]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
discourage unnecessary use of if before free
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
86014d07
BS
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
e855c69d
AB
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
718f9c0f 25#include "diagnostic-core.h"
e855c69d
AB
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "regs.h"
30#include "function.h"
31#include "flags.h"
32#include "insn-config.h"
33#include "insn-attr.h"
34#include "except.h"
e855c69d
AB
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "sched-int.h"
41#include "ggc.h"
42#include "tree.h"
43#include "vec.h"
44#include "langhooks.h"
45#include "rtlhooks-def.h"
5936d944 46#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
47
48#ifdef INSN_SCHEDULING
49#include "sel-sched-ir.h"
50/* We don't have to use it except for sel_print_insn. */
51#include "sel-sched-dump.h"
52
53/* A vector holding bb info for whole scheduling pass. */
54VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55
56/* A vector holding bb info. */
57VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58
59/* A pool for allocating all lists. */
60alloc_pool sched_lists_pool;
61
62/* This contains information about successors for compute_av_set. */
63struct succs_info current_succs;
64
65/* Data structure to describe interaction with the generic scheduler utils. */
66static struct common_sched_info_def sel_common_sched_info;
67
68/* The loop nest being pipelined. */
69struct loop *current_loop_nest;
70
71/* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73static VEC(loop_p, heap) *loop_nests = NULL;
74
75/* Saves blocks already in loop regions, indexed by bb->index. */
76static sbitmap bbs_in_loop_rgns = NULL;
77
78/* CFG hooks that are saved before changing create_basic_block hook. */
79static struct cfg_hooks orig_cfg_hooks;
80\f
81
82/* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84static int *rev_top_order_index = NULL;
85
86/* Length of the above array. */
87static int rev_top_order_index_len = -1;
88
89/* A regset pool structure. */
90static struct
91{
92 /* The stack to which regsets are returned. */
93 regset *v;
94
95 /* Its pointer. */
96 int n;
97
98 /* Its size. */
99 int s;
100
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
105
106 /* The pointer of VV stack. */
107 int nn;
108
109 /* Its size. */
110 int ss;
111
112 /* The difference between allocated and returned regsets. */
113 int diff;
114} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115
116/* This represents the nop pool. */
117static struct
118{
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
121
122 /* Its pointer. */
123 int n;
124
125 /* Its size. */
b8698a0f 126 int s;
e855c69d
AB
127} nop_pool = { NULL, 0, 0 };
128
129/* The pool for basic block notes. */
130static rtx_vec_t bb_note_pool;
131
132/* A NOP pattern used to emit placeholder insns. */
133rtx nop_pattern = NULL_RTX;
134/* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136rtx exit_insn = NULL_RTX;
137
b8698a0f 138/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
139 was removed. */
140bool preheader_removed = false;
141\f
142
143/* Forward static declarations. */
144static void fence_clear (fence_t);
145
146static void deps_init_id (idata_t, insn_t, bool);
147static void init_id_from_df (idata_t, insn_t, bool);
148static expr_t set_insn_init (expr_t, vinsn_t, int);
149
150static void cfg_preds (basic_block, insn_t **, int *);
151static void prepare_insn_expr (insn_t, int);
152static void free_history_vect (VEC (expr_history_def, heap) **);
153
154static void move_bb_info (basic_block, basic_block);
155static void remove_empty_bb (basic_block, bool);
262d8232 156static void sel_merge_blocks (basic_block, basic_block);
e855c69d 157static void sel_remove_loop_preheader (void);
753de8cf 158static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
159
160static bool insn_is_the_only_one_in_bb_p (insn_t);
161static void create_initial_data_sets (basic_block);
162
b5b8b0ac 163static void free_av_set (basic_block);
e855c69d
AB
164static void invalidate_av_set (basic_block);
165static void extend_insn_data (void);
166static void sel_init_new_insn (insn_t, int);
167static void finish_insns (void);
168\f
169/* Various list functions. */
170
171/* Copy an instruction list L. */
172ilist_t
173ilist_copy (ilist_t l)
174{
175 ilist_t head = NULL, *tailp = &head;
176
177 while (l)
178 {
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
182 }
183
184 return head;
185}
186
187/* Invert an instruction list L. */
188ilist_t
189ilist_invert (ilist_t l)
190{
191 ilist_t res = NULL;
192
193 while (l)
194 {
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
197 }
198
199 return res;
200}
201
202/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203void
204blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205{
206 bnd_t bnd;
207
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
210
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
216}
217
218/* Remove the list note pointed to by LP. */
219void
220blist_remove (blist_t *lp)
221{
222 bnd_t b = BLIST_BND (*lp);
223
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
227
228 _list_remove (lp);
229}
230
231/* Init a fence tail L. */
232void
233flist_tail_init (flist_tail_t l)
234{
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
237}
238
239/* Try to find fence corresponding to INSN in L. */
240fence_t
241flist_lookup (flist_t l, insn_t insn)
242{
243 while (l)
244 {
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
247
248 l = FLIST_NEXT (l);
249 }
250
251 return NULL;
252}
253
254/* Init the fields of F before running fill_insns. */
255static void
256init_fence_for_scheduling (fence_t f)
257{
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
261}
262
263/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264static void
b8698a0f
L
265flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 268 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
269 bool starts_cycle_p, bool after_stall_p)
270{
271 fence_t f;
272
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
275
276 FENCE_INSN (f) = insn;
277
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
280
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
285
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
288
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
291
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 293 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
298
299 init_fence_for_scheduling (f);
300}
301
302/* Remove the head node of the list pointed to by LP. */
303static void
304flist_remove (flist_t *lp)
305{
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
309}
310
311/* Clear the fence list pointed to by LP. */
312void
313flist_clear (flist_t *lp)
314{
315 while (*lp)
316 flist_remove (lp);
317}
318
319/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320void
321def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322{
323 def_t d;
b8698a0f 324
e855c69d
AB
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
327
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
330}
331\f
332
333/* Functions to work with target contexts. */
334
b8698a0f 335/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
336 that there are no uninitialized (null) target contexts. */
337static tc_t bulk_tc = (tc_t) 1;
338
b8698a0f 339/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
340 implementations for them. */
341
342/* Allocate a store for the target context. */
343static tc_t
344alloc_target_context (void)
345{
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
348}
349
350/* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353static void
354init_target_context (tc_t tc, bool clean_p)
355{
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
358}
359
360/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362tc_t
363create_target_context (bool clean_p)
364{
365 tc_t tc = alloc_target_context ();
366
367 init_target_context (tc, clean_p);
368 return tc;
369}
370
371/* Copy TC to the current backend context. */
372void
373set_target_context (tc_t tc)
374{
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
377}
378
379/* TC is about to be destroyed. Free any internal data. */
380static void
381clear_target_context (tc_t tc)
382{
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
385}
386
387/* Clear and free it. */
388static void
389delete_target_context (tc_t tc)
390{
391 clear_target_context (tc);
392
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
395}
396
397/* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399static void
400copy_target_context (tc_t to, tc_t from)
401{
402 tc_t tmp = create_target_context (false);
403
404 set_target_context (from);
405 init_target_context (to, false);
406
407 set_target_context (tmp);
408 delete_target_context (tmp);
409}
410
411/* Create a copy of TC. */
412static tc_t
413create_copy_of_target_context (tc_t tc)
414{
415 tc_t copy = alloc_target_context ();
416
417 copy_target_context (copy, tc);
418
419 return copy;
420}
421
422/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424void
425reset_target_context (tc_t tc, bool clean_p)
426{
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
429}
430\f
b8698a0f 431/* Functions to work with dependence contexts.
88302d54 432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
435
436/* Make a copy of FROM in TO. */
437static void
438copy_deps_context (deps_t to, deps_t from)
439{
bcf33775 440 init_deps (to, false);
e855c69d
AB
441 deps_join (to, from);
442}
443
444/* Allocate store for dep context. */
445static deps_t
446alloc_deps_context (void)
447{
88302d54 448 return XNEW (struct deps_desc);
e855c69d
AB
449}
450
451/* Allocate and initialize dep context. */
452static deps_t
453create_deps_context (void)
454{
455 deps_t dc = alloc_deps_context ();
456
bcf33775 457 init_deps (dc, false);
e855c69d
AB
458 return dc;
459}
460
461/* Create a copy of FROM. */
462static deps_t
463create_copy_of_deps_context (deps_t from)
464{
465 deps_t to = alloc_deps_context ();
466
467 copy_deps_context (to, from);
468 return to;
469}
470
471/* Clean up internal data of DC. */
472static void
473clear_deps_context (deps_t dc)
474{
475 free_deps (dc);
476}
477
478/* Clear and free DC. */
479static void
480delete_deps_context (deps_t dc)
481{
482 clear_deps_context (dc);
483 free (dc);
484}
485
486/* Clear and init DC. */
487static void
488reset_deps_context (deps_t dc)
489{
490 clear_deps_context (dc);
bcf33775 491 init_deps (dc, false);
e855c69d
AB
492}
493
b8698a0f 494/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
495 dependence context. */
496static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 {
498 NULL,
499
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
511
512 0, 0, 0
513 };
514
515/* Process INSN and add its impact on DC. */
516void
517advance_deps_context (deps_t dc, insn_t insn)
518{
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
521}
522\f
523
524/* Functions to work with DFA states. */
525
526/* Allocate store for a DFA state. */
527static state_t
528state_alloc (void)
529{
530 return xmalloc (dfa_state_size);
531}
532
533/* Allocate and initialize DFA state. */
534static state_t
535state_create (void)
536{
537 state_t state = state_alloc ();
538
539 state_reset (state);
540 advance_state (state);
541 return state;
542}
543
544/* Free DFA state. */
545static void
546state_free (state_t state)
547{
548 free (state);
549}
550
551/* Make a copy of FROM in TO. */
552static void
553state_copy (state_t to, state_t from)
554{
555 memcpy (to, from, dfa_state_size);
556}
557
558/* Create a copy of FROM. */
559static state_t
560state_create_copy (state_t from)
561{
562 state_t to = state_alloc ();
563
564 state_copy (to, from);
565 return to;
566}
567\f
568
569/* Functions to work with fences. */
570
571/* Clear the fence. */
572static void
573fence_clear (fence_t f)
574{
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
578
579 ilist_clear (&FENCE_BNDS (f));
580
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
583
584 if (s != NULL)
585 free (s);
586
587 if (dc != NULL)
588 delete_deps_context (dc);
589
590 if (tc != NULL)
591 delete_target_context (tc);
592 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
593 free (FENCE_READY_TICKS (f));
594 FENCE_READY_TICKS (f) = NULL;
595}
596
597/* Init a list of fences with successors of OLD_FENCE. */
598void
599init_fences (insn_t old_fence)
600{
601 insn_t succ;
602 succ_iterator si;
603 bool first = true;
604 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
605
606 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
607 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
608 {
b8698a0f 609
e855c69d
AB
610 if (first)
611 first = false;
612 else
613 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614
615 flist_add (&fences, succ,
616 state_create (),
617 create_deps_context () /* dc */,
618 create_target_context (true) /* tc */,
b8698a0f 619 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
620 NULL, /* executing_insns */
621 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
622 ready_ticks_size,
623 NULL_RTX /* sched_next */,
b8698a0f 624 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 625 issue_rate, /* issue_more */
b8698a0f 626 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
627 }
628}
629
630/* Merges two fences (filling fields of fence F with resulting values) by
631 following rules: 1) state, target context and last scheduled insn are
b8698a0f 632 propagated from fallthrough edge if it is available;
e855c69d 633 2) deps context and cycle is propagated from more probable edge;
b8698a0f 634 3) all other fields are set to corresponding constant values.
e855c69d 635
b8698a0f 636 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
637 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
638 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
639static void
640merge_fences (fence_t f, insn_t insn,
b8698a0f 641 state_t state, deps_t dc, void *tc,
e855c69d
AB
642 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
643 int *ready_ticks, int ready_ticks_size,
136e01a3 644 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
645{
646 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647
648 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
649 && !sched_next && !FENCE_SCHED_NEXT (f));
650
b8698a0f 651 /* Check if we can decide which path fences came.
e855c69d
AB
652 If we can't (or don't want to) - reset all. */
653 if (last_scheduled_insn == NULL
654 || last_scheduled_insn_old == NULL
b8698a0f
L
655 /* This is a case when INSN is reachable on several paths from
656 one insn (this can happen when pipelining of outer loops is on and
657 there are two edges: one going around of inner loop and the other -
e855c69d
AB
658 right through it; in such case just reset everything). */
659 || last_scheduled_insn == last_scheduled_insn_old)
660 {
661 state_reset (FENCE_STATE (f));
662 state_free (state);
b8698a0f 663
e855c69d
AB
664 reset_deps_context (FENCE_DC (f));
665 delete_deps_context (dc);
b8698a0f 666
e855c69d
AB
667 reset_target_context (FENCE_TC (f), true);
668 delete_target_context (tc);
669
670 if (cycle > FENCE_CYCLE (f))
671 FENCE_CYCLE (f) = cycle;
672
673 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 674 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
675 VEC_free (rtx, gc, executing_insns);
676 free (ready_ticks);
677 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 678 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
679 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
680 if (FENCE_READY_TICKS (f))
681 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 }
683 else
684 {
685 edge edge_old = NULL, edge_new = NULL;
686 edge candidate;
687 succ_iterator si;
688 insn_t succ;
b8698a0f 689
e855c69d
AB
690 /* Find fallthrough edge. */
691 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 692 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
693
694 if (!candidate
695 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
696 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 {
698 /* No fallthrough edge leading to basic block of INSN. */
699 state_reset (FENCE_STATE (f));
700 state_free (state);
b8698a0f 701
e855c69d
AB
702 reset_target_context (FENCE_TC (f), true);
703 delete_target_context (tc);
b8698a0f 704
e855c69d 705 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 706 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
707 }
708 else
709 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 {
b8698a0f 711 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
712 edges. */
713 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
714 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715
716 state_free (FENCE_STATE (f));
717 FENCE_STATE (f) = state;
718
719 delete_target_context (FENCE_TC (f));
720 FENCE_TC (f) = tc;
721
722 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 723 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
724 }
725 else
726 {
727 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
728 state_free (state);
729 delete_target_context (tc);
730
731 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
732 != BLOCK_FOR_INSN (last_scheduled_insn));
733 }
734
735 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
736 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
737 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 {
739 if (succ == insn)
740 {
741 /* No same successor allowed from several edges. */
742 gcc_assert (!edge_old);
743 edge_old = si.e1;
744 }
745 }
746 /* Find edge of second predecessor (last_scheduled_insn->insn). */
747 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
748 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 {
750 if (succ == insn)
751 {
752 /* No same successor allowed from several edges. */
753 gcc_assert (!edge_new);
754 edge_new = si.e1;
755 }
756 }
757
758 /* Check if we can choose most probable predecessor. */
759 if (edge_old == NULL || edge_new == NULL)
760 {
761 reset_deps_context (FENCE_DC (f));
762 delete_deps_context (dc);
763 VEC_free (rtx, gc, executing_insns);
764 free (ready_ticks);
b8698a0f 765
e855c69d
AB
766 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
767 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 768 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
769 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
770 if (FENCE_READY_TICKS (f))
771 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 }
773 else
774 if (edge_new->probability > edge_old->probability)
775 {
776 delete_deps_context (FENCE_DC (f));
777 FENCE_DC (f) = dc;
778 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
779 FENCE_EXECUTING_INSNS (f) = executing_insns;
780 free (FENCE_READY_TICKS (f));
781 FENCE_READY_TICKS (f) = ready_ticks;
782 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
783 FENCE_CYCLE (f) = cycle;
784 }
785 else
786 {
787 /* Leave DC and CYCLE untouched. */
788 delete_deps_context (dc);
789 VEC_free (rtx, gc, executing_insns);
790 free (ready_ticks);
791 }
792 }
793
794 /* Fill remaining invariant fields. */
795 if (after_stall_p)
796 FENCE_AFTER_STALL_P (f) = 1;
797
798 FENCE_ISSUED_INSNS (f) = 0;
799 FENCE_STARTS_CYCLE_P (f) = 1;
800 FENCE_SCHED_NEXT (f) = NULL;
801}
802
b8698a0f 803/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
804 other parameters. */
805static void
806add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
807 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
808 VEC(rtx, gc) *executing_insns, int *ready_ticks,
809 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
810 int cycle_issued_insns, int issue_rate,
811 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
812{
813 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814
815 if (! f)
816 {
817 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 818 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 819 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 820 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
821
822 FLIST_TAIL_TAILP (new_fences)
823 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 }
825 else
826 {
b8698a0f
L
827 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
828 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 829 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
830 }
831}
832
833/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
834void
835move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836{
837 fence_t f, old;
838 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839
840 old = FLIST_FENCE (old_fences);
b8698a0f 841 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
842 FENCE_INSN (FLIST_FENCE (old_fences)));
843 if (f)
844 {
845 merge_fences (f, old->insn, old->state, old->dc, old->tc,
846 old->last_scheduled_insn, old->executing_insns,
847 old->ready_ticks, old->ready_ticks_size,
136e01a3 848 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
849 old->after_stall_p);
850 }
851 else
852 {
853 _list_add (tailp);
854 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
855 *FLIST_FENCE (*tailp) = *old;
856 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 }
858 FENCE_INSN (old) = NULL;
859}
860
b8698a0f 861/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
862 as a clean one. */
863void
864add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865{
866 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 867
e855c69d
AB
868 add_to_fences (new_fences,
869 succ, state_create (), create_deps_context (),
870 create_target_context (true),
b8698a0f 871 NULL_RTX, NULL,
e855c69d
AB
872 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
873 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 874 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
875}
876
b8698a0f 877/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
878 from FENCE and SUCC. */
879void
880add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881{
b8698a0f 882 int * new_ready_ticks
e855c69d 883 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 884
e855c69d
AB
885 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
886 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
887 add_to_fences (new_fences,
888 succ, state_create_copy (FENCE_STATE (fence)),
889 create_copy_of_deps_context (FENCE_DC (fence)),
890 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 891 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
892 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
893 new_ready_ticks,
894 FENCE_READY_TICKS_SIZE (fence),
895 FENCE_SCHED_NEXT (fence),
896 FENCE_CYCLE (fence),
897 FENCE_ISSUED_INSNS (fence),
136e01a3 898 FENCE_ISSUE_MORE (fence),
e855c69d
AB
899 FENCE_STARTS_CYCLE_P (fence),
900 FENCE_AFTER_STALL_P (fence));
901}
902\f
903
904/* Functions to work with regset and nop pools. */
905
906/* Returns the new regset from pool. It might have some of the bits set
907 from the previous usage. */
908regset
909get_regset_from_pool (void)
910{
911 regset rs;
912
913 if (regset_pool.n != 0)
914 rs = regset_pool.v[--regset_pool.n];
915 else
916 /* We need to create the regset. */
917 {
918 rs = ALLOC_REG_SET (&reg_obstack);
919
920 if (regset_pool.nn == regset_pool.ss)
921 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
922 (regset_pool.ss = 2 * regset_pool.ss + 1));
923 regset_pool.vv[regset_pool.nn++] = rs;
924 }
925
926 regset_pool.diff++;
927
928 return rs;
929}
930
931/* Same as above, but returns the empty regset. */
932regset
933get_clear_regset_from_pool (void)
934{
935 regset rs = get_regset_from_pool ();
936
937 CLEAR_REG_SET (rs);
938 return rs;
939}
940
941/* Return regset RS to the pool for future use. */
942void
943return_regset_to_pool (regset rs)
944{
9ef1bf71 945 gcc_assert (rs);
e855c69d
AB
946 regset_pool.diff--;
947
948 if (regset_pool.n == regset_pool.s)
949 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
950 (regset_pool.s = 2 * regset_pool.s + 1));
951 regset_pool.v[regset_pool.n++] = rs;
952}
953
68ad446f 954#ifdef ENABLE_CHECKING
e855c69d
AB
955/* This is used as a qsort callback for sorting regset pool stacks.
956 X and XX are addresses of two regsets. They are never equal. */
957static int
958cmp_v_in_regset_pool (const void *x, const void *xx)
959{
960 return *((const regset *) x) - *((const regset *) xx);
961}
68ad446f 962#endif
e855c69d
AB
963
964/* Free the regset pool possibly checking for memory leaks. */
965void
966free_regset_pool (void)
967{
968#ifdef ENABLE_CHECKING
969 {
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
b8698a0f 973
e855c69d
AB
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
b8698a0f 977
e855c69d 978 int diff = 0;
b8698a0f 979
e855c69d 980 gcc_assert (n <= nn);
b8698a0f 981
e855c69d
AB
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 985
e855c69d
AB
986 while (ii < nn)
987 {
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
b8698a0f 993
e855c69d
AB
994 ii++;
995 }
b8698a0f 996
e855c69d
AB
997 gcc_assert (diff == regset_pool.diff);
998 }
999#endif
b8698a0f 1000
e855c69d
AB
1001 /* If not true - we have a memory leak. */
1002 gcc_assert (regset_pool.diff == 0);
b8698a0f 1003
e855c69d
AB
1004 while (regset_pool.n)
1005 {
1006 --regset_pool.n;
1007 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1008 }
1009
1010 free (regset_pool.v);
1011 regset_pool.v = NULL;
1012 regset_pool.s = 0;
b8698a0f 1013
e855c69d
AB
1014 free (regset_pool.vv);
1015 regset_pool.vv = NULL;
1016 regset_pool.nn = 0;
1017 regset_pool.ss = 0;
1018
1019 regset_pool.diff = 0;
1020}
1021\f
1022
b8698a0f
L
1023/* Functions to work with nop pools. NOP insns are used as temporary
1024 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1025 the data sets. When update is finished, NOPs are deleted. */
1026
1027/* A vinsn that is used to represent a nop. This vinsn is shared among all
1028 nops sel-sched generates. */
1029static vinsn_t nop_vinsn = NULL;
1030
1031/* Emit a nop before INSN, taking it from pool. */
1032insn_t
1033get_nop_from_pool (insn_t insn)
1034{
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1038
1039 if (old_p)
1040 nop = nop_pool.v[--nop_pool.n];
1041 else
1042 nop = nop_pattern;
1043
1044 nop = emit_insn_before (nop, insn);
1045
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1053
1054 return nop;
1055}
1056
1057/* Remove NOP from the instruction stream and return it to the pool. */
1058void
b5b8b0ac 1059return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1060{
1061 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1062 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1063
1064 if (nop_pool.n == nop_pool.s)
b8698a0f 1065 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1066 (nop_pool.s = 2 * nop_pool.s + 1));
1067 nop_pool.v[nop_pool.n++] = nop;
1068}
1069
1070/* Free the nop pool. */
1071void
1072free_nop_pool (void)
1073{
1074 nop_pool.n = 0;
1075 nop_pool.s = 0;
1076 free (nop_pool.v);
1077 nop_pool.v = NULL;
1078}
1079\f
1080
b8698a0f 1081/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1082 The callback is given two rtxes XX and YY and writes the new rtxes
1083 to NX and NY in case some needs to be skipped. */
1084static int
1085skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086{
1087 const_rtx x = *xx;
1088 const_rtx y = *yy;
b8698a0f 1089
e855c69d
AB
1090 if (GET_CODE (x) == UNSPEC
1091 && (targetm.sched.skip_rtx_p == NULL
1092 || targetm.sched.skip_rtx_p (x)))
1093 {
1094 *nx = XVECEXP (x, 0, 0);
1095 *ny = CONST_CAST_RTX (y);
1096 return 1;
1097 }
b8698a0f 1098
e855c69d
AB
1099 if (GET_CODE (y) == UNSPEC
1100 && (targetm.sched.skip_rtx_p == NULL
1101 || targetm.sched.skip_rtx_p (y)))
1102 {
1103 *nx = CONST_CAST_RTX (x);
1104 *ny = XVECEXP (y, 0, 0);
1105 return 1;
1106 }
b8698a0f 1107
e855c69d
AB
1108 return 0;
1109}
1110
b8698a0f 1111/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1112 to support ia64 speculation. When changes are needed, new rtx X and new mode
1113 NMODE are written, and the callback returns true. */
1114static int
1115hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1116 rtx *nx, enum machine_mode* nmode)
1117{
b8698a0f 1118 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1119 && targetm.sched.skip_rtx_p
1120 && targetm.sched.skip_rtx_p (x))
1121 {
1122 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1123 *nmode = VOIDmode;
e855c69d
AB
1124 return 1;
1125 }
b8698a0f 1126
e855c69d
AB
1127 return 0;
1128}
1129
1130/* Returns LHS and RHS are ok to be scheduled separately. */
1131static bool
1132lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133{
1134 if (lhs == NULL || rhs == NULL)
1135 return false;
1136
b8698a0f
L
1137 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1138 to use reg, if const can be used. Moreover, scheduling const as rhs may
1139 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1140 merged from branches where the same const used in different modes. */
1141 if (CONSTANT_P (rhs))
1142 return false;
1143
1144 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1145 if (COMPARISON_P (rhs))
1146 return false;
1147
1148 /* Do not allow single REG to be an rhs. */
1149 if (REG_P (rhs))
1150 return false;
1151
b8698a0f 1152 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1153 restriction. */
1154 /* FIXME: remove this later. */
1155 if (MEM_P (lhs))
1156 return false;
1157
1158 /* This will filter all tricky things like ZERO_EXTRACT etc.
1159 For now we don't handle it. */
1160 if (!REG_P (lhs) && !MEM_P (lhs))
1161 return false;
1162
1163 return true;
1164}
1165
b8698a0f
L
1166/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1167 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1168 used e.g. for insns from recovery blocks. */
1169static void
1170vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171{
1172 hash_rtx_callback_function hrcf;
1173 int insn_class;
1174
1175 VINSN_INSN_RTX (vi) = insn;
1176 VINSN_COUNT (vi) = 0;
1177 vi->cost = -1;
b8698a0f 1178
9ef1bf71
AM
1179 if (INSN_NOP_P (insn))
1180 return;
1181
e855c69d
AB
1182 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1183 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1184 else
1185 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1186
e855c69d
AB
1187 /* Hash vinsn depending on whether it is separable or not. */
1188 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1189 if (VINSN_SEPARABLE_P (vi))
1190 {
1191 rtx rhs = VINSN_RHS (vi);
1192
1193 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1194 NULL, NULL, false, hrcf);
1195 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1196 VOIDmode, NULL, NULL,
1197 false, hrcf);
1198 }
1199 else
1200 {
1201 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1202 NULL, NULL, false, hrcf);
1203 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1204 }
b8698a0f 1205
e855c69d
AB
1206 insn_class = haifa_classify_insn (insn);
1207 if (insn_class >= 2
1208 && (!targetm.sched.get_insn_spec_ds
1209 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1210 == 0)))
1211 VINSN_MAY_TRAP_P (vi) = true;
1212 else
1213 VINSN_MAY_TRAP_P (vi) = false;
1214}
1215
1216/* Indicate that VI has become the part of an rtx object. */
1217void
1218vinsn_attach (vinsn_t vi)
1219{
1220 /* Assert that VI is not pending for deletion. */
1221 gcc_assert (VINSN_INSN_RTX (vi));
1222
1223 VINSN_COUNT (vi)++;
1224}
1225
b8698a0f 1226/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1227 VINSN_TYPE (VI). */
1228static vinsn_t
1229vinsn_create (insn_t insn, bool force_unique_p)
1230{
1231 vinsn_t vi = XCNEW (struct vinsn_def);
1232
1233 vinsn_init (vi, insn, force_unique_p);
1234 return vi;
1235}
1236
1237/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1238 the copy. */
b8698a0f 1239vinsn_t
e855c69d
AB
1240vinsn_copy (vinsn_t vi, bool reattach_p)
1241{
1242 rtx copy;
1243 bool unique = VINSN_UNIQUE_P (vi);
1244 vinsn_t new_vi;
b8698a0f 1245
e855c69d
AB
1246 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1247 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1248 if (reattach_p)
1249 {
1250 vinsn_detach (vi);
1251 vinsn_attach (new_vi);
1252 }
1253
1254 return new_vi;
1255}
1256
1257/* Delete the VI vinsn and free its data. */
1258static void
1259vinsn_delete (vinsn_t vi)
1260{
1261 gcc_assert (VINSN_COUNT (vi) == 0);
1262
9ef1bf71
AM
1263 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 {
1265 return_regset_to_pool (VINSN_REG_SETS (vi));
1266 return_regset_to_pool (VINSN_REG_USES (vi));
1267 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1268 }
e855c69d
AB
1269
1270 free (vi);
1271}
1272
b8698a0f 1273/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1274 Remove VI if it is no longer needed. */
1275void
1276vinsn_detach (vinsn_t vi)
1277{
1278 gcc_assert (VINSN_COUNT (vi) > 0);
1279
1280 if (--VINSN_COUNT (vi) == 0)
1281 vinsn_delete (vi);
1282}
1283
1284/* Returns TRUE if VI is a branch. */
1285bool
1286vinsn_cond_branch_p (vinsn_t vi)
1287{
1288 insn_t insn;
1289
1290 if (!VINSN_UNIQUE_P (vi))
1291 return false;
1292
1293 insn = VINSN_INSN_RTX (vi);
1294 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1295 return false;
1296
1297 return control_flow_insn_p (insn);
1298}
1299
1300/* Return latency of INSN. */
1301static int
1302sel_insn_rtx_cost (rtx insn)
1303{
1304 int cost;
1305
1306 /* A USE insn, or something else we don't need to
1307 understand. We can't pass these directly to
1308 result_ready_cost or insn_default_latency because it will
1309 trigger a fatal error for unrecognizable insns. */
1310 if (recog_memoized (insn) < 0)
1311 cost = 0;
1312 else
1313 {
1314 cost = insn_default_latency (insn);
1315
1316 if (cost < 0)
1317 cost = 0;
1318 }
1319
1320 return cost;
1321}
1322
1323/* Return the cost of the VI.
1324 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1325int
1326sel_vinsn_cost (vinsn_t vi)
1327{
1328 int cost = vi->cost;
1329
1330 if (cost < 0)
1331 {
1332 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1333 vi->cost = cost;
1334 }
1335
1336 return cost;
1337}
1338\f
1339
1340/* Functions for insn emitting. */
1341
1342/* Emit new insn after AFTER based on PATTERN and initialize its data from
1343 EXPR and SEQNO. */
1344insn_t
1345sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346{
1347 insn_t new_insn;
1348
1349 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350
1351 new_insn = emit_insn_after (pattern, after);
1352 set_insn_init (expr, NULL, seqno);
1353 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354
1355 return new_insn;
1356}
1357
1358/* Force newly generated vinsns to be unique. */
1359static bool init_insn_force_unique_p = false;
1360
1361/* Emit new speculation recovery insn after AFTER based on PATTERN and
1362 initialize its data from EXPR and SEQNO. */
1363insn_t
1364sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1365 insn_t after)
1366{
1367 insn_t insn;
1368
1369 gcc_assert (!init_insn_force_unique_p);
1370
1371 init_insn_force_unique_p = true;
1372 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1373 CANT_MOVE (insn) = 1;
1374 init_insn_force_unique_p = false;
1375
1376 return insn;
1377}
1378
1379/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1380 take it as a new vinsn instead of EXPR's vinsn.
1381 We simplify insns later, after scheduling region in
e855c69d
AB
1382 simplify_changed_insns. */
1383insn_t
b8698a0f 1384sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1385 insn_t after)
1386{
1387 expr_t emit_expr;
1388 insn_t insn;
1389 int flags;
b8698a0f
L
1390
1391 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1392 seqno);
1393 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1394 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1395
1396 flags = INSN_INIT_TODO_SSID;
1397 if (INSN_LUID (insn) == 0)
1398 flags |= INSN_INIT_TODO_LUID;
1399 sel_init_new_insn (insn, flags);
1400
1401 return insn;
1402}
1403
1404/* Move insn from EXPR after AFTER. */
1405insn_t
1406sel_move_insn (expr_t expr, int seqno, insn_t after)
1407{
1408 insn_t insn = EXPR_INSN_RTX (expr);
1409 basic_block bb = BLOCK_FOR_INSN (after);
1410 insn_t next = NEXT_INSN (after);
1411
1412 /* Assert that in move_op we disconnected this insn properly. */
1413 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1414 PREV_INSN (insn) = after;
1415 NEXT_INSN (insn) = next;
1416
1417 NEXT_INSN (after) = insn;
1418 PREV_INSN (next) = insn;
1419
1420 /* Update links from insn to bb and vice versa. */
1421 df_insn_change_bb (insn, bb);
1422 if (BB_END (bb) == after)
1423 BB_END (bb) = insn;
b8698a0f 1424
e855c69d
AB
1425 prepare_insn_expr (insn, seqno);
1426 return insn;
1427}
1428
1429\f
1430/* Functions to work with right-hand sides. */
1431
b8698a0f 1432/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1433 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1434 COMPARE_VINSNS is true. Write to INDP the index on which
1435 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1436 retain VECT's sort order. */
1437static bool
b8698a0f
L
1438find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1439 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1440 bool compare_vinsns, int *indp)
1441{
1442 expr_history_def *arr;
1443 int i, j, len = VEC_length (expr_history_def, vect);
1444
1445 if (len == 0)
1446 {
1447 *indp = 0;
1448 return false;
1449 }
1450
1451 arr = VEC_address (expr_history_def, vect);
1452 i = 0, j = len - 1;
1453
1454 while (i <= j)
1455 {
1456 unsigned auid = arr[i].uid;
b8698a0f 1457 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1458
1459 if (auid == uid
b8698a0f
L
1460 /* When undoing transformation on a bookkeeping copy, the new vinsn
1461 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1462 This is because the insn whose copy we're checking was possibly
1463 substituted itself. */
b8698a0f 1464 && (! compare_vinsns
e855c69d
AB
1465 || vinsn_equal_p (avinsn, new_vinsn)))
1466 {
1467 *indp = i;
1468 return true;
1469 }
1470 else if (auid > uid)
1471 break;
1472 i++;
1473 }
1474
1475 *indp = i;
1476 return false;
1477}
1478
b8698a0f
L
1479/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1480 the position found or -1, if no such value is in vector.
e855c69d
AB
1481 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1482int
b8698a0f 1483find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1484 vinsn_t new_vinsn, bool originators_p)
1485{
1486 int ind;
1487
b8698a0f 1488 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1489 false, &ind))
1490 return ind;
1491
1492 if (INSN_ORIGINATORS (insn) && originators_p)
1493 {
1494 unsigned uid;
1495 bitmap_iterator bi;
1496
1497 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1498 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1499 return ind;
1500 }
b8698a0f 1501
e855c69d
AB
1502 return -1;
1503}
1504
b8698a0f
L
1505/* Insert new element in a sorted history vector pointed to by PVECT,
1506 if it is not there already. The element is searched using
e855c69d
AB
1507 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1508 the history of a transformation. */
1509void
1510insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1511 unsigned uid, enum local_trans_type type,
b8698a0f 1512 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1513 ds_t spec_ds)
1514{
1515 VEC(expr_history_def, heap) *vect = *pvect;
1516 expr_history_def temp;
1517 bool res;
1518 int ind;
1519
1520 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1521
1522 if (res)
1523 {
1524 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1525
b8698a0f 1526 /* It is possible that speculation types of expressions that were
e855c69d
AB
1527 propagated through different paths will be different here. In this
1528 case, merge the status to get the correct check later. */
1529 if (phist->spec_ds != spec_ds)
1530 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1531 return;
1532 }
b8698a0f 1533
e855c69d
AB
1534 temp.uid = uid;
1535 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1536 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1537 temp.spec_ds = spec_ds;
1538 temp.type = type;
1539
1540 vinsn_attach (old_expr_vinsn);
1541 vinsn_attach (new_expr_vinsn);
1542 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1543 *pvect = vect;
1544}
1545
1546/* Free history vector PVECT. */
1547static void
1548free_history_vect (VEC (expr_history_def, heap) **pvect)
1549{
1550 unsigned i;
1551 expr_history_def *phist;
1552
1553 if (! *pvect)
1554 return;
b8698a0f
L
1555
1556 for (i = 0;
e855c69d
AB
1557 VEC_iterate (expr_history_def, *pvect, i, phist);
1558 i++)
1559 {
1560 vinsn_detach (phist->old_expr_vinsn);
1561 vinsn_detach (phist->new_expr_vinsn);
1562 }
b8698a0f 1563
e855c69d
AB
1564 VEC_free (expr_history_def, heap, *pvect);
1565 *pvect = NULL;
1566}
1567
5d369d58
AB
1568/* Merge vector FROM to PVECT. */
1569static void
1570merge_history_vect (VEC (expr_history_def, heap) **pvect,
1571 VEC (expr_history_def, heap) *from)
1572{
1573 expr_history_def *phist;
1574 int i;
1575
1576 /* We keep this vector sorted. */
1577 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1578 insert_in_history_vect (pvect, phist->uid, phist->type,
1579 phist->old_expr_vinsn, phist->new_expr_vinsn,
1580 phist->spec_ds);
1581}
e855c69d
AB
1582
1583/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1584bool
1585vinsn_equal_p (vinsn_t x, vinsn_t y)
1586{
1587 rtx_equal_p_callback_function repcf;
1588
1589 if (x == y)
1590 return true;
1591
1592 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1593 return false;
1594
1595 if (VINSN_HASH (x) != VINSN_HASH (y))
1596 return false;
1597
1598 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1599 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1600 {
1601 /* Compare RHSes of VINSNs. */
1602 gcc_assert (VINSN_RHS (x));
1603 gcc_assert (VINSN_RHS (y));
1604
1605 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1606 }
1607
1608 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1609}
1610\f
1611
1612/* Functions for working with expressions. */
1613
1614/* Initialize EXPR. */
1615static void
1616init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1617 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1618 ds_t spec_to_check_ds, int orig_sched_cycle,
f3764768 1619 VEC(expr_history_def, heap) *history, signed char target_available,
e855c69d
AB
1620 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1621 bool cant_move)
1622{
1623 vinsn_attach (vi);
1624
1625 EXPR_VINSN (expr) = vi;
1626 EXPR_SPEC (expr) = spec;
1627 EXPR_USEFULNESS (expr) = use;
1628 EXPR_PRIORITY (expr) = priority;
1629 EXPR_PRIORITY_ADJ (expr) = 0;
1630 EXPR_SCHED_TIMES (expr) = sched_times;
1631 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1632 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1633 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1634 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1635
1636 if (history)
1637 EXPR_HISTORY_OF_CHANGES (expr) = history;
1638 else
1639 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1640
1641 EXPR_TARGET_AVAILABLE (expr) = target_available;
1642 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1643 EXPR_WAS_RENAMED (expr) = was_renamed;
1644 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1645 EXPR_CANT_MOVE (expr) = cant_move;
1646}
1647
1648/* Make a copy of the expr FROM into the expr TO. */
1649void
1650copy_expr (expr_t to, expr_t from)
1651{
1652 VEC(expr_history_def, heap) *temp = NULL;
1653
1654 if (EXPR_HISTORY_OF_CHANGES (from))
1655 {
1656 unsigned i;
1657 expr_history_def *phist;
1658
1659 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1660 for (i = 0;
e855c69d
AB
1661 VEC_iterate (expr_history_def, temp, i, phist);
1662 i++)
1663 {
1664 vinsn_attach (phist->old_expr_vinsn);
1665 vinsn_attach (phist->new_expr_vinsn);
1666 }
1667 }
1668
b8698a0f 1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1670 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1671 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1672 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1673 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1674 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1675 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1676 EXPR_CANT_MOVE (from));
1677}
1678
b8698a0f 1679/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1680 "uninteresting" data such as bitmap cache. */
1681void
1682copy_expr_onside (expr_t to, expr_t from)
1683{
1684 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1685 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1686 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1687 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1688 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1689 EXPR_CANT_MOVE (from));
1690}
1691
1692/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1693 initializing new insns. */
1694static void
1695prepare_insn_expr (insn_t insn, int seqno)
1696{
1697 expr_t expr = INSN_EXPR (insn);
1698 ds_t ds;
b8698a0f 1699
e855c69d
AB
1700 INSN_SEQNO (insn) = seqno;
1701 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1702 EXPR_SPEC (expr) = 0;
1703 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1704 EXPR_WAS_SUBSTITUTED (expr) = 0;
1705 EXPR_WAS_RENAMED (expr) = 0;
1706 EXPR_TARGET_AVAILABLE (expr) = 1;
1707 INSN_LIVE_VALID_P (insn) = false;
1708
1709 /* ??? If this expression is speculative, make its dependence
1710 as weak as possible. We can filter this expression later
1711 in process_spec_exprs, because we do not distinguish
1712 between the status we got during compute_av_set and the
1713 existing status. To be fixed. */
1714 ds = EXPR_SPEC_DONE_DS (expr);
1715 if (ds)
1716 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1717
1718 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1719}
1720
1721/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1722 is non-null when expressions are merged from different successors at
e855c69d
AB
1723 a split point. */
1724static void
1725update_target_availability (expr_t to, expr_t from, insn_t split_point)
1726{
b8698a0f 1727 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1728 || EXPR_TARGET_AVAILABLE (from) < 0)
1729 EXPR_TARGET_AVAILABLE (to) = -1;
1730 else
1731 {
1732 /* We try to detect the case when one of the expressions
1733 can only be reached through another one. In this case,
1734 we can do better. */
1735 if (split_point == NULL)
1736 {
1737 int toind, fromind;
1738
1739 toind = EXPR_ORIG_BB_INDEX (to);
1740 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1741
e855c69d 1742 if (toind && toind == fromind)
b8698a0f 1743 /* Do nothing -- everything is done in
e855c69d
AB
1744 merge_with_other_exprs. */
1745 ;
1746 else
1747 EXPR_TARGET_AVAILABLE (to) = -1;
1748 }
1749 else
1750 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1751 }
1752}
1753
1754/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1755 is non-null when expressions are merged from different successors at
e855c69d
AB
1756 a split point. */
1757static void
1758update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1759{
1760 ds_t old_to_ds, old_from_ds;
1761
1762 old_to_ds = EXPR_SPEC_DONE_DS (to);
1763 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1764
e855c69d
AB
1765 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1766 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1767 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1768
1769 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1770 speculative with a control&data speculative one, we really have
e855c69d
AB
1771 to change vinsn too. Also, when speculative status is changed,
1772 we also need to record this as a transformation in expr's history. */
1773 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1774 {
1775 old_to_ds = ds_get_speculation_types (old_to_ds);
1776 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1777
e855c69d
AB
1778 if (old_to_ds != old_from_ds)
1779 {
1780 ds_t record_ds;
b8698a0f
L
1781
1782 /* When both expressions are speculative, we need to change
e855c69d
AB
1783 the vinsn first. */
1784 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1785 {
1786 int res;
b8698a0f 1787
e855c69d
AB
1788 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1789 gcc_assert (res >= 0);
1790 }
1791
1792 if (split_point != NULL)
1793 {
1794 /* Record the change with proper status. */
1795 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1796 record_ds &= ~(old_to_ds & SPECULATIVE);
1797 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1798
1799 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1800 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1801 EXPR_VINSN (from), EXPR_VINSN (to),
1802 record_ds);
1803 }
1804 }
1805 }
1806}
1807
1808
1809/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1810 this is done along different paths. */
1811void
1812merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1813{
e855c69d
AB
1814 /* For now, we just set the spec of resulting expr to be minimum of the specs
1815 of merged exprs. */
1816 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1817 EXPR_SPEC (to) = EXPR_SPEC (from);
1818
1819 if (split_point)
1820 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1821 else
b8698a0f 1822 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1823 EXPR_USEFULNESS (from));
1824
1825 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1826 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1827
1828 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1829 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1830
1831 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1832 EXPR_ORIG_BB_INDEX (to) = 0;
1833
b8698a0f 1834 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1835 EXPR_ORIG_SCHED_CYCLE (from));
1836
e855c69d
AB
1837 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1838 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1839 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1840
5d369d58
AB
1841 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1842 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1843 update_target_availability (to, from, split_point);
1844 update_speculative_bits (to, from, split_point);
1845}
1846
1847/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1848 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1849 are merged from different successors at a split point. */
1850void
1851merge_expr (expr_t to, expr_t from, insn_t split_point)
1852{
1853 vinsn_t to_vi = EXPR_VINSN (to);
1854 vinsn_t from_vi = EXPR_VINSN (from);
1855
1856 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1857
1858 /* Make sure that speculative pattern is propagated into exprs that
1859 have non-speculative one. This will provide us with consistent
1860 speculative bits and speculative patterns inside expr. */
1861 if (EXPR_SPEC_DONE_DS (to) == 0
1862 && EXPR_SPEC_DONE_DS (from) != 0)
1863 change_vinsn_in_expr (to, EXPR_VINSN (from));
1864
1865 merge_expr_data (to, from, split_point);
1866 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1867}
1868
1869/* Clear the information of this EXPR. */
1870void
1871clear_expr (expr_t expr)
1872{
b8698a0f 1873
e855c69d
AB
1874 vinsn_detach (EXPR_VINSN (expr));
1875 EXPR_VINSN (expr) = NULL;
1876
1877 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1878}
1879
1880/* For a given LV_SET, mark EXPR having unavailable target register. */
1881static void
1882set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1883{
1884 if (EXPR_SEPARABLE_P (expr))
1885 {
1886 if (REG_P (EXPR_LHS (expr))
1887 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1888 {
b8698a0f
L
1889 /* If it's an insn like r1 = use (r1, ...), and it exists in
1890 different forms in each of the av_sets being merged, we can't say
1891 whether original destination register is available or not.
1892 However, this still works if destination register is not used
e855c69d
AB
1893 in the original expression: if the branch at which LV_SET we're
1894 looking here is not actually 'other branch' in sense that same
b8698a0f 1895 expression is available through it (but it can't be determined
e855c69d 1896 at computation stage because of transformations on one of the
b8698a0f
L
1897 branches), it still won't affect the availability.
1898 Liveness of a register somewhere on a code motion path means
1899 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1900 'other' branch, live at the point immediately following
1901 the original operation, or is read by the original operation.
1902 The latter case is filtered out in the condition below.
1903 It still doesn't cover the case when register is defined and used
1904 somewhere within the code motion path, and in this case we could
1905 miss a unifying code motion along both branches using a renamed
1906 register, but it won't affect a code correctness since upon
1907 an actual code motion a bookkeeping code would be generated. */
b8698a0f 1908 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1909 REGNO (EXPR_LHS (expr))))
1910 EXPR_TARGET_AVAILABLE (expr) = -1;
1911 else
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1913 }
1914 }
1915 else
1916 {
1917 unsigned regno;
1918 reg_set_iterator rsi;
b8698a0f
L
1919
1920 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1921 0, regno, rsi)
1922 if (bitmap_bit_p (lv_set, regno))
1923 {
1924 EXPR_TARGET_AVAILABLE (expr) = false;
1925 break;
1926 }
1927
1928 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1929 0, regno, rsi)
1930 if (bitmap_bit_p (lv_set, regno))
1931 {
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 break;
1934 }
1935 }
1936}
1937
b8698a0f 1938/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1939 or dependence status have changed, 2 when also the target register
1940 became unavailable, 0 if nothing had to be changed. */
1941int
1942speculate_expr (expr_t expr, ds_t ds)
1943{
1944 int res;
1945 rtx orig_insn_rtx;
1946 rtx spec_pat;
1947 ds_t target_ds, current_ds;
1948
1949 /* Obtain the status we need to put on EXPR. */
1950 target_ds = (ds & SPECULATIVE);
1951 current_ds = EXPR_SPEC_DONE_DS (expr);
1952 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1953
1954 orig_insn_rtx = EXPR_INSN_RTX (expr);
1955
1956 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1957
1958 switch (res)
1959 {
1960 case 0:
1961 EXPR_SPEC_DONE_DS (expr) = ds;
1962 return current_ds != ds ? 1 : 0;
b8698a0f 1963
e855c69d
AB
1964 case 1:
1965 {
1966 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1967 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1968
1969 change_vinsn_in_expr (expr, spec_vinsn);
1970 EXPR_SPEC_DONE_DS (expr) = ds;
1971 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1972
b8698a0f 1973 /* Do not allow clobbering the address register of speculative
e855c69d 1974 insns. */
b8698a0f 1975 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1976 expr_dest_regno (expr)))
1977 {
1978 EXPR_TARGET_AVAILABLE (expr) = false;
1979 return 2;
1980 }
1981
1982 return 1;
1983 }
1984
1985 case -1:
1986 return -1;
1987
1988 default:
1989 gcc_unreachable ();
1990 return -1;
1991 }
1992}
1993
1994/* Return a destination register, if any, of EXPR. */
1995rtx
1996expr_dest_reg (expr_t expr)
1997{
1998 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1999
2000 if (dest != NULL_RTX && REG_P (dest))
2001 return dest;
2002
2003 return NULL_RTX;
2004}
2005
2006/* Returns the REGNO of the R's destination. */
2007unsigned
2008expr_dest_regno (expr_t expr)
2009{
2010 rtx dest = expr_dest_reg (expr);
2011
2012 gcc_assert (dest != NULL_RTX);
2013 return REGNO (dest);
2014}
2015
b8698a0f 2016/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2017 AV_SET having unavailable target register. */
2018void
2019mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2020{
2021 expr_t expr;
2022 av_set_iterator avi;
2023
2024 FOR_EACH_EXPR (expr, avi, join_set)
2025 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2026 set_unavailable_target_for_expr (expr, lv_set);
2027}
2028\f
2029
2030/* Av set functions. */
2031
2032/* Add a new element to av set SETP.
2033 Return the element added. */
2034static av_set_t
2035av_set_add_element (av_set_t *setp)
2036{
2037 /* Insert at the beginning of the list. */
2038 _list_add (setp);
2039 return *setp;
2040}
2041
2042/* Add EXPR to SETP. */
2043void
2044av_set_add (av_set_t *setp, expr_t expr)
2045{
2046 av_set_t elem;
b8698a0f 2047
e855c69d
AB
2048 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2049 elem = av_set_add_element (setp);
2050 copy_expr (_AV_SET_EXPR (elem), expr);
2051}
2052
2053/* Same, but do not copy EXPR. */
2054static void
2055av_set_add_nocopy (av_set_t *setp, expr_t expr)
2056{
2057 av_set_t elem;
2058
2059 elem = av_set_add_element (setp);
2060 *_AV_SET_EXPR (elem) = *expr;
2061}
2062
2063/* Remove expr pointed to by IP from the av_set. */
2064void
2065av_set_iter_remove (av_set_iterator *ip)
2066{
2067 clear_expr (_AV_SET_EXPR (*ip->lp));
2068 _list_iter_remove (ip);
2069}
2070
2071/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2072 sense of vinsn_equal_p function. Return NULL if no such expr is
2073 in SET was found. */
2074expr_t
2075av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2076{
2077 expr_t expr;
2078 av_set_iterator i;
2079
2080 FOR_EACH_EXPR (expr, i, set)
2081 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2082 return expr;
2083 return NULL;
2084}
2085
2086/* Same, but also remove the EXPR found. */
2087static expr_t
2088av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2089{
2090 expr_t expr;
2091 av_set_iterator i;
2092
2093 FOR_EACH_EXPR_1 (expr, i, setp)
2094 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2095 {
2096 _list_iter_remove_nofree (&i);
2097 return expr;
2098 }
2099 return NULL;
2100}
2101
2102/* Search for an expr in SET, such that it's equivalent to EXPR in the
2103 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2104 Returns NULL if no such expr is in SET was found. */
2105static expr_t
2106av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2107{
2108 expr_t cur_expr;
2109 av_set_iterator i;
2110
2111 FOR_EACH_EXPR (cur_expr, i, set)
2112 {
2113 if (cur_expr == expr)
2114 continue;
2115 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2116 return cur_expr;
2117 }
2118
2119 return NULL;
2120}
2121
2122/* If other expression is already in AVP, remove one of them. */
2123expr_t
2124merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2125{
2126 expr_t expr2;
2127
2128 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2129 if (expr2 != NULL)
2130 {
2131 /* Reset target availability on merge, since taking it only from one
2132 of the exprs would be controversial for different code. */
2133 EXPR_TARGET_AVAILABLE (expr2) = -1;
2134 EXPR_USEFULNESS (expr2) = 0;
2135
2136 merge_expr (expr2, expr, NULL);
b8698a0f 2137
e855c69d
AB
2138 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2139 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2140
e855c69d
AB
2141 av_set_iter_remove (ip);
2142 return expr2;
2143 }
2144
2145 return expr;
2146}
2147
2148/* Return true if there is an expr that correlates to VI in SET. */
2149bool
2150av_set_is_in_p (av_set_t set, vinsn_t vi)
2151{
2152 return av_set_lookup (set, vi) != NULL;
2153}
2154
2155/* Return a copy of SET. */
2156av_set_t
2157av_set_copy (av_set_t set)
2158{
2159 expr_t expr;
2160 av_set_iterator i;
2161 av_set_t res = NULL;
2162
2163 FOR_EACH_EXPR (expr, i, set)
2164 av_set_add (&res, expr);
2165
2166 return res;
2167}
2168
2169/* Join two av sets that do not have common elements by attaching second set
2170 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2171 _AV_SET_NEXT of first set's last element). */
2172static void
2173join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2174{
2175 gcc_assert (*to_tailp == NULL);
2176 *to_tailp = *fromp;
2177 *fromp = NULL;
2178}
2179
2180/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2181 pointed to by FROMP afterwards. */
2182void
2183av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2184{
2185 expr_t expr1;
2186 av_set_iterator i;
2187
2188 /* Delete from TOP all exprs, that present in FROMP. */
2189 FOR_EACH_EXPR_1 (expr1, i, top)
2190 {
2191 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2192
2193 if (expr2)
2194 {
2195 merge_expr (expr2, expr1, insn);
2196 av_set_iter_remove (&i);
2197 }
2198 }
2199
2200 join_distinct_sets (i.lp, fromp);
2201}
2202
b8698a0f 2203/* Same as above, but also update availability of target register in
e855c69d
AB
2204 TOP judging by TO_LV_SET and FROM_LV_SET. */
2205void
2206av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2207 regset from_lv_set, insn_t insn)
2208{
2209 expr_t expr1;
2210 av_set_iterator i;
2211 av_set_t *to_tailp, in_both_set = NULL;
2212
2213 /* Delete from TOP all expres, that present in FROMP. */
2214 FOR_EACH_EXPR_1 (expr1, i, top)
2215 {
2216 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2217
2218 if (expr2)
2219 {
b8698a0f 2220 /* It may be that the expressions have different destination
e855c69d
AB
2221 registers, in which case we need to check liveness here. */
2222 if (EXPR_SEPARABLE_P (expr1))
2223 {
b8698a0f 2224 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2225 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2226 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2227 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2228
2229 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2230 *other* register on the current path, we did it only
2231 for the current target register. Give up. */
2232 if (regno1 != regno2)
2233 EXPR_TARGET_AVAILABLE (expr2) = -1;
2234 }
2235 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2236 EXPR_TARGET_AVAILABLE (expr2) = -1;
2237
2238 merge_expr (expr2, expr1, insn);
2239 av_set_add_nocopy (&in_both_set, expr2);
2240 av_set_iter_remove (&i);
2241 }
2242 else
b8698a0f 2243 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2244 FROM_LV_SET. */
2245 set_unavailable_target_for_expr (expr1, from_lv_set);
2246 }
2247 to_tailp = i.lp;
2248
2249 /* These expressions are not present in TOP. Check liveness
2250 restrictions on TO_LV_SET. */
2251 FOR_EACH_EXPR (expr1, i, *fromp)
2252 set_unavailable_target_for_expr (expr1, to_lv_set);
2253
2254 join_distinct_sets (i.lp, &in_both_set);
2255 join_distinct_sets (to_tailp, fromp);
2256}
2257
2258/* Clear av_set pointed to by SETP. */
2259void
2260av_set_clear (av_set_t *setp)
2261{
2262 expr_t expr;
2263 av_set_iterator i;
2264
2265 FOR_EACH_EXPR_1 (expr, i, setp)
2266 av_set_iter_remove (&i);
2267
2268 gcc_assert (*setp == NULL);
2269}
2270
2271/* Leave only one non-speculative element in the SETP. */
2272void
2273av_set_leave_one_nonspec (av_set_t *setp)
2274{
2275 expr_t expr;
2276 av_set_iterator i;
2277 bool has_one_nonspec = false;
2278
b8698a0f 2279 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2280 (the first one). */
2281 FOR_EACH_EXPR_1 (expr, i, setp)
2282 {
2283 if (!EXPR_SPEC_DONE_DS (expr))
2284 {
2285 if (has_one_nonspec)
2286 av_set_iter_remove (&i);
2287 else
2288 has_one_nonspec = true;
2289 }
2290 }
2291}
2292
2293/* Return the N'th element of the SET. */
2294expr_t
2295av_set_element (av_set_t set, int n)
2296{
2297 expr_t expr;
2298 av_set_iterator i;
2299
2300 FOR_EACH_EXPR (expr, i, set)
2301 if (n-- == 0)
2302 return expr;
2303
2304 gcc_unreachable ();
2305 return NULL;
2306}
2307
2308/* Deletes all expressions from AVP that are conditional branches (IFs). */
2309void
2310av_set_substract_cond_branches (av_set_t *avp)
2311{
2312 av_set_iterator i;
2313 expr_t expr;
2314
2315 FOR_EACH_EXPR_1 (expr, i, avp)
2316 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2317 av_set_iter_remove (&i);
2318}
2319
b8698a0f 2320/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2321 value PROB / ALL_PROB. */
2322void
2323av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2324{
2325 av_set_iterator i;
2326 expr_t expr;
2327
2328 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2329 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2330 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2331 : 0);
2332}
2333
2334/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2335 and return it, merging history expressions. */
e855c69d 2336void
5d369d58 2337av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2338{
2339 av_set_iterator i;
5d369d58 2340 expr_t expr, expr2;
e855c69d
AB
2341
2342 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2343 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2344 av_set_iter_remove (&i);
5d369d58
AB
2345 else
2346 /* When updating av sets in bookkeeping blocks, we can add more insns
2347 there which will be transformed but the upper av sets will not
2348 reflect those transformations. We then fail to undo those
2349 when searching for such insns. So merge the history saved
2350 in the av set of the block we are processing. */
2351 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2352 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2353}
2354
2355\f
2356
2357/* Dependence hooks to initialize insn data. */
2358
2359/* This is used in hooks callable from dependence analysis when initializing
2360 instruction's data. */
2361static struct
2362{
2363 /* Where the dependence was found (lhs/rhs). */
2364 deps_where_t where;
2365
2366 /* The actual data object to initialize. */
2367 idata_t id;
2368
2369 /* True when the insn should not be made clonable. */
2370 bool force_unique_p;
2371
2372 /* True when insn should be treated as of type USE, i.e. never renamed. */
2373 bool force_use_p;
2374} deps_init_id_data;
2375
2376
b8698a0f 2377/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2378 clonable. */
2379static void
2380setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2381{
2382 int type;
b8698a0f 2383
e855c69d
AB
2384 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2385 That clonable insns which can be separated into lhs and rhs have type SET.
2386 Other clonable insns have type USE. */
2387 type = GET_CODE (insn);
2388
2389 /* Only regular insns could be cloned. */
2390 if (type == INSN && !force_unique_p)
2391 type = SET;
2392 else if (type == JUMP_INSN && simplejump_p (insn))
2393 type = PC;
b5b8b0ac
AO
2394 else if (type == DEBUG_INSN)
2395 type = !force_unique_p ? USE : INSN;
b8698a0f 2396
e855c69d
AB
2397 IDATA_TYPE (id) = type;
2398 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2399 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2400 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2401}
2402
2403/* Start initializing insn data. */
2404static void
2405deps_init_id_start_insn (insn_t insn)
2406{
2407 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2408
2409 setup_id_for_insn (deps_init_id_data.id, insn,
2410 deps_init_id_data.force_unique_p);
2411 deps_init_id_data.where = DEPS_IN_INSN;
2412}
2413
2414/* Start initializing lhs data. */
2415static void
2416deps_init_id_start_lhs (rtx lhs)
2417{
2418 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2419 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2420
2421 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2422 {
2423 IDATA_LHS (deps_init_id_data.id) = lhs;
2424 deps_init_id_data.where = DEPS_IN_LHS;
2425 }
2426}
2427
2428/* Finish initializing lhs data. */
2429static void
2430deps_init_id_finish_lhs (void)
2431{
2432 deps_init_id_data.where = DEPS_IN_INSN;
2433}
2434
2435/* Note a set of REGNO. */
2436static void
2437deps_init_id_note_reg_set (int regno)
2438{
2439 haifa_note_reg_set (regno);
2440
2441 if (deps_init_id_data.where == DEPS_IN_RHS)
2442 deps_init_id_data.force_use_p = true;
2443
2444 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2445 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2446
2447#ifdef STACK_REGS
b8698a0f 2448 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2449 renaming to avoid issues with find_used_regs. */
2450 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2451 deps_init_id_data.force_use_p = true;
2452#endif
2453}
2454
2455/* Note a clobber of REGNO. */
2456static void
2457deps_init_id_note_reg_clobber (int regno)
2458{
2459 haifa_note_reg_clobber (regno);
2460
2461 if (deps_init_id_data.where == DEPS_IN_RHS)
2462 deps_init_id_data.force_use_p = true;
2463
2464 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2465 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2466}
2467
2468/* Note a use of REGNO. */
2469static void
2470deps_init_id_note_reg_use (int regno)
2471{
2472 haifa_note_reg_use (regno);
2473
2474 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2475 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2476}
2477
2478/* Start initializing rhs data. */
2479static void
2480deps_init_id_start_rhs (rtx rhs)
2481{
2482 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2483
2484 /* And there was no sel_deps_reset_to_insn (). */
2485 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2486 {
2487 IDATA_RHS (deps_init_id_data.id) = rhs;
2488 deps_init_id_data.where = DEPS_IN_RHS;
2489 }
2490}
2491
2492/* Finish initializing rhs data. */
2493static void
2494deps_init_id_finish_rhs (void)
2495{
2496 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2497 || deps_init_id_data.where == DEPS_IN_INSN);
2498 deps_init_id_data.where = DEPS_IN_INSN;
2499}
2500
2501/* Finish initializing insn data. */
2502static void
2503deps_init_id_finish_insn (void)
2504{
2505 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2506
2507 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2508 {
2509 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2510 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2511
2512 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2513 || deps_init_id_data.force_use_p)
2514 {
b8698a0f 2515 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2516 separately. However, we still want to have them recorded
b8698a0f 2517 for the purposes of substitution. That's why we don't
e855c69d
AB
2518 simply call downgrade_to_use () here. */
2519 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2520 gcc_assert (!lhs == !rhs);
2521
2522 IDATA_TYPE (deps_init_id_data.id) = USE;
2523 }
2524 }
2525
2526 deps_init_id_data.where = DEPS_IN_NOWHERE;
2527}
2528
2529/* This is dependence info used for initializing insn's data. */
2530static struct sched_deps_info_def deps_init_id_sched_deps_info;
2531
2532/* This initializes most of the static part of the above structure. */
2533static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2534 {
2535 NULL,
2536
2537 deps_init_id_start_insn,
2538 deps_init_id_finish_insn,
2539 deps_init_id_start_lhs,
2540 deps_init_id_finish_lhs,
2541 deps_init_id_start_rhs,
2542 deps_init_id_finish_rhs,
2543 deps_init_id_note_reg_set,
2544 deps_init_id_note_reg_clobber,
2545 deps_init_id_note_reg_use,
2546 NULL, /* note_mem_dep */
2547 NULL, /* note_dep */
2548
2549 0, /* use_cselib */
2550 0, /* use_deps_list */
2551 0 /* generate_spec_deps */
2552 };
2553
2554/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2555 we don't actually need information about lhs and rhs. */
2556static void
2557setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2558{
2559 rtx pat = PATTERN (insn);
b8698a0f 2560
481683e1 2561 if (NONJUMP_INSN_P (insn)
b8698a0f 2562 && GET_CODE (pat) == SET
e855c69d
AB
2563 && !force_unique_p)
2564 {
2565 IDATA_RHS (id) = SET_SRC (pat);
2566 IDATA_LHS (id) = SET_DEST (pat);
2567 }
2568 else
2569 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2570}
2571
2572/* Possibly downgrade INSN to USE. */
2573static void
2574maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2575{
2576 bool must_be_use = false;
2577 unsigned uid = INSN_UID (insn);
57512f53 2578 df_ref *rec;
e855c69d
AB
2579 rtx lhs = IDATA_LHS (id);
2580 rtx rhs = IDATA_RHS (id);
b8698a0f 2581
e855c69d
AB
2582 /* We downgrade only SETs. */
2583 if (IDATA_TYPE (id) != SET)
2584 return;
2585
2586 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2587 {
2588 IDATA_TYPE (id) = USE;
2589 return;
2590 }
b8698a0f 2591
e855c69d
AB
2592 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2593 {
57512f53 2594 df_ref def = *rec;
b8698a0f 2595
e855c69d
AB
2596 if (DF_REF_INSN (def)
2597 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2598 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2599 {
2600 must_be_use = true;
2601 break;
2602 }
2603
2604#ifdef STACK_REGS
b8698a0f 2605 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2606 renaming to avoid issues with find_used_regs. */
2607 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2608 {
2609 must_be_use = true;
2610 break;
2611 }
2612#endif
b8698a0f
L
2613 }
2614
e855c69d
AB
2615 if (must_be_use)
2616 IDATA_TYPE (id) = USE;
2617}
2618
2619/* Setup register sets describing INSN in ID. */
2620static void
2621setup_id_reg_sets (idata_t id, insn_t insn)
2622{
2623 unsigned uid = INSN_UID (insn);
57512f53 2624 df_ref *rec;
e855c69d 2625 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2626
e855c69d
AB
2627 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2628 {
57512f53 2629 df_ref def = *rec;
e855c69d 2630 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2631
e855c69d
AB
2632 /* Post modifies are treated like clobbers by sched-deps.c. */
2633 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2634 | DF_REF_PRE_POST_MODIFY)))
2635 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2636 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2637 {
2638 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2639
2640#ifdef STACK_REGS
b8698a0f 2641 /* For stack registers, treat writes to them as writes
e855c69d
AB
2642 to the first one to be consistent with sched-deps.c. */
2643 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2644 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2645#endif
2646 }
2647 /* Mark special refs that generate read/write def pair. */
2648 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2649 || regno == STACK_POINTER_REGNUM)
2650 bitmap_set_bit (tmp, regno);
2651 }
b8698a0f 2652
e855c69d
AB
2653 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2654 {
57512f53 2655 df_ref use = *rec;
e855c69d
AB
2656 unsigned int regno = DF_REF_REGNO (use);
2657
2658 /* When these refs are met for the first time, skip them, as
2659 these uses are just counterparts of some defs. */
2660 if (bitmap_bit_p (tmp, regno))
2661 bitmap_clear_bit (tmp, regno);
2662 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2663 {
2664 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2665
2666#ifdef STACK_REGS
b8698a0f 2667 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2668 the first one to be consistent with sched-deps.c. */
2669 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2670 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2671#endif
2672 }
2673 }
2674
2675 return_regset_to_pool (tmp);
2676}
2677
2678/* Initialize instruction data for INSN in ID using DF's data. */
2679static void
2680init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2681{
2682 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2683
2684 setup_id_for_insn (id, insn, force_unique_p);
2685 setup_id_lhs_rhs (id, insn, force_unique_p);
2686
2687 if (INSN_NOP_P (insn))
2688 return;
2689
2690 maybe_downgrade_id_to_use (id, insn);
2691 setup_id_reg_sets (id, insn);
2692}
2693
2694/* Initialize instruction data for INSN in ID. */
2695static void
2696deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2697{
88302d54 2698 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2699
2700 deps_init_id_data.where = DEPS_IN_NOWHERE;
2701 deps_init_id_data.id = id;
2702 deps_init_id_data.force_unique_p = force_unique_p;
2703 deps_init_id_data.force_use_p = false;
2704
bcf33775 2705 init_deps (dc, false);
e855c69d
AB
2706
2707 memcpy (&deps_init_id_sched_deps_info,
2708 &const_deps_init_id_sched_deps_info,
2709 sizeof (deps_init_id_sched_deps_info));
2710
2711 if (spec_info != NULL)
2712 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2713
2714 sched_deps_info = &deps_init_id_sched_deps_info;
2715
2716 deps_analyze_insn (dc, insn);
2717
2718 free_deps (dc);
2719
2720 deps_init_id_data.id = NULL;
2721}
2722
2723\f
2724
2725/* Implement hooks for collecting fundamental insn properties like if insn is
2726 an ASM or is within a SCHED_GROUP. */
2727
2728/* True when a "one-time init" data for INSN was already inited. */
2729static bool
2730first_time_insn_init (insn_t insn)
2731{
2732 return INSN_LIVE (insn) == NULL;
2733}
2734
2735/* Hash an entry in a transformed_insns hashtable. */
2736static hashval_t
2737hash_transformed_insns (const void *p)
2738{
2739 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2740}
2741
2742/* Compare the entries in a transformed_insns hashtable. */
2743static int
2744eq_transformed_insns (const void *p, const void *q)
2745{
2746 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2747 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2748
2749 if (INSN_UID (i1) == INSN_UID (i2))
2750 return 1;
2751 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2752}
2753
2754/* Free an entry in a transformed_insns hashtable. */
2755static void
2756free_transformed_insns (void *p)
2757{
2758 struct transformed_insns *pti = (struct transformed_insns *) p;
2759
2760 vinsn_detach (pti->vinsn_old);
2761 vinsn_detach (pti->vinsn_new);
2762 free (pti);
2763}
2764
b8698a0f 2765/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2766 we first see the insn. */
2767static void
2768init_first_time_insn_data (insn_t insn)
2769{
2770 /* This should not be set if this is the first time we init data for
2771 insn. */
2772 gcc_assert (first_time_insn_init (insn));
b8698a0f 2773
e855c69d
AB
2774 /* These are needed for nops too. */
2775 INSN_LIVE (insn) = get_regset_from_pool ();
2776 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2777
e855c69d
AB
2778 if (!INSN_NOP_P (insn))
2779 {
2780 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2781 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2782 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2783 = htab_create (16, hash_transformed_insns,
2784 eq_transformed_insns, free_transformed_insns);
bcf33775 2785 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2786 }
2787}
2788
b8698a0f 2789/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2790 Used for extra-large basic blocks. */
2791void
2792free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2793{
2794 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2795
bcf33775
AB
2796 if (! INSN_ANALYZED_DEPS (insn))
2797 return;
b8698a0f 2798
e855c69d
AB
2799 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2800 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2801 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2802
e855c69d
AB
2803 /* This is allocated only for bookkeeping insns. */
2804 if (INSN_ORIGINATORS (insn))
2805 BITMAP_FREE (INSN_ORIGINATORS (insn));
2806 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2807
2808 INSN_ANALYZED_DEPS (insn) = NULL;
2809
b8698a0f 2810 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2811 the deps context (as we believe that it should not happen). */
2812 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2813}
2814
2815/* Free the same data as above for INSN. */
2816static void
2817free_first_time_insn_data (insn_t insn)
2818{
2819 gcc_assert (! first_time_insn_init (insn));
2820
2821 free_data_for_scheduled_insn (insn);
2822 return_regset_to_pool (INSN_LIVE (insn));
2823 INSN_LIVE (insn) = NULL;
2824 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2825}
2826
2827/* Initialize region-scope data structures for basic blocks. */
2828static void
2829init_global_and_expr_for_bb (basic_block bb)
2830{
2831 if (sel_bb_empty_p (bb))
2832 return;
2833
2834 invalidate_av_set (bb);
2835}
2836
2837/* Data for global dependency analysis (to initialize CANT_MOVE and
2838 SCHED_GROUP_P). */
2839static struct
2840{
2841 /* Previous insn. */
2842 insn_t prev_insn;
2843} init_global_data;
2844
2845/* Determine if INSN is in the sched_group, is an asm or should not be
2846 cloned. After that initialize its expr. */
2847static void
2848init_global_and_expr_for_insn (insn_t insn)
2849{
2850 if (LABEL_P (insn))
2851 return;
2852
2853 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2854 {
2855 init_global_data.prev_insn = NULL_RTX;
2856 return;
2857 }
2858
2859 gcc_assert (INSN_P (insn));
2860
2861 if (SCHED_GROUP_P (insn))
2862 /* Setup a sched_group. */
2863 {
2864 insn_t prev_insn = init_global_data.prev_insn;
2865
2866 if (prev_insn)
2867 INSN_SCHED_NEXT (prev_insn) = insn;
2868
2869 init_global_data.prev_insn = insn;
2870 }
2871 else
2872 init_global_data.prev_insn = NULL_RTX;
2873
2874 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2875 || asm_noperands (PATTERN (insn)) >= 0)
2876 /* Mark INSN as an asm. */
2877 INSN_ASM_P (insn) = true;
2878
2879 {
2880 bool force_unique_p;
2881 ds_t spec_done_ds;
2882
cfeb0fa8
AB
2883 /* Certain instructions cannot be cloned, and frame related insns and
2884 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2885 their block. */
2886 if (prologue_epilogue_contains (insn))
2887 {
2888 if (RTX_FRAME_RELATED_P (insn))
2889 CANT_MOVE (insn) = 1;
2890 else
2891 {
2892 rtx note;
2893 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2894 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2895 && ((enum insn_note) INTVAL (XEXP (note, 0))
2896 == NOTE_INSN_EPILOGUE_BEG))
2897 {
2898 CANT_MOVE (insn) = 1;
2899 break;
2900 }
2901 }
2902 force_unique_p = true;
2903 }
e855c69d 2904 else
cfeb0fa8
AB
2905 if (CANT_MOVE (insn)
2906 || INSN_ASM_P (insn)
2907 || SCHED_GROUP_P (insn)
07643d76 2908 || CALL_P (insn)
cfeb0fa8
AB
2909 /* Exception handling insns are always unique. */
2910 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2911 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2912 || control_flow_insn_p (insn))
2913 force_unique_p = true;
2914 else
2915 force_unique_p = false;
e855c69d
AB
2916
2917 if (targetm.sched.get_insn_spec_ds)
2918 {
2919 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2920 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2921 }
2922 else
2923 spec_done_ds = 0;
2924
2925 /* Initialize INSN's expr. */
2926 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2927 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 2928 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
2929 CANT_MOVE (insn));
2930 }
2931
2932 init_first_time_insn_data (insn);
2933}
2934
2935/* Scan the region and initialize instruction data for basic blocks BBS. */
2936void
2937sel_init_global_and_expr (bb_vec_t bbs)
2938{
2939 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2940 const struct sched_scan_info_def ssi =
2941 {
2942 NULL, /* extend_bb */
2943 init_global_and_expr_for_bb, /* init_bb */
2944 extend_insn_data, /* extend_insn */
2945 init_global_and_expr_for_insn /* init_insn */
2946 };
b8698a0f 2947
e855c69d
AB
2948 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2949}
2950
2951/* Finalize region-scope data structures for basic blocks. */
2952static void
2953finish_global_and_expr_for_bb (basic_block bb)
2954{
2955 av_set_clear (&BB_AV_SET (bb));
2956 BB_AV_LEVEL (bb) = 0;
2957}
2958
2959/* Finalize INSN's data. */
2960static void
2961finish_global_and_expr_insn (insn_t insn)
2962{
2963 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2964 return;
2965
2966 gcc_assert (INSN_P (insn));
2967
2968 if (INSN_LUID (insn) > 0)
2969 {
2970 free_first_time_insn_data (insn);
2971 INSN_WS_LEVEL (insn) = 0;
2972 CANT_MOVE (insn) = 0;
b8698a0f
L
2973
2974 /* We can no longer assert this, as vinsns of this insn could be
2975 easily live in other insn's caches. This should be changed to
e855c69d
AB
2976 a counter-like approach among all vinsns. */
2977 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2978 clear_expr (INSN_EXPR (insn));
2979 }
2980}
2981
2982/* Finalize per instruction data for the whole region. */
2983void
2984sel_finish_global_and_expr (void)
2985{
2986 {
2987 bb_vec_t bbs;
2988 int i;
2989
2990 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2991
2992 for (i = 0; i < current_nr_blocks; i++)
2993 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2994
2995 /* Clear AV_SETs and INSN_EXPRs. */
2996 {
2997 const struct sched_scan_info_def ssi =
2998 {
2999 NULL, /* extend_bb */
3000 finish_global_and_expr_for_bb, /* init_bb */
3001 NULL, /* extend_insn */
3002 finish_global_and_expr_insn /* init_insn */
3003 };
3004
3005 sched_scan (&ssi, bbs, NULL, NULL, NULL);
3006 }
3007
3008 VEC_free (basic_block, heap, bbs);
3009 }
3010
3011 finish_insns ();
3012}
3013\f
3014
b8698a0f
L
3015/* In the below hooks, we merely calculate whether or not a dependence
3016 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3017 when we'll start caching dependence requests. */
3018
3019/* Container to hold information for dependency analysis. */
3020static struct
3021{
3022 deps_t dc;
3023
3024 /* A variable to track which part of rtx we are scanning in
3025 sched-deps.c: sched_analyze_insn (). */
3026 deps_where_t where;
3027
3028 /* Current producer. */
3029 insn_t pro;
3030
3031 /* Current consumer. */
3032 vinsn_t con;
3033
3034 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3035 X is from { INSN, LHS, RHS }. */
3036 ds_t has_dep_p[DEPS_IN_NOWHERE];
3037} has_dependence_data;
3038
3039/* Start analyzing dependencies of INSN. */
3040static void
3041has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3042{
3043 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3044
3045 has_dependence_data.where = DEPS_IN_INSN;
3046}
3047
3048/* Finish analyzing dependencies of an insn. */
3049static void
3050has_dependence_finish_insn (void)
3051{
3052 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3053
3054 has_dependence_data.where = DEPS_IN_NOWHERE;
3055}
3056
3057/* Start analyzing dependencies of LHS. */
3058static void
3059has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3060{
3061 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3062
3063 if (VINSN_LHS (has_dependence_data.con) != NULL)
3064 has_dependence_data.where = DEPS_IN_LHS;
3065}
3066
3067/* Finish analyzing dependencies of an lhs. */
3068static void
3069has_dependence_finish_lhs (void)
3070{
3071 has_dependence_data.where = DEPS_IN_INSN;
3072}
3073
3074/* Start analyzing dependencies of RHS. */
3075static void
3076has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3077{
3078 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3079
3080 if (VINSN_RHS (has_dependence_data.con) != NULL)
3081 has_dependence_data.where = DEPS_IN_RHS;
3082}
3083
3084/* Start analyzing dependencies of an rhs. */
3085static void
3086has_dependence_finish_rhs (void)
3087{
3088 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3089 || has_dependence_data.where == DEPS_IN_INSN);
3090
3091 has_dependence_data.where = DEPS_IN_INSN;
3092}
3093
3094/* Note a set of REGNO. */
3095static void
3096has_dependence_note_reg_set (int regno)
3097{
3098 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3099
3100 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3101 VINSN_INSN_RTX
3102 (has_dependence_data.con)))
3103 {
3104 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3105
3106 if (reg_last->sets != NULL
3107 || reg_last->clobbers != NULL)
3108 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3109
3110 if (reg_last->uses)
3111 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3112 }
3113}
3114
3115/* Note a clobber of REGNO. */
3116static void
3117has_dependence_note_reg_clobber (int regno)
3118{
3119 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3120
3121 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3122 VINSN_INSN_RTX
3123 (has_dependence_data.con)))
3124 {
3125 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3126
3127 if (reg_last->sets)
3128 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3129
e855c69d
AB
3130 if (reg_last->uses)
3131 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3132 }
3133}
3134
3135/* Note a use of REGNO. */
3136static void
3137has_dependence_note_reg_use (int regno)
3138{
3139 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3140
3141 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3142 VINSN_INSN_RTX
3143 (has_dependence_data.con)))
3144 {
3145 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3146
3147 if (reg_last->sets)
3148 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3149
3150 if (reg_last->clobbers)
3151 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3152
3153 /* Handle BE_IN_SPEC. */
3154 if (reg_last->uses)
3155 {
3156 ds_t pro_spec_checked_ds;
3157
3158 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3159 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3160
3161 if (pro_spec_checked_ds != 0)
3162 /* Merge BE_IN_SPEC bits into *DSP. */
3163 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3164 NULL_RTX, NULL_RTX);
3165 }
3166 }
3167}
3168
3169/* Note a memory dependence. */
3170static void
3171has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3172 rtx pending_mem ATTRIBUTE_UNUSED,
3173 insn_t pending_insn ATTRIBUTE_UNUSED,
3174 ds_t ds ATTRIBUTE_UNUSED)
3175{
3176 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3177 VINSN_INSN_RTX (has_dependence_data.con)))
3178 {
3179 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3180
3181 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3182 }
3183}
3184
3185/* Note a dependence. */
3186static void
3187has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3188 ds_t ds ATTRIBUTE_UNUSED)
3189{
3190 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3191 VINSN_INSN_RTX (has_dependence_data.con)))
3192 {
3193 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3194
3195 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3196 }
3197}
3198
3199/* Mark the insn as having a hard dependence that prevents speculation. */
3200void
3201sel_mark_hard_insn (rtx insn)
3202{
3203 int i;
3204
3205 /* Only work when we're in has_dependence_p mode.
3206 ??? This is a hack, this should actually be a hook. */
3207 if (!has_dependence_data.dc || !has_dependence_data.pro)
3208 return;
3209
3210 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3211 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3212
3213 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3214 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3215}
3216
3217/* This structure holds the hooks for the dependency analysis used when
3218 actually processing dependencies in the scheduler. */
3219static struct sched_deps_info_def has_dependence_sched_deps_info;
3220
3221/* This initializes most of the fields of the above structure. */
3222static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3223 {
3224 NULL,
3225
3226 has_dependence_start_insn,
3227 has_dependence_finish_insn,
3228 has_dependence_start_lhs,
3229 has_dependence_finish_lhs,
3230 has_dependence_start_rhs,
3231 has_dependence_finish_rhs,
3232 has_dependence_note_reg_set,
3233 has_dependence_note_reg_clobber,
3234 has_dependence_note_reg_use,
3235 has_dependence_note_mem_dep,
3236 has_dependence_note_dep,
3237
3238 0, /* use_cselib */
3239 0, /* use_deps_list */
3240 0 /* generate_spec_deps */
3241 };
3242
3243/* Initialize has_dependence_sched_deps_info with extra spec field. */
3244static void
3245setup_has_dependence_sched_deps_info (void)
3246{
3247 memcpy (&has_dependence_sched_deps_info,
3248 &const_has_dependence_sched_deps_info,
3249 sizeof (has_dependence_sched_deps_info));
3250
3251 if (spec_info != NULL)
3252 has_dependence_sched_deps_info.generate_spec_deps = 1;
3253
3254 sched_deps_info = &has_dependence_sched_deps_info;
3255}
3256
3257/* Remove all dependences found and recorded in has_dependence_data array. */
3258void
3259sel_clear_has_dependence (void)
3260{
3261 int i;
3262
3263 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3264 has_dependence_data.has_dep_p[i] = 0;
3265}
3266
3267/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3268 to the dependence information array in HAS_DEP_PP. */
3269ds_t
3270has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3271{
3272 int i;
3273 ds_t ds;
88302d54 3274 struct deps_desc *dc;
e855c69d
AB
3275
3276 if (INSN_SIMPLEJUMP_P (pred))
3277 /* Unconditional jump is just a transfer of control flow.
3278 Ignore it. */
3279 return false;
3280
3281 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3282
3283 /* We init this field lazily. */
3284 if (dc->reg_last == NULL)
3285 init_deps_reg_last (dc);
b8698a0f 3286
e855c69d
AB
3287 if (!dc->readonly)
3288 {
3289 has_dependence_data.pro = NULL;
3290 /* Initialize empty dep context with information about PRED. */
3291 advance_deps_context (dc, pred);
3292 dc->readonly = 1;
3293 }
3294
3295 has_dependence_data.where = DEPS_IN_NOWHERE;
3296 has_dependence_data.pro = pred;
3297 has_dependence_data.con = EXPR_VINSN (expr);
3298 has_dependence_data.dc = dc;
3299
3300 sel_clear_has_dependence ();
3301
3302 /* Now catch all dependencies that would be generated between PRED and
3303 INSN. */
3304 setup_has_dependence_sched_deps_info ();
3305 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3306 has_dependence_data.dc = NULL;
3307
3308 /* When a barrier was found, set DEPS_IN_INSN bits. */
3309 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3310 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3311 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3312 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3313
3314 /* Do not allow stores to memory to move through checks. Currently
3315 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3316 obvious places to which this dependence can be attached.
e855c69d
AB
3317 FIMXE: this should go to a hook. */
3318 if (EXPR_LHS (expr)
3319 && MEM_P (EXPR_LHS (expr))
3320 && sel_insn_is_speculation_check (pred))
3321 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3322
e855c69d
AB
3323 *has_dep_pp = has_dependence_data.has_dep_p;
3324 ds = 0;
3325 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3326 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3327 NULL_RTX, NULL_RTX);
3328
3329 return ds;
3330}
3331\f
3332
b8698a0f
L
3333/* Dependence hooks implementation that checks dependence latency constraints
3334 on the insns being scheduled. The entry point for these routines is
3335 tick_check_p predicate. */
e855c69d
AB
3336
3337static struct
3338{
3339 /* An expr we are currently checking. */
3340 expr_t expr;
3341
3342 /* A minimal cycle for its scheduling. */
3343 int cycle;
3344
3345 /* Whether we have seen a true dependence while checking. */
3346 bool seen_true_dep_p;
3347} tick_check_data;
3348
3349/* Update minimal scheduling cycle for tick_check_insn given that it depends
3350 on PRO with status DS and weight DW. */
3351static void
3352tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3353{
3354 expr_t con_expr = tick_check_data.expr;
3355 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3356
3357 if (con_insn != pro_insn)
3358 {
3359 enum reg_note dt;
3360 int tick;
3361
3362 if (/* PROducer was removed from above due to pipelining. */
3363 !INSN_IN_STREAM_P (pro_insn)
3364 /* Or PROducer was originally on the next iteration regarding the
3365 CONsumer. */
3366 || (INSN_SCHED_TIMES (pro_insn)
3367 - EXPR_SCHED_TIMES (con_expr)) > 1)
3368 /* Don't count this dependence. */
3369 return;
3370
3371 dt = ds_to_dt (ds);
3372 if (dt == REG_DEP_TRUE)
3373 tick_check_data.seen_true_dep_p = true;
3374
3375 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3376
3377 {
3378 dep_def _dep, *dep = &_dep;
3379
3380 init_dep (dep, pro_insn, con_insn, dt);
3381
3382 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3383 }
3384
3385 /* When there are several kinds of dependencies between pro and con,
3386 only REG_DEP_TRUE should be taken into account. */
3387 if (tick > tick_check_data.cycle
3388 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3389 tick_check_data.cycle = tick;
3390 }
3391}
3392
3393/* An implementation of note_dep hook. */
3394static void
3395tick_check_note_dep (insn_t pro, ds_t ds)
3396{
3397 tick_check_dep_with_dw (pro, ds, 0);
3398}
3399
3400/* An implementation of note_mem_dep hook. */
3401static void
3402tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3403{
3404 dw_t dw;
3405
3406 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3407 ? estimate_dep_weak (mem1, mem2)
3408 : 0);
3409
3410 tick_check_dep_with_dw (pro, ds, dw);
3411}
3412
3413/* This structure contains hooks for dependence analysis used when determining
3414 whether an insn is ready for scheduling. */
3415static struct sched_deps_info_def tick_check_sched_deps_info =
3416 {
3417 NULL,
3418
3419 NULL,
3420 NULL,
3421 NULL,
3422 NULL,
3423 NULL,
3424 NULL,
3425 haifa_note_reg_set,
3426 haifa_note_reg_clobber,
3427 haifa_note_reg_use,
3428 tick_check_note_mem_dep,
3429 tick_check_note_dep,
3430
3431 0, 0, 0
3432 };
3433
3434/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3435 scheduled. Return 0 if all data from producers in DC is ready. */
3436int
3437tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3438{
3439 int cycles_left;
3440 /* Initialize variables. */
3441 tick_check_data.expr = expr;
3442 tick_check_data.cycle = 0;
3443 tick_check_data.seen_true_dep_p = false;
3444 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3445
e855c69d
AB
3446 gcc_assert (!dc->readonly);
3447 dc->readonly = 1;
3448 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3449 dc->readonly = 0;
3450
3451 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3452
3453 return cycles_left >= 0 ? cycles_left : 0;
3454}
3455\f
3456
3457/* Functions to work with insns. */
3458
3459/* Returns true if LHS of INSN is the same as DEST of an insn
3460 being moved. */
3461bool
3462lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3463{
3464 rtx lhs = INSN_LHS (insn);
3465
3466 if (lhs == NULL || dest == NULL)
3467 return false;
b8698a0f 3468
e855c69d
AB
3469 return rtx_equal_p (lhs, dest);
3470}
3471
3472/* Return s_i_d entry of INSN. Callable from debugger. */
3473sel_insn_data_def
3474insn_sid (insn_t insn)
3475{
3476 return *SID (insn);
3477}
3478
3479/* True when INSN is a speculative check. We can tell this by looking
3480 at the data structures of the selective scheduler, not by examining
3481 the pattern. */
3482bool
3483sel_insn_is_speculation_check (rtx insn)
3484{
3485 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3486}
3487
b8698a0f 3488/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3489 for given INSN. */
3490void
3491get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3492{
3493 rtx pat = PATTERN (insn);
3494
3495 gcc_assert (dst_loc);
3496 gcc_assert (GET_CODE (pat) == SET);
3497
3498 *dst_loc = SET_DEST (pat);
3499
3500 gcc_assert (*dst_loc);
3501 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3502
3503 if (mode)
3504 *mode = GET_MODE (*dst_loc);
3505}
3506
b8698a0f 3507/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3508 creation. */
3509bool
3510bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3511{
3512 insn_t succ;
3513 succ_iterator si;
3514
3515 FOR_EACH_SUCC (succ, si, jump)
3516 if (sel_num_cfg_preds_gt_1 (succ))
3517 return true;
3518
3519 return false;
3520}
3521
3522/* Return 'true' if INSN is the only one in its basic block. */
3523static bool
3524insn_is_the_only_one_in_bb_p (insn_t insn)
3525{
3526 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3527}
3528
3529#ifdef ENABLE_CHECKING
b8698a0f 3530/* Check that the region we're scheduling still has at most one
e855c69d
AB
3531 backedge. */
3532static void
3533verify_backedges (void)
3534{
3535 if (pipelining_p)
3536 {
3537 int i, n = 0;
3538 edge e;
3539 edge_iterator ei;
b8698a0f 3540
e855c69d
AB
3541 for (i = 0; i < current_nr_blocks; i++)
3542 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3543 if (in_current_region_p (e->dest)
3544 && BLOCK_TO_BB (e->dest->index) < i)
3545 n++;
b8698a0f 3546
e855c69d
AB
3547 gcc_assert (n <= 1);
3548 }
3549}
3550#endif
3551\f
3552
3553/* Functions to work with control flow. */
3554
b59ab570
AM
3555/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3556 are sorted in topological order (it might have been invalidated by
3557 redirecting an edge). */
3558static void
3559sel_recompute_toporder (void)
3560{
3561 int i, n, rgn;
3562 int *postorder, n_blocks;
3563
3564 postorder = XALLOCAVEC (int, n_basic_blocks);
3565 n_blocks = post_order_compute (postorder, false, false);
3566
3567 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3568 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3569 if (CONTAINING_RGN (postorder[i]) == rgn)
3570 {
3571 BLOCK_TO_BB (postorder[i]) = n;
3572 BB_TO_BLOCK (n) = postorder[i];
3573 n++;
3574 }
3575
3576 /* Assert that we updated info for all blocks. We may miss some blocks if
3577 this function is called when redirecting an edge made a block
3578 unreachable, but that block is not deleted yet. */
3579 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3580}
3581
e855c69d 3582/* Tidy the possibly empty block BB. */
65592aad 3583static bool
5f33b972 3584maybe_tidy_empty_bb (basic_block bb)
e855c69d
AB
3585{
3586 basic_block succ_bb, pred_bb;
00c4e97c 3587 VEC (basic_block, heap) *dom_bbs;
f2c45f08
AM
3588 edge e;
3589 edge_iterator ei;
e855c69d
AB
3590 bool rescan_p;
3591
3592 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3593 has incoming non-fallthrough edge, or it has no predecessors or
3594 successors. Otherwise remove it. */
b5b8b0ac 3595 if (!sel_bb_empty_p (bb)
b8698a0f 3596 || (single_succ_p (bb)
e855c69d 3597 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3598 && (!single_pred_p (bb)
762bffba
AB
3599 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3600 || EDGE_COUNT (bb->preds) == 0
3601 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3602 return false;
3603
f2c45f08
AM
3604 /* Do not attempt to redirect complex edges. */
3605 FOR_EACH_EDGE (e, ei, bb->preds)
3606 if (e->flags & EDGE_COMPLEX)
3607 return false;
3608
e855c69d
AB
3609 free_data_sets (bb);
3610
3611 /* Do not delete BB if it has more than one successor.
3612 That can occur when we moving a jump. */
3613 if (!single_succ_p (bb))
3614 {
3615 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3616 sel_merge_blocks (bb->prev_bb, bb);
3617 return true;
3618 }
3619
3620 succ_bb = single_succ (bb);
3621 rescan_p = true;
3622 pred_bb = NULL;
00c4e97c 3623 dom_bbs = NULL;
e855c69d
AB
3624
3625 /* Redirect all non-fallthru edges to the next bb. */
3626 while (rescan_p)
3627 {
e855c69d
AB
3628 rescan_p = false;
3629
3630 FOR_EACH_EDGE (e, ei, bb->preds)
3631 {
3632 pred_bb = e->src;
3633
3634 if (!(e->flags & EDGE_FALLTHRU))
3635 {
5f33b972 3636 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3637 the edge destination block (E->SUCC) along a fallthru edge.
3638
3639 We will update dominators here only when we'll get
3640 an unreachable block when redirecting, otherwise
3641 sel_redirect_edge_and_branch will take care of it. */
3642 if (e->dest != bb
3643 && single_pred_p (e->dest))
3644 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
5f33b972 3645 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3646 rescan_p = true;
3647 break;
3648 }
5f33b972
AM
3649 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3650 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3651 still have to adjust it. */
3652 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3653 {
3654 /* If possible, try to remove the unneeded conditional jump. */
3655 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3656 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3657 {
3658 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3659 tidy_fallthru_edge (e);
3660 }
3661 else
3662 sel_redirect_edge_and_branch (e, succ_bb);
3663 rescan_p = true;
3664 break;
3665 }
e855c69d
AB
3666 }
3667 }
3668
e855c69d
AB
3669 if (can_merge_blocks_p (bb->prev_bb, bb))
3670 sel_merge_blocks (bb->prev_bb, bb);
3671 else
e855c69d 3672 {
262d8232 3673 /* This is a block without fallthru predecessor. Just delete it. */
e855c69d
AB
3674 gcc_assert (pred_bb != NULL);
3675
762bffba
AB
3676 if (in_current_region_p (pred_bb))
3677 move_bb_info (pred_bb, bb);
e855c69d
AB
3678 remove_empty_bb (bb, true);
3679 }
3680
00c4e97c
AB
3681 if (!VEC_empty (basic_block, dom_bbs))
3682 {
3683 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3684 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3685 VEC_free (basic_block, heap, dom_bbs);
3686 }
3687
e855c69d
AB
3688 return true;
3689}
3690
b8698a0f 3691/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3692 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3693 is true, also try to optimize control flow on non-empty blocks. */
3694bool
3695tidy_control_flow (basic_block xbb, bool full_tidying)
3696{
3697 bool changed = true;
b5b8b0ac 3698 insn_t first, last;
b8698a0f 3699
e855c69d 3700 /* First check whether XBB is empty. */
5f33b972 3701 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3702 if (changed || !full_tidying)
3703 return changed;
b8698a0f 3704
e855c69d 3705 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3706 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3707 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3708 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3709 {
3710 if (sel_remove_insn (BB_END (xbb), false, false))
3711 return true;
3712 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3713 }
3714
b5b8b0ac
AO
3715 first = sel_bb_head (xbb);
3716 last = sel_bb_end (xbb);
3717 if (MAY_HAVE_DEBUG_INSNS)
3718 {
3719 if (first != last && DEBUG_INSN_P (first))
3720 do
3721 first = NEXT_INSN (first);
3722 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3723
3724 if (first != last && DEBUG_INSN_P (last))
3725 do
3726 last = PREV_INSN (last);
3727 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3728 }
e855c69d 3729 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3730 to next basic block left after removing INSN from stream.
3731 If it is so, remove that jump and redirect edge to current
3732 basic block (where there was INSN before deletion). This way
3733 when NOP will be deleted several instructions later with its
3734 basic block we will not get a jump to next instruction, which
e855c69d 3735 can be harmful. */
b5b8b0ac 3736 if (first == last
e855c69d 3737 && !sel_bb_empty_p (xbb)
b5b8b0ac 3738 && INSN_NOP_P (last)
e855c69d
AB
3739 /* Flow goes fallthru from current block to the next. */
3740 && EDGE_COUNT (xbb->succs) == 1
3741 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3742 /* When successor is an EXIT block, it may not be the next block. */
3743 && single_succ (xbb) != EXIT_BLOCK_PTR
3744 /* And unconditional jump in previous basic block leads to
3745 next basic block of XBB and this jump can be safely removed. */
3746 && in_current_region_p (xbb->prev_bb)
753de8cf 3747 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3748 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3749 /* Also this jump is not at the scheduling boundary. */
3750 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3751 {
b59ab570 3752 bool recompute_toporder_p;
e855c69d
AB
3753 /* Clear data structures of jump - jump itself will be removed
3754 by sel_redirect_edge_and_branch. */
3755 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3756 recompute_toporder_p
3757 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3758
e855c69d
AB
3759 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3760
3761 /* It can turn out that after removing unused jump, basic block
3762 that contained that jump, becomes empty too. In such case
3763 remove it too. */
3764 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3765 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3766 if (recompute_toporder_p)
b59ab570 3767 sel_recompute_toporder ();
e855c69d 3768 }
d787f788
AM
3769
3770#ifdef ENABLE_CHECKING
3771 verify_backedges ();
00c4e97c 3772 verify_dominators (CDI_DOMINATORS);
d787f788
AM
3773#endif
3774
e855c69d
AB
3775 return changed;
3776}
3777
b59ab570
AM
3778/* Purge meaningless empty blocks in the middle of a region. */
3779void
3780purge_empty_blocks (void)
3781{
9d0dcda1 3782 int i;
b59ab570 3783
9d0dcda1
AM
3784 /* Do not attempt to delete the first basic block in the region. */
3785 for (i = 1; i < current_nr_blocks; )
b59ab570
AM
3786 {
3787 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3788
5f33b972 3789 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3790 continue;
3791
3792 i++;
3793 }
3794}
3795
b8698a0f
L
3796/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3797 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3798 Return true if we have removed some blocks afterwards. */
3799bool
3800sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3801{
3802 basic_block bb = BLOCK_FOR_INSN (insn);
3803
3804 gcc_assert (INSN_IN_STREAM_P (insn));
3805
b5b8b0ac
AO
3806 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3807 {
3808 expr_t expr;
3809 av_set_iterator i;
3810
3811 /* When we remove a debug insn that is head of a BB, it remains
3812 in the AV_SET of the block, but it shouldn't. */
3813 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3814 if (EXPR_INSN_RTX (expr) == insn)
3815 {
3816 av_set_iter_remove (&i);
3817 break;
3818 }
3819 }
3820
e855c69d
AB
3821 if (only_disconnect)
3822 {
3823 insn_t prev = PREV_INSN (insn);
3824 insn_t next = NEXT_INSN (insn);
3825 basic_block bb = BLOCK_FOR_INSN (insn);
3826
3827 NEXT_INSN (prev) = next;
3828 PREV_INSN (next) = prev;
3829
3830 if (BB_HEAD (bb) == insn)
3831 {
3832 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3833 BB_HEAD (bb) = prev;
3834 }
3835 if (BB_END (bb) == insn)
3836 BB_END (bb) = prev;
3837 }
3838 else
3839 {
3840 remove_insn (insn);
3841 clear_expr (INSN_EXPR (insn));
3842 }
3843
3844 /* It is necessary to null this fields before calling add_insn (). */
3845 PREV_INSN (insn) = NULL_RTX;
3846 NEXT_INSN (insn) = NULL_RTX;
3847
3848 return tidy_control_flow (bb, full_tidying);
3849}
3850
3851/* Estimate number of the insns in BB. */
3852static int
3853sel_estimate_number_of_insns (basic_block bb)
3854{
3855 int res = 0;
3856 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3857
3858 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3859 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3860 res++;
3861
3862 return res;
3863}
3864
3865/* We don't need separate luids for notes or labels. */
3866static int
3867sel_luid_for_non_insn (rtx x)
3868{
3869 gcc_assert (NOTE_P (x) || LABEL_P (x));
3870
3871 return -1;
3872}
3873
3874/* Return seqno of the only predecessor of INSN. */
3875static int
3876get_seqno_of_a_pred (insn_t insn)
3877{
3878 int seqno;
3879
3880 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3881
3882 if (!sel_bb_head_p (insn))
3883 seqno = INSN_SEQNO (PREV_INSN (insn));
3884 else
3885 {
3886 basic_block bb = BLOCK_FOR_INSN (insn);
3887
3888 if (single_pred_p (bb)
3889 && !in_current_region_p (single_pred (bb)))
3890 {
3891 /* We can have preds outside a region when splitting edges
b8698a0f 3892 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
3893 There should be only one of them. */
3894 insn_t succ = NULL;
3895 succ_iterator si;
3896 bool first = true;
b8698a0f 3897
e855c69d
AB
3898 gcc_assert (flag_sel_sched_pipelining_outer_loops
3899 && current_loop_nest);
b8698a0f 3900 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
3901 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3902 {
3903 gcc_assert (first);
3904 first = false;
3905 }
3906
3907 gcc_assert (succ != NULL);
3908 seqno = INSN_SEQNO (succ);
3909 }
3910 else
3911 {
3912 insn_t *preds;
3913 int n;
3914
3915 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3916 gcc_assert (n == 1);
3917
3918 seqno = INSN_SEQNO (preds[0]);
b8698a0f 3919
e855c69d
AB
3920 free (preds);
3921 }
3922 }
3923
3924 return seqno;
3925}
3926
da7ba240
AB
3927/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3928 with positive seqno exist. */
e855c69d
AB
3929int
3930get_seqno_by_preds (rtx insn)
3931{
3932 basic_block bb = BLOCK_FOR_INSN (insn);
3933 rtx tmp = insn, head = BB_HEAD (bb);
3934 insn_t *preds;
3935 int n, i, seqno;
3936
3937 while (tmp != head)
3938 if (INSN_P (tmp))
3939 return INSN_SEQNO (tmp);
3940 else
3941 tmp = PREV_INSN (tmp);
b8698a0f 3942
e855c69d
AB
3943 cfg_preds (bb, &preds, &n);
3944 for (i = 0, seqno = -1; i < n; i++)
3945 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3946
e855c69d
AB
3947 return seqno;
3948}
3949
3950\f
3951
3952/* Extend pass-scope data structures for basic blocks. */
3953void
3954sel_extend_global_bb_info (void)
3955{
3956 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3957 last_basic_block);
3958}
3959
3960/* Extend region-scope data structures for basic blocks. */
3961static void
3962extend_region_bb_info (void)
3963{
3964 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3965 last_basic_block);
3966}
3967
3968/* Extend all data structures to fit for all basic blocks. */
3969static void
3970extend_bb_info (void)
3971{
3972 sel_extend_global_bb_info ();
3973 extend_region_bb_info ();
3974}
3975
3976/* Finalize pass-scope data structures for basic blocks. */
3977void
3978sel_finish_global_bb_info (void)
3979{
3980 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3981}
3982
3983/* Finalize region-scope data structures for basic blocks. */
3984static void
3985finish_region_bb_info (void)
3986{
3987 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3988}
3989\f
3990
3991/* Data for each insn in current region. */
3992VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3993
3994/* A vector for the insns we've emitted. */
3995static insn_vec_t new_insns = NULL;
3996
3997/* Extend data structures for insns from current region. */
3998static void
3999extend_insn_data (void)
4000{
4001 int reserve;
b8698a0f 4002
e855c69d
AB
4003 sched_extend_target ();
4004 sched_deps_init (false);
4005
4006 /* Extend data structures for insns from current region. */
b8698a0f 4007 reserve = (sched_max_luid + 1
e855c69d 4008 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 4009 if (reserve > 0
e855c69d 4010 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
4011 {
4012 int size;
4013
4014 if (sched_max_luid / 2 > 1024)
4015 size = sched_max_luid + 1024;
4016 else
4017 size = 3 * sched_max_luid / 2;
b8698a0f 4018
bcf33775
AB
4019
4020 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4021 }
e855c69d
AB
4022}
4023
4024/* Finalize data structures for insns from current region. */
4025static void
4026finish_insns (void)
4027{
4028 unsigned i;
4029
4030 /* Clear here all dependence contexts that may have left from insns that were
4031 removed during the scheduling. */
4032 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4033 {
4034 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 4035
e855c69d
AB
4036 if (sid_entry->live)
4037 return_regset_to_pool (sid_entry->live);
4038 if (sid_entry->analyzed_deps)
4039 {
4040 BITMAP_FREE (sid_entry->analyzed_deps);
4041 BITMAP_FREE (sid_entry->found_deps);
4042 htab_delete (sid_entry->transformed_insns);
4043 free_deps (&sid_entry->deps_context);
4044 }
4045 if (EXPR_VINSN (&sid_entry->expr))
4046 {
4047 clear_expr (&sid_entry->expr);
b8698a0f 4048
e855c69d
AB
4049 /* Also, clear CANT_MOVE bit here, because we really don't want it
4050 to be passed to the next region. */
4051 CANT_MOVE_BY_LUID (i) = 0;
4052 }
4053 }
b8698a0f 4054
e855c69d
AB
4055 VEC_free (sel_insn_data_def, heap, s_i_d);
4056}
4057
4058/* A proxy to pass initialization data to init_insn (). */
4059static sel_insn_data_def _insn_init_ssid;
4060static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4061
4062/* If true create a new vinsn. Otherwise use the one from EXPR. */
4063static bool insn_init_create_new_vinsn_p;
4064
4065/* Set all necessary data for initialization of the new insn[s]. */
4066static expr_t
4067set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4068{
4069 expr_t x = &insn_init_ssid->expr;
4070
4071 copy_expr_onside (x, expr);
4072 if (vi != NULL)
4073 {
4074 insn_init_create_new_vinsn_p = false;
4075 change_vinsn_in_expr (x, vi);
4076 }
4077 else
4078 insn_init_create_new_vinsn_p = true;
4079
4080 insn_init_ssid->seqno = seqno;
4081 return x;
4082}
4083
4084/* Init data for INSN. */
4085static void
4086init_insn_data (insn_t insn)
4087{
4088 expr_t expr;
4089 sel_insn_data_t ssid = insn_init_ssid;
4090
4091 /* The fields mentioned below are special and hence are not being
4092 propagated to the new insns. */
4093 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4094 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4095 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4096
4097 expr = INSN_EXPR (insn);
4098 copy_expr (expr, &ssid->expr);
4099 prepare_insn_expr (insn, ssid->seqno);
4100
4101 if (insn_init_create_new_vinsn_p)
4102 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4103
e855c69d
AB
4104 if (first_time_insn_init (insn))
4105 init_first_time_insn_data (insn);
4106}
4107
4108/* This is used to initialize spurious jumps generated by
4109 sel_redirect_edge (). */
4110static void
4111init_simplejump_data (insn_t insn)
4112{
4113 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4114 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d
AB
4115 false, true);
4116 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4117 init_first_time_insn_data (insn);
4118}
4119
b8698a0f 4120/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4121 a new jump that may be created by redirect_edge. */
4122void
4123sel_init_new_insn (insn_t insn, int flags)
4124{
4125 /* We create data structures for bb when the first insn is emitted in it. */
4126 if (INSN_P (insn)
4127 && INSN_IN_STREAM_P (insn)
4128 && insn_is_the_only_one_in_bb_p (insn))
4129 {
4130 extend_bb_info ();
4131 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4132 }
b8698a0f 4133
e855c69d
AB
4134 if (flags & INSN_INIT_TODO_LUID)
4135 sched_init_luids (NULL, NULL, NULL, insn);
4136
4137 if (flags & INSN_INIT_TODO_SSID)
4138 {
4139 extend_insn_data ();
4140 init_insn_data (insn);
4141 clear_expr (&insn_init_ssid->expr);
4142 }
4143
4144 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4145 {
4146 extend_insn_data ();
4147 init_simplejump_data (insn);
4148 }
b8698a0f 4149
e855c69d
AB
4150 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4151 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4152}
4153\f
4154
4155/* Functions to init/finish work with lv sets. */
4156
4157/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4158static void
4159init_lv_set (basic_block bb)
4160{
4161 gcc_assert (!BB_LV_SET_VALID_P (bb));
4162
4163 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4164 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4165 BB_LV_SET_VALID_P (bb) = true;
4166}
4167
4168/* Copy liveness information to BB from FROM_BB. */
4169static void
4170copy_lv_set_from (basic_block bb, basic_block from_bb)
4171{
4172 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4173
e855c69d
AB
4174 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4175 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4176}
e855c69d
AB
4177
4178/* Initialize lv set of all bb headers. */
4179void
4180init_lv_sets (void)
4181{
4182 basic_block bb;
4183
4184 /* Initialize of LV sets. */
4185 FOR_EACH_BB (bb)
4186 init_lv_set (bb);
4187
4188 /* Don't forget EXIT_BLOCK. */
4189 init_lv_set (EXIT_BLOCK_PTR);
4190}
4191
4192/* Release lv set of HEAD. */
4193static void
4194free_lv_set (basic_block bb)
4195{
4196 gcc_assert (BB_LV_SET (bb) != NULL);
4197
4198 return_regset_to_pool (BB_LV_SET (bb));
4199 BB_LV_SET (bb) = NULL;
4200 BB_LV_SET_VALID_P (bb) = false;
4201}
4202
4203/* Finalize lv sets of all bb headers. */
4204void
4205free_lv_sets (void)
4206{
4207 basic_block bb;
4208
4209 /* Don't forget EXIT_BLOCK. */
4210 free_lv_set (EXIT_BLOCK_PTR);
4211
4212 /* Free LV sets. */
4213 FOR_EACH_BB (bb)
4214 if (BB_LV_SET (bb))
4215 free_lv_set (bb);
4216}
4217
4218/* Initialize an invalid AV_SET for BB.
4219 This set will be updated next time compute_av () process BB. */
4220static void
4221invalidate_av_set (basic_block bb)
4222{
4223 gcc_assert (BB_AV_LEVEL (bb) <= 0
4224 && BB_AV_SET (bb) == NULL);
4225
4226 BB_AV_LEVEL (bb) = -1;
4227}
4228
4229/* Create initial data sets for BB (they will be invalid). */
4230static void
4231create_initial_data_sets (basic_block bb)
4232{
4233 if (BB_LV_SET (bb))
4234 BB_LV_SET_VALID_P (bb) = false;
4235 else
4236 BB_LV_SET (bb) = get_regset_from_pool ();
4237 invalidate_av_set (bb);
4238}
4239
4240/* Free av set of BB. */
4241static void
4242free_av_set (basic_block bb)
4243{
4244 av_set_clear (&BB_AV_SET (bb));
4245 BB_AV_LEVEL (bb) = 0;
4246}
4247
4248/* Free data sets of BB. */
4249void
4250free_data_sets (basic_block bb)
4251{
4252 free_lv_set (bb);
4253 free_av_set (bb);
4254}
4255
4256/* Exchange lv sets of TO and FROM. */
4257static void
4258exchange_lv_sets (basic_block to, basic_block from)
4259{
4260 {
4261 regset to_lv_set = BB_LV_SET (to);
4262
4263 BB_LV_SET (to) = BB_LV_SET (from);
4264 BB_LV_SET (from) = to_lv_set;
4265 }
4266
4267 {
4268 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4269
4270 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4271 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4272 }
4273}
4274
4275
4276/* Exchange av sets of TO and FROM. */
4277static void
4278exchange_av_sets (basic_block to, basic_block from)
4279{
4280 {
4281 av_set_t to_av_set = BB_AV_SET (to);
4282
4283 BB_AV_SET (to) = BB_AV_SET (from);
4284 BB_AV_SET (from) = to_av_set;
4285 }
4286
4287 {
4288 int to_av_level = BB_AV_LEVEL (to);
4289
4290 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4291 BB_AV_LEVEL (from) = to_av_level;
4292 }
4293}
4294
4295/* Exchange data sets of TO and FROM. */
4296void
4297exchange_data_sets (basic_block to, basic_block from)
4298{
4299 exchange_lv_sets (to, from);
4300 exchange_av_sets (to, from);
4301}
4302
4303/* Copy data sets of FROM to TO. */
4304void
4305copy_data_sets (basic_block to, basic_block from)
4306{
4307 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4308 gcc_assert (BB_AV_SET (to) == NULL);
4309
4310 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4311 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4312
4313 if (BB_AV_SET_VALID_P (from))
4314 {
4315 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4316 }
4317 if (BB_LV_SET_VALID_P (from))
4318 {
4319 gcc_assert (BB_LV_SET (to) != NULL);
4320 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4321 }
4322}
4323
4324/* Return an av set for INSN, if any. */
4325av_set_t
4326get_av_set (insn_t insn)
4327{
4328 av_set_t av_set;
4329
4330 gcc_assert (AV_SET_VALID_P (insn));
4331
4332 if (sel_bb_head_p (insn))
4333 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4334 else
4335 av_set = NULL;
4336
4337 return av_set;
4338}
4339
4340/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4341int
4342get_av_level (insn_t insn)
4343{
4344 int av_level;
4345
4346 gcc_assert (INSN_P (insn));
4347
4348 if (sel_bb_head_p (insn))
4349 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4350 else
4351 av_level = INSN_WS_LEVEL (insn);
4352
4353 return av_level;
4354}
4355
4356\f
4357
4358/* Variables to work with control-flow graph. */
4359
4360/* The basic block that already has been processed by the sched_data_update (),
4361 but hasn't been in sel_add_bb () yet. */
4362static VEC (basic_block, heap) *last_added_blocks = NULL;
4363
4364/* A pool for allocating successor infos. */
4365static struct
4366{
4367 /* A stack for saving succs_info structures. */
4368 struct succs_info *stack;
4369
4370 /* Its size. */
4371 int size;
4372
4373 /* Top of the stack. */
4374 int top;
4375
4376 /* Maximal value of the top. */
4377 int max_top;
4378} succs_info_pool;
4379
4380/* Functions to work with control-flow graph. */
4381
4382/* Return basic block note of BB. */
4383insn_t
4384sel_bb_head (basic_block bb)
4385{
4386 insn_t head;
4387
4388 if (bb == EXIT_BLOCK_PTR)
4389 {
4390 gcc_assert (exit_insn != NULL_RTX);
4391 head = exit_insn;
4392 }
4393 else
4394 {
4395 insn_t note;
4396
4397 note = bb_note (bb);
4398 head = next_nonnote_insn (note);
4399
89ad0f25 4400 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
e855c69d
AB
4401 head = NULL_RTX;
4402 }
4403
4404 return head;
4405}
4406
4407/* Return true if INSN is a basic block header. */
4408bool
4409sel_bb_head_p (insn_t insn)
4410{
4411 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4412}
4413
4414/* Return last insn of BB. */
4415insn_t
4416sel_bb_end (basic_block bb)
4417{
4418 if (sel_bb_empty_p (bb))
4419 return NULL_RTX;
4420
4421 gcc_assert (bb != EXIT_BLOCK_PTR);
4422
4423 return BB_END (bb);
4424}
4425
4426/* Return true if INSN is the last insn in its basic block. */
4427bool
4428sel_bb_end_p (insn_t insn)
4429{
4430 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4431}
4432
4433/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4434bool
4435sel_bb_empty_p (basic_block bb)
4436{
4437 return sel_bb_head (bb) == NULL;
4438}
4439
4440/* True when BB belongs to the current scheduling region. */
4441bool
4442in_current_region_p (basic_block bb)
4443{
4444 if (bb->index < NUM_FIXED_BLOCKS)
4445 return false;
4446
4447 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4448}
4449
4450/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4451basic_block
4452fallthru_bb_of_jump (rtx jump)
4453{
4454 if (!JUMP_P (jump))
4455 return NULL;
4456
e855c69d
AB
4457 if (!any_condjump_p (jump))
4458 return NULL;
4459
268bab85
AB
4460 /* A basic block that ends with a conditional jump may still have one successor
4461 (and be followed by a barrier), we are not interested. */
4462 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4463 return NULL;
4464
e855c69d
AB
4465 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4466}
4467
4468/* Remove all notes from BB. */
4469static void
4470init_bb (basic_block bb)
4471{
4472 remove_notes (bb_note (bb), BB_END (bb));
4473 BB_NOTE_LIST (bb) = note_list;
4474}
4475
4476void
4477sel_init_bbs (bb_vec_t bbs, basic_block bb)
4478{
4479 const struct sched_scan_info_def ssi =
4480 {
4481 extend_bb_info, /* extend_bb */
4482 init_bb, /* init_bb */
4483 NULL, /* extend_insn */
4484 NULL /* init_insn */
4485 };
4486
4487 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4488}
4489
7898b93b 4490/* Restore notes for the whole region. */
e855c69d 4491static void
7898b93b 4492sel_restore_notes (void)
e855c69d
AB
4493{
4494 int bb;
7898b93b 4495 insn_t insn;
e855c69d
AB
4496
4497 for (bb = 0; bb < current_nr_blocks; bb++)
4498 {
4499 basic_block first, last;
4500
4501 first = EBB_FIRST_BB (bb);
4502 last = EBB_LAST_BB (bb)->next_bb;
4503
4504 do
4505 {
4506 note_list = BB_NOTE_LIST (first);
4507 restore_other_notes (NULL, first);
4508 BB_NOTE_LIST (first) = NULL_RTX;
4509
7898b93b
AM
4510 FOR_BB_INSNS (first, insn)
4511 if (NONDEBUG_INSN_P (insn))
4512 reemit_notes (insn);
4513
e855c69d
AB
4514 first = first->next_bb;
4515 }
4516 while (first != last);
4517 }
4518}
4519
4520/* Free per-bb data structures. */
4521void
4522sel_finish_bbs (void)
4523{
7898b93b 4524 sel_restore_notes ();
e855c69d
AB
4525
4526 /* Remove current loop preheader from this loop. */
4527 if (current_loop_nest)
4528 sel_remove_loop_preheader ();
4529
4530 finish_region_bb_info ();
4531}
4532
4533/* Return true if INSN has a single successor of type FLAGS. */
4534bool
4535sel_insn_has_single_succ_p (insn_t insn, int flags)
4536{
4537 insn_t succ;
4538 succ_iterator si;
4539 bool first_p = true;
4540
4541 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4542 {
4543 if (first_p)
4544 first_p = false;
4545 else
4546 return false;
4547 }
4548
4549 return true;
4550}
4551
4552/* Allocate successor's info. */
4553static struct succs_info *
4554alloc_succs_info (void)
4555{
4556 if (succs_info_pool.top == succs_info_pool.max_top)
4557 {
4558 int i;
b8698a0f 4559
e855c69d
AB
4560 if (++succs_info_pool.max_top >= succs_info_pool.size)
4561 gcc_unreachable ();
4562
4563 i = ++succs_info_pool.top;
4564 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4565 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4566 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4567 }
4568 else
4569 succs_info_pool.top++;
4570
4571 return &succs_info_pool.stack[succs_info_pool.top];
4572}
4573
4574/* Free successor's info. */
4575void
4576free_succs_info (struct succs_info * sinfo)
4577{
b8698a0f 4578 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4579 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4580 succs_info_pool.top--;
4581
4582 /* Clear stale info. */
b8698a0f 4583 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4584 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4585 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4586 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4587 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4588 0, VEC_length (int, sinfo->probs_ok));
4589 sinfo->all_prob = 0;
4590 sinfo->succs_ok_n = 0;
4591 sinfo->all_succs_n = 0;
4592}
4593
b8698a0f 4594/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4595 to the FOR_EACH_SUCC_1 iterator. */
4596struct succs_info *
4597compute_succs_info (insn_t insn, short flags)
4598{
4599 succ_iterator si;
4600 insn_t succ;
4601 struct succs_info *sinfo = alloc_succs_info ();
4602
4603 /* Traverse *all* successors and decide what to do with each. */
4604 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4605 {
4606 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4607 perform code motion through inner loops. */
4608 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4609
4610 if (current_flags & flags)
4611 {
4612 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4613 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4614 /* FIXME: Improve calculation when skipping
e855c69d 4615 inner loop to exits. */
b8698a0f
L
4616 (si.bb_end
4617 ? si.e1->probability
e855c69d
AB
4618 : REG_BR_PROB_BASE));
4619 sinfo->succs_ok_n++;
4620 }
4621 else
4622 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4623
4624 /* Compute all_prob. */
4625 if (!si.bb_end)
4626 sinfo->all_prob = REG_BR_PROB_BASE;
4627 else
4628 sinfo->all_prob += si.e1->probability;
4629
4630 sinfo->all_succs_n++;
4631 }
4632
4633 return sinfo;
4634}
4635
b8698a0f 4636/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4637 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4638static void
4639cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4640{
4641 edge e;
4642 edge_iterator ei;
4643
4644 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4645
4646 FOR_EACH_EDGE (e, ei, bb->preds)
4647 {
4648 basic_block pred_bb = e->src;
4649 insn_t bb_end = BB_END (pred_bb);
4650
3e6a3f6f
AB
4651 if (!in_current_region_p (pred_bb))
4652 {
4653 gcc_assert (flag_sel_sched_pipelining_outer_loops
4654 && current_loop_nest);
4655 continue;
4656 }
e855c69d
AB
4657
4658 if (sel_bb_empty_p (pred_bb))
4659 cfg_preds_1 (pred_bb, preds, n, size);
4660 else
4661 {
4662 if (*n == *size)
b8698a0f 4663 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4664 (*size = 2 * *size + 1));
4665 (*preds)[(*n)++] = bb_end;
4666 }
4667 }
4668
3e6a3f6f
AB
4669 gcc_assert (*n != 0
4670 || (flag_sel_sched_pipelining_outer_loops
4671 && current_loop_nest));
e855c69d
AB
4672}
4673
b8698a0f
L
4674/* Find all predecessors of BB and record them in PREDS and their number
4675 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4676 edges are processed. */
4677static void
4678cfg_preds (basic_block bb, insn_t **preds, int *n)
4679{
4680 int size = 0;
4681
4682 *preds = NULL;
4683 *n = 0;
4684 cfg_preds_1 (bb, preds, n, &size);
4685}
4686
4687/* Returns true if we are moving INSN through join point. */
4688bool
4689sel_num_cfg_preds_gt_1 (insn_t insn)
4690{
4691 basic_block bb;
4692
4693 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4694 return false;
4695
4696 bb = BLOCK_FOR_INSN (insn);
4697
4698 while (1)
4699 {
4700 if (EDGE_COUNT (bb->preds) > 1)
4701 return true;
4702
4703 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4704 bb = EDGE_PRED (bb, 0)->src;
4705
4706 if (!sel_bb_empty_p (bb))
4707 break;
4708 }
4709
4710 return false;
4711}
4712
b8698a0f 4713/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4714 code in sched-ebb.c. */
4715bool
4716bb_ends_ebb_p (basic_block bb)
4717{
4718 basic_block next_bb = bb_next_bb (bb);
4719 edge e;
b8698a0f 4720
e855c69d
AB
4721 if (next_bb == EXIT_BLOCK_PTR
4722 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4723 || (LABEL_P (BB_HEAD (next_bb))
4724 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4725 Work around that. */
4726 && !single_pred_p (next_bb)))
4727 return true;
4728
4729 if (!in_current_region_p (next_bb))
4730 return true;
4731
0fd4b31d
NF
4732 e = find_fallthru_edge (bb->succs);
4733 if (e)
4734 {
4735 gcc_assert (e->dest == next_bb);
4736
4737 return false;
4738 }
e855c69d
AB
4739
4740 return true;
4741}
4742
4743/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4744 successor of INSN. */
4745bool
4746in_same_ebb_p (insn_t insn, insn_t succ)
4747{
4748 basic_block ptr = BLOCK_FOR_INSN (insn);
4749
4750 for(;;)
4751 {
4752 if (ptr == BLOCK_FOR_INSN (succ))
4753 return true;
b8698a0f 4754
e855c69d
AB
4755 if (bb_ends_ebb_p (ptr))
4756 return false;
4757
4758 ptr = bb_next_bb (ptr);
4759 }
4760
4761 gcc_unreachable ();
4762 return false;
4763}
4764
4765/* Recomputes the reverse topological order for the function and
4766 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4767 modified appropriately. */
4768static void
4769recompute_rev_top_order (void)
4770{
4771 int *postorder;
4772 int n_blocks, i;
4773
4774 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4775 {
b8698a0f 4776 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4777 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4778 rev_top_order_index_len);
4779 }
4780
4781 postorder = XNEWVEC (int, n_basic_blocks);
4782
4783 n_blocks = post_order_compute (postorder, true, false);
4784 gcc_assert (n_basic_blocks == n_blocks);
4785
4786 /* Build reverse function: for each basic block with BB->INDEX == K
4787 rev_top_order_index[K] is it's reverse topological sort number. */
4788 for (i = 0; i < n_blocks; i++)
4789 {
4790 gcc_assert (postorder[i] < rev_top_order_index_len);
4791 rev_top_order_index[postorder[i]] = i;
4792 }
4793
4794 free (postorder);
4795}
4796
4797/* Clear all flags from insns in BB that could spoil its rescheduling. */
4798void
4799clear_outdated_rtx_info (basic_block bb)
4800{
4801 rtx insn;
4802
4803 FOR_BB_INSNS (bb, insn)
4804 if (INSN_P (insn))
4805 {
4806 SCHED_GROUP_P (insn) = 0;
4807 INSN_AFTER_STALL_P (insn) = 0;
4808 INSN_SCHED_TIMES (insn) = 0;
4809 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4810
4811 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4812 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4813 the expression, and currently we'll be unable to do this. */
4814 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4815 }
4816}
4817
4818/* Add BB_NOTE to the pool of available basic block notes. */
4819static void
4820return_bb_to_pool (basic_block bb)
4821{
4822 rtx note = bb_note (bb);
4823
4824 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4825 && bb->aux == NULL);
4826
4827 /* It turns out that current cfg infrastructure does not support
4828 reuse of basic blocks. Don't bother for now. */
4829 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4830}
4831
4832/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4833static rtx
4834get_bb_note_from_pool (void)
4835{
4836 if (VEC_empty (rtx, bb_note_pool))
4837 return NULL_RTX;
4838 else
4839 {
4840 rtx note = VEC_pop (rtx, bb_note_pool);
4841
4842 PREV_INSN (note) = NULL_RTX;
4843 NEXT_INSN (note) = NULL_RTX;
4844
4845 return note;
4846 }
4847}
4848
4849/* Free bb_note_pool. */
4850void
4851free_bb_note_pool (void)
4852{
4853 VEC_free (rtx, heap, bb_note_pool);
4854}
4855
4856/* Setup scheduler pool and successor structure. */
4857void
4858alloc_sched_pools (void)
4859{
4860 int succs_size;
4861
4862 succs_size = MAX_WS + 1;
b8698a0f 4863 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4864 succs_info_pool.size = succs_size;
4865 succs_info_pool.top = -1;
4866 succs_info_pool.max_top = -1;
4867
b8698a0f 4868 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4869 sizeof (struct _list_node), 500);
4870}
4871
4872/* Free the pools. */
4873void
4874free_sched_pools (void)
4875{
4876 int i;
b8698a0f 4877
e855c69d
AB
4878 free_alloc_pool (sched_lists_pool);
4879 gcc_assert (succs_info_pool.top == -1);
4880 for (i = 0; i < succs_info_pool.max_top; i++)
4881 {
4882 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4883 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4884 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4885 }
4886 free (succs_info_pool.stack);
4887}
4888\f
4889
b8698a0f 4890/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
4891 topological order. */
4892static int
4893find_place_to_insert_bb (basic_block bb, int rgn)
4894{
4895 bool has_preds_outside_rgn = false;
4896 edge e;
4897 edge_iterator ei;
b8698a0f 4898
e855c69d
AB
4899 /* Find whether we have preds outside the region. */
4900 FOR_EACH_EDGE (e, ei, bb->preds)
4901 if (!in_current_region_p (e->src))
4902 {
4903 has_preds_outside_rgn = true;
4904 break;
4905 }
b8698a0f 4906
e855c69d
AB
4907 /* Recompute the top order -- needed when we have > 1 pred
4908 and in case we don't have preds outside. */
4909 if (flag_sel_sched_pipelining_outer_loops
4910 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4911 {
4912 int i, bbi = bb->index, cur_bbi;
4913
4914 recompute_rev_top_order ();
4915 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4916 {
4917 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 4918 if (rev_top_order_index[bbi]
e855c69d
AB
4919 < rev_top_order_index[cur_bbi])
4920 break;
4921 }
b8698a0f 4922
e855c69d
AB
4923 /* We skipped the right block, so we increase i. We accomodate
4924 it for increasing by step later, so we decrease i. */
4925 return (i + 1) - 1;
4926 }
4927 else if (has_preds_outside_rgn)
4928 {
4929 /* This is the case when we generate an extra empty block
4930 to serve as region head during pipelining. */
4931 e = EDGE_SUCC (bb, 0);
4932 gcc_assert (EDGE_COUNT (bb->succs) == 1
4933 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4934 && (BLOCK_TO_BB (e->dest->index) == 0));
4935 return -1;
4936 }
4937
4938 /* We don't have preds outside the region. We should have
4939 the only pred, because the multiple preds case comes from
4940 the pipelining of outer loops, and that is handled above.
4941 Just take the bbi of this single pred. */
4942 if (EDGE_COUNT (bb->succs) > 0)
4943 {
4944 int pred_bbi;
b8698a0f 4945
e855c69d 4946 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 4947
e855c69d
AB
4948 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4949 return BLOCK_TO_BB (pred_bbi);
4950 }
4951 else
4952 /* BB has no successors. It is safe to put it in the end. */
4953 return current_nr_blocks - 1;
4954}
4955
4956/* Deletes an empty basic block freeing its data. */
4957static void
4958delete_and_free_basic_block (basic_block bb)
4959{
4960 gcc_assert (sel_bb_empty_p (bb));
4961
4962 if (BB_LV_SET (bb))
4963 free_lv_set (bb);
4964
4965 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4966
b8698a0f
L
4967 /* Can't assert av_set properties because we use sel_aremove_bb
4968 when removing loop preheader from the region. At the point of
e855c69d
AB
4969 removing the preheader we already have deallocated sel_region_bb_info. */
4970 gcc_assert (BB_LV_SET (bb) == NULL
4971 && !BB_LV_SET_VALID_P (bb)
4972 && BB_AV_LEVEL (bb) == 0
4973 && BB_AV_SET (bb) == NULL);
b8698a0f 4974
e855c69d
AB
4975 delete_basic_block (bb);
4976}
4977
4978/* Add BB to the current region and update the region data. */
4979static void
4980add_block_to_current_region (basic_block bb)
4981{
4982 int i, pos, bbi = -2, rgn;
4983
4984 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4985 bbi = find_place_to_insert_bb (bb, rgn);
4986 bbi += 1;
4987 pos = RGN_BLOCKS (rgn) + bbi;
4988
4989 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4990 && ebb_head[bbi] == pos);
b8698a0f 4991
e855c69d
AB
4992 /* Make a place for the new block. */
4993 extend_regions ();
4994
4995 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4996 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 4997
e855c69d
AB
4998 memmove (rgn_bb_table + pos + 1,
4999 rgn_bb_table + pos,
5000 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5001
5002 /* Initialize data for BB. */
5003 rgn_bb_table[pos] = bb->index;
5004 BLOCK_TO_BB (bb->index) = bbi;
5005 CONTAINING_RGN (bb->index) = rgn;
5006
5007 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5008
e855c69d
AB
5009 for (i = rgn + 1; i <= nr_regions; i++)
5010 RGN_BLOCKS (i)++;
5011}
5012
5013/* Remove BB from the current region and update the region data. */
5014static void
5015remove_bb_from_region (basic_block bb)
5016{
5017 int i, pos, bbi = -2, rgn;
5018
5019 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5020 bbi = BLOCK_TO_BB (bb->index);
5021 pos = RGN_BLOCKS (rgn) + bbi;
5022
5023 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5024 && ebb_head[bbi] == pos);
5025
5026 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5027 BLOCK_TO_BB (rgn_bb_table[i])--;
5028
5029 memmove (rgn_bb_table + pos,
5030 rgn_bb_table + pos + 1,
5031 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5032
5033 RGN_NR_BLOCKS (rgn)--;
5034 for (i = rgn + 1; i <= nr_regions; i++)
5035 RGN_BLOCKS (i)--;
5036}
5037
b8698a0f 5038/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5039 blocks from last_added_blocks vector. */
5040static void
5041sel_add_bb (basic_block bb)
5042{
5043 /* Extend luids so that new notes will receive zero luids. */
5044 sched_init_luids (NULL, NULL, NULL, NULL);
5045 sched_init_bbs ();
5046 sel_init_bbs (last_added_blocks, NULL);
5047
b8698a0f 5048 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5049 the only element that equals to bb; otherwise, the vector
5050 should not be NULL. */
5051 gcc_assert (last_added_blocks != NULL);
b8698a0f 5052
e855c69d
AB
5053 if (bb != NULL)
5054 {
5055 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
5056 && VEC_index (basic_block,
5057 last_added_blocks, 0) == bb);
e855c69d
AB
5058 add_block_to_current_region (bb);
5059
5060 /* We associate creating/deleting data sets with the first insn
5061 appearing / disappearing in the bb. */
5062 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5063 create_initial_data_sets (bb);
b8698a0f 5064
e855c69d
AB
5065 VEC_free (basic_block, heap, last_added_blocks);
5066 }
5067 else
5068 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5069 {
5070 int i;
5071 basic_block temp_bb = NULL;
5072
b8698a0f 5073 for (i = 0;
e855c69d
AB
5074 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5075 {
5076 add_block_to_current_region (bb);
5077 temp_bb = bb;
5078 }
5079
b8698a0f 5080 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5081 to update. */
5082 gcc_assert (temp_bb != NULL);
5083 bb = temp_bb;
5084
5085 VEC_free (basic_block, heap, last_added_blocks);
5086 }
5087
5088 rgn_setup_region (CONTAINING_RGN (bb->index));
5089}
5090
b8698a0f 5091/* Remove BB from the current region and update all data.
e855c69d
AB
5092 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5093static void
5094sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5095{
262d8232
AB
5096 unsigned idx = bb->index;
5097
e855c69d 5098 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5099
e855c69d
AB
5100 remove_bb_from_region (bb);
5101 return_bb_to_pool (bb);
262d8232 5102 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5103
e855c69d 5104 if (remove_from_cfg_p)
00c4e97c
AB
5105 {
5106 basic_block succ = single_succ (bb);
5107 delete_and_free_basic_block (bb);
5108 set_immediate_dominator (CDI_DOMINATORS, succ,
5109 recompute_dominator (CDI_DOMINATORS, succ));
5110 }
e855c69d 5111
262d8232 5112 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5113}
5114
5115/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5116static void
5117move_bb_info (basic_block merge_bb, basic_block empty_bb)
5118{
5119 gcc_assert (in_current_region_p (merge_bb));
5120
b8698a0f 5121 concat_note_lists (BB_NOTE_LIST (empty_bb),
e855c69d
AB
5122 &BB_NOTE_LIST (merge_bb));
5123 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5124
5125}
5126
e855c69d
AB
5127/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5128 region, but keep it in CFG. */
5129static void
5130remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5131{
5132 /* The block should contain just a note or a label.
5133 We try to check whether it is unused below. */
5134 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5135 || LABEL_P (BB_HEAD (empty_bb)));
5136
5137 /* If basic block has predecessors or successors, redirect them. */
5138 if (remove_from_cfg_p
5139 && (EDGE_COUNT (empty_bb->preds) > 0
5140 || EDGE_COUNT (empty_bb->succs) > 0))
5141 {
5142 basic_block pred;
5143 basic_block succ;
5144
5145 /* We need to init PRED and SUCC before redirecting edges. */
5146 if (EDGE_COUNT (empty_bb->preds) > 0)
5147 {
5148 edge e;
5149
5150 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5151
5152 e = EDGE_PRED (empty_bb, 0);
5153 gcc_assert (e->src == empty_bb->prev_bb
5154 && (e->flags & EDGE_FALLTHRU));
5155
5156 pred = empty_bb->prev_bb;
5157 }
5158 else
5159 pred = NULL;
5160
5161 if (EDGE_COUNT (empty_bb->succs) > 0)
5162 {
5163 /* We do not check fallthruness here as above, because
5164 after removing a jump the edge may actually be not fallthru. */
5165 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5166 succ = EDGE_SUCC (empty_bb, 0)->dest;
5167 }
5168 else
5169 succ = NULL;
5170
5171 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5172 {
5173 edge e = EDGE_PRED (empty_bb, 0);
5174
5175 if (e->flags & EDGE_FALLTHRU)
5176 redirect_edge_succ_nodup (e, succ);
5177 else
5178 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5179 }
5180
5181 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5182 {
5183 edge e = EDGE_SUCC (empty_bb, 0);
5184
5185 if (find_edge (pred, e->dest) == NULL)
5186 redirect_edge_pred (e, pred);
5187 }
5188 }
5189
5190 /* Finish removing. */
5191 sel_remove_bb (empty_bb, remove_from_cfg_p);
5192}
5193
b8698a0f 5194/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5195 per-bb data structures. */
5196static basic_block
5197sel_create_basic_block (void *headp, void *endp, basic_block after)
5198{
5199 basic_block new_bb;
5200 insn_t new_bb_note;
b8698a0f
L
5201
5202 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5203 || last_added_blocks == NULL);
5204
5205 new_bb_note = get_bb_note_from_pool ();
5206
5207 if (new_bb_note == NULL_RTX)
5208 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5209 else
5210 {
5211 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5212 new_bb_note, after);
5213 new_bb->aux = NULL;
5214 }
5215
5216 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5217
5218 return new_bb;
5219}
5220
5221/* Implement sched_init_only_bb (). */
5222static void
5223sel_init_only_bb (basic_block bb, basic_block after)
5224{
5225 gcc_assert (after == NULL);
5226
5227 extend_regions ();
5228 rgn_make_new_region_out_of_new_block (bb);
5229}
5230
5231/* Update the latch when we've splitted or merged it from FROM block to TO.
5232 This should be checked for all outer loops, too. */
5233static void
5234change_loops_latches (basic_block from, basic_block to)
5235{
5236 gcc_assert (from != to);
5237
5238 if (current_loop_nest)
5239 {
5240 struct loop *loop;
5241
5242 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5243 if (considered_for_pipelining_p (loop) && loop->latch == from)
5244 {
5245 gcc_assert (loop == current_loop_nest);
5246 loop->latch = to;
5247 gcc_assert (loop_latch_edge (loop));
5248 }
5249 }
5250}
5251
b8698a0f 5252/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5253 per-bb data structures. Returns the newly created bb. */
5254static basic_block
5255sel_split_block (basic_block bb, rtx after)
5256{
5257 basic_block new_bb;
5258 insn_t insn;
5259
5260 new_bb = sched_split_block_1 (bb, after);
5261 sel_add_bb (new_bb);
5262
5263 /* This should be called after sel_add_bb, because this uses
b8698a0f 5264 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5265 FIXME: this function may be a no-op now. */
5266 change_loops_latches (bb, new_bb);
5267
5268 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5269 FOR_BB_INSNS (new_bb, insn)
5270 if (INSN_P (insn))
5271 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5272
5273 if (sel_bb_empty_p (bb))
5274 {
5275 gcc_assert (!sel_bb_empty_p (new_bb));
5276
5277 /* NEW_BB has data sets that need to be updated and BB holds
5278 data sets that should be removed. Exchange these data sets
5279 so that we won't lose BB's valid data sets. */
5280 exchange_data_sets (new_bb, bb);
5281 free_data_sets (bb);
5282 }
5283
5284 if (!sel_bb_empty_p (new_bb)
5285 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5286 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5287
5288 return new_bb;
5289}
5290
5291/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5292 Otherwise returns NULL. */
5293static rtx
5294check_for_new_jump (basic_block bb, int prev_max_uid)
5295{
5296 rtx end;
5297
5298 end = sel_bb_end (bb);
5299 if (end && INSN_UID (end) >= prev_max_uid)
5300 return end;
5301 return NULL;
5302}
5303
b8698a0f 5304/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5305 New means having UID at least equal to PREV_MAX_UID. */
5306static rtx
5307find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5308{
5309 rtx jump;
5310
5311 /* Return immediately if no new insns were emitted. */
5312 if (get_max_uid () == prev_max_uid)
5313 return NULL;
b8698a0f 5314
e855c69d
AB
5315 /* Now check both blocks for new jumps. It will ever be only one. */
5316 if ((jump = check_for_new_jump (from, prev_max_uid)))
5317 return jump;
5318
5319 if (jump_bb != NULL
5320 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5321 return jump;
5322 return NULL;
5323}
5324
5325/* Splits E and adds the newly created basic block to the current region.
5326 Returns this basic block. */
5327basic_block
5328sel_split_edge (edge e)
5329{
5330 basic_block new_bb, src, other_bb = NULL;
5331 int prev_max_uid;
5332 rtx jump;
5333
5334 src = e->src;
5335 prev_max_uid = get_max_uid ();
5336 new_bb = split_edge (e);
5337
b8698a0f 5338 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5339 && current_loop_nest)
5340 {
5341 int i;
5342 basic_block bb;
5343
b8698a0f 5344 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5345 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5346 for (i = 0;
e855c69d
AB
5347 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5348 if (!bb->loop_father)
5349 {
5350 add_bb_to_loop (bb, e->dest->loop_father);
5351
5352 gcc_assert (!other_bb && (new_bb->index != bb->index));
5353 other_bb = bb;
5354 }
5355 }
5356
5357 /* Add all last_added_blocks to the region. */
5358 sel_add_bb (NULL);
5359
5360 jump = find_new_jump (src, new_bb, prev_max_uid);
5361 if (jump)
5362 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5363
5364 /* Put the correct lv set on this block. */
5365 if (other_bb && !sel_bb_empty_p (other_bb))
5366 compute_live (sel_bb_head (other_bb));
5367
5368 return new_bb;
5369}
5370
5371/* Implement sched_create_empty_bb (). */
5372static basic_block
5373sel_create_empty_bb (basic_block after)
5374{
5375 basic_block new_bb;
5376
5377 new_bb = sched_create_empty_bb_1 (after);
5378
5379 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5380 later. */
5381 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5382 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5383
5384 VEC_free (basic_block, heap, last_added_blocks);
5385 return new_bb;
5386}
5387
5388/* Implement sched_create_recovery_block. ORIG_INSN is where block
5389 will be splitted to insert a check. */
5390basic_block
5391sel_create_recovery_block (insn_t orig_insn)
5392{
5393 basic_block first_bb, second_bb, recovery_block;
5394 basic_block before_recovery = NULL;
5395 rtx jump;
5396
5397 first_bb = BLOCK_FOR_INSN (orig_insn);
5398 if (sel_bb_end_p (orig_insn))
5399 {
5400 /* Avoid introducing an empty block while splitting. */
5401 gcc_assert (single_succ_p (first_bb));
5402 second_bb = single_succ (first_bb);
5403 }
5404 else
5405 second_bb = sched_split_block (first_bb, orig_insn);
5406
5407 recovery_block = sched_create_recovery_block (&before_recovery);
5408 if (before_recovery)
5409 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5410
5411 gcc_assert (sel_bb_empty_p (recovery_block));
5412 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5413 if (current_loops != NULL)
5414 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5415
e855c69d 5416 sel_add_bb (recovery_block);
b8698a0f 5417
e855c69d
AB
5418 jump = BB_END (recovery_block);
5419 gcc_assert (sel_bb_head (recovery_block) == jump);
5420 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5421
5422 return recovery_block;
5423}
5424
5425/* Merge basic block B into basic block A. */
262d8232 5426static void
e855c69d
AB
5427sel_merge_blocks (basic_block a, basic_block b)
5428{
262d8232
AB
5429 gcc_assert (sel_bb_empty_p (b)
5430 && EDGE_COUNT (b->preds) == 1
5431 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5432
262d8232
AB
5433 move_bb_info (b->prev_bb, b);
5434 remove_empty_bb (b, false);
5435 merge_blocks (a, b);
e855c69d
AB
5436 change_loops_latches (b, a);
5437}
5438
5439/* A wrapper for redirect_edge_and_branch_force, which also initializes
5440 data structures for possibly created bb and insns. Returns the newly
5441 added bb or NULL, when a bb was not needed. */
5442void
5443sel_redirect_edge_and_branch_force (edge e, basic_block to)
5444{
00c4e97c 5445 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d
AB
5446 int prev_max_uid;
5447 rtx jump;
b8698a0f 5448
00c4e97c
AB
5449 /* This function is now used only for bookkeeping code creation, where
5450 we'll never get the single pred of orig_dest block and thus will not
5451 hit unreachable blocks when updating dominator info. */
5452 gcc_assert (!sel_bb_empty_p (e->src)
5453 && !single_pred_p (orig_dest));
e855c69d
AB
5454 src = e->src;
5455 prev_max_uid = get_max_uid ();
5456 jump_bb = redirect_edge_and_branch_force (e, to);
5457
5458 if (jump_bb != NULL)
5459 sel_add_bb (jump_bb);
5460
5461 /* This function could not be used to spoil the loop structure by now,
5462 thus we don't care to update anything. But check it to be sure. */
5463 if (current_loop_nest
5464 && pipelining_p)
5465 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5466
e855c69d
AB
5467 jump = find_new_jump (src, jump_bb, prev_max_uid);
5468 if (jump)
5469 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
00c4e97c
AB
5470 set_immediate_dominator (CDI_DOMINATORS, to,
5471 recompute_dominator (CDI_DOMINATORS, to));
5472 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5473 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5474}
5475
b59ab570
AM
5476/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5477 redirected edge are in reverse topological order. */
5478bool
e855c69d
AB
5479sel_redirect_edge_and_branch (edge e, basic_block to)
5480{
5481 bool latch_edge_p;
00c4e97c 5482 basic_block src, orig_dest = e->dest;
e855c69d
AB
5483 int prev_max_uid;
5484 rtx jump;
f2c45f08 5485 edge redirected;
b59ab570 5486 bool recompute_toporder_p = false;
00c4e97c 5487 bool maybe_unreachable = single_pred_p (orig_dest);
e855c69d
AB
5488
5489 latch_edge_p = (pipelining_p
5490 && current_loop_nest
5491 && e == loop_latch_edge (current_loop_nest));
5492
5493 src = e->src;
5494 prev_max_uid = get_max_uid ();
f2c45f08
AM
5495
5496 redirected = redirect_edge_and_branch (e, to);
5497
5498 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5499
5500 /* When we've redirected a latch edge, update the header. */
5501 if (latch_edge_p)
5502 {
5503 current_loop_nest->header = to;
5504 gcc_assert (loop_latch_edge (current_loop_nest));
5505 }
5506
b59ab570
AM
5507 /* In rare situations, the topological relation between the blocks connected
5508 by the redirected edge can change (see PR42245 for an example). Update
5509 block_to_bb/bb_to_block. */
5510 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5511 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5512 recompute_toporder_p = true;
5513
e855c69d
AB
5514 jump = find_new_jump (src, NULL, prev_max_uid);
5515 if (jump)
5516 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570 5517
00c4e97c
AB
5518 /* Only update dominator info when we don't have unreachable blocks.
5519 Otherwise we'll update in maybe_tidy_empty_bb. */
5520 if (!maybe_unreachable)
5521 {
5522 set_immediate_dominator (CDI_DOMINATORS, to,
5523 recompute_dominator (CDI_DOMINATORS, to));
5524 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5525 recompute_dominator (CDI_DOMINATORS, orig_dest));
5526 }
b59ab570 5527 return recompute_toporder_p;
e855c69d
AB
5528}
5529
5530/* This variable holds the cfg hooks used by the selective scheduler. */
5531static struct cfg_hooks sel_cfg_hooks;
5532
5533/* Register sel-sched cfg hooks. */
5534void
5535sel_register_cfg_hooks (void)
5536{
5537 sched_split_block = sel_split_block;
5538
5539 orig_cfg_hooks = get_cfg_hooks ();
5540 sel_cfg_hooks = orig_cfg_hooks;
5541
5542 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5543
5544 set_cfg_hooks (sel_cfg_hooks);
5545
5546 sched_init_only_bb = sel_init_only_bb;
5547 sched_split_block = sel_split_block;
5548 sched_create_empty_bb = sel_create_empty_bb;
5549}
5550
5551/* Unregister sel-sched cfg hooks. */
5552void
5553sel_unregister_cfg_hooks (void)
5554{
5555 sched_create_empty_bb = NULL;
5556 sched_split_block = NULL;
5557 sched_init_only_bb = NULL;
5558
5559 set_cfg_hooks (orig_cfg_hooks);
5560}
5561\f
5562
5563/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5564 LABEL is where this jump should be directed. */
5565rtx
5566create_insn_rtx_from_pattern (rtx pattern, rtx label)
5567{
5568 rtx insn_rtx;
5569
5570 gcc_assert (!INSN_P (pattern));
5571
5572 start_sequence ();
5573
5574 if (label == NULL_RTX)
5575 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5576 else if (DEBUG_INSN_P (label))
5577 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5578 else
5579 {
5580 insn_rtx = emit_jump_insn (pattern);
5581 JUMP_LABEL (insn_rtx) = label;
5582 ++LABEL_NUSES (label);
5583 }
5584
5585 end_sequence ();
5586
5587 sched_init_luids (NULL, NULL, NULL, NULL);
5588 sched_extend_target ();
5589 sched_deps_init (false);
5590
5591 /* Initialize INSN_CODE now. */
5592 recog_memoized (insn_rtx);
5593 return insn_rtx;
5594}
5595
5596/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5597 must not be clonable. */
5598vinsn_t
5599create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5600{
5601 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5602
5603 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5604 return vinsn_create (insn_rtx, force_unique_p);
5605}
5606
5607/* Create a copy of INSN_RTX. */
5608rtx
5609create_copy_of_insn_rtx (rtx insn_rtx)
5610{
5611 rtx res;
5612
b5b8b0ac
AO
5613 if (DEBUG_INSN_P (insn_rtx))
5614 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5615 insn_rtx);
5616
e855c69d
AB
5617 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5618
5619 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5620 NULL_RTX);
5621 return res;
5622}
5623
5624/* Change vinsn field of EXPR to hold NEW_VINSN. */
5625void
5626change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5627{
5628 vinsn_detach (EXPR_VINSN (expr));
5629
5630 EXPR_VINSN (expr) = new_vinsn;
5631 vinsn_attach (new_vinsn);
5632}
5633
5634/* Helpers for global init. */
5635/* This structure is used to be able to call existing bundling mechanism
5636 and calculate insn priorities. */
b8698a0f 5637static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5638{
5639 NULL, /* init_ready_list */
5640 NULL, /* can_schedule_ready_p */
5641 NULL, /* schedule_more_p */
5642 NULL, /* new_ready */
5643 NULL, /* rgn_rank */
5644 sel_print_insn, /* rgn_print_insn */
5645 contributes_to_priority,
356c23b3 5646 NULL, /* insn_finishes_block_p */
e855c69d
AB
5647
5648 NULL, NULL,
5649 NULL, NULL,
5650 0, 0,
5651
5652 NULL, /* add_remove_insn */
5653 NULL, /* begin_schedule_ready */
86014d07 5654 NULL, /* begin_move_insn */
e855c69d
AB
5655 NULL, /* advance_target_bb */
5656 SEL_SCHED | NEW_BBS
5657};
5658
5659/* Setup special insns used in the scheduler. */
b8698a0f 5660void
e855c69d
AB
5661setup_nop_and_exit_insns (void)
5662{
5663 gcc_assert (nop_pattern == NULL_RTX
5664 && exit_insn == NULL_RTX);
5665
9ef1bf71 5666 nop_pattern = constm1_rtx;
e855c69d
AB
5667
5668 start_sequence ();
5669 emit_insn (nop_pattern);
5670 exit_insn = get_insns ();
5671 end_sequence ();
5672 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5673}
5674
5675/* Free special insns used in the scheduler. */
5676void
5677free_nop_and_exit_insns (void)
5678{
5679 exit_insn = NULL_RTX;
5680 nop_pattern = NULL_RTX;
5681}
5682
5683/* Setup a special vinsn used in new insns initialization. */
5684void
5685setup_nop_vinsn (void)
5686{
5687 nop_vinsn = vinsn_create (exit_insn, false);
5688 vinsn_attach (nop_vinsn);
5689}
5690
5691/* Free a special vinsn used in new insns initialization. */
5692void
5693free_nop_vinsn (void)
5694{
5695 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5696 vinsn_detach (nop_vinsn);
5697 nop_vinsn = NULL;
5698}
5699
5700/* Call a set_sched_flags hook. */
5701void
5702sel_set_sched_flags (void)
5703{
b8698a0f 5704 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5705 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5706 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5707 sometimes change c_s_i later. So put the correct flags again. */
5708 if (spec_info && targetm.sched.set_sched_flags)
5709 targetm.sched.set_sched_flags (spec_info);
5710}
5711
5712/* Setup pointers to global sched info structures. */
5713void
5714sel_setup_sched_infos (void)
5715{
5716 rgn_setup_common_sched_info ();
5717
5718 memcpy (&sel_common_sched_info, common_sched_info,
5719 sizeof (sel_common_sched_info));
5720
5721 sel_common_sched_info.fix_recovery_cfg = NULL;
5722 sel_common_sched_info.add_block = NULL;
5723 sel_common_sched_info.estimate_number_of_insns
5724 = sel_estimate_number_of_insns;
5725 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5726 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5727
5728 common_sched_info = &sel_common_sched_info;
5729
5730 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5731 current_sched_info->sched_max_insns_priority =
e855c69d 5732 get_rgn_sched_max_insns_priority ();
b8698a0f 5733
e855c69d
AB
5734 sel_set_sched_flags ();
5735}
5736\f
5737
5738/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5739 *BB_ORD_INDEX after that is increased. */
5740static void
5741sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5742{
5743 RGN_NR_BLOCKS (rgn) += 1;
5744 RGN_DONT_CALC_DEPS (rgn) = 0;
5745 RGN_HAS_REAL_EBB (rgn) = 0;
5746 CONTAINING_RGN (bb->index) = rgn;
5747 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5748 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5749 (*bb_ord_index)++;
5750
5751 /* FIXME: it is true only when not scheduling ebbs. */
5752 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5753}
5754
5755/* Functions to support pipelining of outer loops. */
5756
5757/* Creates a new empty region and returns it's number. */
5758static int
5759sel_create_new_region (void)
5760{
5761 int new_rgn_number = nr_regions;
5762
5763 RGN_NR_BLOCKS (new_rgn_number) = 0;
5764
5765 /* FIXME: This will work only when EBBs are not created. */
5766 if (new_rgn_number != 0)
b8698a0f 5767 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5768 RGN_NR_BLOCKS (new_rgn_number - 1);
5769 else
5770 RGN_BLOCKS (new_rgn_number) = 0;
5771
5772 /* Set the blocks of the next region so the other functions may
5773 calculate the number of blocks in the region. */
b8698a0f 5774 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5775 RGN_NR_BLOCKS (new_rgn_number);
5776
5777 nr_regions++;
5778
5779 return new_rgn_number;
5780}
5781
5782/* If X has a smaller topological sort number than Y, returns -1;
5783 if greater, returns 1. */
5784static int
5785bb_top_order_comparator (const void *x, const void *y)
5786{
5787 basic_block bb1 = *(const basic_block *) x;
5788 basic_block bb2 = *(const basic_block *) y;
5789
b8698a0f
L
5790 gcc_assert (bb1 == bb2
5791 || rev_top_order_index[bb1->index]
e855c69d
AB
5792 != rev_top_order_index[bb2->index]);
5793
5794 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5795 bbs with greater number should go earlier. */
5796 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5797 return -1;
5798 else
5799 return 1;
5800}
5801
b8698a0f 5802/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5803 to pipeline LOOP, return -1. */
5804static int
5805make_region_from_loop (struct loop *loop)
5806{
5807 unsigned int i;
5808 int new_rgn_number = -1;
5809 struct loop *inner;
5810
5811 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5812 int bb_ord_index = 0;
5813 basic_block *loop_blocks;
5814 basic_block preheader_block;
5815
b8698a0f 5816 if (loop->num_nodes
e855c69d
AB
5817 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5818 return -1;
b8698a0f 5819
e855c69d
AB
5820 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5821 for (inner = loop->inner; inner; inner = inner->inner)
5822 if (flow_bb_inside_loop_p (inner, loop->latch))
5823 return -1;
5824
5825 loop->ninsns = num_loop_insns (loop);
5826 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5827 return -1;
5828
5829 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5830
5831 for (i = 0; i < loop->num_nodes; i++)
5832 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5833 {
5834 free (loop_blocks);
5835 return -1;
5836 }
5837
5838 preheader_block = loop_preheader_edge (loop)->src;
5839 gcc_assert (preheader_block);
5840 gcc_assert (loop_blocks[0] == loop->header);
5841
5842 new_rgn_number = sel_create_new_region ();
5843
5844 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5845 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5846
5847 for (i = 0; i < loop->num_nodes; i++)
5848 {
5849 /* Add only those blocks that haven't been scheduled in the inner loop.
5850 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5851 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5852 body, but to the region containing that loop body). */
5853
5854 gcc_assert (new_rgn_number >= 0);
5855
5856 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5857 {
b8698a0f 5858 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
5859 new_rgn_number);
5860 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5861 }
5862 }
5863
5864 free (loop_blocks);
5865 MARK_LOOP_FOR_PIPELINING (loop);
5866
5867 return new_rgn_number;
5868}
5869
5870/* Create a new region from preheader blocks LOOP_BLOCKS. */
5871void
5872make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5873{
5874 unsigned int i;
5875 int new_rgn_number = -1;
5876 basic_block bb;
5877
5878 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5879 int bb_ord_index = 0;
5880
5881 new_rgn_number = sel_create_new_region ();
5882
ac47786e 5883 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
e855c69d
AB
5884 {
5885 gcc_assert (new_rgn_number >= 0);
5886
5887 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5888 }
5889
5890 VEC_free (basic_block, heap, *loop_blocks);
5891 gcc_assert (*loop_blocks == NULL);
5892}
5893
5894
5895/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 5896 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
5897 is created. */
5898static bool
5899make_regions_from_loop_nest (struct loop *loop)
b8698a0f 5900{
e855c69d
AB
5901 struct loop *cur_loop;
5902 int rgn_number;
5903
5904 /* Traverse all inner nodes of the loop. */
5905 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5906 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5907 return false;
5908
5909 /* At this moment all regular inner loops should have been pipelined.
5910 Try to create a region from this loop. */
5911 rgn_number = make_region_from_loop (loop);
5912
5913 if (rgn_number < 0)
5914 return false;
5915
5916 VEC_safe_push (loop_p, heap, loop_nests, loop);
5917 return true;
5918}
5919
5920/* Initalize data structures needed. */
5921void
5922sel_init_pipelining (void)
5923{
5924 /* Collect loop information to be used in outer loops pipelining. */
5925 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5926 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5927 | LOOPS_HAVE_RECORDED_EXITS
5928 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5929 current_loop_nest = NULL;
5930
5931 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5932 sbitmap_zero (bbs_in_loop_rgns);
5933
5934 recompute_rev_top_order ();
5935}
5936
5937/* Returns a struct loop for region RGN. */
5938loop_p
5939get_loop_nest_for_rgn (unsigned int rgn)
5940{
5941 /* Regions created with extend_rgns don't have corresponding loop nests,
5942 because they don't represent loops. */
5943 if (rgn < VEC_length (loop_p, loop_nests))
5944 return VEC_index (loop_p, loop_nests, rgn);
5945 else
5946 return NULL;
5947}
5948
5949/* True when LOOP was included into pipelining regions. */
5950bool
5951considered_for_pipelining_p (struct loop *loop)
5952{
5953 if (loop_depth (loop) == 0)
5954 return false;
5955
b8698a0f
L
5956 /* Now, the loop could be too large or irreducible. Check whether its
5957 region is in LOOP_NESTS.
5958 We determine the region number of LOOP as the region number of its
5959 latch. We can't use header here, because this header could be
e855c69d
AB
5960 just removed preheader and it will give us the wrong region number.
5961 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 5962 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
5963 {
5964 int rgn = CONTAINING_RGN (loop->latch->index);
5965
5966 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5967 return true;
5968 }
b8698a0f 5969
e855c69d
AB
5970 return false;
5971}
5972
b8698a0f 5973/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
5974 for pipelining. */
5975static void
5976make_regions_from_the_rest (void)
5977{
5978 int cur_rgn_blocks;
5979 int *loop_hdr;
5980 int i;
5981
5982 basic_block bb;
5983 edge e;
5984 edge_iterator ei;
5985 int *degree;
e855c69d
AB
5986
5987 /* Index in rgn_bb_table where to start allocating new regions. */
5988 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 5989
b8698a0f 5990 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
5991 any loop or belong to irreducible loops. Prepare the data structures
5992 for extend_rgns. */
5993
5994 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5995 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5996 loop. */
5997 loop_hdr = XNEWVEC (int, last_basic_block);
5998 degree = XCNEWVEC (int, last_basic_block);
5999
6000
6001 /* For each basic block that belongs to some loop assign the number
6002 of innermost loop it belongs to. */
6003 for (i = 0; i < last_basic_block; i++)
6004 loop_hdr[i] = -1;
6005
6006 FOR_EACH_BB (bb)
6007 {
6008 if (bb->loop_father && !bb->loop_father->num == 0
6009 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6010 loop_hdr[bb->index] = bb->loop_father->num;
6011 }
6012
b8698a0f 6013 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6014 edges, that are going out of bbs that are not yet scheduled.
6015 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 6016 FOR_EACH_BB (bb)
e855c69d
AB
6017 {
6018 degree[bb->index] = 0;
6019
6020 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6021 {
6022 FOR_EACH_EDGE (e, ei, bb->preds)
6023 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6024 degree[bb->index]++;
6025 }
6026 else
6027 degree[bb->index] = -1;
6028 }
6029
6030 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6031
6032 /* Any block that did not end up in a region is placed into a region
6033 by itself. */
6034 FOR_EACH_BB (bb)
6035 if (degree[bb->index] >= 0)
6036 {
6037 rgn_bb_table[cur_rgn_blocks] = bb->index;
6038 RGN_NR_BLOCKS (nr_regions) = 1;
6039 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6040 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6041 RGN_HAS_REAL_EBB (nr_regions) = 0;
6042 CONTAINING_RGN (bb->index) = nr_regions++;
6043 BLOCK_TO_BB (bb->index) = 0;
6044 }
6045
6046 free (degree);
6047 free (loop_hdr);
6048}
6049
6050/* Free data structures used in pipelining of loops. */
6051void sel_finish_pipelining (void)
6052{
6053 loop_iterator li;
6054 struct loop *loop;
6055
6056 /* Release aux fields so we don't free them later by mistake. */
6057 FOR_EACH_LOOP (li, loop, 0)
6058 loop->aux = NULL;
6059
6060 loop_optimizer_finalize ();
6061
6062 VEC_free (loop_p, heap, loop_nests);
6063
6064 free (rev_top_order_index);
6065 rev_top_order_index = NULL;
6066}
6067
b8698a0f 6068/* This function replaces the find_rgns when
e855c69d 6069 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6070void
e855c69d
AB
6071sel_find_rgns (void)
6072{
6073 sel_init_pipelining ();
6074 extend_regions ();
6075
6076 if (current_loops)
6077 {
6078 loop_p loop;
6079 loop_iterator li;
6080
6081 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6082 ? LI_FROM_INNERMOST
6083 : LI_ONLY_INNERMOST))
6084 make_regions_from_loop_nest (loop);
6085 }
6086
6087 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6088 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6089 to irreducible loops. */
6090 make_regions_from_the_rest ();
6091
6092 /* We don't need bbs_in_loop_rgns anymore. */
6093 sbitmap_free (bbs_in_loop_rgns);
6094 bbs_in_loop_rgns = NULL;
6095}
6096
ea4d630f
AM
6097/* Add the preheader blocks from previous loop to current region taking
6098 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
e855c69d
AB
6099 This function is only used with -fsel-sched-pipelining-outer-loops. */
6100void
ea4d630f 6101sel_add_loop_preheaders (bb_vec_t *bbs)
e855c69d
AB
6102{
6103 int i;
6104 basic_block bb;
b8698a0f 6105 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6106 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6107
6108 for (i = 0;
6109 VEC_iterate (basic_block, preheader_blocks, i, bb);
6110 i++)
8ec4d0ad 6111 {
ea4d630f 6112 VEC_safe_push (basic_block, heap, *bbs, bb);
8ec4d0ad 6113 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6114 sel_add_bb (bb);
8ec4d0ad 6115 }
e855c69d
AB
6116
6117 VEC_free (basic_block, heap, preheader_blocks);
6118}
6119
b8698a0f
L
6120/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6121 Please note that the function should also work when pipelining_p is
6122 false, because it is used when deciding whether we should or should
e855c69d
AB
6123 not reschedule pipelined code. */
6124bool
6125sel_is_loop_preheader_p (basic_block bb)
6126{
6127 if (current_loop_nest)
6128 {
6129 struct loop *outer;
6130
6131 if (preheader_removed)
6132 return false;
6133
6134 /* Preheader is the first block in the region. */
6135 if (BLOCK_TO_BB (bb->index) == 0)
6136 return true;
6137
6138 /* We used to find a preheader with the topological information.
6139 Check that the above code is equivalent to what we did before. */
6140
6141 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6142 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6143 < BLOCK_TO_BB (current_loop_nest->header->index)));
6144
6145 /* Support the situation when the latch block of outer loop
6146 could be from here. */
6147 for (outer = loop_outer (current_loop_nest);
6148 outer;
6149 outer = loop_outer (outer))
6150 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6151 gcc_unreachable ();
6152 }
6153
6154 return false;
6155}
6156
753de8cf
AM
6157/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6158 can be removed, making the corresponding edge fallthrough (assuming that
6159 all basic blocks between JUMP_BB and DEST_BB are empty). */
6160static bool
6161bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6162{
b4550bf7
AM
6163 if (!onlyjump_p (BB_END (jump_bb))
6164 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6165 return false;
6166
b8698a0f 6167 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6168 not DEST_BB. */
6169 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6170 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6171 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6172 return false;
6173
6174 /* If not anything of the upper. */
6175 return true;
6176}
6177
6178/* Removes the loop preheader from the current region and saves it in
b8698a0f 6179 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6180 region that represents an outer loop. */
6181static void
6182sel_remove_loop_preheader (void)
6183{
6184 int i, old_len;
6185 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6186 basic_block bb;
6187 bool all_empty_p = true;
b8698a0f 6188 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6189 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6190
6191 gcc_assert (current_loop_nest);
6192 old_len = VEC_length (basic_block, preheader_blocks);
6193
6194 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6195 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6196 {
6197 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6198
b8698a0f 6199 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6200 corresponding loop, then it should be a preheader. */
6201 if (sel_is_loop_preheader_p (bb))
6202 {
6203 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6204 if (BB_END (bb) != bb_note (bb))
6205 all_empty_p = false;
6206 }
6207 }
b8698a0f 6208
e855c69d
AB
6209 /* Remove these blocks only after iterating over the whole region. */
6210 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6211 i >= old_len;
6212 i--)
6213 {
b8698a0f 6214 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6215 sel_remove_bb (bb, false);
6216 }
6217
6218 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6219 {
6220 if (!all_empty_p)
6221 /* Immediately create new region from preheader. */
6222 make_region_from_loop_preheader (&preheader_blocks);
6223 else
6224 {
6225 /* If all preheader blocks are empty - dont create new empty region.
6226 Instead, remove them completely. */
ac47786e 6227 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
e855c69d
AB
6228 {
6229 edge e;
6230 edge_iterator ei;
6231 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6232
6233 /* Redirect all incoming edges to next basic block. */
6234 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6235 {
6236 if (! (e->flags & EDGE_FALLTHRU))
6237 redirect_edge_and_branch (e, bb->next_bb);
6238 else
6239 redirect_edge_succ (e, bb->next_bb);
6240 }
6241 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6242 delete_and_free_basic_block (bb);
6243
b8698a0f
L
6244 /* Check if after deleting preheader there is a nonconditional
6245 jump in PREV_BB that leads to the next basic block NEXT_BB.
6246 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6247 basic block if it becomes empty. */
6248 if (next_bb->prev_bb == prev_bb
6249 && prev_bb != ENTRY_BLOCK_PTR
753de8cf 6250 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6251 {
6252 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6253 if (BB_END (prev_bb) == bb_note (prev_bb))
6254 free_data_sets (prev_bb);
6255 }
00c4e97c
AB
6256
6257 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6258 recompute_dominator (CDI_DOMINATORS,
6259 next_bb));
e855c69d
AB
6260 }
6261 }
6262 VEC_free (basic_block, heap, preheader_blocks);
6263 }
6264 else
6265 /* Store preheader within the father's loop structure. */
6266 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6267 preheader_blocks);
6268}
6269#endif