]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
re PR rtl-optimization/42294 (ICE in code_motion_path_driver for 416.gamess)
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
32e8bb8e 2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "toplev.h"
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
34#include "toplev.h"
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "sched-int.h"
41#include "ggc.h"
42#include "tree.h"
43#include "vec.h"
44#include "langhooks.h"
45#include "rtlhooks-def.h"
46
47#ifdef INSN_SCHEDULING
48#include "sel-sched-ir.h"
49/* We don't have to use it except for sel_print_insn. */
50#include "sel-sched-dump.h"
51
52/* A vector holding bb info for whole scheduling pass. */
53VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55/* A vector holding bb info. */
56VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58/* A pool for allocating all lists. */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set. */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils. */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined. */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72static VEC(loop_p, heap) *loop_nests = NULL;
73
74/* Saves blocks already in loop regions, indexed by bb->index. */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook. */
78static struct cfg_hooks orig_cfg_hooks;
79\f
80
81/* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array. */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure. */
89static struct
90{
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool. */
116static struct
117{
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
b8698a0f 125 int s;
e855c69d
AB
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes. */
129static rtx_vec_t bb_note_pool;
130
131/* A NOP pattern used to emit placeholder insns. */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135rtx exit_insn = NULL_RTX;
136
b8698a0f 137/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
138 was removed. */
139bool preheader_removed = false;
140\f
141
142/* Forward static declarations. */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
151static void free_history_vect (VEC (expr_history_def, heap) **);
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
155static void sel_remove_loop_preheader (void);
156
157static bool insn_is_the_only_one_in_bb_p (insn_t);
158static void create_initial_data_sets (basic_block);
159
b5b8b0ac 160static void free_av_set (basic_block);
e855c69d
AB
161static void invalidate_av_set (basic_block);
162static void extend_insn_data (void);
163static void sel_init_new_insn (insn_t, int);
164static void finish_insns (void);
165\f
166/* Various list functions. */
167
168/* Copy an instruction list L. */
169ilist_t
170ilist_copy (ilist_t l)
171{
172 ilist_t head = NULL, *tailp = &head;
173
174 while (l)
175 {
176 ilist_add (tailp, ILIST_INSN (l));
177 tailp = &ILIST_NEXT (*tailp);
178 l = ILIST_NEXT (l);
179 }
180
181 return head;
182}
183
184/* Invert an instruction list L. */
185ilist_t
186ilist_invert (ilist_t l)
187{
188 ilist_t res = NULL;
189
190 while (l)
191 {
192 ilist_add (&res, ILIST_INSN (l));
193 l = ILIST_NEXT (l);
194 }
195
196 return res;
197}
198
199/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
200void
201blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
202{
203 bnd_t bnd;
204
205 _list_add (lp);
206 bnd = BLIST_BND (*lp);
207
208 BND_TO (bnd) = to;
209 BND_PTR (bnd) = ptr;
210 BND_AV (bnd) = NULL;
211 BND_AV1 (bnd) = NULL;
212 BND_DC (bnd) = dc;
213}
214
215/* Remove the list note pointed to by LP. */
216void
217blist_remove (blist_t *lp)
218{
219 bnd_t b = BLIST_BND (*lp);
220
221 av_set_clear (&BND_AV (b));
222 av_set_clear (&BND_AV1 (b));
223 ilist_clear (&BND_PTR (b));
224
225 _list_remove (lp);
226}
227
228/* Init a fence tail L. */
229void
230flist_tail_init (flist_tail_t l)
231{
232 FLIST_TAIL_HEAD (l) = NULL;
233 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
234}
235
236/* Try to find fence corresponding to INSN in L. */
237fence_t
238flist_lookup (flist_t l, insn_t insn)
239{
240 while (l)
241 {
242 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
243 return FLIST_FENCE (l);
244
245 l = FLIST_NEXT (l);
246 }
247
248 return NULL;
249}
250
251/* Init the fields of F before running fill_insns. */
252static void
253init_fence_for_scheduling (fence_t f)
254{
255 FENCE_BNDS (f) = NULL;
256 FENCE_PROCESSED_P (f) = false;
257 FENCE_SCHEDULED_P (f) = false;
258}
259
260/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
261static void
b8698a0f
L
262flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
263 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
264 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
265 int cycle, int cycle_issued_insns,
e855c69d
AB
266 bool starts_cycle_p, bool after_stall_p)
267{
268 fence_t f;
269
270 _list_add (lp);
271 f = FLIST_FENCE (*lp);
272
273 FENCE_INSN (f) = insn;
274
275 gcc_assert (state != NULL);
276 FENCE_STATE (f) = state;
277
278 FENCE_CYCLE (f) = cycle;
279 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
280 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
281 FENCE_AFTER_STALL_P (f) = after_stall_p;
282
283 gcc_assert (dc != NULL);
284 FENCE_DC (f) = dc;
285
286 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
287 FENCE_TC (f) = tc;
288
289 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
290 FENCE_EXECUTING_INSNS (f) = executing_insns;
291 FENCE_READY_TICKS (f) = ready_ticks;
292 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
293 FENCE_SCHED_NEXT (f) = sched_next;
294
295 init_fence_for_scheduling (f);
296}
297
298/* Remove the head node of the list pointed to by LP. */
299static void
300flist_remove (flist_t *lp)
301{
302 if (FENCE_INSN (FLIST_FENCE (*lp)))
303 fence_clear (FLIST_FENCE (*lp));
304 _list_remove (lp);
305}
306
307/* Clear the fence list pointed to by LP. */
308void
309flist_clear (flist_t *lp)
310{
311 while (*lp)
312 flist_remove (lp);
313}
314
315/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
316void
317def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
318{
319 def_t d;
b8698a0f 320
e855c69d
AB
321 _list_add (dl);
322 d = DEF_LIST_DEF (*dl);
323
324 d->orig_insn = original_insn;
325 d->crosses_call = crosses_call;
326}
327\f
328
329/* Functions to work with target contexts. */
330
b8698a0f 331/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
332 that there are no uninitialized (null) target contexts. */
333static tc_t bulk_tc = (tc_t) 1;
334
b8698a0f 335/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
336 implementations for them. */
337
338/* Allocate a store for the target context. */
339static tc_t
340alloc_target_context (void)
341{
342 return (targetm.sched.alloc_sched_context
343 ? targetm.sched.alloc_sched_context () : bulk_tc);
344}
345
346/* Init target context TC.
347 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
348 Overwise, copy current backend context to TC. */
349static void
350init_target_context (tc_t tc, bool clean_p)
351{
352 if (targetm.sched.init_sched_context)
353 targetm.sched.init_sched_context (tc, clean_p);
354}
355
356/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
357 int init_target_context (). */
358tc_t
359create_target_context (bool clean_p)
360{
361 tc_t tc = alloc_target_context ();
362
363 init_target_context (tc, clean_p);
364 return tc;
365}
366
367/* Copy TC to the current backend context. */
368void
369set_target_context (tc_t tc)
370{
371 if (targetm.sched.set_sched_context)
372 targetm.sched.set_sched_context (tc);
373}
374
375/* TC is about to be destroyed. Free any internal data. */
376static void
377clear_target_context (tc_t tc)
378{
379 if (targetm.sched.clear_sched_context)
380 targetm.sched.clear_sched_context (tc);
381}
382
383/* Clear and free it. */
384static void
385delete_target_context (tc_t tc)
386{
387 clear_target_context (tc);
388
389 if (targetm.sched.free_sched_context)
390 targetm.sched.free_sched_context (tc);
391}
392
393/* Make a copy of FROM in TO.
394 NB: May be this should be a hook. */
395static void
396copy_target_context (tc_t to, tc_t from)
397{
398 tc_t tmp = create_target_context (false);
399
400 set_target_context (from);
401 init_target_context (to, false);
402
403 set_target_context (tmp);
404 delete_target_context (tmp);
405}
406
407/* Create a copy of TC. */
408static tc_t
409create_copy_of_target_context (tc_t tc)
410{
411 tc_t copy = alloc_target_context ();
412
413 copy_target_context (copy, tc);
414
415 return copy;
416}
417
418/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
419 is the same as in init_target_context (). */
420void
421reset_target_context (tc_t tc, bool clean_p)
422{
423 clear_target_context (tc);
424 init_target_context (tc, clean_p);
425}
426\f
b8698a0f 427/* Functions to work with dependence contexts.
e855c69d
AB
428 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence
429 context. It accumulates information about processed insns to decide if
430 current insn is dependent on the processed ones. */
431
432/* Make a copy of FROM in TO. */
433static void
434copy_deps_context (deps_t to, deps_t from)
435{
bcf33775 436 init_deps (to, false);
e855c69d
AB
437 deps_join (to, from);
438}
439
440/* Allocate store for dep context. */
441static deps_t
442alloc_deps_context (void)
443{
444 return XNEW (struct deps);
445}
446
447/* Allocate and initialize dep context. */
448static deps_t
449create_deps_context (void)
450{
451 deps_t dc = alloc_deps_context ();
452
bcf33775 453 init_deps (dc, false);
e855c69d
AB
454 return dc;
455}
456
457/* Create a copy of FROM. */
458static deps_t
459create_copy_of_deps_context (deps_t from)
460{
461 deps_t to = alloc_deps_context ();
462
463 copy_deps_context (to, from);
464 return to;
465}
466
467/* Clean up internal data of DC. */
468static void
469clear_deps_context (deps_t dc)
470{
471 free_deps (dc);
472}
473
474/* Clear and free DC. */
475static void
476delete_deps_context (deps_t dc)
477{
478 clear_deps_context (dc);
479 free (dc);
480}
481
482/* Clear and init DC. */
483static void
484reset_deps_context (deps_t dc)
485{
486 clear_deps_context (dc);
bcf33775 487 init_deps (dc, false);
e855c69d
AB
488}
489
b8698a0f 490/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
491 dependence context. */
492static struct sched_deps_info_def advance_deps_context_sched_deps_info =
493 {
494 NULL,
495
496 NULL, /* start_insn */
497 NULL, /* finish_insn */
498 NULL, /* start_lhs */
499 NULL, /* finish_lhs */
500 NULL, /* start_rhs */
501 NULL, /* finish_rhs */
502 haifa_note_reg_set,
503 haifa_note_reg_clobber,
504 haifa_note_reg_use,
505 NULL, /* note_mem_dep */
506 NULL, /* note_dep */
507
508 0, 0, 0
509 };
510
511/* Process INSN and add its impact on DC. */
512void
513advance_deps_context (deps_t dc, insn_t insn)
514{
515 sched_deps_info = &advance_deps_context_sched_deps_info;
516 deps_analyze_insn (dc, insn);
517}
518\f
519
520/* Functions to work with DFA states. */
521
522/* Allocate store for a DFA state. */
523static state_t
524state_alloc (void)
525{
526 return xmalloc (dfa_state_size);
527}
528
529/* Allocate and initialize DFA state. */
530static state_t
531state_create (void)
532{
533 state_t state = state_alloc ();
534
535 state_reset (state);
536 advance_state (state);
537 return state;
538}
539
540/* Free DFA state. */
541static void
542state_free (state_t state)
543{
544 free (state);
545}
546
547/* Make a copy of FROM in TO. */
548static void
549state_copy (state_t to, state_t from)
550{
551 memcpy (to, from, dfa_state_size);
552}
553
554/* Create a copy of FROM. */
555static state_t
556state_create_copy (state_t from)
557{
558 state_t to = state_alloc ();
559
560 state_copy (to, from);
561 return to;
562}
563\f
564
565/* Functions to work with fences. */
566
567/* Clear the fence. */
568static void
569fence_clear (fence_t f)
570{
571 state_t s = FENCE_STATE (f);
572 deps_t dc = FENCE_DC (f);
573 void *tc = FENCE_TC (f);
574
575 ilist_clear (&FENCE_BNDS (f));
576
577 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
578 || (s == NULL && dc == NULL && tc == NULL));
579
580 if (s != NULL)
581 free (s);
582
583 if (dc != NULL)
584 delete_deps_context (dc);
585
586 if (tc != NULL)
587 delete_target_context (tc);
588 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
589 free (FENCE_READY_TICKS (f));
590 FENCE_READY_TICKS (f) = NULL;
591}
592
593/* Init a list of fences with successors of OLD_FENCE. */
594void
595init_fences (insn_t old_fence)
596{
597 insn_t succ;
598 succ_iterator si;
599 bool first = true;
600 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
601
602 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
603 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
604 {
b8698a0f 605
e855c69d
AB
606 if (first)
607 first = false;
608 else
609 gcc_assert (flag_sel_sched_pipelining_outer_loops);
610
611 flist_add (&fences, succ,
612 state_create (),
613 create_deps_context () /* dc */,
614 create_target_context (true) /* tc */,
b8698a0f 615 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
616 NULL, /* executing_insns */
617 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
618 ready_ticks_size,
619 NULL_RTX /* sched_next */,
b8698a0f
L
620 1 /* cycle */, 0 /* cycle_issued_insns */,
621 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
622 }
623}
624
625/* Merges two fences (filling fields of fence F with resulting values) by
626 following rules: 1) state, target context and last scheduled insn are
b8698a0f 627 propagated from fallthrough edge if it is available;
e855c69d 628 2) deps context and cycle is propagated from more probable edge;
b8698a0f 629 3) all other fields are set to corresponding constant values.
e855c69d 630
b8698a0f 631 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
e855c69d
AB
632 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P
633 are the corresponding fields of the second fence. */
634static void
635merge_fences (fence_t f, insn_t insn,
b8698a0f 636 state_t state, deps_t dc, void *tc,
e855c69d
AB
637 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, bool after_stall_p)
640{
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
b8698a0f 646 /* Check if we can decide which path fences came.
e855c69d
AB
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
b8698a0f
L
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
e855c69d
AB
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
b8698a0f 658
e855c69d
AB
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
b8698a0f 661
e855c69d
AB
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 VEC_free (rtx, gc, executing_insns);
670 free (ready_ticks);
671 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 672 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
673 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
674 if (FENCE_READY_TICKS (f))
675 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
676 }
677 else
678 {
679 edge edge_old = NULL, edge_new = NULL;
680 edge candidate;
681 succ_iterator si;
682 insn_t succ;
b8698a0f 683
e855c69d
AB
684 /* Find fallthrough edge. */
685 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
686 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
687
688 if (!candidate
689 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
690 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
691 {
692 /* No fallthrough edge leading to basic block of INSN. */
693 state_reset (FENCE_STATE (f));
694 state_free (state);
b8698a0f 695
e855c69d
AB
696 reset_target_context (FENCE_TC (f), true);
697 delete_target_context (tc);
b8698a0f 698
e855c69d
AB
699 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
700 }
701 else
702 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
703 {
b8698a0f 704 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
705 edges. */
706 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
707 != BLOCK_FOR_INSN (last_scheduled_insn_old));
708
709 state_free (FENCE_STATE (f));
710 FENCE_STATE (f) = state;
711
712 delete_target_context (FENCE_TC (f));
713 FENCE_TC (f) = tc;
714
715 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
716 }
717 else
718 {
719 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
720 state_free (state);
721 delete_target_context (tc);
722
723 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
724 != BLOCK_FOR_INSN (last_scheduled_insn));
725 }
726
727 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
728 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
729 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
730 {
731 if (succ == insn)
732 {
733 /* No same successor allowed from several edges. */
734 gcc_assert (!edge_old);
735 edge_old = si.e1;
736 }
737 }
738 /* Find edge of second predecessor (last_scheduled_insn->insn). */
739 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
741 {
742 if (succ == insn)
743 {
744 /* No same successor allowed from several edges. */
745 gcc_assert (!edge_new);
746 edge_new = si.e1;
747 }
748 }
749
750 /* Check if we can choose most probable predecessor. */
751 if (edge_old == NULL || edge_new == NULL)
752 {
753 reset_deps_context (FENCE_DC (f));
754 delete_deps_context (dc);
755 VEC_free (rtx, gc, executing_insns);
756 free (ready_ticks);
b8698a0f 757
e855c69d
AB
758 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
759 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 760 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
761 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
762 if (FENCE_READY_TICKS (f))
763 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
764 }
765 else
766 if (edge_new->probability > edge_old->probability)
767 {
768 delete_deps_context (FENCE_DC (f));
769 FENCE_DC (f) = dc;
770 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
771 FENCE_EXECUTING_INSNS (f) = executing_insns;
772 free (FENCE_READY_TICKS (f));
773 FENCE_READY_TICKS (f) = ready_ticks;
774 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
775 FENCE_CYCLE (f) = cycle;
776 }
777 else
778 {
779 /* Leave DC and CYCLE untouched. */
780 delete_deps_context (dc);
781 VEC_free (rtx, gc, executing_insns);
782 free (ready_ticks);
783 }
784 }
785
786 /* Fill remaining invariant fields. */
787 if (after_stall_p)
788 FENCE_AFTER_STALL_P (f) = 1;
789
790 FENCE_ISSUED_INSNS (f) = 0;
791 FENCE_STARTS_CYCLE_P (f) = 1;
792 FENCE_SCHED_NEXT (f) = NULL;
793}
794
b8698a0f 795/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
796 other parameters. */
797static void
798add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
799 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
800 VEC(rtx, gc) *executing_insns, int *ready_ticks,
801 int ready_ticks_size, rtx sched_next, int cycle,
e855c69d
AB
802 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p)
803{
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806 if (! f)
807 {
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 809 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d
AB
810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811 starts_cycle_p, after_stall_p);
812
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 }
816 else
817 {
b8698a0f
L
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
e855c69d
AB
820 sched_next, cycle, after_stall_p);
821 }
822}
823
824/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825void
826move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827{
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831 old = FLIST_FENCE (old_fences);
b8698a0f 832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
835 {
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
b8698a0f 839 old->sched_next, old->cycle,
e855c69d
AB
840 old->after_stall_p);
841 }
842 else
843 {
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 }
849 FENCE_INSN (old) = NULL;
850}
851
b8698a0f 852/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
853 as a clean one. */
854void
855add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856{
857 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 858
e855c69d
AB
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
b8698a0f 862 NULL_RTX, NULL,
e855c69d
AB
863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864 NULL_RTX, FENCE_CYCLE (fence) + 1,
865 0, 1, FENCE_AFTER_STALL_P (fence));
866}
867
b8698a0f 868/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
869 from FENCE and SUCC. */
870void
871add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872{
b8698a0f 873 int * new_ready_ticks
e855c69d 874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 875
e855c69d
AB
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 882 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
883 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
889 FENCE_STARTS_CYCLE_P (fence),
890 FENCE_AFTER_STALL_P (fence));
891}
892\f
893
894/* Functions to work with regset and nop pools. */
895
896/* Returns the new regset from pool. It might have some of the bits set
897 from the previous usage. */
898regset
899get_regset_from_pool (void)
900{
901 regset rs;
902
903 if (regset_pool.n != 0)
904 rs = regset_pool.v[--regset_pool.n];
905 else
906 /* We need to create the regset. */
907 {
908 rs = ALLOC_REG_SET (&reg_obstack);
909
910 if (regset_pool.nn == regset_pool.ss)
911 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
912 (regset_pool.ss = 2 * regset_pool.ss + 1));
913 regset_pool.vv[regset_pool.nn++] = rs;
914 }
915
916 regset_pool.diff++;
917
918 return rs;
919}
920
921/* Same as above, but returns the empty regset. */
922regset
923get_clear_regset_from_pool (void)
924{
925 regset rs = get_regset_from_pool ();
926
927 CLEAR_REG_SET (rs);
928 return rs;
929}
930
931/* Return regset RS to the pool for future use. */
932void
933return_regset_to_pool (regset rs)
934{
935 regset_pool.diff--;
936
937 if (regset_pool.n == regset_pool.s)
938 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
939 (regset_pool.s = 2 * regset_pool.s + 1));
940 regset_pool.v[regset_pool.n++] = rs;
941}
942
68ad446f 943#ifdef ENABLE_CHECKING
e855c69d
AB
944/* This is used as a qsort callback for sorting regset pool stacks.
945 X and XX are addresses of two regsets. They are never equal. */
946static int
947cmp_v_in_regset_pool (const void *x, const void *xx)
948{
949 return *((const regset *) x) - *((const regset *) xx);
950}
68ad446f 951#endif
e855c69d
AB
952
953/* Free the regset pool possibly checking for memory leaks. */
954void
955free_regset_pool (void)
956{
957#ifdef ENABLE_CHECKING
958 {
959 regset *v = regset_pool.v;
960 int i = 0;
961 int n = regset_pool.n;
b8698a0f 962
e855c69d
AB
963 regset *vv = regset_pool.vv;
964 int ii = 0;
965 int nn = regset_pool.nn;
b8698a0f 966
e855c69d 967 int diff = 0;
b8698a0f 968
e855c69d 969 gcc_assert (n <= nn);
b8698a0f 970
e855c69d
AB
971 /* Sort both vectors so it will be possible to compare them. */
972 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
973 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 974
e855c69d
AB
975 while (ii < nn)
976 {
977 if (v[i] == vv[ii])
978 i++;
979 else
980 /* VV[II] was lost. */
981 diff++;
b8698a0f 982
e855c69d
AB
983 ii++;
984 }
b8698a0f 985
e855c69d
AB
986 gcc_assert (diff == regset_pool.diff);
987 }
988#endif
b8698a0f 989
e855c69d
AB
990 /* If not true - we have a memory leak. */
991 gcc_assert (regset_pool.diff == 0);
b8698a0f 992
e855c69d
AB
993 while (regset_pool.n)
994 {
995 --regset_pool.n;
996 FREE_REG_SET (regset_pool.v[regset_pool.n]);
997 }
998
999 free (regset_pool.v);
1000 regset_pool.v = NULL;
1001 regset_pool.s = 0;
b8698a0f 1002
e855c69d
AB
1003 free (regset_pool.vv);
1004 regset_pool.vv = NULL;
1005 regset_pool.nn = 0;
1006 regset_pool.ss = 0;
1007
1008 regset_pool.diff = 0;
1009}
1010\f
1011
b8698a0f
L
1012/* Functions to work with nop pools. NOP insns are used as temporary
1013 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1014 the data sets. When update is finished, NOPs are deleted. */
1015
1016/* A vinsn that is used to represent a nop. This vinsn is shared among all
1017 nops sel-sched generates. */
1018static vinsn_t nop_vinsn = NULL;
1019
1020/* Emit a nop before INSN, taking it from pool. */
1021insn_t
1022get_nop_from_pool (insn_t insn)
1023{
1024 insn_t nop;
1025 bool old_p = nop_pool.n != 0;
1026 int flags;
1027
1028 if (old_p)
1029 nop = nop_pool.v[--nop_pool.n];
1030 else
1031 nop = nop_pattern;
1032
1033 nop = emit_insn_before (nop, insn);
1034
1035 if (old_p)
1036 flags = INSN_INIT_TODO_SSID;
1037 else
1038 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1039
1040 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1041 sel_init_new_insn (nop, flags);
1042
1043 return nop;
1044}
1045
1046/* Remove NOP from the instruction stream and return it to the pool. */
1047void
b5b8b0ac 1048return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1049{
1050 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1051 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1052
1053 if (nop_pool.n == nop_pool.s)
b8698a0f 1054 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1055 (nop_pool.s = 2 * nop_pool.s + 1));
1056 nop_pool.v[nop_pool.n++] = nop;
1057}
1058
1059/* Free the nop pool. */
1060void
1061free_nop_pool (void)
1062{
1063 nop_pool.n = 0;
1064 nop_pool.s = 0;
1065 free (nop_pool.v);
1066 nop_pool.v = NULL;
1067}
1068\f
1069
b8698a0f 1070/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1071 The callback is given two rtxes XX and YY and writes the new rtxes
1072 to NX and NY in case some needs to be skipped. */
1073static int
1074skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1075{
1076 const_rtx x = *xx;
1077 const_rtx y = *yy;
b8698a0f 1078
e855c69d
AB
1079 if (GET_CODE (x) == UNSPEC
1080 && (targetm.sched.skip_rtx_p == NULL
1081 || targetm.sched.skip_rtx_p (x)))
1082 {
1083 *nx = XVECEXP (x, 0, 0);
1084 *ny = CONST_CAST_RTX (y);
1085 return 1;
1086 }
b8698a0f 1087
e855c69d
AB
1088 if (GET_CODE (y) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (y)))
1091 {
1092 *nx = CONST_CAST_RTX (x);
1093 *ny = XVECEXP (y, 0, 0);
1094 return 1;
1095 }
b8698a0f 1096
e855c69d
AB
1097 return 0;
1098}
1099
b8698a0f 1100/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1101 to support ia64 speculation. When changes are needed, new rtx X and new mode
1102 NMODE are written, and the callback returns true. */
1103static int
1104hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1105 rtx *nx, enum machine_mode* nmode)
1106{
b8698a0f 1107 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1108 && targetm.sched.skip_rtx_p
1109 && targetm.sched.skip_rtx_p (x))
1110 {
1111 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1112 *nmode = VOIDmode;
e855c69d
AB
1113 return 1;
1114 }
b8698a0f 1115
e855c69d
AB
1116 return 0;
1117}
1118
1119/* Returns LHS and RHS are ok to be scheduled separately. */
1120static bool
1121lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1122{
1123 if (lhs == NULL || rhs == NULL)
1124 return false;
1125
b8698a0f
L
1126 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1127 to use reg, if const can be used. Moreover, scheduling const as rhs may
1128 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1129 merged from branches where the same const used in different modes. */
1130 if (CONSTANT_P (rhs))
1131 return false;
1132
1133 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1134 if (COMPARISON_P (rhs))
1135 return false;
1136
1137 /* Do not allow single REG to be an rhs. */
1138 if (REG_P (rhs))
1139 return false;
1140
b8698a0f 1141 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1142 restriction. */
1143 /* FIXME: remove this later. */
1144 if (MEM_P (lhs))
1145 return false;
1146
1147 /* This will filter all tricky things like ZERO_EXTRACT etc.
1148 For now we don't handle it. */
1149 if (!REG_P (lhs) && !MEM_P (lhs))
1150 return false;
1151
1152 return true;
1153}
1154
b8698a0f
L
1155/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1156 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1157 used e.g. for insns from recovery blocks. */
1158static void
1159vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1160{
1161 hash_rtx_callback_function hrcf;
1162 int insn_class;
1163
1164 VINSN_INSN_RTX (vi) = insn;
1165 VINSN_COUNT (vi) = 0;
1166 vi->cost = -1;
b8698a0f 1167
e855c69d
AB
1168 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1169 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1170 else
1171 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1172
e855c69d
AB
1173 /* Hash vinsn depending on whether it is separable or not. */
1174 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1175 if (VINSN_SEPARABLE_P (vi))
1176 {
1177 rtx rhs = VINSN_RHS (vi);
1178
1179 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1180 NULL, NULL, false, hrcf);
1181 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1182 VOIDmode, NULL, NULL,
1183 false, hrcf);
1184 }
1185 else
1186 {
1187 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1188 NULL, NULL, false, hrcf);
1189 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1190 }
b8698a0f 1191
e855c69d
AB
1192 insn_class = haifa_classify_insn (insn);
1193 if (insn_class >= 2
1194 && (!targetm.sched.get_insn_spec_ds
1195 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1196 == 0)))
1197 VINSN_MAY_TRAP_P (vi) = true;
1198 else
1199 VINSN_MAY_TRAP_P (vi) = false;
1200}
1201
1202/* Indicate that VI has become the part of an rtx object. */
1203void
1204vinsn_attach (vinsn_t vi)
1205{
1206 /* Assert that VI is not pending for deletion. */
1207 gcc_assert (VINSN_INSN_RTX (vi));
1208
1209 VINSN_COUNT (vi)++;
1210}
1211
b8698a0f 1212/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1213 VINSN_TYPE (VI). */
1214static vinsn_t
1215vinsn_create (insn_t insn, bool force_unique_p)
1216{
1217 vinsn_t vi = XCNEW (struct vinsn_def);
1218
1219 vinsn_init (vi, insn, force_unique_p);
1220 return vi;
1221}
1222
1223/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1224 the copy. */
b8698a0f 1225vinsn_t
e855c69d
AB
1226vinsn_copy (vinsn_t vi, bool reattach_p)
1227{
1228 rtx copy;
1229 bool unique = VINSN_UNIQUE_P (vi);
1230 vinsn_t new_vi;
b8698a0f 1231
e855c69d
AB
1232 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1233 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1234 if (reattach_p)
1235 {
1236 vinsn_detach (vi);
1237 vinsn_attach (new_vi);
1238 }
1239
1240 return new_vi;
1241}
1242
1243/* Delete the VI vinsn and free its data. */
1244static void
1245vinsn_delete (vinsn_t vi)
1246{
1247 gcc_assert (VINSN_COUNT (vi) == 0);
1248
1249 return_regset_to_pool (VINSN_REG_SETS (vi));
1250 return_regset_to_pool (VINSN_REG_USES (vi));
1251 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1252
1253 free (vi);
1254}
1255
b8698a0f 1256/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1257 Remove VI if it is no longer needed. */
1258void
1259vinsn_detach (vinsn_t vi)
1260{
1261 gcc_assert (VINSN_COUNT (vi) > 0);
1262
1263 if (--VINSN_COUNT (vi) == 0)
1264 vinsn_delete (vi);
1265}
1266
1267/* Returns TRUE if VI is a branch. */
1268bool
1269vinsn_cond_branch_p (vinsn_t vi)
1270{
1271 insn_t insn;
1272
1273 if (!VINSN_UNIQUE_P (vi))
1274 return false;
1275
1276 insn = VINSN_INSN_RTX (vi);
1277 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1278 return false;
1279
1280 return control_flow_insn_p (insn);
1281}
1282
1283/* Return latency of INSN. */
1284static int
1285sel_insn_rtx_cost (rtx insn)
1286{
1287 int cost;
1288
1289 /* A USE insn, or something else we don't need to
1290 understand. We can't pass these directly to
1291 result_ready_cost or insn_default_latency because it will
1292 trigger a fatal error for unrecognizable insns. */
1293 if (recog_memoized (insn) < 0)
1294 cost = 0;
1295 else
1296 {
1297 cost = insn_default_latency (insn);
1298
1299 if (cost < 0)
1300 cost = 0;
1301 }
1302
1303 return cost;
1304}
1305
1306/* Return the cost of the VI.
1307 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1308int
1309sel_vinsn_cost (vinsn_t vi)
1310{
1311 int cost = vi->cost;
1312
1313 if (cost < 0)
1314 {
1315 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1316 vi->cost = cost;
1317 }
1318
1319 return cost;
1320}
1321\f
1322
1323/* Functions for insn emitting. */
1324
1325/* Emit new insn after AFTER based on PATTERN and initialize its data from
1326 EXPR and SEQNO. */
1327insn_t
1328sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1329{
1330 insn_t new_insn;
1331
1332 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1333
1334 new_insn = emit_insn_after (pattern, after);
1335 set_insn_init (expr, NULL, seqno);
1336 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1337
1338 return new_insn;
1339}
1340
1341/* Force newly generated vinsns to be unique. */
1342static bool init_insn_force_unique_p = false;
1343
1344/* Emit new speculation recovery insn after AFTER based on PATTERN and
1345 initialize its data from EXPR and SEQNO. */
1346insn_t
1347sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1348 insn_t after)
1349{
1350 insn_t insn;
1351
1352 gcc_assert (!init_insn_force_unique_p);
1353
1354 init_insn_force_unique_p = true;
1355 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1356 CANT_MOVE (insn) = 1;
1357 init_insn_force_unique_p = false;
1358
1359 return insn;
1360}
1361
1362/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1363 take it as a new vinsn instead of EXPR's vinsn.
1364 We simplify insns later, after scheduling region in
e855c69d
AB
1365 simplify_changed_insns. */
1366insn_t
b8698a0f 1367sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1368 insn_t after)
1369{
1370 expr_t emit_expr;
1371 insn_t insn;
1372 int flags;
b8698a0f
L
1373
1374 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1375 seqno);
1376 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1377 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1378
1379 flags = INSN_INIT_TODO_SSID;
1380 if (INSN_LUID (insn) == 0)
1381 flags |= INSN_INIT_TODO_LUID;
1382 sel_init_new_insn (insn, flags);
1383
1384 return insn;
1385}
1386
1387/* Move insn from EXPR after AFTER. */
1388insn_t
1389sel_move_insn (expr_t expr, int seqno, insn_t after)
1390{
1391 insn_t insn = EXPR_INSN_RTX (expr);
1392 basic_block bb = BLOCK_FOR_INSN (after);
1393 insn_t next = NEXT_INSN (after);
1394
1395 /* Assert that in move_op we disconnected this insn properly. */
1396 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1397 PREV_INSN (insn) = after;
1398 NEXT_INSN (insn) = next;
1399
1400 NEXT_INSN (after) = insn;
1401 PREV_INSN (next) = insn;
1402
1403 /* Update links from insn to bb and vice versa. */
1404 df_insn_change_bb (insn, bb);
1405 if (BB_END (bb) == after)
1406 BB_END (bb) = insn;
b8698a0f 1407
e855c69d
AB
1408 prepare_insn_expr (insn, seqno);
1409 return insn;
1410}
1411
1412\f
1413/* Functions to work with right-hand sides. */
1414
b8698a0f 1415/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1416 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1417 COMPARE_VINSNS is true. Write to INDP the index on which
1418 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1419 retain VECT's sort order. */
1420static bool
b8698a0f
L
1421find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1422 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1423 bool compare_vinsns, int *indp)
1424{
1425 expr_history_def *arr;
1426 int i, j, len = VEC_length (expr_history_def, vect);
1427
1428 if (len == 0)
1429 {
1430 *indp = 0;
1431 return false;
1432 }
1433
1434 arr = VEC_address (expr_history_def, vect);
1435 i = 0, j = len - 1;
1436
1437 while (i <= j)
1438 {
1439 unsigned auid = arr[i].uid;
b8698a0f 1440 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1441
1442 if (auid == uid
b8698a0f
L
1443 /* When undoing transformation on a bookkeeping copy, the new vinsn
1444 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1445 This is because the insn whose copy we're checking was possibly
1446 substituted itself. */
b8698a0f 1447 && (! compare_vinsns
e855c69d
AB
1448 || vinsn_equal_p (avinsn, new_vinsn)))
1449 {
1450 *indp = i;
1451 return true;
1452 }
1453 else if (auid > uid)
1454 break;
1455 i++;
1456 }
1457
1458 *indp = i;
1459 return false;
1460}
1461
b8698a0f
L
1462/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1463 the position found or -1, if no such value is in vector.
e855c69d
AB
1464 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1465int
b8698a0f 1466find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1467 vinsn_t new_vinsn, bool originators_p)
1468{
1469 int ind;
1470
b8698a0f 1471 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1472 false, &ind))
1473 return ind;
1474
1475 if (INSN_ORIGINATORS (insn) && originators_p)
1476 {
1477 unsigned uid;
1478 bitmap_iterator bi;
1479
1480 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1481 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1482 return ind;
1483 }
b8698a0f 1484
e855c69d
AB
1485 return -1;
1486}
1487
b8698a0f
L
1488/* Insert new element in a sorted history vector pointed to by PVECT,
1489 if it is not there already. The element is searched using
e855c69d
AB
1490 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1491 the history of a transformation. */
1492void
1493insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1494 unsigned uid, enum local_trans_type type,
b8698a0f 1495 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1496 ds_t spec_ds)
1497{
1498 VEC(expr_history_def, heap) *vect = *pvect;
1499 expr_history_def temp;
1500 bool res;
1501 int ind;
1502
1503 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1504
1505 if (res)
1506 {
1507 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1508
b8698a0f 1509 /* It is possible that speculation types of expressions that were
e855c69d
AB
1510 propagated through different paths will be different here. In this
1511 case, merge the status to get the correct check later. */
1512 if (phist->spec_ds != spec_ds)
1513 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1514 return;
1515 }
b8698a0f 1516
e855c69d
AB
1517 temp.uid = uid;
1518 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1519 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1520 temp.spec_ds = spec_ds;
1521 temp.type = type;
1522
1523 vinsn_attach (old_expr_vinsn);
1524 vinsn_attach (new_expr_vinsn);
1525 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1526 *pvect = vect;
1527}
1528
1529/* Free history vector PVECT. */
1530static void
1531free_history_vect (VEC (expr_history_def, heap) **pvect)
1532{
1533 unsigned i;
1534 expr_history_def *phist;
1535
1536 if (! *pvect)
1537 return;
b8698a0f
L
1538
1539 for (i = 0;
e855c69d
AB
1540 VEC_iterate (expr_history_def, *pvect, i, phist);
1541 i++)
1542 {
1543 vinsn_detach (phist->old_expr_vinsn);
1544 vinsn_detach (phist->new_expr_vinsn);
1545 }
b8698a0f 1546
e855c69d
AB
1547 VEC_free (expr_history_def, heap, *pvect);
1548 *pvect = NULL;
1549}
1550
1551
1552/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1553bool
1554vinsn_equal_p (vinsn_t x, vinsn_t y)
1555{
1556 rtx_equal_p_callback_function repcf;
1557
1558 if (x == y)
1559 return true;
1560
1561 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1562 return false;
1563
1564 if (VINSN_HASH (x) != VINSN_HASH (y))
1565 return false;
1566
1567 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1568 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1569 {
1570 /* Compare RHSes of VINSNs. */
1571 gcc_assert (VINSN_RHS (x));
1572 gcc_assert (VINSN_RHS (y));
1573
1574 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1575 }
1576
1577 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1578}
1579\f
1580
1581/* Functions for working with expressions. */
1582
1583/* Initialize EXPR. */
1584static void
1585init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1586 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1587 ds_t spec_to_check_ds, int orig_sched_cycle,
b8698a0f 1588 VEC(expr_history_def, heap) *history, bool target_available,
e855c69d
AB
1589 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1590 bool cant_move)
1591{
1592 vinsn_attach (vi);
1593
1594 EXPR_VINSN (expr) = vi;
1595 EXPR_SPEC (expr) = spec;
1596 EXPR_USEFULNESS (expr) = use;
1597 EXPR_PRIORITY (expr) = priority;
1598 EXPR_PRIORITY_ADJ (expr) = 0;
1599 EXPR_SCHED_TIMES (expr) = sched_times;
1600 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1601 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1602 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1603 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1604
1605 if (history)
1606 EXPR_HISTORY_OF_CHANGES (expr) = history;
1607 else
1608 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1609
1610 EXPR_TARGET_AVAILABLE (expr) = target_available;
1611 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1612 EXPR_WAS_RENAMED (expr) = was_renamed;
1613 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1614 EXPR_CANT_MOVE (expr) = cant_move;
1615}
1616
1617/* Make a copy of the expr FROM into the expr TO. */
1618void
1619copy_expr (expr_t to, expr_t from)
1620{
1621 VEC(expr_history_def, heap) *temp = NULL;
1622
1623 if (EXPR_HISTORY_OF_CHANGES (from))
1624 {
1625 unsigned i;
1626 expr_history_def *phist;
1627
1628 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1629 for (i = 0;
e855c69d
AB
1630 VEC_iterate (expr_history_def, temp, i, phist);
1631 i++)
1632 {
1633 vinsn_attach (phist->old_expr_vinsn);
1634 vinsn_attach (phist->new_expr_vinsn);
1635 }
1636 }
1637
b8698a0f 1638 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1639 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1640 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1641 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1642 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1643 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1644 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1645 EXPR_CANT_MOVE (from));
1646}
1647
b8698a0f 1648/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1649 "uninteresting" data such as bitmap cache. */
1650void
1651copy_expr_onside (expr_t to, expr_t from)
1652{
1653 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1654 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1655 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1656 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1657 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1658 EXPR_CANT_MOVE (from));
1659}
1660
1661/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1662 initializing new insns. */
1663static void
1664prepare_insn_expr (insn_t insn, int seqno)
1665{
1666 expr_t expr = INSN_EXPR (insn);
1667 ds_t ds;
b8698a0f 1668
e855c69d
AB
1669 INSN_SEQNO (insn) = seqno;
1670 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1671 EXPR_SPEC (expr) = 0;
1672 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1673 EXPR_WAS_SUBSTITUTED (expr) = 0;
1674 EXPR_WAS_RENAMED (expr) = 0;
1675 EXPR_TARGET_AVAILABLE (expr) = 1;
1676 INSN_LIVE_VALID_P (insn) = false;
1677
1678 /* ??? If this expression is speculative, make its dependence
1679 as weak as possible. We can filter this expression later
1680 in process_spec_exprs, because we do not distinguish
1681 between the status we got during compute_av_set and the
1682 existing status. To be fixed. */
1683 ds = EXPR_SPEC_DONE_DS (expr);
1684 if (ds)
1685 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1686
1687 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1688}
1689
1690/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1691 is non-null when expressions are merged from different successors at
e855c69d
AB
1692 a split point. */
1693static void
1694update_target_availability (expr_t to, expr_t from, insn_t split_point)
1695{
b8698a0f 1696 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1697 || EXPR_TARGET_AVAILABLE (from) < 0)
1698 EXPR_TARGET_AVAILABLE (to) = -1;
1699 else
1700 {
1701 /* We try to detect the case when one of the expressions
1702 can only be reached through another one. In this case,
1703 we can do better. */
1704 if (split_point == NULL)
1705 {
1706 int toind, fromind;
1707
1708 toind = EXPR_ORIG_BB_INDEX (to);
1709 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1710
e855c69d 1711 if (toind && toind == fromind)
b8698a0f 1712 /* Do nothing -- everything is done in
e855c69d
AB
1713 merge_with_other_exprs. */
1714 ;
1715 else
1716 EXPR_TARGET_AVAILABLE (to) = -1;
1717 }
1718 else
1719 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1720 }
1721}
1722
1723/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1724 is non-null when expressions are merged from different successors at
e855c69d
AB
1725 a split point. */
1726static void
1727update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1728{
1729 ds_t old_to_ds, old_from_ds;
1730
1731 old_to_ds = EXPR_SPEC_DONE_DS (to);
1732 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1733
e855c69d
AB
1734 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1735 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1736 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1737
1738 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1739 speculative with a control&data speculative one, we really have
e855c69d
AB
1740 to change vinsn too. Also, when speculative status is changed,
1741 we also need to record this as a transformation in expr's history. */
1742 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1743 {
1744 old_to_ds = ds_get_speculation_types (old_to_ds);
1745 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1746
e855c69d
AB
1747 if (old_to_ds != old_from_ds)
1748 {
1749 ds_t record_ds;
b8698a0f
L
1750
1751 /* When both expressions are speculative, we need to change
e855c69d
AB
1752 the vinsn first. */
1753 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1754 {
1755 int res;
b8698a0f 1756
e855c69d
AB
1757 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1758 gcc_assert (res >= 0);
1759 }
1760
1761 if (split_point != NULL)
1762 {
1763 /* Record the change with proper status. */
1764 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1765 record_ds &= ~(old_to_ds & SPECULATIVE);
1766 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1767
1768 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1769 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1770 EXPR_VINSN (from), EXPR_VINSN (to),
1771 record_ds);
1772 }
1773 }
1774 }
1775}
1776
1777
1778/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1779 this is done along different paths. */
1780void
1781merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1782{
1783 int i;
1784 expr_history_def *phist;
b8698a0f 1785
e855c69d
AB
1786 /* For now, we just set the spec of resulting expr to be minimum of the specs
1787 of merged exprs. */
1788 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1789 EXPR_SPEC (to) = EXPR_SPEC (from);
1790
1791 if (split_point)
1792 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1793 else
b8698a0f 1794 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1795 EXPR_USEFULNESS (from));
1796
1797 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1798 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1799
1800 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1801 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1802
1803 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1804 EXPR_ORIG_BB_INDEX (to) = 0;
1805
b8698a0f 1806 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1807 EXPR_ORIG_SCHED_CYCLE (from));
1808
1809 /* We keep this vector sorted. */
b8698a0f
L
1810 for (i = 0;
1811 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
e855c69d
AB
1812 i, phist);
1813 i++)
b8698a0f
L
1814 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1815 phist->uid, phist->type,
1816 phist->old_expr_vinsn, phist->new_expr_vinsn,
e855c69d
AB
1817 phist->spec_ds);
1818
1819 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1820 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1821 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1822
1823 update_target_availability (to, from, split_point);
1824 update_speculative_bits (to, from, split_point);
1825}
1826
1827/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1828 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1829 are merged from different successors at a split point. */
1830void
1831merge_expr (expr_t to, expr_t from, insn_t split_point)
1832{
1833 vinsn_t to_vi = EXPR_VINSN (to);
1834 vinsn_t from_vi = EXPR_VINSN (from);
1835
1836 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1837
1838 /* Make sure that speculative pattern is propagated into exprs that
1839 have non-speculative one. This will provide us with consistent
1840 speculative bits and speculative patterns inside expr. */
1841 if (EXPR_SPEC_DONE_DS (to) == 0
1842 && EXPR_SPEC_DONE_DS (from) != 0)
1843 change_vinsn_in_expr (to, EXPR_VINSN (from));
1844
1845 merge_expr_data (to, from, split_point);
1846 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1847}
1848
1849/* Clear the information of this EXPR. */
1850void
1851clear_expr (expr_t expr)
1852{
b8698a0f 1853
e855c69d
AB
1854 vinsn_detach (EXPR_VINSN (expr));
1855 EXPR_VINSN (expr) = NULL;
1856
1857 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1858}
1859
1860/* For a given LV_SET, mark EXPR having unavailable target register. */
1861static void
1862set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1863{
1864 if (EXPR_SEPARABLE_P (expr))
1865 {
1866 if (REG_P (EXPR_LHS (expr))
1867 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1868 {
b8698a0f
L
1869 /* If it's an insn like r1 = use (r1, ...), and it exists in
1870 different forms in each of the av_sets being merged, we can't say
1871 whether original destination register is available or not.
1872 However, this still works if destination register is not used
e855c69d
AB
1873 in the original expression: if the branch at which LV_SET we're
1874 looking here is not actually 'other branch' in sense that same
b8698a0f 1875 expression is available through it (but it can't be determined
e855c69d 1876 at computation stage because of transformations on one of the
b8698a0f
L
1877 branches), it still won't affect the availability.
1878 Liveness of a register somewhere on a code motion path means
1879 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1880 'other' branch, live at the point immediately following
1881 the original operation, or is read by the original operation.
1882 The latter case is filtered out in the condition below.
1883 It still doesn't cover the case when register is defined and used
1884 somewhere within the code motion path, and in this case we could
1885 miss a unifying code motion along both branches using a renamed
1886 register, but it won't affect a code correctness since upon
1887 an actual code motion a bookkeeping code would be generated. */
b8698a0f 1888 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1889 REGNO (EXPR_LHS (expr))))
1890 EXPR_TARGET_AVAILABLE (expr) = -1;
1891 else
1892 EXPR_TARGET_AVAILABLE (expr) = false;
1893 }
1894 }
1895 else
1896 {
1897 unsigned regno;
1898 reg_set_iterator rsi;
b8698a0f
L
1899
1900 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1901 0, regno, rsi)
1902 if (bitmap_bit_p (lv_set, regno))
1903 {
1904 EXPR_TARGET_AVAILABLE (expr) = false;
1905 break;
1906 }
1907
1908 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1909 0, regno, rsi)
1910 if (bitmap_bit_p (lv_set, regno))
1911 {
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1913 break;
1914 }
1915 }
1916}
1917
b8698a0f 1918/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1919 or dependence status have changed, 2 when also the target register
1920 became unavailable, 0 if nothing had to be changed. */
1921int
1922speculate_expr (expr_t expr, ds_t ds)
1923{
1924 int res;
1925 rtx orig_insn_rtx;
1926 rtx spec_pat;
1927 ds_t target_ds, current_ds;
1928
1929 /* Obtain the status we need to put on EXPR. */
1930 target_ds = (ds & SPECULATIVE);
1931 current_ds = EXPR_SPEC_DONE_DS (expr);
1932 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1933
1934 orig_insn_rtx = EXPR_INSN_RTX (expr);
1935
1936 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1937
1938 switch (res)
1939 {
1940 case 0:
1941 EXPR_SPEC_DONE_DS (expr) = ds;
1942 return current_ds != ds ? 1 : 0;
b8698a0f 1943
e855c69d
AB
1944 case 1:
1945 {
1946 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1947 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1948
1949 change_vinsn_in_expr (expr, spec_vinsn);
1950 EXPR_SPEC_DONE_DS (expr) = ds;
1951 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1952
b8698a0f 1953 /* Do not allow clobbering the address register of speculative
e855c69d 1954 insns. */
b8698a0f 1955 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1956 expr_dest_regno (expr)))
1957 {
1958 EXPR_TARGET_AVAILABLE (expr) = false;
1959 return 2;
1960 }
1961
1962 return 1;
1963 }
1964
1965 case -1:
1966 return -1;
1967
1968 default:
1969 gcc_unreachable ();
1970 return -1;
1971 }
1972}
1973
1974/* Return a destination register, if any, of EXPR. */
1975rtx
1976expr_dest_reg (expr_t expr)
1977{
1978 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1979
1980 if (dest != NULL_RTX && REG_P (dest))
1981 return dest;
1982
1983 return NULL_RTX;
1984}
1985
1986/* Returns the REGNO of the R's destination. */
1987unsigned
1988expr_dest_regno (expr_t expr)
1989{
1990 rtx dest = expr_dest_reg (expr);
1991
1992 gcc_assert (dest != NULL_RTX);
1993 return REGNO (dest);
1994}
1995
b8698a0f 1996/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
1997 AV_SET having unavailable target register. */
1998void
1999mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2000{
2001 expr_t expr;
2002 av_set_iterator avi;
2003
2004 FOR_EACH_EXPR (expr, avi, join_set)
2005 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2006 set_unavailable_target_for_expr (expr, lv_set);
2007}
2008\f
2009
2010/* Av set functions. */
2011
2012/* Add a new element to av set SETP.
2013 Return the element added. */
2014static av_set_t
2015av_set_add_element (av_set_t *setp)
2016{
2017 /* Insert at the beginning of the list. */
2018 _list_add (setp);
2019 return *setp;
2020}
2021
2022/* Add EXPR to SETP. */
2023void
2024av_set_add (av_set_t *setp, expr_t expr)
2025{
2026 av_set_t elem;
b8698a0f 2027
e855c69d
AB
2028 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2029 elem = av_set_add_element (setp);
2030 copy_expr (_AV_SET_EXPR (elem), expr);
2031}
2032
2033/* Same, but do not copy EXPR. */
2034static void
2035av_set_add_nocopy (av_set_t *setp, expr_t expr)
2036{
2037 av_set_t elem;
2038
2039 elem = av_set_add_element (setp);
2040 *_AV_SET_EXPR (elem) = *expr;
2041}
2042
2043/* Remove expr pointed to by IP from the av_set. */
2044void
2045av_set_iter_remove (av_set_iterator *ip)
2046{
2047 clear_expr (_AV_SET_EXPR (*ip->lp));
2048 _list_iter_remove (ip);
2049}
2050
2051/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2052 sense of vinsn_equal_p function. Return NULL if no such expr is
2053 in SET was found. */
2054expr_t
2055av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2056{
2057 expr_t expr;
2058 av_set_iterator i;
2059
2060 FOR_EACH_EXPR (expr, i, set)
2061 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2062 return expr;
2063 return NULL;
2064}
2065
2066/* Same, but also remove the EXPR found. */
2067static expr_t
2068av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2069{
2070 expr_t expr;
2071 av_set_iterator i;
2072
2073 FOR_EACH_EXPR_1 (expr, i, setp)
2074 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2075 {
2076 _list_iter_remove_nofree (&i);
2077 return expr;
2078 }
2079 return NULL;
2080}
2081
2082/* Search for an expr in SET, such that it's equivalent to EXPR in the
2083 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2084 Returns NULL if no such expr is in SET was found. */
2085static expr_t
2086av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2087{
2088 expr_t cur_expr;
2089 av_set_iterator i;
2090
2091 FOR_EACH_EXPR (cur_expr, i, set)
2092 {
2093 if (cur_expr == expr)
2094 continue;
2095 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2096 return cur_expr;
2097 }
2098
2099 return NULL;
2100}
2101
2102/* If other expression is already in AVP, remove one of them. */
2103expr_t
2104merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2105{
2106 expr_t expr2;
2107
2108 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2109 if (expr2 != NULL)
2110 {
2111 /* Reset target availability on merge, since taking it only from one
2112 of the exprs would be controversial for different code. */
2113 EXPR_TARGET_AVAILABLE (expr2) = -1;
2114 EXPR_USEFULNESS (expr2) = 0;
2115
2116 merge_expr (expr2, expr, NULL);
b8698a0f 2117
e855c69d
AB
2118 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2119 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2120
e855c69d
AB
2121 av_set_iter_remove (ip);
2122 return expr2;
2123 }
2124
2125 return expr;
2126}
2127
2128/* Return true if there is an expr that correlates to VI in SET. */
2129bool
2130av_set_is_in_p (av_set_t set, vinsn_t vi)
2131{
2132 return av_set_lookup (set, vi) != NULL;
2133}
2134
2135/* Return a copy of SET. */
2136av_set_t
2137av_set_copy (av_set_t set)
2138{
2139 expr_t expr;
2140 av_set_iterator i;
2141 av_set_t res = NULL;
2142
2143 FOR_EACH_EXPR (expr, i, set)
2144 av_set_add (&res, expr);
2145
2146 return res;
2147}
2148
2149/* Join two av sets that do not have common elements by attaching second set
2150 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2151 _AV_SET_NEXT of first set's last element). */
2152static void
2153join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2154{
2155 gcc_assert (*to_tailp == NULL);
2156 *to_tailp = *fromp;
2157 *fromp = NULL;
2158}
2159
2160/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2161 pointed to by FROMP afterwards. */
2162void
2163av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2164{
2165 expr_t expr1;
2166 av_set_iterator i;
2167
2168 /* Delete from TOP all exprs, that present in FROMP. */
2169 FOR_EACH_EXPR_1 (expr1, i, top)
2170 {
2171 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2172
2173 if (expr2)
2174 {
2175 merge_expr (expr2, expr1, insn);
2176 av_set_iter_remove (&i);
2177 }
2178 }
2179
2180 join_distinct_sets (i.lp, fromp);
2181}
2182
b8698a0f 2183/* Same as above, but also update availability of target register in
e855c69d
AB
2184 TOP judging by TO_LV_SET and FROM_LV_SET. */
2185void
2186av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2187 regset from_lv_set, insn_t insn)
2188{
2189 expr_t expr1;
2190 av_set_iterator i;
2191 av_set_t *to_tailp, in_both_set = NULL;
2192
2193 /* Delete from TOP all expres, that present in FROMP. */
2194 FOR_EACH_EXPR_1 (expr1, i, top)
2195 {
2196 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2197
2198 if (expr2)
2199 {
b8698a0f 2200 /* It may be that the expressions have different destination
e855c69d
AB
2201 registers, in which case we need to check liveness here. */
2202 if (EXPR_SEPARABLE_P (expr1))
2203 {
b8698a0f 2204 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2205 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2206 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2207 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2208
2209 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2210 *other* register on the current path, we did it only
2211 for the current target register. Give up. */
2212 if (regno1 != regno2)
2213 EXPR_TARGET_AVAILABLE (expr2) = -1;
2214 }
2215 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2216 EXPR_TARGET_AVAILABLE (expr2) = -1;
2217
2218 merge_expr (expr2, expr1, insn);
2219 av_set_add_nocopy (&in_both_set, expr2);
2220 av_set_iter_remove (&i);
2221 }
2222 else
b8698a0f 2223 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2224 FROM_LV_SET. */
2225 set_unavailable_target_for_expr (expr1, from_lv_set);
2226 }
2227 to_tailp = i.lp;
2228
2229 /* These expressions are not present in TOP. Check liveness
2230 restrictions on TO_LV_SET. */
2231 FOR_EACH_EXPR (expr1, i, *fromp)
2232 set_unavailable_target_for_expr (expr1, to_lv_set);
2233
2234 join_distinct_sets (i.lp, &in_both_set);
2235 join_distinct_sets (to_tailp, fromp);
2236}
2237
2238/* Clear av_set pointed to by SETP. */
2239void
2240av_set_clear (av_set_t *setp)
2241{
2242 expr_t expr;
2243 av_set_iterator i;
2244
2245 FOR_EACH_EXPR_1 (expr, i, setp)
2246 av_set_iter_remove (&i);
2247
2248 gcc_assert (*setp == NULL);
2249}
2250
2251/* Leave only one non-speculative element in the SETP. */
2252void
2253av_set_leave_one_nonspec (av_set_t *setp)
2254{
2255 expr_t expr;
2256 av_set_iterator i;
2257 bool has_one_nonspec = false;
2258
b8698a0f 2259 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2260 (the first one). */
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 {
2263 if (!EXPR_SPEC_DONE_DS (expr))
2264 {
2265 if (has_one_nonspec)
2266 av_set_iter_remove (&i);
2267 else
2268 has_one_nonspec = true;
2269 }
2270 }
2271}
2272
2273/* Return the N'th element of the SET. */
2274expr_t
2275av_set_element (av_set_t set, int n)
2276{
2277 expr_t expr;
2278 av_set_iterator i;
2279
2280 FOR_EACH_EXPR (expr, i, set)
2281 if (n-- == 0)
2282 return expr;
2283
2284 gcc_unreachable ();
2285 return NULL;
2286}
2287
2288/* Deletes all expressions from AVP that are conditional branches (IFs). */
2289void
2290av_set_substract_cond_branches (av_set_t *avp)
2291{
2292 av_set_iterator i;
2293 expr_t expr;
2294
2295 FOR_EACH_EXPR_1 (expr, i, avp)
2296 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2297 av_set_iter_remove (&i);
2298}
2299
b8698a0f 2300/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2301 value PROB / ALL_PROB. */
2302void
2303av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2304{
2305 av_set_iterator i;
2306 expr_t expr;
2307
2308 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2309 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2310 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2311 : 0);
2312}
2313
2314/* Leave in AVP only those expressions, which are present in AV,
2315 and return it. */
2316void
2317av_set_intersect (av_set_t *avp, av_set_t av)
2318{
2319 av_set_iterator i;
2320 expr_t expr;
2321
2322 FOR_EACH_EXPR_1 (expr, i, avp)
2323 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2324 av_set_iter_remove (&i);
2325}
2326
2327\f
2328
2329/* Dependence hooks to initialize insn data. */
2330
2331/* This is used in hooks callable from dependence analysis when initializing
2332 instruction's data. */
2333static struct
2334{
2335 /* Where the dependence was found (lhs/rhs). */
2336 deps_where_t where;
2337
2338 /* The actual data object to initialize. */
2339 idata_t id;
2340
2341 /* True when the insn should not be made clonable. */
2342 bool force_unique_p;
2343
2344 /* True when insn should be treated as of type USE, i.e. never renamed. */
2345 bool force_use_p;
2346} deps_init_id_data;
2347
2348
b8698a0f 2349/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2350 clonable. */
2351static void
2352setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2353{
2354 int type;
b8698a0f 2355
e855c69d
AB
2356 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2357 That clonable insns which can be separated into lhs and rhs have type SET.
2358 Other clonable insns have type USE. */
2359 type = GET_CODE (insn);
2360
2361 /* Only regular insns could be cloned. */
2362 if (type == INSN && !force_unique_p)
2363 type = SET;
2364 else if (type == JUMP_INSN && simplejump_p (insn))
2365 type = PC;
b5b8b0ac
AO
2366 else if (type == DEBUG_INSN)
2367 type = !force_unique_p ? USE : INSN;
b8698a0f 2368
e855c69d
AB
2369 IDATA_TYPE (id) = type;
2370 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2371 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2372 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2373}
2374
2375/* Start initializing insn data. */
2376static void
2377deps_init_id_start_insn (insn_t insn)
2378{
2379 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2380
2381 setup_id_for_insn (deps_init_id_data.id, insn,
2382 deps_init_id_data.force_unique_p);
2383 deps_init_id_data.where = DEPS_IN_INSN;
2384}
2385
2386/* Start initializing lhs data. */
2387static void
2388deps_init_id_start_lhs (rtx lhs)
2389{
2390 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2391 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2392
2393 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2394 {
2395 IDATA_LHS (deps_init_id_data.id) = lhs;
2396 deps_init_id_data.where = DEPS_IN_LHS;
2397 }
2398}
2399
2400/* Finish initializing lhs data. */
2401static void
2402deps_init_id_finish_lhs (void)
2403{
2404 deps_init_id_data.where = DEPS_IN_INSN;
2405}
2406
2407/* Note a set of REGNO. */
2408static void
2409deps_init_id_note_reg_set (int regno)
2410{
2411 haifa_note_reg_set (regno);
2412
2413 if (deps_init_id_data.where == DEPS_IN_RHS)
2414 deps_init_id_data.force_use_p = true;
2415
2416 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2417 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2418
2419#ifdef STACK_REGS
b8698a0f 2420 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2421 renaming to avoid issues with find_used_regs. */
2422 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2423 deps_init_id_data.force_use_p = true;
2424#endif
2425}
2426
2427/* Note a clobber of REGNO. */
2428static void
2429deps_init_id_note_reg_clobber (int regno)
2430{
2431 haifa_note_reg_clobber (regno);
2432
2433 if (deps_init_id_data.where == DEPS_IN_RHS)
2434 deps_init_id_data.force_use_p = true;
2435
2436 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2437 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2438}
2439
2440/* Note a use of REGNO. */
2441static void
2442deps_init_id_note_reg_use (int regno)
2443{
2444 haifa_note_reg_use (regno);
2445
2446 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2447 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2448}
2449
2450/* Start initializing rhs data. */
2451static void
2452deps_init_id_start_rhs (rtx rhs)
2453{
2454 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2455
2456 /* And there was no sel_deps_reset_to_insn (). */
2457 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2458 {
2459 IDATA_RHS (deps_init_id_data.id) = rhs;
2460 deps_init_id_data.where = DEPS_IN_RHS;
2461 }
2462}
2463
2464/* Finish initializing rhs data. */
2465static void
2466deps_init_id_finish_rhs (void)
2467{
2468 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2469 || deps_init_id_data.where == DEPS_IN_INSN);
2470 deps_init_id_data.where = DEPS_IN_INSN;
2471}
2472
2473/* Finish initializing insn data. */
2474static void
2475deps_init_id_finish_insn (void)
2476{
2477 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2478
2479 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2480 {
2481 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2482 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2483
2484 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2485 || deps_init_id_data.force_use_p)
2486 {
b8698a0f 2487 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2488 separately. However, we still want to have them recorded
b8698a0f 2489 for the purposes of substitution. That's why we don't
e855c69d
AB
2490 simply call downgrade_to_use () here. */
2491 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2492 gcc_assert (!lhs == !rhs);
2493
2494 IDATA_TYPE (deps_init_id_data.id) = USE;
2495 }
2496 }
2497
2498 deps_init_id_data.where = DEPS_IN_NOWHERE;
2499}
2500
2501/* This is dependence info used for initializing insn's data. */
2502static struct sched_deps_info_def deps_init_id_sched_deps_info;
2503
2504/* This initializes most of the static part of the above structure. */
2505static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2506 {
2507 NULL,
2508
2509 deps_init_id_start_insn,
2510 deps_init_id_finish_insn,
2511 deps_init_id_start_lhs,
2512 deps_init_id_finish_lhs,
2513 deps_init_id_start_rhs,
2514 deps_init_id_finish_rhs,
2515 deps_init_id_note_reg_set,
2516 deps_init_id_note_reg_clobber,
2517 deps_init_id_note_reg_use,
2518 NULL, /* note_mem_dep */
2519 NULL, /* note_dep */
2520
2521 0, /* use_cselib */
2522 0, /* use_deps_list */
2523 0 /* generate_spec_deps */
2524 };
2525
2526/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2527 we don't actually need information about lhs and rhs. */
2528static void
2529setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2530{
2531 rtx pat = PATTERN (insn);
b8698a0f 2532
481683e1 2533 if (NONJUMP_INSN_P (insn)
b8698a0f 2534 && GET_CODE (pat) == SET
e855c69d
AB
2535 && !force_unique_p)
2536 {
2537 IDATA_RHS (id) = SET_SRC (pat);
2538 IDATA_LHS (id) = SET_DEST (pat);
2539 }
2540 else
2541 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2542}
2543
2544/* Possibly downgrade INSN to USE. */
2545static void
2546maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2547{
2548 bool must_be_use = false;
2549 unsigned uid = INSN_UID (insn);
57512f53 2550 df_ref *rec;
e855c69d
AB
2551 rtx lhs = IDATA_LHS (id);
2552 rtx rhs = IDATA_RHS (id);
b8698a0f 2553
e855c69d
AB
2554 /* We downgrade only SETs. */
2555 if (IDATA_TYPE (id) != SET)
2556 return;
2557
2558 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2559 {
2560 IDATA_TYPE (id) = USE;
2561 return;
2562 }
b8698a0f 2563
e855c69d
AB
2564 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2565 {
57512f53 2566 df_ref def = *rec;
b8698a0f 2567
e855c69d
AB
2568 if (DF_REF_INSN (def)
2569 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2570 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2571 {
2572 must_be_use = true;
2573 break;
2574 }
2575
2576#ifdef STACK_REGS
b8698a0f 2577 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2578 renaming to avoid issues with find_used_regs. */
2579 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2580 {
2581 must_be_use = true;
2582 break;
2583 }
2584#endif
b8698a0f
L
2585 }
2586
e855c69d
AB
2587 if (must_be_use)
2588 IDATA_TYPE (id) = USE;
2589}
2590
2591/* Setup register sets describing INSN in ID. */
2592static void
2593setup_id_reg_sets (idata_t id, insn_t insn)
2594{
2595 unsigned uid = INSN_UID (insn);
57512f53 2596 df_ref *rec;
e855c69d 2597 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2598
e855c69d
AB
2599 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2600 {
57512f53 2601 df_ref def = *rec;
e855c69d 2602 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2603
e855c69d
AB
2604 /* Post modifies are treated like clobbers by sched-deps.c. */
2605 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2606 | DF_REF_PRE_POST_MODIFY)))
2607 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2608 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2609 {
2610 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2611
2612#ifdef STACK_REGS
b8698a0f 2613 /* For stack registers, treat writes to them as writes
e855c69d
AB
2614 to the first one to be consistent with sched-deps.c. */
2615 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2616 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2617#endif
2618 }
2619 /* Mark special refs that generate read/write def pair. */
2620 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2621 || regno == STACK_POINTER_REGNUM)
2622 bitmap_set_bit (tmp, regno);
2623 }
b8698a0f 2624
e855c69d
AB
2625 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2626 {
57512f53 2627 df_ref use = *rec;
e855c69d
AB
2628 unsigned int regno = DF_REF_REGNO (use);
2629
2630 /* When these refs are met for the first time, skip them, as
2631 these uses are just counterparts of some defs. */
2632 if (bitmap_bit_p (tmp, regno))
2633 bitmap_clear_bit (tmp, regno);
2634 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2635 {
2636 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2637
2638#ifdef STACK_REGS
b8698a0f 2639 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2640 the first one to be consistent with sched-deps.c. */
2641 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2642 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2643#endif
2644 }
2645 }
2646
2647 return_regset_to_pool (tmp);
2648}
2649
2650/* Initialize instruction data for INSN in ID using DF's data. */
2651static void
2652init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2653{
2654 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2655
2656 setup_id_for_insn (id, insn, force_unique_p);
2657 setup_id_lhs_rhs (id, insn, force_unique_p);
2658
2659 if (INSN_NOP_P (insn))
2660 return;
2661
2662 maybe_downgrade_id_to_use (id, insn);
2663 setup_id_reg_sets (id, insn);
2664}
2665
2666/* Initialize instruction data for INSN in ID. */
2667static void
2668deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2669{
2670 struct deps _dc, *dc = &_dc;
2671
2672 deps_init_id_data.where = DEPS_IN_NOWHERE;
2673 deps_init_id_data.id = id;
2674 deps_init_id_data.force_unique_p = force_unique_p;
2675 deps_init_id_data.force_use_p = false;
2676
bcf33775 2677 init_deps (dc, false);
e855c69d
AB
2678
2679 memcpy (&deps_init_id_sched_deps_info,
2680 &const_deps_init_id_sched_deps_info,
2681 sizeof (deps_init_id_sched_deps_info));
2682
2683 if (spec_info != NULL)
2684 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2685
2686 sched_deps_info = &deps_init_id_sched_deps_info;
2687
2688 deps_analyze_insn (dc, insn);
2689
2690 free_deps (dc);
2691
2692 deps_init_id_data.id = NULL;
2693}
2694
2695\f
2696
2697/* Implement hooks for collecting fundamental insn properties like if insn is
2698 an ASM or is within a SCHED_GROUP. */
2699
2700/* True when a "one-time init" data for INSN was already inited. */
2701static bool
2702first_time_insn_init (insn_t insn)
2703{
2704 return INSN_LIVE (insn) == NULL;
2705}
2706
2707/* Hash an entry in a transformed_insns hashtable. */
2708static hashval_t
2709hash_transformed_insns (const void *p)
2710{
2711 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2712}
2713
2714/* Compare the entries in a transformed_insns hashtable. */
2715static int
2716eq_transformed_insns (const void *p, const void *q)
2717{
2718 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2719 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2720
2721 if (INSN_UID (i1) == INSN_UID (i2))
2722 return 1;
2723 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2724}
2725
2726/* Free an entry in a transformed_insns hashtable. */
2727static void
2728free_transformed_insns (void *p)
2729{
2730 struct transformed_insns *pti = (struct transformed_insns *) p;
2731
2732 vinsn_detach (pti->vinsn_old);
2733 vinsn_detach (pti->vinsn_new);
2734 free (pti);
2735}
2736
b8698a0f 2737/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2738 we first see the insn. */
2739static void
2740init_first_time_insn_data (insn_t insn)
2741{
2742 /* This should not be set if this is the first time we init data for
2743 insn. */
2744 gcc_assert (first_time_insn_init (insn));
b8698a0f 2745
e855c69d
AB
2746 /* These are needed for nops too. */
2747 INSN_LIVE (insn) = get_regset_from_pool ();
2748 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2749
e855c69d
AB
2750 if (!INSN_NOP_P (insn))
2751 {
2752 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2753 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2754 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2755 = htab_create (16, hash_transformed_insns,
2756 eq_transformed_insns, free_transformed_insns);
bcf33775 2757 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2758 }
2759}
2760
b8698a0f 2761/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2762 Used for extra-large basic blocks. */
2763void
2764free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2765{
2766 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2767
bcf33775
AB
2768 if (! INSN_ANALYZED_DEPS (insn))
2769 return;
b8698a0f 2770
e855c69d
AB
2771 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2772 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2773 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2774
e855c69d
AB
2775 /* This is allocated only for bookkeeping insns. */
2776 if (INSN_ORIGINATORS (insn))
2777 BITMAP_FREE (INSN_ORIGINATORS (insn));
2778 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2779
2780 INSN_ANALYZED_DEPS (insn) = NULL;
2781
b8698a0f 2782 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2783 the deps context (as we believe that it should not happen). */
2784 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2785}
2786
2787/* Free the same data as above for INSN. */
2788static void
2789free_first_time_insn_data (insn_t insn)
2790{
2791 gcc_assert (! first_time_insn_init (insn));
2792
2793 free_data_for_scheduled_insn (insn);
2794 return_regset_to_pool (INSN_LIVE (insn));
2795 INSN_LIVE (insn) = NULL;
2796 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2797}
2798
2799/* Initialize region-scope data structures for basic blocks. */
2800static void
2801init_global_and_expr_for_bb (basic_block bb)
2802{
2803 if (sel_bb_empty_p (bb))
2804 return;
2805
2806 invalidate_av_set (bb);
2807}
2808
2809/* Data for global dependency analysis (to initialize CANT_MOVE and
2810 SCHED_GROUP_P). */
2811static struct
2812{
2813 /* Previous insn. */
2814 insn_t prev_insn;
2815} init_global_data;
2816
2817/* Determine if INSN is in the sched_group, is an asm or should not be
2818 cloned. After that initialize its expr. */
2819static void
2820init_global_and_expr_for_insn (insn_t insn)
2821{
2822 if (LABEL_P (insn))
2823 return;
2824
2825 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2826 {
2827 init_global_data.prev_insn = NULL_RTX;
2828 return;
2829 }
2830
2831 gcc_assert (INSN_P (insn));
2832
2833 if (SCHED_GROUP_P (insn))
2834 /* Setup a sched_group. */
2835 {
2836 insn_t prev_insn = init_global_data.prev_insn;
2837
2838 if (prev_insn)
2839 INSN_SCHED_NEXT (prev_insn) = insn;
2840
2841 init_global_data.prev_insn = insn;
2842 }
2843 else
2844 init_global_data.prev_insn = NULL_RTX;
2845
2846 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2847 || asm_noperands (PATTERN (insn)) >= 0)
2848 /* Mark INSN as an asm. */
2849 INSN_ASM_P (insn) = true;
2850
2851 {
2852 bool force_unique_p;
2853 ds_t spec_done_ds;
2854
2855 /* Certain instructions cannot be cloned. */
2856 if (CANT_MOVE (insn)
2857 || INSN_ASM_P (insn)
2858 || SCHED_GROUP_P (insn)
b8698a0f 2859 || prologue_epilogue_contains (insn)
e855c69d
AB
2860 /* Exception handling insns are always unique. */
2861 || (flag_non_call_exceptions && can_throw_internal (insn))
2862 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2863 || control_flow_insn_p (insn))
2864 force_unique_p = true;
2865 else
2866 force_unique_p = false;
2867
2868 if (targetm.sched.get_insn_spec_ds)
2869 {
2870 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2871 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2872 }
2873 else
2874 spec_done_ds = 0;
2875
2876 /* Initialize INSN's expr. */
2877 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2878 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 2879 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
2880 CANT_MOVE (insn));
2881 }
2882
2883 init_first_time_insn_data (insn);
2884}
2885
2886/* Scan the region and initialize instruction data for basic blocks BBS. */
2887void
2888sel_init_global_and_expr (bb_vec_t bbs)
2889{
2890 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2891 const struct sched_scan_info_def ssi =
2892 {
2893 NULL, /* extend_bb */
2894 init_global_and_expr_for_bb, /* init_bb */
2895 extend_insn_data, /* extend_insn */
2896 init_global_and_expr_for_insn /* init_insn */
2897 };
b8698a0f 2898
e855c69d
AB
2899 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2900}
2901
2902/* Finalize region-scope data structures for basic blocks. */
2903static void
2904finish_global_and_expr_for_bb (basic_block bb)
2905{
2906 av_set_clear (&BB_AV_SET (bb));
2907 BB_AV_LEVEL (bb) = 0;
2908}
2909
2910/* Finalize INSN's data. */
2911static void
2912finish_global_and_expr_insn (insn_t insn)
2913{
2914 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2915 return;
2916
2917 gcc_assert (INSN_P (insn));
2918
2919 if (INSN_LUID (insn) > 0)
2920 {
2921 free_first_time_insn_data (insn);
2922 INSN_WS_LEVEL (insn) = 0;
2923 CANT_MOVE (insn) = 0;
b8698a0f
L
2924
2925 /* We can no longer assert this, as vinsns of this insn could be
2926 easily live in other insn's caches. This should be changed to
e855c69d
AB
2927 a counter-like approach among all vinsns. */
2928 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2929 clear_expr (INSN_EXPR (insn));
2930 }
2931}
2932
2933/* Finalize per instruction data for the whole region. */
2934void
2935sel_finish_global_and_expr (void)
2936{
2937 {
2938 bb_vec_t bbs;
2939 int i;
2940
2941 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2942
2943 for (i = 0; i < current_nr_blocks; i++)
2944 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2945
2946 /* Clear AV_SETs and INSN_EXPRs. */
2947 {
2948 const struct sched_scan_info_def ssi =
2949 {
2950 NULL, /* extend_bb */
2951 finish_global_and_expr_for_bb, /* init_bb */
2952 NULL, /* extend_insn */
2953 finish_global_and_expr_insn /* init_insn */
2954 };
2955
2956 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2957 }
2958
2959 VEC_free (basic_block, heap, bbs);
2960 }
2961
2962 finish_insns ();
2963}
2964\f
2965
b8698a0f
L
2966/* In the below hooks, we merely calculate whether or not a dependence
2967 exists, and in what part of insn. However, we will need more data
e855c69d
AB
2968 when we'll start caching dependence requests. */
2969
2970/* Container to hold information for dependency analysis. */
2971static struct
2972{
2973 deps_t dc;
2974
2975 /* A variable to track which part of rtx we are scanning in
2976 sched-deps.c: sched_analyze_insn (). */
2977 deps_where_t where;
2978
2979 /* Current producer. */
2980 insn_t pro;
2981
2982 /* Current consumer. */
2983 vinsn_t con;
2984
2985 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2986 X is from { INSN, LHS, RHS }. */
2987 ds_t has_dep_p[DEPS_IN_NOWHERE];
2988} has_dependence_data;
2989
2990/* Start analyzing dependencies of INSN. */
2991static void
2992has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
2993{
2994 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
2995
2996 has_dependence_data.where = DEPS_IN_INSN;
2997}
2998
2999/* Finish analyzing dependencies of an insn. */
3000static void
3001has_dependence_finish_insn (void)
3002{
3003 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3004
3005 has_dependence_data.where = DEPS_IN_NOWHERE;
3006}
3007
3008/* Start analyzing dependencies of LHS. */
3009static void
3010has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3011{
3012 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3013
3014 if (VINSN_LHS (has_dependence_data.con) != NULL)
3015 has_dependence_data.where = DEPS_IN_LHS;
3016}
3017
3018/* Finish analyzing dependencies of an lhs. */
3019static void
3020has_dependence_finish_lhs (void)
3021{
3022 has_dependence_data.where = DEPS_IN_INSN;
3023}
3024
3025/* Start analyzing dependencies of RHS. */
3026static void
3027has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3028{
3029 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3030
3031 if (VINSN_RHS (has_dependence_data.con) != NULL)
3032 has_dependence_data.where = DEPS_IN_RHS;
3033}
3034
3035/* Start analyzing dependencies of an rhs. */
3036static void
3037has_dependence_finish_rhs (void)
3038{
3039 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3040 || has_dependence_data.where == DEPS_IN_INSN);
3041
3042 has_dependence_data.where = DEPS_IN_INSN;
3043}
3044
3045/* Note a set of REGNO. */
3046static void
3047has_dependence_note_reg_set (int regno)
3048{
3049 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3050
3051 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3052 VINSN_INSN_RTX
3053 (has_dependence_data.con)))
3054 {
3055 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3056
3057 if (reg_last->sets != NULL
3058 || reg_last->clobbers != NULL)
3059 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3060
3061 if (reg_last->uses)
3062 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3063 }
3064}
3065
3066/* Note a clobber of REGNO. */
3067static void
3068has_dependence_note_reg_clobber (int regno)
3069{
3070 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3071
3072 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3073 VINSN_INSN_RTX
3074 (has_dependence_data.con)))
3075 {
3076 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3077
3078 if (reg_last->sets)
3079 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3080
e855c69d
AB
3081 if (reg_last->uses)
3082 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3083 }
3084}
3085
3086/* Note a use of REGNO. */
3087static void
3088has_dependence_note_reg_use (int regno)
3089{
3090 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3091
3092 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3093 VINSN_INSN_RTX
3094 (has_dependence_data.con)))
3095 {
3096 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3097
3098 if (reg_last->sets)
3099 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3100
3101 if (reg_last->clobbers)
3102 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3103
3104 /* Handle BE_IN_SPEC. */
3105 if (reg_last->uses)
3106 {
3107 ds_t pro_spec_checked_ds;
3108
3109 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3110 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3111
3112 if (pro_spec_checked_ds != 0)
3113 /* Merge BE_IN_SPEC bits into *DSP. */
3114 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3115 NULL_RTX, NULL_RTX);
3116 }
3117 }
3118}
3119
3120/* Note a memory dependence. */
3121static void
3122has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3123 rtx pending_mem ATTRIBUTE_UNUSED,
3124 insn_t pending_insn ATTRIBUTE_UNUSED,
3125 ds_t ds ATTRIBUTE_UNUSED)
3126{
3127 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3128 VINSN_INSN_RTX (has_dependence_data.con)))
3129 {
3130 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3131
3132 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3133 }
3134}
3135
3136/* Note a dependence. */
3137static void
3138has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3139 ds_t ds ATTRIBUTE_UNUSED)
3140{
3141 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3142 VINSN_INSN_RTX (has_dependence_data.con)))
3143 {
3144 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3145
3146 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3147 }
3148}
3149
3150/* Mark the insn as having a hard dependence that prevents speculation. */
3151void
3152sel_mark_hard_insn (rtx insn)
3153{
3154 int i;
3155
3156 /* Only work when we're in has_dependence_p mode.
3157 ??? This is a hack, this should actually be a hook. */
3158 if (!has_dependence_data.dc || !has_dependence_data.pro)
3159 return;
3160
3161 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3162 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3163
3164 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3165 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3166}
3167
3168/* This structure holds the hooks for the dependency analysis used when
3169 actually processing dependencies in the scheduler. */
3170static struct sched_deps_info_def has_dependence_sched_deps_info;
3171
3172/* This initializes most of the fields of the above structure. */
3173static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3174 {
3175 NULL,
3176
3177 has_dependence_start_insn,
3178 has_dependence_finish_insn,
3179 has_dependence_start_lhs,
3180 has_dependence_finish_lhs,
3181 has_dependence_start_rhs,
3182 has_dependence_finish_rhs,
3183 has_dependence_note_reg_set,
3184 has_dependence_note_reg_clobber,
3185 has_dependence_note_reg_use,
3186 has_dependence_note_mem_dep,
3187 has_dependence_note_dep,
3188
3189 0, /* use_cselib */
3190 0, /* use_deps_list */
3191 0 /* generate_spec_deps */
3192 };
3193
3194/* Initialize has_dependence_sched_deps_info with extra spec field. */
3195static void
3196setup_has_dependence_sched_deps_info (void)
3197{
3198 memcpy (&has_dependence_sched_deps_info,
3199 &const_has_dependence_sched_deps_info,
3200 sizeof (has_dependence_sched_deps_info));
3201
3202 if (spec_info != NULL)
3203 has_dependence_sched_deps_info.generate_spec_deps = 1;
3204
3205 sched_deps_info = &has_dependence_sched_deps_info;
3206}
3207
3208/* Remove all dependences found and recorded in has_dependence_data array. */
3209void
3210sel_clear_has_dependence (void)
3211{
3212 int i;
3213
3214 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3215 has_dependence_data.has_dep_p[i] = 0;
3216}
3217
3218/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3219 to the dependence information array in HAS_DEP_PP. */
3220ds_t
3221has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3222{
3223 int i;
3224 ds_t ds;
3225 struct deps *dc;
3226
3227 if (INSN_SIMPLEJUMP_P (pred))
3228 /* Unconditional jump is just a transfer of control flow.
3229 Ignore it. */
3230 return false;
3231
3232 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3233
3234 /* We init this field lazily. */
3235 if (dc->reg_last == NULL)
3236 init_deps_reg_last (dc);
b8698a0f 3237
e855c69d
AB
3238 if (!dc->readonly)
3239 {
3240 has_dependence_data.pro = NULL;
3241 /* Initialize empty dep context with information about PRED. */
3242 advance_deps_context (dc, pred);
3243 dc->readonly = 1;
3244 }
3245
3246 has_dependence_data.where = DEPS_IN_NOWHERE;
3247 has_dependence_data.pro = pred;
3248 has_dependence_data.con = EXPR_VINSN (expr);
3249 has_dependence_data.dc = dc;
3250
3251 sel_clear_has_dependence ();
3252
3253 /* Now catch all dependencies that would be generated between PRED and
3254 INSN. */
3255 setup_has_dependence_sched_deps_info ();
3256 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3257 has_dependence_data.dc = NULL;
3258
3259 /* When a barrier was found, set DEPS_IN_INSN bits. */
3260 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3261 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3262 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3263 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3264
3265 /* Do not allow stores to memory to move through checks. Currently
3266 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3267 obvious places to which this dependence can be attached.
e855c69d
AB
3268 FIMXE: this should go to a hook. */
3269 if (EXPR_LHS (expr)
3270 && MEM_P (EXPR_LHS (expr))
3271 && sel_insn_is_speculation_check (pred))
3272 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3273
e855c69d
AB
3274 *has_dep_pp = has_dependence_data.has_dep_p;
3275 ds = 0;
3276 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3277 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3278 NULL_RTX, NULL_RTX);
3279
3280 return ds;
3281}
3282\f
3283
b8698a0f
L
3284/* Dependence hooks implementation that checks dependence latency constraints
3285 on the insns being scheduled. The entry point for these routines is
3286 tick_check_p predicate. */
e855c69d
AB
3287
3288static struct
3289{
3290 /* An expr we are currently checking. */
3291 expr_t expr;
3292
3293 /* A minimal cycle for its scheduling. */
3294 int cycle;
3295
3296 /* Whether we have seen a true dependence while checking. */
3297 bool seen_true_dep_p;
3298} tick_check_data;
3299
3300/* Update minimal scheduling cycle for tick_check_insn given that it depends
3301 on PRO with status DS and weight DW. */
3302static void
3303tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3304{
3305 expr_t con_expr = tick_check_data.expr;
3306 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3307
3308 if (con_insn != pro_insn)
3309 {
3310 enum reg_note dt;
3311 int tick;
3312
3313 if (/* PROducer was removed from above due to pipelining. */
3314 !INSN_IN_STREAM_P (pro_insn)
3315 /* Or PROducer was originally on the next iteration regarding the
3316 CONsumer. */
3317 || (INSN_SCHED_TIMES (pro_insn)
3318 - EXPR_SCHED_TIMES (con_expr)) > 1)
3319 /* Don't count this dependence. */
3320 return;
3321
3322 dt = ds_to_dt (ds);
3323 if (dt == REG_DEP_TRUE)
3324 tick_check_data.seen_true_dep_p = true;
3325
3326 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3327
3328 {
3329 dep_def _dep, *dep = &_dep;
3330
3331 init_dep (dep, pro_insn, con_insn, dt);
3332
3333 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3334 }
3335
3336 /* When there are several kinds of dependencies between pro and con,
3337 only REG_DEP_TRUE should be taken into account. */
3338 if (tick > tick_check_data.cycle
3339 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3340 tick_check_data.cycle = tick;
3341 }
3342}
3343
3344/* An implementation of note_dep hook. */
3345static void
3346tick_check_note_dep (insn_t pro, ds_t ds)
3347{
3348 tick_check_dep_with_dw (pro, ds, 0);
3349}
3350
3351/* An implementation of note_mem_dep hook. */
3352static void
3353tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3354{
3355 dw_t dw;
3356
3357 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3358 ? estimate_dep_weak (mem1, mem2)
3359 : 0);
3360
3361 tick_check_dep_with_dw (pro, ds, dw);
3362}
3363
3364/* This structure contains hooks for dependence analysis used when determining
3365 whether an insn is ready for scheduling. */
3366static struct sched_deps_info_def tick_check_sched_deps_info =
3367 {
3368 NULL,
3369
3370 NULL,
3371 NULL,
3372 NULL,
3373 NULL,
3374 NULL,
3375 NULL,
3376 haifa_note_reg_set,
3377 haifa_note_reg_clobber,
3378 haifa_note_reg_use,
3379 tick_check_note_mem_dep,
3380 tick_check_note_dep,
3381
3382 0, 0, 0
3383 };
3384
3385/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3386 scheduled. Return 0 if all data from producers in DC is ready. */
3387int
3388tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3389{
3390 int cycles_left;
3391 /* Initialize variables. */
3392 tick_check_data.expr = expr;
3393 tick_check_data.cycle = 0;
3394 tick_check_data.seen_true_dep_p = false;
3395 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3396
e855c69d
AB
3397 gcc_assert (!dc->readonly);
3398 dc->readonly = 1;
3399 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3400 dc->readonly = 0;
3401
3402 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3403
3404 return cycles_left >= 0 ? cycles_left : 0;
3405}
3406\f
3407
3408/* Functions to work with insns. */
3409
3410/* Returns true if LHS of INSN is the same as DEST of an insn
3411 being moved. */
3412bool
3413lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3414{
3415 rtx lhs = INSN_LHS (insn);
3416
3417 if (lhs == NULL || dest == NULL)
3418 return false;
b8698a0f 3419
e855c69d
AB
3420 return rtx_equal_p (lhs, dest);
3421}
3422
3423/* Return s_i_d entry of INSN. Callable from debugger. */
3424sel_insn_data_def
3425insn_sid (insn_t insn)
3426{
3427 return *SID (insn);
3428}
3429
3430/* True when INSN is a speculative check. We can tell this by looking
3431 at the data structures of the selective scheduler, not by examining
3432 the pattern. */
3433bool
3434sel_insn_is_speculation_check (rtx insn)
3435{
3436 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3437}
3438
b8698a0f 3439/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3440 for given INSN. */
3441void
3442get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3443{
3444 rtx pat = PATTERN (insn);
3445
3446 gcc_assert (dst_loc);
3447 gcc_assert (GET_CODE (pat) == SET);
3448
3449 *dst_loc = SET_DEST (pat);
3450
3451 gcc_assert (*dst_loc);
3452 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3453
3454 if (mode)
3455 *mode = GET_MODE (*dst_loc);
3456}
3457
b8698a0f 3458/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3459 creation. */
3460bool
3461bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3462{
3463 insn_t succ;
3464 succ_iterator si;
3465
3466 FOR_EACH_SUCC (succ, si, jump)
3467 if (sel_num_cfg_preds_gt_1 (succ))
3468 return true;
3469
3470 return false;
3471}
3472
3473/* Return 'true' if INSN is the only one in its basic block. */
3474static bool
3475insn_is_the_only_one_in_bb_p (insn_t insn)
3476{
3477 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3478}
3479
3480#ifdef ENABLE_CHECKING
b8698a0f 3481/* Check that the region we're scheduling still has at most one
e855c69d
AB
3482 backedge. */
3483static void
3484verify_backedges (void)
3485{
3486 if (pipelining_p)
3487 {
3488 int i, n = 0;
3489 edge e;
3490 edge_iterator ei;
b8698a0f 3491
e855c69d
AB
3492 for (i = 0; i < current_nr_blocks; i++)
3493 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3494 if (in_current_region_p (e->dest)
3495 && BLOCK_TO_BB (e->dest->index) < i)
3496 n++;
b8698a0f 3497
e855c69d
AB
3498 gcc_assert (n <= 1);
3499 }
3500}
3501#endif
3502\f
3503
3504/* Functions to work with control flow. */
3505
b59ab570
AM
3506/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3507 are sorted in topological order (it might have been invalidated by
3508 redirecting an edge). */
3509static void
3510sel_recompute_toporder (void)
3511{
3512 int i, n, rgn;
3513 int *postorder, n_blocks;
3514
3515 postorder = XALLOCAVEC (int, n_basic_blocks);
3516 n_blocks = post_order_compute (postorder, false, false);
3517
3518 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3519 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3520 if (CONTAINING_RGN (postorder[i]) == rgn)
3521 {
3522 BLOCK_TO_BB (postorder[i]) = n;
3523 BB_TO_BLOCK (n) = postorder[i];
3524 n++;
3525 }
3526
3527 /* Assert that we updated info for all blocks. We may miss some blocks if
3528 this function is called when redirecting an edge made a block
3529 unreachable, but that block is not deleted yet. */
3530 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3531}
3532
e855c69d 3533/* Tidy the possibly empty block BB. */
b59ab570
AM
3534static bool
3535maybe_tidy_empty_bb (basic_block bb, bool recompute_toporder_p)
e855c69d
AB
3536{
3537 basic_block succ_bb, pred_bb;
f2c45f08
AM
3538 edge e;
3539 edge_iterator ei;
e855c69d
AB
3540 bool rescan_p;
3541
3542 /* Keep empty bb only if this block immediately precedes EXIT and
3543 has incoming non-fallthrough edge. Otherwise remove it. */
b5b8b0ac 3544 if (!sel_bb_empty_p (bb)
b8698a0f 3545 || (single_succ_p (bb)
e855c69d 3546 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3547 && (!single_pred_p (bb)
e855c69d
AB
3548 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU))))
3549 return false;
3550
f2c45f08
AM
3551 /* Do not attempt to redirect complex edges. */
3552 FOR_EACH_EDGE (e, ei, bb->preds)
3553 if (e->flags & EDGE_COMPLEX)
3554 return false;
3555
e855c69d
AB
3556 free_data_sets (bb);
3557
3558 /* Do not delete BB if it has more than one successor.
3559 That can occur when we moving a jump. */
3560 if (!single_succ_p (bb))
3561 {
3562 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3563 sel_merge_blocks (bb->prev_bb, bb);
3564 return true;
3565 }
3566
3567 succ_bb = single_succ (bb);
3568 rescan_p = true;
3569 pred_bb = NULL;
3570
3571 /* Redirect all non-fallthru edges to the next bb. */
3572 while (rescan_p)
3573 {
e855c69d
AB
3574 rescan_p = false;
3575
3576 FOR_EACH_EDGE (e, ei, bb->preds)
3577 {
3578 pred_bb = e->src;
3579
3580 if (!(e->flags & EDGE_FALLTHRU))
3581 {
b59ab570 3582 recompute_toporder_p |= sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3583 rescan_p = true;
3584 break;
3585 }
3586 }
3587 }
3588
3589 /* If it is possible - merge BB with its predecessor. */
3590 if (can_merge_blocks_p (bb->prev_bb, bb))
3591 sel_merge_blocks (bb->prev_bb, bb);
3592 else
3593 /* Otherwise this is a block without fallthru predecessor.
3594 Just delete it. */
3595 {
3596 gcc_assert (pred_bb != NULL);
3597
3598 move_bb_info (pred_bb, bb);
3599 remove_empty_bb (bb, true);
3600 }
3601
b59ab570
AM
3602 if (recompute_toporder_p)
3603 sel_recompute_toporder ();
3604
e855c69d
AB
3605#ifdef ENABLE_CHECKING
3606 verify_backedges ();
3607#endif
3608
3609 return true;
3610}
3611
b8698a0f 3612/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3613 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3614 is true, also try to optimize control flow on non-empty blocks. */
3615bool
3616tidy_control_flow (basic_block xbb, bool full_tidying)
3617{
3618 bool changed = true;
b5b8b0ac 3619 insn_t first, last;
b8698a0f 3620
e855c69d 3621 /* First check whether XBB is empty. */
b59ab570 3622 changed = maybe_tidy_empty_bb (xbb, false);
e855c69d
AB
3623 if (changed || !full_tidying)
3624 return changed;
b8698a0f 3625
e855c69d
AB
3626 /* Check if there is a unnecessary jump after insn left. */
3627 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3628 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3629 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3630 {
3631 if (sel_remove_insn (BB_END (xbb), false, false))
3632 return true;
3633 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3634 }
3635
b5b8b0ac
AO
3636 first = sel_bb_head (xbb);
3637 last = sel_bb_end (xbb);
3638 if (MAY_HAVE_DEBUG_INSNS)
3639 {
3640 if (first != last && DEBUG_INSN_P (first))
3641 do
3642 first = NEXT_INSN (first);
3643 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3644
3645 if (first != last && DEBUG_INSN_P (last))
3646 do
3647 last = PREV_INSN (last);
3648 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3649 }
e855c69d 3650 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3651 to next basic block left after removing INSN from stream.
3652 If it is so, remove that jump and redirect edge to current
3653 basic block (where there was INSN before deletion). This way
3654 when NOP will be deleted several instructions later with its
3655 basic block we will not get a jump to next instruction, which
e855c69d 3656 can be harmful. */
b5b8b0ac 3657 if (first == last
e855c69d 3658 && !sel_bb_empty_p (xbb)
b5b8b0ac 3659 && INSN_NOP_P (last)
e855c69d
AB
3660 /* Flow goes fallthru from current block to the next. */
3661 && EDGE_COUNT (xbb->succs) == 1
3662 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3663 /* When successor is an EXIT block, it may not be the next block. */
3664 && single_succ (xbb) != EXIT_BLOCK_PTR
3665 /* And unconditional jump in previous basic block leads to
3666 next basic block of XBB and this jump can be safely removed. */
3667 && in_current_region_p (xbb->prev_bb)
3668 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3669 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3670 /* Also this jump is not at the scheduling boundary. */
3671 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3672 {
b59ab570 3673 bool recompute_toporder_p;
e855c69d
AB
3674 /* Clear data structures of jump - jump itself will be removed
3675 by sel_redirect_edge_and_branch. */
3676 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3677 recompute_toporder_p
3678 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3679
e855c69d
AB
3680 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3681
3682 /* It can turn out that after removing unused jump, basic block
3683 that contained that jump, becomes empty too. In such case
3684 remove it too. */
3685 if (sel_bb_empty_p (xbb->prev_bb))
b59ab570
AM
3686 changed = maybe_tidy_empty_bb (xbb->prev_bb, recompute_toporder_p);
3687 else if (recompute_toporder_p)
3688 sel_recompute_toporder ();
e855c69d
AB
3689 }
3690
3691 return changed;
3692}
3693
b59ab570
AM
3694/* Purge meaningless empty blocks in the middle of a region. */
3695void
3696purge_empty_blocks (void)
3697{
3698 /* Do not attempt to delete preheader. */
3699 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
3700
3701 while (i < current_nr_blocks)
3702 {
3703 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3704
3705 if (maybe_tidy_empty_bb (b, false))
3706 continue;
3707
3708 i++;
3709 }
3710}
3711
b8698a0f
L
3712/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3713 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3714 Return true if we have removed some blocks afterwards. */
3715bool
3716sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3717{
3718 basic_block bb = BLOCK_FOR_INSN (insn);
3719
3720 gcc_assert (INSN_IN_STREAM_P (insn));
3721
b5b8b0ac
AO
3722 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3723 {
3724 expr_t expr;
3725 av_set_iterator i;
3726
3727 /* When we remove a debug insn that is head of a BB, it remains
3728 in the AV_SET of the block, but it shouldn't. */
3729 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3730 if (EXPR_INSN_RTX (expr) == insn)
3731 {
3732 av_set_iter_remove (&i);
3733 break;
3734 }
3735 }
3736
e855c69d
AB
3737 if (only_disconnect)
3738 {
3739 insn_t prev = PREV_INSN (insn);
3740 insn_t next = NEXT_INSN (insn);
3741 basic_block bb = BLOCK_FOR_INSN (insn);
3742
3743 NEXT_INSN (prev) = next;
3744 PREV_INSN (next) = prev;
3745
3746 if (BB_HEAD (bb) == insn)
3747 {
3748 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3749 BB_HEAD (bb) = prev;
3750 }
3751 if (BB_END (bb) == insn)
3752 BB_END (bb) = prev;
3753 }
3754 else
3755 {
3756 remove_insn (insn);
3757 clear_expr (INSN_EXPR (insn));
3758 }
3759
3760 /* It is necessary to null this fields before calling add_insn (). */
3761 PREV_INSN (insn) = NULL_RTX;
3762 NEXT_INSN (insn) = NULL_RTX;
3763
3764 return tidy_control_flow (bb, full_tidying);
3765}
3766
3767/* Estimate number of the insns in BB. */
3768static int
3769sel_estimate_number_of_insns (basic_block bb)
3770{
3771 int res = 0;
3772 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3773
3774 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3775 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3776 res++;
3777
3778 return res;
3779}
3780
3781/* We don't need separate luids for notes or labels. */
3782static int
3783sel_luid_for_non_insn (rtx x)
3784{
3785 gcc_assert (NOTE_P (x) || LABEL_P (x));
3786
3787 return -1;
3788}
3789
3790/* Return seqno of the only predecessor of INSN. */
3791static int
3792get_seqno_of_a_pred (insn_t insn)
3793{
3794 int seqno;
3795
3796 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3797
3798 if (!sel_bb_head_p (insn))
3799 seqno = INSN_SEQNO (PREV_INSN (insn));
3800 else
3801 {
3802 basic_block bb = BLOCK_FOR_INSN (insn);
3803
3804 if (single_pred_p (bb)
3805 && !in_current_region_p (single_pred (bb)))
3806 {
3807 /* We can have preds outside a region when splitting edges
b8698a0f 3808 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
3809 There should be only one of them. */
3810 insn_t succ = NULL;
3811 succ_iterator si;
3812 bool first = true;
b8698a0f 3813
e855c69d
AB
3814 gcc_assert (flag_sel_sched_pipelining_outer_loops
3815 && current_loop_nest);
b8698a0f 3816 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
3817 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3818 {
3819 gcc_assert (first);
3820 first = false;
3821 }
3822
3823 gcc_assert (succ != NULL);
3824 seqno = INSN_SEQNO (succ);
3825 }
3826 else
3827 {
3828 insn_t *preds;
3829 int n;
3830
3831 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3832 gcc_assert (n == 1);
3833
3834 seqno = INSN_SEQNO (preds[0]);
b8698a0f 3835
e855c69d
AB
3836 free (preds);
3837 }
3838 }
3839
3840 return seqno;
3841}
3842
da7ba240
AB
3843/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3844 with positive seqno exist. */
e855c69d
AB
3845int
3846get_seqno_by_preds (rtx insn)
3847{
3848 basic_block bb = BLOCK_FOR_INSN (insn);
3849 rtx tmp = insn, head = BB_HEAD (bb);
3850 insn_t *preds;
3851 int n, i, seqno;
3852
3853 while (tmp != head)
3854 if (INSN_P (tmp))
3855 return INSN_SEQNO (tmp);
3856 else
3857 tmp = PREV_INSN (tmp);
b8698a0f 3858
e855c69d
AB
3859 cfg_preds (bb, &preds, &n);
3860 for (i = 0, seqno = -1; i < n; i++)
3861 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3862
e855c69d
AB
3863 return seqno;
3864}
3865
3866\f
3867
3868/* Extend pass-scope data structures for basic blocks. */
3869void
3870sel_extend_global_bb_info (void)
3871{
3872 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3873 last_basic_block);
3874}
3875
3876/* Extend region-scope data structures for basic blocks. */
3877static void
3878extend_region_bb_info (void)
3879{
3880 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3881 last_basic_block);
3882}
3883
3884/* Extend all data structures to fit for all basic blocks. */
3885static void
3886extend_bb_info (void)
3887{
3888 sel_extend_global_bb_info ();
3889 extend_region_bb_info ();
3890}
3891
3892/* Finalize pass-scope data structures for basic blocks. */
3893void
3894sel_finish_global_bb_info (void)
3895{
3896 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3897}
3898
3899/* Finalize region-scope data structures for basic blocks. */
3900static void
3901finish_region_bb_info (void)
3902{
3903 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3904}
3905\f
3906
3907/* Data for each insn in current region. */
3908VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3909
3910/* A vector for the insns we've emitted. */
3911static insn_vec_t new_insns = NULL;
3912
3913/* Extend data structures for insns from current region. */
3914static void
3915extend_insn_data (void)
3916{
3917 int reserve;
b8698a0f 3918
e855c69d
AB
3919 sched_extend_target ();
3920 sched_deps_init (false);
3921
3922 /* Extend data structures for insns from current region. */
b8698a0f 3923 reserve = (sched_max_luid + 1
e855c69d 3924 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 3925 if (reserve > 0
e855c69d 3926 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
3927 {
3928 int size;
3929
3930 if (sched_max_luid / 2 > 1024)
3931 size = sched_max_luid + 1024;
3932 else
3933 size = 3 * sched_max_luid / 2;
b8698a0f 3934
bcf33775
AB
3935
3936 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3937 }
e855c69d
AB
3938}
3939
3940/* Finalize data structures for insns from current region. */
3941static void
3942finish_insns (void)
3943{
3944 unsigned i;
3945
3946 /* Clear here all dependence contexts that may have left from insns that were
3947 removed during the scheduling. */
3948 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3949 {
3950 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 3951
e855c69d
AB
3952 if (sid_entry->live)
3953 return_regset_to_pool (sid_entry->live);
3954 if (sid_entry->analyzed_deps)
3955 {
3956 BITMAP_FREE (sid_entry->analyzed_deps);
3957 BITMAP_FREE (sid_entry->found_deps);
3958 htab_delete (sid_entry->transformed_insns);
3959 free_deps (&sid_entry->deps_context);
3960 }
3961 if (EXPR_VINSN (&sid_entry->expr))
3962 {
3963 clear_expr (&sid_entry->expr);
b8698a0f 3964
e855c69d
AB
3965 /* Also, clear CANT_MOVE bit here, because we really don't want it
3966 to be passed to the next region. */
3967 CANT_MOVE_BY_LUID (i) = 0;
3968 }
3969 }
b8698a0f 3970
e855c69d
AB
3971 VEC_free (sel_insn_data_def, heap, s_i_d);
3972}
3973
3974/* A proxy to pass initialization data to init_insn (). */
3975static sel_insn_data_def _insn_init_ssid;
3976static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3977
3978/* If true create a new vinsn. Otherwise use the one from EXPR. */
3979static bool insn_init_create_new_vinsn_p;
3980
3981/* Set all necessary data for initialization of the new insn[s]. */
3982static expr_t
3983set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3984{
3985 expr_t x = &insn_init_ssid->expr;
3986
3987 copy_expr_onside (x, expr);
3988 if (vi != NULL)
3989 {
3990 insn_init_create_new_vinsn_p = false;
3991 change_vinsn_in_expr (x, vi);
3992 }
3993 else
3994 insn_init_create_new_vinsn_p = true;
3995
3996 insn_init_ssid->seqno = seqno;
3997 return x;
3998}
3999
4000/* Init data for INSN. */
4001static void
4002init_insn_data (insn_t insn)
4003{
4004 expr_t expr;
4005 sel_insn_data_t ssid = insn_init_ssid;
4006
4007 /* The fields mentioned below are special and hence are not being
4008 propagated to the new insns. */
4009 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4010 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4011 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4012
4013 expr = INSN_EXPR (insn);
4014 copy_expr (expr, &ssid->expr);
4015 prepare_insn_expr (insn, ssid->seqno);
4016
4017 if (insn_init_create_new_vinsn_p)
4018 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4019
e855c69d
AB
4020 if (first_time_insn_init (insn))
4021 init_first_time_insn_data (insn);
4022}
4023
4024/* This is used to initialize spurious jumps generated by
4025 sel_redirect_edge (). */
4026static void
4027init_simplejump_data (insn_t insn)
4028{
4029 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4030 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d
AB
4031 false, true);
4032 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4033 init_first_time_insn_data (insn);
4034}
4035
b8698a0f 4036/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4037 a new jump that may be created by redirect_edge. */
4038void
4039sel_init_new_insn (insn_t insn, int flags)
4040{
4041 /* We create data structures for bb when the first insn is emitted in it. */
4042 if (INSN_P (insn)
4043 && INSN_IN_STREAM_P (insn)
4044 && insn_is_the_only_one_in_bb_p (insn))
4045 {
4046 extend_bb_info ();
4047 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4048 }
b8698a0f 4049
e855c69d
AB
4050 if (flags & INSN_INIT_TODO_LUID)
4051 sched_init_luids (NULL, NULL, NULL, insn);
4052
4053 if (flags & INSN_INIT_TODO_SSID)
4054 {
4055 extend_insn_data ();
4056 init_insn_data (insn);
4057 clear_expr (&insn_init_ssid->expr);
4058 }
4059
4060 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4061 {
4062 extend_insn_data ();
4063 init_simplejump_data (insn);
4064 }
b8698a0f 4065
e855c69d
AB
4066 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4067 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4068}
4069\f
4070
4071/* Functions to init/finish work with lv sets. */
4072
4073/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4074static void
4075init_lv_set (basic_block bb)
4076{
4077 gcc_assert (!BB_LV_SET_VALID_P (bb));
4078
4079 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4080 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4081 BB_LV_SET_VALID_P (bb) = true;
4082}
4083
4084/* Copy liveness information to BB from FROM_BB. */
4085static void
4086copy_lv_set_from (basic_block bb, basic_block from_bb)
4087{
4088 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4089
e855c69d
AB
4090 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4091 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4092}
e855c69d
AB
4093
4094/* Initialize lv set of all bb headers. */
4095void
4096init_lv_sets (void)
4097{
4098 basic_block bb;
4099
4100 /* Initialize of LV sets. */
4101 FOR_EACH_BB (bb)
4102 init_lv_set (bb);
4103
4104 /* Don't forget EXIT_BLOCK. */
4105 init_lv_set (EXIT_BLOCK_PTR);
4106}
4107
4108/* Release lv set of HEAD. */
4109static void
4110free_lv_set (basic_block bb)
4111{
4112 gcc_assert (BB_LV_SET (bb) != NULL);
4113
4114 return_regset_to_pool (BB_LV_SET (bb));
4115 BB_LV_SET (bb) = NULL;
4116 BB_LV_SET_VALID_P (bb) = false;
4117}
4118
4119/* Finalize lv sets of all bb headers. */
4120void
4121free_lv_sets (void)
4122{
4123 basic_block bb;
4124
4125 /* Don't forget EXIT_BLOCK. */
4126 free_lv_set (EXIT_BLOCK_PTR);
4127
4128 /* Free LV sets. */
4129 FOR_EACH_BB (bb)
4130 if (BB_LV_SET (bb))
4131 free_lv_set (bb);
4132}
4133
4134/* Initialize an invalid AV_SET for BB.
4135 This set will be updated next time compute_av () process BB. */
4136static void
4137invalidate_av_set (basic_block bb)
4138{
4139 gcc_assert (BB_AV_LEVEL (bb) <= 0
4140 && BB_AV_SET (bb) == NULL);
4141
4142 BB_AV_LEVEL (bb) = -1;
4143}
4144
4145/* Create initial data sets for BB (they will be invalid). */
4146static void
4147create_initial_data_sets (basic_block bb)
4148{
4149 if (BB_LV_SET (bb))
4150 BB_LV_SET_VALID_P (bb) = false;
4151 else
4152 BB_LV_SET (bb) = get_regset_from_pool ();
4153 invalidate_av_set (bb);
4154}
4155
4156/* Free av set of BB. */
4157static void
4158free_av_set (basic_block bb)
4159{
4160 av_set_clear (&BB_AV_SET (bb));
4161 BB_AV_LEVEL (bb) = 0;
4162}
4163
4164/* Free data sets of BB. */
4165void
4166free_data_sets (basic_block bb)
4167{
4168 free_lv_set (bb);
4169 free_av_set (bb);
4170}
4171
4172/* Exchange lv sets of TO and FROM. */
4173static void
4174exchange_lv_sets (basic_block to, basic_block from)
4175{
4176 {
4177 regset to_lv_set = BB_LV_SET (to);
4178
4179 BB_LV_SET (to) = BB_LV_SET (from);
4180 BB_LV_SET (from) = to_lv_set;
4181 }
4182
4183 {
4184 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4185
4186 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4187 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4188 }
4189}
4190
4191
4192/* Exchange av sets of TO and FROM. */
4193static void
4194exchange_av_sets (basic_block to, basic_block from)
4195{
4196 {
4197 av_set_t to_av_set = BB_AV_SET (to);
4198
4199 BB_AV_SET (to) = BB_AV_SET (from);
4200 BB_AV_SET (from) = to_av_set;
4201 }
4202
4203 {
4204 int to_av_level = BB_AV_LEVEL (to);
4205
4206 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4207 BB_AV_LEVEL (from) = to_av_level;
4208 }
4209}
4210
4211/* Exchange data sets of TO and FROM. */
4212void
4213exchange_data_sets (basic_block to, basic_block from)
4214{
4215 exchange_lv_sets (to, from);
4216 exchange_av_sets (to, from);
4217}
4218
4219/* Copy data sets of FROM to TO. */
4220void
4221copy_data_sets (basic_block to, basic_block from)
4222{
4223 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4224 gcc_assert (BB_AV_SET (to) == NULL);
4225
4226 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4227 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4228
4229 if (BB_AV_SET_VALID_P (from))
4230 {
4231 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4232 }
4233 if (BB_LV_SET_VALID_P (from))
4234 {
4235 gcc_assert (BB_LV_SET (to) != NULL);
4236 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4237 }
4238}
4239
4240/* Return an av set for INSN, if any. */
4241av_set_t
4242get_av_set (insn_t insn)
4243{
4244 av_set_t av_set;
4245
4246 gcc_assert (AV_SET_VALID_P (insn));
4247
4248 if (sel_bb_head_p (insn))
4249 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4250 else
4251 av_set = NULL;
4252
4253 return av_set;
4254}
4255
4256/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4257int
4258get_av_level (insn_t insn)
4259{
4260 int av_level;
4261
4262 gcc_assert (INSN_P (insn));
4263
4264 if (sel_bb_head_p (insn))
4265 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4266 else
4267 av_level = INSN_WS_LEVEL (insn);
4268
4269 return av_level;
4270}
4271
4272\f
4273
4274/* Variables to work with control-flow graph. */
4275
4276/* The basic block that already has been processed by the sched_data_update (),
4277 but hasn't been in sel_add_bb () yet. */
4278static VEC (basic_block, heap) *last_added_blocks = NULL;
4279
4280/* A pool for allocating successor infos. */
4281static struct
4282{
4283 /* A stack for saving succs_info structures. */
4284 struct succs_info *stack;
4285
4286 /* Its size. */
4287 int size;
4288
4289 /* Top of the stack. */
4290 int top;
4291
4292 /* Maximal value of the top. */
4293 int max_top;
4294} succs_info_pool;
4295
4296/* Functions to work with control-flow graph. */
4297
4298/* Return basic block note of BB. */
4299insn_t
4300sel_bb_head (basic_block bb)
4301{
4302 insn_t head;
4303
4304 if (bb == EXIT_BLOCK_PTR)
4305 {
4306 gcc_assert (exit_insn != NULL_RTX);
4307 head = exit_insn;
4308 }
4309 else
4310 {
4311 insn_t note;
4312
4313 note = bb_note (bb);
4314 head = next_nonnote_insn (note);
4315
4316 if (head && BLOCK_FOR_INSN (head) != bb)
4317 head = NULL_RTX;
4318 }
4319
4320 return head;
4321}
4322
4323/* Return true if INSN is a basic block header. */
4324bool
4325sel_bb_head_p (insn_t insn)
4326{
4327 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4328}
4329
4330/* Return last insn of BB. */
4331insn_t
4332sel_bb_end (basic_block bb)
4333{
4334 if (sel_bb_empty_p (bb))
4335 return NULL_RTX;
4336
4337 gcc_assert (bb != EXIT_BLOCK_PTR);
4338
4339 return BB_END (bb);
4340}
4341
4342/* Return true if INSN is the last insn in its basic block. */
4343bool
4344sel_bb_end_p (insn_t insn)
4345{
4346 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4347}
4348
4349/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4350bool
4351sel_bb_empty_p (basic_block bb)
4352{
4353 return sel_bb_head (bb) == NULL;
4354}
4355
4356/* True when BB belongs to the current scheduling region. */
4357bool
4358in_current_region_p (basic_block bb)
4359{
4360 if (bb->index < NUM_FIXED_BLOCKS)
4361 return false;
4362
4363 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4364}
4365
4366/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4367basic_block
4368fallthru_bb_of_jump (rtx jump)
4369{
4370 if (!JUMP_P (jump))
4371 return NULL;
4372
4373 if (any_uncondjump_p (jump))
4374 return single_succ (BLOCK_FOR_INSN (jump));
4375
4376 if (!any_condjump_p (jump))
4377 return NULL;
4378
268bab85
AB
4379 /* A basic block that ends with a conditional jump may still have one successor
4380 (and be followed by a barrier), we are not interested. */
4381 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4382 return NULL;
4383
e855c69d
AB
4384 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4385}
4386
4387/* Remove all notes from BB. */
4388static void
4389init_bb (basic_block bb)
4390{
4391 remove_notes (bb_note (bb), BB_END (bb));
4392 BB_NOTE_LIST (bb) = note_list;
4393}
4394
4395void
4396sel_init_bbs (bb_vec_t bbs, basic_block bb)
4397{
4398 const struct sched_scan_info_def ssi =
4399 {
4400 extend_bb_info, /* extend_bb */
4401 init_bb, /* init_bb */
4402 NULL, /* extend_insn */
4403 NULL /* init_insn */
4404 };
4405
4406 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4407}
4408
4409/* Restore other notes for the whole region. */
4410static void
4411sel_restore_other_notes (void)
4412{
4413 int bb;
4414
4415 for (bb = 0; bb < current_nr_blocks; bb++)
4416 {
4417 basic_block first, last;
4418
4419 first = EBB_FIRST_BB (bb);
4420 last = EBB_LAST_BB (bb)->next_bb;
4421
4422 do
4423 {
4424 note_list = BB_NOTE_LIST (first);
4425 restore_other_notes (NULL, first);
4426 BB_NOTE_LIST (first) = NULL_RTX;
4427
4428 first = first->next_bb;
4429 }
4430 while (first != last);
4431 }
4432}
4433
4434/* Free per-bb data structures. */
4435void
4436sel_finish_bbs (void)
4437{
4438 sel_restore_other_notes ();
4439
4440 /* Remove current loop preheader from this loop. */
4441 if (current_loop_nest)
4442 sel_remove_loop_preheader ();
4443
4444 finish_region_bb_info ();
4445}
4446
4447/* Return true if INSN has a single successor of type FLAGS. */
4448bool
4449sel_insn_has_single_succ_p (insn_t insn, int flags)
4450{
4451 insn_t succ;
4452 succ_iterator si;
4453 bool first_p = true;
4454
4455 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4456 {
4457 if (first_p)
4458 first_p = false;
4459 else
4460 return false;
4461 }
4462
4463 return true;
4464}
4465
4466/* Allocate successor's info. */
4467static struct succs_info *
4468alloc_succs_info (void)
4469{
4470 if (succs_info_pool.top == succs_info_pool.max_top)
4471 {
4472 int i;
b8698a0f 4473
e855c69d
AB
4474 if (++succs_info_pool.max_top >= succs_info_pool.size)
4475 gcc_unreachable ();
4476
4477 i = ++succs_info_pool.top;
4478 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4479 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4480 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4481 }
4482 else
4483 succs_info_pool.top++;
4484
4485 return &succs_info_pool.stack[succs_info_pool.top];
4486}
4487
4488/* Free successor's info. */
4489void
4490free_succs_info (struct succs_info * sinfo)
4491{
b8698a0f 4492 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4493 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4494 succs_info_pool.top--;
4495
4496 /* Clear stale info. */
b8698a0f 4497 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4498 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4499 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4500 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4501 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4502 0, VEC_length (int, sinfo->probs_ok));
4503 sinfo->all_prob = 0;
4504 sinfo->succs_ok_n = 0;
4505 sinfo->all_succs_n = 0;
4506}
4507
b8698a0f 4508/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4509 to the FOR_EACH_SUCC_1 iterator. */
4510struct succs_info *
4511compute_succs_info (insn_t insn, short flags)
4512{
4513 succ_iterator si;
4514 insn_t succ;
4515 struct succs_info *sinfo = alloc_succs_info ();
4516
4517 /* Traverse *all* successors and decide what to do with each. */
4518 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4519 {
4520 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4521 perform code motion through inner loops. */
4522 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4523
4524 if (current_flags & flags)
4525 {
4526 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4527 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4528 /* FIXME: Improve calculation when skipping
e855c69d 4529 inner loop to exits. */
b8698a0f
L
4530 (si.bb_end
4531 ? si.e1->probability
e855c69d
AB
4532 : REG_BR_PROB_BASE));
4533 sinfo->succs_ok_n++;
4534 }
4535 else
4536 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4537
4538 /* Compute all_prob. */
4539 if (!si.bb_end)
4540 sinfo->all_prob = REG_BR_PROB_BASE;
4541 else
4542 sinfo->all_prob += si.e1->probability;
4543
4544 sinfo->all_succs_n++;
4545 }
4546
4547 return sinfo;
4548}
4549
b8698a0f 4550/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4551 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4552static void
4553cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4554{
4555 edge e;
4556 edge_iterator ei;
4557
4558 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4559
4560 FOR_EACH_EDGE (e, ei, bb->preds)
4561 {
4562 basic_block pred_bb = e->src;
4563 insn_t bb_end = BB_END (pred_bb);
4564
4565 /* ??? This code is not supposed to walk out of a region. */
4566 gcc_assert (in_current_region_p (pred_bb));
4567
4568 if (sel_bb_empty_p (pred_bb))
4569 cfg_preds_1 (pred_bb, preds, n, size);
4570 else
4571 {
4572 if (*n == *size)
b8698a0f 4573 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4574 (*size = 2 * *size + 1));
4575 (*preds)[(*n)++] = bb_end;
4576 }
4577 }
4578
4579 gcc_assert (*n != 0);
4580}
4581
b8698a0f
L
4582/* Find all predecessors of BB and record them in PREDS and their number
4583 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4584 edges are processed. */
4585static void
4586cfg_preds (basic_block bb, insn_t **preds, int *n)
4587{
4588 int size = 0;
4589
4590 *preds = NULL;
4591 *n = 0;
4592 cfg_preds_1 (bb, preds, n, &size);
4593}
4594
4595/* Returns true if we are moving INSN through join point. */
4596bool
4597sel_num_cfg_preds_gt_1 (insn_t insn)
4598{
4599 basic_block bb;
4600
4601 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4602 return false;
4603
4604 bb = BLOCK_FOR_INSN (insn);
4605
4606 while (1)
4607 {
4608 if (EDGE_COUNT (bb->preds) > 1)
4609 return true;
4610
4611 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4612 bb = EDGE_PRED (bb, 0)->src;
4613
4614 if (!sel_bb_empty_p (bb))
4615 break;
4616 }
4617
4618 return false;
4619}
4620
b8698a0f 4621/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4622 code in sched-ebb.c. */
4623bool
4624bb_ends_ebb_p (basic_block bb)
4625{
4626 basic_block next_bb = bb_next_bb (bb);
4627 edge e;
4628 edge_iterator ei;
b8698a0f 4629
e855c69d
AB
4630 if (next_bb == EXIT_BLOCK_PTR
4631 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4632 || (LABEL_P (BB_HEAD (next_bb))
4633 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4634 Work around that. */
4635 && !single_pred_p (next_bb)))
4636 return true;
4637
4638 if (!in_current_region_p (next_bb))
4639 return true;
4640
4641 FOR_EACH_EDGE (e, ei, bb->succs)
4642 if ((e->flags & EDGE_FALLTHRU) != 0)
4643 {
4644 gcc_assert (e->dest == next_bb);
4645
4646 return false;
4647 }
4648
4649 return true;
4650}
4651
4652/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4653 successor of INSN. */
4654bool
4655in_same_ebb_p (insn_t insn, insn_t succ)
4656{
4657 basic_block ptr = BLOCK_FOR_INSN (insn);
4658
4659 for(;;)
4660 {
4661 if (ptr == BLOCK_FOR_INSN (succ))
4662 return true;
b8698a0f 4663
e855c69d
AB
4664 if (bb_ends_ebb_p (ptr))
4665 return false;
4666
4667 ptr = bb_next_bb (ptr);
4668 }
4669
4670 gcc_unreachable ();
4671 return false;
4672}
4673
4674/* Recomputes the reverse topological order for the function and
4675 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4676 modified appropriately. */
4677static void
4678recompute_rev_top_order (void)
4679{
4680 int *postorder;
4681 int n_blocks, i;
4682
4683 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4684 {
b8698a0f 4685 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4686 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4687 rev_top_order_index_len);
4688 }
4689
4690 postorder = XNEWVEC (int, n_basic_blocks);
4691
4692 n_blocks = post_order_compute (postorder, true, false);
4693 gcc_assert (n_basic_blocks == n_blocks);
4694
4695 /* Build reverse function: for each basic block with BB->INDEX == K
4696 rev_top_order_index[K] is it's reverse topological sort number. */
4697 for (i = 0; i < n_blocks; i++)
4698 {
4699 gcc_assert (postorder[i] < rev_top_order_index_len);
4700 rev_top_order_index[postorder[i]] = i;
4701 }
4702
4703 free (postorder);
4704}
4705
4706/* Clear all flags from insns in BB that could spoil its rescheduling. */
4707void
4708clear_outdated_rtx_info (basic_block bb)
4709{
4710 rtx insn;
4711
4712 FOR_BB_INSNS (bb, insn)
4713 if (INSN_P (insn))
4714 {
4715 SCHED_GROUP_P (insn) = 0;
4716 INSN_AFTER_STALL_P (insn) = 0;
4717 INSN_SCHED_TIMES (insn) = 0;
4718 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4719
4720 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4721 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4722 the expression, and currently we'll be unable to do this. */
4723 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4724 }
4725}
4726
4727/* Add BB_NOTE to the pool of available basic block notes. */
4728static void
4729return_bb_to_pool (basic_block bb)
4730{
4731 rtx note = bb_note (bb);
4732
4733 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4734 && bb->aux == NULL);
4735
4736 /* It turns out that current cfg infrastructure does not support
4737 reuse of basic blocks. Don't bother for now. */
4738 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4739}
4740
4741/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4742static rtx
4743get_bb_note_from_pool (void)
4744{
4745 if (VEC_empty (rtx, bb_note_pool))
4746 return NULL_RTX;
4747 else
4748 {
4749 rtx note = VEC_pop (rtx, bb_note_pool);
4750
4751 PREV_INSN (note) = NULL_RTX;
4752 NEXT_INSN (note) = NULL_RTX;
4753
4754 return note;
4755 }
4756}
4757
4758/* Free bb_note_pool. */
4759void
4760free_bb_note_pool (void)
4761{
4762 VEC_free (rtx, heap, bb_note_pool);
4763}
4764
4765/* Setup scheduler pool and successor structure. */
4766void
4767alloc_sched_pools (void)
4768{
4769 int succs_size;
4770
4771 succs_size = MAX_WS + 1;
b8698a0f 4772 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4773 succs_info_pool.size = succs_size;
4774 succs_info_pool.top = -1;
4775 succs_info_pool.max_top = -1;
4776
b8698a0f 4777 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4778 sizeof (struct _list_node), 500);
4779}
4780
4781/* Free the pools. */
4782void
4783free_sched_pools (void)
4784{
4785 int i;
b8698a0f 4786
e855c69d
AB
4787 free_alloc_pool (sched_lists_pool);
4788 gcc_assert (succs_info_pool.top == -1);
4789 for (i = 0; i < succs_info_pool.max_top; i++)
4790 {
4791 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4792 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4793 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4794 }
4795 free (succs_info_pool.stack);
4796}
4797\f
4798
b8698a0f 4799/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
4800 topological order. */
4801static int
4802find_place_to_insert_bb (basic_block bb, int rgn)
4803{
4804 bool has_preds_outside_rgn = false;
4805 edge e;
4806 edge_iterator ei;
b8698a0f 4807
e855c69d
AB
4808 /* Find whether we have preds outside the region. */
4809 FOR_EACH_EDGE (e, ei, bb->preds)
4810 if (!in_current_region_p (e->src))
4811 {
4812 has_preds_outside_rgn = true;
4813 break;
4814 }
b8698a0f 4815
e855c69d
AB
4816 /* Recompute the top order -- needed when we have > 1 pred
4817 and in case we don't have preds outside. */
4818 if (flag_sel_sched_pipelining_outer_loops
4819 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4820 {
4821 int i, bbi = bb->index, cur_bbi;
4822
4823 recompute_rev_top_order ();
4824 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4825 {
4826 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 4827 if (rev_top_order_index[bbi]
e855c69d
AB
4828 < rev_top_order_index[cur_bbi])
4829 break;
4830 }
b8698a0f 4831
e855c69d
AB
4832 /* We skipped the right block, so we increase i. We accomodate
4833 it for increasing by step later, so we decrease i. */
4834 return (i + 1) - 1;
4835 }
4836 else if (has_preds_outside_rgn)
4837 {
4838 /* This is the case when we generate an extra empty block
4839 to serve as region head during pipelining. */
4840 e = EDGE_SUCC (bb, 0);
4841 gcc_assert (EDGE_COUNT (bb->succs) == 1
4842 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4843 && (BLOCK_TO_BB (e->dest->index) == 0));
4844 return -1;
4845 }
4846
4847 /* We don't have preds outside the region. We should have
4848 the only pred, because the multiple preds case comes from
4849 the pipelining of outer loops, and that is handled above.
4850 Just take the bbi of this single pred. */
4851 if (EDGE_COUNT (bb->succs) > 0)
4852 {
4853 int pred_bbi;
b8698a0f 4854
e855c69d 4855 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 4856
e855c69d
AB
4857 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4858 return BLOCK_TO_BB (pred_bbi);
4859 }
4860 else
4861 /* BB has no successors. It is safe to put it in the end. */
4862 return current_nr_blocks - 1;
4863}
4864
4865/* Deletes an empty basic block freeing its data. */
4866static void
4867delete_and_free_basic_block (basic_block bb)
4868{
4869 gcc_assert (sel_bb_empty_p (bb));
4870
4871 if (BB_LV_SET (bb))
4872 free_lv_set (bb);
4873
4874 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4875
b8698a0f
L
4876 /* Can't assert av_set properties because we use sel_aremove_bb
4877 when removing loop preheader from the region. At the point of
e855c69d
AB
4878 removing the preheader we already have deallocated sel_region_bb_info. */
4879 gcc_assert (BB_LV_SET (bb) == NULL
4880 && !BB_LV_SET_VALID_P (bb)
4881 && BB_AV_LEVEL (bb) == 0
4882 && BB_AV_SET (bb) == NULL);
b8698a0f 4883
e855c69d
AB
4884 delete_basic_block (bb);
4885}
4886
4887/* Add BB to the current region and update the region data. */
4888static void
4889add_block_to_current_region (basic_block bb)
4890{
4891 int i, pos, bbi = -2, rgn;
4892
4893 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4894 bbi = find_place_to_insert_bb (bb, rgn);
4895 bbi += 1;
4896 pos = RGN_BLOCKS (rgn) + bbi;
4897
4898 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4899 && ebb_head[bbi] == pos);
b8698a0f 4900
e855c69d
AB
4901 /* Make a place for the new block. */
4902 extend_regions ();
4903
4904 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4905 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 4906
e855c69d
AB
4907 memmove (rgn_bb_table + pos + 1,
4908 rgn_bb_table + pos,
4909 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4910
4911 /* Initialize data for BB. */
4912 rgn_bb_table[pos] = bb->index;
4913 BLOCK_TO_BB (bb->index) = bbi;
4914 CONTAINING_RGN (bb->index) = rgn;
4915
4916 RGN_NR_BLOCKS (rgn)++;
b8698a0f 4917
e855c69d
AB
4918 for (i = rgn + 1; i <= nr_regions; i++)
4919 RGN_BLOCKS (i)++;
4920}
4921
4922/* Remove BB from the current region and update the region data. */
4923static void
4924remove_bb_from_region (basic_block bb)
4925{
4926 int i, pos, bbi = -2, rgn;
4927
4928 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4929 bbi = BLOCK_TO_BB (bb->index);
4930 pos = RGN_BLOCKS (rgn) + bbi;
4931
4932 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4933 && ebb_head[bbi] == pos);
4934
4935 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4936 BLOCK_TO_BB (rgn_bb_table[i])--;
4937
4938 memmove (rgn_bb_table + pos,
4939 rgn_bb_table + pos + 1,
4940 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4941
4942 RGN_NR_BLOCKS (rgn)--;
4943 for (i = rgn + 1; i <= nr_regions; i++)
4944 RGN_BLOCKS (i)--;
4945}
4946
b8698a0f 4947/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
4948 blocks from last_added_blocks vector. */
4949static void
4950sel_add_bb (basic_block bb)
4951{
4952 /* Extend luids so that new notes will receive zero luids. */
4953 sched_init_luids (NULL, NULL, NULL, NULL);
4954 sched_init_bbs ();
4955 sel_init_bbs (last_added_blocks, NULL);
4956
b8698a0f 4957 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
4958 the only element that equals to bb; otherwise, the vector
4959 should not be NULL. */
4960 gcc_assert (last_added_blocks != NULL);
b8698a0f 4961
e855c69d
AB
4962 if (bb != NULL)
4963 {
4964 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
4965 && VEC_index (basic_block,
4966 last_added_blocks, 0) == bb);
e855c69d
AB
4967 add_block_to_current_region (bb);
4968
4969 /* We associate creating/deleting data sets with the first insn
4970 appearing / disappearing in the bb. */
4971 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4972 create_initial_data_sets (bb);
b8698a0f 4973
e855c69d
AB
4974 VEC_free (basic_block, heap, last_added_blocks);
4975 }
4976 else
4977 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4978 {
4979 int i;
4980 basic_block temp_bb = NULL;
4981
b8698a0f 4982 for (i = 0;
e855c69d
AB
4983 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
4984 {
4985 add_block_to_current_region (bb);
4986 temp_bb = bb;
4987 }
4988
b8698a0f 4989 /* We need to fetch at least one bb so we know the region
e855c69d
AB
4990 to update. */
4991 gcc_assert (temp_bb != NULL);
4992 bb = temp_bb;
4993
4994 VEC_free (basic_block, heap, last_added_blocks);
4995 }
4996
4997 rgn_setup_region (CONTAINING_RGN (bb->index));
4998}
4999
b8698a0f 5000/* Remove BB from the current region and update all data.
e855c69d
AB
5001 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5002static void
5003sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5004{
5005 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5006
e855c69d
AB
5007 remove_bb_from_region (bb);
5008 return_bb_to_pool (bb);
5009 bitmap_clear_bit (blocks_to_reschedule, bb->index);
b8698a0f 5010
e855c69d
AB
5011 if (remove_from_cfg_p)
5012 delete_and_free_basic_block (bb);
5013
5014 rgn_setup_region (CONTAINING_RGN (bb->index));
5015}
5016
5017/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5018static void
5019move_bb_info (basic_block merge_bb, basic_block empty_bb)
5020{
5021 gcc_assert (in_current_region_p (merge_bb));
5022
b8698a0f 5023 concat_note_lists (BB_NOTE_LIST (empty_bb),
e855c69d
AB
5024 &BB_NOTE_LIST (merge_bb));
5025 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5026
5027}
5028
b8698a0f
L
5029/* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
5030 EMPTY_BB's note lists into its predecessor instead of putting them
5031 into the successor. When REMOVE_FROM_CFG_P is true, also remove
e855c69d
AB
5032 the empty block. */
5033void
5034sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
5035 bool remove_from_cfg_p)
5036{
5037 basic_block merge_bb;
5038
5039 gcc_assert (sel_bb_empty_p (empty_bb));
5040
5041 if (merge_up_p)
5042 {
5043 merge_bb = empty_bb->prev_bb;
5044 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
5045 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
5046 }
5047 else
5048 {
5049 edge e;
5050 edge_iterator ei;
5051
5052 merge_bb = bb_next_bb (empty_bb);
5053
b8698a0f 5054 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
e855c69d
AB
5055 successor block. */
5056 for (ei = ei_start (empty_bb->preds);
5057 (e = ei_safe_edge (ei)); )
5058 {
5059 if (! (e->flags & EDGE_FALLTHRU))
5060 sel_redirect_edge_and_branch (e, merge_bb);
5061 else
5062 ei_next (&ei);
5063 }
5064
5065 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
5066 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
5067 }
5068
5069 move_bb_info (merge_bb, empty_bb);
5070 remove_empty_bb (empty_bb, remove_from_cfg_p);
5071}
5072
5073/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5074 region, but keep it in CFG. */
5075static void
5076remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5077{
5078 /* The block should contain just a note or a label.
5079 We try to check whether it is unused below. */
5080 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5081 || LABEL_P (BB_HEAD (empty_bb)));
5082
5083 /* If basic block has predecessors or successors, redirect them. */
5084 if (remove_from_cfg_p
5085 && (EDGE_COUNT (empty_bb->preds) > 0
5086 || EDGE_COUNT (empty_bb->succs) > 0))
5087 {
5088 basic_block pred;
5089 basic_block succ;
5090
5091 /* We need to init PRED and SUCC before redirecting edges. */
5092 if (EDGE_COUNT (empty_bb->preds) > 0)
5093 {
5094 edge e;
5095
5096 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5097
5098 e = EDGE_PRED (empty_bb, 0);
5099 gcc_assert (e->src == empty_bb->prev_bb
5100 && (e->flags & EDGE_FALLTHRU));
5101
5102 pred = empty_bb->prev_bb;
5103 }
5104 else
5105 pred = NULL;
5106
5107 if (EDGE_COUNT (empty_bb->succs) > 0)
5108 {
5109 /* We do not check fallthruness here as above, because
5110 after removing a jump the edge may actually be not fallthru. */
5111 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5112 succ = EDGE_SUCC (empty_bb, 0)->dest;
5113 }
5114 else
5115 succ = NULL;
5116
5117 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5118 {
5119 edge e = EDGE_PRED (empty_bb, 0);
5120
5121 if (e->flags & EDGE_FALLTHRU)
5122 redirect_edge_succ_nodup (e, succ);
5123 else
5124 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5125 }
5126
5127 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5128 {
5129 edge e = EDGE_SUCC (empty_bb, 0);
5130
5131 if (find_edge (pred, e->dest) == NULL)
5132 redirect_edge_pred (e, pred);
5133 }
5134 }
5135
5136 /* Finish removing. */
5137 sel_remove_bb (empty_bb, remove_from_cfg_p);
5138}
5139
b8698a0f 5140/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5141 per-bb data structures. */
5142static basic_block
5143sel_create_basic_block (void *headp, void *endp, basic_block after)
5144{
5145 basic_block new_bb;
5146 insn_t new_bb_note;
b8698a0f
L
5147
5148 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5149 || last_added_blocks == NULL);
5150
5151 new_bb_note = get_bb_note_from_pool ();
5152
5153 if (new_bb_note == NULL_RTX)
5154 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5155 else
5156 {
5157 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5158 new_bb_note, after);
5159 new_bb->aux = NULL;
5160 }
5161
5162 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5163
5164 return new_bb;
5165}
5166
5167/* Implement sched_init_only_bb (). */
5168static void
5169sel_init_only_bb (basic_block bb, basic_block after)
5170{
5171 gcc_assert (after == NULL);
5172
5173 extend_regions ();
5174 rgn_make_new_region_out_of_new_block (bb);
5175}
5176
5177/* Update the latch when we've splitted or merged it from FROM block to TO.
5178 This should be checked for all outer loops, too. */
5179static void
5180change_loops_latches (basic_block from, basic_block to)
5181{
5182 gcc_assert (from != to);
5183
5184 if (current_loop_nest)
5185 {
5186 struct loop *loop;
5187
5188 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5189 if (considered_for_pipelining_p (loop) && loop->latch == from)
5190 {
5191 gcc_assert (loop == current_loop_nest);
5192 loop->latch = to;
5193 gcc_assert (loop_latch_edge (loop));
5194 }
5195 }
5196}
5197
b8698a0f 5198/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5199 per-bb data structures. Returns the newly created bb. */
5200static basic_block
5201sel_split_block (basic_block bb, rtx after)
5202{
5203 basic_block new_bb;
5204 insn_t insn;
5205
5206 new_bb = sched_split_block_1 (bb, after);
5207 sel_add_bb (new_bb);
5208
5209 /* This should be called after sel_add_bb, because this uses
b8698a0f 5210 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5211 FIXME: this function may be a no-op now. */
5212 change_loops_latches (bb, new_bb);
5213
5214 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5215 FOR_BB_INSNS (new_bb, insn)
5216 if (INSN_P (insn))
5217 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5218
5219 if (sel_bb_empty_p (bb))
5220 {
5221 gcc_assert (!sel_bb_empty_p (new_bb));
5222
5223 /* NEW_BB has data sets that need to be updated and BB holds
5224 data sets that should be removed. Exchange these data sets
5225 so that we won't lose BB's valid data sets. */
5226 exchange_data_sets (new_bb, bb);
5227 free_data_sets (bb);
5228 }
5229
5230 if (!sel_bb_empty_p (new_bb)
5231 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5232 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5233
5234 return new_bb;
5235}
5236
5237/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5238 Otherwise returns NULL. */
5239static rtx
5240check_for_new_jump (basic_block bb, int prev_max_uid)
5241{
5242 rtx end;
5243
5244 end = sel_bb_end (bb);
5245 if (end && INSN_UID (end) >= prev_max_uid)
5246 return end;
5247 return NULL;
5248}
5249
b8698a0f 5250/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5251 New means having UID at least equal to PREV_MAX_UID. */
5252static rtx
5253find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5254{
5255 rtx jump;
5256
5257 /* Return immediately if no new insns were emitted. */
5258 if (get_max_uid () == prev_max_uid)
5259 return NULL;
b8698a0f 5260
e855c69d
AB
5261 /* Now check both blocks for new jumps. It will ever be only one. */
5262 if ((jump = check_for_new_jump (from, prev_max_uid)))
5263 return jump;
5264
5265 if (jump_bb != NULL
5266 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5267 return jump;
5268 return NULL;
5269}
5270
5271/* Splits E and adds the newly created basic block to the current region.
5272 Returns this basic block. */
5273basic_block
5274sel_split_edge (edge e)
5275{
5276 basic_block new_bb, src, other_bb = NULL;
5277 int prev_max_uid;
5278 rtx jump;
5279
5280 src = e->src;
5281 prev_max_uid = get_max_uid ();
5282 new_bb = split_edge (e);
5283
b8698a0f 5284 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5285 && current_loop_nest)
5286 {
5287 int i;
5288 basic_block bb;
5289
b8698a0f 5290 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5291 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5292 for (i = 0;
e855c69d
AB
5293 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5294 if (!bb->loop_father)
5295 {
5296 add_bb_to_loop (bb, e->dest->loop_father);
5297
5298 gcc_assert (!other_bb && (new_bb->index != bb->index));
5299 other_bb = bb;
5300 }
5301 }
5302
5303 /* Add all last_added_blocks to the region. */
5304 sel_add_bb (NULL);
5305
5306 jump = find_new_jump (src, new_bb, prev_max_uid);
5307 if (jump)
5308 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5309
5310 /* Put the correct lv set on this block. */
5311 if (other_bb && !sel_bb_empty_p (other_bb))
5312 compute_live (sel_bb_head (other_bb));
5313
5314 return new_bb;
5315}
5316
5317/* Implement sched_create_empty_bb (). */
5318static basic_block
5319sel_create_empty_bb (basic_block after)
5320{
5321 basic_block new_bb;
5322
5323 new_bb = sched_create_empty_bb_1 (after);
5324
5325 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5326 later. */
5327 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5328 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5329
5330 VEC_free (basic_block, heap, last_added_blocks);
5331 return new_bb;
5332}
5333
5334/* Implement sched_create_recovery_block. ORIG_INSN is where block
5335 will be splitted to insert a check. */
5336basic_block
5337sel_create_recovery_block (insn_t orig_insn)
5338{
5339 basic_block first_bb, second_bb, recovery_block;
5340 basic_block before_recovery = NULL;
5341 rtx jump;
5342
5343 first_bb = BLOCK_FOR_INSN (orig_insn);
5344 if (sel_bb_end_p (orig_insn))
5345 {
5346 /* Avoid introducing an empty block while splitting. */
5347 gcc_assert (single_succ_p (first_bb));
5348 second_bb = single_succ (first_bb);
5349 }
5350 else
5351 second_bb = sched_split_block (first_bb, orig_insn);
5352
5353 recovery_block = sched_create_recovery_block (&before_recovery);
5354 if (before_recovery)
5355 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5356
5357 gcc_assert (sel_bb_empty_p (recovery_block));
5358 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5359 if (current_loops != NULL)
5360 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5361
e855c69d 5362 sel_add_bb (recovery_block);
b8698a0f 5363
e855c69d
AB
5364 jump = BB_END (recovery_block);
5365 gcc_assert (sel_bb_head (recovery_block) == jump);
5366 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5367
5368 return recovery_block;
5369}
5370
5371/* Merge basic block B into basic block A. */
5372void
5373sel_merge_blocks (basic_block a, basic_block b)
5374{
e855c69d
AB
5375 sel_remove_empty_bb (b, true, false);
5376 merge_blocks (a, b);
5377
5378 change_loops_latches (b, a);
5379}
5380
5381/* A wrapper for redirect_edge_and_branch_force, which also initializes
5382 data structures for possibly created bb and insns. Returns the newly
5383 added bb or NULL, when a bb was not needed. */
5384void
5385sel_redirect_edge_and_branch_force (edge e, basic_block to)
5386{
5387 basic_block jump_bb, src;
5388 int prev_max_uid;
5389 rtx jump;
b8698a0f 5390
e855c69d 5391 gcc_assert (!sel_bb_empty_p (e->src));
b8698a0f 5392
e855c69d
AB
5393 src = e->src;
5394 prev_max_uid = get_max_uid ();
5395 jump_bb = redirect_edge_and_branch_force (e, to);
5396
5397 if (jump_bb != NULL)
5398 sel_add_bb (jump_bb);
5399
5400 /* This function could not be used to spoil the loop structure by now,
5401 thus we don't care to update anything. But check it to be sure. */
5402 if (current_loop_nest
5403 && pipelining_p)
5404 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5405
e855c69d
AB
5406 jump = find_new_jump (src, jump_bb, prev_max_uid);
5407 if (jump)
5408 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5409}
5410
b59ab570
AM
5411/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5412 redirected edge are in reverse topological order. */
5413bool
e855c69d
AB
5414sel_redirect_edge_and_branch (edge e, basic_block to)
5415{
5416 bool latch_edge_p;
5417 basic_block src;
5418 int prev_max_uid;
5419 rtx jump;
f2c45f08 5420 edge redirected;
b59ab570 5421 bool recompute_toporder_p = false;
e855c69d
AB
5422
5423 latch_edge_p = (pipelining_p
5424 && current_loop_nest
5425 && e == loop_latch_edge (current_loop_nest));
5426
5427 src = e->src;
5428 prev_max_uid = get_max_uid ();
f2c45f08
AM
5429
5430 redirected = redirect_edge_and_branch (e, to);
5431
5432 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5433
5434 /* When we've redirected a latch edge, update the header. */
5435 if (latch_edge_p)
5436 {
5437 current_loop_nest->header = to;
5438 gcc_assert (loop_latch_edge (current_loop_nest));
5439 }
5440
b59ab570
AM
5441 /* In rare situations, the topological relation between the blocks connected
5442 by the redirected edge can change (see PR42245 for an example). Update
5443 block_to_bb/bb_to_block. */
5444 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5445 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5446 recompute_toporder_p = true;
5447
e855c69d
AB
5448 jump = find_new_jump (src, NULL, prev_max_uid);
5449 if (jump)
5450 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570
AM
5451
5452 return recompute_toporder_p;
e855c69d
AB
5453}
5454
5455/* This variable holds the cfg hooks used by the selective scheduler. */
5456static struct cfg_hooks sel_cfg_hooks;
5457
5458/* Register sel-sched cfg hooks. */
5459void
5460sel_register_cfg_hooks (void)
5461{
5462 sched_split_block = sel_split_block;
5463
5464 orig_cfg_hooks = get_cfg_hooks ();
5465 sel_cfg_hooks = orig_cfg_hooks;
5466
5467 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5468
5469 set_cfg_hooks (sel_cfg_hooks);
5470
5471 sched_init_only_bb = sel_init_only_bb;
5472 sched_split_block = sel_split_block;
5473 sched_create_empty_bb = sel_create_empty_bb;
5474}
5475
5476/* Unregister sel-sched cfg hooks. */
5477void
5478sel_unregister_cfg_hooks (void)
5479{
5480 sched_create_empty_bb = NULL;
5481 sched_split_block = NULL;
5482 sched_init_only_bb = NULL;
5483
5484 set_cfg_hooks (orig_cfg_hooks);
5485}
5486\f
5487
5488/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5489 LABEL is where this jump should be directed. */
5490rtx
5491create_insn_rtx_from_pattern (rtx pattern, rtx label)
5492{
5493 rtx insn_rtx;
5494
5495 gcc_assert (!INSN_P (pattern));
5496
5497 start_sequence ();
5498
5499 if (label == NULL_RTX)
5500 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5501 else if (DEBUG_INSN_P (label))
5502 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5503 else
5504 {
5505 insn_rtx = emit_jump_insn (pattern);
5506 JUMP_LABEL (insn_rtx) = label;
5507 ++LABEL_NUSES (label);
5508 }
5509
5510 end_sequence ();
5511
5512 sched_init_luids (NULL, NULL, NULL, NULL);
5513 sched_extend_target ();
5514 sched_deps_init (false);
5515
5516 /* Initialize INSN_CODE now. */
5517 recog_memoized (insn_rtx);
5518 return insn_rtx;
5519}
5520
5521/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5522 must not be clonable. */
5523vinsn_t
5524create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5525{
5526 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5527
5528 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5529 return vinsn_create (insn_rtx, force_unique_p);
5530}
5531
5532/* Create a copy of INSN_RTX. */
5533rtx
5534create_copy_of_insn_rtx (rtx insn_rtx)
5535{
5536 rtx res;
5537
b5b8b0ac
AO
5538 if (DEBUG_INSN_P (insn_rtx))
5539 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5540 insn_rtx);
5541
e855c69d
AB
5542 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5543
5544 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5545 NULL_RTX);
5546 return res;
5547}
5548
5549/* Change vinsn field of EXPR to hold NEW_VINSN. */
5550void
5551change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5552{
5553 vinsn_detach (EXPR_VINSN (expr));
5554
5555 EXPR_VINSN (expr) = new_vinsn;
5556 vinsn_attach (new_vinsn);
5557}
5558
5559/* Helpers for global init. */
5560/* This structure is used to be able to call existing bundling mechanism
5561 and calculate insn priorities. */
b8698a0f 5562static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5563{
5564 NULL, /* init_ready_list */
5565 NULL, /* can_schedule_ready_p */
5566 NULL, /* schedule_more_p */
5567 NULL, /* new_ready */
5568 NULL, /* rgn_rank */
5569 sel_print_insn, /* rgn_print_insn */
5570 contributes_to_priority,
356c23b3 5571 NULL, /* insn_finishes_block_p */
e855c69d
AB
5572
5573 NULL, NULL,
5574 NULL, NULL,
5575 0, 0,
5576
5577 NULL, /* add_remove_insn */
5578 NULL, /* begin_schedule_ready */
5579 NULL, /* advance_target_bb */
5580 SEL_SCHED | NEW_BBS
5581};
5582
5583/* Setup special insns used in the scheduler. */
b8698a0f 5584void
e855c69d
AB
5585setup_nop_and_exit_insns (void)
5586{
5587 gcc_assert (nop_pattern == NULL_RTX
5588 && exit_insn == NULL_RTX);
5589
5590 nop_pattern = gen_nop ();
5591
5592 start_sequence ();
5593 emit_insn (nop_pattern);
5594 exit_insn = get_insns ();
5595 end_sequence ();
5596 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5597}
5598
5599/* Free special insns used in the scheduler. */
5600void
5601free_nop_and_exit_insns (void)
5602{
5603 exit_insn = NULL_RTX;
5604 nop_pattern = NULL_RTX;
5605}
5606
5607/* Setup a special vinsn used in new insns initialization. */
5608void
5609setup_nop_vinsn (void)
5610{
5611 nop_vinsn = vinsn_create (exit_insn, false);
5612 vinsn_attach (nop_vinsn);
5613}
5614
5615/* Free a special vinsn used in new insns initialization. */
5616void
5617free_nop_vinsn (void)
5618{
5619 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5620 vinsn_detach (nop_vinsn);
5621 nop_vinsn = NULL;
5622}
5623
5624/* Call a set_sched_flags hook. */
5625void
5626sel_set_sched_flags (void)
5627{
b8698a0f 5628 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5629 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5630 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5631 sometimes change c_s_i later. So put the correct flags again. */
5632 if (spec_info && targetm.sched.set_sched_flags)
5633 targetm.sched.set_sched_flags (spec_info);
5634}
5635
5636/* Setup pointers to global sched info structures. */
5637void
5638sel_setup_sched_infos (void)
5639{
5640 rgn_setup_common_sched_info ();
5641
5642 memcpy (&sel_common_sched_info, common_sched_info,
5643 sizeof (sel_common_sched_info));
5644
5645 sel_common_sched_info.fix_recovery_cfg = NULL;
5646 sel_common_sched_info.add_block = NULL;
5647 sel_common_sched_info.estimate_number_of_insns
5648 = sel_estimate_number_of_insns;
5649 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5650 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5651
5652 common_sched_info = &sel_common_sched_info;
5653
5654 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5655 current_sched_info->sched_max_insns_priority =
e855c69d 5656 get_rgn_sched_max_insns_priority ();
b8698a0f 5657
e855c69d
AB
5658 sel_set_sched_flags ();
5659}
5660\f
5661
5662/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5663 *BB_ORD_INDEX after that is increased. */
5664static void
5665sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5666{
5667 RGN_NR_BLOCKS (rgn) += 1;
5668 RGN_DONT_CALC_DEPS (rgn) = 0;
5669 RGN_HAS_REAL_EBB (rgn) = 0;
5670 CONTAINING_RGN (bb->index) = rgn;
5671 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5672 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5673 (*bb_ord_index)++;
5674
5675 /* FIXME: it is true only when not scheduling ebbs. */
5676 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5677}
5678
5679/* Functions to support pipelining of outer loops. */
5680
5681/* Creates a new empty region and returns it's number. */
5682static int
5683sel_create_new_region (void)
5684{
5685 int new_rgn_number = nr_regions;
5686
5687 RGN_NR_BLOCKS (new_rgn_number) = 0;
5688
5689 /* FIXME: This will work only when EBBs are not created. */
5690 if (new_rgn_number != 0)
b8698a0f 5691 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5692 RGN_NR_BLOCKS (new_rgn_number - 1);
5693 else
5694 RGN_BLOCKS (new_rgn_number) = 0;
5695
5696 /* Set the blocks of the next region so the other functions may
5697 calculate the number of blocks in the region. */
b8698a0f 5698 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5699 RGN_NR_BLOCKS (new_rgn_number);
5700
5701 nr_regions++;
5702
5703 return new_rgn_number;
5704}
5705
5706/* If X has a smaller topological sort number than Y, returns -1;
5707 if greater, returns 1. */
5708static int
5709bb_top_order_comparator (const void *x, const void *y)
5710{
5711 basic_block bb1 = *(const basic_block *) x;
5712 basic_block bb2 = *(const basic_block *) y;
5713
b8698a0f
L
5714 gcc_assert (bb1 == bb2
5715 || rev_top_order_index[bb1->index]
e855c69d
AB
5716 != rev_top_order_index[bb2->index]);
5717
5718 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5719 bbs with greater number should go earlier. */
5720 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5721 return -1;
5722 else
5723 return 1;
5724}
5725
b8698a0f 5726/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5727 to pipeline LOOP, return -1. */
5728static int
5729make_region_from_loop (struct loop *loop)
5730{
5731 unsigned int i;
5732 int new_rgn_number = -1;
5733 struct loop *inner;
5734
5735 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5736 int bb_ord_index = 0;
5737 basic_block *loop_blocks;
5738 basic_block preheader_block;
5739
b8698a0f 5740 if (loop->num_nodes
e855c69d
AB
5741 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5742 return -1;
b8698a0f 5743
e855c69d
AB
5744 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5745 for (inner = loop->inner; inner; inner = inner->inner)
5746 if (flow_bb_inside_loop_p (inner, loop->latch))
5747 return -1;
5748
5749 loop->ninsns = num_loop_insns (loop);
5750 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5751 return -1;
5752
5753 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5754
5755 for (i = 0; i < loop->num_nodes; i++)
5756 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5757 {
5758 free (loop_blocks);
5759 return -1;
5760 }
5761
5762 preheader_block = loop_preheader_edge (loop)->src;
5763 gcc_assert (preheader_block);
5764 gcc_assert (loop_blocks[0] == loop->header);
5765
5766 new_rgn_number = sel_create_new_region ();
5767
5768 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5769 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5770
5771 for (i = 0; i < loop->num_nodes; i++)
5772 {
5773 /* Add only those blocks that haven't been scheduled in the inner loop.
5774 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5775 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5776 body, but to the region containing that loop body). */
5777
5778 gcc_assert (new_rgn_number >= 0);
5779
5780 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5781 {
b8698a0f 5782 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
5783 new_rgn_number);
5784 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5785 }
5786 }
5787
5788 free (loop_blocks);
5789 MARK_LOOP_FOR_PIPELINING (loop);
5790
5791 return new_rgn_number;
5792}
5793
5794/* Create a new region from preheader blocks LOOP_BLOCKS. */
5795void
5796make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5797{
5798 unsigned int i;
5799 int new_rgn_number = -1;
5800 basic_block bb;
5801
5802 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5803 int bb_ord_index = 0;
5804
5805 new_rgn_number = sel_create_new_region ();
5806
5807 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5808 {
5809 gcc_assert (new_rgn_number >= 0);
5810
5811 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5812 }
5813
5814 VEC_free (basic_block, heap, *loop_blocks);
5815 gcc_assert (*loop_blocks == NULL);
5816}
5817
5818
5819/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 5820 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
5821 is created. */
5822static bool
5823make_regions_from_loop_nest (struct loop *loop)
b8698a0f 5824{
e855c69d
AB
5825 struct loop *cur_loop;
5826 int rgn_number;
5827
5828 /* Traverse all inner nodes of the loop. */
5829 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5830 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5831 return false;
5832
5833 /* At this moment all regular inner loops should have been pipelined.
5834 Try to create a region from this loop. */
5835 rgn_number = make_region_from_loop (loop);
5836
5837 if (rgn_number < 0)
5838 return false;
5839
5840 VEC_safe_push (loop_p, heap, loop_nests, loop);
5841 return true;
5842}
5843
5844/* Initalize data structures needed. */
5845void
5846sel_init_pipelining (void)
5847{
5848 /* Collect loop information to be used in outer loops pipelining. */
5849 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5850 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5851 | LOOPS_HAVE_RECORDED_EXITS
5852 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5853 current_loop_nest = NULL;
5854
5855 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5856 sbitmap_zero (bbs_in_loop_rgns);
5857
5858 recompute_rev_top_order ();
5859}
5860
5861/* Returns a struct loop for region RGN. */
5862loop_p
5863get_loop_nest_for_rgn (unsigned int rgn)
5864{
5865 /* Regions created with extend_rgns don't have corresponding loop nests,
5866 because they don't represent loops. */
5867 if (rgn < VEC_length (loop_p, loop_nests))
5868 return VEC_index (loop_p, loop_nests, rgn);
5869 else
5870 return NULL;
5871}
5872
5873/* True when LOOP was included into pipelining regions. */
5874bool
5875considered_for_pipelining_p (struct loop *loop)
5876{
5877 if (loop_depth (loop) == 0)
5878 return false;
5879
b8698a0f
L
5880 /* Now, the loop could be too large or irreducible. Check whether its
5881 region is in LOOP_NESTS.
5882 We determine the region number of LOOP as the region number of its
5883 latch. We can't use header here, because this header could be
e855c69d
AB
5884 just removed preheader and it will give us the wrong region number.
5885 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 5886 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
5887 {
5888 int rgn = CONTAINING_RGN (loop->latch->index);
5889
5890 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5891 return true;
5892 }
b8698a0f 5893
e855c69d
AB
5894 return false;
5895}
5896
b8698a0f 5897/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
5898 for pipelining. */
5899static void
5900make_regions_from_the_rest (void)
5901{
5902 int cur_rgn_blocks;
5903 int *loop_hdr;
5904 int i;
5905
5906 basic_block bb;
5907 edge e;
5908 edge_iterator ei;
5909 int *degree;
e855c69d
AB
5910
5911 /* Index in rgn_bb_table where to start allocating new regions. */
5912 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 5913
b8698a0f 5914 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
5915 any loop or belong to irreducible loops. Prepare the data structures
5916 for extend_rgns. */
5917
5918 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5919 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5920 loop. */
5921 loop_hdr = XNEWVEC (int, last_basic_block);
5922 degree = XCNEWVEC (int, last_basic_block);
5923
5924
5925 /* For each basic block that belongs to some loop assign the number
5926 of innermost loop it belongs to. */
5927 for (i = 0; i < last_basic_block; i++)
5928 loop_hdr[i] = -1;
5929
5930 FOR_EACH_BB (bb)
5931 {
5932 if (bb->loop_father && !bb->loop_father->num == 0
5933 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5934 loop_hdr[bb->index] = bb->loop_father->num;
5935 }
5936
b8698a0f 5937 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
5938 edges, that are going out of bbs that are not yet scheduled.
5939 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 5940 FOR_EACH_BB (bb)
e855c69d
AB
5941 {
5942 degree[bb->index] = 0;
5943
5944 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5945 {
5946 FOR_EACH_EDGE (e, ei, bb->preds)
5947 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5948 degree[bb->index]++;
5949 }
5950 else
5951 degree[bb->index] = -1;
5952 }
5953
5954 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5955
5956 /* Any block that did not end up in a region is placed into a region
5957 by itself. */
5958 FOR_EACH_BB (bb)
5959 if (degree[bb->index] >= 0)
5960 {
5961 rgn_bb_table[cur_rgn_blocks] = bb->index;
5962 RGN_NR_BLOCKS (nr_regions) = 1;
5963 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5964 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5965 RGN_HAS_REAL_EBB (nr_regions) = 0;
5966 CONTAINING_RGN (bb->index) = nr_regions++;
5967 BLOCK_TO_BB (bb->index) = 0;
5968 }
5969
5970 free (degree);
5971 free (loop_hdr);
5972}
5973
5974/* Free data structures used in pipelining of loops. */
5975void sel_finish_pipelining (void)
5976{
5977 loop_iterator li;
5978 struct loop *loop;
5979
5980 /* Release aux fields so we don't free them later by mistake. */
5981 FOR_EACH_LOOP (li, loop, 0)
5982 loop->aux = NULL;
5983
5984 loop_optimizer_finalize ();
5985
5986 VEC_free (loop_p, heap, loop_nests);
5987
5988 free (rev_top_order_index);
5989 rev_top_order_index = NULL;
5990}
5991
b8698a0f 5992/* This function replaces the find_rgns when
e855c69d 5993 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 5994void
e855c69d
AB
5995sel_find_rgns (void)
5996{
5997 sel_init_pipelining ();
5998 extend_regions ();
5999
6000 if (current_loops)
6001 {
6002 loop_p loop;
6003 loop_iterator li;
6004
6005 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6006 ? LI_FROM_INNERMOST
6007 : LI_ONLY_INNERMOST))
6008 make_regions_from_loop_nest (loop);
6009 }
6010
6011 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6012 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6013 to irreducible loops. */
6014 make_regions_from_the_rest ();
6015
6016 /* We don't need bbs_in_loop_rgns anymore. */
6017 sbitmap_free (bbs_in_loop_rgns);
6018 bbs_in_loop_rgns = NULL;
6019}
6020
b8698a0f
L
6021/* Adds the preheader blocks from previous loop to current region taking
6022 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
e855c69d
AB
6023 This function is only used with -fsel-sched-pipelining-outer-loops. */
6024void
6025sel_add_loop_preheaders (void)
6026{
6027 int i;
6028 basic_block bb;
b8698a0f 6029 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6030 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6031
6032 for (i = 0;
6033 VEC_iterate (basic_block, preheader_blocks, i, bb);
6034 i++)
8ec4d0ad
AM
6035 {
6036 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6037 sel_add_bb (bb);
8ec4d0ad 6038 }
e855c69d
AB
6039
6040 VEC_free (basic_block, heap, preheader_blocks);
6041}
6042
b8698a0f
L
6043/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6044 Please note that the function should also work when pipelining_p is
6045 false, because it is used when deciding whether we should or should
e855c69d
AB
6046 not reschedule pipelined code. */
6047bool
6048sel_is_loop_preheader_p (basic_block bb)
6049{
6050 if (current_loop_nest)
6051 {
6052 struct loop *outer;
6053
6054 if (preheader_removed)
6055 return false;
6056
6057 /* Preheader is the first block in the region. */
6058 if (BLOCK_TO_BB (bb->index) == 0)
6059 return true;
6060
6061 /* We used to find a preheader with the topological information.
6062 Check that the above code is equivalent to what we did before. */
6063
6064 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6065 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6066 < BLOCK_TO_BB (current_loop_nest->header->index)));
6067
6068 /* Support the situation when the latch block of outer loop
6069 could be from here. */
6070 for (outer = loop_outer (current_loop_nest);
6071 outer;
6072 outer = loop_outer (outer))
6073 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6074 gcc_unreachable ();
6075 }
6076
6077 return false;
6078}
6079
6080/* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
6081bool
6082jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
6083{
6084 basic_block jump_bb = BLOCK_FOR_INSN (jump);
6085
b8698a0f 6086 /* It is not jump, jump with side-effects or jump can lead to several
e855c69d
AB
6087 basic blocks. */
6088 if (!onlyjump_p (jump)
6089 || !any_uncondjump_p (jump))
6090 return false;
6091
b8698a0f 6092 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6093 not DEST_BB. */
6094 if (EDGE_COUNT (jump_bb->succs) != 1
6095 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
6096 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6097 return false;
6098
6099 /* If not anything of the upper. */
6100 return true;
6101}
6102
6103/* Removes the loop preheader from the current region and saves it in
b8698a0f 6104 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6105 region that represents an outer loop. */
6106static void
6107sel_remove_loop_preheader (void)
6108{
6109 int i, old_len;
6110 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6111 basic_block bb;
6112 bool all_empty_p = true;
b8698a0f 6113 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6114 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6115
6116 gcc_assert (current_loop_nest);
6117 old_len = VEC_length (basic_block, preheader_blocks);
6118
6119 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6120 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6121 {
6122 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6123
b8698a0f 6124 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6125 corresponding loop, then it should be a preheader. */
6126 if (sel_is_loop_preheader_p (bb))
6127 {
6128 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6129 if (BB_END (bb) != bb_note (bb))
6130 all_empty_p = false;
6131 }
6132 }
b8698a0f 6133
e855c69d
AB
6134 /* Remove these blocks only after iterating over the whole region. */
6135 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6136 i >= old_len;
6137 i--)
6138 {
b8698a0f 6139 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6140 sel_remove_bb (bb, false);
6141 }
6142
6143 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6144 {
6145 if (!all_empty_p)
6146 /* Immediately create new region from preheader. */
6147 make_region_from_loop_preheader (&preheader_blocks);
6148 else
6149 {
6150 /* If all preheader blocks are empty - dont create new empty region.
6151 Instead, remove them completely. */
6152 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6153 {
6154 edge e;
6155 edge_iterator ei;
6156 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6157
6158 /* Redirect all incoming edges to next basic block. */
6159 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6160 {
6161 if (! (e->flags & EDGE_FALLTHRU))
6162 redirect_edge_and_branch (e, bb->next_bb);
6163 else
6164 redirect_edge_succ (e, bb->next_bb);
6165 }
6166 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6167 delete_and_free_basic_block (bb);
6168
b8698a0f
L
6169 /* Check if after deleting preheader there is a nonconditional
6170 jump in PREV_BB that leads to the next basic block NEXT_BB.
6171 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6172 basic block if it becomes empty. */
6173 if (next_bb->prev_bb == prev_bb
6174 && prev_bb != ENTRY_BLOCK_PTR
6175 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6176 {
6177 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6178 if (BB_END (prev_bb) == bb_note (prev_bb))
6179 free_data_sets (prev_bb);
6180 }
6181 }
6182 }
6183 VEC_free (basic_block, heap, preheader_blocks);
6184 }
6185 else
6186 /* Store preheader within the father's loop structure. */
6187 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6188 preheader_blocks);
6189}
6190#endif