]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
decl.c (gnat_to_gnu_entity): Create TYPE_DECL for the padded type built to support...
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
c02e2d5c 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
718f9c0f 24#include "diagnostic-core.h"
e855c69d
AB
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
e855c69d
AB
34#include "recog.h"
35#include "params.h"
36#include "target.h"
37#include "timevar.h"
38#include "tree-pass.h"
39#include "sched-int.h"
40#include "ggc.h"
41#include "tree.h"
42#include "vec.h"
43#include "langhooks.h"
44#include "rtlhooks-def.h"
5936d944 45#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
46
47#ifdef INSN_SCHEDULING
48#include "sel-sched-ir.h"
49/* We don't have to use it except for sel_print_insn. */
50#include "sel-sched-dump.h"
51
52/* A vector holding bb info for whole scheduling pass. */
53VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55/* A vector holding bb info. */
56VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58/* A pool for allocating all lists. */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set. */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils. */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined. */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72static VEC(loop_p, heap) *loop_nests = NULL;
73
74/* Saves blocks already in loop regions, indexed by bb->index. */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook. */
78static struct cfg_hooks orig_cfg_hooks;
79\f
80
81/* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array. */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure. */
89static struct
90{
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool. */
116static struct
117{
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
b8698a0f 125 int s;
e855c69d
AB
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes. */
129static rtx_vec_t bb_note_pool;
130
131/* A NOP pattern used to emit placeholder insns. */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135rtx exit_insn = NULL_RTX;
136
b8698a0f 137/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
138 was removed. */
139bool preheader_removed = false;
140\f
141
142/* Forward static declarations. */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
151static void free_history_vect (VEC (expr_history_def, heap) **);
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
262d8232 155static void sel_merge_blocks (basic_block, basic_block);
e855c69d 156static void sel_remove_loop_preheader (void);
753de8cf 157static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
158
159static bool insn_is_the_only_one_in_bb_p (insn_t);
160static void create_initial_data_sets (basic_block);
161
b5b8b0ac 162static void free_av_set (basic_block);
e855c69d
AB
163static void invalidate_av_set (basic_block);
164static void extend_insn_data (void);
165static void sel_init_new_insn (insn_t, int);
166static void finish_insns (void);
167\f
168/* Various list functions. */
169
170/* Copy an instruction list L. */
171ilist_t
172ilist_copy (ilist_t l)
173{
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184}
185
186/* Invert an instruction list L. */
187ilist_t
188ilist_invert (ilist_t l)
189{
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199}
200
201/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202void
203blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204{
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215}
216
217/* Remove the list note pointed to by LP. */
218void
219blist_remove (blist_t *lp)
220{
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228}
229
230/* Init a fence tail L. */
231void
232flist_tail_init (flist_tail_t l)
233{
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236}
237
238/* Try to find fence corresponding to INSN in L. */
239fence_t
240flist_lookup (flist_t l, insn_t insn)
241{
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251}
252
253/* Init the fields of F before running fill_insns. */
254static void
255init_fence_for_scheduling (fence_t f)
256{
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260}
261
262/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263static void
b8698a0f
L
264flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 267 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
268 bool starts_cycle_p, bool after_stall_p)
269{
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 292 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299}
300
301/* Remove the head node of the list pointed to by LP. */
302static void
303flist_remove (flist_t *lp)
304{
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308}
309
310/* Clear the fence list pointed to by LP. */
311void
312flist_clear (flist_t *lp)
313{
314 while (*lp)
315 flist_remove (lp);
316}
317
318/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319void
320def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321{
322 def_t d;
b8698a0f 323
e855c69d
AB
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329}
330\f
331
332/* Functions to work with target contexts. */
333
b8698a0f 334/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
335 that there are no uninitialized (null) target contexts. */
336static tc_t bulk_tc = (tc_t) 1;
337
b8698a0f 338/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
339 implementations for them. */
340
341/* Allocate a store for the target context. */
342static tc_t
343alloc_target_context (void)
344{
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347}
348
349/* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352static void
353init_target_context (tc_t tc, bool clean_p)
354{
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357}
358
359/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361tc_t
362create_target_context (bool clean_p)
363{
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368}
369
370/* Copy TC to the current backend context. */
371void
372set_target_context (tc_t tc)
373{
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376}
377
378/* TC is about to be destroyed. Free any internal data. */
379static void
380clear_target_context (tc_t tc)
381{
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384}
385
386/* Clear and free it. */
387static void
388delete_target_context (tc_t tc)
389{
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394}
395
396/* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398static void
399copy_target_context (tc_t to, tc_t from)
400{
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408}
409
410/* Create a copy of TC. */
411static tc_t
412create_copy_of_target_context (tc_t tc)
413{
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419}
420
421/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423void
424reset_target_context (tc_t tc, bool clean_p)
425{
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428}
429\f
b8698a0f 430/* Functions to work with dependence contexts.
88302d54 431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435/* Make a copy of FROM in TO. */
436static void
437copy_deps_context (deps_t to, deps_t from)
438{
bcf33775 439 init_deps (to, false);
e855c69d
AB
440 deps_join (to, from);
441}
442
443/* Allocate store for dep context. */
444static deps_t
445alloc_deps_context (void)
446{
88302d54 447 return XNEW (struct deps_desc);
e855c69d
AB
448}
449
450/* Allocate and initialize dep context. */
451static deps_t
452create_deps_context (void)
453{
454 deps_t dc = alloc_deps_context ();
455
bcf33775 456 init_deps (dc, false);
e855c69d
AB
457 return dc;
458}
459
460/* Create a copy of FROM. */
461static deps_t
462create_copy_of_deps_context (deps_t from)
463{
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468}
469
470/* Clean up internal data of DC. */
471static void
472clear_deps_context (deps_t dc)
473{
474 free_deps (dc);
475}
476
477/* Clear and free DC. */
478static void
479delete_deps_context (deps_t dc)
480{
481 clear_deps_context (dc);
482 free (dc);
483}
484
485/* Clear and init DC. */
486static void
487reset_deps_context (deps_t dc)
488{
489 clear_deps_context (dc);
bcf33775 490 init_deps (dc, false);
e855c69d
AB
491}
492
b8698a0f 493/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
494 dependence context. */
495static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514/* Process INSN and add its impact on DC. */
515void
516advance_deps_context (deps_t dc, insn_t insn)
517{
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520}
521\f
522
523/* Functions to work with DFA states. */
524
525/* Allocate store for a DFA state. */
526static state_t
527state_alloc (void)
528{
529 return xmalloc (dfa_state_size);
530}
531
532/* Allocate and initialize DFA state. */
533static state_t
534state_create (void)
535{
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541}
542
543/* Free DFA state. */
544static void
545state_free (state_t state)
546{
547 free (state);
548}
549
550/* Make a copy of FROM in TO. */
551static void
552state_copy (state_t to, state_t from)
553{
554 memcpy (to, from, dfa_state_size);
555}
556
557/* Create a copy of FROM. */
558static state_t
559state_create_copy (state_t from)
560{
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565}
566\f
567
568/* Functions to work with fences. */
569
570/* Clear the fence. */
571static void
572fence_clear (fence_t f)
573{
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
583 if (s != NULL)
584 free (s);
585
586 if (dc != NULL)
587 delete_deps_context (dc);
588
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
594}
595
596/* Init a list of fences with successors of OLD_FENCE. */
597void
598init_fences (insn_t old_fence)
599{
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
604
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 {
b8698a0f 608
e855c69d
AB
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
b8698a0f 618 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
b8698a0f 623 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 624 issue_rate, /* issue_more */
b8698a0f 625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
626 }
627}
628
629/* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
b8698a0f 631 propagated from fallthrough edge if it is available;
e855c69d 632 2) deps context and cycle is propagated from more probable edge;
b8698a0f 633 3) all other fields are set to corresponding constant values.
e855c69d 634
b8698a0f 635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
638static void
639merge_fences (fence_t f, insn_t insn,
b8698a0f 640 state_t state, deps_t dc, void *tc,
e855c69d
AB
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
136e01a3 643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
644{
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
b8698a0f 650 /* Check if we can decide which path fences came.
e855c69d
AB
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
b8698a0f
L
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
e855c69d
AB
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
b8698a0f 662
e855c69d
AB
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
b8698a0f 665
e855c69d
AB
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 673 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
b8698a0f 688
e855c69d
AB
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
b8698a0f 700
e855c69d
AB
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
b8698a0f 703
e855c69d 704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 705 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
b8698a0f 710 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 722 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
b8698a0f 764
e855c69d
AB
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800}
801
b8698a0f 802/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
803 other parameters. */
804static void
805add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
811{
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814 if (! f)
815 {
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 817 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 819 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
820
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 }
824 else
825 {
b8698a0f
L
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 828 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
829 }
830}
831
832/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833void
834move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835{
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839 old = FLIST_FENCE (old_fences);
b8698a0f 840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
843 {
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
136e01a3 847 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
848 old->after_stall_p);
849 }
850 else
851 {
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 }
857 FENCE_INSN (old) = NULL;
858}
859
b8698a0f 860/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
861 as a clean one. */
862void
863add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864{
865 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 866
e855c69d
AB
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
b8698a0f 870 NULL_RTX, NULL,
e855c69d
AB
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
874}
875
b8698a0f 876/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
877 from FENCE and SUCC. */
878void
879add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880{
b8698a0f 881 int * new_ready_ticks
e855c69d 882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 883
e855c69d
AB
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 890 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
136e01a3 897 FENCE_ISSUE_MORE (fence),
e855c69d
AB
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
900}
901\f
902
903/* Functions to work with regset and nop pools. */
904
905/* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907regset
908get_regset_from_pool (void)
909{
910 regset rs;
911
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
916 {
917 rs = ALLOC_REG_SET (&reg_obstack);
918
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
923 }
924
925 regset_pool.diff++;
926
927 return rs;
928}
929
930/* Same as above, but returns the empty regset. */
931regset
932get_clear_regset_from_pool (void)
933{
934 regset rs = get_regset_from_pool ();
935
936 CLEAR_REG_SET (rs);
937 return rs;
938}
939
940/* Return regset RS to the pool for future use. */
941void
942return_regset_to_pool (regset rs)
943{
9ef1bf71 944 gcc_assert (rs);
e855c69d
AB
945 regset_pool.diff--;
946
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
951}
952
68ad446f 953#ifdef ENABLE_CHECKING
e855c69d
AB
954/* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956static int
957cmp_v_in_regset_pool (const void *x, const void *xx)
958{
959 return *((const regset *) x) - *((const regset *) xx);
960}
68ad446f 961#endif
e855c69d
AB
962
963/* Free the regset pool possibly checking for memory leaks. */
964void
965free_regset_pool (void)
966{
967#ifdef ENABLE_CHECKING
968 {
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
b8698a0f 972
e855c69d
AB
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
b8698a0f 976
e855c69d 977 int diff = 0;
b8698a0f 978
e855c69d 979 gcc_assert (n <= nn);
b8698a0f 980
e855c69d
AB
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 984
e855c69d
AB
985 while (ii < nn)
986 {
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
b8698a0f 992
e855c69d
AB
993 ii++;
994 }
b8698a0f 995
e855c69d
AB
996 gcc_assert (diff == regset_pool.diff);
997 }
998#endif
b8698a0f 999
e855c69d
AB
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
b8698a0f 1002
e855c69d
AB
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
b8698a0f 1012
e855c69d
AB
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019}
1020\f
1021
b8698a0f
L
1022/* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026/* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028static vinsn_t nop_vinsn = NULL;
1029
1030/* Emit a nop before INSN, taking it from pool. */
1031insn_t
1032get_nop_from_pool (insn_t insn)
1033{
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1037
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1042
1043 nop = emit_insn_before (nop, insn);
1044
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1052
1053 return nop;
1054}
1055
1056/* Remove NOP from the instruction stream and return it to the pool. */
1057void
b5b8b0ac 1058return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1059{
1060 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1061 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1062
1063 if (nop_pool.n == nop_pool.s)
b8698a0f 1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1067}
1068
1069/* Free the nop pool. */
1070void
1071free_nop_pool (void)
1072{
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1077}
1078\f
1079
b8698a0f 1080/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083static int
1084skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085{
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
b8698a0f 1088
e855c69d
AB
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1092 {
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1096 }
b8698a0f 1097
e855c69d
AB
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1101 {
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1105 }
b8698a0f 1106
e855c69d
AB
1107 return 0;
1108}
1109
b8698a0f 1110/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113static int
1114hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1116{
b8698a0f 1117 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1120 {
1121 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1122 *nmode = VOIDmode;
e855c69d
AB
1123 return 1;
1124 }
b8698a0f 1125
e855c69d
AB
1126 return 0;
1127}
1128
1129/* Returns LHS and RHS are ok to be scheduled separately. */
1130static bool
1131lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132{
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1135
b8698a0f
L
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1142
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1146
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1150
b8698a0f 1151 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1156
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1161
1162 return true;
1163}
1164
b8698a0f
L
1165/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1167 used e.g. for insns from recovery blocks. */
1168static void
1169vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170{
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1173
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
b8698a0f 1177
9ef1bf71
AM
1178 if (INSN_NOP_P (insn))
1179 return;
1180
e855c69d
AB
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1185
e855c69d
AB
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1189 {
1190 rtx rhs = VINSN_RHS (vi);
1191
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1197 }
1198 else
1199 {
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203 }
b8698a0f 1204
e855c69d
AB
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1213}
1214
1215/* Indicate that VI has become the part of an rtx object. */
1216void
1217vinsn_attach (vinsn_t vi)
1218{
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1221
1222 VINSN_COUNT (vi)++;
1223}
1224
b8698a0f 1225/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1226 VINSN_TYPE (VI). */
1227static vinsn_t
1228vinsn_create (insn_t insn, bool force_unique_p)
1229{
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1231
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1234}
1235
1236/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
b8698a0f 1238vinsn_t
e855c69d
AB
1239vinsn_copy (vinsn_t vi, bool reattach_p)
1240{
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
b8698a0f 1244
e855c69d
AB
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1248 {
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1251 }
1252
1253 return new_vi;
1254}
1255
1256/* Delete the VI vinsn and free its data. */
1257static void
1258vinsn_delete (vinsn_t vi)
1259{
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1261
9ef1bf71
AM
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263 {
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267 }
e855c69d
AB
1268
1269 free (vi);
1270}
1271
b8698a0f 1272/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1273 Remove VI if it is no longer needed. */
1274void
1275vinsn_detach (vinsn_t vi)
1276{
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1278
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1281}
1282
1283/* Returns TRUE if VI is a branch. */
1284bool
1285vinsn_cond_branch_p (vinsn_t vi)
1286{
1287 insn_t insn;
1288
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1291
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1295
1296 return control_flow_insn_p (insn);
1297}
1298
1299/* Return latency of INSN. */
1300static int
1301sel_insn_rtx_cost (rtx insn)
1302{
1303 int cost;
1304
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1312 {
1313 cost = insn_default_latency (insn);
1314
1315 if (cost < 0)
1316 cost = 0;
1317 }
1318
1319 return cost;
1320}
1321
1322/* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1324int
1325sel_vinsn_cost (vinsn_t vi)
1326{
1327 int cost = vi->cost;
1328
1329 if (cost < 0)
1330 {
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1333 }
1334
1335 return cost;
1336}
1337\f
1338
1339/* Functions for insn emitting. */
1340
1341/* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343insn_t
1344sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345{
1346 insn_t new_insn;
1347
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353
1354 return new_insn;
1355}
1356
1357/* Force newly generated vinsns to be unique. */
1358static bool init_insn_force_unique_p = false;
1359
1360/* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362insn_t
1363sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1365{
1366 insn_t insn;
1367
1368 gcc_assert (!init_insn_force_unique_p);
1369
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1374
1375 return insn;
1376}
1377
1378/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
e855c69d
AB
1381 simplify_changed_insns. */
1382insn_t
b8698a0f 1383sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1384 insn_t after)
1385{
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
b8698a0f
L
1389
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1394
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1399
1400 return insn;
1401}
1402
1403/* Move insn from EXPR after AFTER. */
1404insn_t
1405sel_move_insn (expr_t expr, int seqno, insn_t after)
1406{
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1410
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1415
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1418
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
b8698a0f 1423
e855c69d
AB
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1426}
1427
1428\f
1429/* Functions to work with right-hand sides. */
1430
b8698a0f 1431/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1432 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1435 retain VECT's sort order. */
1436static bool
b8698a0f
L
1437find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1439 bool compare_vinsns, int *indp)
1440{
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1443
1444 if (len == 0)
1445 {
1446 *indp = 0;
1447 return false;
1448 }
1449
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1452
1453 while (i <= j)
1454 {
1455 unsigned auid = arr[i].uid;
b8698a0f 1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1457
1458 if (auid == uid
b8698a0f
L
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
b8698a0f 1463 && (! compare_vinsns
e855c69d
AB
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1465 {
1466 *indp = i;
1467 return true;
1468 }
1469 else if (auid > uid)
1470 break;
1471 i++;
1472 }
1473
1474 *indp = i;
1475 return false;
1476}
1477
b8698a0f
L
1478/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
e855c69d
AB
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1481int
b8698a0f 1482find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1483 vinsn_t new_vinsn, bool originators_p)
1484{
1485 int ind;
1486
b8698a0f 1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1488 false, &ind))
1489 return ind;
1490
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1492 {
1493 unsigned uid;
1494 bitmap_iterator bi;
1495
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1499 }
b8698a0f 1500
e855c69d
AB
1501 return -1;
1502}
1503
b8698a0f
L
1504/* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
e855c69d
AB
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508void
1509insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
b8698a0f 1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1512 ds_t spec_ds)
1513{
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1518
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520
1521 if (res)
1522 {
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524
b8698a0f 1525 /* It is possible that speculation types of expressions that were
e855c69d
AB
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1531 }
b8698a0f 1532
e855c69d
AB
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1535 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1538
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1543}
1544
1545/* Free history vector PVECT. */
1546static void
1547free_history_vect (VEC (expr_history_def, heap) **pvect)
1548{
1549 unsigned i;
1550 expr_history_def *phist;
1551
1552 if (! *pvect)
1553 return;
b8698a0f
L
1554
1555 for (i = 0;
e855c69d
AB
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1558 {
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1561 }
b8698a0f 1562
e855c69d
AB
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1565}
1566
1567
1568/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1569bool
1570vinsn_equal_p (vinsn_t x, vinsn_t y)
1571{
1572 rtx_equal_p_callback_function repcf;
1573
1574 if (x == y)
1575 return true;
1576
1577 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1578 return false;
1579
1580 if (VINSN_HASH (x) != VINSN_HASH (y))
1581 return false;
1582
1583 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1584 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1585 {
1586 /* Compare RHSes of VINSNs. */
1587 gcc_assert (VINSN_RHS (x));
1588 gcc_assert (VINSN_RHS (y));
1589
1590 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1591 }
1592
1593 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1594}
1595\f
1596
1597/* Functions for working with expressions. */
1598
1599/* Initialize EXPR. */
1600static void
1601init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1602 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1603 ds_t spec_to_check_ds, int orig_sched_cycle,
f3764768 1604 VEC(expr_history_def, heap) *history, signed char target_available,
e855c69d
AB
1605 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1606 bool cant_move)
1607{
1608 vinsn_attach (vi);
1609
1610 EXPR_VINSN (expr) = vi;
1611 EXPR_SPEC (expr) = spec;
1612 EXPR_USEFULNESS (expr) = use;
1613 EXPR_PRIORITY (expr) = priority;
1614 EXPR_PRIORITY_ADJ (expr) = 0;
1615 EXPR_SCHED_TIMES (expr) = sched_times;
1616 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1617 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1618 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1619 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1620
1621 if (history)
1622 EXPR_HISTORY_OF_CHANGES (expr) = history;
1623 else
1624 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1625
1626 EXPR_TARGET_AVAILABLE (expr) = target_available;
1627 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1628 EXPR_WAS_RENAMED (expr) = was_renamed;
1629 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1630 EXPR_CANT_MOVE (expr) = cant_move;
1631}
1632
1633/* Make a copy of the expr FROM into the expr TO. */
1634void
1635copy_expr (expr_t to, expr_t from)
1636{
1637 VEC(expr_history_def, heap) *temp = NULL;
1638
1639 if (EXPR_HISTORY_OF_CHANGES (from))
1640 {
1641 unsigned i;
1642 expr_history_def *phist;
1643
1644 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1645 for (i = 0;
e855c69d
AB
1646 VEC_iterate (expr_history_def, temp, i, phist);
1647 i++)
1648 {
1649 vinsn_attach (phist->old_expr_vinsn);
1650 vinsn_attach (phist->new_expr_vinsn);
1651 }
1652 }
1653
b8698a0f 1654 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1655 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1656 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1657 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1658 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1659 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1660 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1661 EXPR_CANT_MOVE (from));
1662}
1663
b8698a0f 1664/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1665 "uninteresting" data such as bitmap cache. */
1666void
1667copy_expr_onside (expr_t to, expr_t from)
1668{
1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1670 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1672 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1673 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1674 EXPR_CANT_MOVE (from));
1675}
1676
1677/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1678 initializing new insns. */
1679static void
1680prepare_insn_expr (insn_t insn, int seqno)
1681{
1682 expr_t expr = INSN_EXPR (insn);
1683 ds_t ds;
b8698a0f 1684
e855c69d
AB
1685 INSN_SEQNO (insn) = seqno;
1686 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1687 EXPR_SPEC (expr) = 0;
1688 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1689 EXPR_WAS_SUBSTITUTED (expr) = 0;
1690 EXPR_WAS_RENAMED (expr) = 0;
1691 EXPR_TARGET_AVAILABLE (expr) = 1;
1692 INSN_LIVE_VALID_P (insn) = false;
1693
1694 /* ??? If this expression is speculative, make its dependence
1695 as weak as possible. We can filter this expression later
1696 in process_spec_exprs, because we do not distinguish
1697 between the status we got during compute_av_set and the
1698 existing status. To be fixed. */
1699 ds = EXPR_SPEC_DONE_DS (expr);
1700 if (ds)
1701 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1702
1703 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1704}
1705
1706/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1707 is non-null when expressions are merged from different successors at
e855c69d
AB
1708 a split point. */
1709static void
1710update_target_availability (expr_t to, expr_t from, insn_t split_point)
1711{
b8698a0f 1712 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1713 || EXPR_TARGET_AVAILABLE (from) < 0)
1714 EXPR_TARGET_AVAILABLE (to) = -1;
1715 else
1716 {
1717 /* We try to detect the case when one of the expressions
1718 can only be reached through another one. In this case,
1719 we can do better. */
1720 if (split_point == NULL)
1721 {
1722 int toind, fromind;
1723
1724 toind = EXPR_ORIG_BB_INDEX (to);
1725 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1726
e855c69d 1727 if (toind && toind == fromind)
b8698a0f 1728 /* Do nothing -- everything is done in
e855c69d
AB
1729 merge_with_other_exprs. */
1730 ;
1731 else
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1733 }
1734 else
1735 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1736 }
1737}
1738
1739/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1740 is non-null when expressions are merged from different successors at
e855c69d
AB
1741 a split point. */
1742static void
1743update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1744{
1745 ds_t old_to_ds, old_from_ds;
1746
1747 old_to_ds = EXPR_SPEC_DONE_DS (to);
1748 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1749
e855c69d
AB
1750 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1751 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1752 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1753
1754 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1755 speculative with a control&data speculative one, we really have
e855c69d
AB
1756 to change vinsn too. Also, when speculative status is changed,
1757 we also need to record this as a transformation in expr's history. */
1758 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1759 {
1760 old_to_ds = ds_get_speculation_types (old_to_ds);
1761 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1762
e855c69d
AB
1763 if (old_to_ds != old_from_ds)
1764 {
1765 ds_t record_ds;
b8698a0f
L
1766
1767 /* When both expressions are speculative, we need to change
e855c69d
AB
1768 the vinsn first. */
1769 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1770 {
1771 int res;
b8698a0f 1772
e855c69d
AB
1773 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1774 gcc_assert (res >= 0);
1775 }
1776
1777 if (split_point != NULL)
1778 {
1779 /* Record the change with proper status. */
1780 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1781 record_ds &= ~(old_to_ds & SPECULATIVE);
1782 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1783
1784 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1785 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1786 EXPR_VINSN (from), EXPR_VINSN (to),
1787 record_ds);
1788 }
1789 }
1790 }
1791}
1792
1793
1794/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1795 this is done along different paths. */
1796void
1797merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1798{
1799 int i;
1800 expr_history_def *phist;
b8698a0f 1801
e855c69d
AB
1802 /* For now, we just set the spec of resulting expr to be minimum of the specs
1803 of merged exprs. */
1804 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1805 EXPR_SPEC (to) = EXPR_SPEC (from);
1806
1807 if (split_point)
1808 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1809 else
b8698a0f 1810 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1811 EXPR_USEFULNESS (from));
1812
1813 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1814 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1815
1816 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1817 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1818
1819 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1820 EXPR_ORIG_BB_INDEX (to) = 0;
1821
b8698a0f 1822 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1823 EXPR_ORIG_SCHED_CYCLE (from));
1824
1825 /* We keep this vector sorted. */
b8698a0f
L
1826 for (i = 0;
1827 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
e855c69d
AB
1828 i, phist);
1829 i++)
b8698a0f
L
1830 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1831 phist->uid, phist->type,
1832 phist->old_expr_vinsn, phist->new_expr_vinsn,
e855c69d
AB
1833 phist->spec_ds);
1834
1835 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1836 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1837 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1838
1839 update_target_availability (to, from, split_point);
1840 update_speculative_bits (to, from, split_point);
1841}
1842
1843/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1844 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1845 are merged from different successors at a split point. */
1846void
1847merge_expr (expr_t to, expr_t from, insn_t split_point)
1848{
1849 vinsn_t to_vi = EXPR_VINSN (to);
1850 vinsn_t from_vi = EXPR_VINSN (from);
1851
1852 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1853
1854 /* Make sure that speculative pattern is propagated into exprs that
1855 have non-speculative one. This will provide us with consistent
1856 speculative bits and speculative patterns inside expr. */
1857 if (EXPR_SPEC_DONE_DS (to) == 0
1858 && EXPR_SPEC_DONE_DS (from) != 0)
1859 change_vinsn_in_expr (to, EXPR_VINSN (from));
1860
1861 merge_expr_data (to, from, split_point);
1862 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1863}
1864
1865/* Clear the information of this EXPR. */
1866void
1867clear_expr (expr_t expr)
1868{
b8698a0f 1869
e855c69d
AB
1870 vinsn_detach (EXPR_VINSN (expr));
1871 EXPR_VINSN (expr) = NULL;
1872
1873 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1874}
1875
1876/* For a given LV_SET, mark EXPR having unavailable target register. */
1877static void
1878set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1879{
1880 if (EXPR_SEPARABLE_P (expr))
1881 {
1882 if (REG_P (EXPR_LHS (expr))
1883 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1884 {
b8698a0f
L
1885 /* If it's an insn like r1 = use (r1, ...), and it exists in
1886 different forms in each of the av_sets being merged, we can't say
1887 whether original destination register is available or not.
1888 However, this still works if destination register is not used
e855c69d
AB
1889 in the original expression: if the branch at which LV_SET we're
1890 looking here is not actually 'other branch' in sense that same
b8698a0f 1891 expression is available through it (but it can't be determined
e855c69d 1892 at computation stage because of transformations on one of the
b8698a0f
L
1893 branches), it still won't affect the availability.
1894 Liveness of a register somewhere on a code motion path means
1895 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1896 'other' branch, live at the point immediately following
1897 the original operation, or is read by the original operation.
1898 The latter case is filtered out in the condition below.
1899 It still doesn't cover the case when register is defined and used
1900 somewhere within the code motion path, and in this case we could
1901 miss a unifying code motion along both branches using a renamed
1902 register, but it won't affect a code correctness since upon
1903 an actual code motion a bookkeeping code would be generated. */
b8698a0f 1904 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1905 REGNO (EXPR_LHS (expr))))
1906 EXPR_TARGET_AVAILABLE (expr) = -1;
1907 else
1908 EXPR_TARGET_AVAILABLE (expr) = false;
1909 }
1910 }
1911 else
1912 {
1913 unsigned regno;
1914 reg_set_iterator rsi;
b8698a0f
L
1915
1916 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1917 0, regno, rsi)
1918 if (bitmap_bit_p (lv_set, regno))
1919 {
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1921 break;
1922 }
1923
1924 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1925 0, regno, rsi)
1926 if (bitmap_bit_p (lv_set, regno))
1927 {
1928 EXPR_TARGET_AVAILABLE (expr) = false;
1929 break;
1930 }
1931 }
1932}
1933
b8698a0f 1934/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1935 or dependence status have changed, 2 when also the target register
1936 became unavailable, 0 if nothing had to be changed. */
1937int
1938speculate_expr (expr_t expr, ds_t ds)
1939{
1940 int res;
1941 rtx orig_insn_rtx;
1942 rtx spec_pat;
1943 ds_t target_ds, current_ds;
1944
1945 /* Obtain the status we need to put on EXPR. */
1946 target_ds = (ds & SPECULATIVE);
1947 current_ds = EXPR_SPEC_DONE_DS (expr);
1948 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1949
1950 orig_insn_rtx = EXPR_INSN_RTX (expr);
1951
1952 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1953
1954 switch (res)
1955 {
1956 case 0:
1957 EXPR_SPEC_DONE_DS (expr) = ds;
1958 return current_ds != ds ? 1 : 0;
b8698a0f 1959
e855c69d
AB
1960 case 1:
1961 {
1962 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1963 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1964
1965 change_vinsn_in_expr (expr, spec_vinsn);
1966 EXPR_SPEC_DONE_DS (expr) = ds;
1967 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1968
b8698a0f 1969 /* Do not allow clobbering the address register of speculative
e855c69d 1970 insns. */
b8698a0f 1971 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1972 expr_dest_regno (expr)))
1973 {
1974 EXPR_TARGET_AVAILABLE (expr) = false;
1975 return 2;
1976 }
1977
1978 return 1;
1979 }
1980
1981 case -1:
1982 return -1;
1983
1984 default:
1985 gcc_unreachable ();
1986 return -1;
1987 }
1988}
1989
1990/* Return a destination register, if any, of EXPR. */
1991rtx
1992expr_dest_reg (expr_t expr)
1993{
1994 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1995
1996 if (dest != NULL_RTX && REG_P (dest))
1997 return dest;
1998
1999 return NULL_RTX;
2000}
2001
2002/* Returns the REGNO of the R's destination. */
2003unsigned
2004expr_dest_regno (expr_t expr)
2005{
2006 rtx dest = expr_dest_reg (expr);
2007
2008 gcc_assert (dest != NULL_RTX);
2009 return REGNO (dest);
2010}
2011
b8698a0f 2012/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2013 AV_SET having unavailable target register. */
2014void
2015mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2016{
2017 expr_t expr;
2018 av_set_iterator avi;
2019
2020 FOR_EACH_EXPR (expr, avi, join_set)
2021 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2022 set_unavailable_target_for_expr (expr, lv_set);
2023}
2024\f
2025
2026/* Av set functions. */
2027
2028/* Add a new element to av set SETP.
2029 Return the element added. */
2030static av_set_t
2031av_set_add_element (av_set_t *setp)
2032{
2033 /* Insert at the beginning of the list. */
2034 _list_add (setp);
2035 return *setp;
2036}
2037
2038/* Add EXPR to SETP. */
2039void
2040av_set_add (av_set_t *setp, expr_t expr)
2041{
2042 av_set_t elem;
b8698a0f 2043
e855c69d
AB
2044 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2045 elem = av_set_add_element (setp);
2046 copy_expr (_AV_SET_EXPR (elem), expr);
2047}
2048
2049/* Same, but do not copy EXPR. */
2050static void
2051av_set_add_nocopy (av_set_t *setp, expr_t expr)
2052{
2053 av_set_t elem;
2054
2055 elem = av_set_add_element (setp);
2056 *_AV_SET_EXPR (elem) = *expr;
2057}
2058
2059/* Remove expr pointed to by IP from the av_set. */
2060void
2061av_set_iter_remove (av_set_iterator *ip)
2062{
2063 clear_expr (_AV_SET_EXPR (*ip->lp));
2064 _list_iter_remove (ip);
2065}
2066
2067/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2068 sense of vinsn_equal_p function. Return NULL if no such expr is
2069 in SET was found. */
2070expr_t
2071av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2072{
2073 expr_t expr;
2074 av_set_iterator i;
2075
2076 FOR_EACH_EXPR (expr, i, set)
2077 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2078 return expr;
2079 return NULL;
2080}
2081
2082/* Same, but also remove the EXPR found. */
2083static expr_t
2084av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2085{
2086 expr_t expr;
2087 av_set_iterator i;
2088
2089 FOR_EACH_EXPR_1 (expr, i, setp)
2090 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2091 {
2092 _list_iter_remove_nofree (&i);
2093 return expr;
2094 }
2095 return NULL;
2096}
2097
2098/* Search for an expr in SET, such that it's equivalent to EXPR in the
2099 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2100 Returns NULL if no such expr is in SET was found. */
2101static expr_t
2102av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2103{
2104 expr_t cur_expr;
2105 av_set_iterator i;
2106
2107 FOR_EACH_EXPR (cur_expr, i, set)
2108 {
2109 if (cur_expr == expr)
2110 continue;
2111 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2112 return cur_expr;
2113 }
2114
2115 return NULL;
2116}
2117
2118/* If other expression is already in AVP, remove one of them. */
2119expr_t
2120merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2121{
2122 expr_t expr2;
2123
2124 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2125 if (expr2 != NULL)
2126 {
2127 /* Reset target availability on merge, since taking it only from one
2128 of the exprs would be controversial for different code. */
2129 EXPR_TARGET_AVAILABLE (expr2) = -1;
2130 EXPR_USEFULNESS (expr2) = 0;
2131
2132 merge_expr (expr2, expr, NULL);
b8698a0f 2133
e855c69d
AB
2134 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2135 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2136
e855c69d
AB
2137 av_set_iter_remove (ip);
2138 return expr2;
2139 }
2140
2141 return expr;
2142}
2143
2144/* Return true if there is an expr that correlates to VI in SET. */
2145bool
2146av_set_is_in_p (av_set_t set, vinsn_t vi)
2147{
2148 return av_set_lookup (set, vi) != NULL;
2149}
2150
2151/* Return a copy of SET. */
2152av_set_t
2153av_set_copy (av_set_t set)
2154{
2155 expr_t expr;
2156 av_set_iterator i;
2157 av_set_t res = NULL;
2158
2159 FOR_EACH_EXPR (expr, i, set)
2160 av_set_add (&res, expr);
2161
2162 return res;
2163}
2164
2165/* Join two av sets that do not have common elements by attaching second set
2166 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2167 _AV_SET_NEXT of first set's last element). */
2168static void
2169join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2170{
2171 gcc_assert (*to_tailp == NULL);
2172 *to_tailp = *fromp;
2173 *fromp = NULL;
2174}
2175
2176/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2177 pointed to by FROMP afterwards. */
2178void
2179av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2180{
2181 expr_t expr1;
2182 av_set_iterator i;
2183
2184 /* Delete from TOP all exprs, that present in FROMP. */
2185 FOR_EACH_EXPR_1 (expr1, i, top)
2186 {
2187 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2188
2189 if (expr2)
2190 {
2191 merge_expr (expr2, expr1, insn);
2192 av_set_iter_remove (&i);
2193 }
2194 }
2195
2196 join_distinct_sets (i.lp, fromp);
2197}
2198
b8698a0f 2199/* Same as above, but also update availability of target register in
e855c69d
AB
2200 TOP judging by TO_LV_SET and FROM_LV_SET. */
2201void
2202av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2203 regset from_lv_set, insn_t insn)
2204{
2205 expr_t expr1;
2206 av_set_iterator i;
2207 av_set_t *to_tailp, in_both_set = NULL;
2208
2209 /* Delete from TOP all expres, that present in FROMP. */
2210 FOR_EACH_EXPR_1 (expr1, i, top)
2211 {
2212 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2213
2214 if (expr2)
2215 {
b8698a0f 2216 /* It may be that the expressions have different destination
e855c69d
AB
2217 registers, in which case we need to check liveness here. */
2218 if (EXPR_SEPARABLE_P (expr1))
2219 {
b8698a0f 2220 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2221 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2222 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2223 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2224
2225 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2226 *other* register on the current path, we did it only
2227 for the current target register. Give up. */
2228 if (regno1 != regno2)
2229 EXPR_TARGET_AVAILABLE (expr2) = -1;
2230 }
2231 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2233
2234 merge_expr (expr2, expr1, insn);
2235 av_set_add_nocopy (&in_both_set, expr2);
2236 av_set_iter_remove (&i);
2237 }
2238 else
b8698a0f 2239 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2240 FROM_LV_SET. */
2241 set_unavailable_target_for_expr (expr1, from_lv_set);
2242 }
2243 to_tailp = i.lp;
2244
2245 /* These expressions are not present in TOP. Check liveness
2246 restrictions on TO_LV_SET. */
2247 FOR_EACH_EXPR (expr1, i, *fromp)
2248 set_unavailable_target_for_expr (expr1, to_lv_set);
2249
2250 join_distinct_sets (i.lp, &in_both_set);
2251 join_distinct_sets (to_tailp, fromp);
2252}
2253
2254/* Clear av_set pointed to by SETP. */
2255void
2256av_set_clear (av_set_t *setp)
2257{
2258 expr_t expr;
2259 av_set_iterator i;
2260
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 av_set_iter_remove (&i);
2263
2264 gcc_assert (*setp == NULL);
2265}
2266
2267/* Leave only one non-speculative element in the SETP. */
2268void
2269av_set_leave_one_nonspec (av_set_t *setp)
2270{
2271 expr_t expr;
2272 av_set_iterator i;
2273 bool has_one_nonspec = false;
2274
b8698a0f 2275 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2276 (the first one). */
2277 FOR_EACH_EXPR_1 (expr, i, setp)
2278 {
2279 if (!EXPR_SPEC_DONE_DS (expr))
2280 {
2281 if (has_one_nonspec)
2282 av_set_iter_remove (&i);
2283 else
2284 has_one_nonspec = true;
2285 }
2286 }
2287}
2288
2289/* Return the N'th element of the SET. */
2290expr_t
2291av_set_element (av_set_t set, int n)
2292{
2293 expr_t expr;
2294 av_set_iterator i;
2295
2296 FOR_EACH_EXPR (expr, i, set)
2297 if (n-- == 0)
2298 return expr;
2299
2300 gcc_unreachable ();
2301 return NULL;
2302}
2303
2304/* Deletes all expressions from AVP that are conditional branches (IFs). */
2305void
2306av_set_substract_cond_branches (av_set_t *avp)
2307{
2308 av_set_iterator i;
2309 expr_t expr;
2310
2311 FOR_EACH_EXPR_1 (expr, i, avp)
2312 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2313 av_set_iter_remove (&i);
2314}
2315
b8698a0f 2316/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2317 value PROB / ALL_PROB. */
2318void
2319av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2320{
2321 av_set_iterator i;
2322 expr_t expr;
2323
2324 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2325 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2326 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2327 : 0);
2328}
2329
2330/* Leave in AVP only those expressions, which are present in AV,
2331 and return it. */
2332void
2333av_set_intersect (av_set_t *avp, av_set_t av)
2334{
2335 av_set_iterator i;
2336 expr_t expr;
2337
2338 FOR_EACH_EXPR_1 (expr, i, avp)
2339 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2340 av_set_iter_remove (&i);
2341}
2342
2343\f
2344
2345/* Dependence hooks to initialize insn data. */
2346
2347/* This is used in hooks callable from dependence analysis when initializing
2348 instruction's data. */
2349static struct
2350{
2351 /* Where the dependence was found (lhs/rhs). */
2352 deps_where_t where;
2353
2354 /* The actual data object to initialize. */
2355 idata_t id;
2356
2357 /* True when the insn should not be made clonable. */
2358 bool force_unique_p;
2359
2360 /* True when insn should be treated as of type USE, i.e. never renamed. */
2361 bool force_use_p;
2362} deps_init_id_data;
2363
2364
b8698a0f 2365/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2366 clonable. */
2367static void
2368setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2369{
2370 int type;
b8698a0f 2371
e855c69d
AB
2372 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2373 That clonable insns which can be separated into lhs and rhs have type SET.
2374 Other clonable insns have type USE. */
2375 type = GET_CODE (insn);
2376
2377 /* Only regular insns could be cloned. */
2378 if (type == INSN && !force_unique_p)
2379 type = SET;
2380 else if (type == JUMP_INSN && simplejump_p (insn))
2381 type = PC;
b5b8b0ac
AO
2382 else if (type == DEBUG_INSN)
2383 type = !force_unique_p ? USE : INSN;
b8698a0f 2384
e855c69d
AB
2385 IDATA_TYPE (id) = type;
2386 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2387 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2388 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2389}
2390
2391/* Start initializing insn data. */
2392static void
2393deps_init_id_start_insn (insn_t insn)
2394{
2395 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2396
2397 setup_id_for_insn (deps_init_id_data.id, insn,
2398 deps_init_id_data.force_unique_p);
2399 deps_init_id_data.where = DEPS_IN_INSN;
2400}
2401
2402/* Start initializing lhs data. */
2403static void
2404deps_init_id_start_lhs (rtx lhs)
2405{
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2407 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2408
2409 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2410 {
2411 IDATA_LHS (deps_init_id_data.id) = lhs;
2412 deps_init_id_data.where = DEPS_IN_LHS;
2413 }
2414}
2415
2416/* Finish initializing lhs data. */
2417static void
2418deps_init_id_finish_lhs (void)
2419{
2420 deps_init_id_data.where = DEPS_IN_INSN;
2421}
2422
2423/* Note a set of REGNO. */
2424static void
2425deps_init_id_note_reg_set (int regno)
2426{
2427 haifa_note_reg_set (regno);
2428
2429 if (deps_init_id_data.where == DEPS_IN_RHS)
2430 deps_init_id_data.force_use_p = true;
2431
2432 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2433 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2434
2435#ifdef STACK_REGS
b8698a0f 2436 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2437 renaming to avoid issues with find_used_regs. */
2438 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2439 deps_init_id_data.force_use_p = true;
2440#endif
2441}
2442
2443/* Note a clobber of REGNO. */
2444static void
2445deps_init_id_note_reg_clobber (int regno)
2446{
2447 haifa_note_reg_clobber (regno);
2448
2449 if (deps_init_id_data.where == DEPS_IN_RHS)
2450 deps_init_id_data.force_use_p = true;
2451
2452 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2453 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2454}
2455
2456/* Note a use of REGNO. */
2457static void
2458deps_init_id_note_reg_use (int regno)
2459{
2460 haifa_note_reg_use (regno);
2461
2462 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2463 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2464}
2465
2466/* Start initializing rhs data. */
2467static void
2468deps_init_id_start_rhs (rtx rhs)
2469{
2470 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2471
2472 /* And there was no sel_deps_reset_to_insn (). */
2473 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2474 {
2475 IDATA_RHS (deps_init_id_data.id) = rhs;
2476 deps_init_id_data.where = DEPS_IN_RHS;
2477 }
2478}
2479
2480/* Finish initializing rhs data. */
2481static void
2482deps_init_id_finish_rhs (void)
2483{
2484 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2485 || deps_init_id_data.where == DEPS_IN_INSN);
2486 deps_init_id_data.where = DEPS_IN_INSN;
2487}
2488
2489/* Finish initializing insn data. */
2490static void
2491deps_init_id_finish_insn (void)
2492{
2493 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2494
2495 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2496 {
2497 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2498 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2499
2500 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2501 || deps_init_id_data.force_use_p)
2502 {
b8698a0f 2503 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2504 separately. However, we still want to have them recorded
b8698a0f 2505 for the purposes of substitution. That's why we don't
e855c69d
AB
2506 simply call downgrade_to_use () here. */
2507 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2508 gcc_assert (!lhs == !rhs);
2509
2510 IDATA_TYPE (deps_init_id_data.id) = USE;
2511 }
2512 }
2513
2514 deps_init_id_data.where = DEPS_IN_NOWHERE;
2515}
2516
2517/* This is dependence info used for initializing insn's data. */
2518static struct sched_deps_info_def deps_init_id_sched_deps_info;
2519
2520/* This initializes most of the static part of the above structure. */
2521static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2522 {
2523 NULL,
2524
2525 deps_init_id_start_insn,
2526 deps_init_id_finish_insn,
2527 deps_init_id_start_lhs,
2528 deps_init_id_finish_lhs,
2529 deps_init_id_start_rhs,
2530 deps_init_id_finish_rhs,
2531 deps_init_id_note_reg_set,
2532 deps_init_id_note_reg_clobber,
2533 deps_init_id_note_reg_use,
2534 NULL, /* note_mem_dep */
2535 NULL, /* note_dep */
2536
2537 0, /* use_cselib */
2538 0, /* use_deps_list */
2539 0 /* generate_spec_deps */
2540 };
2541
2542/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2543 we don't actually need information about lhs and rhs. */
2544static void
2545setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2546{
2547 rtx pat = PATTERN (insn);
b8698a0f 2548
481683e1 2549 if (NONJUMP_INSN_P (insn)
b8698a0f 2550 && GET_CODE (pat) == SET
e855c69d
AB
2551 && !force_unique_p)
2552 {
2553 IDATA_RHS (id) = SET_SRC (pat);
2554 IDATA_LHS (id) = SET_DEST (pat);
2555 }
2556 else
2557 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2558}
2559
2560/* Possibly downgrade INSN to USE. */
2561static void
2562maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2563{
2564 bool must_be_use = false;
2565 unsigned uid = INSN_UID (insn);
57512f53 2566 df_ref *rec;
e855c69d
AB
2567 rtx lhs = IDATA_LHS (id);
2568 rtx rhs = IDATA_RHS (id);
b8698a0f 2569
e855c69d
AB
2570 /* We downgrade only SETs. */
2571 if (IDATA_TYPE (id) != SET)
2572 return;
2573
2574 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2575 {
2576 IDATA_TYPE (id) = USE;
2577 return;
2578 }
b8698a0f 2579
e855c69d
AB
2580 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2581 {
57512f53 2582 df_ref def = *rec;
b8698a0f 2583
e855c69d
AB
2584 if (DF_REF_INSN (def)
2585 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2586 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2587 {
2588 must_be_use = true;
2589 break;
2590 }
2591
2592#ifdef STACK_REGS
b8698a0f 2593 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2594 renaming to avoid issues with find_used_regs. */
2595 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2596 {
2597 must_be_use = true;
2598 break;
2599 }
2600#endif
b8698a0f
L
2601 }
2602
e855c69d
AB
2603 if (must_be_use)
2604 IDATA_TYPE (id) = USE;
2605}
2606
2607/* Setup register sets describing INSN in ID. */
2608static void
2609setup_id_reg_sets (idata_t id, insn_t insn)
2610{
2611 unsigned uid = INSN_UID (insn);
57512f53 2612 df_ref *rec;
e855c69d 2613 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2614
e855c69d
AB
2615 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2616 {
57512f53 2617 df_ref def = *rec;
e855c69d 2618 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2619
e855c69d
AB
2620 /* Post modifies are treated like clobbers by sched-deps.c. */
2621 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2622 | DF_REF_PRE_POST_MODIFY)))
2623 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2624 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2625 {
2626 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2627
2628#ifdef STACK_REGS
b8698a0f 2629 /* For stack registers, treat writes to them as writes
e855c69d
AB
2630 to the first one to be consistent with sched-deps.c. */
2631 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2632 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2633#endif
2634 }
2635 /* Mark special refs that generate read/write def pair. */
2636 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2637 || regno == STACK_POINTER_REGNUM)
2638 bitmap_set_bit (tmp, regno);
2639 }
b8698a0f 2640
e855c69d
AB
2641 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2642 {
57512f53 2643 df_ref use = *rec;
e855c69d
AB
2644 unsigned int regno = DF_REF_REGNO (use);
2645
2646 /* When these refs are met for the first time, skip them, as
2647 these uses are just counterparts of some defs. */
2648 if (bitmap_bit_p (tmp, regno))
2649 bitmap_clear_bit (tmp, regno);
2650 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2651 {
2652 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2653
2654#ifdef STACK_REGS
b8698a0f 2655 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2656 the first one to be consistent with sched-deps.c. */
2657 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2658 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2659#endif
2660 }
2661 }
2662
2663 return_regset_to_pool (tmp);
2664}
2665
2666/* Initialize instruction data for INSN in ID using DF's data. */
2667static void
2668init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2669{
2670 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2671
2672 setup_id_for_insn (id, insn, force_unique_p);
2673 setup_id_lhs_rhs (id, insn, force_unique_p);
2674
2675 if (INSN_NOP_P (insn))
2676 return;
2677
2678 maybe_downgrade_id_to_use (id, insn);
2679 setup_id_reg_sets (id, insn);
2680}
2681
2682/* Initialize instruction data for INSN in ID. */
2683static void
2684deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2685{
88302d54 2686 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2687
2688 deps_init_id_data.where = DEPS_IN_NOWHERE;
2689 deps_init_id_data.id = id;
2690 deps_init_id_data.force_unique_p = force_unique_p;
2691 deps_init_id_data.force_use_p = false;
2692
bcf33775 2693 init_deps (dc, false);
e855c69d
AB
2694
2695 memcpy (&deps_init_id_sched_deps_info,
2696 &const_deps_init_id_sched_deps_info,
2697 sizeof (deps_init_id_sched_deps_info));
2698
2699 if (spec_info != NULL)
2700 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2701
2702 sched_deps_info = &deps_init_id_sched_deps_info;
2703
2704 deps_analyze_insn (dc, insn);
2705
2706 free_deps (dc);
2707
2708 deps_init_id_data.id = NULL;
2709}
2710
2711\f
2712
2713/* Implement hooks for collecting fundamental insn properties like if insn is
2714 an ASM or is within a SCHED_GROUP. */
2715
2716/* True when a "one-time init" data for INSN was already inited. */
2717static bool
2718first_time_insn_init (insn_t insn)
2719{
2720 return INSN_LIVE (insn) == NULL;
2721}
2722
2723/* Hash an entry in a transformed_insns hashtable. */
2724static hashval_t
2725hash_transformed_insns (const void *p)
2726{
2727 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2728}
2729
2730/* Compare the entries in a transformed_insns hashtable. */
2731static int
2732eq_transformed_insns (const void *p, const void *q)
2733{
2734 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2735 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2736
2737 if (INSN_UID (i1) == INSN_UID (i2))
2738 return 1;
2739 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2740}
2741
2742/* Free an entry in a transformed_insns hashtable. */
2743static void
2744free_transformed_insns (void *p)
2745{
2746 struct transformed_insns *pti = (struct transformed_insns *) p;
2747
2748 vinsn_detach (pti->vinsn_old);
2749 vinsn_detach (pti->vinsn_new);
2750 free (pti);
2751}
2752
b8698a0f 2753/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2754 we first see the insn. */
2755static void
2756init_first_time_insn_data (insn_t insn)
2757{
2758 /* This should not be set if this is the first time we init data for
2759 insn. */
2760 gcc_assert (first_time_insn_init (insn));
b8698a0f 2761
e855c69d
AB
2762 /* These are needed for nops too. */
2763 INSN_LIVE (insn) = get_regset_from_pool ();
2764 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2765
e855c69d
AB
2766 if (!INSN_NOP_P (insn))
2767 {
2768 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2769 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2770 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2771 = htab_create (16, hash_transformed_insns,
2772 eq_transformed_insns, free_transformed_insns);
bcf33775 2773 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2774 }
2775}
2776
b8698a0f 2777/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2778 Used for extra-large basic blocks. */
2779void
2780free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2781{
2782 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2783
bcf33775
AB
2784 if (! INSN_ANALYZED_DEPS (insn))
2785 return;
b8698a0f 2786
e855c69d
AB
2787 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2788 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2789 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2790
e855c69d
AB
2791 /* This is allocated only for bookkeeping insns. */
2792 if (INSN_ORIGINATORS (insn))
2793 BITMAP_FREE (INSN_ORIGINATORS (insn));
2794 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2795
2796 INSN_ANALYZED_DEPS (insn) = NULL;
2797
b8698a0f 2798 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2799 the deps context (as we believe that it should not happen). */
2800 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2801}
2802
2803/* Free the same data as above for INSN. */
2804static void
2805free_first_time_insn_data (insn_t insn)
2806{
2807 gcc_assert (! first_time_insn_init (insn));
2808
2809 free_data_for_scheduled_insn (insn);
2810 return_regset_to_pool (INSN_LIVE (insn));
2811 INSN_LIVE (insn) = NULL;
2812 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2813}
2814
2815/* Initialize region-scope data structures for basic blocks. */
2816static void
2817init_global_and_expr_for_bb (basic_block bb)
2818{
2819 if (sel_bb_empty_p (bb))
2820 return;
2821
2822 invalidate_av_set (bb);
2823}
2824
2825/* Data for global dependency analysis (to initialize CANT_MOVE and
2826 SCHED_GROUP_P). */
2827static struct
2828{
2829 /* Previous insn. */
2830 insn_t prev_insn;
2831} init_global_data;
2832
2833/* Determine if INSN is in the sched_group, is an asm or should not be
2834 cloned. After that initialize its expr. */
2835static void
2836init_global_and_expr_for_insn (insn_t insn)
2837{
2838 if (LABEL_P (insn))
2839 return;
2840
2841 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2842 {
2843 init_global_data.prev_insn = NULL_RTX;
2844 return;
2845 }
2846
2847 gcc_assert (INSN_P (insn));
2848
2849 if (SCHED_GROUP_P (insn))
2850 /* Setup a sched_group. */
2851 {
2852 insn_t prev_insn = init_global_data.prev_insn;
2853
2854 if (prev_insn)
2855 INSN_SCHED_NEXT (prev_insn) = insn;
2856
2857 init_global_data.prev_insn = insn;
2858 }
2859 else
2860 init_global_data.prev_insn = NULL_RTX;
2861
2862 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2863 || asm_noperands (PATTERN (insn)) >= 0)
2864 /* Mark INSN as an asm. */
2865 INSN_ASM_P (insn) = true;
2866
2867 {
2868 bool force_unique_p;
2869 ds_t spec_done_ds;
2870
cfeb0fa8
AB
2871 /* Certain instructions cannot be cloned, and frame related insns and
2872 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2873 their block. */
2874 if (prologue_epilogue_contains (insn))
2875 {
2876 if (RTX_FRAME_RELATED_P (insn))
2877 CANT_MOVE (insn) = 1;
2878 else
2879 {
2880 rtx note;
2881 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2882 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2883 && ((enum insn_note) INTVAL (XEXP (note, 0))
2884 == NOTE_INSN_EPILOGUE_BEG))
2885 {
2886 CANT_MOVE (insn) = 1;
2887 break;
2888 }
2889 }
2890 force_unique_p = true;
2891 }
e855c69d 2892 else
cfeb0fa8
AB
2893 if (CANT_MOVE (insn)
2894 || INSN_ASM_P (insn)
2895 || SCHED_GROUP_P (insn)
2896 /* Exception handling insns are always unique. */
2897 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2898 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2899 || control_flow_insn_p (insn))
2900 force_unique_p = true;
2901 else
2902 force_unique_p = false;
e855c69d
AB
2903
2904 if (targetm.sched.get_insn_spec_ds)
2905 {
2906 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2907 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2908 }
2909 else
2910 spec_done_ds = 0;
2911
2912 /* Initialize INSN's expr. */
2913 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2914 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 2915 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
2916 CANT_MOVE (insn));
2917 }
2918
2919 init_first_time_insn_data (insn);
2920}
2921
2922/* Scan the region and initialize instruction data for basic blocks BBS. */
2923void
2924sel_init_global_and_expr (bb_vec_t bbs)
2925{
2926 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2927 const struct sched_scan_info_def ssi =
2928 {
2929 NULL, /* extend_bb */
2930 init_global_and_expr_for_bb, /* init_bb */
2931 extend_insn_data, /* extend_insn */
2932 init_global_and_expr_for_insn /* init_insn */
2933 };
b8698a0f 2934
e855c69d
AB
2935 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2936}
2937
2938/* Finalize region-scope data structures for basic blocks. */
2939static void
2940finish_global_and_expr_for_bb (basic_block bb)
2941{
2942 av_set_clear (&BB_AV_SET (bb));
2943 BB_AV_LEVEL (bb) = 0;
2944}
2945
2946/* Finalize INSN's data. */
2947static void
2948finish_global_and_expr_insn (insn_t insn)
2949{
2950 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2951 return;
2952
2953 gcc_assert (INSN_P (insn));
2954
2955 if (INSN_LUID (insn) > 0)
2956 {
2957 free_first_time_insn_data (insn);
2958 INSN_WS_LEVEL (insn) = 0;
2959 CANT_MOVE (insn) = 0;
b8698a0f
L
2960
2961 /* We can no longer assert this, as vinsns of this insn could be
2962 easily live in other insn's caches. This should be changed to
e855c69d
AB
2963 a counter-like approach among all vinsns. */
2964 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2965 clear_expr (INSN_EXPR (insn));
2966 }
2967}
2968
2969/* Finalize per instruction data for the whole region. */
2970void
2971sel_finish_global_and_expr (void)
2972{
2973 {
2974 bb_vec_t bbs;
2975 int i;
2976
2977 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2978
2979 for (i = 0; i < current_nr_blocks; i++)
2980 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2981
2982 /* Clear AV_SETs and INSN_EXPRs. */
2983 {
2984 const struct sched_scan_info_def ssi =
2985 {
2986 NULL, /* extend_bb */
2987 finish_global_and_expr_for_bb, /* init_bb */
2988 NULL, /* extend_insn */
2989 finish_global_and_expr_insn /* init_insn */
2990 };
2991
2992 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2993 }
2994
2995 VEC_free (basic_block, heap, bbs);
2996 }
2997
2998 finish_insns ();
2999}
3000\f
3001
b8698a0f
L
3002/* In the below hooks, we merely calculate whether or not a dependence
3003 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3004 when we'll start caching dependence requests. */
3005
3006/* Container to hold information for dependency analysis. */
3007static struct
3008{
3009 deps_t dc;
3010
3011 /* A variable to track which part of rtx we are scanning in
3012 sched-deps.c: sched_analyze_insn (). */
3013 deps_where_t where;
3014
3015 /* Current producer. */
3016 insn_t pro;
3017
3018 /* Current consumer. */
3019 vinsn_t con;
3020
3021 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3022 X is from { INSN, LHS, RHS }. */
3023 ds_t has_dep_p[DEPS_IN_NOWHERE];
3024} has_dependence_data;
3025
3026/* Start analyzing dependencies of INSN. */
3027static void
3028has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3029{
3030 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3031
3032 has_dependence_data.where = DEPS_IN_INSN;
3033}
3034
3035/* Finish analyzing dependencies of an insn. */
3036static void
3037has_dependence_finish_insn (void)
3038{
3039 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3040
3041 has_dependence_data.where = DEPS_IN_NOWHERE;
3042}
3043
3044/* Start analyzing dependencies of LHS. */
3045static void
3046has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3047{
3048 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3049
3050 if (VINSN_LHS (has_dependence_data.con) != NULL)
3051 has_dependence_data.where = DEPS_IN_LHS;
3052}
3053
3054/* Finish analyzing dependencies of an lhs. */
3055static void
3056has_dependence_finish_lhs (void)
3057{
3058 has_dependence_data.where = DEPS_IN_INSN;
3059}
3060
3061/* Start analyzing dependencies of RHS. */
3062static void
3063has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3064{
3065 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3066
3067 if (VINSN_RHS (has_dependence_data.con) != NULL)
3068 has_dependence_data.where = DEPS_IN_RHS;
3069}
3070
3071/* Start analyzing dependencies of an rhs. */
3072static void
3073has_dependence_finish_rhs (void)
3074{
3075 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3076 || has_dependence_data.where == DEPS_IN_INSN);
3077
3078 has_dependence_data.where = DEPS_IN_INSN;
3079}
3080
3081/* Note a set of REGNO. */
3082static void
3083has_dependence_note_reg_set (int regno)
3084{
3085 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3086
3087 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3088 VINSN_INSN_RTX
3089 (has_dependence_data.con)))
3090 {
3091 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3092
3093 if (reg_last->sets != NULL
3094 || reg_last->clobbers != NULL)
3095 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3096
3097 if (reg_last->uses)
3098 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3099 }
3100}
3101
3102/* Note a clobber of REGNO. */
3103static void
3104has_dependence_note_reg_clobber (int regno)
3105{
3106 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3107
3108 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3109 VINSN_INSN_RTX
3110 (has_dependence_data.con)))
3111 {
3112 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3113
3114 if (reg_last->sets)
3115 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3116
e855c69d
AB
3117 if (reg_last->uses)
3118 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3119 }
3120}
3121
3122/* Note a use of REGNO. */
3123static void
3124has_dependence_note_reg_use (int regno)
3125{
3126 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3127
3128 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3129 VINSN_INSN_RTX
3130 (has_dependence_data.con)))
3131 {
3132 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3133
3134 if (reg_last->sets)
3135 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3136
3137 if (reg_last->clobbers)
3138 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3139
3140 /* Handle BE_IN_SPEC. */
3141 if (reg_last->uses)
3142 {
3143 ds_t pro_spec_checked_ds;
3144
3145 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3146 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3147
3148 if (pro_spec_checked_ds != 0)
3149 /* Merge BE_IN_SPEC bits into *DSP. */
3150 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3151 NULL_RTX, NULL_RTX);
3152 }
3153 }
3154}
3155
3156/* Note a memory dependence. */
3157static void
3158has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3159 rtx pending_mem ATTRIBUTE_UNUSED,
3160 insn_t pending_insn ATTRIBUTE_UNUSED,
3161 ds_t ds ATTRIBUTE_UNUSED)
3162{
3163 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3164 VINSN_INSN_RTX (has_dependence_data.con)))
3165 {
3166 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3167
3168 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3169 }
3170}
3171
3172/* Note a dependence. */
3173static void
3174has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3175 ds_t ds ATTRIBUTE_UNUSED)
3176{
3177 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3178 VINSN_INSN_RTX (has_dependence_data.con)))
3179 {
3180 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3181
3182 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3183 }
3184}
3185
3186/* Mark the insn as having a hard dependence that prevents speculation. */
3187void
3188sel_mark_hard_insn (rtx insn)
3189{
3190 int i;
3191
3192 /* Only work when we're in has_dependence_p mode.
3193 ??? This is a hack, this should actually be a hook. */
3194 if (!has_dependence_data.dc || !has_dependence_data.pro)
3195 return;
3196
3197 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3198 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3199
3200 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3201 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3202}
3203
3204/* This structure holds the hooks for the dependency analysis used when
3205 actually processing dependencies in the scheduler. */
3206static struct sched_deps_info_def has_dependence_sched_deps_info;
3207
3208/* This initializes most of the fields of the above structure. */
3209static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3210 {
3211 NULL,
3212
3213 has_dependence_start_insn,
3214 has_dependence_finish_insn,
3215 has_dependence_start_lhs,
3216 has_dependence_finish_lhs,
3217 has_dependence_start_rhs,
3218 has_dependence_finish_rhs,
3219 has_dependence_note_reg_set,
3220 has_dependence_note_reg_clobber,
3221 has_dependence_note_reg_use,
3222 has_dependence_note_mem_dep,
3223 has_dependence_note_dep,
3224
3225 0, /* use_cselib */
3226 0, /* use_deps_list */
3227 0 /* generate_spec_deps */
3228 };
3229
3230/* Initialize has_dependence_sched_deps_info with extra spec field. */
3231static void
3232setup_has_dependence_sched_deps_info (void)
3233{
3234 memcpy (&has_dependence_sched_deps_info,
3235 &const_has_dependence_sched_deps_info,
3236 sizeof (has_dependence_sched_deps_info));
3237
3238 if (spec_info != NULL)
3239 has_dependence_sched_deps_info.generate_spec_deps = 1;
3240
3241 sched_deps_info = &has_dependence_sched_deps_info;
3242}
3243
3244/* Remove all dependences found and recorded in has_dependence_data array. */
3245void
3246sel_clear_has_dependence (void)
3247{
3248 int i;
3249
3250 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3251 has_dependence_data.has_dep_p[i] = 0;
3252}
3253
3254/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3255 to the dependence information array in HAS_DEP_PP. */
3256ds_t
3257has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3258{
3259 int i;
3260 ds_t ds;
88302d54 3261 struct deps_desc *dc;
e855c69d
AB
3262
3263 if (INSN_SIMPLEJUMP_P (pred))
3264 /* Unconditional jump is just a transfer of control flow.
3265 Ignore it. */
3266 return false;
3267
3268 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3269
3270 /* We init this field lazily. */
3271 if (dc->reg_last == NULL)
3272 init_deps_reg_last (dc);
b8698a0f 3273
e855c69d
AB
3274 if (!dc->readonly)
3275 {
3276 has_dependence_data.pro = NULL;
3277 /* Initialize empty dep context with information about PRED. */
3278 advance_deps_context (dc, pred);
3279 dc->readonly = 1;
3280 }
3281
3282 has_dependence_data.where = DEPS_IN_NOWHERE;
3283 has_dependence_data.pro = pred;
3284 has_dependence_data.con = EXPR_VINSN (expr);
3285 has_dependence_data.dc = dc;
3286
3287 sel_clear_has_dependence ();
3288
3289 /* Now catch all dependencies that would be generated between PRED and
3290 INSN. */
3291 setup_has_dependence_sched_deps_info ();
3292 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3293 has_dependence_data.dc = NULL;
3294
3295 /* When a barrier was found, set DEPS_IN_INSN bits. */
3296 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3297 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3298 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3299 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3300
3301 /* Do not allow stores to memory to move through checks. Currently
3302 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3303 obvious places to which this dependence can be attached.
e855c69d
AB
3304 FIMXE: this should go to a hook. */
3305 if (EXPR_LHS (expr)
3306 && MEM_P (EXPR_LHS (expr))
3307 && sel_insn_is_speculation_check (pred))
3308 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3309
e855c69d
AB
3310 *has_dep_pp = has_dependence_data.has_dep_p;
3311 ds = 0;
3312 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3313 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3314 NULL_RTX, NULL_RTX);
3315
3316 return ds;
3317}
3318\f
3319
b8698a0f
L
3320/* Dependence hooks implementation that checks dependence latency constraints
3321 on the insns being scheduled. The entry point for these routines is
3322 tick_check_p predicate. */
e855c69d
AB
3323
3324static struct
3325{
3326 /* An expr we are currently checking. */
3327 expr_t expr;
3328
3329 /* A minimal cycle for its scheduling. */
3330 int cycle;
3331
3332 /* Whether we have seen a true dependence while checking. */
3333 bool seen_true_dep_p;
3334} tick_check_data;
3335
3336/* Update minimal scheduling cycle for tick_check_insn given that it depends
3337 on PRO with status DS and weight DW. */
3338static void
3339tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3340{
3341 expr_t con_expr = tick_check_data.expr;
3342 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3343
3344 if (con_insn != pro_insn)
3345 {
3346 enum reg_note dt;
3347 int tick;
3348
3349 if (/* PROducer was removed from above due to pipelining. */
3350 !INSN_IN_STREAM_P (pro_insn)
3351 /* Or PROducer was originally on the next iteration regarding the
3352 CONsumer. */
3353 || (INSN_SCHED_TIMES (pro_insn)
3354 - EXPR_SCHED_TIMES (con_expr)) > 1)
3355 /* Don't count this dependence. */
3356 return;
3357
3358 dt = ds_to_dt (ds);
3359 if (dt == REG_DEP_TRUE)
3360 tick_check_data.seen_true_dep_p = true;
3361
3362 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3363
3364 {
3365 dep_def _dep, *dep = &_dep;
3366
3367 init_dep (dep, pro_insn, con_insn, dt);
3368
3369 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3370 }
3371
3372 /* When there are several kinds of dependencies between pro and con,
3373 only REG_DEP_TRUE should be taken into account. */
3374 if (tick > tick_check_data.cycle
3375 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3376 tick_check_data.cycle = tick;
3377 }
3378}
3379
3380/* An implementation of note_dep hook. */
3381static void
3382tick_check_note_dep (insn_t pro, ds_t ds)
3383{
3384 tick_check_dep_with_dw (pro, ds, 0);
3385}
3386
3387/* An implementation of note_mem_dep hook. */
3388static void
3389tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3390{
3391 dw_t dw;
3392
3393 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3394 ? estimate_dep_weak (mem1, mem2)
3395 : 0);
3396
3397 tick_check_dep_with_dw (pro, ds, dw);
3398}
3399
3400/* This structure contains hooks for dependence analysis used when determining
3401 whether an insn is ready for scheduling. */
3402static struct sched_deps_info_def tick_check_sched_deps_info =
3403 {
3404 NULL,
3405
3406 NULL,
3407 NULL,
3408 NULL,
3409 NULL,
3410 NULL,
3411 NULL,
3412 haifa_note_reg_set,
3413 haifa_note_reg_clobber,
3414 haifa_note_reg_use,
3415 tick_check_note_mem_dep,
3416 tick_check_note_dep,
3417
3418 0, 0, 0
3419 };
3420
3421/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3422 scheduled. Return 0 if all data from producers in DC is ready. */
3423int
3424tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3425{
3426 int cycles_left;
3427 /* Initialize variables. */
3428 tick_check_data.expr = expr;
3429 tick_check_data.cycle = 0;
3430 tick_check_data.seen_true_dep_p = false;
3431 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3432
e855c69d
AB
3433 gcc_assert (!dc->readonly);
3434 dc->readonly = 1;
3435 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3436 dc->readonly = 0;
3437
3438 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3439
3440 return cycles_left >= 0 ? cycles_left : 0;
3441}
3442\f
3443
3444/* Functions to work with insns. */
3445
3446/* Returns true if LHS of INSN is the same as DEST of an insn
3447 being moved. */
3448bool
3449lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3450{
3451 rtx lhs = INSN_LHS (insn);
3452
3453 if (lhs == NULL || dest == NULL)
3454 return false;
b8698a0f 3455
e855c69d
AB
3456 return rtx_equal_p (lhs, dest);
3457}
3458
3459/* Return s_i_d entry of INSN. Callable from debugger. */
3460sel_insn_data_def
3461insn_sid (insn_t insn)
3462{
3463 return *SID (insn);
3464}
3465
3466/* True when INSN is a speculative check. We can tell this by looking
3467 at the data structures of the selective scheduler, not by examining
3468 the pattern. */
3469bool
3470sel_insn_is_speculation_check (rtx insn)
3471{
3472 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3473}
3474
b8698a0f 3475/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3476 for given INSN. */
3477void
3478get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3479{
3480 rtx pat = PATTERN (insn);
3481
3482 gcc_assert (dst_loc);
3483 gcc_assert (GET_CODE (pat) == SET);
3484
3485 *dst_loc = SET_DEST (pat);
3486
3487 gcc_assert (*dst_loc);
3488 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3489
3490 if (mode)
3491 *mode = GET_MODE (*dst_loc);
3492}
3493
b8698a0f 3494/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3495 creation. */
3496bool
3497bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3498{
3499 insn_t succ;
3500 succ_iterator si;
3501
3502 FOR_EACH_SUCC (succ, si, jump)
3503 if (sel_num_cfg_preds_gt_1 (succ))
3504 return true;
3505
3506 return false;
3507}
3508
3509/* Return 'true' if INSN is the only one in its basic block. */
3510static bool
3511insn_is_the_only_one_in_bb_p (insn_t insn)
3512{
3513 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3514}
3515
3516#ifdef ENABLE_CHECKING
b8698a0f 3517/* Check that the region we're scheduling still has at most one
e855c69d
AB
3518 backedge. */
3519static void
3520verify_backedges (void)
3521{
3522 if (pipelining_p)
3523 {
3524 int i, n = 0;
3525 edge e;
3526 edge_iterator ei;
b8698a0f 3527
e855c69d
AB
3528 for (i = 0; i < current_nr_blocks; i++)
3529 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3530 if (in_current_region_p (e->dest)
3531 && BLOCK_TO_BB (e->dest->index) < i)
3532 n++;
b8698a0f 3533
e855c69d
AB
3534 gcc_assert (n <= 1);
3535 }
3536}
3537#endif
3538\f
3539
3540/* Functions to work with control flow. */
3541
b59ab570
AM
3542/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3543 are sorted in topological order (it might have been invalidated by
3544 redirecting an edge). */
3545static void
3546sel_recompute_toporder (void)
3547{
3548 int i, n, rgn;
3549 int *postorder, n_blocks;
3550
3551 postorder = XALLOCAVEC (int, n_basic_blocks);
3552 n_blocks = post_order_compute (postorder, false, false);
3553
3554 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3555 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3556 if (CONTAINING_RGN (postorder[i]) == rgn)
3557 {
3558 BLOCK_TO_BB (postorder[i]) = n;
3559 BB_TO_BLOCK (n) = postorder[i];
3560 n++;
3561 }
3562
3563 /* Assert that we updated info for all blocks. We may miss some blocks if
3564 this function is called when redirecting an edge made a block
3565 unreachable, but that block is not deleted yet. */
3566 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3567}
3568
e855c69d 3569/* Tidy the possibly empty block BB. */
65592aad 3570static bool
5f33b972 3571maybe_tidy_empty_bb (basic_block bb)
e855c69d
AB
3572{
3573 basic_block succ_bb, pred_bb;
00c4e97c 3574 VEC (basic_block, heap) *dom_bbs;
f2c45f08
AM
3575 edge e;
3576 edge_iterator ei;
e855c69d
AB
3577 bool rescan_p;
3578
3579 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3580 has incoming non-fallthrough edge, or it has no predecessors or
3581 successors. Otherwise remove it. */
b5b8b0ac 3582 if (!sel_bb_empty_p (bb)
b8698a0f 3583 || (single_succ_p (bb)
e855c69d 3584 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3585 && (!single_pred_p (bb)
762bffba
AB
3586 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3587 || EDGE_COUNT (bb->preds) == 0
3588 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3589 return false;
3590
f2c45f08
AM
3591 /* Do not attempt to redirect complex edges. */
3592 FOR_EACH_EDGE (e, ei, bb->preds)
3593 if (e->flags & EDGE_COMPLEX)
3594 return false;
3595
e855c69d
AB
3596 free_data_sets (bb);
3597
3598 /* Do not delete BB if it has more than one successor.
3599 That can occur when we moving a jump. */
3600 if (!single_succ_p (bb))
3601 {
3602 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3603 sel_merge_blocks (bb->prev_bb, bb);
3604 return true;
3605 }
3606
3607 succ_bb = single_succ (bb);
3608 rescan_p = true;
3609 pred_bb = NULL;
00c4e97c 3610 dom_bbs = NULL;
e855c69d
AB
3611
3612 /* Redirect all non-fallthru edges to the next bb. */
3613 while (rescan_p)
3614 {
e855c69d
AB
3615 rescan_p = false;
3616
3617 FOR_EACH_EDGE (e, ei, bb->preds)
3618 {
3619 pred_bb = e->src;
3620
3621 if (!(e->flags & EDGE_FALLTHRU))
3622 {
5f33b972 3623 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3624 the edge destination block (E->SUCC) along a fallthru edge.
3625
3626 We will update dominators here only when we'll get
3627 an unreachable block when redirecting, otherwise
3628 sel_redirect_edge_and_branch will take care of it. */
3629 if (e->dest != bb
3630 && single_pred_p (e->dest))
3631 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
5f33b972 3632 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3633 rescan_p = true;
3634 break;
3635 }
5f33b972
AM
3636 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3637 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3638 still have to adjust it. */
3639 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3640 {
3641 /* If possible, try to remove the unneeded conditional jump. */
3642 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3643 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3644 {
3645 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3646 tidy_fallthru_edge (e);
3647 }
3648 else
3649 sel_redirect_edge_and_branch (e, succ_bb);
3650 rescan_p = true;
3651 break;
3652 }
e855c69d
AB
3653 }
3654 }
3655
e855c69d
AB
3656 if (can_merge_blocks_p (bb->prev_bb, bb))
3657 sel_merge_blocks (bb->prev_bb, bb);
3658 else
e855c69d 3659 {
262d8232 3660 /* This is a block without fallthru predecessor. Just delete it. */
e855c69d
AB
3661 gcc_assert (pred_bb != NULL);
3662
762bffba
AB
3663 if (in_current_region_p (pred_bb))
3664 move_bb_info (pred_bb, bb);
e855c69d
AB
3665 remove_empty_bb (bb, true);
3666 }
3667
00c4e97c
AB
3668 if (!VEC_empty (basic_block, dom_bbs))
3669 {
3670 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3671 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3672 VEC_free (basic_block, heap, dom_bbs);
3673 }
3674
e855c69d
AB
3675 return true;
3676}
3677
b8698a0f 3678/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3679 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3680 is true, also try to optimize control flow on non-empty blocks. */
3681bool
3682tidy_control_flow (basic_block xbb, bool full_tidying)
3683{
3684 bool changed = true;
b5b8b0ac 3685 insn_t first, last;
b8698a0f 3686
e855c69d 3687 /* First check whether XBB is empty. */
5f33b972 3688 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3689 if (changed || !full_tidying)
3690 return changed;
b8698a0f 3691
e855c69d 3692 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3693 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3694 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3695 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3696 {
3697 if (sel_remove_insn (BB_END (xbb), false, false))
3698 return true;
3699 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3700 }
3701
b5b8b0ac
AO
3702 first = sel_bb_head (xbb);
3703 last = sel_bb_end (xbb);
3704 if (MAY_HAVE_DEBUG_INSNS)
3705 {
3706 if (first != last && DEBUG_INSN_P (first))
3707 do
3708 first = NEXT_INSN (first);
3709 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3710
3711 if (first != last && DEBUG_INSN_P (last))
3712 do
3713 last = PREV_INSN (last);
3714 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3715 }
e855c69d 3716 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3717 to next basic block left after removing INSN from stream.
3718 If it is so, remove that jump and redirect edge to current
3719 basic block (where there was INSN before deletion). This way
3720 when NOP will be deleted several instructions later with its
3721 basic block we will not get a jump to next instruction, which
e855c69d 3722 can be harmful. */
b5b8b0ac 3723 if (first == last
e855c69d 3724 && !sel_bb_empty_p (xbb)
b5b8b0ac 3725 && INSN_NOP_P (last)
e855c69d
AB
3726 /* Flow goes fallthru from current block to the next. */
3727 && EDGE_COUNT (xbb->succs) == 1
3728 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3729 /* When successor is an EXIT block, it may not be the next block. */
3730 && single_succ (xbb) != EXIT_BLOCK_PTR
3731 /* And unconditional jump in previous basic block leads to
3732 next basic block of XBB and this jump can be safely removed. */
3733 && in_current_region_p (xbb->prev_bb)
753de8cf 3734 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3735 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3736 /* Also this jump is not at the scheduling boundary. */
3737 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3738 {
b59ab570 3739 bool recompute_toporder_p;
e855c69d
AB
3740 /* Clear data structures of jump - jump itself will be removed
3741 by sel_redirect_edge_and_branch. */
3742 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3743 recompute_toporder_p
3744 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3745
e855c69d
AB
3746 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3747
3748 /* It can turn out that after removing unused jump, basic block
3749 that contained that jump, becomes empty too. In such case
3750 remove it too. */
3751 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3752 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3753 if (recompute_toporder_p)
b59ab570 3754 sel_recompute_toporder ();
e855c69d 3755 }
d787f788
AM
3756
3757#ifdef ENABLE_CHECKING
3758 verify_backedges ();
00c4e97c 3759 verify_dominators (CDI_DOMINATORS);
d787f788
AM
3760#endif
3761
e855c69d
AB
3762 return changed;
3763}
3764
b59ab570
AM
3765/* Purge meaningless empty blocks in the middle of a region. */
3766void
3767purge_empty_blocks (void)
3768{
9d0dcda1 3769 int i;
b59ab570 3770
9d0dcda1
AM
3771 /* Do not attempt to delete the first basic block in the region. */
3772 for (i = 1; i < current_nr_blocks; )
b59ab570
AM
3773 {
3774 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3775
5f33b972 3776 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3777 continue;
3778
3779 i++;
3780 }
3781}
3782
b8698a0f
L
3783/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3784 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3785 Return true if we have removed some blocks afterwards. */
3786bool
3787sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3788{
3789 basic_block bb = BLOCK_FOR_INSN (insn);
3790
3791 gcc_assert (INSN_IN_STREAM_P (insn));
3792
b5b8b0ac
AO
3793 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3794 {
3795 expr_t expr;
3796 av_set_iterator i;
3797
3798 /* When we remove a debug insn that is head of a BB, it remains
3799 in the AV_SET of the block, but it shouldn't. */
3800 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3801 if (EXPR_INSN_RTX (expr) == insn)
3802 {
3803 av_set_iter_remove (&i);
3804 break;
3805 }
3806 }
3807
e855c69d
AB
3808 if (only_disconnect)
3809 {
3810 insn_t prev = PREV_INSN (insn);
3811 insn_t next = NEXT_INSN (insn);
3812 basic_block bb = BLOCK_FOR_INSN (insn);
3813
3814 NEXT_INSN (prev) = next;
3815 PREV_INSN (next) = prev;
3816
3817 if (BB_HEAD (bb) == insn)
3818 {
3819 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3820 BB_HEAD (bb) = prev;
3821 }
3822 if (BB_END (bb) == insn)
3823 BB_END (bb) = prev;
3824 }
3825 else
3826 {
3827 remove_insn (insn);
3828 clear_expr (INSN_EXPR (insn));
3829 }
3830
3831 /* It is necessary to null this fields before calling add_insn (). */
3832 PREV_INSN (insn) = NULL_RTX;
3833 NEXT_INSN (insn) = NULL_RTX;
3834
3835 return tidy_control_flow (bb, full_tidying);
3836}
3837
3838/* Estimate number of the insns in BB. */
3839static int
3840sel_estimate_number_of_insns (basic_block bb)
3841{
3842 int res = 0;
3843 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3844
3845 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3846 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3847 res++;
3848
3849 return res;
3850}
3851
3852/* We don't need separate luids for notes or labels. */
3853static int
3854sel_luid_for_non_insn (rtx x)
3855{
3856 gcc_assert (NOTE_P (x) || LABEL_P (x));
3857
3858 return -1;
3859}
3860
3861/* Return seqno of the only predecessor of INSN. */
3862static int
3863get_seqno_of_a_pred (insn_t insn)
3864{
3865 int seqno;
3866
3867 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3868
3869 if (!sel_bb_head_p (insn))
3870 seqno = INSN_SEQNO (PREV_INSN (insn));
3871 else
3872 {
3873 basic_block bb = BLOCK_FOR_INSN (insn);
3874
3875 if (single_pred_p (bb)
3876 && !in_current_region_p (single_pred (bb)))
3877 {
3878 /* We can have preds outside a region when splitting edges
b8698a0f 3879 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
3880 There should be only one of them. */
3881 insn_t succ = NULL;
3882 succ_iterator si;
3883 bool first = true;
b8698a0f 3884
e855c69d
AB
3885 gcc_assert (flag_sel_sched_pipelining_outer_loops
3886 && current_loop_nest);
b8698a0f 3887 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
3888 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3889 {
3890 gcc_assert (first);
3891 first = false;
3892 }
3893
3894 gcc_assert (succ != NULL);
3895 seqno = INSN_SEQNO (succ);
3896 }
3897 else
3898 {
3899 insn_t *preds;
3900 int n;
3901
3902 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3903 gcc_assert (n == 1);
3904
3905 seqno = INSN_SEQNO (preds[0]);
b8698a0f 3906
e855c69d
AB
3907 free (preds);
3908 }
3909 }
3910
3911 return seqno;
3912}
3913
da7ba240
AB
3914/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3915 with positive seqno exist. */
e855c69d
AB
3916int
3917get_seqno_by_preds (rtx insn)
3918{
3919 basic_block bb = BLOCK_FOR_INSN (insn);
3920 rtx tmp = insn, head = BB_HEAD (bb);
3921 insn_t *preds;
3922 int n, i, seqno;
3923
3924 while (tmp != head)
3925 if (INSN_P (tmp))
3926 return INSN_SEQNO (tmp);
3927 else
3928 tmp = PREV_INSN (tmp);
b8698a0f 3929
e855c69d
AB
3930 cfg_preds (bb, &preds, &n);
3931 for (i = 0, seqno = -1; i < n; i++)
3932 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3933
e855c69d
AB
3934 return seqno;
3935}
3936
3937\f
3938
3939/* Extend pass-scope data structures for basic blocks. */
3940void
3941sel_extend_global_bb_info (void)
3942{
3943 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3944 last_basic_block);
3945}
3946
3947/* Extend region-scope data structures for basic blocks. */
3948static void
3949extend_region_bb_info (void)
3950{
3951 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3952 last_basic_block);
3953}
3954
3955/* Extend all data structures to fit for all basic blocks. */
3956static void
3957extend_bb_info (void)
3958{
3959 sel_extend_global_bb_info ();
3960 extend_region_bb_info ();
3961}
3962
3963/* Finalize pass-scope data structures for basic blocks. */
3964void
3965sel_finish_global_bb_info (void)
3966{
3967 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3968}
3969
3970/* Finalize region-scope data structures for basic blocks. */
3971static void
3972finish_region_bb_info (void)
3973{
3974 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3975}
3976\f
3977
3978/* Data for each insn in current region. */
3979VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3980
3981/* A vector for the insns we've emitted. */
3982static insn_vec_t new_insns = NULL;
3983
3984/* Extend data structures for insns from current region. */
3985static void
3986extend_insn_data (void)
3987{
3988 int reserve;
b8698a0f 3989
e855c69d
AB
3990 sched_extend_target ();
3991 sched_deps_init (false);
3992
3993 /* Extend data structures for insns from current region. */
b8698a0f 3994 reserve = (sched_max_luid + 1
e855c69d 3995 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 3996 if (reserve > 0
e855c69d 3997 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
3998 {
3999 int size;
4000
4001 if (sched_max_luid / 2 > 1024)
4002 size = sched_max_luid + 1024;
4003 else
4004 size = 3 * sched_max_luid / 2;
b8698a0f 4005
bcf33775
AB
4006
4007 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4008 }
e855c69d
AB
4009}
4010
4011/* Finalize data structures for insns from current region. */
4012static void
4013finish_insns (void)
4014{
4015 unsigned i;
4016
4017 /* Clear here all dependence contexts that may have left from insns that were
4018 removed during the scheduling. */
4019 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4020 {
4021 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 4022
e855c69d
AB
4023 if (sid_entry->live)
4024 return_regset_to_pool (sid_entry->live);
4025 if (sid_entry->analyzed_deps)
4026 {
4027 BITMAP_FREE (sid_entry->analyzed_deps);
4028 BITMAP_FREE (sid_entry->found_deps);
4029 htab_delete (sid_entry->transformed_insns);
4030 free_deps (&sid_entry->deps_context);
4031 }
4032 if (EXPR_VINSN (&sid_entry->expr))
4033 {
4034 clear_expr (&sid_entry->expr);
b8698a0f 4035
e855c69d
AB
4036 /* Also, clear CANT_MOVE bit here, because we really don't want it
4037 to be passed to the next region. */
4038 CANT_MOVE_BY_LUID (i) = 0;
4039 }
4040 }
b8698a0f 4041
e855c69d
AB
4042 VEC_free (sel_insn_data_def, heap, s_i_d);
4043}
4044
4045/* A proxy to pass initialization data to init_insn (). */
4046static sel_insn_data_def _insn_init_ssid;
4047static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4048
4049/* If true create a new vinsn. Otherwise use the one from EXPR. */
4050static bool insn_init_create_new_vinsn_p;
4051
4052/* Set all necessary data for initialization of the new insn[s]. */
4053static expr_t
4054set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4055{
4056 expr_t x = &insn_init_ssid->expr;
4057
4058 copy_expr_onside (x, expr);
4059 if (vi != NULL)
4060 {
4061 insn_init_create_new_vinsn_p = false;
4062 change_vinsn_in_expr (x, vi);
4063 }
4064 else
4065 insn_init_create_new_vinsn_p = true;
4066
4067 insn_init_ssid->seqno = seqno;
4068 return x;
4069}
4070
4071/* Init data for INSN. */
4072static void
4073init_insn_data (insn_t insn)
4074{
4075 expr_t expr;
4076 sel_insn_data_t ssid = insn_init_ssid;
4077
4078 /* The fields mentioned below are special and hence are not being
4079 propagated to the new insns. */
4080 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4081 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4082 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4083
4084 expr = INSN_EXPR (insn);
4085 copy_expr (expr, &ssid->expr);
4086 prepare_insn_expr (insn, ssid->seqno);
4087
4088 if (insn_init_create_new_vinsn_p)
4089 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4090
e855c69d
AB
4091 if (first_time_insn_init (insn))
4092 init_first_time_insn_data (insn);
4093}
4094
4095/* This is used to initialize spurious jumps generated by
4096 sel_redirect_edge (). */
4097static void
4098init_simplejump_data (insn_t insn)
4099{
4100 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4101 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d
AB
4102 false, true);
4103 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4104 init_first_time_insn_data (insn);
4105}
4106
b8698a0f 4107/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4108 a new jump that may be created by redirect_edge. */
4109void
4110sel_init_new_insn (insn_t insn, int flags)
4111{
4112 /* We create data structures for bb when the first insn is emitted in it. */
4113 if (INSN_P (insn)
4114 && INSN_IN_STREAM_P (insn)
4115 && insn_is_the_only_one_in_bb_p (insn))
4116 {
4117 extend_bb_info ();
4118 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4119 }
b8698a0f 4120
e855c69d
AB
4121 if (flags & INSN_INIT_TODO_LUID)
4122 sched_init_luids (NULL, NULL, NULL, insn);
4123
4124 if (flags & INSN_INIT_TODO_SSID)
4125 {
4126 extend_insn_data ();
4127 init_insn_data (insn);
4128 clear_expr (&insn_init_ssid->expr);
4129 }
4130
4131 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4132 {
4133 extend_insn_data ();
4134 init_simplejump_data (insn);
4135 }
b8698a0f 4136
e855c69d
AB
4137 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4138 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4139}
4140\f
4141
4142/* Functions to init/finish work with lv sets. */
4143
4144/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4145static void
4146init_lv_set (basic_block bb)
4147{
4148 gcc_assert (!BB_LV_SET_VALID_P (bb));
4149
4150 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4151 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4152 BB_LV_SET_VALID_P (bb) = true;
4153}
4154
4155/* Copy liveness information to BB from FROM_BB. */
4156static void
4157copy_lv_set_from (basic_block bb, basic_block from_bb)
4158{
4159 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4160
e855c69d
AB
4161 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4162 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4163}
e855c69d
AB
4164
4165/* Initialize lv set of all bb headers. */
4166void
4167init_lv_sets (void)
4168{
4169 basic_block bb;
4170
4171 /* Initialize of LV sets. */
4172 FOR_EACH_BB (bb)
4173 init_lv_set (bb);
4174
4175 /* Don't forget EXIT_BLOCK. */
4176 init_lv_set (EXIT_BLOCK_PTR);
4177}
4178
4179/* Release lv set of HEAD. */
4180static void
4181free_lv_set (basic_block bb)
4182{
4183 gcc_assert (BB_LV_SET (bb) != NULL);
4184
4185 return_regset_to_pool (BB_LV_SET (bb));
4186 BB_LV_SET (bb) = NULL;
4187 BB_LV_SET_VALID_P (bb) = false;
4188}
4189
4190/* Finalize lv sets of all bb headers. */
4191void
4192free_lv_sets (void)
4193{
4194 basic_block bb;
4195
4196 /* Don't forget EXIT_BLOCK. */
4197 free_lv_set (EXIT_BLOCK_PTR);
4198
4199 /* Free LV sets. */
4200 FOR_EACH_BB (bb)
4201 if (BB_LV_SET (bb))
4202 free_lv_set (bb);
4203}
4204
4205/* Initialize an invalid AV_SET for BB.
4206 This set will be updated next time compute_av () process BB. */
4207static void
4208invalidate_av_set (basic_block bb)
4209{
4210 gcc_assert (BB_AV_LEVEL (bb) <= 0
4211 && BB_AV_SET (bb) == NULL);
4212
4213 BB_AV_LEVEL (bb) = -1;
4214}
4215
4216/* Create initial data sets for BB (they will be invalid). */
4217static void
4218create_initial_data_sets (basic_block bb)
4219{
4220 if (BB_LV_SET (bb))
4221 BB_LV_SET_VALID_P (bb) = false;
4222 else
4223 BB_LV_SET (bb) = get_regset_from_pool ();
4224 invalidate_av_set (bb);
4225}
4226
4227/* Free av set of BB. */
4228static void
4229free_av_set (basic_block bb)
4230{
4231 av_set_clear (&BB_AV_SET (bb));
4232 BB_AV_LEVEL (bb) = 0;
4233}
4234
4235/* Free data sets of BB. */
4236void
4237free_data_sets (basic_block bb)
4238{
4239 free_lv_set (bb);
4240 free_av_set (bb);
4241}
4242
4243/* Exchange lv sets of TO and FROM. */
4244static void
4245exchange_lv_sets (basic_block to, basic_block from)
4246{
4247 {
4248 regset to_lv_set = BB_LV_SET (to);
4249
4250 BB_LV_SET (to) = BB_LV_SET (from);
4251 BB_LV_SET (from) = to_lv_set;
4252 }
4253
4254 {
4255 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4256
4257 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4258 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4259 }
4260}
4261
4262
4263/* Exchange av sets of TO and FROM. */
4264static void
4265exchange_av_sets (basic_block to, basic_block from)
4266{
4267 {
4268 av_set_t to_av_set = BB_AV_SET (to);
4269
4270 BB_AV_SET (to) = BB_AV_SET (from);
4271 BB_AV_SET (from) = to_av_set;
4272 }
4273
4274 {
4275 int to_av_level = BB_AV_LEVEL (to);
4276
4277 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4278 BB_AV_LEVEL (from) = to_av_level;
4279 }
4280}
4281
4282/* Exchange data sets of TO and FROM. */
4283void
4284exchange_data_sets (basic_block to, basic_block from)
4285{
4286 exchange_lv_sets (to, from);
4287 exchange_av_sets (to, from);
4288}
4289
4290/* Copy data sets of FROM to TO. */
4291void
4292copy_data_sets (basic_block to, basic_block from)
4293{
4294 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4295 gcc_assert (BB_AV_SET (to) == NULL);
4296
4297 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4298 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4299
4300 if (BB_AV_SET_VALID_P (from))
4301 {
4302 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4303 }
4304 if (BB_LV_SET_VALID_P (from))
4305 {
4306 gcc_assert (BB_LV_SET (to) != NULL);
4307 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4308 }
4309}
4310
4311/* Return an av set for INSN, if any. */
4312av_set_t
4313get_av_set (insn_t insn)
4314{
4315 av_set_t av_set;
4316
4317 gcc_assert (AV_SET_VALID_P (insn));
4318
4319 if (sel_bb_head_p (insn))
4320 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4321 else
4322 av_set = NULL;
4323
4324 return av_set;
4325}
4326
4327/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4328int
4329get_av_level (insn_t insn)
4330{
4331 int av_level;
4332
4333 gcc_assert (INSN_P (insn));
4334
4335 if (sel_bb_head_p (insn))
4336 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4337 else
4338 av_level = INSN_WS_LEVEL (insn);
4339
4340 return av_level;
4341}
4342
4343\f
4344
4345/* Variables to work with control-flow graph. */
4346
4347/* The basic block that already has been processed by the sched_data_update (),
4348 but hasn't been in sel_add_bb () yet. */
4349static VEC (basic_block, heap) *last_added_blocks = NULL;
4350
4351/* A pool for allocating successor infos. */
4352static struct
4353{
4354 /* A stack for saving succs_info structures. */
4355 struct succs_info *stack;
4356
4357 /* Its size. */
4358 int size;
4359
4360 /* Top of the stack. */
4361 int top;
4362
4363 /* Maximal value of the top. */
4364 int max_top;
4365} succs_info_pool;
4366
4367/* Functions to work with control-flow graph. */
4368
4369/* Return basic block note of BB. */
4370insn_t
4371sel_bb_head (basic_block bb)
4372{
4373 insn_t head;
4374
4375 if (bb == EXIT_BLOCK_PTR)
4376 {
4377 gcc_assert (exit_insn != NULL_RTX);
4378 head = exit_insn;
4379 }
4380 else
4381 {
4382 insn_t note;
4383
4384 note = bb_note (bb);
4385 head = next_nonnote_insn (note);
4386
89ad0f25 4387 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
e855c69d
AB
4388 head = NULL_RTX;
4389 }
4390
4391 return head;
4392}
4393
4394/* Return true if INSN is a basic block header. */
4395bool
4396sel_bb_head_p (insn_t insn)
4397{
4398 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4399}
4400
4401/* Return last insn of BB. */
4402insn_t
4403sel_bb_end (basic_block bb)
4404{
4405 if (sel_bb_empty_p (bb))
4406 return NULL_RTX;
4407
4408 gcc_assert (bb != EXIT_BLOCK_PTR);
4409
4410 return BB_END (bb);
4411}
4412
4413/* Return true if INSN is the last insn in its basic block. */
4414bool
4415sel_bb_end_p (insn_t insn)
4416{
4417 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4418}
4419
4420/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4421bool
4422sel_bb_empty_p (basic_block bb)
4423{
4424 return sel_bb_head (bb) == NULL;
4425}
4426
4427/* True when BB belongs to the current scheduling region. */
4428bool
4429in_current_region_p (basic_block bb)
4430{
4431 if (bb->index < NUM_FIXED_BLOCKS)
4432 return false;
4433
4434 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4435}
4436
4437/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4438basic_block
4439fallthru_bb_of_jump (rtx jump)
4440{
4441 if (!JUMP_P (jump))
4442 return NULL;
4443
e855c69d
AB
4444 if (!any_condjump_p (jump))
4445 return NULL;
4446
268bab85
AB
4447 /* A basic block that ends with a conditional jump may still have one successor
4448 (and be followed by a barrier), we are not interested. */
4449 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4450 return NULL;
4451
e855c69d
AB
4452 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4453}
4454
4455/* Remove all notes from BB. */
4456static void
4457init_bb (basic_block bb)
4458{
4459 remove_notes (bb_note (bb), BB_END (bb));
4460 BB_NOTE_LIST (bb) = note_list;
4461}
4462
4463void
4464sel_init_bbs (bb_vec_t bbs, basic_block bb)
4465{
4466 const struct sched_scan_info_def ssi =
4467 {
4468 extend_bb_info, /* extend_bb */
4469 init_bb, /* init_bb */
4470 NULL, /* extend_insn */
4471 NULL /* init_insn */
4472 };
4473
4474 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4475}
4476
7898b93b 4477/* Restore notes for the whole region. */
e855c69d 4478static void
7898b93b 4479sel_restore_notes (void)
e855c69d
AB
4480{
4481 int bb;
7898b93b 4482 insn_t insn;
e855c69d
AB
4483
4484 for (bb = 0; bb < current_nr_blocks; bb++)
4485 {
4486 basic_block first, last;
4487
4488 first = EBB_FIRST_BB (bb);
4489 last = EBB_LAST_BB (bb)->next_bb;
4490
4491 do
4492 {
4493 note_list = BB_NOTE_LIST (first);
4494 restore_other_notes (NULL, first);
4495 BB_NOTE_LIST (first) = NULL_RTX;
4496
7898b93b
AM
4497 FOR_BB_INSNS (first, insn)
4498 if (NONDEBUG_INSN_P (insn))
4499 reemit_notes (insn);
4500
e855c69d
AB
4501 first = first->next_bb;
4502 }
4503 while (first != last);
4504 }
4505}
4506
4507/* Free per-bb data structures. */
4508void
4509sel_finish_bbs (void)
4510{
7898b93b 4511 sel_restore_notes ();
e855c69d
AB
4512
4513 /* Remove current loop preheader from this loop. */
4514 if (current_loop_nest)
4515 sel_remove_loop_preheader ();
4516
4517 finish_region_bb_info ();
4518}
4519
4520/* Return true if INSN has a single successor of type FLAGS. */
4521bool
4522sel_insn_has_single_succ_p (insn_t insn, int flags)
4523{
4524 insn_t succ;
4525 succ_iterator si;
4526 bool first_p = true;
4527
4528 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4529 {
4530 if (first_p)
4531 first_p = false;
4532 else
4533 return false;
4534 }
4535
4536 return true;
4537}
4538
4539/* Allocate successor's info. */
4540static struct succs_info *
4541alloc_succs_info (void)
4542{
4543 if (succs_info_pool.top == succs_info_pool.max_top)
4544 {
4545 int i;
b8698a0f 4546
e855c69d
AB
4547 if (++succs_info_pool.max_top >= succs_info_pool.size)
4548 gcc_unreachable ();
4549
4550 i = ++succs_info_pool.top;
4551 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4552 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4553 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4554 }
4555 else
4556 succs_info_pool.top++;
4557
4558 return &succs_info_pool.stack[succs_info_pool.top];
4559}
4560
4561/* Free successor's info. */
4562void
4563free_succs_info (struct succs_info * sinfo)
4564{
b8698a0f 4565 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4566 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4567 succs_info_pool.top--;
4568
4569 /* Clear stale info. */
b8698a0f 4570 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4571 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4572 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4573 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4574 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4575 0, VEC_length (int, sinfo->probs_ok));
4576 sinfo->all_prob = 0;
4577 sinfo->succs_ok_n = 0;
4578 sinfo->all_succs_n = 0;
4579}
4580
b8698a0f 4581/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4582 to the FOR_EACH_SUCC_1 iterator. */
4583struct succs_info *
4584compute_succs_info (insn_t insn, short flags)
4585{
4586 succ_iterator si;
4587 insn_t succ;
4588 struct succs_info *sinfo = alloc_succs_info ();
4589
4590 /* Traverse *all* successors and decide what to do with each. */
4591 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4592 {
4593 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4594 perform code motion through inner loops. */
4595 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4596
4597 if (current_flags & flags)
4598 {
4599 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4600 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4601 /* FIXME: Improve calculation when skipping
e855c69d 4602 inner loop to exits. */
b8698a0f
L
4603 (si.bb_end
4604 ? si.e1->probability
e855c69d
AB
4605 : REG_BR_PROB_BASE));
4606 sinfo->succs_ok_n++;
4607 }
4608 else
4609 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4610
4611 /* Compute all_prob. */
4612 if (!si.bb_end)
4613 sinfo->all_prob = REG_BR_PROB_BASE;
4614 else
4615 sinfo->all_prob += si.e1->probability;
4616
4617 sinfo->all_succs_n++;
4618 }
4619
4620 return sinfo;
4621}
4622
b8698a0f 4623/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4624 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4625static void
4626cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4627{
4628 edge e;
4629 edge_iterator ei;
4630
4631 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4632
4633 FOR_EACH_EDGE (e, ei, bb->preds)
4634 {
4635 basic_block pred_bb = e->src;
4636 insn_t bb_end = BB_END (pred_bb);
4637
3e6a3f6f
AB
4638 if (!in_current_region_p (pred_bb))
4639 {
4640 gcc_assert (flag_sel_sched_pipelining_outer_loops
4641 && current_loop_nest);
4642 continue;
4643 }
e855c69d
AB
4644
4645 if (sel_bb_empty_p (pred_bb))
4646 cfg_preds_1 (pred_bb, preds, n, size);
4647 else
4648 {
4649 if (*n == *size)
b8698a0f 4650 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4651 (*size = 2 * *size + 1));
4652 (*preds)[(*n)++] = bb_end;
4653 }
4654 }
4655
3e6a3f6f
AB
4656 gcc_assert (*n != 0
4657 || (flag_sel_sched_pipelining_outer_loops
4658 && current_loop_nest));
e855c69d
AB
4659}
4660
b8698a0f
L
4661/* Find all predecessors of BB and record them in PREDS and their number
4662 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4663 edges are processed. */
4664static void
4665cfg_preds (basic_block bb, insn_t **preds, int *n)
4666{
4667 int size = 0;
4668
4669 *preds = NULL;
4670 *n = 0;
4671 cfg_preds_1 (bb, preds, n, &size);
4672}
4673
4674/* Returns true if we are moving INSN through join point. */
4675bool
4676sel_num_cfg_preds_gt_1 (insn_t insn)
4677{
4678 basic_block bb;
4679
4680 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4681 return false;
4682
4683 bb = BLOCK_FOR_INSN (insn);
4684
4685 while (1)
4686 {
4687 if (EDGE_COUNT (bb->preds) > 1)
4688 return true;
4689
4690 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4691 bb = EDGE_PRED (bb, 0)->src;
4692
4693 if (!sel_bb_empty_p (bb))
4694 break;
4695 }
4696
4697 return false;
4698}
4699
b8698a0f 4700/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4701 code in sched-ebb.c. */
4702bool
4703bb_ends_ebb_p (basic_block bb)
4704{
4705 basic_block next_bb = bb_next_bb (bb);
4706 edge e;
b8698a0f 4707
e855c69d
AB
4708 if (next_bb == EXIT_BLOCK_PTR
4709 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4710 || (LABEL_P (BB_HEAD (next_bb))
4711 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4712 Work around that. */
4713 && !single_pred_p (next_bb)))
4714 return true;
4715
4716 if (!in_current_region_p (next_bb))
4717 return true;
4718
0fd4b31d
NF
4719 e = find_fallthru_edge (bb->succs);
4720 if (e)
4721 {
4722 gcc_assert (e->dest == next_bb);
4723
4724 return false;
4725 }
e855c69d
AB
4726
4727 return true;
4728}
4729
4730/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4731 successor of INSN. */
4732bool
4733in_same_ebb_p (insn_t insn, insn_t succ)
4734{
4735 basic_block ptr = BLOCK_FOR_INSN (insn);
4736
4737 for(;;)
4738 {
4739 if (ptr == BLOCK_FOR_INSN (succ))
4740 return true;
b8698a0f 4741
e855c69d
AB
4742 if (bb_ends_ebb_p (ptr))
4743 return false;
4744
4745 ptr = bb_next_bb (ptr);
4746 }
4747
4748 gcc_unreachable ();
4749 return false;
4750}
4751
4752/* Recomputes the reverse topological order for the function and
4753 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4754 modified appropriately. */
4755static void
4756recompute_rev_top_order (void)
4757{
4758 int *postorder;
4759 int n_blocks, i;
4760
4761 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4762 {
b8698a0f 4763 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4764 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4765 rev_top_order_index_len);
4766 }
4767
4768 postorder = XNEWVEC (int, n_basic_blocks);
4769
4770 n_blocks = post_order_compute (postorder, true, false);
4771 gcc_assert (n_basic_blocks == n_blocks);
4772
4773 /* Build reverse function: for each basic block with BB->INDEX == K
4774 rev_top_order_index[K] is it's reverse topological sort number. */
4775 for (i = 0; i < n_blocks; i++)
4776 {
4777 gcc_assert (postorder[i] < rev_top_order_index_len);
4778 rev_top_order_index[postorder[i]] = i;
4779 }
4780
4781 free (postorder);
4782}
4783
4784/* Clear all flags from insns in BB that could spoil its rescheduling. */
4785void
4786clear_outdated_rtx_info (basic_block bb)
4787{
4788 rtx insn;
4789
4790 FOR_BB_INSNS (bb, insn)
4791 if (INSN_P (insn))
4792 {
4793 SCHED_GROUP_P (insn) = 0;
4794 INSN_AFTER_STALL_P (insn) = 0;
4795 INSN_SCHED_TIMES (insn) = 0;
4796 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4797
4798 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4799 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4800 the expression, and currently we'll be unable to do this. */
4801 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4802 }
4803}
4804
4805/* Add BB_NOTE to the pool of available basic block notes. */
4806static void
4807return_bb_to_pool (basic_block bb)
4808{
4809 rtx note = bb_note (bb);
4810
4811 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4812 && bb->aux == NULL);
4813
4814 /* It turns out that current cfg infrastructure does not support
4815 reuse of basic blocks. Don't bother for now. */
4816 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4817}
4818
4819/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4820static rtx
4821get_bb_note_from_pool (void)
4822{
4823 if (VEC_empty (rtx, bb_note_pool))
4824 return NULL_RTX;
4825 else
4826 {
4827 rtx note = VEC_pop (rtx, bb_note_pool);
4828
4829 PREV_INSN (note) = NULL_RTX;
4830 NEXT_INSN (note) = NULL_RTX;
4831
4832 return note;
4833 }
4834}
4835
4836/* Free bb_note_pool. */
4837void
4838free_bb_note_pool (void)
4839{
4840 VEC_free (rtx, heap, bb_note_pool);
4841}
4842
4843/* Setup scheduler pool and successor structure. */
4844void
4845alloc_sched_pools (void)
4846{
4847 int succs_size;
4848
4849 succs_size = MAX_WS + 1;
b8698a0f 4850 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4851 succs_info_pool.size = succs_size;
4852 succs_info_pool.top = -1;
4853 succs_info_pool.max_top = -1;
4854
b8698a0f 4855 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4856 sizeof (struct _list_node), 500);
4857}
4858
4859/* Free the pools. */
4860void
4861free_sched_pools (void)
4862{
4863 int i;
b8698a0f 4864
e855c69d
AB
4865 free_alloc_pool (sched_lists_pool);
4866 gcc_assert (succs_info_pool.top == -1);
4867 for (i = 0; i < succs_info_pool.max_top; i++)
4868 {
4869 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4870 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4871 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4872 }
4873 free (succs_info_pool.stack);
4874}
4875\f
4876
b8698a0f 4877/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
4878 topological order. */
4879static int
4880find_place_to_insert_bb (basic_block bb, int rgn)
4881{
4882 bool has_preds_outside_rgn = false;
4883 edge e;
4884 edge_iterator ei;
b8698a0f 4885
e855c69d
AB
4886 /* Find whether we have preds outside the region. */
4887 FOR_EACH_EDGE (e, ei, bb->preds)
4888 if (!in_current_region_p (e->src))
4889 {
4890 has_preds_outside_rgn = true;
4891 break;
4892 }
b8698a0f 4893
e855c69d
AB
4894 /* Recompute the top order -- needed when we have > 1 pred
4895 and in case we don't have preds outside. */
4896 if (flag_sel_sched_pipelining_outer_loops
4897 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4898 {
4899 int i, bbi = bb->index, cur_bbi;
4900
4901 recompute_rev_top_order ();
4902 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4903 {
4904 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 4905 if (rev_top_order_index[bbi]
e855c69d
AB
4906 < rev_top_order_index[cur_bbi])
4907 break;
4908 }
b8698a0f 4909
e855c69d
AB
4910 /* We skipped the right block, so we increase i. We accomodate
4911 it for increasing by step later, so we decrease i. */
4912 return (i + 1) - 1;
4913 }
4914 else if (has_preds_outside_rgn)
4915 {
4916 /* This is the case when we generate an extra empty block
4917 to serve as region head during pipelining. */
4918 e = EDGE_SUCC (bb, 0);
4919 gcc_assert (EDGE_COUNT (bb->succs) == 1
4920 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4921 && (BLOCK_TO_BB (e->dest->index) == 0));
4922 return -1;
4923 }
4924
4925 /* We don't have preds outside the region. We should have
4926 the only pred, because the multiple preds case comes from
4927 the pipelining of outer loops, and that is handled above.
4928 Just take the bbi of this single pred. */
4929 if (EDGE_COUNT (bb->succs) > 0)
4930 {
4931 int pred_bbi;
b8698a0f 4932
e855c69d 4933 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 4934
e855c69d
AB
4935 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4936 return BLOCK_TO_BB (pred_bbi);
4937 }
4938 else
4939 /* BB has no successors. It is safe to put it in the end. */
4940 return current_nr_blocks - 1;
4941}
4942
4943/* Deletes an empty basic block freeing its data. */
4944static void
4945delete_and_free_basic_block (basic_block bb)
4946{
4947 gcc_assert (sel_bb_empty_p (bb));
4948
4949 if (BB_LV_SET (bb))
4950 free_lv_set (bb);
4951
4952 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4953
b8698a0f
L
4954 /* Can't assert av_set properties because we use sel_aremove_bb
4955 when removing loop preheader from the region. At the point of
e855c69d
AB
4956 removing the preheader we already have deallocated sel_region_bb_info. */
4957 gcc_assert (BB_LV_SET (bb) == NULL
4958 && !BB_LV_SET_VALID_P (bb)
4959 && BB_AV_LEVEL (bb) == 0
4960 && BB_AV_SET (bb) == NULL);
b8698a0f 4961
e855c69d
AB
4962 delete_basic_block (bb);
4963}
4964
4965/* Add BB to the current region and update the region data. */
4966static void
4967add_block_to_current_region (basic_block bb)
4968{
4969 int i, pos, bbi = -2, rgn;
4970
4971 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4972 bbi = find_place_to_insert_bb (bb, rgn);
4973 bbi += 1;
4974 pos = RGN_BLOCKS (rgn) + bbi;
4975
4976 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4977 && ebb_head[bbi] == pos);
b8698a0f 4978
e855c69d
AB
4979 /* Make a place for the new block. */
4980 extend_regions ();
4981
4982 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4983 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 4984
e855c69d
AB
4985 memmove (rgn_bb_table + pos + 1,
4986 rgn_bb_table + pos,
4987 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4988
4989 /* Initialize data for BB. */
4990 rgn_bb_table[pos] = bb->index;
4991 BLOCK_TO_BB (bb->index) = bbi;
4992 CONTAINING_RGN (bb->index) = rgn;
4993
4994 RGN_NR_BLOCKS (rgn)++;
b8698a0f 4995
e855c69d
AB
4996 for (i = rgn + 1; i <= nr_regions; i++)
4997 RGN_BLOCKS (i)++;
4998}
4999
5000/* Remove BB from the current region and update the region data. */
5001static void
5002remove_bb_from_region (basic_block bb)
5003{
5004 int i, pos, bbi = -2, rgn;
5005
5006 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5007 bbi = BLOCK_TO_BB (bb->index);
5008 pos = RGN_BLOCKS (rgn) + bbi;
5009
5010 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5011 && ebb_head[bbi] == pos);
5012
5013 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5014 BLOCK_TO_BB (rgn_bb_table[i])--;
5015
5016 memmove (rgn_bb_table + pos,
5017 rgn_bb_table + pos + 1,
5018 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5019
5020 RGN_NR_BLOCKS (rgn)--;
5021 for (i = rgn + 1; i <= nr_regions; i++)
5022 RGN_BLOCKS (i)--;
5023}
5024
b8698a0f 5025/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5026 blocks from last_added_blocks vector. */
5027static void
5028sel_add_bb (basic_block bb)
5029{
5030 /* Extend luids so that new notes will receive zero luids. */
5031 sched_init_luids (NULL, NULL, NULL, NULL);
5032 sched_init_bbs ();
5033 sel_init_bbs (last_added_blocks, NULL);
5034
b8698a0f 5035 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5036 the only element that equals to bb; otherwise, the vector
5037 should not be NULL. */
5038 gcc_assert (last_added_blocks != NULL);
b8698a0f 5039
e855c69d
AB
5040 if (bb != NULL)
5041 {
5042 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
5043 && VEC_index (basic_block,
5044 last_added_blocks, 0) == bb);
e855c69d
AB
5045 add_block_to_current_region (bb);
5046
5047 /* We associate creating/deleting data sets with the first insn
5048 appearing / disappearing in the bb. */
5049 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5050 create_initial_data_sets (bb);
b8698a0f 5051
e855c69d
AB
5052 VEC_free (basic_block, heap, last_added_blocks);
5053 }
5054 else
5055 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5056 {
5057 int i;
5058 basic_block temp_bb = NULL;
5059
b8698a0f 5060 for (i = 0;
e855c69d
AB
5061 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5062 {
5063 add_block_to_current_region (bb);
5064 temp_bb = bb;
5065 }
5066
b8698a0f 5067 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5068 to update. */
5069 gcc_assert (temp_bb != NULL);
5070 bb = temp_bb;
5071
5072 VEC_free (basic_block, heap, last_added_blocks);
5073 }
5074
5075 rgn_setup_region (CONTAINING_RGN (bb->index));
5076}
5077
b8698a0f 5078/* Remove BB from the current region and update all data.
e855c69d
AB
5079 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5080static void
5081sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5082{
262d8232
AB
5083 unsigned idx = bb->index;
5084
e855c69d 5085 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5086
e855c69d
AB
5087 remove_bb_from_region (bb);
5088 return_bb_to_pool (bb);
262d8232 5089 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5090
e855c69d 5091 if (remove_from_cfg_p)
00c4e97c
AB
5092 {
5093 basic_block succ = single_succ (bb);
5094 delete_and_free_basic_block (bb);
5095 set_immediate_dominator (CDI_DOMINATORS, succ,
5096 recompute_dominator (CDI_DOMINATORS, succ));
5097 }
e855c69d 5098
262d8232 5099 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5100}
5101
5102/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5103static void
5104move_bb_info (basic_block merge_bb, basic_block empty_bb)
5105{
5106 gcc_assert (in_current_region_p (merge_bb));
5107
b8698a0f 5108 concat_note_lists (BB_NOTE_LIST (empty_bb),
e855c69d
AB
5109 &BB_NOTE_LIST (merge_bb));
5110 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5111
5112}
5113
e855c69d
AB
5114/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5115 region, but keep it in CFG. */
5116static void
5117remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5118{
5119 /* The block should contain just a note or a label.
5120 We try to check whether it is unused below. */
5121 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5122 || LABEL_P (BB_HEAD (empty_bb)));
5123
5124 /* If basic block has predecessors or successors, redirect them. */
5125 if (remove_from_cfg_p
5126 && (EDGE_COUNT (empty_bb->preds) > 0
5127 || EDGE_COUNT (empty_bb->succs) > 0))
5128 {
5129 basic_block pred;
5130 basic_block succ;
5131
5132 /* We need to init PRED and SUCC before redirecting edges. */
5133 if (EDGE_COUNT (empty_bb->preds) > 0)
5134 {
5135 edge e;
5136
5137 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5138
5139 e = EDGE_PRED (empty_bb, 0);
5140 gcc_assert (e->src == empty_bb->prev_bb
5141 && (e->flags & EDGE_FALLTHRU));
5142
5143 pred = empty_bb->prev_bb;
5144 }
5145 else
5146 pred = NULL;
5147
5148 if (EDGE_COUNT (empty_bb->succs) > 0)
5149 {
5150 /* We do not check fallthruness here as above, because
5151 after removing a jump the edge may actually be not fallthru. */
5152 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5153 succ = EDGE_SUCC (empty_bb, 0)->dest;
5154 }
5155 else
5156 succ = NULL;
5157
5158 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5159 {
5160 edge e = EDGE_PRED (empty_bb, 0);
5161
5162 if (e->flags & EDGE_FALLTHRU)
5163 redirect_edge_succ_nodup (e, succ);
5164 else
5165 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5166 }
5167
5168 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5169 {
5170 edge e = EDGE_SUCC (empty_bb, 0);
5171
5172 if (find_edge (pred, e->dest) == NULL)
5173 redirect_edge_pred (e, pred);
5174 }
5175 }
5176
5177 /* Finish removing. */
5178 sel_remove_bb (empty_bb, remove_from_cfg_p);
5179}
5180
b8698a0f 5181/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5182 per-bb data structures. */
5183static basic_block
5184sel_create_basic_block (void *headp, void *endp, basic_block after)
5185{
5186 basic_block new_bb;
5187 insn_t new_bb_note;
b8698a0f
L
5188
5189 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5190 || last_added_blocks == NULL);
5191
5192 new_bb_note = get_bb_note_from_pool ();
5193
5194 if (new_bb_note == NULL_RTX)
5195 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5196 else
5197 {
5198 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5199 new_bb_note, after);
5200 new_bb->aux = NULL;
5201 }
5202
5203 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5204
5205 return new_bb;
5206}
5207
5208/* Implement sched_init_only_bb (). */
5209static void
5210sel_init_only_bb (basic_block bb, basic_block after)
5211{
5212 gcc_assert (after == NULL);
5213
5214 extend_regions ();
5215 rgn_make_new_region_out_of_new_block (bb);
5216}
5217
5218/* Update the latch when we've splitted or merged it from FROM block to TO.
5219 This should be checked for all outer loops, too. */
5220static void
5221change_loops_latches (basic_block from, basic_block to)
5222{
5223 gcc_assert (from != to);
5224
5225 if (current_loop_nest)
5226 {
5227 struct loop *loop;
5228
5229 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5230 if (considered_for_pipelining_p (loop) && loop->latch == from)
5231 {
5232 gcc_assert (loop == current_loop_nest);
5233 loop->latch = to;
5234 gcc_assert (loop_latch_edge (loop));
5235 }
5236 }
5237}
5238
b8698a0f 5239/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5240 per-bb data structures. Returns the newly created bb. */
5241static basic_block
5242sel_split_block (basic_block bb, rtx after)
5243{
5244 basic_block new_bb;
5245 insn_t insn;
5246
5247 new_bb = sched_split_block_1 (bb, after);
5248 sel_add_bb (new_bb);
5249
5250 /* This should be called after sel_add_bb, because this uses
b8698a0f 5251 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5252 FIXME: this function may be a no-op now. */
5253 change_loops_latches (bb, new_bb);
5254
5255 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5256 FOR_BB_INSNS (new_bb, insn)
5257 if (INSN_P (insn))
5258 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5259
5260 if (sel_bb_empty_p (bb))
5261 {
5262 gcc_assert (!sel_bb_empty_p (new_bb));
5263
5264 /* NEW_BB has data sets that need to be updated and BB holds
5265 data sets that should be removed. Exchange these data sets
5266 so that we won't lose BB's valid data sets. */
5267 exchange_data_sets (new_bb, bb);
5268 free_data_sets (bb);
5269 }
5270
5271 if (!sel_bb_empty_p (new_bb)
5272 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5273 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5274
5275 return new_bb;
5276}
5277
5278/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5279 Otherwise returns NULL. */
5280static rtx
5281check_for_new_jump (basic_block bb, int prev_max_uid)
5282{
5283 rtx end;
5284
5285 end = sel_bb_end (bb);
5286 if (end && INSN_UID (end) >= prev_max_uid)
5287 return end;
5288 return NULL;
5289}
5290
b8698a0f 5291/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5292 New means having UID at least equal to PREV_MAX_UID. */
5293static rtx
5294find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5295{
5296 rtx jump;
5297
5298 /* Return immediately if no new insns were emitted. */
5299 if (get_max_uid () == prev_max_uid)
5300 return NULL;
b8698a0f 5301
e855c69d
AB
5302 /* Now check both blocks for new jumps. It will ever be only one. */
5303 if ((jump = check_for_new_jump (from, prev_max_uid)))
5304 return jump;
5305
5306 if (jump_bb != NULL
5307 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5308 return jump;
5309 return NULL;
5310}
5311
5312/* Splits E and adds the newly created basic block to the current region.
5313 Returns this basic block. */
5314basic_block
5315sel_split_edge (edge e)
5316{
5317 basic_block new_bb, src, other_bb = NULL;
5318 int prev_max_uid;
5319 rtx jump;
5320
5321 src = e->src;
5322 prev_max_uid = get_max_uid ();
5323 new_bb = split_edge (e);
5324
b8698a0f 5325 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5326 && current_loop_nest)
5327 {
5328 int i;
5329 basic_block bb;
5330
b8698a0f 5331 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5332 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5333 for (i = 0;
e855c69d
AB
5334 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5335 if (!bb->loop_father)
5336 {
5337 add_bb_to_loop (bb, e->dest->loop_father);
5338
5339 gcc_assert (!other_bb && (new_bb->index != bb->index));
5340 other_bb = bb;
5341 }
5342 }
5343
5344 /* Add all last_added_blocks to the region. */
5345 sel_add_bb (NULL);
5346
5347 jump = find_new_jump (src, new_bb, prev_max_uid);
5348 if (jump)
5349 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5350
5351 /* Put the correct lv set on this block. */
5352 if (other_bb && !sel_bb_empty_p (other_bb))
5353 compute_live (sel_bb_head (other_bb));
5354
5355 return new_bb;
5356}
5357
5358/* Implement sched_create_empty_bb (). */
5359static basic_block
5360sel_create_empty_bb (basic_block after)
5361{
5362 basic_block new_bb;
5363
5364 new_bb = sched_create_empty_bb_1 (after);
5365
5366 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5367 later. */
5368 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5369 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5370
5371 VEC_free (basic_block, heap, last_added_blocks);
5372 return new_bb;
5373}
5374
5375/* Implement sched_create_recovery_block. ORIG_INSN is where block
5376 will be splitted to insert a check. */
5377basic_block
5378sel_create_recovery_block (insn_t orig_insn)
5379{
5380 basic_block first_bb, second_bb, recovery_block;
5381 basic_block before_recovery = NULL;
5382 rtx jump;
5383
5384 first_bb = BLOCK_FOR_INSN (orig_insn);
5385 if (sel_bb_end_p (orig_insn))
5386 {
5387 /* Avoid introducing an empty block while splitting. */
5388 gcc_assert (single_succ_p (first_bb));
5389 second_bb = single_succ (first_bb);
5390 }
5391 else
5392 second_bb = sched_split_block (first_bb, orig_insn);
5393
5394 recovery_block = sched_create_recovery_block (&before_recovery);
5395 if (before_recovery)
5396 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5397
5398 gcc_assert (sel_bb_empty_p (recovery_block));
5399 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5400 if (current_loops != NULL)
5401 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5402
e855c69d 5403 sel_add_bb (recovery_block);
b8698a0f 5404
e855c69d
AB
5405 jump = BB_END (recovery_block);
5406 gcc_assert (sel_bb_head (recovery_block) == jump);
5407 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5408
5409 return recovery_block;
5410}
5411
5412/* Merge basic block B into basic block A. */
262d8232 5413static void
e855c69d
AB
5414sel_merge_blocks (basic_block a, basic_block b)
5415{
262d8232
AB
5416 gcc_assert (sel_bb_empty_p (b)
5417 && EDGE_COUNT (b->preds) == 1
5418 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5419
262d8232
AB
5420 move_bb_info (b->prev_bb, b);
5421 remove_empty_bb (b, false);
5422 merge_blocks (a, b);
e855c69d
AB
5423 change_loops_latches (b, a);
5424}
5425
5426/* A wrapper for redirect_edge_and_branch_force, which also initializes
5427 data structures for possibly created bb and insns. Returns the newly
5428 added bb or NULL, when a bb was not needed. */
5429void
5430sel_redirect_edge_and_branch_force (edge e, basic_block to)
5431{
00c4e97c 5432 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d
AB
5433 int prev_max_uid;
5434 rtx jump;
b8698a0f 5435
00c4e97c
AB
5436 /* This function is now used only for bookkeeping code creation, where
5437 we'll never get the single pred of orig_dest block and thus will not
5438 hit unreachable blocks when updating dominator info. */
5439 gcc_assert (!sel_bb_empty_p (e->src)
5440 && !single_pred_p (orig_dest));
e855c69d
AB
5441 src = e->src;
5442 prev_max_uid = get_max_uid ();
5443 jump_bb = redirect_edge_and_branch_force (e, to);
5444
5445 if (jump_bb != NULL)
5446 sel_add_bb (jump_bb);
5447
5448 /* This function could not be used to spoil the loop structure by now,
5449 thus we don't care to update anything. But check it to be sure. */
5450 if (current_loop_nest
5451 && pipelining_p)
5452 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5453
e855c69d
AB
5454 jump = find_new_jump (src, jump_bb, prev_max_uid);
5455 if (jump)
5456 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
00c4e97c
AB
5457 set_immediate_dominator (CDI_DOMINATORS, to,
5458 recompute_dominator (CDI_DOMINATORS, to));
5459 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5460 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5461}
5462
b59ab570
AM
5463/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5464 redirected edge are in reverse topological order. */
5465bool
e855c69d
AB
5466sel_redirect_edge_and_branch (edge e, basic_block to)
5467{
5468 bool latch_edge_p;
00c4e97c 5469 basic_block src, orig_dest = e->dest;
e855c69d
AB
5470 int prev_max_uid;
5471 rtx jump;
f2c45f08 5472 edge redirected;
b59ab570 5473 bool recompute_toporder_p = false;
00c4e97c 5474 bool maybe_unreachable = single_pred_p (orig_dest);
e855c69d
AB
5475
5476 latch_edge_p = (pipelining_p
5477 && current_loop_nest
5478 && e == loop_latch_edge (current_loop_nest));
5479
5480 src = e->src;
5481 prev_max_uid = get_max_uid ();
f2c45f08
AM
5482
5483 redirected = redirect_edge_and_branch (e, to);
5484
5485 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5486
5487 /* When we've redirected a latch edge, update the header. */
5488 if (latch_edge_p)
5489 {
5490 current_loop_nest->header = to;
5491 gcc_assert (loop_latch_edge (current_loop_nest));
5492 }
5493
b59ab570
AM
5494 /* In rare situations, the topological relation between the blocks connected
5495 by the redirected edge can change (see PR42245 for an example). Update
5496 block_to_bb/bb_to_block. */
5497 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5498 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5499 recompute_toporder_p = true;
5500
e855c69d
AB
5501 jump = find_new_jump (src, NULL, prev_max_uid);
5502 if (jump)
5503 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570 5504
00c4e97c
AB
5505 /* Only update dominator info when we don't have unreachable blocks.
5506 Otherwise we'll update in maybe_tidy_empty_bb. */
5507 if (!maybe_unreachable)
5508 {
5509 set_immediate_dominator (CDI_DOMINATORS, to,
5510 recompute_dominator (CDI_DOMINATORS, to));
5511 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5512 recompute_dominator (CDI_DOMINATORS, orig_dest));
5513 }
b59ab570 5514 return recompute_toporder_p;
e855c69d
AB
5515}
5516
5517/* This variable holds the cfg hooks used by the selective scheduler. */
5518static struct cfg_hooks sel_cfg_hooks;
5519
5520/* Register sel-sched cfg hooks. */
5521void
5522sel_register_cfg_hooks (void)
5523{
5524 sched_split_block = sel_split_block;
5525
5526 orig_cfg_hooks = get_cfg_hooks ();
5527 sel_cfg_hooks = orig_cfg_hooks;
5528
5529 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5530
5531 set_cfg_hooks (sel_cfg_hooks);
5532
5533 sched_init_only_bb = sel_init_only_bb;
5534 sched_split_block = sel_split_block;
5535 sched_create_empty_bb = sel_create_empty_bb;
5536}
5537
5538/* Unregister sel-sched cfg hooks. */
5539void
5540sel_unregister_cfg_hooks (void)
5541{
5542 sched_create_empty_bb = NULL;
5543 sched_split_block = NULL;
5544 sched_init_only_bb = NULL;
5545
5546 set_cfg_hooks (orig_cfg_hooks);
5547}
5548\f
5549
5550/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5551 LABEL is where this jump should be directed. */
5552rtx
5553create_insn_rtx_from_pattern (rtx pattern, rtx label)
5554{
5555 rtx insn_rtx;
5556
5557 gcc_assert (!INSN_P (pattern));
5558
5559 start_sequence ();
5560
5561 if (label == NULL_RTX)
5562 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5563 else if (DEBUG_INSN_P (label))
5564 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5565 else
5566 {
5567 insn_rtx = emit_jump_insn (pattern);
5568 JUMP_LABEL (insn_rtx) = label;
5569 ++LABEL_NUSES (label);
5570 }
5571
5572 end_sequence ();
5573
5574 sched_init_luids (NULL, NULL, NULL, NULL);
5575 sched_extend_target ();
5576 sched_deps_init (false);
5577
5578 /* Initialize INSN_CODE now. */
5579 recog_memoized (insn_rtx);
5580 return insn_rtx;
5581}
5582
5583/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5584 must not be clonable. */
5585vinsn_t
5586create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5587{
5588 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5589
5590 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5591 return vinsn_create (insn_rtx, force_unique_p);
5592}
5593
5594/* Create a copy of INSN_RTX. */
5595rtx
5596create_copy_of_insn_rtx (rtx insn_rtx)
5597{
5598 rtx res;
5599
b5b8b0ac
AO
5600 if (DEBUG_INSN_P (insn_rtx))
5601 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5602 insn_rtx);
5603
e855c69d
AB
5604 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5605
5606 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5607 NULL_RTX);
5608 return res;
5609}
5610
5611/* Change vinsn field of EXPR to hold NEW_VINSN. */
5612void
5613change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5614{
5615 vinsn_detach (EXPR_VINSN (expr));
5616
5617 EXPR_VINSN (expr) = new_vinsn;
5618 vinsn_attach (new_vinsn);
5619}
5620
5621/* Helpers for global init. */
5622/* This structure is used to be able to call existing bundling mechanism
5623 and calculate insn priorities. */
b8698a0f 5624static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5625{
5626 NULL, /* init_ready_list */
5627 NULL, /* can_schedule_ready_p */
5628 NULL, /* schedule_more_p */
5629 NULL, /* new_ready */
5630 NULL, /* rgn_rank */
5631 sel_print_insn, /* rgn_print_insn */
5632 contributes_to_priority,
356c23b3 5633 NULL, /* insn_finishes_block_p */
e855c69d
AB
5634
5635 NULL, NULL,
5636 NULL, NULL,
5637 0, 0,
5638
5639 NULL, /* add_remove_insn */
5640 NULL, /* begin_schedule_ready */
5641 NULL, /* advance_target_bb */
5642 SEL_SCHED | NEW_BBS
5643};
5644
5645/* Setup special insns used in the scheduler. */
b8698a0f 5646void
e855c69d
AB
5647setup_nop_and_exit_insns (void)
5648{
5649 gcc_assert (nop_pattern == NULL_RTX
5650 && exit_insn == NULL_RTX);
5651
9ef1bf71 5652 nop_pattern = constm1_rtx;
e855c69d
AB
5653
5654 start_sequence ();
5655 emit_insn (nop_pattern);
5656 exit_insn = get_insns ();
5657 end_sequence ();
5658 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5659}
5660
5661/* Free special insns used in the scheduler. */
5662void
5663free_nop_and_exit_insns (void)
5664{
5665 exit_insn = NULL_RTX;
5666 nop_pattern = NULL_RTX;
5667}
5668
5669/* Setup a special vinsn used in new insns initialization. */
5670void
5671setup_nop_vinsn (void)
5672{
5673 nop_vinsn = vinsn_create (exit_insn, false);
5674 vinsn_attach (nop_vinsn);
5675}
5676
5677/* Free a special vinsn used in new insns initialization. */
5678void
5679free_nop_vinsn (void)
5680{
5681 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5682 vinsn_detach (nop_vinsn);
5683 nop_vinsn = NULL;
5684}
5685
5686/* Call a set_sched_flags hook. */
5687void
5688sel_set_sched_flags (void)
5689{
b8698a0f 5690 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5691 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5692 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5693 sometimes change c_s_i later. So put the correct flags again. */
5694 if (spec_info && targetm.sched.set_sched_flags)
5695 targetm.sched.set_sched_flags (spec_info);
5696}
5697
5698/* Setup pointers to global sched info structures. */
5699void
5700sel_setup_sched_infos (void)
5701{
5702 rgn_setup_common_sched_info ();
5703
5704 memcpy (&sel_common_sched_info, common_sched_info,
5705 sizeof (sel_common_sched_info));
5706
5707 sel_common_sched_info.fix_recovery_cfg = NULL;
5708 sel_common_sched_info.add_block = NULL;
5709 sel_common_sched_info.estimate_number_of_insns
5710 = sel_estimate_number_of_insns;
5711 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5712 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5713
5714 common_sched_info = &sel_common_sched_info;
5715
5716 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5717 current_sched_info->sched_max_insns_priority =
e855c69d 5718 get_rgn_sched_max_insns_priority ();
b8698a0f 5719
e855c69d
AB
5720 sel_set_sched_flags ();
5721}
5722\f
5723
5724/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5725 *BB_ORD_INDEX after that is increased. */
5726static void
5727sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5728{
5729 RGN_NR_BLOCKS (rgn) += 1;
5730 RGN_DONT_CALC_DEPS (rgn) = 0;
5731 RGN_HAS_REAL_EBB (rgn) = 0;
5732 CONTAINING_RGN (bb->index) = rgn;
5733 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5734 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5735 (*bb_ord_index)++;
5736
5737 /* FIXME: it is true only when not scheduling ebbs. */
5738 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5739}
5740
5741/* Functions to support pipelining of outer loops. */
5742
5743/* Creates a new empty region and returns it's number. */
5744static int
5745sel_create_new_region (void)
5746{
5747 int new_rgn_number = nr_regions;
5748
5749 RGN_NR_BLOCKS (new_rgn_number) = 0;
5750
5751 /* FIXME: This will work only when EBBs are not created. */
5752 if (new_rgn_number != 0)
b8698a0f 5753 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5754 RGN_NR_BLOCKS (new_rgn_number - 1);
5755 else
5756 RGN_BLOCKS (new_rgn_number) = 0;
5757
5758 /* Set the blocks of the next region so the other functions may
5759 calculate the number of blocks in the region. */
b8698a0f 5760 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5761 RGN_NR_BLOCKS (new_rgn_number);
5762
5763 nr_regions++;
5764
5765 return new_rgn_number;
5766}
5767
5768/* If X has a smaller topological sort number than Y, returns -1;
5769 if greater, returns 1. */
5770static int
5771bb_top_order_comparator (const void *x, const void *y)
5772{
5773 basic_block bb1 = *(const basic_block *) x;
5774 basic_block bb2 = *(const basic_block *) y;
5775
b8698a0f
L
5776 gcc_assert (bb1 == bb2
5777 || rev_top_order_index[bb1->index]
e855c69d
AB
5778 != rev_top_order_index[bb2->index]);
5779
5780 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5781 bbs with greater number should go earlier. */
5782 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5783 return -1;
5784 else
5785 return 1;
5786}
5787
b8698a0f 5788/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5789 to pipeline LOOP, return -1. */
5790static int
5791make_region_from_loop (struct loop *loop)
5792{
5793 unsigned int i;
5794 int new_rgn_number = -1;
5795 struct loop *inner;
5796
5797 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5798 int bb_ord_index = 0;
5799 basic_block *loop_blocks;
5800 basic_block preheader_block;
5801
b8698a0f 5802 if (loop->num_nodes
e855c69d
AB
5803 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5804 return -1;
b8698a0f 5805
e855c69d
AB
5806 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5807 for (inner = loop->inner; inner; inner = inner->inner)
5808 if (flow_bb_inside_loop_p (inner, loop->latch))
5809 return -1;
5810
5811 loop->ninsns = num_loop_insns (loop);
5812 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5813 return -1;
5814
5815 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5816
5817 for (i = 0; i < loop->num_nodes; i++)
5818 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5819 {
5820 free (loop_blocks);
5821 return -1;
5822 }
5823
5824 preheader_block = loop_preheader_edge (loop)->src;
5825 gcc_assert (preheader_block);
5826 gcc_assert (loop_blocks[0] == loop->header);
5827
5828 new_rgn_number = sel_create_new_region ();
5829
5830 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5831 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5832
5833 for (i = 0; i < loop->num_nodes; i++)
5834 {
5835 /* Add only those blocks that haven't been scheduled in the inner loop.
5836 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5837 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5838 body, but to the region containing that loop body). */
5839
5840 gcc_assert (new_rgn_number >= 0);
5841
5842 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5843 {
b8698a0f 5844 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
5845 new_rgn_number);
5846 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5847 }
5848 }
5849
5850 free (loop_blocks);
5851 MARK_LOOP_FOR_PIPELINING (loop);
5852
5853 return new_rgn_number;
5854}
5855
5856/* Create a new region from preheader blocks LOOP_BLOCKS. */
5857void
5858make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5859{
5860 unsigned int i;
5861 int new_rgn_number = -1;
5862 basic_block bb;
5863
5864 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5865 int bb_ord_index = 0;
5866
5867 new_rgn_number = sel_create_new_region ();
5868
ac47786e 5869 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
e855c69d
AB
5870 {
5871 gcc_assert (new_rgn_number >= 0);
5872
5873 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5874 }
5875
5876 VEC_free (basic_block, heap, *loop_blocks);
5877 gcc_assert (*loop_blocks == NULL);
5878}
5879
5880
5881/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 5882 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
5883 is created. */
5884static bool
5885make_regions_from_loop_nest (struct loop *loop)
b8698a0f 5886{
e855c69d
AB
5887 struct loop *cur_loop;
5888 int rgn_number;
5889
5890 /* Traverse all inner nodes of the loop. */
5891 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5892 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5893 return false;
5894
5895 /* At this moment all regular inner loops should have been pipelined.
5896 Try to create a region from this loop. */
5897 rgn_number = make_region_from_loop (loop);
5898
5899 if (rgn_number < 0)
5900 return false;
5901
5902 VEC_safe_push (loop_p, heap, loop_nests, loop);
5903 return true;
5904}
5905
5906/* Initalize data structures needed. */
5907void
5908sel_init_pipelining (void)
5909{
5910 /* Collect loop information to be used in outer loops pipelining. */
5911 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5912 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5913 | LOOPS_HAVE_RECORDED_EXITS
5914 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5915 current_loop_nest = NULL;
5916
5917 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5918 sbitmap_zero (bbs_in_loop_rgns);
5919
5920 recompute_rev_top_order ();
5921}
5922
5923/* Returns a struct loop for region RGN. */
5924loop_p
5925get_loop_nest_for_rgn (unsigned int rgn)
5926{
5927 /* Regions created with extend_rgns don't have corresponding loop nests,
5928 because they don't represent loops. */
5929 if (rgn < VEC_length (loop_p, loop_nests))
5930 return VEC_index (loop_p, loop_nests, rgn);
5931 else
5932 return NULL;
5933}
5934
5935/* True when LOOP was included into pipelining regions. */
5936bool
5937considered_for_pipelining_p (struct loop *loop)
5938{
5939 if (loop_depth (loop) == 0)
5940 return false;
5941
b8698a0f
L
5942 /* Now, the loop could be too large or irreducible. Check whether its
5943 region is in LOOP_NESTS.
5944 We determine the region number of LOOP as the region number of its
5945 latch. We can't use header here, because this header could be
e855c69d
AB
5946 just removed preheader and it will give us the wrong region number.
5947 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 5948 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
5949 {
5950 int rgn = CONTAINING_RGN (loop->latch->index);
5951
5952 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5953 return true;
5954 }
b8698a0f 5955
e855c69d
AB
5956 return false;
5957}
5958
b8698a0f 5959/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
5960 for pipelining. */
5961static void
5962make_regions_from_the_rest (void)
5963{
5964 int cur_rgn_blocks;
5965 int *loop_hdr;
5966 int i;
5967
5968 basic_block bb;
5969 edge e;
5970 edge_iterator ei;
5971 int *degree;
e855c69d
AB
5972
5973 /* Index in rgn_bb_table where to start allocating new regions. */
5974 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 5975
b8698a0f 5976 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
5977 any loop or belong to irreducible loops. Prepare the data structures
5978 for extend_rgns. */
5979
5980 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5981 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5982 loop. */
5983 loop_hdr = XNEWVEC (int, last_basic_block);
5984 degree = XCNEWVEC (int, last_basic_block);
5985
5986
5987 /* For each basic block that belongs to some loop assign the number
5988 of innermost loop it belongs to. */
5989 for (i = 0; i < last_basic_block; i++)
5990 loop_hdr[i] = -1;
5991
5992 FOR_EACH_BB (bb)
5993 {
5994 if (bb->loop_father && !bb->loop_father->num == 0
5995 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5996 loop_hdr[bb->index] = bb->loop_father->num;
5997 }
5998
b8698a0f 5999 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6000 edges, that are going out of bbs that are not yet scheduled.
6001 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 6002 FOR_EACH_BB (bb)
e855c69d
AB
6003 {
6004 degree[bb->index] = 0;
6005
6006 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6007 {
6008 FOR_EACH_EDGE (e, ei, bb->preds)
6009 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6010 degree[bb->index]++;
6011 }
6012 else
6013 degree[bb->index] = -1;
6014 }
6015
6016 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6017
6018 /* Any block that did not end up in a region is placed into a region
6019 by itself. */
6020 FOR_EACH_BB (bb)
6021 if (degree[bb->index] >= 0)
6022 {
6023 rgn_bb_table[cur_rgn_blocks] = bb->index;
6024 RGN_NR_BLOCKS (nr_regions) = 1;
6025 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6026 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6027 RGN_HAS_REAL_EBB (nr_regions) = 0;
6028 CONTAINING_RGN (bb->index) = nr_regions++;
6029 BLOCK_TO_BB (bb->index) = 0;
6030 }
6031
6032 free (degree);
6033 free (loop_hdr);
6034}
6035
6036/* Free data structures used in pipelining of loops. */
6037void sel_finish_pipelining (void)
6038{
6039 loop_iterator li;
6040 struct loop *loop;
6041
6042 /* Release aux fields so we don't free them later by mistake. */
6043 FOR_EACH_LOOP (li, loop, 0)
6044 loop->aux = NULL;
6045
6046 loop_optimizer_finalize ();
6047
6048 VEC_free (loop_p, heap, loop_nests);
6049
6050 free (rev_top_order_index);
6051 rev_top_order_index = NULL;
6052}
6053
b8698a0f 6054/* This function replaces the find_rgns when
e855c69d 6055 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6056void
e855c69d
AB
6057sel_find_rgns (void)
6058{
6059 sel_init_pipelining ();
6060 extend_regions ();
6061
6062 if (current_loops)
6063 {
6064 loop_p loop;
6065 loop_iterator li;
6066
6067 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6068 ? LI_FROM_INNERMOST
6069 : LI_ONLY_INNERMOST))
6070 make_regions_from_loop_nest (loop);
6071 }
6072
6073 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6074 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6075 to irreducible loops. */
6076 make_regions_from_the_rest ();
6077
6078 /* We don't need bbs_in_loop_rgns anymore. */
6079 sbitmap_free (bbs_in_loop_rgns);
6080 bbs_in_loop_rgns = NULL;
6081}
6082
b8698a0f
L
6083/* Adds the preheader blocks from previous loop to current region taking
6084 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
e855c69d
AB
6085 This function is only used with -fsel-sched-pipelining-outer-loops. */
6086void
6087sel_add_loop_preheaders (void)
6088{
6089 int i;
6090 basic_block bb;
b8698a0f 6091 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6092 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6093
6094 for (i = 0;
6095 VEC_iterate (basic_block, preheader_blocks, i, bb);
6096 i++)
8ec4d0ad
AM
6097 {
6098 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6099 sel_add_bb (bb);
8ec4d0ad 6100 }
e855c69d
AB
6101
6102 VEC_free (basic_block, heap, preheader_blocks);
6103}
6104
b8698a0f
L
6105/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6106 Please note that the function should also work when pipelining_p is
6107 false, because it is used when deciding whether we should or should
e855c69d
AB
6108 not reschedule pipelined code. */
6109bool
6110sel_is_loop_preheader_p (basic_block bb)
6111{
6112 if (current_loop_nest)
6113 {
6114 struct loop *outer;
6115
6116 if (preheader_removed)
6117 return false;
6118
6119 /* Preheader is the first block in the region. */
6120 if (BLOCK_TO_BB (bb->index) == 0)
6121 return true;
6122
6123 /* We used to find a preheader with the topological information.
6124 Check that the above code is equivalent to what we did before. */
6125
6126 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6127 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6128 < BLOCK_TO_BB (current_loop_nest->header->index)));
6129
6130 /* Support the situation when the latch block of outer loop
6131 could be from here. */
6132 for (outer = loop_outer (current_loop_nest);
6133 outer;
6134 outer = loop_outer (outer))
6135 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6136 gcc_unreachable ();
6137 }
6138
6139 return false;
6140}
6141
753de8cf
AM
6142/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6143 can be removed, making the corresponding edge fallthrough (assuming that
6144 all basic blocks between JUMP_BB and DEST_BB are empty). */
6145static bool
6146bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6147{
b4550bf7
AM
6148 if (!onlyjump_p (BB_END (jump_bb))
6149 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6150 return false;
6151
b8698a0f 6152 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6153 not DEST_BB. */
6154 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6155 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6156 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6157 return false;
6158
6159 /* If not anything of the upper. */
6160 return true;
6161}
6162
6163/* Removes the loop preheader from the current region and saves it in
b8698a0f 6164 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6165 region that represents an outer loop. */
6166static void
6167sel_remove_loop_preheader (void)
6168{
6169 int i, old_len;
6170 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6171 basic_block bb;
6172 bool all_empty_p = true;
b8698a0f 6173 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6174 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6175
6176 gcc_assert (current_loop_nest);
6177 old_len = VEC_length (basic_block, preheader_blocks);
6178
6179 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6180 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6181 {
6182 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6183
b8698a0f 6184 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6185 corresponding loop, then it should be a preheader. */
6186 if (sel_is_loop_preheader_p (bb))
6187 {
6188 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6189 if (BB_END (bb) != bb_note (bb))
6190 all_empty_p = false;
6191 }
6192 }
b8698a0f 6193
e855c69d
AB
6194 /* Remove these blocks only after iterating over the whole region. */
6195 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6196 i >= old_len;
6197 i--)
6198 {
b8698a0f 6199 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6200 sel_remove_bb (bb, false);
6201 }
6202
6203 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6204 {
6205 if (!all_empty_p)
6206 /* Immediately create new region from preheader. */
6207 make_region_from_loop_preheader (&preheader_blocks);
6208 else
6209 {
6210 /* If all preheader blocks are empty - dont create new empty region.
6211 Instead, remove them completely. */
ac47786e 6212 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
e855c69d
AB
6213 {
6214 edge e;
6215 edge_iterator ei;
6216 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6217
6218 /* Redirect all incoming edges to next basic block. */
6219 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6220 {
6221 if (! (e->flags & EDGE_FALLTHRU))
6222 redirect_edge_and_branch (e, bb->next_bb);
6223 else
6224 redirect_edge_succ (e, bb->next_bb);
6225 }
6226 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6227 delete_and_free_basic_block (bb);
6228
b8698a0f
L
6229 /* Check if after deleting preheader there is a nonconditional
6230 jump in PREV_BB that leads to the next basic block NEXT_BB.
6231 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6232 basic block if it becomes empty. */
6233 if (next_bb->prev_bb == prev_bb
6234 && prev_bb != ENTRY_BLOCK_PTR
753de8cf 6235 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6236 {
6237 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6238 if (BB_END (prev_bb) == bb_note (prev_bb))
6239 free_data_sets (prev_bb);
6240 }
00c4e97c
AB
6241
6242 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6243 recompute_dominator (CDI_DOMINATORS,
6244 next_bb));
e855c69d
AB
6245 }
6246 }
6247 VEC_free (basic_block, heap, preheader_blocks);
6248 }
6249 else
6250 /* Store preheader within the father's loop structure. */
6251 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6252 preheader_blocks);
6253}
6254#endif