]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
* sched-ebb.c (schedule_ebbs): Honor the BB_DISABLE_SCHEDULE flag.
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
c02e2d5c 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
718f9c0f 24#include "diagnostic-core.h"
e855c69d
AB
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
e855c69d
AB
34#include "recog.h"
35#include "params.h"
36#include "target.h"
37#include "timevar.h"
38#include "tree-pass.h"
39#include "sched-int.h"
40#include "ggc.h"
41#include "tree.h"
42#include "vec.h"
43#include "langhooks.h"
44#include "rtlhooks-def.h"
5936d944 45#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
46
47#ifdef INSN_SCHEDULING
48#include "sel-sched-ir.h"
49/* We don't have to use it except for sel_print_insn. */
50#include "sel-sched-dump.h"
51
52/* A vector holding bb info for whole scheduling pass. */
53VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55/* A vector holding bb info. */
56VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58/* A pool for allocating all lists. */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set. */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils. */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined. */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72static VEC(loop_p, heap) *loop_nests = NULL;
73
74/* Saves blocks already in loop regions, indexed by bb->index. */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook. */
78static struct cfg_hooks orig_cfg_hooks;
79\f
80
81/* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array. */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure. */
89static struct
90{
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool. */
116static struct
117{
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
b8698a0f 125 int s;
e855c69d
AB
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes. */
129static rtx_vec_t bb_note_pool;
130
131/* A NOP pattern used to emit placeholder insns. */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135rtx exit_insn = NULL_RTX;
136
b8698a0f 137/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
138 was removed. */
139bool preheader_removed = false;
140\f
141
142/* Forward static declarations. */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
151static void free_history_vect (VEC (expr_history_def, heap) **);
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
262d8232 155static void sel_merge_blocks (basic_block, basic_block);
e855c69d 156static void sel_remove_loop_preheader (void);
753de8cf 157static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
158
159static bool insn_is_the_only_one_in_bb_p (insn_t);
160static void create_initial_data_sets (basic_block);
161
b5b8b0ac 162static void free_av_set (basic_block);
e855c69d
AB
163static void invalidate_av_set (basic_block);
164static void extend_insn_data (void);
165static void sel_init_new_insn (insn_t, int);
166static void finish_insns (void);
167\f
168/* Various list functions. */
169
170/* Copy an instruction list L. */
171ilist_t
172ilist_copy (ilist_t l)
173{
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184}
185
186/* Invert an instruction list L. */
187ilist_t
188ilist_invert (ilist_t l)
189{
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199}
200
201/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202void
203blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204{
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215}
216
217/* Remove the list note pointed to by LP. */
218void
219blist_remove (blist_t *lp)
220{
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228}
229
230/* Init a fence tail L. */
231void
232flist_tail_init (flist_tail_t l)
233{
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236}
237
238/* Try to find fence corresponding to INSN in L. */
239fence_t
240flist_lookup (flist_t l, insn_t insn)
241{
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251}
252
253/* Init the fields of F before running fill_insns. */
254static void
255init_fence_for_scheduling (fence_t f)
256{
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260}
261
262/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263static void
b8698a0f
L
264flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 267 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
268 bool starts_cycle_p, bool after_stall_p)
269{
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 292 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299}
300
301/* Remove the head node of the list pointed to by LP. */
302static void
303flist_remove (flist_t *lp)
304{
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308}
309
310/* Clear the fence list pointed to by LP. */
311void
312flist_clear (flist_t *lp)
313{
314 while (*lp)
315 flist_remove (lp);
316}
317
318/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319void
320def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321{
322 def_t d;
b8698a0f 323
e855c69d
AB
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329}
330\f
331
332/* Functions to work with target contexts. */
333
b8698a0f 334/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
335 that there are no uninitialized (null) target contexts. */
336static tc_t bulk_tc = (tc_t) 1;
337
b8698a0f 338/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
339 implementations for them. */
340
341/* Allocate a store for the target context. */
342static tc_t
343alloc_target_context (void)
344{
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347}
348
349/* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352static void
353init_target_context (tc_t tc, bool clean_p)
354{
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357}
358
359/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361tc_t
362create_target_context (bool clean_p)
363{
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368}
369
370/* Copy TC to the current backend context. */
371void
372set_target_context (tc_t tc)
373{
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376}
377
378/* TC is about to be destroyed. Free any internal data. */
379static void
380clear_target_context (tc_t tc)
381{
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384}
385
386/* Clear and free it. */
387static void
388delete_target_context (tc_t tc)
389{
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394}
395
396/* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398static void
399copy_target_context (tc_t to, tc_t from)
400{
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408}
409
410/* Create a copy of TC. */
411static tc_t
412create_copy_of_target_context (tc_t tc)
413{
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419}
420
421/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423void
424reset_target_context (tc_t tc, bool clean_p)
425{
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428}
429\f
b8698a0f 430/* Functions to work with dependence contexts.
88302d54 431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435/* Make a copy of FROM in TO. */
436static void
437copy_deps_context (deps_t to, deps_t from)
438{
bcf33775 439 init_deps (to, false);
e855c69d
AB
440 deps_join (to, from);
441}
442
443/* Allocate store for dep context. */
444static deps_t
445alloc_deps_context (void)
446{
88302d54 447 return XNEW (struct deps_desc);
e855c69d
AB
448}
449
450/* Allocate and initialize dep context. */
451static deps_t
452create_deps_context (void)
453{
454 deps_t dc = alloc_deps_context ();
455
bcf33775 456 init_deps (dc, false);
e855c69d
AB
457 return dc;
458}
459
460/* Create a copy of FROM. */
461static deps_t
462create_copy_of_deps_context (deps_t from)
463{
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468}
469
470/* Clean up internal data of DC. */
471static void
472clear_deps_context (deps_t dc)
473{
474 free_deps (dc);
475}
476
477/* Clear and free DC. */
478static void
479delete_deps_context (deps_t dc)
480{
481 clear_deps_context (dc);
482 free (dc);
483}
484
485/* Clear and init DC. */
486static void
487reset_deps_context (deps_t dc)
488{
489 clear_deps_context (dc);
bcf33775 490 init_deps (dc, false);
e855c69d
AB
491}
492
b8698a0f 493/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
494 dependence context. */
495static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514/* Process INSN and add its impact on DC. */
515void
516advance_deps_context (deps_t dc, insn_t insn)
517{
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520}
521\f
522
523/* Functions to work with DFA states. */
524
525/* Allocate store for a DFA state. */
526static state_t
527state_alloc (void)
528{
529 return xmalloc (dfa_state_size);
530}
531
532/* Allocate and initialize DFA state. */
533static state_t
534state_create (void)
535{
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541}
542
543/* Free DFA state. */
544static void
545state_free (state_t state)
546{
547 free (state);
548}
549
550/* Make a copy of FROM in TO. */
551static void
552state_copy (state_t to, state_t from)
553{
554 memcpy (to, from, dfa_state_size);
555}
556
557/* Create a copy of FROM. */
558static state_t
559state_create_copy (state_t from)
560{
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565}
566\f
567
568/* Functions to work with fences. */
569
570/* Clear the fence. */
571static void
572fence_clear (fence_t f)
573{
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
583 if (s != NULL)
584 free (s);
585
586 if (dc != NULL)
587 delete_deps_context (dc);
588
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
594}
595
596/* Init a list of fences with successors of OLD_FENCE. */
597void
598init_fences (insn_t old_fence)
599{
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
604
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 {
b8698a0f 608
e855c69d
AB
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
b8698a0f 618 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
b8698a0f 623 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 624 issue_rate, /* issue_more */
b8698a0f 625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
626 }
627}
628
629/* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
b8698a0f 631 propagated from fallthrough edge if it is available;
e855c69d 632 2) deps context and cycle is propagated from more probable edge;
b8698a0f 633 3) all other fields are set to corresponding constant values.
e855c69d 634
b8698a0f 635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
638static void
639merge_fences (fence_t f, insn_t insn,
b8698a0f 640 state_t state, deps_t dc, void *tc,
e855c69d
AB
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
136e01a3 643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
644{
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
b8698a0f 650 /* Check if we can decide which path fences came.
e855c69d
AB
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
b8698a0f
L
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
e855c69d
AB
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
b8698a0f 662
e855c69d
AB
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
b8698a0f 665
e855c69d
AB
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 673 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
b8698a0f 688
e855c69d
AB
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
b8698a0f 700
e855c69d
AB
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
b8698a0f 703
e855c69d 704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 705 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
b8698a0f 710 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 722 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
b8698a0f 764
e855c69d
AB
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800}
801
b8698a0f 802/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
803 other parameters. */
804static void
805add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
811{
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814 if (! f)
815 {
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 817 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 819 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
820
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 }
824 else
825 {
b8698a0f
L
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 828 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
829 }
830}
831
832/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833void
834move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835{
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839 old = FLIST_FENCE (old_fences);
b8698a0f 840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
843 {
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
136e01a3 847 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
848 old->after_stall_p);
849 }
850 else
851 {
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 }
857 FENCE_INSN (old) = NULL;
858}
859
b8698a0f 860/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
861 as a clean one. */
862void
863add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864{
865 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 866
e855c69d
AB
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
b8698a0f 870 NULL_RTX, NULL,
e855c69d
AB
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
874}
875
b8698a0f 876/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
877 from FENCE and SUCC. */
878void
879add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880{
b8698a0f 881 int * new_ready_ticks
e855c69d 882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 883
e855c69d
AB
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 890 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
136e01a3 897 FENCE_ISSUE_MORE (fence),
e855c69d
AB
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
900}
901\f
902
903/* Functions to work with regset and nop pools. */
904
905/* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907regset
908get_regset_from_pool (void)
909{
910 regset rs;
911
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
916 {
917 rs = ALLOC_REG_SET (&reg_obstack);
918
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
923 }
924
925 regset_pool.diff++;
926
927 return rs;
928}
929
930/* Same as above, but returns the empty regset. */
931regset
932get_clear_regset_from_pool (void)
933{
934 regset rs = get_regset_from_pool ();
935
936 CLEAR_REG_SET (rs);
937 return rs;
938}
939
940/* Return regset RS to the pool for future use. */
941void
942return_regset_to_pool (regset rs)
943{
9ef1bf71 944 gcc_assert (rs);
e855c69d
AB
945 regset_pool.diff--;
946
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
951}
952
68ad446f 953#ifdef ENABLE_CHECKING
e855c69d
AB
954/* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956static int
957cmp_v_in_regset_pool (const void *x, const void *xx)
958{
959 return *((const regset *) x) - *((const regset *) xx);
960}
68ad446f 961#endif
e855c69d
AB
962
963/* Free the regset pool possibly checking for memory leaks. */
964void
965free_regset_pool (void)
966{
967#ifdef ENABLE_CHECKING
968 {
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
b8698a0f 972
e855c69d
AB
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
b8698a0f 976
e855c69d 977 int diff = 0;
b8698a0f 978
e855c69d 979 gcc_assert (n <= nn);
b8698a0f 980
e855c69d
AB
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 984
e855c69d
AB
985 while (ii < nn)
986 {
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
b8698a0f 992
e855c69d
AB
993 ii++;
994 }
b8698a0f 995
e855c69d
AB
996 gcc_assert (diff == regset_pool.diff);
997 }
998#endif
b8698a0f 999
e855c69d
AB
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
b8698a0f 1002
e855c69d
AB
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
b8698a0f 1012
e855c69d
AB
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019}
1020\f
1021
b8698a0f
L
1022/* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026/* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028static vinsn_t nop_vinsn = NULL;
1029
1030/* Emit a nop before INSN, taking it from pool. */
1031insn_t
1032get_nop_from_pool (insn_t insn)
1033{
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1037
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1042
1043 nop = emit_insn_before (nop, insn);
1044
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1052
1053 return nop;
1054}
1055
1056/* Remove NOP from the instruction stream and return it to the pool. */
1057void
b5b8b0ac 1058return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1059{
1060 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1061 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1062
1063 if (nop_pool.n == nop_pool.s)
b8698a0f 1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1067}
1068
1069/* Free the nop pool. */
1070void
1071free_nop_pool (void)
1072{
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1077}
1078\f
1079
b8698a0f 1080/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083static int
1084skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085{
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
b8698a0f 1088
e855c69d
AB
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1092 {
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1096 }
b8698a0f 1097
e855c69d
AB
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1101 {
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1105 }
b8698a0f 1106
e855c69d
AB
1107 return 0;
1108}
1109
b8698a0f 1110/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113static int
1114hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1116{
b8698a0f 1117 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1120 {
1121 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1122 *nmode = VOIDmode;
e855c69d
AB
1123 return 1;
1124 }
b8698a0f 1125
e855c69d
AB
1126 return 0;
1127}
1128
1129/* Returns LHS and RHS are ok to be scheduled separately. */
1130static bool
1131lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132{
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1135
b8698a0f
L
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1142
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1146
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1150
b8698a0f 1151 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1156
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1161
1162 return true;
1163}
1164
b8698a0f
L
1165/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1167 used e.g. for insns from recovery blocks. */
1168static void
1169vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170{
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1173
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
b8698a0f 1177
9ef1bf71
AM
1178 if (INSN_NOP_P (insn))
1179 return;
1180
e855c69d
AB
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1185
e855c69d
AB
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1189 {
1190 rtx rhs = VINSN_RHS (vi);
1191
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1197 }
1198 else
1199 {
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203 }
b8698a0f 1204
e855c69d
AB
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1213}
1214
1215/* Indicate that VI has become the part of an rtx object. */
1216void
1217vinsn_attach (vinsn_t vi)
1218{
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1221
1222 VINSN_COUNT (vi)++;
1223}
1224
b8698a0f 1225/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1226 VINSN_TYPE (VI). */
1227static vinsn_t
1228vinsn_create (insn_t insn, bool force_unique_p)
1229{
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1231
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1234}
1235
1236/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
b8698a0f 1238vinsn_t
e855c69d
AB
1239vinsn_copy (vinsn_t vi, bool reattach_p)
1240{
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
b8698a0f 1244
e855c69d
AB
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1248 {
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1251 }
1252
1253 return new_vi;
1254}
1255
1256/* Delete the VI vinsn and free its data. */
1257static void
1258vinsn_delete (vinsn_t vi)
1259{
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1261
9ef1bf71
AM
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263 {
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267 }
e855c69d
AB
1268
1269 free (vi);
1270}
1271
b8698a0f 1272/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1273 Remove VI if it is no longer needed. */
1274void
1275vinsn_detach (vinsn_t vi)
1276{
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1278
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1281}
1282
1283/* Returns TRUE if VI is a branch. */
1284bool
1285vinsn_cond_branch_p (vinsn_t vi)
1286{
1287 insn_t insn;
1288
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1291
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1295
1296 return control_flow_insn_p (insn);
1297}
1298
1299/* Return latency of INSN. */
1300static int
1301sel_insn_rtx_cost (rtx insn)
1302{
1303 int cost;
1304
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1312 {
1313 cost = insn_default_latency (insn);
1314
1315 if (cost < 0)
1316 cost = 0;
1317 }
1318
1319 return cost;
1320}
1321
1322/* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1324int
1325sel_vinsn_cost (vinsn_t vi)
1326{
1327 int cost = vi->cost;
1328
1329 if (cost < 0)
1330 {
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1333 }
1334
1335 return cost;
1336}
1337\f
1338
1339/* Functions for insn emitting. */
1340
1341/* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343insn_t
1344sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345{
1346 insn_t new_insn;
1347
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353
1354 return new_insn;
1355}
1356
1357/* Force newly generated vinsns to be unique. */
1358static bool init_insn_force_unique_p = false;
1359
1360/* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362insn_t
1363sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1365{
1366 insn_t insn;
1367
1368 gcc_assert (!init_insn_force_unique_p);
1369
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1374
1375 return insn;
1376}
1377
1378/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
e855c69d
AB
1381 simplify_changed_insns. */
1382insn_t
b8698a0f 1383sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1384 insn_t after)
1385{
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
b8698a0f
L
1389
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1394
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1399
1400 return insn;
1401}
1402
1403/* Move insn from EXPR after AFTER. */
1404insn_t
1405sel_move_insn (expr_t expr, int seqno, insn_t after)
1406{
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1410
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1415
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1418
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
b8698a0f 1423
e855c69d
AB
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1426}
1427
1428\f
1429/* Functions to work with right-hand sides. */
1430
b8698a0f 1431/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1432 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1435 retain VECT's sort order. */
1436static bool
b8698a0f
L
1437find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1439 bool compare_vinsns, int *indp)
1440{
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1443
1444 if (len == 0)
1445 {
1446 *indp = 0;
1447 return false;
1448 }
1449
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1452
1453 while (i <= j)
1454 {
1455 unsigned auid = arr[i].uid;
b8698a0f 1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1457
1458 if (auid == uid
b8698a0f
L
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
b8698a0f 1463 && (! compare_vinsns
e855c69d
AB
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1465 {
1466 *indp = i;
1467 return true;
1468 }
1469 else if (auid > uid)
1470 break;
1471 i++;
1472 }
1473
1474 *indp = i;
1475 return false;
1476}
1477
b8698a0f
L
1478/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
e855c69d
AB
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1481int
b8698a0f 1482find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1483 vinsn_t new_vinsn, bool originators_p)
1484{
1485 int ind;
1486
b8698a0f 1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1488 false, &ind))
1489 return ind;
1490
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1492 {
1493 unsigned uid;
1494 bitmap_iterator bi;
1495
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1499 }
b8698a0f 1500
e855c69d
AB
1501 return -1;
1502}
1503
b8698a0f
L
1504/* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
e855c69d
AB
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508void
1509insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
b8698a0f 1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1512 ds_t spec_ds)
1513{
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1518
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520
1521 if (res)
1522 {
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524
b8698a0f 1525 /* It is possible that speculation types of expressions that were
e855c69d
AB
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1531 }
b8698a0f 1532
e855c69d
AB
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1535 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1538
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1543}
1544
1545/* Free history vector PVECT. */
1546static void
1547free_history_vect (VEC (expr_history_def, heap) **pvect)
1548{
1549 unsigned i;
1550 expr_history_def *phist;
1551
1552 if (! *pvect)
1553 return;
b8698a0f
L
1554
1555 for (i = 0;
e855c69d
AB
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1558 {
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1561 }
b8698a0f 1562
e855c69d
AB
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1565}
1566
5d369d58
AB
1567/* Merge vector FROM to PVECT. */
1568static void
1569merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570 VEC (expr_history_def, heap) *from)
1571{
1572 expr_history_def *phist;
1573 int i;
1574
1575 /* We keep this vector sorted. */
1576 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577 insert_in_history_vect (pvect, phist->uid, phist->type,
1578 phist->old_expr_vinsn, phist->new_expr_vinsn,
1579 phist->spec_ds);
1580}
e855c69d
AB
1581
1582/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1583bool
1584vinsn_equal_p (vinsn_t x, vinsn_t y)
1585{
1586 rtx_equal_p_callback_function repcf;
1587
1588 if (x == y)
1589 return true;
1590
1591 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592 return false;
1593
1594 if (VINSN_HASH (x) != VINSN_HASH (y))
1595 return false;
1596
1597 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1598 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1599 {
1600 /* Compare RHSes of VINSNs. */
1601 gcc_assert (VINSN_RHS (x));
1602 gcc_assert (VINSN_RHS (y));
1603
1604 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1605 }
1606
1607 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1608}
1609\f
1610
1611/* Functions for working with expressions. */
1612
1613/* Initialize EXPR. */
1614static void
1615init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617 ds_t spec_to_check_ds, int orig_sched_cycle,
f3764768 1618 VEC(expr_history_def, heap) *history, signed char target_available,
e855c69d
AB
1619 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620 bool cant_move)
1621{
1622 vinsn_attach (vi);
1623
1624 EXPR_VINSN (expr) = vi;
1625 EXPR_SPEC (expr) = spec;
1626 EXPR_USEFULNESS (expr) = use;
1627 EXPR_PRIORITY (expr) = priority;
1628 EXPR_PRIORITY_ADJ (expr) = 0;
1629 EXPR_SCHED_TIMES (expr) = sched_times;
1630 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1634
1635 if (history)
1636 EXPR_HISTORY_OF_CHANGES (expr) = history;
1637 else
1638 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1639
1640 EXPR_TARGET_AVAILABLE (expr) = target_available;
1641 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642 EXPR_WAS_RENAMED (expr) = was_renamed;
1643 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644 EXPR_CANT_MOVE (expr) = cant_move;
1645}
1646
1647/* Make a copy of the expr FROM into the expr TO. */
1648void
1649copy_expr (expr_t to, expr_t from)
1650{
1651 VEC(expr_history_def, heap) *temp = NULL;
1652
1653 if (EXPR_HISTORY_OF_CHANGES (from))
1654 {
1655 unsigned i;
1656 expr_history_def *phist;
1657
1658 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1659 for (i = 0;
e855c69d
AB
1660 VEC_iterate (expr_history_def, temp, i, phist);
1661 i++)
1662 {
1663 vinsn_attach (phist->old_expr_vinsn);
1664 vinsn_attach (phist->new_expr_vinsn);
1665 }
1666 }
1667
b8698a0f 1668 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1669 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1672 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1673 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1674 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675 EXPR_CANT_MOVE (from));
1676}
1677
b8698a0f 1678/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1679 "uninteresting" data such as bitmap cache. */
1680void
1681copy_expr_onside (expr_t to, expr_t from)
1682{
1683 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688 EXPR_CANT_MOVE (from));
1689}
1690
1691/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1692 initializing new insns. */
1693static void
1694prepare_insn_expr (insn_t insn, int seqno)
1695{
1696 expr_t expr = INSN_EXPR (insn);
1697 ds_t ds;
b8698a0f 1698
e855c69d
AB
1699 INSN_SEQNO (insn) = seqno;
1700 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701 EXPR_SPEC (expr) = 0;
1702 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703 EXPR_WAS_SUBSTITUTED (expr) = 0;
1704 EXPR_WAS_RENAMED (expr) = 0;
1705 EXPR_TARGET_AVAILABLE (expr) = 1;
1706 INSN_LIVE_VALID_P (insn) = false;
1707
1708 /* ??? If this expression is speculative, make its dependence
1709 as weak as possible. We can filter this expression later
1710 in process_spec_exprs, because we do not distinguish
1711 between the status we got during compute_av_set and the
1712 existing status. To be fixed. */
1713 ds = EXPR_SPEC_DONE_DS (expr);
1714 if (ds)
1715 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1716
1717 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1718}
1719
1720/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1721 is non-null when expressions are merged from different successors at
e855c69d
AB
1722 a split point. */
1723static void
1724update_target_availability (expr_t to, expr_t from, insn_t split_point)
1725{
b8698a0f 1726 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1727 || EXPR_TARGET_AVAILABLE (from) < 0)
1728 EXPR_TARGET_AVAILABLE (to) = -1;
1729 else
1730 {
1731 /* We try to detect the case when one of the expressions
1732 can only be reached through another one. In this case,
1733 we can do better. */
1734 if (split_point == NULL)
1735 {
1736 int toind, fromind;
1737
1738 toind = EXPR_ORIG_BB_INDEX (to);
1739 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1740
e855c69d 1741 if (toind && toind == fromind)
b8698a0f 1742 /* Do nothing -- everything is done in
e855c69d
AB
1743 merge_with_other_exprs. */
1744 ;
1745 else
1746 EXPR_TARGET_AVAILABLE (to) = -1;
1747 }
1748 else
1749 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1750 }
1751}
1752
1753/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1754 is non-null when expressions are merged from different successors at
e855c69d
AB
1755 a split point. */
1756static void
1757update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1758{
1759 ds_t old_to_ds, old_from_ds;
1760
1761 old_to_ds = EXPR_SPEC_DONE_DS (to);
1762 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1763
e855c69d
AB
1764 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1765 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1766 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1767
1768 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1769 speculative with a control&data speculative one, we really have
e855c69d
AB
1770 to change vinsn too. Also, when speculative status is changed,
1771 we also need to record this as a transformation in expr's history. */
1772 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1773 {
1774 old_to_ds = ds_get_speculation_types (old_to_ds);
1775 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1776
e855c69d
AB
1777 if (old_to_ds != old_from_ds)
1778 {
1779 ds_t record_ds;
b8698a0f
L
1780
1781 /* When both expressions are speculative, we need to change
e855c69d
AB
1782 the vinsn first. */
1783 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1784 {
1785 int res;
b8698a0f 1786
e855c69d
AB
1787 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1788 gcc_assert (res >= 0);
1789 }
1790
1791 if (split_point != NULL)
1792 {
1793 /* Record the change with proper status. */
1794 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1795 record_ds &= ~(old_to_ds & SPECULATIVE);
1796 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1797
1798 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1799 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1800 EXPR_VINSN (from), EXPR_VINSN (to),
1801 record_ds);
1802 }
1803 }
1804 }
1805}
1806
1807
1808/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1809 this is done along different paths. */
1810void
1811merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1812{
e855c69d
AB
1813 /* For now, we just set the spec of resulting expr to be minimum of the specs
1814 of merged exprs. */
1815 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1816 EXPR_SPEC (to) = EXPR_SPEC (from);
1817
1818 if (split_point)
1819 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1820 else
b8698a0f 1821 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1822 EXPR_USEFULNESS (from));
1823
1824 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1825 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1826
1827 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1828 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1829
1830 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1831 EXPR_ORIG_BB_INDEX (to) = 0;
1832
b8698a0f 1833 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1834 EXPR_ORIG_SCHED_CYCLE (from));
1835
e855c69d
AB
1836 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1837 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1838 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1839
5d369d58
AB
1840 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1841 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1842 update_target_availability (to, from, split_point);
1843 update_speculative_bits (to, from, split_point);
1844}
1845
1846/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1847 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1848 are merged from different successors at a split point. */
1849void
1850merge_expr (expr_t to, expr_t from, insn_t split_point)
1851{
1852 vinsn_t to_vi = EXPR_VINSN (to);
1853 vinsn_t from_vi = EXPR_VINSN (from);
1854
1855 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1856
1857 /* Make sure that speculative pattern is propagated into exprs that
1858 have non-speculative one. This will provide us with consistent
1859 speculative bits and speculative patterns inside expr. */
1860 if (EXPR_SPEC_DONE_DS (to) == 0
1861 && EXPR_SPEC_DONE_DS (from) != 0)
1862 change_vinsn_in_expr (to, EXPR_VINSN (from));
1863
1864 merge_expr_data (to, from, split_point);
1865 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1866}
1867
1868/* Clear the information of this EXPR. */
1869void
1870clear_expr (expr_t expr)
1871{
b8698a0f 1872
e855c69d
AB
1873 vinsn_detach (EXPR_VINSN (expr));
1874 EXPR_VINSN (expr) = NULL;
1875
1876 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1877}
1878
1879/* For a given LV_SET, mark EXPR having unavailable target register. */
1880static void
1881set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1882{
1883 if (EXPR_SEPARABLE_P (expr))
1884 {
1885 if (REG_P (EXPR_LHS (expr))
1886 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1887 {
b8698a0f
L
1888 /* If it's an insn like r1 = use (r1, ...), and it exists in
1889 different forms in each of the av_sets being merged, we can't say
1890 whether original destination register is available or not.
1891 However, this still works if destination register is not used
e855c69d
AB
1892 in the original expression: if the branch at which LV_SET we're
1893 looking here is not actually 'other branch' in sense that same
b8698a0f 1894 expression is available through it (but it can't be determined
e855c69d 1895 at computation stage because of transformations on one of the
b8698a0f
L
1896 branches), it still won't affect the availability.
1897 Liveness of a register somewhere on a code motion path means
1898 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1899 'other' branch, live at the point immediately following
1900 the original operation, or is read by the original operation.
1901 The latter case is filtered out in the condition below.
1902 It still doesn't cover the case when register is defined and used
1903 somewhere within the code motion path, and in this case we could
1904 miss a unifying code motion along both branches using a renamed
1905 register, but it won't affect a code correctness since upon
1906 an actual code motion a bookkeeping code would be generated. */
b8698a0f 1907 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1908 REGNO (EXPR_LHS (expr))))
1909 EXPR_TARGET_AVAILABLE (expr) = -1;
1910 else
1911 EXPR_TARGET_AVAILABLE (expr) = false;
1912 }
1913 }
1914 else
1915 {
1916 unsigned regno;
1917 reg_set_iterator rsi;
b8698a0f
L
1918
1919 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1920 0, regno, rsi)
1921 if (bitmap_bit_p (lv_set, regno))
1922 {
1923 EXPR_TARGET_AVAILABLE (expr) = false;
1924 break;
1925 }
1926
1927 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1928 0, regno, rsi)
1929 if (bitmap_bit_p (lv_set, regno))
1930 {
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1932 break;
1933 }
1934 }
1935}
1936
b8698a0f 1937/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1938 or dependence status have changed, 2 when also the target register
1939 became unavailable, 0 if nothing had to be changed. */
1940int
1941speculate_expr (expr_t expr, ds_t ds)
1942{
1943 int res;
1944 rtx orig_insn_rtx;
1945 rtx spec_pat;
1946 ds_t target_ds, current_ds;
1947
1948 /* Obtain the status we need to put on EXPR. */
1949 target_ds = (ds & SPECULATIVE);
1950 current_ds = EXPR_SPEC_DONE_DS (expr);
1951 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1952
1953 orig_insn_rtx = EXPR_INSN_RTX (expr);
1954
1955 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1956
1957 switch (res)
1958 {
1959 case 0:
1960 EXPR_SPEC_DONE_DS (expr) = ds;
1961 return current_ds != ds ? 1 : 0;
b8698a0f 1962
e855c69d
AB
1963 case 1:
1964 {
1965 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1966 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1967
1968 change_vinsn_in_expr (expr, spec_vinsn);
1969 EXPR_SPEC_DONE_DS (expr) = ds;
1970 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1971
b8698a0f 1972 /* Do not allow clobbering the address register of speculative
e855c69d 1973 insns. */
b8698a0f 1974 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1975 expr_dest_regno (expr)))
1976 {
1977 EXPR_TARGET_AVAILABLE (expr) = false;
1978 return 2;
1979 }
1980
1981 return 1;
1982 }
1983
1984 case -1:
1985 return -1;
1986
1987 default:
1988 gcc_unreachable ();
1989 return -1;
1990 }
1991}
1992
1993/* Return a destination register, if any, of EXPR. */
1994rtx
1995expr_dest_reg (expr_t expr)
1996{
1997 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1998
1999 if (dest != NULL_RTX && REG_P (dest))
2000 return dest;
2001
2002 return NULL_RTX;
2003}
2004
2005/* Returns the REGNO of the R's destination. */
2006unsigned
2007expr_dest_regno (expr_t expr)
2008{
2009 rtx dest = expr_dest_reg (expr);
2010
2011 gcc_assert (dest != NULL_RTX);
2012 return REGNO (dest);
2013}
2014
b8698a0f 2015/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2016 AV_SET having unavailable target register. */
2017void
2018mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2019{
2020 expr_t expr;
2021 av_set_iterator avi;
2022
2023 FOR_EACH_EXPR (expr, avi, join_set)
2024 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2025 set_unavailable_target_for_expr (expr, lv_set);
2026}
2027\f
2028
2029/* Av set functions. */
2030
2031/* Add a new element to av set SETP.
2032 Return the element added. */
2033static av_set_t
2034av_set_add_element (av_set_t *setp)
2035{
2036 /* Insert at the beginning of the list. */
2037 _list_add (setp);
2038 return *setp;
2039}
2040
2041/* Add EXPR to SETP. */
2042void
2043av_set_add (av_set_t *setp, expr_t expr)
2044{
2045 av_set_t elem;
b8698a0f 2046
e855c69d
AB
2047 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2048 elem = av_set_add_element (setp);
2049 copy_expr (_AV_SET_EXPR (elem), expr);
2050}
2051
2052/* Same, but do not copy EXPR. */
2053static void
2054av_set_add_nocopy (av_set_t *setp, expr_t expr)
2055{
2056 av_set_t elem;
2057
2058 elem = av_set_add_element (setp);
2059 *_AV_SET_EXPR (elem) = *expr;
2060}
2061
2062/* Remove expr pointed to by IP from the av_set. */
2063void
2064av_set_iter_remove (av_set_iterator *ip)
2065{
2066 clear_expr (_AV_SET_EXPR (*ip->lp));
2067 _list_iter_remove (ip);
2068}
2069
2070/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2071 sense of vinsn_equal_p function. Return NULL if no such expr is
2072 in SET was found. */
2073expr_t
2074av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2075{
2076 expr_t expr;
2077 av_set_iterator i;
2078
2079 FOR_EACH_EXPR (expr, i, set)
2080 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2081 return expr;
2082 return NULL;
2083}
2084
2085/* Same, but also remove the EXPR found. */
2086static expr_t
2087av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2088{
2089 expr_t expr;
2090 av_set_iterator i;
2091
2092 FOR_EACH_EXPR_1 (expr, i, setp)
2093 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2094 {
2095 _list_iter_remove_nofree (&i);
2096 return expr;
2097 }
2098 return NULL;
2099}
2100
2101/* Search for an expr in SET, such that it's equivalent to EXPR in the
2102 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2103 Returns NULL if no such expr is in SET was found. */
2104static expr_t
2105av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2106{
2107 expr_t cur_expr;
2108 av_set_iterator i;
2109
2110 FOR_EACH_EXPR (cur_expr, i, set)
2111 {
2112 if (cur_expr == expr)
2113 continue;
2114 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2115 return cur_expr;
2116 }
2117
2118 return NULL;
2119}
2120
2121/* If other expression is already in AVP, remove one of them. */
2122expr_t
2123merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2124{
2125 expr_t expr2;
2126
2127 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2128 if (expr2 != NULL)
2129 {
2130 /* Reset target availability on merge, since taking it only from one
2131 of the exprs would be controversial for different code. */
2132 EXPR_TARGET_AVAILABLE (expr2) = -1;
2133 EXPR_USEFULNESS (expr2) = 0;
2134
2135 merge_expr (expr2, expr, NULL);
b8698a0f 2136
e855c69d
AB
2137 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2138 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2139
e855c69d
AB
2140 av_set_iter_remove (ip);
2141 return expr2;
2142 }
2143
2144 return expr;
2145}
2146
2147/* Return true if there is an expr that correlates to VI in SET. */
2148bool
2149av_set_is_in_p (av_set_t set, vinsn_t vi)
2150{
2151 return av_set_lookup (set, vi) != NULL;
2152}
2153
2154/* Return a copy of SET. */
2155av_set_t
2156av_set_copy (av_set_t set)
2157{
2158 expr_t expr;
2159 av_set_iterator i;
2160 av_set_t res = NULL;
2161
2162 FOR_EACH_EXPR (expr, i, set)
2163 av_set_add (&res, expr);
2164
2165 return res;
2166}
2167
2168/* Join two av sets that do not have common elements by attaching second set
2169 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2170 _AV_SET_NEXT of first set's last element). */
2171static void
2172join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2173{
2174 gcc_assert (*to_tailp == NULL);
2175 *to_tailp = *fromp;
2176 *fromp = NULL;
2177}
2178
2179/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2180 pointed to by FROMP afterwards. */
2181void
2182av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2183{
2184 expr_t expr1;
2185 av_set_iterator i;
2186
2187 /* Delete from TOP all exprs, that present in FROMP. */
2188 FOR_EACH_EXPR_1 (expr1, i, top)
2189 {
2190 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2191
2192 if (expr2)
2193 {
2194 merge_expr (expr2, expr1, insn);
2195 av_set_iter_remove (&i);
2196 }
2197 }
2198
2199 join_distinct_sets (i.lp, fromp);
2200}
2201
b8698a0f 2202/* Same as above, but also update availability of target register in
e855c69d
AB
2203 TOP judging by TO_LV_SET and FROM_LV_SET. */
2204void
2205av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2206 regset from_lv_set, insn_t insn)
2207{
2208 expr_t expr1;
2209 av_set_iterator i;
2210 av_set_t *to_tailp, in_both_set = NULL;
2211
2212 /* Delete from TOP all expres, that present in FROMP. */
2213 FOR_EACH_EXPR_1 (expr1, i, top)
2214 {
2215 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2216
2217 if (expr2)
2218 {
b8698a0f 2219 /* It may be that the expressions have different destination
e855c69d
AB
2220 registers, in which case we need to check liveness here. */
2221 if (EXPR_SEPARABLE_P (expr1))
2222 {
b8698a0f 2223 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2224 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2225 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2226 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2227
2228 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2229 *other* register on the current path, we did it only
2230 for the current target register. Give up. */
2231 if (regno1 != regno2)
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2233 }
2234 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2235 EXPR_TARGET_AVAILABLE (expr2) = -1;
2236
2237 merge_expr (expr2, expr1, insn);
2238 av_set_add_nocopy (&in_both_set, expr2);
2239 av_set_iter_remove (&i);
2240 }
2241 else
b8698a0f 2242 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2243 FROM_LV_SET. */
2244 set_unavailable_target_for_expr (expr1, from_lv_set);
2245 }
2246 to_tailp = i.lp;
2247
2248 /* These expressions are not present in TOP. Check liveness
2249 restrictions on TO_LV_SET. */
2250 FOR_EACH_EXPR (expr1, i, *fromp)
2251 set_unavailable_target_for_expr (expr1, to_lv_set);
2252
2253 join_distinct_sets (i.lp, &in_both_set);
2254 join_distinct_sets (to_tailp, fromp);
2255}
2256
2257/* Clear av_set pointed to by SETP. */
2258void
2259av_set_clear (av_set_t *setp)
2260{
2261 expr_t expr;
2262 av_set_iterator i;
2263
2264 FOR_EACH_EXPR_1 (expr, i, setp)
2265 av_set_iter_remove (&i);
2266
2267 gcc_assert (*setp == NULL);
2268}
2269
2270/* Leave only one non-speculative element in the SETP. */
2271void
2272av_set_leave_one_nonspec (av_set_t *setp)
2273{
2274 expr_t expr;
2275 av_set_iterator i;
2276 bool has_one_nonspec = false;
2277
b8698a0f 2278 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2279 (the first one). */
2280 FOR_EACH_EXPR_1 (expr, i, setp)
2281 {
2282 if (!EXPR_SPEC_DONE_DS (expr))
2283 {
2284 if (has_one_nonspec)
2285 av_set_iter_remove (&i);
2286 else
2287 has_one_nonspec = true;
2288 }
2289 }
2290}
2291
2292/* Return the N'th element of the SET. */
2293expr_t
2294av_set_element (av_set_t set, int n)
2295{
2296 expr_t expr;
2297 av_set_iterator i;
2298
2299 FOR_EACH_EXPR (expr, i, set)
2300 if (n-- == 0)
2301 return expr;
2302
2303 gcc_unreachable ();
2304 return NULL;
2305}
2306
2307/* Deletes all expressions from AVP that are conditional branches (IFs). */
2308void
2309av_set_substract_cond_branches (av_set_t *avp)
2310{
2311 av_set_iterator i;
2312 expr_t expr;
2313
2314 FOR_EACH_EXPR_1 (expr, i, avp)
2315 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2316 av_set_iter_remove (&i);
2317}
2318
b8698a0f 2319/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2320 value PROB / ALL_PROB. */
2321void
2322av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2323{
2324 av_set_iterator i;
2325 expr_t expr;
2326
2327 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2328 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2329 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2330 : 0);
2331}
2332
2333/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2334 and return it, merging history expressions. */
e855c69d 2335void
5d369d58 2336av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2337{
2338 av_set_iterator i;
5d369d58 2339 expr_t expr, expr2;
e855c69d
AB
2340
2341 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2342 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2343 av_set_iter_remove (&i);
5d369d58
AB
2344 else
2345 /* When updating av sets in bookkeeping blocks, we can add more insns
2346 there which will be transformed but the upper av sets will not
2347 reflect those transformations. We then fail to undo those
2348 when searching for such insns. So merge the history saved
2349 in the av set of the block we are processing. */
2350 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2351 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2352}
2353
2354\f
2355
2356/* Dependence hooks to initialize insn data. */
2357
2358/* This is used in hooks callable from dependence analysis when initializing
2359 instruction's data. */
2360static struct
2361{
2362 /* Where the dependence was found (lhs/rhs). */
2363 deps_where_t where;
2364
2365 /* The actual data object to initialize. */
2366 idata_t id;
2367
2368 /* True when the insn should not be made clonable. */
2369 bool force_unique_p;
2370
2371 /* True when insn should be treated as of type USE, i.e. never renamed. */
2372 bool force_use_p;
2373} deps_init_id_data;
2374
2375
b8698a0f 2376/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2377 clonable. */
2378static void
2379setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2380{
2381 int type;
b8698a0f 2382
e855c69d
AB
2383 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2384 That clonable insns which can be separated into lhs and rhs have type SET.
2385 Other clonable insns have type USE. */
2386 type = GET_CODE (insn);
2387
2388 /* Only regular insns could be cloned. */
2389 if (type == INSN && !force_unique_p)
2390 type = SET;
2391 else if (type == JUMP_INSN && simplejump_p (insn))
2392 type = PC;
b5b8b0ac
AO
2393 else if (type == DEBUG_INSN)
2394 type = !force_unique_p ? USE : INSN;
b8698a0f 2395
e855c69d
AB
2396 IDATA_TYPE (id) = type;
2397 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2398 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2399 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2400}
2401
2402/* Start initializing insn data. */
2403static void
2404deps_init_id_start_insn (insn_t insn)
2405{
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2407
2408 setup_id_for_insn (deps_init_id_data.id, insn,
2409 deps_init_id_data.force_unique_p);
2410 deps_init_id_data.where = DEPS_IN_INSN;
2411}
2412
2413/* Start initializing lhs data. */
2414static void
2415deps_init_id_start_lhs (rtx lhs)
2416{
2417 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2418 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2419
2420 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2421 {
2422 IDATA_LHS (deps_init_id_data.id) = lhs;
2423 deps_init_id_data.where = DEPS_IN_LHS;
2424 }
2425}
2426
2427/* Finish initializing lhs data. */
2428static void
2429deps_init_id_finish_lhs (void)
2430{
2431 deps_init_id_data.where = DEPS_IN_INSN;
2432}
2433
2434/* Note a set of REGNO. */
2435static void
2436deps_init_id_note_reg_set (int regno)
2437{
2438 haifa_note_reg_set (regno);
2439
2440 if (deps_init_id_data.where == DEPS_IN_RHS)
2441 deps_init_id_data.force_use_p = true;
2442
2443 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2444 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2445
2446#ifdef STACK_REGS
b8698a0f 2447 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2448 renaming to avoid issues with find_used_regs. */
2449 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2450 deps_init_id_data.force_use_p = true;
2451#endif
2452}
2453
2454/* Note a clobber of REGNO. */
2455static void
2456deps_init_id_note_reg_clobber (int regno)
2457{
2458 haifa_note_reg_clobber (regno);
2459
2460 if (deps_init_id_data.where == DEPS_IN_RHS)
2461 deps_init_id_data.force_use_p = true;
2462
2463 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2464 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2465}
2466
2467/* Note a use of REGNO. */
2468static void
2469deps_init_id_note_reg_use (int regno)
2470{
2471 haifa_note_reg_use (regno);
2472
2473 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2474 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2475}
2476
2477/* Start initializing rhs data. */
2478static void
2479deps_init_id_start_rhs (rtx rhs)
2480{
2481 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2482
2483 /* And there was no sel_deps_reset_to_insn (). */
2484 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2485 {
2486 IDATA_RHS (deps_init_id_data.id) = rhs;
2487 deps_init_id_data.where = DEPS_IN_RHS;
2488 }
2489}
2490
2491/* Finish initializing rhs data. */
2492static void
2493deps_init_id_finish_rhs (void)
2494{
2495 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2496 || deps_init_id_data.where == DEPS_IN_INSN);
2497 deps_init_id_data.where = DEPS_IN_INSN;
2498}
2499
2500/* Finish initializing insn data. */
2501static void
2502deps_init_id_finish_insn (void)
2503{
2504 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2505
2506 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2507 {
2508 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2509 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2510
2511 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2512 || deps_init_id_data.force_use_p)
2513 {
b8698a0f 2514 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2515 separately. However, we still want to have them recorded
b8698a0f 2516 for the purposes of substitution. That's why we don't
e855c69d
AB
2517 simply call downgrade_to_use () here. */
2518 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2519 gcc_assert (!lhs == !rhs);
2520
2521 IDATA_TYPE (deps_init_id_data.id) = USE;
2522 }
2523 }
2524
2525 deps_init_id_data.where = DEPS_IN_NOWHERE;
2526}
2527
2528/* This is dependence info used for initializing insn's data. */
2529static struct sched_deps_info_def deps_init_id_sched_deps_info;
2530
2531/* This initializes most of the static part of the above structure. */
2532static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2533 {
2534 NULL,
2535
2536 deps_init_id_start_insn,
2537 deps_init_id_finish_insn,
2538 deps_init_id_start_lhs,
2539 deps_init_id_finish_lhs,
2540 deps_init_id_start_rhs,
2541 deps_init_id_finish_rhs,
2542 deps_init_id_note_reg_set,
2543 deps_init_id_note_reg_clobber,
2544 deps_init_id_note_reg_use,
2545 NULL, /* note_mem_dep */
2546 NULL, /* note_dep */
2547
2548 0, /* use_cselib */
2549 0, /* use_deps_list */
2550 0 /* generate_spec_deps */
2551 };
2552
2553/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2554 we don't actually need information about lhs and rhs. */
2555static void
2556setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2557{
2558 rtx pat = PATTERN (insn);
b8698a0f 2559
481683e1 2560 if (NONJUMP_INSN_P (insn)
b8698a0f 2561 && GET_CODE (pat) == SET
e855c69d
AB
2562 && !force_unique_p)
2563 {
2564 IDATA_RHS (id) = SET_SRC (pat);
2565 IDATA_LHS (id) = SET_DEST (pat);
2566 }
2567 else
2568 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2569}
2570
2571/* Possibly downgrade INSN to USE. */
2572static void
2573maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2574{
2575 bool must_be_use = false;
2576 unsigned uid = INSN_UID (insn);
57512f53 2577 df_ref *rec;
e855c69d
AB
2578 rtx lhs = IDATA_LHS (id);
2579 rtx rhs = IDATA_RHS (id);
b8698a0f 2580
e855c69d
AB
2581 /* We downgrade only SETs. */
2582 if (IDATA_TYPE (id) != SET)
2583 return;
2584
2585 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2586 {
2587 IDATA_TYPE (id) = USE;
2588 return;
2589 }
b8698a0f 2590
e855c69d
AB
2591 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2592 {
57512f53 2593 df_ref def = *rec;
b8698a0f 2594
e855c69d
AB
2595 if (DF_REF_INSN (def)
2596 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2597 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2598 {
2599 must_be_use = true;
2600 break;
2601 }
2602
2603#ifdef STACK_REGS
b8698a0f 2604 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2605 renaming to avoid issues with find_used_regs. */
2606 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2607 {
2608 must_be_use = true;
2609 break;
2610 }
2611#endif
b8698a0f
L
2612 }
2613
e855c69d
AB
2614 if (must_be_use)
2615 IDATA_TYPE (id) = USE;
2616}
2617
2618/* Setup register sets describing INSN in ID. */
2619static void
2620setup_id_reg_sets (idata_t id, insn_t insn)
2621{
2622 unsigned uid = INSN_UID (insn);
57512f53 2623 df_ref *rec;
e855c69d 2624 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2625
e855c69d
AB
2626 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2627 {
57512f53 2628 df_ref def = *rec;
e855c69d 2629 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2630
e855c69d
AB
2631 /* Post modifies are treated like clobbers by sched-deps.c. */
2632 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2633 | DF_REF_PRE_POST_MODIFY)))
2634 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2635 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2636 {
2637 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2638
2639#ifdef STACK_REGS
b8698a0f 2640 /* For stack registers, treat writes to them as writes
e855c69d
AB
2641 to the first one to be consistent with sched-deps.c. */
2642 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2643 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2644#endif
2645 }
2646 /* Mark special refs that generate read/write def pair. */
2647 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2648 || regno == STACK_POINTER_REGNUM)
2649 bitmap_set_bit (tmp, regno);
2650 }
b8698a0f 2651
e855c69d
AB
2652 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2653 {
57512f53 2654 df_ref use = *rec;
e855c69d
AB
2655 unsigned int regno = DF_REF_REGNO (use);
2656
2657 /* When these refs are met for the first time, skip them, as
2658 these uses are just counterparts of some defs. */
2659 if (bitmap_bit_p (tmp, regno))
2660 bitmap_clear_bit (tmp, regno);
2661 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2662 {
2663 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2664
2665#ifdef STACK_REGS
b8698a0f 2666 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2667 the first one to be consistent with sched-deps.c. */
2668 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2669 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2670#endif
2671 }
2672 }
2673
2674 return_regset_to_pool (tmp);
2675}
2676
2677/* Initialize instruction data for INSN in ID using DF's data. */
2678static void
2679init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2680{
2681 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2682
2683 setup_id_for_insn (id, insn, force_unique_p);
2684 setup_id_lhs_rhs (id, insn, force_unique_p);
2685
2686 if (INSN_NOP_P (insn))
2687 return;
2688
2689 maybe_downgrade_id_to_use (id, insn);
2690 setup_id_reg_sets (id, insn);
2691}
2692
2693/* Initialize instruction data for INSN in ID. */
2694static void
2695deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2696{
88302d54 2697 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2698
2699 deps_init_id_data.where = DEPS_IN_NOWHERE;
2700 deps_init_id_data.id = id;
2701 deps_init_id_data.force_unique_p = force_unique_p;
2702 deps_init_id_data.force_use_p = false;
2703
bcf33775 2704 init_deps (dc, false);
e855c69d
AB
2705
2706 memcpy (&deps_init_id_sched_deps_info,
2707 &const_deps_init_id_sched_deps_info,
2708 sizeof (deps_init_id_sched_deps_info));
2709
2710 if (spec_info != NULL)
2711 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2712
2713 sched_deps_info = &deps_init_id_sched_deps_info;
2714
2715 deps_analyze_insn (dc, insn);
2716
2717 free_deps (dc);
2718
2719 deps_init_id_data.id = NULL;
2720}
2721
2722\f
2723
2724/* Implement hooks for collecting fundamental insn properties like if insn is
2725 an ASM or is within a SCHED_GROUP. */
2726
2727/* True when a "one-time init" data for INSN was already inited. */
2728static bool
2729first_time_insn_init (insn_t insn)
2730{
2731 return INSN_LIVE (insn) == NULL;
2732}
2733
2734/* Hash an entry in a transformed_insns hashtable. */
2735static hashval_t
2736hash_transformed_insns (const void *p)
2737{
2738 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2739}
2740
2741/* Compare the entries in a transformed_insns hashtable. */
2742static int
2743eq_transformed_insns (const void *p, const void *q)
2744{
2745 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2746 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2747
2748 if (INSN_UID (i1) == INSN_UID (i2))
2749 return 1;
2750 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2751}
2752
2753/* Free an entry in a transformed_insns hashtable. */
2754static void
2755free_transformed_insns (void *p)
2756{
2757 struct transformed_insns *pti = (struct transformed_insns *) p;
2758
2759 vinsn_detach (pti->vinsn_old);
2760 vinsn_detach (pti->vinsn_new);
2761 free (pti);
2762}
2763
b8698a0f 2764/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2765 we first see the insn. */
2766static void
2767init_first_time_insn_data (insn_t insn)
2768{
2769 /* This should not be set if this is the first time we init data for
2770 insn. */
2771 gcc_assert (first_time_insn_init (insn));
b8698a0f 2772
e855c69d
AB
2773 /* These are needed for nops too. */
2774 INSN_LIVE (insn) = get_regset_from_pool ();
2775 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2776
e855c69d
AB
2777 if (!INSN_NOP_P (insn))
2778 {
2779 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2780 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2781 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2782 = htab_create (16, hash_transformed_insns,
2783 eq_transformed_insns, free_transformed_insns);
bcf33775 2784 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2785 }
2786}
2787
b8698a0f 2788/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2789 Used for extra-large basic blocks. */
2790void
2791free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2792{
2793 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2794
bcf33775
AB
2795 if (! INSN_ANALYZED_DEPS (insn))
2796 return;
b8698a0f 2797
e855c69d
AB
2798 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2799 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2800 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2801
e855c69d
AB
2802 /* This is allocated only for bookkeeping insns. */
2803 if (INSN_ORIGINATORS (insn))
2804 BITMAP_FREE (INSN_ORIGINATORS (insn));
2805 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2806
2807 INSN_ANALYZED_DEPS (insn) = NULL;
2808
b8698a0f 2809 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2810 the deps context (as we believe that it should not happen). */
2811 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2812}
2813
2814/* Free the same data as above for INSN. */
2815static void
2816free_first_time_insn_data (insn_t insn)
2817{
2818 gcc_assert (! first_time_insn_init (insn));
2819
2820 free_data_for_scheduled_insn (insn);
2821 return_regset_to_pool (INSN_LIVE (insn));
2822 INSN_LIVE (insn) = NULL;
2823 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2824}
2825
2826/* Initialize region-scope data structures for basic blocks. */
2827static void
2828init_global_and_expr_for_bb (basic_block bb)
2829{
2830 if (sel_bb_empty_p (bb))
2831 return;
2832
2833 invalidate_av_set (bb);
2834}
2835
2836/* Data for global dependency analysis (to initialize CANT_MOVE and
2837 SCHED_GROUP_P). */
2838static struct
2839{
2840 /* Previous insn. */
2841 insn_t prev_insn;
2842} init_global_data;
2843
2844/* Determine if INSN is in the sched_group, is an asm or should not be
2845 cloned. After that initialize its expr. */
2846static void
2847init_global_and_expr_for_insn (insn_t insn)
2848{
2849 if (LABEL_P (insn))
2850 return;
2851
2852 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2853 {
2854 init_global_data.prev_insn = NULL_RTX;
2855 return;
2856 }
2857
2858 gcc_assert (INSN_P (insn));
2859
2860 if (SCHED_GROUP_P (insn))
2861 /* Setup a sched_group. */
2862 {
2863 insn_t prev_insn = init_global_data.prev_insn;
2864
2865 if (prev_insn)
2866 INSN_SCHED_NEXT (prev_insn) = insn;
2867
2868 init_global_data.prev_insn = insn;
2869 }
2870 else
2871 init_global_data.prev_insn = NULL_RTX;
2872
2873 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2874 || asm_noperands (PATTERN (insn)) >= 0)
2875 /* Mark INSN as an asm. */
2876 INSN_ASM_P (insn) = true;
2877
2878 {
2879 bool force_unique_p;
2880 ds_t spec_done_ds;
2881
cfeb0fa8
AB
2882 /* Certain instructions cannot be cloned, and frame related insns and
2883 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2884 their block. */
2885 if (prologue_epilogue_contains (insn))
2886 {
2887 if (RTX_FRAME_RELATED_P (insn))
2888 CANT_MOVE (insn) = 1;
2889 else
2890 {
2891 rtx note;
2892 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2893 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2894 && ((enum insn_note) INTVAL (XEXP (note, 0))
2895 == NOTE_INSN_EPILOGUE_BEG))
2896 {
2897 CANT_MOVE (insn) = 1;
2898 break;
2899 }
2900 }
2901 force_unique_p = true;
2902 }
e855c69d 2903 else
cfeb0fa8
AB
2904 if (CANT_MOVE (insn)
2905 || INSN_ASM_P (insn)
2906 || SCHED_GROUP_P (insn)
2907 /* Exception handling insns are always unique. */
2908 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2909 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2910 || control_flow_insn_p (insn))
2911 force_unique_p = true;
2912 else
2913 force_unique_p = false;
e855c69d
AB
2914
2915 if (targetm.sched.get_insn_spec_ds)
2916 {
2917 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2918 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2919 }
2920 else
2921 spec_done_ds = 0;
2922
2923 /* Initialize INSN's expr. */
2924 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2925 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 2926 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
2927 CANT_MOVE (insn));
2928 }
2929
2930 init_first_time_insn_data (insn);
2931}
2932
2933/* Scan the region and initialize instruction data for basic blocks BBS. */
2934void
2935sel_init_global_and_expr (bb_vec_t bbs)
2936{
2937 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2938 const struct sched_scan_info_def ssi =
2939 {
2940 NULL, /* extend_bb */
2941 init_global_and_expr_for_bb, /* init_bb */
2942 extend_insn_data, /* extend_insn */
2943 init_global_and_expr_for_insn /* init_insn */
2944 };
b8698a0f 2945
e855c69d
AB
2946 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2947}
2948
2949/* Finalize region-scope data structures for basic blocks. */
2950static void
2951finish_global_and_expr_for_bb (basic_block bb)
2952{
2953 av_set_clear (&BB_AV_SET (bb));
2954 BB_AV_LEVEL (bb) = 0;
2955}
2956
2957/* Finalize INSN's data. */
2958static void
2959finish_global_and_expr_insn (insn_t insn)
2960{
2961 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2962 return;
2963
2964 gcc_assert (INSN_P (insn));
2965
2966 if (INSN_LUID (insn) > 0)
2967 {
2968 free_first_time_insn_data (insn);
2969 INSN_WS_LEVEL (insn) = 0;
2970 CANT_MOVE (insn) = 0;
b8698a0f
L
2971
2972 /* We can no longer assert this, as vinsns of this insn could be
2973 easily live in other insn's caches. This should be changed to
e855c69d
AB
2974 a counter-like approach among all vinsns. */
2975 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2976 clear_expr (INSN_EXPR (insn));
2977 }
2978}
2979
2980/* Finalize per instruction data for the whole region. */
2981void
2982sel_finish_global_and_expr (void)
2983{
2984 {
2985 bb_vec_t bbs;
2986 int i;
2987
2988 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2989
2990 for (i = 0; i < current_nr_blocks; i++)
2991 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2992
2993 /* Clear AV_SETs and INSN_EXPRs. */
2994 {
2995 const struct sched_scan_info_def ssi =
2996 {
2997 NULL, /* extend_bb */
2998 finish_global_and_expr_for_bb, /* init_bb */
2999 NULL, /* extend_insn */
3000 finish_global_and_expr_insn /* init_insn */
3001 };
3002
3003 sched_scan (&ssi, bbs, NULL, NULL, NULL);
3004 }
3005
3006 VEC_free (basic_block, heap, bbs);
3007 }
3008
3009 finish_insns ();
3010}
3011\f
3012
b8698a0f
L
3013/* In the below hooks, we merely calculate whether or not a dependence
3014 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3015 when we'll start caching dependence requests. */
3016
3017/* Container to hold information for dependency analysis. */
3018static struct
3019{
3020 deps_t dc;
3021
3022 /* A variable to track which part of rtx we are scanning in
3023 sched-deps.c: sched_analyze_insn (). */
3024 deps_where_t where;
3025
3026 /* Current producer. */
3027 insn_t pro;
3028
3029 /* Current consumer. */
3030 vinsn_t con;
3031
3032 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3033 X is from { INSN, LHS, RHS }. */
3034 ds_t has_dep_p[DEPS_IN_NOWHERE];
3035} has_dependence_data;
3036
3037/* Start analyzing dependencies of INSN. */
3038static void
3039has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3040{
3041 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3042
3043 has_dependence_data.where = DEPS_IN_INSN;
3044}
3045
3046/* Finish analyzing dependencies of an insn. */
3047static void
3048has_dependence_finish_insn (void)
3049{
3050 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3051
3052 has_dependence_data.where = DEPS_IN_NOWHERE;
3053}
3054
3055/* Start analyzing dependencies of LHS. */
3056static void
3057has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3058{
3059 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3060
3061 if (VINSN_LHS (has_dependence_data.con) != NULL)
3062 has_dependence_data.where = DEPS_IN_LHS;
3063}
3064
3065/* Finish analyzing dependencies of an lhs. */
3066static void
3067has_dependence_finish_lhs (void)
3068{
3069 has_dependence_data.where = DEPS_IN_INSN;
3070}
3071
3072/* Start analyzing dependencies of RHS. */
3073static void
3074has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3075{
3076 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3077
3078 if (VINSN_RHS (has_dependence_data.con) != NULL)
3079 has_dependence_data.where = DEPS_IN_RHS;
3080}
3081
3082/* Start analyzing dependencies of an rhs. */
3083static void
3084has_dependence_finish_rhs (void)
3085{
3086 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3087 || has_dependence_data.where == DEPS_IN_INSN);
3088
3089 has_dependence_data.where = DEPS_IN_INSN;
3090}
3091
3092/* Note a set of REGNO. */
3093static void
3094has_dependence_note_reg_set (int regno)
3095{
3096 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3097
3098 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3099 VINSN_INSN_RTX
3100 (has_dependence_data.con)))
3101 {
3102 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3103
3104 if (reg_last->sets != NULL
3105 || reg_last->clobbers != NULL)
3106 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3107
3108 if (reg_last->uses)
3109 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3110 }
3111}
3112
3113/* Note a clobber of REGNO. */
3114static void
3115has_dependence_note_reg_clobber (int regno)
3116{
3117 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3118
3119 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3120 VINSN_INSN_RTX
3121 (has_dependence_data.con)))
3122 {
3123 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3124
3125 if (reg_last->sets)
3126 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3127
e855c69d
AB
3128 if (reg_last->uses)
3129 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3130 }
3131}
3132
3133/* Note a use of REGNO. */
3134static void
3135has_dependence_note_reg_use (int regno)
3136{
3137 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3138
3139 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3140 VINSN_INSN_RTX
3141 (has_dependence_data.con)))
3142 {
3143 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3144
3145 if (reg_last->sets)
3146 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3147
3148 if (reg_last->clobbers)
3149 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3150
3151 /* Handle BE_IN_SPEC. */
3152 if (reg_last->uses)
3153 {
3154 ds_t pro_spec_checked_ds;
3155
3156 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3157 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3158
3159 if (pro_spec_checked_ds != 0)
3160 /* Merge BE_IN_SPEC bits into *DSP. */
3161 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3162 NULL_RTX, NULL_RTX);
3163 }
3164 }
3165}
3166
3167/* Note a memory dependence. */
3168static void
3169has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3170 rtx pending_mem ATTRIBUTE_UNUSED,
3171 insn_t pending_insn ATTRIBUTE_UNUSED,
3172 ds_t ds ATTRIBUTE_UNUSED)
3173{
3174 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3175 VINSN_INSN_RTX (has_dependence_data.con)))
3176 {
3177 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3178
3179 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3180 }
3181}
3182
3183/* Note a dependence. */
3184static void
3185has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3186 ds_t ds ATTRIBUTE_UNUSED)
3187{
3188 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3189 VINSN_INSN_RTX (has_dependence_data.con)))
3190 {
3191 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3192
3193 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3194 }
3195}
3196
3197/* Mark the insn as having a hard dependence that prevents speculation. */
3198void
3199sel_mark_hard_insn (rtx insn)
3200{
3201 int i;
3202
3203 /* Only work when we're in has_dependence_p mode.
3204 ??? This is a hack, this should actually be a hook. */
3205 if (!has_dependence_data.dc || !has_dependence_data.pro)
3206 return;
3207
3208 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3209 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3210
3211 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3212 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3213}
3214
3215/* This structure holds the hooks for the dependency analysis used when
3216 actually processing dependencies in the scheduler. */
3217static struct sched_deps_info_def has_dependence_sched_deps_info;
3218
3219/* This initializes most of the fields of the above structure. */
3220static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3221 {
3222 NULL,
3223
3224 has_dependence_start_insn,
3225 has_dependence_finish_insn,
3226 has_dependence_start_lhs,
3227 has_dependence_finish_lhs,
3228 has_dependence_start_rhs,
3229 has_dependence_finish_rhs,
3230 has_dependence_note_reg_set,
3231 has_dependence_note_reg_clobber,
3232 has_dependence_note_reg_use,
3233 has_dependence_note_mem_dep,
3234 has_dependence_note_dep,
3235
3236 0, /* use_cselib */
3237 0, /* use_deps_list */
3238 0 /* generate_spec_deps */
3239 };
3240
3241/* Initialize has_dependence_sched_deps_info with extra spec field. */
3242static void
3243setup_has_dependence_sched_deps_info (void)
3244{
3245 memcpy (&has_dependence_sched_deps_info,
3246 &const_has_dependence_sched_deps_info,
3247 sizeof (has_dependence_sched_deps_info));
3248
3249 if (spec_info != NULL)
3250 has_dependence_sched_deps_info.generate_spec_deps = 1;
3251
3252 sched_deps_info = &has_dependence_sched_deps_info;
3253}
3254
3255/* Remove all dependences found and recorded in has_dependence_data array. */
3256void
3257sel_clear_has_dependence (void)
3258{
3259 int i;
3260
3261 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3262 has_dependence_data.has_dep_p[i] = 0;
3263}
3264
3265/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3266 to the dependence information array in HAS_DEP_PP. */
3267ds_t
3268has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3269{
3270 int i;
3271 ds_t ds;
88302d54 3272 struct deps_desc *dc;
e855c69d
AB
3273
3274 if (INSN_SIMPLEJUMP_P (pred))
3275 /* Unconditional jump is just a transfer of control flow.
3276 Ignore it. */
3277 return false;
3278
3279 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3280
3281 /* We init this field lazily. */
3282 if (dc->reg_last == NULL)
3283 init_deps_reg_last (dc);
b8698a0f 3284
e855c69d
AB
3285 if (!dc->readonly)
3286 {
3287 has_dependence_data.pro = NULL;
3288 /* Initialize empty dep context with information about PRED. */
3289 advance_deps_context (dc, pred);
3290 dc->readonly = 1;
3291 }
3292
3293 has_dependence_data.where = DEPS_IN_NOWHERE;
3294 has_dependence_data.pro = pred;
3295 has_dependence_data.con = EXPR_VINSN (expr);
3296 has_dependence_data.dc = dc;
3297
3298 sel_clear_has_dependence ();
3299
3300 /* Now catch all dependencies that would be generated between PRED and
3301 INSN. */
3302 setup_has_dependence_sched_deps_info ();
3303 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3304 has_dependence_data.dc = NULL;
3305
3306 /* When a barrier was found, set DEPS_IN_INSN bits. */
3307 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3308 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3309 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3310 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3311
3312 /* Do not allow stores to memory to move through checks. Currently
3313 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3314 obvious places to which this dependence can be attached.
e855c69d
AB
3315 FIMXE: this should go to a hook. */
3316 if (EXPR_LHS (expr)
3317 && MEM_P (EXPR_LHS (expr))
3318 && sel_insn_is_speculation_check (pred))
3319 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3320
e855c69d
AB
3321 *has_dep_pp = has_dependence_data.has_dep_p;
3322 ds = 0;
3323 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3324 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3325 NULL_RTX, NULL_RTX);
3326
3327 return ds;
3328}
3329\f
3330
b8698a0f
L
3331/* Dependence hooks implementation that checks dependence latency constraints
3332 on the insns being scheduled. The entry point for these routines is
3333 tick_check_p predicate. */
e855c69d
AB
3334
3335static struct
3336{
3337 /* An expr we are currently checking. */
3338 expr_t expr;
3339
3340 /* A minimal cycle for its scheduling. */
3341 int cycle;
3342
3343 /* Whether we have seen a true dependence while checking. */
3344 bool seen_true_dep_p;
3345} tick_check_data;
3346
3347/* Update minimal scheduling cycle for tick_check_insn given that it depends
3348 on PRO with status DS and weight DW. */
3349static void
3350tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3351{
3352 expr_t con_expr = tick_check_data.expr;
3353 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3354
3355 if (con_insn != pro_insn)
3356 {
3357 enum reg_note dt;
3358 int tick;
3359
3360 if (/* PROducer was removed from above due to pipelining. */
3361 !INSN_IN_STREAM_P (pro_insn)
3362 /* Or PROducer was originally on the next iteration regarding the
3363 CONsumer. */
3364 || (INSN_SCHED_TIMES (pro_insn)
3365 - EXPR_SCHED_TIMES (con_expr)) > 1)
3366 /* Don't count this dependence. */
3367 return;
3368
3369 dt = ds_to_dt (ds);
3370 if (dt == REG_DEP_TRUE)
3371 tick_check_data.seen_true_dep_p = true;
3372
3373 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3374
3375 {
3376 dep_def _dep, *dep = &_dep;
3377
3378 init_dep (dep, pro_insn, con_insn, dt);
3379
3380 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3381 }
3382
3383 /* When there are several kinds of dependencies between pro and con,
3384 only REG_DEP_TRUE should be taken into account. */
3385 if (tick > tick_check_data.cycle
3386 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3387 tick_check_data.cycle = tick;
3388 }
3389}
3390
3391/* An implementation of note_dep hook. */
3392static void
3393tick_check_note_dep (insn_t pro, ds_t ds)
3394{
3395 tick_check_dep_with_dw (pro, ds, 0);
3396}
3397
3398/* An implementation of note_mem_dep hook. */
3399static void
3400tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3401{
3402 dw_t dw;
3403
3404 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3405 ? estimate_dep_weak (mem1, mem2)
3406 : 0);
3407
3408 tick_check_dep_with_dw (pro, ds, dw);
3409}
3410
3411/* This structure contains hooks for dependence analysis used when determining
3412 whether an insn is ready for scheduling. */
3413static struct sched_deps_info_def tick_check_sched_deps_info =
3414 {
3415 NULL,
3416
3417 NULL,
3418 NULL,
3419 NULL,
3420 NULL,
3421 NULL,
3422 NULL,
3423 haifa_note_reg_set,
3424 haifa_note_reg_clobber,
3425 haifa_note_reg_use,
3426 tick_check_note_mem_dep,
3427 tick_check_note_dep,
3428
3429 0, 0, 0
3430 };
3431
3432/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3433 scheduled. Return 0 if all data from producers in DC is ready. */
3434int
3435tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3436{
3437 int cycles_left;
3438 /* Initialize variables. */
3439 tick_check_data.expr = expr;
3440 tick_check_data.cycle = 0;
3441 tick_check_data.seen_true_dep_p = false;
3442 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3443
e855c69d
AB
3444 gcc_assert (!dc->readonly);
3445 dc->readonly = 1;
3446 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3447 dc->readonly = 0;
3448
3449 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3450
3451 return cycles_left >= 0 ? cycles_left : 0;
3452}
3453\f
3454
3455/* Functions to work with insns. */
3456
3457/* Returns true if LHS of INSN is the same as DEST of an insn
3458 being moved. */
3459bool
3460lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3461{
3462 rtx lhs = INSN_LHS (insn);
3463
3464 if (lhs == NULL || dest == NULL)
3465 return false;
b8698a0f 3466
e855c69d
AB
3467 return rtx_equal_p (lhs, dest);
3468}
3469
3470/* Return s_i_d entry of INSN. Callable from debugger. */
3471sel_insn_data_def
3472insn_sid (insn_t insn)
3473{
3474 return *SID (insn);
3475}
3476
3477/* True when INSN is a speculative check. We can tell this by looking
3478 at the data structures of the selective scheduler, not by examining
3479 the pattern. */
3480bool
3481sel_insn_is_speculation_check (rtx insn)
3482{
3483 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3484}
3485
b8698a0f 3486/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3487 for given INSN. */
3488void
3489get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3490{
3491 rtx pat = PATTERN (insn);
3492
3493 gcc_assert (dst_loc);
3494 gcc_assert (GET_CODE (pat) == SET);
3495
3496 *dst_loc = SET_DEST (pat);
3497
3498 gcc_assert (*dst_loc);
3499 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3500
3501 if (mode)
3502 *mode = GET_MODE (*dst_loc);
3503}
3504
b8698a0f 3505/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3506 creation. */
3507bool
3508bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3509{
3510 insn_t succ;
3511 succ_iterator si;
3512
3513 FOR_EACH_SUCC (succ, si, jump)
3514 if (sel_num_cfg_preds_gt_1 (succ))
3515 return true;
3516
3517 return false;
3518}
3519
3520/* Return 'true' if INSN is the only one in its basic block. */
3521static bool
3522insn_is_the_only_one_in_bb_p (insn_t insn)
3523{
3524 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3525}
3526
3527#ifdef ENABLE_CHECKING
b8698a0f 3528/* Check that the region we're scheduling still has at most one
e855c69d
AB
3529 backedge. */
3530static void
3531verify_backedges (void)
3532{
3533 if (pipelining_p)
3534 {
3535 int i, n = 0;
3536 edge e;
3537 edge_iterator ei;
b8698a0f 3538
e855c69d
AB
3539 for (i = 0; i < current_nr_blocks; i++)
3540 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3541 if (in_current_region_p (e->dest)
3542 && BLOCK_TO_BB (e->dest->index) < i)
3543 n++;
b8698a0f 3544
e855c69d
AB
3545 gcc_assert (n <= 1);
3546 }
3547}
3548#endif
3549\f
3550
3551/* Functions to work with control flow. */
3552
b59ab570
AM
3553/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3554 are sorted in topological order (it might have been invalidated by
3555 redirecting an edge). */
3556static void
3557sel_recompute_toporder (void)
3558{
3559 int i, n, rgn;
3560 int *postorder, n_blocks;
3561
3562 postorder = XALLOCAVEC (int, n_basic_blocks);
3563 n_blocks = post_order_compute (postorder, false, false);
3564
3565 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3566 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3567 if (CONTAINING_RGN (postorder[i]) == rgn)
3568 {
3569 BLOCK_TO_BB (postorder[i]) = n;
3570 BB_TO_BLOCK (n) = postorder[i];
3571 n++;
3572 }
3573
3574 /* Assert that we updated info for all blocks. We may miss some blocks if
3575 this function is called when redirecting an edge made a block
3576 unreachable, but that block is not deleted yet. */
3577 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3578}
3579
e855c69d 3580/* Tidy the possibly empty block BB. */
65592aad 3581static bool
5f33b972 3582maybe_tidy_empty_bb (basic_block bb)
e855c69d
AB
3583{
3584 basic_block succ_bb, pred_bb;
00c4e97c 3585 VEC (basic_block, heap) *dom_bbs;
f2c45f08
AM
3586 edge e;
3587 edge_iterator ei;
e855c69d
AB
3588 bool rescan_p;
3589
3590 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3591 has incoming non-fallthrough edge, or it has no predecessors or
3592 successors. Otherwise remove it. */
b5b8b0ac 3593 if (!sel_bb_empty_p (bb)
b8698a0f 3594 || (single_succ_p (bb)
e855c69d 3595 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3596 && (!single_pred_p (bb)
762bffba
AB
3597 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3598 || EDGE_COUNT (bb->preds) == 0
3599 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3600 return false;
3601
f2c45f08
AM
3602 /* Do not attempt to redirect complex edges. */
3603 FOR_EACH_EDGE (e, ei, bb->preds)
3604 if (e->flags & EDGE_COMPLEX)
3605 return false;
3606
e855c69d
AB
3607 free_data_sets (bb);
3608
3609 /* Do not delete BB if it has more than one successor.
3610 That can occur when we moving a jump. */
3611 if (!single_succ_p (bb))
3612 {
3613 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3614 sel_merge_blocks (bb->prev_bb, bb);
3615 return true;
3616 }
3617
3618 succ_bb = single_succ (bb);
3619 rescan_p = true;
3620 pred_bb = NULL;
00c4e97c 3621 dom_bbs = NULL;
e855c69d
AB
3622
3623 /* Redirect all non-fallthru edges to the next bb. */
3624 while (rescan_p)
3625 {
e855c69d
AB
3626 rescan_p = false;
3627
3628 FOR_EACH_EDGE (e, ei, bb->preds)
3629 {
3630 pred_bb = e->src;
3631
3632 if (!(e->flags & EDGE_FALLTHRU))
3633 {
5f33b972 3634 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3635 the edge destination block (E->SUCC) along a fallthru edge.
3636
3637 We will update dominators here only when we'll get
3638 an unreachable block when redirecting, otherwise
3639 sel_redirect_edge_and_branch will take care of it. */
3640 if (e->dest != bb
3641 && single_pred_p (e->dest))
3642 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
5f33b972 3643 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3644 rescan_p = true;
3645 break;
3646 }
5f33b972
AM
3647 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3648 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3649 still have to adjust it. */
3650 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3651 {
3652 /* If possible, try to remove the unneeded conditional jump. */
3653 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3654 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3655 {
3656 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3657 tidy_fallthru_edge (e);
3658 }
3659 else
3660 sel_redirect_edge_and_branch (e, succ_bb);
3661 rescan_p = true;
3662 break;
3663 }
e855c69d
AB
3664 }
3665 }
3666
e855c69d
AB
3667 if (can_merge_blocks_p (bb->prev_bb, bb))
3668 sel_merge_blocks (bb->prev_bb, bb);
3669 else
e855c69d 3670 {
262d8232 3671 /* This is a block without fallthru predecessor. Just delete it. */
e855c69d
AB
3672 gcc_assert (pred_bb != NULL);
3673
762bffba
AB
3674 if (in_current_region_p (pred_bb))
3675 move_bb_info (pred_bb, bb);
e855c69d
AB
3676 remove_empty_bb (bb, true);
3677 }
3678
00c4e97c
AB
3679 if (!VEC_empty (basic_block, dom_bbs))
3680 {
3681 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3682 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3683 VEC_free (basic_block, heap, dom_bbs);
3684 }
3685
e855c69d
AB
3686 return true;
3687}
3688
b8698a0f 3689/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3690 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3691 is true, also try to optimize control flow on non-empty blocks. */
3692bool
3693tidy_control_flow (basic_block xbb, bool full_tidying)
3694{
3695 bool changed = true;
b5b8b0ac 3696 insn_t first, last;
b8698a0f 3697
e855c69d 3698 /* First check whether XBB is empty. */
5f33b972 3699 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3700 if (changed || !full_tidying)
3701 return changed;
b8698a0f 3702
e855c69d 3703 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3704 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3705 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3706 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3707 {
3708 if (sel_remove_insn (BB_END (xbb), false, false))
3709 return true;
3710 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3711 }
3712
b5b8b0ac
AO
3713 first = sel_bb_head (xbb);
3714 last = sel_bb_end (xbb);
3715 if (MAY_HAVE_DEBUG_INSNS)
3716 {
3717 if (first != last && DEBUG_INSN_P (first))
3718 do
3719 first = NEXT_INSN (first);
3720 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3721
3722 if (first != last && DEBUG_INSN_P (last))
3723 do
3724 last = PREV_INSN (last);
3725 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3726 }
e855c69d 3727 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3728 to next basic block left after removing INSN from stream.
3729 If it is so, remove that jump and redirect edge to current
3730 basic block (where there was INSN before deletion). This way
3731 when NOP will be deleted several instructions later with its
3732 basic block we will not get a jump to next instruction, which
e855c69d 3733 can be harmful. */
b5b8b0ac 3734 if (first == last
e855c69d 3735 && !sel_bb_empty_p (xbb)
b5b8b0ac 3736 && INSN_NOP_P (last)
e855c69d
AB
3737 /* Flow goes fallthru from current block to the next. */
3738 && EDGE_COUNT (xbb->succs) == 1
3739 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3740 /* When successor is an EXIT block, it may not be the next block. */
3741 && single_succ (xbb) != EXIT_BLOCK_PTR
3742 /* And unconditional jump in previous basic block leads to
3743 next basic block of XBB and this jump can be safely removed. */
3744 && in_current_region_p (xbb->prev_bb)
753de8cf 3745 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3746 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3747 /* Also this jump is not at the scheduling boundary. */
3748 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3749 {
b59ab570 3750 bool recompute_toporder_p;
e855c69d
AB
3751 /* Clear data structures of jump - jump itself will be removed
3752 by sel_redirect_edge_and_branch. */
3753 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3754 recompute_toporder_p
3755 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3756
e855c69d
AB
3757 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3758
3759 /* It can turn out that after removing unused jump, basic block
3760 that contained that jump, becomes empty too. In such case
3761 remove it too. */
3762 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3763 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3764 if (recompute_toporder_p)
b59ab570 3765 sel_recompute_toporder ();
e855c69d 3766 }
d787f788
AM
3767
3768#ifdef ENABLE_CHECKING
3769 verify_backedges ();
00c4e97c 3770 verify_dominators (CDI_DOMINATORS);
d787f788
AM
3771#endif
3772
e855c69d
AB
3773 return changed;
3774}
3775
b59ab570
AM
3776/* Purge meaningless empty blocks in the middle of a region. */
3777void
3778purge_empty_blocks (void)
3779{
9d0dcda1 3780 int i;
b59ab570 3781
9d0dcda1
AM
3782 /* Do not attempt to delete the first basic block in the region. */
3783 for (i = 1; i < current_nr_blocks; )
b59ab570
AM
3784 {
3785 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3786
5f33b972 3787 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3788 continue;
3789
3790 i++;
3791 }
3792}
3793
b8698a0f
L
3794/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3795 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3796 Return true if we have removed some blocks afterwards. */
3797bool
3798sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3799{
3800 basic_block bb = BLOCK_FOR_INSN (insn);
3801
3802 gcc_assert (INSN_IN_STREAM_P (insn));
3803
b5b8b0ac
AO
3804 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3805 {
3806 expr_t expr;
3807 av_set_iterator i;
3808
3809 /* When we remove a debug insn that is head of a BB, it remains
3810 in the AV_SET of the block, but it shouldn't. */
3811 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3812 if (EXPR_INSN_RTX (expr) == insn)
3813 {
3814 av_set_iter_remove (&i);
3815 break;
3816 }
3817 }
3818
e855c69d
AB
3819 if (only_disconnect)
3820 {
3821 insn_t prev = PREV_INSN (insn);
3822 insn_t next = NEXT_INSN (insn);
3823 basic_block bb = BLOCK_FOR_INSN (insn);
3824
3825 NEXT_INSN (prev) = next;
3826 PREV_INSN (next) = prev;
3827
3828 if (BB_HEAD (bb) == insn)
3829 {
3830 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3831 BB_HEAD (bb) = prev;
3832 }
3833 if (BB_END (bb) == insn)
3834 BB_END (bb) = prev;
3835 }
3836 else
3837 {
3838 remove_insn (insn);
3839 clear_expr (INSN_EXPR (insn));
3840 }
3841
3842 /* It is necessary to null this fields before calling add_insn (). */
3843 PREV_INSN (insn) = NULL_RTX;
3844 NEXT_INSN (insn) = NULL_RTX;
3845
3846 return tidy_control_flow (bb, full_tidying);
3847}
3848
3849/* Estimate number of the insns in BB. */
3850static int
3851sel_estimate_number_of_insns (basic_block bb)
3852{
3853 int res = 0;
3854 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3855
3856 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3857 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3858 res++;
3859
3860 return res;
3861}
3862
3863/* We don't need separate luids for notes or labels. */
3864static int
3865sel_luid_for_non_insn (rtx x)
3866{
3867 gcc_assert (NOTE_P (x) || LABEL_P (x));
3868
3869 return -1;
3870}
3871
3872/* Return seqno of the only predecessor of INSN. */
3873static int
3874get_seqno_of_a_pred (insn_t insn)
3875{
3876 int seqno;
3877
3878 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3879
3880 if (!sel_bb_head_p (insn))
3881 seqno = INSN_SEQNO (PREV_INSN (insn));
3882 else
3883 {
3884 basic_block bb = BLOCK_FOR_INSN (insn);
3885
3886 if (single_pred_p (bb)
3887 && !in_current_region_p (single_pred (bb)))
3888 {
3889 /* We can have preds outside a region when splitting edges
b8698a0f 3890 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
3891 There should be only one of them. */
3892 insn_t succ = NULL;
3893 succ_iterator si;
3894 bool first = true;
b8698a0f 3895
e855c69d
AB
3896 gcc_assert (flag_sel_sched_pipelining_outer_loops
3897 && current_loop_nest);
b8698a0f 3898 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
3899 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3900 {
3901 gcc_assert (first);
3902 first = false;
3903 }
3904
3905 gcc_assert (succ != NULL);
3906 seqno = INSN_SEQNO (succ);
3907 }
3908 else
3909 {
3910 insn_t *preds;
3911 int n;
3912
3913 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3914 gcc_assert (n == 1);
3915
3916 seqno = INSN_SEQNO (preds[0]);
b8698a0f 3917
e855c69d
AB
3918 free (preds);
3919 }
3920 }
3921
3922 return seqno;
3923}
3924
da7ba240
AB
3925/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3926 with positive seqno exist. */
e855c69d
AB
3927int
3928get_seqno_by_preds (rtx insn)
3929{
3930 basic_block bb = BLOCK_FOR_INSN (insn);
3931 rtx tmp = insn, head = BB_HEAD (bb);
3932 insn_t *preds;
3933 int n, i, seqno;
3934
3935 while (tmp != head)
3936 if (INSN_P (tmp))
3937 return INSN_SEQNO (tmp);
3938 else
3939 tmp = PREV_INSN (tmp);
b8698a0f 3940
e855c69d
AB
3941 cfg_preds (bb, &preds, &n);
3942 for (i = 0, seqno = -1; i < n; i++)
3943 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3944
e855c69d
AB
3945 return seqno;
3946}
3947
3948\f
3949
3950/* Extend pass-scope data structures for basic blocks. */
3951void
3952sel_extend_global_bb_info (void)
3953{
3954 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3955 last_basic_block);
3956}
3957
3958/* Extend region-scope data structures for basic blocks. */
3959static void
3960extend_region_bb_info (void)
3961{
3962 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3963 last_basic_block);
3964}
3965
3966/* Extend all data structures to fit for all basic blocks. */
3967static void
3968extend_bb_info (void)
3969{
3970 sel_extend_global_bb_info ();
3971 extend_region_bb_info ();
3972}
3973
3974/* Finalize pass-scope data structures for basic blocks. */
3975void
3976sel_finish_global_bb_info (void)
3977{
3978 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3979}
3980
3981/* Finalize region-scope data structures for basic blocks. */
3982static void
3983finish_region_bb_info (void)
3984{
3985 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3986}
3987\f
3988
3989/* Data for each insn in current region. */
3990VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3991
3992/* A vector for the insns we've emitted. */
3993static insn_vec_t new_insns = NULL;
3994
3995/* Extend data structures for insns from current region. */
3996static void
3997extend_insn_data (void)
3998{
3999 int reserve;
b8698a0f 4000
e855c69d
AB
4001 sched_extend_target ();
4002 sched_deps_init (false);
4003
4004 /* Extend data structures for insns from current region. */
b8698a0f 4005 reserve = (sched_max_luid + 1
e855c69d 4006 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 4007 if (reserve > 0
e855c69d 4008 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
4009 {
4010 int size;
4011
4012 if (sched_max_luid / 2 > 1024)
4013 size = sched_max_luid + 1024;
4014 else
4015 size = 3 * sched_max_luid / 2;
b8698a0f 4016
bcf33775
AB
4017
4018 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4019 }
e855c69d
AB
4020}
4021
4022/* Finalize data structures for insns from current region. */
4023static void
4024finish_insns (void)
4025{
4026 unsigned i;
4027
4028 /* Clear here all dependence contexts that may have left from insns that were
4029 removed during the scheduling. */
4030 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4031 {
4032 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 4033
e855c69d
AB
4034 if (sid_entry->live)
4035 return_regset_to_pool (sid_entry->live);
4036 if (sid_entry->analyzed_deps)
4037 {
4038 BITMAP_FREE (sid_entry->analyzed_deps);
4039 BITMAP_FREE (sid_entry->found_deps);
4040 htab_delete (sid_entry->transformed_insns);
4041 free_deps (&sid_entry->deps_context);
4042 }
4043 if (EXPR_VINSN (&sid_entry->expr))
4044 {
4045 clear_expr (&sid_entry->expr);
b8698a0f 4046
e855c69d
AB
4047 /* Also, clear CANT_MOVE bit here, because we really don't want it
4048 to be passed to the next region. */
4049 CANT_MOVE_BY_LUID (i) = 0;
4050 }
4051 }
b8698a0f 4052
e855c69d
AB
4053 VEC_free (sel_insn_data_def, heap, s_i_d);
4054}
4055
4056/* A proxy to pass initialization data to init_insn (). */
4057static sel_insn_data_def _insn_init_ssid;
4058static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4059
4060/* If true create a new vinsn. Otherwise use the one from EXPR. */
4061static bool insn_init_create_new_vinsn_p;
4062
4063/* Set all necessary data for initialization of the new insn[s]. */
4064static expr_t
4065set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4066{
4067 expr_t x = &insn_init_ssid->expr;
4068
4069 copy_expr_onside (x, expr);
4070 if (vi != NULL)
4071 {
4072 insn_init_create_new_vinsn_p = false;
4073 change_vinsn_in_expr (x, vi);
4074 }
4075 else
4076 insn_init_create_new_vinsn_p = true;
4077
4078 insn_init_ssid->seqno = seqno;
4079 return x;
4080}
4081
4082/* Init data for INSN. */
4083static void
4084init_insn_data (insn_t insn)
4085{
4086 expr_t expr;
4087 sel_insn_data_t ssid = insn_init_ssid;
4088
4089 /* The fields mentioned below are special and hence are not being
4090 propagated to the new insns. */
4091 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4092 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4093 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4094
4095 expr = INSN_EXPR (insn);
4096 copy_expr (expr, &ssid->expr);
4097 prepare_insn_expr (insn, ssid->seqno);
4098
4099 if (insn_init_create_new_vinsn_p)
4100 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4101
e855c69d
AB
4102 if (first_time_insn_init (insn))
4103 init_first_time_insn_data (insn);
4104}
4105
4106/* This is used to initialize spurious jumps generated by
4107 sel_redirect_edge (). */
4108static void
4109init_simplejump_data (insn_t insn)
4110{
4111 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4112 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d
AB
4113 false, true);
4114 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4115 init_first_time_insn_data (insn);
4116}
4117
b8698a0f 4118/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4119 a new jump that may be created by redirect_edge. */
4120void
4121sel_init_new_insn (insn_t insn, int flags)
4122{
4123 /* We create data structures for bb when the first insn is emitted in it. */
4124 if (INSN_P (insn)
4125 && INSN_IN_STREAM_P (insn)
4126 && insn_is_the_only_one_in_bb_p (insn))
4127 {
4128 extend_bb_info ();
4129 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4130 }
b8698a0f 4131
e855c69d
AB
4132 if (flags & INSN_INIT_TODO_LUID)
4133 sched_init_luids (NULL, NULL, NULL, insn);
4134
4135 if (flags & INSN_INIT_TODO_SSID)
4136 {
4137 extend_insn_data ();
4138 init_insn_data (insn);
4139 clear_expr (&insn_init_ssid->expr);
4140 }
4141
4142 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4143 {
4144 extend_insn_data ();
4145 init_simplejump_data (insn);
4146 }
b8698a0f 4147
e855c69d
AB
4148 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4149 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4150}
4151\f
4152
4153/* Functions to init/finish work with lv sets. */
4154
4155/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4156static void
4157init_lv_set (basic_block bb)
4158{
4159 gcc_assert (!BB_LV_SET_VALID_P (bb));
4160
4161 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4162 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4163 BB_LV_SET_VALID_P (bb) = true;
4164}
4165
4166/* Copy liveness information to BB from FROM_BB. */
4167static void
4168copy_lv_set_from (basic_block bb, basic_block from_bb)
4169{
4170 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4171
e855c69d
AB
4172 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4173 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4174}
e855c69d
AB
4175
4176/* Initialize lv set of all bb headers. */
4177void
4178init_lv_sets (void)
4179{
4180 basic_block bb;
4181
4182 /* Initialize of LV sets. */
4183 FOR_EACH_BB (bb)
4184 init_lv_set (bb);
4185
4186 /* Don't forget EXIT_BLOCK. */
4187 init_lv_set (EXIT_BLOCK_PTR);
4188}
4189
4190/* Release lv set of HEAD. */
4191static void
4192free_lv_set (basic_block bb)
4193{
4194 gcc_assert (BB_LV_SET (bb) != NULL);
4195
4196 return_regset_to_pool (BB_LV_SET (bb));
4197 BB_LV_SET (bb) = NULL;
4198 BB_LV_SET_VALID_P (bb) = false;
4199}
4200
4201/* Finalize lv sets of all bb headers. */
4202void
4203free_lv_sets (void)
4204{
4205 basic_block bb;
4206
4207 /* Don't forget EXIT_BLOCK. */
4208 free_lv_set (EXIT_BLOCK_PTR);
4209
4210 /* Free LV sets. */
4211 FOR_EACH_BB (bb)
4212 if (BB_LV_SET (bb))
4213 free_lv_set (bb);
4214}
4215
4216/* Initialize an invalid AV_SET for BB.
4217 This set will be updated next time compute_av () process BB. */
4218static void
4219invalidate_av_set (basic_block bb)
4220{
4221 gcc_assert (BB_AV_LEVEL (bb) <= 0
4222 && BB_AV_SET (bb) == NULL);
4223
4224 BB_AV_LEVEL (bb) = -1;
4225}
4226
4227/* Create initial data sets for BB (they will be invalid). */
4228static void
4229create_initial_data_sets (basic_block bb)
4230{
4231 if (BB_LV_SET (bb))
4232 BB_LV_SET_VALID_P (bb) = false;
4233 else
4234 BB_LV_SET (bb) = get_regset_from_pool ();
4235 invalidate_av_set (bb);
4236}
4237
4238/* Free av set of BB. */
4239static void
4240free_av_set (basic_block bb)
4241{
4242 av_set_clear (&BB_AV_SET (bb));
4243 BB_AV_LEVEL (bb) = 0;
4244}
4245
4246/* Free data sets of BB. */
4247void
4248free_data_sets (basic_block bb)
4249{
4250 free_lv_set (bb);
4251 free_av_set (bb);
4252}
4253
4254/* Exchange lv sets of TO and FROM. */
4255static void
4256exchange_lv_sets (basic_block to, basic_block from)
4257{
4258 {
4259 regset to_lv_set = BB_LV_SET (to);
4260
4261 BB_LV_SET (to) = BB_LV_SET (from);
4262 BB_LV_SET (from) = to_lv_set;
4263 }
4264
4265 {
4266 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4267
4268 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4269 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4270 }
4271}
4272
4273
4274/* Exchange av sets of TO and FROM. */
4275static void
4276exchange_av_sets (basic_block to, basic_block from)
4277{
4278 {
4279 av_set_t to_av_set = BB_AV_SET (to);
4280
4281 BB_AV_SET (to) = BB_AV_SET (from);
4282 BB_AV_SET (from) = to_av_set;
4283 }
4284
4285 {
4286 int to_av_level = BB_AV_LEVEL (to);
4287
4288 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4289 BB_AV_LEVEL (from) = to_av_level;
4290 }
4291}
4292
4293/* Exchange data sets of TO and FROM. */
4294void
4295exchange_data_sets (basic_block to, basic_block from)
4296{
4297 exchange_lv_sets (to, from);
4298 exchange_av_sets (to, from);
4299}
4300
4301/* Copy data sets of FROM to TO. */
4302void
4303copy_data_sets (basic_block to, basic_block from)
4304{
4305 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4306 gcc_assert (BB_AV_SET (to) == NULL);
4307
4308 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4309 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4310
4311 if (BB_AV_SET_VALID_P (from))
4312 {
4313 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4314 }
4315 if (BB_LV_SET_VALID_P (from))
4316 {
4317 gcc_assert (BB_LV_SET (to) != NULL);
4318 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4319 }
4320}
4321
4322/* Return an av set for INSN, if any. */
4323av_set_t
4324get_av_set (insn_t insn)
4325{
4326 av_set_t av_set;
4327
4328 gcc_assert (AV_SET_VALID_P (insn));
4329
4330 if (sel_bb_head_p (insn))
4331 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4332 else
4333 av_set = NULL;
4334
4335 return av_set;
4336}
4337
4338/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4339int
4340get_av_level (insn_t insn)
4341{
4342 int av_level;
4343
4344 gcc_assert (INSN_P (insn));
4345
4346 if (sel_bb_head_p (insn))
4347 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4348 else
4349 av_level = INSN_WS_LEVEL (insn);
4350
4351 return av_level;
4352}
4353
4354\f
4355
4356/* Variables to work with control-flow graph. */
4357
4358/* The basic block that already has been processed by the sched_data_update (),
4359 but hasn't been in sel_add_bb () yet. */
4360static VEC (basic_block, heap) *last_added_blocks = NULL;
4361
4362/* A pool for allocating successor infos. */
4363static struct
4364{
4365 /* A stack for saving succs_info structures. */
4366 struct succs_info *stack;
4367
4368 /* Its size. */
4369 int size;
4370
4371 /* Top of the stack. */
4372 int top;
4373
4374 /* Maximal value of the top. */
4375 int max_top;
4376} succs_info_pool;
4377
4378/* Functions to work with control-flow graph. */
4379
4380/* Return basic block note of BB. */
4381insn_t
4382sel_bb_head (basic_block bb)
4383{
4384 insn_t head;
4385
4386 if (bb == EXIT_BLOCK_PTR)
4387 {
4388 gcc_assert (exit_insn != NULL_RTX);
4389 head = exit_insn;
4390 }
4391 else
4392 {
4393 insn_t note;
4394
4395 note = bb_note (bb);
4396 head = next_nonnote_insn (note);
4397
89ad0f25 4398 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
e855c69d
AB
4399 head = NULL_RTX;
4400 }
4401
4402 return head;
4403}
4404
4405/* Return true if INSN is a basic block header. */
4406bool
4407sel_bb_head_p (insn_t insn)
4408{
4409 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4410}
4411
4412/* Return last insn of BB. */
4413insn_t
4414sel_bb_end (basic_block bb)
4415{
4416 if (sel_bb_empty_p (bb))
4417 return NULL_RTX;
4418
4419 gcc_assert (bb != EXIT_BLOCK_PTR);
4420
4421 return BB_END (bb);
4422}
4423
4424/* Return true if INSN is the last insn in its basic block. */
4425bool
4426sel_bb_end_p (insn_t insn)
4427{
4428 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4429}
4430
4431/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4432bool
4433sel_bb_empty_p (basic_block bb)
4434{
4435 return sel_bb_head (bb) == NULL;
4436}
4437
4438/* True when BB belongs to the current scheduling region. */
4439bool
4440in_current_region_p (basic_block bb)
4441{
4442 if (bb->index < NUM_FIXED_BLOCKS)
4443 return false;
4444
4445 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4446}
4447
4448/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4449basic_block
4450fallthru_bb_of_jump (rtx jump)
4451{
4452 if (!JUMP_P (jump))
4453 return NULL;
4454
e855c69d
AB
4455 if (!any_condjump_p (jump))
4456 return NULL;
4457
268bab85
AB
4458 /* A basic block that ends with a conditional jump may still have one successor
4459 (and be followed by a barrier), we are not interested. */
4460 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4461 return NULL;
4462
e855c69d
AB
4463 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4464}
4465
4466/* Remove all notes from BB. */
4467static void
4468init_bb (basic_block bb)
4469{
4470 remove_notes (bb_note (bb), BB_END (bb));
4471 BB_NOTE_LIST (bb) = note_list;
4472}
4473
4474void
4475sel_init_bbs (bb_vec_t bbs, basic_block bb)
4476{
4477 const struct sched_scan_info_def ssi =
4478 {
4479 extend_bb_info, /* extend_bb */
4480 init_bb, /* init_bb */
4481 NULL, /* extend_insn */
4482 NULL /* init_insn */
4483 };
4484
4485 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4486}
4487
7898b93b 4488/* Restore notes for the whole region. */
e855c69d 4489static void
7898b93b 4490sel_restore_notes (void)
e855c69d
AB
4491{
4492 int bb;
7898b93b 4493 insn_t insn;
e855c69d
AB
4494
4495 for (bb = 0; bb < current_nr_blocks; bb++)
4496 {
4497 basic_block first, last;
4498
4499 first = EBB_FIRST_BB (bb);
4500 last = EBB_LAST_BB (bb)->next_bb;
4501
4502 do
4503 {
4504 note_list = BB_NOTE_LIST (first);
4505 restore_other_notes (NULL, first);
4506 BB_NOTE_LIST (first) = NULL_RTX;
4507
7898b93b
AM
4508 FOR_BB_INSNS (first, insn)
4509 if (NONDEBUG_INSN_P (insn))
4510 reemit_notes (insn);
4511
e855c69d
AB
4512 first = first->next_bb;
4513 }
4514 while (first != last);
4515 }
4516}
4517
4518/* Free per-bb data structures. */
4519void
4520sel_finish_bbs (void)
4521{
7898b93b 4522 sel_restore_notes ();
e855c69d
AB
4523
4524 /* Remove current loop preheader from this loop. */
4525 if (current_loop_nest)
4526 sel_remove_loop_preheader ();
4527
4528 finish_region_bb_info ();
4529}
4530
4531/* Return true if INSN has a single successor of type FLAGS. */
4532bool
4533sel_insn_has_single_succ_p (insn_t insn, int flags)
4534{
4535 insn_t succ;
4536 succ_iterator si;
4537 bool first_p = true;
4538
4539 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4540 {
4541 if (first_p)
4542 first_p = false;
4543 else
4544 return false;
4545 }
4546
4547 return true;
4548}
4549
4550/* Allocate successor's info. */
4551static struct succs_info *
4552alloc_succs_info (void)
4553{
4554 if (succs_info_pool.top == succs_info_pool.max_top)
4555 {
4556 int i;
b8698a0f 4557
e855c69d
AB
4558 if (++succs_info_pool.max_top >= succs_info_pool.size)
4559 gcc_unreachable ();
4560
4561 i = ++succs_info_pool.top;
4562 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4563 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4564 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4565 }
4566 else
4567 succs_info_pool.top++;
4568
4569 return &succs_info_pool.stack[succs_info_pool.top];
4570}
4571
4572/* Free successor's info. */
4573void
4574free_succs_info (struct succs_info * sinfo)
4575{
b8698a0f 4576 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4577 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4578 succs_info_pool.top--;
4579
4580 /* Clear stale info. */
b8698a0f 4581 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4582 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4583 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4584 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4585 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4586 0, VEC_length (int, sinfo->probs_ok));
4587 sinfo->all_prob = 0;
4588 sinfo->succs_ok_n = 0;
4589 sinfo->all_succs_n = 0;
4590}
4591
b8698a0f 4592/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4593 to the FOR_EACH_SUCC_1 iterator. */
4594struct succs_info *
4595compute_succs_info (insn_t insn, short flags)
4596{
4597 succ_iterator si;
4598 insn_t succ;
4599 struct succs_info *sinfo = alloc_succs_info ();
4600
4601 /* Traverse *all* successors and decide what to do with each. */
4602 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4603 {
4604 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4605 perform code motion through inner loops. */
4606 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4607
4608 if (current_flags & flags)
4609 {
4610 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4611 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4612 /* FIXME: Improve calculation when skipping
e855c69d 4613 inner loop to exits. */
b8698a0f
L
4614 (si.bb_end
4615 ? si.e1->probability
e855c69d
AB
4616 : REG_BR_PROB_BASE));
4617 sinfo->succs_ok_n++;
4618 }
4619 else
4620 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4621
4622 /* Compute all_prob. */
4623 if (!si.bb_end)
4624 sinfo->all_prob = REG_BR_PROB_BASE;
4625 else
4626 sinfo->all_prob += si.e1->probability;
4627
4628 sinfo->all_succs_n++;
4629 }
4630
4631 return sinfo;
4632}
4633
b8698a0f 4634/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4635 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4636static void
4637cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4638{
4639 edge e;
4640 edge_iterator ei;
4641
4642 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4643
4644 FOR_EACH_EDGE (e, ei, bb->preds)
4645 {
4646 basic_block pred_bb = e->src;
4647 insn_t bb_end = BB_END (pred_bb);
4648
3e6a3f6f
AB
4649 if (!in_current_region_p (pred_bb))
4650 {
4651 gcc_assert (flag_sel_sched_pipelining_outer_loops
4652 && current_loop_nest);
4653 continue;
4654 }
e855c69d
AB
4655
4656 if (sel_bb_empty_p (pred_bb))
4657 cfg_preds_1 (pred_bb, preds, n, size);
4658 else
4659 {
4660 if (*n == *size)
b8698a0f 4661 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4662 (*size = 2 * *size + 1));
4663 (*preds)[(*n)++] = bb_end;
4664 }
4665 }
4666
3e6a3f6f
AB
4667 gcc_assert (*n != 0
4668 || (flag_sel_sched_pipelining_outer_loops
4669 && current_loop_nest));
e855c69d
AB
4670}
4671
b8698a0f
L
4672/* Find all predecessors of BB and record them in PREDS and their number
4673 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4674 edges are processed. */
4675static void
4676cfg_preds (basic_block bb, insn_t **preds, int *n)
4677{
4678 int size = 0;
4679
4680 *preds = NULL;
4681 *n = 0;
4682 cfg_preds_1 (bb, preds, n, &size);
4683}
4684
4685/* Returns true if we are moving INSN through join point. */
4686bool
4687sel_num_cfg_preds_gt_1 (insn_t insn)
4688{
4689 basic_block bb;
4690
4691 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4692 return false;
4693
4694 bb = BLOCK_FOR_INSN (insn);
4695
4696 while (1)
4697 {
4698 if (EDGE_COUNT (bb->preds) > 1)
4699 return true;
4700
4701 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4702 bb = EDGE_PRED (bb, 0)->src;
4703
4704 if (!sel_bb_empty_p (bb))
4705 break;
4706 }
4707
4708 return false;
4709}
4710
b8698a0f 4711/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4712 code in sched-ebb.c. */
4713bool
4714bb_ends_ebb_p (basic_block bb)
4715{
4716 basic_block next_bb = bb_next_bb (bb);
4717 edge e;
b8698a0f 4718
e855c69d
AB
4719 if (next_bb == EXIT_BLOCK_PTR
4720 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4721 || (LABEL_P (BB_HEAD (next_bb))
4722 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4723 Work around that. */
4724 && !single_pred_p (next_bb)))
4725 return true;
4726
4727 if (!in_current_region_p (next_bb))
4728 return true;
4729
0fd4b31d
NF
4730 e = find_fallthru_edge (bb->succs);
4731 if (e)
4732 {
4733 gcc_assert (e->dest == next_bb);
4734
4735 return false;
4736 }
e855c69d
AB
4737
4738 return true;
4739}
4740
4741/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4742 successor of INSN. */
4743bool
4744in_same_ebb_p (insn_t insn, insn_t succ)
4745{
4746 basic_block ptr = BLOCK_FOR_INSN (insn);
4747
4748 for(;;)
4749 {
4750 if (ptr == BLOCK_FOR_INSN (succ))
4751 return true;
b8698a0f 4752
e855c69d
AB
4753 if (bb_ends_ebb_p (ptr))
4754 return false;
4755
4756 ptr = bb_next_bb (ptr);
4757 }
4758
4759 gcc_unreachable ();
4760 return false;
4761}
4762
4763/* Recomputes the reverse topological order for the function and
4764 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4765 modified appropriately. */
4766static void
4767recompute_rev_top_order (void)
4768{
4769 int *postorder;
4770 int n_blocks, i;
4771
4772 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4773 {
b8698a0f 4774 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4775 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4776 rev_top_order_index_len);
4777 }
4778
4779 postorder = XNEWVEC (int, n_basic_blocks);
4780
4781 n_blocks = post_order_compute (postorder, true, false);
4782 gcc_assert (n_basic_blocks == n_blocks);
4783
4784 /* Build reverse function: for each basic block with BB->INDEX == K
4785 rev_top_order_index[K] is it's reverse topological sort number. */
4786 for (i = 0; i < n_blocks; i++)
4787 {
4788 gcc_assert (postorder[i] < rev_top_order_index_len);
4789 rev_top_order_index[postorder[i]] = i;
4790 }
4791
4792 free (postorder);
4793}
4794
4795/* Clear all flags from insns in BB that could spoil its rescheduling. */
4796void
4797clear_outdated_rtx_info (basic_block bb)
4798{
4799 rtx insn;
4800
4801 FOR_BB_INSNS (bb, insn)
4802 if (INSN_P (insn))
4803 {
4804 SCHED_GROUP_P (insn) = 0;
4805 INSN_AFTER_STALL_P (insn) = 0;
4806 INSN_SCHED_TIMES (insn) = 0;
4807 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4808
4809 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4810 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4811 the expression, and currently we'll be unable to do this. */
4812 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4813 }
4814}
4815
4816/* Add BB_NOTE to the pool of available basic block notes. */
4817static void
4818return_bb_to_pool (basic_block bb)
4819{
4820 rtx note = bb_note (bb);
4821
4822 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4823 && bb->aux == NULL);
4824
4825 /* It turns out that current cfg infrastructure does not support
4826 reuse of basic blocks. Don't bother for now. */
4827 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4828}
4829
4830/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4831static rtx
4832get_bb_note_from_pool (void)
4833{
4834 if (VEC_empty (rtx, bb_note_pool))
4835 return NULL_RTX;
4836 else
4837 {
4838 rtx note = VEC_pop (rtx, bb_note_pool);
4839
4840 PREV_INSN (note) = NULL_RTX;
4841 NEXT_INSN (note) = NULL_RTX;
4842
4843 return note;
4844 }
4845}
4846
4847/* Free bb_note_pool. */
4848void
4849free_bb_note_pool (void)
4850{
4851 VEC_free (rtx, heap, bb_note_pool);
4852}
4853
4854/* Setup scheduler pool and successor structure. */
4855void
4856alloc_sched_pools (void)
4857{
4858 int succs_size;
4859
4860 succs_size = MAX_WS + 1;
b8698a0f 4861 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4862 succs_info_pool.size = succs_size;
4863 succs_info_pool.top = -1;
4864 succs_info_pool.max_top = -1;
4865
b8698a0f 4866 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4867 sizeof (struct _list_node), 500);
4868}
4869
4870/* Free the pools. */
4871void
4872free_sched_pools (void)
4873{
4874 int i;
b8698a0f 4875
e855c69d
AB
4876 free_alloc_pool (sched_lists_pool);
4877 gcc_assert (succs_info_pool.top == -1);
4878 for (i = 0; i < succs_info_pool.max_top; i++)
4879 {
4880 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4881 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4882 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4883 }
4884 free (succs_info_pool.stack);
4885}
4886\f
4887
b8698a0f 4888/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
4889 topological order. */
4890static int
4891find_place_to_insert_bb (basic_block bb, int rgn)
4892{
4893 bool has_preds_outside_rgn = false;
4894 edge e;
4895 edge_iterator ei;
b8698a0f 4896
e855c69d
AB
4897 /* Find whether we have preds outside the region. */
4898 FOR_EACH_EDGE (e, ei, bb->preds)
4899 if (!in_current_region_p (e->src))
4900 {
4901 has_preds_outside_rgn = true;
4902 break;
4903 }
b8698a0f 4904
e855c69d
AB
4905 /* Recompute the top order -- needed when we have > 1 pred
4906 and in case we don't have preds outside. */
4907 if (flag_sel_sched_pipelining_outer_loops
4908 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4909 {
4910 int i, bbi = bb->index, cur_bbi;
4911
4912 recompute_rev_top_order ();
4913 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4914 {
4915 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 4916 if (rev_top_order_index[bbi]
e855c69d
AB
4917 < rev_top_order_index[cur_bbi])
4918 break;
4919 }
b8698a0f 4920
e855c69d
AB
4921 /* We skipped the right block, so we increase i. We accomodate
4922 it for increasing by step later, so we decrease i. */
4923 return (i + 1) - 1;
4924 }
4925 else if (has_preds_outside_rgn)
4926 {
4927 /* This is the case when we generate an extra empty block
4928 to serve as region head during pipelining. */
4929 e = EDGE_SUCC (bb, 0);
4930 gcc_assert (EDGE_COUNT (bb->succs) == 1
4931 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4932 && (BLOCK_TO_BB (e->dest->index) == 0));
4933 return -1;
4934 }
4935
4936 /* We don't have preds outside the region. We should have
4937 the only pred, because the multiple preds case comes from
4938 the pipelining of outer loops, and that is handled above.
4939 Just take the bbi of this single pred. */
4940 if (EDGE_COUNT (bb->succs) > 0)
4941 {
4942 int pred_bbi;
b8698a0f 4943
e855c69d 4944 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 4945
e855c69d
AB
4946 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4947 return BLOCK_TO_BB (pred_bbi);
4948 }
4949 else
4950 /* BB has no successors. It is safe to put it in the end. */
4951 return current_nr_blocks - 1;
4952}
4953
4954/* Deletes an empty basic block freeing its data. */
4955static void
4956delete_and_free_basic_block (basic_block bb)
4957{
4958 gcc_assert (sel_bb_empty_p (bb));
4959
4960 if (BB_LV_SET (bb))
4961 free_lv_set (bb);
4962
4963 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4964
b8698a0f
L
4965 /* Can't assert av_set properties because we use sel_aremove_bb
4966 when removing loop preheader from the region. At the point of
e855c69d
AB
4967 removing the preheader we already have deallocated sel_region_bb_info. */
4968 gcc_assert (BB_LV_SET (bb) == NULL
4969 && !BB_LV_SET_VALID_P (bb)
4970 && BB_AV_LEVEL (bb) == 0
4971 && BB_AV_SET (bb) == NULL);
b8698a0f 4972
e855c69d
AB
4973 delete_basic_block (bb);
4974}
4975
4976/* Add BB to the current region and update the region data. */
4977static void
4978add_block_to_current_region (basic_block bb)
4979{
4980 int i, pos, bbi = -2, rgn;
4981
4982 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4983 bbi = find_place_to_insert_bb (bb, rgn);
4984 bbi += 1;
4985 pos = RGN_BLOCKS (rgn) + bbi;
4986
4987 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4988 && ebb_head[bbi] == pos);
b8698a0f 4989
e855c69d
AB
4990 /* Make a place for the new block. */
4991 extend_regions ();
4992
4993 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4994 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 4995
e855c69d
AB
4996 memmove (rgn_bb_table + pos + 1,
4997 rgn_bb_table + pos,
4998 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4999
5000 /* Initialize data for BB. */
5001 rgn_bb_table[pos] = bb->index;
5002 BLOCK_TO_BB (bb->index) = bbi;
5003 CONTAINING_RGN (bb->index) = rgn;
5004
5005 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5006
e855c69d
AB
5007 for (i = rgn + 1; i <= nr_regions; i++)
5008 RGN_BLOCKS (i)++;
5009}
5010
5011/* Remove BB from the current region and update the region data. */
5012static void
5013remove_bb_from_region (basic_block bb)
5014{
5015 int i, pos, bbi = -2, rgn;
5016
5017 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5018 bbi = BLOCK_TO_BB (bb->index);
5019 pos = RGN_BLOCKS (rgn) + bbi;
5020
5021 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5022 && ebb_head[bbi] == pos);
5023
5024 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5025 BLOCK_TO_BB (rgn_bb_table[i])--;
5026
5027 memmove (rgn_bb_table + pos,
5028 rgn_bb_table + pos + 1,
5029 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5030
5031 RGN_NR_BLOCKS (rgn)--;
5032 for (i = rgn + 1; i <= nr_regions; i++)
5033 RGN_BLOCKS (i)--;
5034}
5035
b8698a0f 5036/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5037 blocks from last_added_blocks vector. */
5038static void
5039sel_add_bb (basic_block bb)
5040{
5041 /* Extend luids so that new notes will receive zero luids. */
5042 sched_init_luids (NULL, NULL, NULL, NULL);
5043 sched_init_bbs ();
5044 sel_init_bbs (last_added_blocks, NULL);
5045
b8698a0f 5046 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5047 the only element that equals to bb; otherwise, the vector
5048 should not be NULL. */
5049 gcc_assert (last_added_blocks != NULL);
b8698a0f 5050
e855c69d
AB
5051 if (bb != NULL)
5052 {
5053 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
5054 && VEC_index (basic_block,
5055 last_added_blocks, 0) == bb);
e855c69d
AB
5056 add_block_to_current_region (bb);
5057
5058 /* We associate creating/deleting data sets with the first insn
5059 appearing / disappearing in the bb. */
5060 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5061 create_initial_data_sets (bb);
b8698a0f 5062
e855c69d
AB
5063 VEC_free (basic_block, heap, last_added_blocks);
5064 }
5065 else
5066 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5067 {
5068 int i;
5069 basic_block temp_bb = NULL;
5070
b8698a0f 5071 for (i = 0;
e855c69d
AB
5072 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5073 {
5074 add_block_to_current_region (bb);
5075 temp_bb = bb;
5076 }
5077
b8698a0f 5078 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5079 to update. */
5080 gcc_assert (temp_bb != NULL);
5081 bb = temp_bb;
5082
5083 VEC_free (basic_block, heap, last_added_blocks);
5084 }
5085
5086 rgn_setup_region (CONTAINING_RGN (bb->index));
5087}
5088
b8698a0f 5089/* Remove BB from the current region and update all data.
e855c69d
AB
5090 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5091static void
5092sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5093{
262d8232
AB
5094 unsigned idx = bb->index;
5095
e855c69d 5096 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5097
e855c69d
AB
5098 remove_bb_from_region (bb);
5099 return_bb_to_pool (bb);
262d8232 5100 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5101
e855c69d 5102 if (remove_from_cfg_p)
00c4e97c
AB
5103 {
5104 basic_block succ = single_succ (bb);
5105 delete_and_free_basic_block (bb);
5106 set_immediate_dominator (CDI_DOMINATORS, succ,
5107 recompute_dominator (CDI_DOMINATORS, succ));
5108 }
e855c69d 5109
262d8232 5110 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5111}
5112
5113/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5114static void
5115move_bb_info (basic_block merge_bb, basic_block empty_bb)
5116{
5117 gcc_assert (in_current_region_p (merge_bb));
5118
b8698a0f 5119 concat_note_lists (BB_NOTE_LIST (empty_bb),
e855c69d
AB
5120 &BB_NOTE_LIST (merge_bb));
5121 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5122
5123}
5124
e855c69d
AB
5125/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5126 region, but keep it in CFG. */
5127static void
5128remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5129{
5130 /* The block should contain just a note or a label.
5131 We try to check whether it is unused below. */
5132 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5133 || LABEL_P (BB_HEAD (empty_bb)));
5134
5135 /* If basic block has predecessors or successors, redirect them. */
5136 if (remove_from_cfg_p
5137 && (EDGE_COUNT (empty_bb->preds) > 0
5138 || EDGE_COUNT (empty_bb->succs) > 0))
5139 {
5140 basic_block pred;
5141 basic_block succ;
5142
5143 /* We need to init PRED and SUCC before redirecting edges. */
5144 if (EDGE_COUNT (empty_bb->preds) > 0)
5145 {
5146 edge e;
5147
5148 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5149
5150 e = EDGE_PRED (empty_bb, 0);
5151 gcc_assert (e->src == empty_bb->prev_bb
5152 && (e->flags & EDGE_FALLTHRU));
5153
5154 pred = empty_bb->prev_bb;
5155 }
5156 else
5157 pred = NULL;
5158
5159 if (EDGE_COUNT (empty_bb->succs) > 0)
5160 {
5161 /* We do not check fallthruness here as above, because
5162 after removing a jump the edge may actually be not fallthru. */
5163 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5164 succ = EDGE_SUCC (empty_bb, 0)->dest;
5165 }
5166 else
5167 succ = NULL;
5168
5169 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5170 {
5171 edge e = EDGE_PRED (empty_bb, 0);
5172
5173 if (e->flags & EDGE_FALLTHRU)
5174 redirect_edge_succ_nodup (e, succ);
5175 else
5176 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5177 }
5178
5179 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5180 {
5181 edge e = EDGE_SUCC (empty_bb, 0);
5182
5183 if (find_edge (pred, e->dest) == NULL)
5184 redirect_edge_pred (e, pred);
5185 }
5186 }
5187
5188 /* Finish removing. */
5189 sel_remove_bb (empty_bb, remove_from_cfg_p);
5190}
5191
b8698a0f 5192/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5193 per-bb data structures. */
5194static basic_block
5195sel_create_basic_block (void *headp, void *endp, basic_block after)
5196{
5197 basic_block new_bb;
5198 insn_t new_bb_note;
b8698a0f
L
5199
5200 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5201 || last_added_blocks == NULL);
5202
5203 new_bb_note = get_bb_note_from_pool ();
5204
5205 if (new_bb_note == NULL_RTX)
5206 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5207 else
5208 {
5209 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5210 new_bb_note, after);
5211 new_bb->aux = NULL;
5212 }
5213
5214 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5215
5216 return new_bb;
5217}
5218
5219/* Implement sched_init_only_bb (). */
5220static void
5221sel_init_only_bb (basic_block bb, basic_block after)
5222{
5223 gcc_assert (after == NULL);
5224
5225 extend_regions ();
5226 rgn_make_new_region_out_of_new_block (bb);
5227}
5228
5229/* Update the latch when we've splitted or merged it from FROM block to TO.
5230 This should be checked for all outer loops, too. */
5231static void
5232change_loops_latches (basic_block from, basic_block to)
5233{
5234 gcc_assert (from != to);
5235
5236 if (current_loop_nest)
5237 {
5238 struct loop *loop;
5239
5240 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5241 if (considered_for_pipelining_p (loop) && loop->latch == from)
5242 {
5243 gcc_assert (loop == current_loop_nest);
5244 loop->latch = to;
5245 gcc_assert (loop_latch_edge (loop));
5246 }
5247 }
5248}
5249
b8698a0f 5250/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5251 per-bb data structures. Returns the newly created bb. */
5252static basic_block
5253sel_split_block (basic_block bb, rtx after)
5254{
5255 basic_block new_bb;
5256 insn_t insn;
5257
5258 new_bb = sched_split_block_1 (bb, after);
5259 sel_add_bb (new_bb);
5260
5261 /* This should be called after sel_add_bb, because this uses
b8698a0f 5262 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5263 FIXME: this function may be a no-op now. */
5264 change_loops_latches (bb, new_bb);
5265
5266 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5267 FOR_BB_INSNS (new_bb, insn)
5268 if (INSN_P (insn))
5269 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5270
5271 if (sel_bb_empty_p (bb))
5272 {
5273 gcc_assert (!sel_bb_empty_p (new_bb));
5274
5275 /* NEW_BB has data sets that need to be updated and BB holds
5276 data sets that should be removed. Exchange these data sets
5277 so that we won't lose BB's valid data sets. */
5278 exchange_data_sets (new_bb, bb);
5279 free_data_sets (bb);
5280 }
5281
5282 if (!sel_bb_empty_p (new_bb)
5283 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5284 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5285
5286 return new_bb;
5287}
5288
5289/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5290 Otherwise returns NULL. */
5291static rtx
5292check_for_new_jump (basic_block bb, int prev_max_uid)
5293{
5294 rtx end;
5295
5296 end = sel_bb_end (bb);
5297 if (end && INSN_UID (end) >= prev_max_uid)
5298 return end;
5299 return NULL;
5300}
5301
b8698a0f 5302/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5303 New means having UID at least equal to PREV_MAX_UID. */
5304static rtx
5305find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5306{
5307 rtx jump;
5308
5309 /* Return immediately if no new insns were emitted. */
5310 if (get_max_uid () == prev_max_uid)
5311 return NULL;
b8698a0f 5312
e855c69d
AB
5313 /* Now check both blocks for new jumps. It will ever be only one. */
5314 if ((jump = check_for_new_jump (from, prev_max_uid)))
5315 return jump;
5316
5317 if (jump_bb != NULL
5318 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5319 return jump;
5320 return NULL;
5321}
5322
5323/* Splits E and adds the newly created basic block to the current region.
5324 Returns this basic block. */
5325basic_block
5326sel_split_edge (edge e)
5327{
5328 basic_block new_bb, src, other_bb = NULL;
5329 int prev_max_uid;
5330 rtx jump;
5331
5332 src = e->src;
5333 prev_max_uid = get_max_uid ();
5334 new_bb = split_edge (e);
5335
b8698a0f 5336 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5337 && current_loop_nest)
5338 {
5339 int i;
5340 basic_block bb;
5341
b8698a0f 5342 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5343 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5344 for (i = 0;
e855c69d
AB
5345 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5346 if (!bb->loop_father)
5347 {
5348 add_bb_to_loop (bb, e->dest->loop_father);
5349
5350 gcc_assert (!other_bb && (new_bb->index != bb->index));
5351 other_bb = bb;
5352 }
5353 }
5354
5355 /* Add all last_added_blocks to the region. */
5356 sel_add_bb (NULL);
5357
5358 jump = find_new_jump (src, new_bb, prev_max_uid);
5359 if (jump)
5360 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5361
5362 /* Put the correct lv set on this block. */
5363 if (other_bb && !sel_bb_empty_p (other_bb))
5364 compute_live (sel_bb_head (other_bb));
5365
5366 return new_bb;
5367}
5368
5369/* Implement sched_create_empty_bb (). */
5370static basic_block
5371sel_create_empty_bb (basic_block after)
5372{
5373 basic_block new_bb;
5374
5375 new_bb = sched_create_empty_bb_1 (after);
5376
5377 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5378 later. */
5379 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5380 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5381
5382 VEC_free (basic_block, heap, last_added_blocks);
5383 return new_bb;
5384}
5385
5386/* Implement sched_create_recovery_block. ORIG_INSN is where block
5387 will be splitted to insert a check. */
5388basic_block
5389sel_create_recovery_block (insn_t orig_insn)
5390{
5391 basic_block first_bb, second_bb, recovery_block;
5392 basic_block before_recovery = NULL;
5393 rtx jump;
5394
5395 first_bb = BLOCK_FOR_INSN (orig_insn);
5396 if (sel_bb_end_p (orig_insn))
5397 {
5398 /* Avoid introducing an empty block while splitting. */
5399 gcc_assert (single_succ_p (first_bb));
5400 second_bb = single_succ (first_bb);
5401 }
5402 else
5403 second_bb = sched_split_block (first_bb, orig_insn);
5404
5405 recovery_block = sched_create_recovery_block (&before_recovery);
5406 if (before_recovery)
5407 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5408
5409 gcc_assert (sel_bb_empty_p (recovery_block));
5410 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5411 if (current_loops != NULL)
5412 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5413
e855c69d 5414 sel_add_bb (recovery_block);
b8698a0f 5415
e855c69d
AB
5416 jump = BB_END (recovery_block);
5417 gcc_assert (sel_bb_head (recovery_block) == jump);
5418 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5419
5420 return recovery_block;
5421}
5422
5423/* Merge basic block B into basic block A. */
262d8232 5424static void
e855c69d
AB
5425sel_merge_blocks (basic_block a, basic_block b)
5426{
262d8232
AB
5427 gcc_assert (sel_bb_empty_p (b)
5428 && EDGE_COUNT (b->preds) == 1
5429 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5430
262d8232
AB
5431 move_bb_info (b->prev_bb, b);
5432 remove_empty_bb (b, false);
5433 merge_blocks (a, b);
e855c69d
AB
5434 change_loops_latches (b, a);
5435}
5436
5437/* A wrapper for redirect_edge_and_branch_force, which also initializes
5438 data structures for possibly created bb and insns. Returns the newly
5439 added bb or NULL, when a bb was not needed. */
5440void
5441sel_redirect_edge_and_branch_force (edge e, basic_block to)
5442{
00c4e97c 5443 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d
AB
5444 int prev_max_uid;
5445 rtx jump;
b8698a0f 5446
00c4e97c
AB
5447 /* This function is now used only for bookkeeping code creation, where
5448 we'll never get the single pred of orig_dest block and thus will not
5449 hit unreachable blocks when updating dominator info. */
5450 gcc_assert (!sel_bb_empty_p (e->src)
5451 && !single_pred_p (orig_dest));
e855c69d
AB
5452 src = e->src;
5453 prev_max_uid = get_max_uid ();
5454 jump_bb = redirect_edge_and_branch_force (e, to);
5455
5456 if (jump_bb != NULL)
5457 sel_add_bb (jump_bb);
5458
5459 /* This function could not be used to spoil the loop structure by now,
5460 thus we don't care to update anything. But check it to be sure. */
5461 if (current_loop_nest
5462 && pipelining_p)
5463 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5464
e855c69d
AB
5465 jump = find_new_jump (src, jump_bb, prev_max_uid);
5466 if (jump)
5467 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
00c4e97c
AB
5468 set_immediate_dominator (CDI_DOMINATORS, to,
5469 recompute_dominator (CDI_DOMINATORS, to));
5470 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5471 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5472}
5473
b59ab570
AM
5474/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5475 redirected edge are in reverse topological order. */
5476bool
e855c69d
AB
5477sel_redirect_edge_and_branch (edge e, basic_block to)
5478{
5479 bool latch_edge_p;
00c4e97c 5480 basic_block src, orig_dest = e->dest;
e855c69d
AB
5481 int prev_max_uid;
5482 rtx jump;
f2c45f08 5483 edge redirected;
b59ab570 5484 bool recompute_toporder_p = false;
00c4e97c 5485 bool maybe_unreachable = single_pred_p (orig_dest);
e855c69d
AB
5486
5487 latch_edge_p = (pipelining_p
5488 && current_loop_nest
5489 && e == loop_latch_edge (current_loop_nest));
5490
5491 src = e->src;
5492 prev_max_uid = get_max_uid ();
f2c45f08
AM
5493
5494 redirected = redirect_edge_and_branch (e, to);
5495
5496 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5497
5498 /* When we've redirected a latch edge, update the header. */
5499 if (latch_edge_p)
5500 {
5501 current_loop_nest->header = to;
5502 gcc_assert (loop_latch_edge (current_loop_nest));
5503 }
5504
b59ab570
AM
5505 /* In rare situations, the topological relation between the blocks connected
5506 by the redirected edge can change (see PR42245 for an example). Update
5507 block_to_bb/bb_to_block. */
5508 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5509 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5510 recompute_toporder_p = true;
5511
e855c69d
AB
5512 jump = find_new_jump (src, NULL, prev_max_uid);
5513 if (jump)
5514 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570 5515
00c4e97c
AB
5516 /* Only update dominator info when we don't have unreachable blocks.
5517 Otherwise we'll update in maybe_tidy_empty_bb. */
5518 if (!maybe_unreachable)
5519 {
5520 set_immediate_dominator (CDI_DOMINATORS, to,
5521 recompute_dominator (CDI_DOMINATORS, to));
5522 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5523 recompute_dominator (CDI_DOMINATORS, orig_dest));
5524 }
b59ab570 5525 return recompute_toporder_p;
e855c69d
AB
5526}
5527
5528/* This variable holds the cfg hooks used by the selective scheduler. */
5529static struct cfg_hooks sel_cfg_hooks;
5530
5531/* Register sel-sched cfg hooks. */
5532void
5533sel_register_cfg_hooks (void)
5534{
5535 sched_split_block = sel_split_block;
5536
5537 orig_cfg_hooks = get_cfg_hooks ();
5538 sel_cfg_hooks = orig_cfg_hooks;
5539
5540 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5541
5542 set_cfg_hooks (sel_cfg_hooks);
5543
5544 sched_init_only_bb = sel_init_only_bb;
5545 sched_split_block = sel_split_block;
5546 sched_create_empty_bb = sel_create_empty_bb;
5547}
5548
5549/* Unregister sel-sched cfg hooks. */
5550void
5551sel_unregister_cfg_hooks (void)
5552{
5553 sched_create_empty_bb = NULL;
5554 sched_split_block = NULL;
5555 sched_init_only_bb = NULL;
5556
5557 set_cfg_hooks (orig_cfg_hooks);
5558}
5559\f
5560
5561/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5562 LABEL is where this jump should be directed. */
5563rtx
5564create_insn_rtx_from_pattern (rtx pattern, rtx label)
5565{
5566 rtx insn_rtx;
5567
5568 gcc_assert (!INSN_P (pattern));
5569
5570 start_sequence ();
5571
5572 if (label == NULL_RTX)
5573 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5574 else if (DEBUG_INSN_P (label))
5575 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5576 else
5577 {
5578 insn_rtx = emit_jump_insn (pattern);
5579 JUMP_LABEL (insn_rtx) = label;
5580 ++LABEL_NUSES (label);
5581 }
5582
5583 end_sequence ();
5584
5585 sched_init_luids (NULL, NULL, NULL, NULL);
5586 sched_extend_target ();
5587 sched_deps_init (false);
5588
5589 /* Initialize INSN_CODE now. */
5590 recog_memoized (insn_rtx);
5591 return insn_rtx;
5592}
5593
5594/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5595 must not be clonable. */
5596vinsn_t
5597create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5598{
5599 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5600
5601 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5602 return vinsn_create (insn_rtx, force_unique_p);
5603}
5604
5605/* Create a copy of INSN_RTX. */
5606rtx
5607create_copy_of_insn_rtx (rtx insn_rtx)
5608{
5609 rtx res;
5610
b5b8b0ac
AO
5611 if (DEBUG_INSN_P (insn_rtx))
5612 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5613 insn_rtx);
5614
e855c69d
AB
5615 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5616
5617 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5618 NULL_RTX);
5619 return res;
5620}
5621
5622/* Change vinsn field of EXPR to hold NEW_VINSN. */
5623void
5624change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5625{
5626 vinsn_detach (EXPR_VINSN (expr));
5627
5628 EXPR_VINSN (expr) = new_vinsn;
5629 vinsn_attach (new_vinsn);
5630}
5631
5632/* Helpers for global init. */
5633/* This structure is used to be able to call existing bundling mechanism
5634 and calculate insn priorities. */
b8698a0f 5635static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5636{
5637 NULL, /* init_ready_list */
5638 NULL, /* can_schedule_ready_p */
5639 NULL, /* schedule_more_p */
5640 NULL, /* new_ready */
5641 NULL, /* rgn_rank */
5642 sel_print_insn, /* rgn_print_insn */
5643 contributes_to_priority,
356c23b3 5644 NULL, /* insn_finishes_block_p */
e855c69d
AB
5645
5646 NULL, NULL,
5647 NULL, NULL,
5648 0, 0,
5649
5650 NULL, /* add_remove_insn */
5651 NULL, /* begin_schedule_ready */
5652 NULL, /* advance_target_bb */
5653 SEL_SCHED | NEW_BBS
5654};
5655
5656/* Setup special insns used in the scheduler. */
b8698a0f 5657void
e855c69d
AB
5658setup_nop_and_exit_insns (void)
5659{
5660 gcc_assert (nop_pattern == NULL_RTX
5661 && exit_insn == NULL_RTX);
5662
9ef1bf71 5663 nop_pattern = constm1_rtx;
e855c69d
AB
5664
5665 start_sequence ();
5666 emit_insn (nop_pattern);
5667 exit_insn = get_insns ();
5668 end_sequence ();
5669 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5670}
5671
5672/* Free special insns used in the scheduler. */
5673void
5674free_nop_and_exit_insns (void)
5675{
5676 exit_insn = NULL_RTX;
5677 nop_pattern = NULL_RTX;
5678}
5679
5680/* Setup a special vinsn used in new insns initialization. */
5681void
5682setup_nop_vinsn (void)
5683{
5684 nop_vinsn = vinsn_create (exit_insn, false);
5685 vinsn_attach (nop_vinsn);
5686}
5687
5688/* Free a special vinsn used in new insns initialization. */
5689void
5690free_nop_vinsn (void)
5691{
5692 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5693 vinsn_detach (nop_vinsn);
5694 nop_vinsn = NULL;
5695}
5696
5697/* Call a set_sched_flags hook. */
5698void
5699sel_set_sched_flags (void)
5700{
b8698a0f 5701 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5702 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5703 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5704 sometimes change c_s_i later. So put the correct flags again. */
5705 if (spec_info && targetm.sched.set_sched_flags)
5706 targetm.sched.set_sched_flags (spec_info);
5707}
5708
5709/* Setup pointers to global sched info structures. */
5710void
5711sel_setup_sched_infos (void)
5712{
5713 rgn_setup_common_sched_info ();
5714
5715 memcpy (&sel_common_sched_info, common_sched_info,
5716 sizeof (sel_common_sched_info));
5717
5718 sel_common_sched_info.fix_recovery_cfg = NULL;
5719 sel_common_sched_info.add_block = NULL;
5720 sel_common_sched_info.estimate_number_of_insns
5721 = sel_estimate_number_of_insns;
5722 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5723 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5724
5725 common_sched_info = &sel_common_sched_info;
5726
5727 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5728 current_sched_info->sched_max_insns_priority =
e855c69d 5729 get_rgn_sched_max_insns_priority ();
b8698a0f 5730
e855c69d
AB
5731 sel_set_sched_flags ();
5732}
5733\f
5734
5735/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5736 *BB_ORD_INDEX after that is increased. */
5737static void
5738sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5739{
5740 RGN_NR_BLOCKS (rgn) += 1;
5741 RGN_DONT_CALC_DEPS (rgn) = 0;
5742 RGN_HAS_REAL_EBB (rgn) = 0;
5743 CONTAINING_RGN (bb->index) = rgn;
5744 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5745 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5746 (*bb_ord_index)++;
5747
5748 /* FIXME: it is true only when not scheduling ebbs. */
5749 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5750}
5751
5752/* Functions to support pipelining of outer loops. */
5753
5754/* Creates a new empty region and returns it's number. */
5755static int
5756sel_create_new_region (void)
5757{
5758 int new_rgn_number = nr_regions;
5759
5760 RGN_NR_BLOCKS (new_rgn_number) = 0;
5761
5762 /* FIXME: This will work only when EBBs are not created. */
5763 if (new_rgn_number != 0)
b8698a0f 5764 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5765 RGN_NR_BLOCKS (new_rgn_number - 1);
5766 else
5767 RGN_BLOCKS (new_rgn_number) = 0;
5768
5769 /* Set the blocks of the next region so the other functions may
5770 calculate the number of blocks in the region. */
b8698a0f 5771 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5772 RGN_NR_BLOCKS (new_rgn_number);
5773
5774 nr_regions++;
5775
5776 return new_rgn_number;
5777}
5778
5779/* If X has a smaller topological sort number than Y, returns -1;
5780 if greater, returns 1. */
5781static int
5782bb_top_order_comparator (const void *x, const void *y)
5783{
5784 basic_block bb1 = *(const basic_block *) x;
5785 basic_block bb2 = *(const basic_block *) y;
5786
b8698a0f
L
5787 gcc_assert (bb1 == bb2
5788 || rev_top_order_index[bb1->index]
e855c69d
AB
5789 != rev_top_order_index[bb2->index]);
5790
5791 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5792 bbs with greater number should go earlier. */
5793 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5794 return -1;
5795 else
5796 return 1;
5797}
5798
b8698a0f 5799/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5800 to pipeline LOOP, return -1. */
5801static int
5802make_region_from_loop (struct loop *loop)
5803{
5804 unsigned int i;
5805 int new_rgn_number = -1;
5806 struct loop *inner;
5807
5808 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5809 int bb_ord_index = 0;
5810 basic_block *loop_blocks;
5811 basic_block preheader_block;
5812
b8698a0f 5813 if (loop->num_nodes
e855c69d
AB
5814 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5815 return -1;
b8698a0f 5816
e855c69d
AB
5817 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5818 for (inner = loop->inner; inner; inner = inner->inner)
5819 if (flow_bb_inside_loop_p (inner, loop->latch))
5820 return -1;
5821
5822 loop->ninsns = num_loop_insns (loop);
5823 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5824 return -1;
5825
5826 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5827
5828 for (i = 0; i < loop->num_nodes; i++)
5829 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5830 {
5831 free (loop_blocks);
5832 return -1;
5833 }
5834
5835 preheader_block = loop_preheader_edge (loop)->src;
5836 gcc_assert (preheader_block);
5837 gcc_assert (loop_blocks[0] == loop->header);
5838
5839 new_rgn_number = sel_create_new_region ();
5840
5841 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5842 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5843
5844 for (i = 0; i < loop->num_nodes; i++)
5845 {
5846 /* Add only those blocks that haven't been scheduled in the inner loop.
5847 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5848 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5849 body, but to the region containing that loop body). */
5850
5851 gcc_assert (new_rgn_number >= 0);
5852
5853 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5854 {
b8698a0f 5855 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
5856 new_rgn_number);
5857 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5858 }
5859 }
5860
5861 free (loop_blocks);
5862 MARK_LOOP_FOR_PIPELINING (loop);
5863
5864 return new_rgn_number;
5865}
5866
5867/* Create a new region from preheader blocks LOOP_BLOCKS. */
5868void
5869make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5870{
5871 unsigned int i;
5872 int new_rgn_number = -1;
5873 basic_block bb;
5874
5875 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5876 int bb_ord_index = 0;
5877
5878 new_rgn_number = sel_create_new_region ();
5879
ac47786e 5880 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
e855c69d
AB
5881 {
5882 gcc_assert (new_rgn_number >= 0);
5883
5884 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5885 }
5886
5887 VEC_free (basic_block, heap, *loop_blocks);
5888 gcc_assert (*loop_blocks == NULL);
5889}
5890
5891
5892/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 5893 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
5894 is created. */
5895static bool
5896make_regions_from_loop_nest (struct loop *loop)
b8698a0f 5897{
e855c69d
AB
5898 struct loop *cur_loop;
5899 int rgn_number;
5900
5901 /* Traverse all inner nodes of the loop. */
5902 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5903 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5904 return false;
5905
5906 /* At this moment all regular inner loops should have been pipelined.
5907 Try to create a region from this loop. */
5908 rgn_number = make_region_from_loop (loop);
5909
5910 if (rgn_number < 0)
5911 return false;
5912
5913 VEC_safe_push (loop_p, heap, loop_nests, loop);
5914 return true;
5915}
5916
5917/* Initalize data structures needed. */
5918void
5919sel_init_pipelining (void)
5920{
5921 /* Collect loop information to be used in outer loops pipelining. */
5922 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5923 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5924 | LOOPS_HAVE_RECORDED_EXITS
5925 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5926 current_loop_nest = NULL;
5927
5928 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5929 sbitmap_zero (bbs_in_loop_rgns);
5930
5931 recompute_rev_top_order ();
5932}
5933
5934/* Returns a struct loop for region RGN. */
5935loop_p
5936get_loop_nest_for_rgn (unsigned int rgn)
5937{
5938 /* Regions created with extend_rgns don't have corresponding loop nests,
5939 because they don't represent loops. */
5940 if (rgn < VEC_length (loop_p, loop_nests))
5941 return VEC_index (loop_p, loop_nests, rgn);
5942 else
5943 return NULL;
5944}
5945
5946/* True when LOOP was included into pipelining regions. */
5947bool
5948considered_for_pipelining_p (struct loop *loop)
5949{
5950 if (loop_depth (loop) == 0)
5951 return false;
5952
b8698a0f
L
5953 /* Now, the loop could be too large or irreducible. Check whether its
5954 region is in LOOP_NESTS.
5955 We determine the region number of LOOP as the region number of its
5956 latch. We can't use header here, because this header could be
e855c69d
AB
5957 just removed preheader and it will give us the wrong region number.
5958 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 5959 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
5960 {
5961 int rgn = CONTAINING_RGN (loop->latch->index);
5962
5963 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5964 return true;
5965 }
b8698a0f 5966
e855c69d
AB
5967 return false;
5968}
5969
b8698a0f 5970/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
5971 for pipelining. */
5972static void
5973make_regions_from_the_rest (void)
5974{
5975 int cur_rgn_blocks;
5976 int *loop_hdr;
5977 int i;
5978
5979 basic_block bb;
5980 edge e;
5981 edge_iterator ei;
5982 int *degree;
e855c69d
AB
5983
5984 /* Index in rgn_bb_table where to start allocating new regions. */
5985 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 5986
b8698a0f 5987 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
5988 any loop or belong to irreducible loops. Prepare the data structures
5989 for extend_rgns. */
5990
5991 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5992 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5993 loop. */
5994 loop_hdr = XNEWVEC (int, last_basic_block);
5995 degree = XCNEWVEC (int, last_basic_block);
5996
5997
5998 /* For each basic block that belongs to some loop assign the number
5999 of innermost loop it belongs to. */
6000 for (i = 0; i < last_basic_block; i++)
6001 loop_hdr[i] = -1;
6002
6003 FOR_EACH_BB (bb)
6004 {
6005 if (bb->loop_father && !bb->loop_father->num == 0
6006 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6007 loop_hdr[bb->index] = bb->loop_father->num;
6008 }
6009
b8698a0f 6010 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6011 edges, that are going out of bbs that are not yet scheduled.
6012 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 6013 FOR_EACH_BB (bb)
e855c69d
AB
6014 {
6015 degree[bb->index] = 0;
6016
6017 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6018 {
6019 FOR_EACH_EDGE (e, ei, bb->preds)
6020 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6021 degree[bb->index]++;
6022 }
6023 else
6024 degree[bb->index] = -1;
6025 }
6026
6027 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6028
6029 /* Any block that did not end up in a region is placed into a region
6030 by itself. */
6031 FOR_EACH_BB (bb)
6032 if (degree[bb->index] >= 0)
6033 {
6034 rgn_bb_table[cur_rgn_blocks] = bb->index;
6035 RGN_NR_BLOCKS (nr_regions) = 1;
6036 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6037 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6038 RGN_HAS_REAL_EBB (nr_regions) = 0;
6039 CONTAINING_RGN (bb->index) = nr_regions++;
6040 BLOCK_TO_BB (bb->index) = 0;
6041 }
6042
6043 free (degree);
6044 free (loop_hdr);
6045}
6046
6047/* Free data structures used in pipelining of loops. */
6048void sel_finish_pipelining (void)
6049{
6050 loop_iterator li;
6051 struct loop *loop;
6052
6053 /* Release aux fields so we don't free them later by mistake. */
6054 FOR_EACH_LOOP (li, loop, 0)
6055 loop->aux = NULL;
6056
6057 loop_optimizer_finalize ();
6058
6059 VEC_free (loop_p, heap, loop_nests);
6060
6061 free (rev_top_order_index);
6062 rev_top_order_index = NULL;
6063}
6064
b8698a0f 6065/* This function replaces the find_rgns when
e855c69d 6066 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6067void
e855c69d
AB
6068sel_find_rgns (void)
6069{
6070 sel_init_pipelining ();
6071 extend_regions ();
6072
6073 if (current_loops)
6074 {
6075 loop_p loop;
6076 loop_iterator li;
6077
6078 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6079 ? LI_FROM_INNERMOST
6080 : LI_ONLY_INNERMOST))
6081 make_regions_from_loop_nest (loop);
6082 }
6083
6084 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6085 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6086 to irreducible loops. */
6087 make_regions_from_the_rest ();
6088
6089 /* We don't need bbs_in_loop_rgns anymore. */
6090 sbitmap_free (bbs_in_loop_rgns);
6091 bbs_in_loop_rgns = NULL;
6092}
6093
b8698a0f
L
6094/* Adds the preheader blocks from previous loop to current region taking
6095 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
e855c69d
AB
6096 This function is only used with -fsel-sched-pipelining-outer-loops. */
6097void
6098sel_add_loop_preheaders (void)
6099{
6100 int i;
6101 basic_block bb;
b8698a0f 6102 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6103 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6104
6105 for (i = 0;
6106 VEC_iterate (basic_block, preheader_blocks, i, bb);
6107 i++)
8ec4d0ad
AM
6108 {
6109 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6110 sel_add_bb (bb);
8ec4d0ad 6111 }
e855c69d
AB
6112
6113 VEC_free (basic_block, heap, preheader_blocks);
6114}
6115
b8698a0f
L
6116/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6117 Please note that the function should also work when pipelining_p is
6118 false, because it is used when deciding whether we should or should
e855c69d
AB
6119 not reschedule pipelined code. */
6120bool
6121sel_is_loop_preheader_p (basic_block bb)
6122{
6123 if (current_loop_nest)
6124 {
6125 struct loop *outer;
6126
6127 if (preheader_removed)
6128 return false;
6129
6130 /* Preheader is the first block in the region. */
6131 if (BLOCK_TO_BB (bb->index) == 0)
6132 return true;
6133
6134 /* We used to find a preheader with the topological information.
6135 Check that the above code is equivalent to what we did before. */
6136
6137 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6138 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6139 < BLOCK_TO_BB (current_loop_nest->header->index)));
6140
6141 /* Support the situation when the latch block of outer loop
6142 could be from here. */
6143 for (outer = loop_outer (current_loop_nest);
6144 outer;
6145 outer = loop_outer (outer))
6146 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6147 gcc_unreachable ();
6148 }
6149
6150 return false;
6151}
6152
753de8cf
AM
6153/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6154 can be removed, making the corresponding edge fallthrough (assuming that
6155 all basic blocks between JUMP_BB and DEST_BB are empty). */
6156static bool
6157bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6158{
b4550bf7
AM
6159 if (!onlyjump_p (BB_END (jump_bb))
6160 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6161 return false;
6162
b8698a0f 6163 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6164 not DEST_BB. */
6165 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6166 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6167 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6168 return false;
6169
6170 /* If not anything of the upper. */
6171 return true;
6172}
6173
6174/* Removes the loop preheader from the current region and saves it in
b8698a0f 6175 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6176 region that represents an outer loop. */
6177static void
6178sel_remove_loop_preheader (void)
6179{
6180 int i, old_len;
6181 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6182 basic_block bb;
6183 bool all_empty_p = true;
b8698a0f 6184 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6185 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6186
6187 gcc_assert (current_loop_nest);
6188 old_len = VEC_length (basic_block, preheader_blocks);
6189
6190 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6191 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6192 {
6193 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6194
b8698a0f 6195 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6196 corresponding loop, then it should be a preheader. */
6197 if (sel_is_loop_preheader_p (bb))
6198 {
6199 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6200 if (BB_END (bb) != bb_note (bb))
6201 all_empty_p = false;
6202 }
6203 }
b8698a0f 6204
e855c69d
AB
6205 /* Remove these blocks only after iterating over the whole region. */
6206 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6207 i >= old_len;
6208 i--)
6209 {
b8698a0f 6210 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6211 sel_remove_bb (bb, false);
6212 }
6213
6214 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6215 {
6216 if (!all_empty_p)
6217 /* Immediately create new region from preheader. */
6218 make_region_from_loop_preheader (&preheader_blocks);
6219 else
6220 {
6221 /* If all preheader blocks are empty - dont create new empty region.
6222 Instead, remove them completely. */
ac47786e 6223 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
e855c69d
AB
6224 {
6225 edge e;
6226 edge_iterator ei;
6227 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6228
6229 /* Redirect all incoming edges to next basic block. */
6230 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6231 {
6232 if (! (e->flags & EDGE_FALLTHRU))
6233 redirect_edge_and_branch (e, bb->next_bb);
6234 else
6235 redirect_edge_succ (e, bb->next_bb);
6236 }
6237 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6238 delete_and_free_basic_block (bb);
6239
b8698a0f
L
6240 /* Check if after deleting preheader there is a nonconditional
6241 jump in PREV_BB that leads to the next basic block NEXT_BB.
6242 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6243 basic block if it becomes empty. */
6244 if (next_bb->prev_bb == prev_bb
6245 && prev_bb != ENTRY_BLOCK_PTR
753de8cf 6246 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6247 {
6248 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6249 if (BB_END (prev_bb) == bb_note (prev_bb))
6250 free_data_sets (prev_bb);
6251 }
00c4e97c
AB
6252
6253 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6254 recompute_dominator (CDI_DOMINATORS,
6255 next_bb));
e855c69d
AB
6256 }
6257 }
6258 VEC_free (basic_block, heap, preheader_blocks);
6259 }
6260 else
6261 /* Store preheader within the father's loop structure. */
6262 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6263 preheader_blocks);
6264}
6265#endif