HOST_BITS_PER_WIDE_INT
4848 || (nonzero_bits (XEXP (x, 1), mode)
9d8859f1 4849 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
d263732c 4850 result--;
4851
4852 return result;
4853
4854 case ASHIFTRT:
4855 /* Shifts by a constant add to the number of bits equal to the
4856 sign bit. */
4857 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4858 known_x, known_mode, known_ret);
971ba038 4859 if (CONST_INT_P (XEXP (x, 1))
6026d749 4860 && INTVAL (XEXP (x, 1)) > 0
ded805e6 4861 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4862 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4863
4864 return num0;
4865
4866 case ASHIFT:
4867 /* Left shifts destroy copies. */
971ba038 4868 if (!CONST_INT_P (XEXP (x, 1))
d263732c 4869 || INTVAL (XEXP (x, 1)) < 0
6026d749 4870 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
ded805e6 4871 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
d263732c 4872 return 1;
4873
4874 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4875 known_x, known_mode, known_ret);
4876 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4877
4878 case IF_THEN_ELSE:
4879 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4880 known_x, known_mode, known_ret);
4881 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4882 known_x, known_mode, known_ret);
4883 return MIN (num0, num1);
4884
4885 case EQ: case NE: case GE: case GT: case LE: case LT:
4886 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4887 case GEU: case GTU: case LEU: case LTU:
4888 case UNORDERED: case ORDERED:
4889 /* If the constant is negative, take its 1's complement and remask.
4890 Then see how many zero bits we have. */
4891 nonzero = STORE_FLAG_VALUE;
4892 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9d8859f1 4893 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
d263732c 4894 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4895
4896 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4897
4898 default:
4899 break;
4900 }
4901
4902 /* If we haven't been able to figure it out by one of the above rules,
4903 see if some of the high-order bits are known to be zero. If so,
4904 count those bits and return one less than that amount. If we can't
4905 safely compute the mask for this mode, always return BITWIDTH. */
4906
ded805e6 4907 bitwidth = GET_MODE_PRECISION (mode);
d263732c 4908 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4909 return 1;
4910
4911 nonzero = nonzero_bits (x, mode);
9d8859f1 4912 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
d263732c 4913 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4914}
0a8a047c 4915
4916/* Calculate the rtx_cost of a single instruction. A return value of
4917 zero indicates an instruction pattern without a known cost. */
4918
4919int
f529eb25 4920insn_rtx_cost (rtx pat, bool speed)
0a8a047c 4921{
4922 int i, cost;
4923 rtx set;
4924
4925 /* Extract the single set rtx from the instruction pattern.
4926 We can't use single_set since we only have the pattern. */
4927 if (GET_CODE (pat) == SET)
4928 set = pat;
4929 else if (GET_CODE (pat) == PARALLEL)
4930 {
4931 set = NULL_RTX;
4932 for (i = 0; i < XVECLEN (pat, 0); i++)
4933 {
4934 rtx x = XVECEXP (pat, 0, i);
4935 if (GET_CODE (x) == SET)
4936 {
4937 if (set)
4938 return 0;
4939 set = x;
4940 }
4941 }
4942 if (!set)
4943 return 0;
4944 }
4945 else
4946 return 0;
4947
7013e87c 4948 cost = set_src_cost (SET_SRC (set), speed);
0a8a047c 4949 return cost > 0 ? cost : COSTS_N_INSNS (1);
4950}
ea92ba80 4951
9a416363 4952/* Returns estimate on cost of computing SEQ. */
4953
4954unsigned
4955seq_cost (const rtx_insn *seq, bool speed)
4956{
4957 unsigned cost = 0;
4958 rtx set;
4959
4960 for (; seq; seq = NEXT_INSN (seq))
4961 {
4962 set = single_set (seq);
4963 if (set)
4964 cost += set_rtx_cost (set, speed);
4965 else
4966 cost++;
4967 }
4968
4969 return cost;
4970}
4971
ea92ba80 4972/* Given an insn INSN and condition COND, return the condition in a
4973 canonical form to simplify testing by callers. Specifically:
4974
4975 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4976 (2) Both operands will be machine operands; (cc0) will have been replaced.
4977 (3) If an operand is a constant, it will be the second operand.
4978 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4979 for GE, GEU, and LEU.
4980
4981 If the condition cannot be understood, or is an inequality floating-point
4982 comparison which needs to be reversed, 0 will be returned.
4983
4984 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4985
4986 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4987 insn used in locating the condition was found. If a replacement test
4988 of the condition is desired, it should be placed in front of that
4989 insn and we will be sure that the inputs are still valid.
4990
4991 If WANT_REG is nonzero, we wish the condition to be relative to that
4992 register, if possible. Therefore, do not canonicalize the condition
48e1416a 4993 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
ea92ba80 4994 to be a compare to a CC mode register.
4995
4996 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4997 and at INSN. */
4998
4999rtx
2d650f54 5000canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5001 rtx_insn **earliest,
ea92ba80 5002 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5003{
5004 enum rtx_code code;
2d650f54 5005 rtx_insn *prev = insn;
dd9b9fc5 5006 const_rtx set;
ea92ba80 5007 rtx tem;
5008 rtx op0, op1;
5009 int reverse_code = 0;
3754d046 5010 machine_mode mode;
64685a89 5011 basic_block bb = BLOCK_FOR_INSN (insn);
ea92ba80 5012
5013 code = GET_CODE (cond);
5014 mode = GET_MODE (cond);
5015 op0 = XEXP (cond, 0);
5016 op1 = XEXP (cond, 1);
5017
5018 if (reverse)
5019 code = reversed_comparison_code (cond, insn);
5020 if (code == UNKNOWN)
5021 return 0;
5022
5023 if (earliest)
5024 *earliest = insn;
5025
5026 /* If we are comparing a register with zero, see if the register is set
5027 in the previous insn to a COMPARE or a comparison operation. Perform
5028 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5029 in cse.c */
5030
5031 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5032 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5033 && op1 == CONST0_RTX (GET_MODE (op0))
5034 && op0 != want_reg)
5035 {
5036 /* Set nonzero when we find something of interest. */
5037 rtx x = 0;
5038
ea92ba80 5039 /* If comparison with cc0, import actual comparison from compare
5040 insn. */
5041 if (op0 == cc0_rtx)
5042 {
5043 if ((prev = prev_nonnote_insn (prev)) == 0
5044 || !NONJUMP_INSN_P (prev)
5045 || (set = single_set (prev)) == 0
5046 || SET_DEST (set) != cc0_rtx)
5047 return 0;
5048
5049 op0 = SET_SRC (set);
5050 op1 = CONST0_RTX (GET_MODE (op0));
5051 if (earliest)
5052 *earliest = prev;
5053 }
ea92ba80 5054
5055 /* If this is a COMPARE, pick up the two things being compared. */
5056 if (GET_CODE (op0) == COMPARE)
5057 {
5058 op1 = XEXP (op0, 1);
5059 op0 = XEXP (op0, 0);
5060 continue;
5061 }
5062 else if (!REG_P (op0))
5063 break;
5064
5065 /* Go back to the previous insn. Stop if it is not an INSN. We also
5066 stop if it isn't a single set or if it has a REG_INC note because
5067 we don't want to bother dealing with it. */
5068
5b8537a8 5069 prev = prev_nonnote_nondebug_insn (prev);
9845d120 5070
5071 if (prev == 0
ea92ba80 5072 || !NONJUMP_INSN_P (prev)
64685a89 5073 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5074 /* In cfglayout mode, there do not have to be labels at the
5075 beginning of a block, or jumps at the end, so the previous
5076 conditions would not stop us when we reach bb boundary. */
5077 || BLOCK_FOR_INSN (prev) != bb)
ea92ba80 5078 break;
5079
5080 set = set_of (op0, prev);
5081
5082 if (set
5083 && (GET_CODE (set) != SET
5084 || !rtx_equal_p (SET_DEST (set), op0)))
5085 break;
5086
5087 /* If this is setting OP0, get what it sets it to if it looks
5088 relevant. */
5089 if (set)
5090 {
3754d046 5091 machine_mode inner_mode = GET_MODE (SET_DEST (set));
ea92ba80 5092#ifdef FLOAT_STORE_FLAG_VALUE
5093 REAL_VALUE_TYPE fsfv;
5094#endif
5095
5096 /* ??? We may not combine comparisons done in a CCmode with
5097 comparisons not done in a CCmode. This is to aid targets
5098 like Alpha that have an IEEE compliant EQ instruction, and
5099 a non-IEEE compliant BEQ instruction. The use of CCmode is
5100 actually artificial, simply to prevent the combination, but
5101 should not affect other platforms.
5102
5103 However, we must allow VOIDmode comparisons to match either
5104 CCmode or non-CCmode comparison, because some ports have
5105 modeless comparisons inside branch patterns.
5106
5107 ??? This mode check should perhaps look more like the mode check
5108 in simplify_comparison in combine. */
d7f4ca1d 5109 if (((GET_MODE_CLASS (mode) == MODE_CC)
5110 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5111 && mode != VOIDmode
5112 && inner_mode != VOIDmode)
5113 break;
5114 if (GET_CODE (SET_SRC (set)) == COMPARE
5115 || (((code == NE
5116 || (code == LT
5117 && val_signbit_known_set_p (inner_mode,
5118 STORE_FLAG_VALUE))
ea92ba80 5119#ifdef FLOAT_STORE_FLAG_VALUE
d7f4ca1d 5120 || (code == LT
5121 && SCALAR_FLOAT_MODE_P (inner_mode)
5122 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5123 REAL_VALUE_NEGATIVE (fsfv)))
ea92ba80 5124#endif
d7f4ca1d 5125 ))
5126 && COMPARISON_P (SET_SRC (set))))
ea92ba80 5127 x = SET_SRC (set);
5128 else if (((code == EQ
5129 || (code == GE
f92430e0 5130 && val_signbit_known_set_p (inner_mode,
5131 STORE_FLAG_VALUE))
ea92ba80 5132#ifdef FLOAT_STORE_FLAG_VALUE
5133 || (code == GE
cee7491d 5134 && SCALAR_FLOAT_MODE_P (inner_mode)
ea92ba80 5135 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5136 REAL_VALUE_NEGATIVE (fsfv)))
5137#endif
5138 ))
d7f4ca1d 5139 && COMPARISON_P (SET_SRC (set)))
ea92ba80 5140 {
5141 reverse_code = 1;
5142 x = SET_SRC (set);
5143 }
d7f4ca1d 5144 else if ((code == EQ || code == NE)
5145 && GET_CODE (SET_SRC (set)) == XOR)
5146 /* Handle sequences like:
5147
5148 (set op0 (xor X Y))
5149 ...(eq|ne op0 (const_int 0))...
5150
5151 in which case:
5152
5153 (eq op0 (const_int 0)) reduces to (eq X Y)
5154 (ne op0 (const_int 0)) reduces to (ne X Y)
5155
5156 This is the form used by MIPS16, for example. */
5157 x = SET_SRC (set);
ea92ba80 5158 else
5159 break;
5160 }
5161
5162 else if (reg_set_p (op0, prev))
5163 /* If this sets OP0, but not directly, we have to give up. */
5164 break;
5165
5166 if (x)
5167 {
5168 /* If the caller is expecting the condition to be valid at INSN,
5169 make sure X doesn't change before INSN. */
5170 if (valid_at_insn_p)
5171 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5172 break;
5173 if (COMPARISON_P (x))
5174 code = GET_CODE (x);
5175 if (reverse_code)
5176 {
5177 code = reversed_comparison_code (x, prev);
5178 if (code == UNKNOWN)
5179 return 0;
5180 reverse_code = 0;
5181 }
5182
5183 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5184 if (earliest)
5185 *earliest = prev;
5186 }
5187 }
5188
5189 /* If constant is first, put it last. */
5190 if (CONSTANT_P (op0))
5191 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5192
5193 /* If OP0 is the result of a comparison, we weren't able to find what
5194 was really being compared, so fail. */
5195 if (!allow_cc_mode
5196 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5197 return 0;
5198
5199 /* Canonicalize any ordered comparison with integers involving equality
5200 if we can do computations in the relevant mode and we do not
5201 overflow. */
5202
5203 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
971ba038 5204 && CONST_INT_P (op1)
ea92ba80 5205 && GET_MODE (op0) != VOIDmode
ded805e6 5206 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
ea92ba80 5207 {
5208 HOST_WIDE_INT const_val = INTVAL (op1);
5209 unsigned HOST_WIDE_INT uconst_val = const_val;
5210 unsigned HOST_WIDE_INT max_val
5211 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5212
5213 switch (code)
5214 {
5215 case LE:
5216 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5217 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5218 break;
5219
5220 /* When cross-compiling, const_val might be sign-extended from
5221 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5222 case GE:
9d8859f1 5223 if ((const_val & max_val)
5224 != ((unsigned HOST_WIDE_INT) 1
ded805e6 5225 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
ea92ba80 5226 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5227 break;
5228
5229 case LEU:
5230 if (uconst_val < max_val)
5231 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5232 break;
5233
5234 case GEU:
5235 if (uconst_val != 0)
5236 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5237 break;
5238
5239 default:
5240 break;
5241 }
5242 }
5243
5244 /* Never return CC0; return zero instead. */
5245 if (CC0_P (op0))
5246 return 0;
5247
5248 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5249}
5250
5251/* Given a jump insn JUMP, return the condition that will cause it to branch
5252 to its JUMP_LABEL. If the condition cannot be understood, or is an
5253 inequality floating-point comparison which needs to be reversed, 0 will
5254 be returned.
5255
5256 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5257 insn used in locating the condition was found. If a replacement test
5258 of the condition is desired, it should be placed in front of that
5259 insn and we will be sure that the inputs are still valid. If EARLIEST
5260 is null, the returned condition will be valid at INSN.
5261
5262 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5263 compare CC mode register.
5264
5265 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5266
5267rtx
2d650f54 5268get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5269 int valid_at_insn_p)
ea92ba80 5270{
5271 rtx cond;
5272 int reverse;
5273 rtx set;
5274
5275 /* If this is not a standard conditional jump, we can't parse it. */
5276 if (!JUMP_P (jump)
5277 || ! any_condjump_p (jump))
5278 return 0;
5279 set = pc_set (jump);
5280
5281 cond = XEXP (SET_SRC (set), 0);
5282
5283 /* If this branches to JUMP_LABEL when the condition is false, reverse
5284 the condition. */
5285 reverse
5286 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
b49f2e4b 5287 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
ea92ba80 5288
5289 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5290 allow_cc_mode, valid_at_insn_p);
5291}
5292
4956440a 5293/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5294 TARGET_MODE_REP_EXTENDED.
5295
5296 Note that we assume that the property of
5297 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5298 narrower than mode B. I.e., if A is a mode narrower than B then in
5299 order to be able to operate on it in mode B, mode A needs to
5300 satisfy the requirements set by the representation of mode B. */
5301
5302static void
5303init_num_sign_bit_copies_in_rep (void)
5304{
3754d046 5305 machine_mode mode, in_mode;
4956440a 5306
5307 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5308 in_mode = GET_MODE_WIDER_MODE (mode))
5309 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5310 mode = GET_MODE_WIDER_MODE (mode))
5311 {
3754d046 5312 machine_mode i;
4956440a 5313
5314 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5315 extends to the next widest mode. */
5316 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5317 || GET_MODE_WIDER_MODE (mode) == in_mode);
5318
5319 /* We are in in_mode. Count how many bits outside of mode
5320 have to be copies of the sign-bit. */
5321 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5322 {
3754d046 5323 machine_mode wider = GET_MODE_WIDER_MODE (i);
4956440a 5324
5325 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5326 /* We can only check sign-bit copies starting from the
5327 top-bit. In order to be able to check the bits we
5328 have already seen we pretend that subsequent bits
5329 have to be sign-bit copies too. */
5330 || num_sign_bit_copies_in_rep [in_mode][mode])
5331 num_sign_bit_copies_in_rep [in_mode][mode]
ded805e6 5332 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
4956440a 5333 }
5334 }
5335}
5336
fd95fba4 5337/* Suppose that truncation from the machine mode of X to MODE is not a
5338 no-op. See if there is anything special about X so that we can
5339 assume it already contains a truncated value of MODE. */
5340
5341bool
3754d046 5342truncated_to_mode (machine_mode mode, const_rtx x)
fd95fba4 5343{
4956440a 5344 /* This register has already been used in MODE without explicit
5345 truncation. */
5346 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5347 return true;
5348
5349 /* See if we already satisfy the requirements of MODE. If yes we
5350 can just switch to MODE. */
5351 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5352 && (num_sign_bit_copies (x, GET_MODE (x))
5353 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5354 return true;
fd95fba4 5355
4956440a 5356 return false;
5357}
a87cf6e5 5358\f
69924e56 5359/* Return true if RTX code CODE has a single sequence of zero or more
5360 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5361 entry in that case. */
5362
5363static bool
5364setup_reg_subrtx_bounds (unsigned int code)
5365{
5366 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5367 unsigned int i = 0;
5368 for (; format[i] != 'e'; ++i)
5369 {
5370 if (!format[i])
5371 /* No subrtxes. Leave start and count as 0. */
5372 return true;
5373 if (format[i] == 'E' || format[i] == 'V')
5374 return false;
5375 }
5376
5377 /* Record the sequence of 'e's. */
5378 rtx_all_subrtx_bounds[code].start = i;
5379 do
5380 ++i;
5381 while (format[i] == 'e');
5382 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5383 /* rtl-iter.h relies on this. */
5384 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5385
5386 for (; format[i]; ++i)
5387 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5388 return false;
5389
5390 return true;
5391}
5392
e506ea62 5393/* Initialize rtx_all_subrtx_bounds. */
a87cf6e5 5394void
5395init_rtlanal (void)
5396{
5397 int i;
5398 for (i = 0; i < NUM_RTX_CODE; i++)
5399 {
69924e56 5400 if (!setup_reg_subrtx_bounds (i))
5401 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5402 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5403 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
a87cf6e5 5404 }
4956440a 5405
5406 init_num_sign_bit_copies_in_rep ();
a87cf6e5 5407}
e207fd7a 5408\f
5409/* Check whether this is a constant pool constant. */
5410bool
5411constant_pool_constant_p (rtx x)
5412{
5413 x = avoid_constant_pool_reference (x);
78f1962f 5414 return CONST_DOUBLE_P (x);
e207fd7a 5415}
d16b48d5 5416\f
5417/* If M is a bitmask that selects a field of low-order bits within an item but
5418 not the entire word, return the length of the field. Return -1 otherwise.
5419 M is used in machine mode MODE. */
5420
5421int
3754d046 5422low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
d16b48d5 5423{
5424 if (mode != VOIDmode)
5425 {
ded805e6 5426 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
d16b48d5 5427 return -1;
5428 m &= GET_MODE_MASK (mode);
5429 }
5430
5431 return exact_log2 (m + 1);
5432}
87cf5753 5433
5434/* Return the mode of MEM's address. */
5435
3754d046 5436machine_mode
87cf5753 5437get_address_mode (rtx mem)
5438{
3754d046 5439 machine_mode mode;
87cf5753 5440
5441 gcc_assert (MEM_P (mem));
5442 mode = GET_MODE (XEXP (mem, 0));
5443 if (mode != VOIDmode)
5444 return mode;
5445 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5446}
21eb4639 5447\f
5448/* Split up a CONST_DOUBLE or integer constant rtx
5449 into two rtx's for single words,
5450 storing in *FIRST the word that comes first in memory in the target
ddb1be65 5451 and in *SECOND the other.
e913b5cd 5452
5453 TODO: This function needs to be rewritten to work on any size
5454 integer. */
21eb4639 5455
5456void
5457split_double (rtx value, rtx *first, rtx *second)
5458{
5459 if (CONST_INT_P (value))
5460 {
5461 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5462 {
5463 /* In this case the CONST_INT holds both target words.
5464 Extract the bits from it into two word-sized pieces.
5465 Sign extend each half to HOST_WIDE_INT. */
5466 unsigned HOST_WIDE_INT low, high;
5467 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5468 unsigned bits_per_word = BITS_PER_WORD;
5469
5470 /* Set sign_bit to the most significant bit of a word. */
5471 sign_bit = 1;
5472 sign_bit <<= bits_per_word - 1;
5473
5474 /* Set mask so that all bits of the word are set. We could
5475 have used 1 << BITS_PER_WORD instead of basing the
5476 calculation on sign_bit. However, on machines where
5477 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5478 compiler warning, even though the code would never be
5479 executed. */
5480 mask = sign_bit << 1;
5481 mask--;
5482
5483 /* Set sign_extend as any remaining bits. */
5484 sign_extend = ~mask;
5485
5486 /* Pick the lower word and sign-extend it. */
5487 low = INTVAL (value);
5488 low &= mask;
5489 if (low & sign_bit)
5490 low |= sign_extend;
5491
5492 /* Pick the higher word, shifted to the least significant
5493 bits, and sign-extend it. */
5494 high = INTVAL (value);
5495 high >>= bits_per_word - 1;
5496 high >>= 1;
5497 high &= mask;
5498 if (high & sign_bit)
5499 high |= sign_extend;
5500
5501 /* Store the words in the target machine order. */
5502 if (WORDS_BIG_ENDIAN)
5503 {
5504 *first = GEN_INT (high);
5505 *second = GEN_INT (low);
5506 }
5507 else
5508 {
5509 *first = GEN_INT (low);
5510 *second = GEN_INT (high);
5511 }
5512 }
5513 else
5514 {
5515 /* The rule for using CONST_INT for a wider mode
5516 is that we regard the value as signed.
5517 So sign-extend it. */
5518 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5519 if (WORDS_BIG_ENDIAN)
5520 {
5521 *first = high;
5522 *second = value;
5523 }
5524 else
5525 {
5526 *first = value;
5527 *second = high;
5528 }
5529 }
5530 }
e913b5cd 5531 else if (GET_CODE (value) == CONST_WIDE_INT)
5532 {
5533 /* All of this is scary code and needs to be converted to
5534 properly work with any size integer. */
5535 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5536 if (WORDS_BIG_ENDIAN)
5537 {
5538 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5539 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5540 }
5541 else
5542 {
5543 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5544 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5545 }
5546 }
78f1962f 5547 else if (!CONST_DOUBLE_P (value))
21eb4639 5548 {
5549 if (WORDS_BIG_ENDIAN)
5550 {
5551 *first = const0_rtx;
5552 *second = value;
5553 }
5554 else
5555 {
5556 *first = value;
5557 *second = const0_rtx;
5558 }
5559 }
5560 else if (GET_MODE (value) == VOIDmode
5561 /* This is the old way we did CONST_DOUBLE integers. */
5562 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5563 {
5564 /* In an integer, the words are defined as most and least significant.
5565 So order them by the target's convention. */
5566 if (WORDS_BIG_ENDIAN)
5567 {
5568 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5569 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5570 }
5571 else
5572 {
5573 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5574 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5575 }
5576 }
5577 else
5578 {
5579 REAL_VALUE_TYPE r;
5580 long l[2];
5581 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5582
5583 /* Note, this converts the REAL_VALUE_TYPE to the target's
5584 format, splits up the floating point double and outputs
5585 exactly 32 bits of it into each of l[0] and l[1] --
5586 not necessarily BITS_PER_WORD bits. */
5587 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5588
5589 /* If 32 bits is an entire word for the target, but not for the host,
5590 then sign-extend on the host so that the number will look the same
5591 way on the host that it would on the target. See for instance
5592 simplify_unary_operation. The #if is needed to avoid compiler
5593 warnings. */
5594
5595#if HOST_BITS_PER_LONG > 32
5596 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5597 {
5598 if (l[0] & ((long) 1 << 31))
5599 l[0] |= ((long) (-1) << 32);
5600 if (l[1] & ((long) 1 << 31))
5601 l[1] |= ((long) (-1) << 32);
5602 }
5603#endif
5604
5605 *first = GEN_INT (l[0]);
5606 *second = GEN_INT (l[1]);
5607 }
5608}
5609
cc1925e7 5610/* Return true if X is a sign_extract or zero_extract from the least
5611 significant bit. */
5612
5613static bool
5614lsb_bitfield_op_p (rtx x)
5615{
5616 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5617 {
3754d046 5618 machine_mode mode = GET_MODE (XEXP (x, 0));
041222b1 5619 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
cc1925e7 5620 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5621
5622 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5623 }
5624 return false;
5625}
5626
1efe9e9d 5627/* Strip outer address "mutations" from LOC and return a pointer to the
5628 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5629 stripped expression there.
5630
5631 "Mutations" either convert between modes or apply some kind of
cc1925e7 5632 extension, truncation or alignment. */
1efe9e9d 5633
5634rtx *
5635strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5636{
5637 for (;;)
5638 {
5639 enum rtx_code code = GET_CODE (*loc);
5640 if (GET_RTX_CLASS (code) == RTX_UNARY)
5641 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5642 used to convert between pointer sizes. */
5643 loc = &XEXP (*loc, 0);
cc1925e7 5644 else if (lsb_bitfield_op_p (*loc))
5645 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5646 acts as a combined truncation and extension. */
5647 loc = &XEXP (*loc, 0);
1efe9e9d 5648 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5649 /* (and ... (const_int -X)) is used to align to X bytes. */
5650 loc = &XEXP (*loc, 0);
6482f991 5651 else if (code == SUBREG
5652 && !OBJECT_P (SUBREG_REG (*loc))
5653 && subreg_lowpart_p (*loc))
5654 /* (subreg (operator ...) ...) inside and is used for mode
5655 conversion too. */
3190d74b 5656 loc = &SUBREG_REG (*loc);
1efe9e9d 5657 else
5658 return loc;
5659 if (outer_code)
5660 *outer_code = code;
5661 }
5662}
5663
2de52d09 5664/* Return true if CODE applies some kind of scale. The scaled value is
5665 is the first operand and the scale is the second. */
1efe9e9d 5666
5667static bool
2de52d09 5668binary_scale_code_p (enum rtx_code code)
1efe9e9d 5669{
2de52d09 5670 return (code == MULT
5671 || code == ASHIFT
5672 /* Needed by ARM targets. */
5673 || code == ASHIFTRT
5674 || code == LSHIFTRT
5675 || code == ROTATE
5676 || code == ROTATERT);
1efe9e9d 5677}
5678
2de52d09 5679/* If *INNER can be interpreted as a base, return a pointer to the inner term
5680 (see address_info). Return null otherwise. */
1efe9e9d 5681
2de52d09 5682static rtx *
5683get_base_term (rtx *inner)
1efe9e9d 5684{
2de52d09 5685 if (GET_CODE (*inner) == LO_SUM)
5686 inner = strip_address_mutations (&XEXP (*inner, 0));
5687 if (REG_P (*inner)
5688 || MEM_P (*inner)
8f184921 5689 || GET_CODE (*inner) == SUBREG
5690 || GET_CODE (*inner) == SCRATCH)
2de52d09 5691 return inner;
5692 return 0;
5693}
5694
5695/* If *INNER can be interpreted as an index, return a pointer to the inner term
5696 (see address_info). Return null otherwise. */
5697
5698static rtx *
5699get_index_term (rtx *inner)
1efe9e9d 5700{
2de52d09 5701 /* At present, only constant scales are allowed. */
5702 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5703 inner = strip_address_mutations (&XEXP (*inner, 0));
5704 if (REG_P (*inner)
5705 || MEM_P (*inner)
b61d7819 5706 || GET_CODE (*inner) == SUBREG
5707 || GET_CODE (*inner) == SCRATCH)
2de52d09 5708 return inner;
5709 return 0;
1efe9e9d 5710}
5711
5712/* Set the segment part of address INFO to LOC, given that INNER is the
5713 unmutated value. */
5714
5715static void
5716set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5717{
1efe9e9d 5718 gcc_assert (!info->segment);
5719 info->segment = loc;
5720 info->segment_term = inner;
5721}
5722
5723/* Set the base part of address INFO to LOC, given that INNER is the
5724 unmutated value. */
5725
5726static void
5727set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5728{
1efe9e9d 5729 gcc_assert (!info->base);
5730 info->base = loc;
5731 info->base_term = inner;
5732}
5733
5734/* Set the index part of address INFO to LOC, given that INNER is the
5735 unmutated value. */
5736
5737static void
5738set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5739{
1efe9e9d 5740 gcc_assert (!info->index);
5741 info->index = loc;
5742 info->index_term = inner;
5743}
5744
5745/* Set the displacement part of address INFO to LOC, given that INNER
5746 is the constant term. */
5747
5748static void
5749set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5750{
1efe9e9d 5751 gcc_assert (!info->disp);
5752 info->disp = loc;
5753 info->disp_term = inner;
5754}
5755
5756/* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5757 rest of INFO accordingly. */
5758
5759static void
5760decompose_incdec_address (struct address_info *info)
5761{
5762 info->autoinc_p = true;
5763
5764 rtx *base = &XEXP (*info->inner, 0);
5765 set_address_base (info, base, base);
5766 gcc_checking_assert (info->base == info->base_term);
5767
5768 /* These addresses are only valid when the size of the addressed
5769 value is known. */
5770 gcc_checking_assert (info->mode != VOIDmode);
5771}
5772
5773/* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5774 of INFO accordingly. */
5775
5776static void
5777decompose_automod_address (struct address_info *info)
5778{
5779 info->autoinc_p = true;
5780
5781 rtx *base = &XEXP (*info->inner, 0);
5782 set_address_base (info, base, base);
5783 gcc_checking_assert (info->base == info->base_term);
5784
5785 rtx plus = XEXP (*info->inner, 1);
5786 gcc_assert (GET_CODE (plus) == PLUS);
5787
5788 info->base_term2 = &XEXP (plus, 0);
5789 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5790
5791 rtx *step = &XEXP (plus, 1);
5792 rtx *inner_step = strip_address_mutations (step);
5793 if (CONSTANT_P (*inner_step))
5794 set_address_disp (info, step, inner_step);
5795 else
5796 set_address_index (info, step, inner_step);
5797}
5798
5799/* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5800 values in [PTR, END). Return a pointer to the end of the used array. */
5801
5802static rtx **
5803extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5804{
5805 rtx x = *loc;
5806 if (GET_CODE (x) == PLUS)
5807 {
5808 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5809 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5810 }
5811 else
5812 {
5813 gcc_assert (ptr != end);
5814 *ptr++ = loc;
5815 }
5816 return ptr;
5817}
5818
5819/* Evaluate the likelihood of X being a base or index value, returning
5820 positive if it is likely to be a base, negative if it is likely to be
5821 an index, and 0 if we can't tell. Make the magnitude of the return
5822 value reflect the amount of confidence we have in the answer.
5823
5824 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5825
5826static int
3754d046 5827baseness (rtx x, machine_mode mode, addr_space_t as,
1efe9e9d 5828 enum rtx_code outer_code, enum rtx_code index_code)
5829{
1efe9e9d 5830 /* Believe *_POINTER unless the address shape requires otherwise. */
5831 if (REG_P (x) && REG_POINTER (x))
5832 return 2;
5833 if (MEM_P (x) && MEM_POINTER (x))
5834 return 2;
5835
5836 if (REG_P (x) && HARD_REGISTER_P (x))
5837 {
5838 /* X is a hard register. If it only fits one of the base
5839 or index classes, choose that interpretation. */
5840 int regno = REGNO (x);
5841 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5842 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5843 if (base_p != index_p)
5844 return base_p ? 1 : -1;
5845 }
5846 return 0;
5847}
5848
5849/* INFO->INNER describes a normal, non-automodified address.
5850 Fill in the rest of INFO accordingly. */
5851
5852static void
5853decompose_normal_address (struct address_info *info)
5854{
5855 /* Treat the address as the sum of up to four values. */
5856 rtx *ops[4];
5857 size_t n_ops = extract_plus_operands (info->inner, ops,
5858 ops + ARRAY_SIZE (ops)) - ops;
5859
5860 /* If there is more than one component, any base component is in a PLUS. */
5861 if (n_ops > 1)
5862 info->base_outer_code = PLUS;
5863
2de52d09 5864 /* Try to classify each sum operand now. Leave those that could be
5865 either a base or an index in OPS. */
1efe9e9d 5866 rtx *inner_ops[4];
5867 size_t out = 0;
5868 for (size_t in = 0; in < n_ops; ++in)
5869 {
5870 rtx *loc = ops[in];
5871 rtx *inner = strip_address_mutations (loc);
5872 if (CONSTANT_P (*inner))
5873 set_address_disp (info, loc, inner);
5874 else if (GET_CODE (*inner) == UNSPEC)
5875 set_address_segment (info, loc, inner);
5876 else
5877 {
2de52d09 5878 /* The only other possibilities are a base or an index. */
5879 rtx *base_term = get_base_term (inner);
5880 rtx *index_term = get_index_term (inner);
5881 gcc_assert (base_term || index_term);
5882 if (!base_term)
5883 set_address_index (info, loc, index_term);
5884 else if (!index_term)
5885 set_address_base (info, loc, base_term);
5886 else
5887 {
5888 gcc_assert (base_term == index_term);
5889 ops[out] = loc;
5890 inner_ops[out] = base_term;
5891 ++out;
5892 }
1efe9e9d 5893 }
5894 }
5895
5896 /* Classify the remaining OPS members as bases and indexes. */
5897 if (out == 1)
5898 {
2de52d09 5899 /* If we haven't seen a base or an index yet, assume that this is
5900 the base. If we were confident that another term was the base
5901 or index, treat the remaining operand as the other kind. */
5902 if (!info->base)
1efe9e9d 5903 set_address_base (info, ops[0], inner_ops[0]);
5904 else
5905 set_address_index (info, ops[0], inner_ops[0]);
5906 }
5907 else if (out == 2)
5908 {
5909 /* In the event of a tie, assume the base comes first. */
5910 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5911 GET_CODE (*ops[1]))
5912 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5913 GET_CODE (*ops[0])))
5914 {
5915 set_address_base (info, ops[0], inner_ops[0]);
5916 set_address_index (info, ops[1], inner_ops[1]);
5917 }
5918 else
5919 {
5920 set_address_base (info, ops[1], inner_ops[1]);
5921 set_address_index (info, ops[0], inner_ops[0]);
5922 }
5923 }
5924 else
5925 gcc_assert (out == 0);
5926}
5927
5928/* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5929 or VOIDmode if not known. AS is the address space associated with LOC.
5930 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5931
5932void
3754d046 5933decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
1efe9e9d 5934 addr_space_t as, enum rtx_code outer_code)
5935{
5936 memset (info, 0, sizeof (*info));
5937 info->mode = mode;
5938 info->as = as;
5939 info->addr_outer_code = outer_code;
5940 info->outer = loc;
5941 info->inner = strip_address_mutations (loc, &outer_code);
5942 info->base_outer_code = outer_code;
5943 switch (GET_CODE (*info->inner))
5944 {
5945 case PRE_DEC:
5946 case PRE_INC:
5947 case POST_DEC:
5948 case POST_INC:
5949 decompose_incdec_address (info);
5950 break;
5951
5952 case PRE_MODIFY:
5953 case POST_MODIFY:
5954 decompose_automod_address (info);
5955 break;
5956
5957 default:
5958 decompose_normal_address (info);
5959 break;
5960 }
5961}
5962
5963/* Describe address operand LOC in INFO. */
5964
5965void
5966decompose_lea_address (struct address_info *info, rtx *loc)
5967{
5968 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5969}
5970
5971/* Describe the address of MEM X in INFO. */
5972
5973void
5974decompose_mem_address (struct address_info *info, rtx x)
5975{
5976 gcc_assert (MEM_P (x));
5977 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5978 MEM_ADDR_SPACE (x), MEM);
5979}
5980
5981/* Update INFO after a change to the address it describes. */
5982
5983void
5984update_address (struct address_info *info)
5985{
5986 decompose_address (info, info->outer, info->mode, info->as,
5987 info->addr_outer_code);
5988}
5989
5990/* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5991 more complicated than that. */
5992
5993HOST_WIDE_INT
5994get_index_scale (const struct address_info *info)
5995{
5996 rtx index = *info->index;
5997 if (GET_CODE (index) == MULT
5998 && CONST_INT_P (XEXP (index, 1))
5999 && info->index_term == &XEXP (index, 0))
6000 return INTVAL (XEXP (index, 1));
6001
6002 if (GET_CODE (index) == ASHIFT
6003 && CONST_INT_P (XEXP (index, 1))
6004 && info->index_term == &XEXP (index, 0))
6005 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6006
6007 if (info->index == info->index_term)
6008 return 1;
6009
6010 return 0;
6011}
6012
6013/* Return the "index code" of INFO, in the form required by
6014 ok_for_base_p_1. */
6015
6016enum rtx_code
6017get_index_code (const struct address_info *info)
6018{
6019 if (info->index)
6020 return GET_CODE (*info->index);
6021
6022 if (info->disp)
6023 return GET_CODE (*info->disp);
6024
6025 return SCRATCH;
6026}
53ea4c57 6027
53ea4c57 6028/* Return true if X contains a thread-local symbol. */
6029
6030bool
7739c19e 6031tls_referenced_p (const_rtx x)
53ea4c57 6032{
6033 if (!targetm.have_tls)
6034 return false;
6035
7739c19e 6036 subrtx_iterator::array_type array;
02c7697d 6037 FOR_EACH_SUBRTX (iter, array, x, ALL)
7739c19e 6038 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6039 return true;
6040 return false;
53ea4c57 6041}