]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
re PR middle-end/55150 (Crash in copy_rtx)
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
5ef5a3b7 2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
86014d07 3 Free Software Foundation, Inc.
e855c69d
AB
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
718f9c0f 25#include "diagnostic-core.h"
e855c69d
AB
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "regs.h"
30#include "function.h"
31#include "flags.h"
32#include "insn-config.h"
33#include "insn-attr.h"
34#include "except.h"
e855c69d
AB
35#include "recog.h"
36#include "params.h"
37#include "target.h"
e855c69d
AB
38#include "sched-int.h"
39#include "ggc.h"
40#include "tree.h"
41#include "vec.h"
42#include "langhooks.h"
43#include "rtlhooks-def.h"
5936d944 44#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
45
46#ifdef INSN_SCHEDULING
47#include "sel-sched-ir.h"
48/* We don't have to use it except for sel_print_insn. */
49#include "sel-sched-dump.h"
50
51/* A vector holding bb info for whole scheduling pass. */
52VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
53
54/* A vector holding bb info. */
55VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
56
57/* A pool for allocating all lists. */
58alloc_pool sched_lists_pool;
59
60/* This contains information about successors for compute_av_set. */
61struct succs_info current_succs;
62
63/* Data structure to describe interaction with the generic scheduler utils. */
64static struct common_sched_info_def sel_common_sched_info;
65
66/* The loop nest being pipelined. */
67struct loop *current_loop_nest;
68
69/* LOOP_NESTS is a vector containing the corresponding loop nest for
70 each region. */
71static VEC(loop_p, heap) *loop_nests = NULL;
72
73/* Saves blocks already in loop regions, indexed by bb->index. */
74static sbitmap bbs_in_loop_rgns = NULL;
75
76/* CFG hooks that are saved before changing create_basic_block hook. */
77static struct cfg_hooks orig_cfg_hooks;
78\f
79
80/* Array containing reverse topological index of function basic blocks,
81 indexed by BB->INDEX. */
82static int *rev_top_order_index = NULL;
83
84/* Length of the above array. */
85static int rev_top_order_index_len = -1;
86
87/* A regset pool structure. */
88static struct
89{
90 /* The stack to which regsets are returned. */
91 regset *v;
92
93 /* Its pointer. */
94 int n;
95
96 /* Its size. */
97 int s;
98
99 /* In VV we save all generated regsets so that, when destructing the
100 pool, we can compare it with V and check that every regset was returned
101 back to pool. */
102 regset *vv;
103
104 /* The pointer of VV stack. */
105 int nn;
106
107 /* Its size. */
108 int ss;
109
110 /* The difference between allocated and returned regsets. */
111 int diff;
112} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
113
114/* This represents the nop pool. */
115static struct
116{
117 /* The vector which holds previously emitted nops. */
118 insn_t *v;
119
120 /* Its pointer. */
121 int n;
122
123 /* Its size. */
b8698a0f 124 int s;
e855c69d
AB
125} nop_pool = { NULL, 0, 0 };
126
127/* The pool for basic block notes. */
128static rtx_vec_t bb_note_pool;
129
130/* A NOP pattern used to emit placeholder insns. */
131rtx nop_pattern = NULL_RTX;
132/* A special instruction that resides in EXIT_BLOCK.
133 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
134rtx exit_insn = NULL_RTX;
135
b8698a0f 136/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
137 was removed. */
138bool preheader_removed = false;
139\f
140
141/* Forward static declarations. */
142static void fence_clear (fence_t);
143
144static void deps_init_id (idata_t, insn_t, bool);
145static void init_id_from_df (idata_t, insn_t, bool);
146static expr_t set_insn_init (expr_t, vinsn_t, int);
147
148static void cfg_preds (basic_block, insn_t **, int *);
149static void prepare_insn_expr (insn_t, int);
150static void free_history_vect (VEC (expr_history_def, heap) **);
151
152static void move_bb_info (basic_block, basic_block);
153static void remove_empty_bb (basic_block, bool);
262d8232 154static void sel_merge_blocks (basic_block, basic_block);
e855c69d 155static void sel_remove_loop_preheader (void);
753de8cf 156static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
157
158static bool insn_is_the_only_one_in_bb_p (insn_t);
159static void create_initial_data_sets (basic_block);
160
b5b8b0ac 161static void free_av_set (basic_block);
e855c69d
AB
162static void invalidate_av_set (basic_block);
163static void extend_insn_data (void);
164static void sel_init_new_insn (insn_t, int);
165static void finish_insns (void);
166\f
167/* Various list functions. */
168
169/* Copy an instruction list L. */
170ilist_t
171ilist_copy (ilist_t l)
172{
173 ilist_t head = NULL, *tailp = &head;
174
175 while (l)
176 {
177 ilist_add (tailp, ILIST_INSN (l));
178 tailp = &ILIST_NEXT (*tailp);
179 l = ILIST_NEXT (l);
180 }
181
182 return head;
183}
184
185/* Invert an instruction list L. */
186ilist_t
187ilist_invert (ilist_t l)
188{
189 ilist_t res = NULL;
190
191 while (l)
192 {
193 ilist_add (&res, ILIST_INSN (l));
194 l = ILIST_NEXT (l);
195 }
196
197 return res;
198}
199
200/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
201void
202blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
203{
204 bnd_t bnd;
205
206 _list_add (lp);
207 bnd = BLIST_BND (*lp);
208
209 BND_TO (bnd) = to;
210 BND_PTR (bnd) = ptr;
211 BND_AV (bnd) = NULL;
212 BND_AV1 (bnd) = NULL;
213 BND_DC (bnd) = dc;
214}
215
216/* Remove the list note pointed to by LP. */
217void
218blist_remove (blist_t *lp)
219{
220 bnd_t b = BLIST_BND (*lp);
221
222 av_set_clear (&BND_AV (b));
223 av_set_clear (&BND_AV1 (b));
224 ilist_clear (&BND_PTR (b));
225
226 _list_remove (lp);
227}
228
229/* Init a fence tail L. */
230void
231flist_tail_init (flist_tail_t l)
232{
233 FLIST_TAIL_HEAD (l) = NULL;
234 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
235}
236
237/* Try to find fence corresponding to INSN in L. */
238fence_t
239flist_lookup (flist_t l, insn_t insn)
240{
241 while (l)
242 {
243 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
244 return FLIST_FENCE (l);
245
246 l = FLIST_NEXT (l);
247 }
248
249 return NULL;
250}
251
252/* Init the fields of F before running fill_insns. */
253static void
254init_fence_for_scheduling (fence_t f)
255{
256 FENCE_BNDS (f) = NULL;
257 FENCE_PROCESSED_P (f) = false;
258 FENCE_SCHEDULED_P (f) = false;
259}
260
261/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
262static void
b8698a0f
L
263flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
264 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
265 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 266 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
267 bool starts_cycle_p, bool after_stall_p)
268{
269 fence_t f;
270
271 _list_add (lp);
272 f = FLIST_FENCE (*lp);
273
274 FENCE_INSN (f) = insn;
275
276 gcc_assert (state != NULL);
277 FENCE_STATE (f) = state;
278
279 FENCE_CYCLE (f) = cycle;
280 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
281 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
282 FENCE_AFTER_STALL_P (f) = after_stall_p;
283
284 gcc_assert (dc != NULL);
285 FENCE_DC (f) = dc;
286
287 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
288 FENCE_TC (f) = tc;
289
290 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 291 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
292 FENCE_EXECUTING_INSNS (f) = executing_insns;
293 FENCE_READY_TICKS (f) = ready_ticks;
294 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
295 FENCE_SCHED_NEXT (f) = sched_next;
296
297 init_fence_for_scheduling (f);
298}
299
300/* Remove the head node of the list pointed to by LP. */
301static void
302flist_remove (flist_t *lp)
303{
304 if (FENCE_INSN (FLIST_FENCE (*lp)))
305 fence_clear (FLIST_FENCE (*lp));
306 _list_remove (lp);
307}
308
309/* Clear the fence list pointed to by LP. */
310void
311flist_clear (flist_t *lp)
312{
313 while (*lp)
314 flist_remove (lp);
315}
316
317/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
318void
319def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
320{
321 def_t d;
b8698a0f 322
e855c69d
AB
323 _list_add (dl);
324 d = DEF_LIST_DEF (*dl);
325
326 d->orig_insn = original_insn;
327 d->crosses_call = crosses_call;
328}
329\f
330
331/* Functions to work with target contexts. */
332
b8698a0f 333/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
334 that there are no uninitialized (null) target contexts. */
335static tc_t bulk_tc = (tc_t) 1;
336
b8698a0f 337/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
338 implementations for them. */
339
340/* Allocate a store for the target context. */
341static tc_t
342alloc_target_context (void)
343{
344 return (targetm.sched.alloc_sched_context
345 ? targetm.sched.alloc_sched_context () : bulk_tc);
346}
347
348/* Init target context TC.
349 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
350 Overwise, copy current backend context to TC. */
351static void
352init_target_context (tc_t tc, bool clean_p)
353{
354 if (targetm.sched.init_sched_context)
355 targetm.sched.init_sched_context (tc, clean_p);
356}
357
358/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
359 int init_target_context (). */
360tc_t
361create_target_context (bool clean_p)
362{
363 tc_t tc = alloc_target_context ();
364
365 init_target_context (tc, clean_p);
366 return tc;
367}
368
369/* Copy TC to the current backend context. */
370void
371set_target_context (tc_t tc)
372{
373 if (targetm.sched.set_sched_context)
374 targetm.sched.set_sched_context (tc);
375}
376
377/* TC is about to be destroyed. Free any internal data. */
378static void
379clear_target_context (tc_t tc)
380{
381 if (targetm.sched.clear_sched_context)
382 targetm.sched.clear_sched_context (tc);
383}
384
385/* Clear and free it. */
386static void
387delete_target_context (tc_t tc)
388{
389 clear_target_context (tc);
390
391 if (targetm.sched.free_sched_context)
392 targetm.sched.free_sched_context (tc);
393}
394
395/* Make a copy of FROM in TO.
396 NB: May be this should be a hook. */
397static void
398copy_target_context (tc_t to, tc_t from)
399{
400 tc_t tmp = create_target_context (false);
401
402 set_target_context (from);
403 init_target_context (to, false);
404
405 set_target_context (tmp);
406 delete_target_context (tmp);
407}
408
409/* Create a copy of TC. */
410static tc_t
411create_copy_of_target_context (tc_t tc)
412{
413 tc_t copy = alloc_target_context ();
414
415 copy_target_context (copy, tc);
416
417 return copy;
418}
419
420/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
421 is the same as in init_target_context (). */
422void
423reset_target_context (tc_t tc, bool clean_p)
424{
425 clear_target_context (tc);
426 init_target_context (tc, clean_p);
427}
428\f
b8698a0f 429/* Functions to work with dependence contexts.
88302d54 430 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
431 context. It accumulates information about processed insns to decide if
432 current insn is dependent on the processed ones. */
433
434/* Make a copy of FROM in TO. */
435static void
436copy_deps_context (deps_t to, deps_t from)
437{
bcf33775 438 init_deps (to, false);
e855c69d
AB
439 deps_join (to, from);
440}
441
442/* Allocate store for dep context. */
443static deps_t
444alloc_deps_context (void)
445{
88302d54 446 return XNEW (struct deps_desc);
e855c69d
AB
447}
448
449/* Allocate and initialize dep context. */
450static deps_t
451create_deps_context (void)
452{
453 deps_t dc = alloc_deps_context ();
454
bcf33775 455 init_deps (dc, false);
e855c69d
AB
456 return dc;
457}
458
459/* Create a copy of FROM. */
460static deps_t
461create_copy_of_deps_context (deps_t from)
462{
463 deps_t to = alloc_deps_context ();
464
465 copy_deps_context (to, from);
466 return to;
467}
468
469/* Clean up internal data of DC. */
470static void
471clear_deps_context (deps_t dc)
472{
473 free_deps (dc);
474}
475
476/* Clear and free DC. */
477static void
478delete_deps_context (deps_t dc)
479{
480 clear_deps_context (dc);
481 free (dc);
482}
483
484/* Clear and init DC. */
485static void
486reset_deps_context (deps_t dc)
487{
488 clear_deps_context (dc);
bcf33775 489 init_deps (dc, false);
e855c69d
AB
490}
491
b8698a0f 492/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
493 dependence context. */
494static struct sched_deps_info_def advance_deps_context_sched_deps_info =
495 {
496 NULL,
497
498 NULL, /* start_insn */
499 NULL, /* finish_insn */
500 NULL, /* start_lhs */
501 NULL, /* finish_lhs */
502 NULL, /* start_rhs */
503 NULL, /* finish_rhs */
504 haifa_note_reg_set,
505 haifa_note_reg_clobber,
506 haifa_note_reg_use,
507 NULL, /* note_mem_dep */
508 NULL, /* note_dep */
509
510 0, 0, 0
511 };
512
513/* Process INSN and add its impact on DC. */
514void
515advance_deps_context (deps_t dc, insn_t insn)
516{
517 sched_deps_info = &advance_deps_context_sched_deps_info;
518 deps_analyze_insn (dc, insn);
519}
520\f
521
522/* Functions to work with DFA states. */
523
524/* Allocate store for a DFA state. */
525static state_t
526state_alloc (void)
527{
528 return xmalloc (dfa_state_size);
529}
530
531/* Allocate and initialize DFA state. */
532static state_t
533state_create (void)
534{
535 state_t state = state_alloc ();
536
537 state_reset (state);
538 advance_state (state);
539 return state;
540}
541
542/* Free DFA state. */
543static void
544state_free (state_t state)
545{
546 free (state);
547}
548
549/* Make a copy of FROM in TO. */
550static void
551state_copy (state_t to, state_t from)
552{
553 memcpy (to, from, dfa_state_size);
554}
555
556/* Create a copy of FROM. */
557static state_t
558state_create_copy (state_t from)
559{
560 state_t to = state_alloc ();
561
562 state_copy (to, from);
563 return to;
564}
565\f
566
567/* Functions to work with fences. */
568
569/* Clear the fence. */
570static void
571fence_clear (fence_t f)
572{
573 state_t s = FENCE_STATE (f);
574 deps_t dc = FENCE_DC (f);
575 void *tc = FENCE_TC (f);
576
577 ilist_clear (&FENCE_BNDS (f));
578
579 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
580 || (s == NULL && dc == NULL && tc == NULL));
581
04695783 582 free (s);
e855c69d
AB
583
584 if (dc != NULL)
585 delete_deps_context (dc);
586
587 if (tc != NULL)
588 delete_target_context (tc);
589 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
590 free (FENCE_READY_TICKS (f));
591 FENCE_READY_TICKS (f) = NULL;
592}
593
594/* Init a list of fences with successors of OLD_FENCE. */
595void
596init_fences (insn_t old_fence)
597{
598 insn_t succ;
599 succ_iterator si;
600 bool first = true;
601 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
602
603 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
604 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
605 {
b8698a0f 606
e855c69d
AB
607 if (first)
608 first = false;
609 else
610 gcc_assert (flag_sel_sched_pipelining_outer_loops);
611
612 flist_add (&fences, succ,
613 state_create (),
614 create_deps_context () /* dc */,
615 create_target_context (true) /* tc */,
b8698a0f 616 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
617 NULL, /* executing_insns */
618 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
619 ready_ticks_size,
620 NULL_RTX /* sched_next */,
b8698a0f 621 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 622 issue_rate, /* issue_more */
b8698a0f 623 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
624 }
625}
626
627/* Merges two fences (filling fields of fence F with resulting values) by
628 following rules: 1) state, target context and last scheduled insn are
b8698a0f 629 propagated from fallthrough edge if it is available;
e855c69d 630 2) deps context and cycle is propagated from more probable edge;
b8698a0f 631 3) all other fields are set to corresponding constant values.
e855c69d 632
b8698a0f 633 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
634 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
635 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
636static void
637merge_fences (fence_t f, insn_t insn,
b8698a0f 638 state_t state, deps_t dc, void *tc,
e855c69d
AB
639 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
640 int *ready_ticks, int ready_ticks_size,
136e01a3 641 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
642{
643 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
644
645 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
646 && !sched_next && !FENCE_SCHED_NEXT (f));
647
b8698a0f 648 /* Check if we can decide which path fences came.
e855c69d
AB
649 If we can't (or don't want to) - reset all. */
650 if (last_scheduled_insn == NULL
651 || last_scheduled_insn_old == NULL
b8698a0f
L
652 /* This is a case when INSN is reachable on several paths from
653 one insn (this can happen when pipelining of outer loops is on and
654 there are two edges: one going around of inner loop and the other -
e855c69d
AB
655 right through it; in such case just reset everything). */
656 || last_scheduled_insn == last_scheduled_insn_old)
657 {
658 state_reset (FENCE_STATE (f));
659 state_free (state);
b8698a0f 660
e855c69d
AB
661 reset_deps_context (FENCE_DC (f));
662 delete_deps_context (dc);
b8698a0f 663
e855c69d
AB
664 reset_target_context (FENCE_TC (f), true);
665 delete_target_context (tc);
666
667 if (cycle > FENCE_CYCLE (f))
668 FENCE_CYCLE (f) = cycle;
669
670 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 671 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
672 VEC_free (rtx, gc, executing_insns);
673 free (ready_ticks);
674 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 675 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
676 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
677 if (FENCE_READY_TICKS (f))
678 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
679 }
680 else
681 {
682 edge edge_old = NULL, edge_new = NULL;
683 edge candidate;
684 succ_iterator si;
685 insn_t succ;
b8698a0f 686
e855c69d
AB
687 /* Find fallthrough edge. */
688 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 689 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
690
691 if (!candidate
692 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
693 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
694 {
695 /* No fallthrough edge leading to basic block of INSN. */
696 state_reset (FENCE_STATE (f));
697 state_free (state);
b8698a0f 698
e855c69d
AB
699 reset_target_context (FENCE_TC (f), true);
700 delete_target_context (tc);
b8698a0f 701
e855c69d 702 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 703 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
704 }
705 else
706 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
707 {
b8698a0f 708 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
709 edges. */
710 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
711 != BLOCK_FOR_INSN (last_scheduled_insn_old));
712
713 state_free (FENCE_STATE (f));
714 FENCE_STATE (f) = state;
715
716 delete_target_context (FENCE_TC (f));
717 FENCE_TC (f) = tc;
718
719 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 720 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
721 }
722 else
723 {
724 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
725 state_free (state);
726 delete_target_context (tc);
727
728 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
729 != BLOCK_FOR_INSN (last_scheduled_insn));
730 }
731
732 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
733 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
734 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
735 {
736 if (succ == insn)
737 {
738 /* No same successor allowed from several edges. */
739 gcc_assert (!edge_old);
740 edge_old = si.e1;
741 }
742 }
743 /* Find edge of second predecessor (last_scheduled_insn->insn). */
744 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
745 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
746 {
747 if (succ == insn)
748 {
749 /* No same successor allowed from several edges. */
750 gcc_assert (!edge_new);
751 edge_new = si.e1;
752 }
753 }
754
755 /* Check if we can choose most probable predecessor. */
756 if (edge_old == NULL || edge_new == NULL)
757 {
758 reset_deps_context (FENCE_DC (f));
759 delete_deps_context (dc);
760 VEC_free (rtx, gc, executing_insns);
761 free (ready_ticks);
b8698a0f 762
e855c69d
AB
763 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
764 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 765 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
766 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
767 if (FENCE_READY_TICKS (f))
768 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
769 }
770 else
771 if (edge_new->probability > edge_old->probability)
772 {
773 delete_deps_context (FENCE_DC (f));
774 FENCE_DC (f) = dc;
775 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
776 FENCE_EXECUTING_INSNS (f) = executing_insns;
777 free (FENCE_READY_TICKS (f));
778 FENCE_READY_TICKS (f) = ready_ticks;
779 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
780 FENCE_CYCLE (f) = cycle;
781 }
782 else
783 {
784 /* Leave DC and CYCLE untouched. */
785 delete_deps_context (dc);
786 VEC_free (rtx, gc, executing_insns);
787 free (ready_ticks);
788 }
789 }
790
791 /* Fill remaining invariant fields. */
792 if (after_stall_p)
793 FENCE_AFTER_STALL_P (f) = 1;
794
795 FENCE_ISSUED_INSNS (f) = 0;
796 FENCE_STARTS_CYCLE_P (f) = 1;
797 FENCE_SCHED_NEXT (f) = NULL;
798}
799
b8698a0f 800/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
801 other parameters. */
802static void
803add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
804 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
805 VEC(rtx, gc) *executing_insns, int *ready_ticks,
806 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
807 int cycle_issued_insns, int issue_rate,
808 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
809{
810 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
811
812 if (! f)
813 {
814 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 815 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 816 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 817 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
818
819 FLIST_TAIL_TAILP (new_fences)
820 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
821 }
822 else
823 {
b8698a0f
L
824 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
825 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 826 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
827 }
828}
829
830/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
831void
832move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
833{
834 fence_t f, old;
835 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
836
837 old = FLIST_FENCE (old_fences);
b8698a0f 838 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
839 FENCE_INSN (FLIST_FENCE (old_fences)));
840 if (f)
841 {
842 merge_fences (f, old->insn, old->state, old->dc, old->tc,
843 old->last_scheduled_insn, old->executing_insns,
844 old->ready_ticks, old->ready_ticks_size,
136e01a3 845 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
846 old->after_stall_p);
847 }
848 else
849 {
850 _list_add (tailp);
851 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
852 *FLIST_FENCE (*tailp) = *old;
853 init_fence_for_scheduling (FLIST_FENCE (*tailp));
854 }
855 FENCE_INSN (old) = NULL;
856}
857
b8698a0f 858/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
859 as a clean one. */
860void
861add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
862{
863 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 864
e855c69d
AB
865 add_to_fences (new_fences,
866 succ, state_create (), create_deps_context (),
867 create_target_context (true),
b8698a0f 868 NULL_RTX, NULL,
e855c69d
AB
869 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
870 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 871 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
872}
873
b8698a0f 874/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
875 from FENCE and SUCC. */
876void
877add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
878{
b8698a0f 879 int * new_ready_ticks
e855c69d 880 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 881
e855c69d
AB
882 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
883 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
884 add_to_fences (new_fences,
885 succ, state_create_copy (FENCE_STATE (fence)),
886 create_copy_of_deps_context (FENCE_DC (fence)),
887 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 888 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
889 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
890 new_ready_ticks,
891 FENCE_READY_TICKS_SIZE (fence),
892 FENCE_SCHED_NEXT (fence),
893 FENCE_CYCLE (fence),
894 FENCE_ISSUED_INSNS (fence),
136e01a3 895 FENCE_ISSUE_MORE (fence),
e855c69d
AB
896 FENCE_STARTS_CYCLE_P (fence),
897 FENCE_AFTER_STALL_P (fence));
898}
899\f
900
901/* Functions to work with regset and nop pools. */
902
903/* Returns the new regset from pool. It might have some of the bits set
904 from the previous usage. */
905regset
906get_regset_from_pool (void)
907{
908 regset rs;
909
910 if (regset_pool.n != 0)
911 rs = regset_pool.v[--regset_pool.n];
912 else
913 /* We need to create the regset. */
914 {
915 rs = ALLOC_REG_SET (&reg_obstack);
916
917 if (regset_pool.nn == regset_pool.ss)
918 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
919 (regset_pool.ss = 2 * regset_pool.ss + 1));
920 regset_pool.vv[regset_pool.nn++] = rs;
921 }
922
923 regset_pool.diff++;
924
925 return rs;
926}
927
928/* Same as above, but returns the empty regset. */
929regset
930get_clear_regset_from_pool (void)
931{
932 regset rs = get_regset_from_pool ();
933
934 CLEAR_REG_SET (rs);
935 return rs;
936}
937
938/* Return regset RS to the pool for future use. */
939void
940return_regset_to_pool (regset rs)
941{
9ef1bf71 942 gcc_assert (rs);
e855c69d
AB
943 regset_pool.diff--;
944
945 if (regset_pool.n == regset_pool.s)
946 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
947 (regset_pool.s = 2 * regset_pool.s + 1));
948 regset_pool.v[regset_pool.n++] = rs;
949}
950
68ad446f 951#ifdef ENABLE_CHECKING
e855c69d
AB
952/* This is used as a qsort callback for sorting regset pool stacks.
953 X and XX are addresses of two regsets. They are never equal. */
954static int
955cmp_v_in_regset_pool (const void *x, const void *xx)
956{
d38933a0
SB
957 uintptr_t r1 = (uintptr_t) *((const regset *) x);
958 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
959 if (r1 > r2)
960 return 1;
961 else if (r1 < r2)
962 return -1;
963 gcc_unreachable ();
e855c69d 964}
68ad446f 965#endif
e855c69d
AB
966
967/* Free the regset pool possibly checking for memory leaks. */
968void
969free_regset_pool (void)
970{
971#ifdef ENABLE_CHECKING
972 {
973 regset *v = regset_pool.v;
974 int i = 0;
975 int n = regset_pool.n;
b8698a0f 976
e855c69d
AB
977 regset *vv = regset_pool.vv;
978 int ii = 0;
979 int nn = regset_pool.nn;
b8698a0f 980
e855c69d 981 int diff = 0;
b8698a0f 982
e855c69d 983 gcc_assert (n <= nn);
b8698a0f 984
e855c69d
AB
985 /* Sort both vectors so it will be possible to compare them. */
986 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
987 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 988
e855c69d
AB
989 while (ii < nn)
990 {
991 if (v[i] == vv[ii])
992 i++;
993 else
994 /* VV[II] was lost. */
995 diff++;
b8698a0f 996
e855c69d
AB
997 ii++;
998 }
b8698a0f 999
e855c69d
AB
1000 gcc_assert (diff == regset_pool.diff);
1001 }
1002#endif
b8698a0f 1003
e855c69d
AB
1004 /* If not true - we have a memory leak. */
1005 gcc_assert (regset_pool.diff == 0);
b8698a0f 1006
e855c69d
AB
1007 while (regset_pool.n)
1008 {
1009 --regset_pool.n;
1010 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1011 }
1012
1013 free (regset_pool.v);
1014 regset_pool.v = NULL;
1015 regset_pool.s = 0;
b8698a0f 1016
e855c69d
AB
1017 free (regset_pool.vv);
1018 regset_pool.vv = NULL;
1019 regset_pool.nn = 0;
1020 regset_pool.ss = 0;
1021
1022 regset_pool.diff = 0;
1023}
1024\f
1025
b8698a0f
L
1026/* Functions to work with nop pools. NOP insns are used as temporary
1027 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1028 the data sets. When update is finished, NOPs are deleted. */
1029
1030/* A vinsn that is used to represent a nop. This vinsn is shared among all
1031 nops sel-sched generates. */
1032static vinsn_t nop_vinsn = NULL;
1033
1034/* Emit a nop before INSN, taking it from pool. */
1035insn_t
1036get_nop_from_pool (insn_t insn)
1037{
1038 insn_t nop;
1039 bool old_p = nop_pool.n != 0;
1040 int flags;
1041
1042 if (old_p)
1043 nop = nop_pool.v[--nop_pool.n];
1044 else
1045 nop = nop_pattern;
1046
1047 nop = emit_insn_before (nop, insn);
1048
1049 if (old_p)
1050 flags = INSN_INIT_TODO_SSID;
1051 else
1052 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1053
1054 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1055 sel_init_new_insn (nop, flags);
1056
1057 return nop;
1058}
1059
1060/* Remove NOP from the instruction stream and return it to the pool. */
1061void
b5b8b0ac 1062return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1063{
1064 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1065 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1066
1067 if (nop_pool.n == nop_pool.s)
b8698a0f 1068 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1069 (nop_pool.s = 2 * nop_pool.s + 1));
1070 nop_pool.v[nop_pool.n++] = nop;
1071}
1072
1073/* Free the nop pool. */
1074void
1075free_nop_pool (void)
1076{
1077 nop_pool.n = 0;
1078 nop_pool.s = 0;
1079 free (nop_pool.v);
1080 nop_pool.v = NULL;
1081}
1082\f
1083
b8698a0f 1084/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1085 The callback is given two rtxes XX and YY and writes the new rtxes
1086 to NX and NY in case some needs to be skipped. */
1087static int
1088skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089{
1090 const_rtx x = *xx;
1091 const_rtx y = *yy;
b8698a0f 1092
e855c69d
AB
1093 if (GET_CODE (x) == UNSPEC
1094 && (targetm.sched.skip_rtx_p == NULL
1095 || targetm.sched.skip_rtx_p (x)))
1096 {
1097 *nx = XVECEXP (x, 0, 0);
1098 *ny = CONST_CAST_RTX (y);
1099 return 1;
1100 }
b8698a0f 1101
e855c69d
AB
1102 if (GET_CODE (y) == UNSPEC
1103 && (targetm.sched.skip_rtx_p == NULL
1104 || targetm.sched.skip_rtx_p (y)))
1105 {
1106 *nx = CONST_CAST_RTX (x);
1107 *ny = XVECEXP (y, 0, 0);
1108 return 1;
1109 }
b8698a0f 1110
e855c69d
AB
1111 return 0;
1112}
1113
b8698a0f 1114/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1115 to support ia64 speculation. When changes are needed, new rtx X and new mode
1116 NMODE are written, and the callback returns true. */
1117static int
1118hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1119 rtx *nx, enum machine_mode* nmode)
1120{
b8698a0f 1121 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1122 && targetm.sched.skip_rtx_p
1123 && targetm.sched.skip_rtx_p (x))
1124 {
1125 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1126 *nmode = VOIDmode;
e855c69d
AB
1127 return 1;
1128 }
b8698a0f 1129
e855c69d
AB
1130 return 0;
1131}
1132
1133/* Returns LHS and RHS are ok to be scheduled separately. */
1134static bool
1135lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136{
1137 if (lhs == NULL || rhs == NULL)
1138 return false;
1139
b8698a0f
L
1140 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1141 to use reg, if const can be used. Moreover, scheduling const as rhs may
1142 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1143 merged from branches where the same const used in different modes. */
1144 if (CONSTANT_P (rhs))
1145 return false;
1146
1147 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1148 if (COMPARISON_P (rhs))
1149 return false;
1150
1151 /* Do not allow single REG to be an rhs. */
1152 if (REG_P (rhs))
1153 return false;
1154
b8698a0f 1155 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1156 restriction. */
1157 /* FIXME: remove this later. */
1158 if (MEM_P (lhs))
1159 return false;
1160
1161 /* This will filter all tricky things like ZERO_EXTRACT etc.
1162 For now we don't handle it. */
1163 if (!REG_P (lhs) && !MEM_P (lhs))
1164 return false;
1165
1166 return true;
1167}
1168
b8698a0f
L
1169/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1170 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1171 used e.g. for insns from recovery blocks. */
1172static void
1173vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174{
1175 hash_rtx_callback_function hrcf;
1176 int insn_class;
1177
1178 VINSN_INSN_RTX (vi) = insn;
1179 VINSN_COUNT (vi) = 0;
1180 vi->cost = -1;
b8698a0f 1181
9ef1bf71
AM
1182 if (INSN_NOP_P (insn))
1183 return;
1184
e855c69d
AB
1185 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187 else
1188 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1189
e855c69d
AB
1190 /* Hash vinsn depending on whether it is separable or not. */
1191 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192 if (VINSN_SEPARABLE_P (vi))
1193 {
1194 rtx rhs = VINSN_RHS (vi);
1195
1196 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199 VOIDmode, NULL, NULL,
1200 false, hrcf);
1201 }
1202 else
1203 {
1204 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205 NULL, NULL, false, hrcf);
1206 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1207 }
b8698a0f 1208
e855c69d
AB
1209 insn_class = haifa_classify_insn (insn);
1210 if (insn_class >= 2
1211 && (!targetm.sched.get_insn_spec_ds
1212 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213 == 0)))
1214 VINSN_MAY_TRAP_P (vi) = true;
1215 else
1216 VINSN_MAY_TRAP_P (vi) = false;
1217}
1218
1219/* Indicate that VI has become the part of an rtx object. */
1220void
1221vinsn_attach (vinsn_t vi)
1222{
1223 /* Assert that VI is not pending for deletion. */
1224 gcc_assert (VINSN_INSN_RTX (vi));
1225
1226 VINSN_COUNT (vi)++;
1227}
1228
b8698a0f 1229/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1230 VINSN_TYPE (VI). */
1231static vinsn_t
1232vinsn_create (insn_t insn, bool force_unique_p)
1233{
1234 vinsn_t vi = XCNEW (struct vinsn_def);
1235
1236 vinsn_init (vi, insn, force_unique_p);
1237 return vi;
1238}
1239
1240/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1241 the copy. */
b8698a0f 1242vinsn_t
e855c69d
AB
1243vinsn_copy (vinsn_t vi, bool reattach_p)
1244{
1245 rtx copy;
1246 bool unique = VINSN_UNIQUE_P (vi);
1247 vinsn_t new_vi;
b8698a0f 1248
e855c69d
AB
1249 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251 if (reattach_p)
1252 {
1253 vinsn_detach (vi);
1254 vinsn_attach (new_vi);
1255 }
1256
1257 return new_vi;
1258}
1259
1260/* Delete the VI vinsn and free its data. */
1261static void
1262vinsn_delete (vinsn_t vi)
1263{
1264 gcc_assert (VINSN_COUNT (vi) == 0);
1265
9ef1bf71
AM
1266 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267 {
1268 return_regset_to_pool (VINSN_REG_SETS (vi));
1269 return_regset_to_pool (VINSN_REG_USES (vi));
1270 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1271 }
e855c69d
AB
1272
1273 free (vi);
1274}
1275
b8698a0f 1276/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1277 Remove VI if it is no longer needed. */
1278void
1279vinsn_detach (vinsn_t vi)
1280{
1281 gcc_assert (VINSN_COUNT (vi) > 0);
1282
1283 if (--VINSN_COUNT (vi) == 0)
1284 vinsn_delete (vi);
1285}
1286
1287/* Returns TRUE if VI is a branch. */
1288bool
1289vinsn_cond_branch_p (vinsn_t vi)
1290{
1291 insn_t insn;
1292
1293 if (!VINSN_UNIQUE_P (vi))
1294 return false;
1295
1296 insn = VINSN_INSN_RTX (vi);
1297 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298 return false;
1299
1300 return control_flow_insn_p (insn);
1301}
1302
1303/* Return latency of INSN. */
1304static int
1305sel_insn_rtx_cost (rtx insn)
1306{
1307 int cost;
1308
1309 /* A USE insn, or something else we don't need to
1310 understand. We can't pass these directly to
1311 result_ready_cost or insn_default_latency because it will
1312 trigger a fatal error for unrecognizable insns. */
1313 if (recog_memoized (insn) < 0)
1314 cost = 0;
1315 else
1316 {
1317 cost = insn_default_latency (insn);
1318
1319 if (cost < 0)
1320 cost = 0;
1321 }
1322
1323 return cost;
1324}
1325
1326/* Return the cost of the VI.
1327 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1328int
1329sel_vinsn_cost (vinsn_t vi)
1330{
1331 int cost = vi->cost;
1332
1333 if (cost < 0)
1334 {
1335 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336 vi->cost = cost;
1337 }
1338
1339 return cost;
1340}
1341\f
1342
1343/* Functions for insn emitting. */
1344
1345/* Emit new insn after AFTER based on PATTERN and initialize its data from
1346 EXPR and SEQNO. */
1347insn_t
1348sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349{
1350 insn_t new_insn;
1351
1352 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353
1354 new_insn = emit_insn_after (pattern, after);
1355 set_insn_init (expr, NULL, seqno);
1356 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357
1358 return new_insn;
1359}
1360
1361/* Force newly generated vinsns to be unique. */
1362static bool init_insn_force_unique_p = false;
1363
1364/* Emit new speculation recovery insn after AFTER based on PATTERN and
1365 initialize its data from EXPR and SEQNO. */
1366insn_t
1367sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 insn_t after)
1369{
1370 insn_t insn;
1371
1372 gcc_assert (!init_insn_force_unique_p);
1373
1374 init_insn_force_unique_p = true;
1375 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376 CANT_MOVE (insn) = 1;
1377 init_insn_force_unique_p = false;
1378
1379 return insn;
1380}
1381
1382/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1383 take it as a new vinsn instead of EXPR's vinsn.
1384 We simplify insns later, after scheduling region in
e855c69d
AB
1385 simplify_changed_insns. */
1386insn_t
b8698a0f 1387sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1388 insn_t after)
1389{
1390 expr_t emit_expr;
1391 insn_t insn;
1392 int flags;
b8698a0f
L
1393
1394 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1395 seqno);
1396 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1397 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1398
1399 flags = INSN_INIT_TODO_SSID;
1400 if (INSN_LUID (insn) == 0)
1401 flags |= INSN_INIT_TODO_LUID;
1402 sel_init_new_insn (insn, flags);
1403
1404 return insn;
1405}
1406
1407/* Move insn from EXPR after AFTER. */
1408insn_t
1409sel_move_insn (expr_t expr, int seqno, insn_t after)
1410{
1411 insn_t insn = EXPR_INSN_RTX (expr);
1412 basic_block bb = BLOCK_FOR_INSN (after);
1413 insn_t next = NEXT_INSN (after);
1414
1415 /* Assert that in move_op we disconnected this insn properly. */
1416 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1417 PREV_INSN (insn) = after;
1418 NEXT_INSN (insn) = next;
1419
1420 NEXT_INSN (after) = insn;
1421 PREV_INSN (next) = insn;
1422
1423 /* Update links from insn to bb and vice versa. */
1424 df_insn_change_bb (insn, bb);
1425 if (BB_END (bb) == after)
1426 BB_END (bb) = insn;
b8698a0f 1427
e855c69d
AB
1428 prepare_insn_expr (insn, seqno);
1429 return insn;
1430}
1431
1432\f
1433/* Functions to work with right-hand sides. */
1434
b8698a0f 1435/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1436 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1437 COMPARE_VINSNS is true. Write to INDP the index on which
1438 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1439 retain VECT's sort order. */
1440static bool
b8698a0f
L
1441find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1442 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1443 bool compare_vinsns, int *indp)
1444{
1445 expr_history_def *arr;
1446 int i, j, len = VEC_length (expr_history_def, vect);
1447
1448 if (len == 0)
1449 {
1450 *indp = 0;
1451 return false;
1452 }
1453
1454 arr = VEC_address (expr_history_def, vect);
1455 i = 0, j = len - 1;
1456
1457 while (i <= j)
1458 {
1459 unsigned auid = arr[i].uid;
b8698a0f 1460 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1461
1462 if (auid == uid
b8698a0f
L
1463 /* When undoing transformation on a bookkeeping copy, the new vinsn
1464 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1465 This is because the insn whose copy we're checking was possibly
1466 substituted itself. */
b8698a0f 1467 && (! compare_vinsns
e855c69d
AB
1468 || vinsn_equal_p (avinsn, new_vinsn)))
1469 {
1470 *indp = i;
1471 return true;
1472 }
1473 else if (auid > uid)
1474 break;
1475 i++;
1476 }
1477
1478 *indp = i;
1479 return false;
1480}
1481
b8698a0f
L
1482/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1483 the position found or -1, if no such value is in vector.
e855c69d
AB
1484 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1485int
b8698a0f 1486find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1487 vinsn_t new_vinsn, bool originators_p)
1488{
1489 int ind;
1490
b8698a0f 1491 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1492 false, &ind))
1493 return ind;
1494
1495 if (INSN_ORIGINATORS (insn) && originators_p)
1496 {
1497 unsigned uid;
1498 bitmap_iterator bi;
1499
1500 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502 return ind;
1503 }
b8698a0f 1504
e855c69d
AB
1505 return -1;
1506}
1507
b8698a0f
L
1508/* Insert new element in a sorted history vector pointed to by PVECT,
1509 if it is not there already. The element is searched using
e855c69d
AB
1510 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511 the history of a transformation. */
1512void
1513insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1514 unsigned uid, enum local_trans_type type,
b8698a0f 1515 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1516 ds_t spec_ds)
1517{
1518 VEC(expr_history_def, heap) *vect = *pvect;
1519 expr_history_def temp;
1520 bool res;
1521 int ind;
1522
1523 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1524
1525 if (res)
1526 {
0823efed 1527 expr_history_def *phist = &VEC_index (expr_history_def, vect, ind);
e855c69d 1528
b8698a0f 1529 /* It is possible that speculation types of expressions that were
e855c69d
AB
1530 propagated through different paths will be different here. In this
1531 case, merge the status to get the correct check later. */
1532 if (phist->spec_ds != spec_ds)
1533 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534 return;
1535 }
b8698a0f 1536
e855c69d
AB
1537 temp.uid = uid;
1538 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1539 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1540 temp.spec_ds = spec_ds;
1541 temp.type = type;
1542
1543 vinsn_attach (old_expr_vinsn);
1544 vinsn_attach (new_expr_vinsn);
f32682ca 1545 VEC_safe_insert (expr_history_def, heap, vect, ind, temp);
e855c69d
AB
1546 *pvect = vect;
1547}
1548
1549/* Free history vector PVECT. */
1550static void
1551free_history_vect (VEC (expr_history_def, heap) **pvect)
1552{
1553 unsigned i;
1554 expr_history_def *phist;
1555
1556 if (! *pvect)
1557 return;
b8698a0f
L
1558
1559 for (i = 0;
e855c69d
AB
1560 VEC_iterate (expr_history_def, *pvect, i, phist);
1561 i++)
1562 {
1563 vinsn_detach (phist->old_expr_vinsn);
1564 vinsn_detach (phist->new_expr_vinsn);
1565 }
b8698a0f 1566
e855c69d
AB
1567 VEC_free (expr_history_def, heap, *pvect);
1568 *pvect = NULL;
1569}
1570
5d369d58
AB
1571/* Merge vector FROM to PVECT. */
1572static void
1573merge_history_vect (VEC (expr_history_def, heap) **pvect,
1574 VEC (expr_history_def, heap) *from)
1575{
1576 expr_history_def *phist;
1577 int i;
1578
1579 /* We keep this vector sorted. */
1580 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1581 insert_in_history_vect (pvect, phist->uid, phist->type,
1582 phist->old_expr_vinsn, phist->new_expr_vinsn,
1583 phist->spec_ds);
1584}
e855c69d
AB
1585
1586/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1587bool
1588vinsn_equal_p (vinsn_t x, vinsn_t y)
1589{
1590 rtx_equal_p_callback_function repcf;
1591
1592 if (x == y)
1593 return true;
1594
1595 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1596 return false;
1597
1598 if (VINSN_HASH (x) != VINSN_HASH (y))
1599 return false;
1600
1601 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1602 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1603 {
1604 /* Compare RHSes of VINSNs. */
1605 gcc_assert (VINSN_RHS (x));
1606 gcc_assert (VINSN_RHS (y));
1607
1608 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1609 }
1610
1611 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1612}
1613\f
1614
1615/* Functions for working with expressions. */
1616
1617/* Initialize EXPR. */
1618static void
1619init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1620 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1621 ds_t spec_to_check_ds, int orig_sched_cycle,
f3764768 1622 VEC(expr_history_def, heap) *history, signed char target_available,
e855c69d
AB
1623 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1624 bool cant_move)
1625{
1626 vinsn_attach (vi);
1627
1628 EXPR_VINSN (expr) = vi;
1629 EXPR_SPEC (expr) = spec;
1630 EXPR_USEFULNESS (expr) = use;
1631 EXPR_PRIORITY (expr) = priority;
1632 EXPR_PRIORITY_ADJ (expr) = 0;
1633 EXPR_SCHED_TIMES (expr) = sched_times;
1634 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1635 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1636 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1637 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1638
1639 if (history)
1640 EXPR_HISTORY_OF_CHANGES (expr) = history;
1641 else
1642 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1643
1644 EXPR_TARGET_AVAILABLE (expr) = target_available;
1645 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1646 EXPR_WAS_RENAMED (expr) = was_renamed;
1647 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1648 EXPR_CANT_MOVE (expr) = cant_move;
1649}
1650
1651/* Make a copy of the expr FROM into the expr TO. */
1652void
1653copy_expr (expr_t to, expr_t from)
1654{
1655 VEC(expr_history_def, heap) *temp = NULL;
1656
1657 if (EXPR_HISTORY_OF_CHANGES (from))
1658 {
1659 unsigned i;
1660 expr_history_def *phist;
1661
1662 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1663 for (i = 0;
e855c69d
AB
1664 VEC_iterate (expr_history_def, temp, i, phist);
1665 i++)
1666 {
1667 vinsn_attach (phist->old_expr_vinsn);
1668 vinsn_attach (phist->new_expr_vinsn);
1669 }
1670 }
1671
b8698a0f 1672 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1673 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1674 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1675 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1676 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1677 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1678 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1679 EXPR_CANT_MOVE (from));
1680}
1681
b8698a0f 1682/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1683 "uninteresting" data such as bitmap cache. */
1684void
1685copy_expr_onside (expr_t to, expr_t from)
1686{
1687 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1688 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1689 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1690 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1691 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1692 EXPR_CANT_MOVE (from));
1693}
1694
1695/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1696 initializing new insns. */
1697static void
1698prepare_insn_expr (insn_t insn, int seqno)
1699{
1700 expr_t expr = INSN_EXPR (insn);
1701 ds_t ds;
b8698a0f 1702
e855c69d
AB
1703 INSN_SEQNO (insn) = seqno;
1704 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1705 EXPR_SPEC (expr) = 0;
1706 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1707 EXPR_WAS_SUBSTITUTED (expr) = 0;
1708 EXPR_WAS_RENAMED (expr) = 0;
1709 EXPR_TARGET_AVAILABLE (expr) = 1;
1710 INSN_LIVE_VALID_P (insn) = false;
1711
1712 /* ??? If this expression is speculative, make its dependence
1713 as weak as possible. We can filter this expression later
1714 in process_spec_exprs, because we do not distinguish
1715 between the status we got during compute_av_set and the
1716 existing status. To be fixed. */
1717 ds = EXPR_SPEC_DONE_DS (expr);
1718 if (ds)
1719 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1720
1721 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1722}
1723
1724/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1725 is non-null when expressions are merged from different successors at
e855c69d
AB
1726 a split point. */
1727static void
1728update_target_availability (expr_t to, expr_t from, insn_t split_point)
1729{
b8698a0f 1730 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1731 || EXPR_TARGET_AVAILABLE (from) < 0)
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1733 else
1734 {
1735 /* We try to detect the case when one of the expressions
1736 can only be reached through another one. In this case,
1737 we can do better. */
1738 if (split_point == NULL)
1739 {
1740 int toind, fromind;
1741
1742 toind = EXPR_ORIG_BB_INDEX (to);
1743 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1744
e855c69d 1745 if (toind && toind == fromind)
b8698a0f 1746 /* Do nothing -- everything is done in
e855c69d
AB
1747 merge_with_other_exprs. */
1748 ;
1749 else
1750 EXPR_TARGET_AVAILABLE (to) = -1;
1751 }
854b5fd7
AM
1752 else if (EXPR_TARGET_AVAILABLE (from) == 0
1753 && EXPR_LHS (from)
1754 && REG_P (EXPR_LHS (from))
1755 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1756 EXPR_TARGET_AVAILABLE (to) = -1;
e855c69d
AB
1757 else
1758 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1759 }
1760}
1761
1762/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1763 is non-null when expressions are merged from different successors at
e855c69d
AB
1764 a split point. */
1765static void
1766update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1767{
1768 ds_t old_to_ds, old_from_ds;
1769
1770 old_to_ds = EXPR_SPEC_DONE_DS (to);
1771 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1772
e855c69d
AB
1773 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1774 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1775 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1776
1777 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1778 speculative with a control&data speculative one, we really have
e855c69d
AB
1779 to change vinsn too. Also, when speculative status is changed,
1780 we also need to record this as a transformation in expr's history. */
1781 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1782 {
1783 old_to_ds = ds_get_speculation_types (old_to_ds);
1784 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1785
e855c69d
AB
1786 if (old_to_ds != old_from_ds)
1787 {
1788 ds_t record_ds;
b8698a0f
L
1789
1790 /* When both expressions are speculative, we need to change
e855c69d
AB
1791 the vinsn first. */
1792 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1793 {
1794 int res;
b8698a0f 1795
e855c69d
AB
1796 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1797 gcc_assert (res >= 0);
1798 }
1799
1800 if (split_point != NULL)
1801 {
1802 /* Record the change with proper status. */
1803 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1804 record_ds &= ~(old_to_ds & SPECULATIVE);
1805 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1806
1807 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1808 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1809 EXPR_VINSN (from), EXPR_VINSN (to),
1810 record_ds);
1811 }
1812 }
1813 }
1814}
1815
1816
1817/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1818 this is done along different paths. */
1819void
1820merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1821{
bf3a40e9
DM
1822 /* Choose the maximum of the specs of merged exprs. This is required
1823 for correctness of bookkeeping. */
1824 if (EXPR_SPEC (to) < EXPR_SPEC (from))
e855c69d
AB
1825 EXPR_SPEC (to) = EXPR_SPEC (from);
1826
1827 if (split_point)
1828 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1829 else
b8698a0f 1830 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1831 EXPR_USEFULNESS (from));
1832
1833 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1834 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1835
1836 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1837 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1838
1839 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1840 EXPR_ORIG_BB_INDEX (to) = 0;
1841
b8698a0f 1842 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1843 EXPR_ORIG_SCHED_CYCLE (from));
1844
e855c69d
AB
1845 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1846 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1847 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1848
5d369d58
AB
1849 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1850 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1851 update_target_availability (to, from, split_point);
1852 update_speculative_bits (to, from, split_point);
1853}
1854
1855/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1856 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1857 are merged from different successors at a split point. */
1858void
1859merge_expr (expr_t to, expr_t from, insn_t split_point)
1860{
1861 vinsn_t to_vi = EXPR_VINSN (to);
1862 vinsn_t from_vi = EXPR_VINSN (from);
1863
1864 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1865
1866 /* Make sure that speculative pattern is propagated into exprs that
1867 have non-speculative one. This will provide us with consistent
1868 speculative bits and speculative patterns inside expr. */
1869 if (EXPR_SPEC_DONE_DS (to) == 0
1870 && EXPR_SPEC_DONE_DS (from) != 0)
1871 change_vinsn_in_expr (to, EXPR_VINSN (from));
1872
1873 merge_expr_data (to, from, split_point);
1874 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1875}
1876
1877/* Clear the information of this EXPR. */
1878void
1879clear_expr (expr_t expr)
1880{
b8698a0f 1881
e855c69d
AB
1882 vinsn_detach (EXPR_VINSN (expr));
1883 EXPR_VINSN (expr) = NULL;
1884
1885 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1886}
1887
1888/* For a given LV_SET, mark EXPR having unavailable target register. */
1889static void
1890set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1891{
1892 if (EXPR_SEPARABLE_P (expr))
1893 {
1894 if (REG_P (EXPR_LHS (expr))
cf3d5824 1895 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
e855c69d 1896 {
b8698a0f
L
1897 /* If it's an insn like r1 = use (r1, ...), and it exists in
1898 different forms in each of the av_sets being merged, we can't say
1899 whether original destination register is available or not.
1900 However, this still works if destination register is not used
e855c69d
AB
1901 in the original expression: if the branch at which LV_SET we're
1902 looking here is not actually 'other branch' in sense that same
b8698a0f 1903 expression is available through it (but it can't be determined
e855c69d 1904 at computation stage because of transformations on one of the
b8698a0f
L
1905 branches), it still won't affect the availability.
1906 Liveness of a register somewhere on a code motion path means
1907 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1908 'other' branch, live at the point immediately following
1909 the original operation, or is read by the original operation.
1910 The latter case is filtered out in the condition below.
1911 It still doesn't cover the case when register is defined and used
1912 somewhere within the code motion path, and in this case we could
1913 miss a unifying code motion along both branches using a renamed
1914 register, but it won't affect a code correctness since upon
1915 an actual code motion a bookkeeping code would be generated. */
cf3d5824
SG
1916 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1917 EXPR_LHS (expr)))
e855c69d
AB
1918 EXPR_TARGET_AVAILABLE (expr) = -1;
1919 else
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1921 }
1922 }
1923 else
1924 {
1925 unsigned regno;
1926 reg_set_iterator rsi;
b8698a0f
L
1927
1928 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1929 0, regno, rsi)
1930 if (bitmap_bit_p (lv_set, regno))
1931 {
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 break;
1934 }
1935
1936 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1937 0, regno, rsi)
1938 if (bitmap_bit_p (lv_set, regno))
1939 {
1940 EXPR_TARGET_AVAILABLE (expr) = false;
1941 break;
1942 }
1943 }
1944}
1945
b8698a0f 1946/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1947 or dependence status have changed, 2 when also the target register
1948 became unavailable, 0 if nothing had to be changed. */
1949int
1950speculate_expr (expr_t expr, ds_t ds)
1951{
1952 int res;
1953 rtx orig_insn_rtx;
1954 rtx spec_pat;
1955 ds_t target_ds, current_ds;
1956
1957 /* Obtain the status we need to put on EXPR. */
1958 target_ds = (ds & SPECULATIVE);
1959 current_ds = EXPR_SPEC_DONE_DS (expr);
1960 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1961
1962 orig_insn_rtx = EXPR_INSN_RTX (expr);
1963
1964 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1965
1966 switch (res)
1967 {
1968 case 0:
1969 EXPR_SPEC_DONE_DS (expr) = ds;
1970 return current_ds != ds ? 1 : 0;
b8698a0f 1971
e855c69d
AB
1972 case 1:
1973 {
1974 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1975 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1976
1977 change_vinsn_in_expr (expr, spec_vinsn);
1978 EXPR_SPEC_DONE_DS (expr) = ds;
1979 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1980
b8698a0f 1981 /* Do not allow clobbering the address register of speculative
e855c69d 1982 insns. */
cf3d5824
SG
1983 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1984 expr_dest_reg (expr)))
e855c69d
AB
1985 {
1986 EXPR_TARGET_AVAILABLE (expr) = false;
1987 return 2;
1988 }
1989
1990 return 1;
1991 }
1992
1993 case -1:
1994 return -1;
1995
1996 default:
1997 gcc_unreachable ();
1998 return -1;
1999 }
2000}
2001
2002/* Return a destination register, if any, of EXPR. */
2003rtx
2004expr_dest_reg (expr_t expr)
2005{
2006 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2007
2008 if (dest != NULL_RTX && REG_P (dest))
2009 return dest;
2010
2011 return NULL_RTX;
2012}
2013
2014/* Returns the REGNO of the R's destination. */
2015unsigned
2016expr_dest_regno (expr_t expr)
2017{
2018 rtx dest = expr_dest_reg (expr);
2019
2020 gcc_assert (dest != NULL_RTX);
2021 return REGNO (dest);
2022}
2023
b8698a0f 2024/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2025 AV_SET having unavailable target register. */
2026void
2027mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2028{
2029 expr_t expr;
2030 av_set_iterator avi;
2031
2032 FOR_EACH_EXPR (expr, avi, join_set)
2033 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2034 set_unavailable_target_for_expr (expr, lv_set);
2035}
2036\f
2037
cf3d5824
SG
2038/* Returns true if REG (at least partially) is present in REGS. */
2039bool
2040register_unavailable_p (regset regs, rtx reg)
2041{
2042 unsigned regno, end_regno;
2043
2044 regno = REGNO (reg);
2045 if (bitmap_bit_p (regs, regno))
2046 return true;
2047
2048 end_regno = END_REGNO (reg);
2049
2050 while (++regno < end_regno)
2051 if (bitmap_bit_p (regs, regno))
2052 return true;
2053
2054 return false;
2055}
2056
e855c69d
AB
2057/* Av set functions. */
2058
2059/* Add a new element to av set SETP.
2060 Return the element added. */
2061static av_set_t
2062av_set_add_element (av_set_t *setp)
2063{
2064 /* Insert at the beginning of the list. */
2065 _list_add (setp);
2066 return *setp;
2067}
2068
2069/* Add EXPR to SETP. */
2070void
2071av_set_add (av_set_t *setp, expr_t expr)
2072{
2073 av_set_t elem;
b8698a0f 2074
e855c69d
AB
2075 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2076 elem = av_set_add_element (setp);
2077 copy_expr (_AV_SET_EXPR (elem), expr);
2078}
2079
2080/* Same, but do not copy EXPR. */
2081static void
2082av_set_add_nocopy (av_set_t *setp, expr_t expr)
2083{
2084 av_set_t elem;
2085
2086 elem = av_set_add_element (setp);
2087 *_AV_SET_EXPR (elem) = *expr;
2088}
2089
2090/* Remove expr pointed to by IP from the av_set. */
2091void
2092av_set_iter_remove (av_set_iterator *ip)
2093{
2094 clear_expr (_AV_SET_EXPR (*ip->lp));
2095 _list_iter_remove (ip);
2096}
2097
2098/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2099 sense of vinsn_equal_p function. Return NULL if no such expr is
2100 in SET was found. */
2101expr_t
2102av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2103{
2104 expr_t expr;
2105 av_set_iterator i;
2106
2107 FOR_EACH_EXPR (expr, i, set)
2108 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2109 return expr;
2110 return NULL;
2111}
2112
2113/* Same, but also remove the EXPR found. */
2114static expr_t
2115av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2116{
2117 expr_t expr;
2118 av_set_iterator i;
2119
2120 FOR_EACH_EXPR_1 (expr, i, setp)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2122 {
2123 _list_iter_remove_nofree (&i);
2124 return expr;
2125 }
2126 return NULL;
2127}
2128
2129/* Search for an expr in SET, such that it's equivalent to EXPR in the
2130 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2131 Returns NULL if no such expr is in SET was found. */
2132static expr_t
2133av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2134{
2135 expr_t cur_expr;
2136 av_set_iterator i;
2137
2138 FOR_EACH_EXPR (cur_expr, i, set)
2139 {
2140 if (cur_expr == expr)
2141 continue;
2142 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2143 return cur_expr;
2144 }
2145
2146 return NULL;
2147}
2148
2149/* If other expression is already in AVP, remove one of them. */
2150expr_t
2151merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2152{
2153 expr_t expr2;
2154
2155 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2156 if (expr2 != NULL)
2157 {
2158 /* Reset target availability on merge, since taking it only from one
2159 of the exprs would be controversial for different code. */
2160 EXPR_TARGET_AVAILABLE (expr2) = -1;
2161 EXPR_USEFULNESS (expr2) = 0;
2162
2163 merge_expr (expr2, expr, NULL);
b8698a0f 2164
e855c69d
AB
2165 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2166 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2167
e855c69d
AB
2168 av_set_iter_remove (ip);
2169 return expr2;
2170 }
2171
2172 return expr;
2173}
2174
2175/* Return true if there is an expr that correlates to VI in SET. */
2176bool
2177av_set_is_in_p (av_set_t set, vinsn_t vi)
2178{
2179 return av_set_lookup (set, vi) != NULL;
2180}
2181
2182/* Return a copy of SET. */
2183av_set_t
2184av_set_copy (av_set_t set)
2185{
2186 expr_t expr;
2187 av_set_iterator i;
2188 av_set_t res = NULL;
2189
2190 FOR_EACH_EXPR (expr, i, set)
2191 av_set_add (&res, expr);
2192
2193 return res;
2194}
2195
2196/* Join two av sets that do not have common elements by attaching second set
2197 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2198 _AV_SET_NEXT of first set's last element). */
2199static void
2200join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2201{
2202 gcc_assert (*to_tailp == NULL);
2203 *to_tailp = *fromp;
2204 *fromp = NULL;
2205}
2206
2207/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2208 pointed to by FROMP afterwards. */
2209void
2210av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2211{
2212 expr_t expr1;
2213 av_set_iterator i;
2214
2215 /* Delete from TOP all exprs, that present in FROMP. */
2216 FOR_EACH_EXPR_1 (expr1, i, top)
2217 {
2218 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2219
2220 if (expr2)
2221 {
2222 merge_expr (expr2, expr1, insn);
2223 av_set_iter_remove (&i);
2224 }
2225 }
2226
2227 join_distinct_sets (i.lp, fromp);
2228}
2229
b8698a0f 2230/* Same as above, but also update availability of target register in
e855c69d
AB
2231 TOP judging by TO_LV_SET and FROM_LV_SET. */
2232void
2233av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2234 regset from_lv_set, insn_t insn)
2235{
2236 expr_t expr1;
2237 av_set_iterator i;
2238 av_set_t *to_tailp, in_both_set = NULL;
2239
2240 /* Delete from TOP all expres, that present in FROMP. */
2241 FOR_EACH_EXPR_1 (expr1, i, top)
2242 {
2243 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2244
2245 if (expr2)
2246 {
b8698a0f 2247 /* It may be that the expressions have different destination
e855c69d
AB
2248 registers, in which case we need to check liveness here. */
2249 if (EXPR_SEPARABLE_P (expr1))
2250 {
b8698a0f 2251 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2252 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2253 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2254 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2255
2256 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2257 *other* register on the current path, we did it only
2258 for the current target register. Give up. */
2259 if (regno1 != regno2)
2260 EXPR_TARGET_AVAILABLE (expr2) = -1;
2261 }
2262 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2263 EXPR_TARGET_AVAILABLE (expr2) = -1;
2264
2265 merge_expr (expr2, expr1, insn);
2266 av_set_add_nocopy (&in_both_set, expr2);
2267 av_set_iter_remove (&i);
2268 }
2269 else
b8698a0f 2270 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2271 FROM_LV_SET. */
2272 set_unavailable_target_for_expr (expr1, from_lv_set);
2273 }
2274 to_tailp = i.lp;
2275
2276 /* These expressions are not present in TOP. Check liveness
2277 restrictions on TO_LV_SET. */
2278 FOR_EACH_EXPR (expr1, i, *fromp)
2279 set_unavailable_target_for_expr (expr1, to_lv_set);
2280
2281 join_distinct_sets (i.lp, &in_both_set);
2282 join_distinct_sets (to_tailp, fromp);
2283}
2284
2285/* Clear av_set pointed to by SETP. */
2286void
2287av_set_clear (av_set_t *setp)
2288{
2289 expr_t expr;
2290 av_set_iterator i;
2291
2292 FOR_EACH_EXPR_1 (expr, i, setp)
2293 av_set_iter_remove (&i);
2294
2295 gcc_assert (*setp == NULL);
2296}
2297
2298/* Leave only one non-speculative element in the SETP. */
2299void
2300av_set_leave_one_nonspec (av_set_t *setp)
2301{
2302 expr_t expr;
2303 av_set_iterator i;
2304 bool has_one_nonspec = false;
2305
b8698a0f 2306 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2307 (the first one). */
2308 FOR_EACH_EXPR_1 (expr, i, setp)
2309 {
2310 if (!EXPR_SPEC_DONE_DS (expr))
2311 {
2312 if (has_one_nonspec)
2313 av_set_iter_remove (&i);
2314 else
2315 has_one_nonspec = true;
2316 }
2317 }
2318}
2319
2320/* Return the N'th element of the SET. */
2321expr_t
2322av_set_element (av_set_t set, int n)
2323{
2324 expr_t expr;
2325 av_set_iterator i;
2326
2327 FOR_EACH_EXPR (expr, i, set)
2328 if (n-- == 0)
2329 return expr;
2330
2331 gcc_unreachable ();
2332 return NULL;
2333}
2334
2335/* Deletes all expressions from AVP that are conditional branches (IFs). */
2336void
2337av_set_substract_cond_branches (av_set_t *avp)
2338{
2339 av_set_iterator i;
2340 expr_t expr;
2341
2342 FOR_EACH_EXPR_1 (expr, i, avp)
2343 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2344 av_set_iter_remove (&i);
2345}
2346
b8698a0f 2347/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2348 value PROB / ALL_PROB. */
2349void
2350av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2351{
2352 av_set_iterator i;
2353 expr_t expr;
2354
2355 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2356 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2357 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2358 : 0);
2359}
2360
2361/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2362 and return it, merging history expressions. */
e855c69d 2363void
5d369d58 2364av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2365{
2366 av_set_iterator i;
5d369d58 2367 expr_t expr, expr2;
e855c69d
AB
2368
2369 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2370 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2371 av_set_iter_remove (&i);
5d369d58
AB
2372 else
2373 /* When updating av sets in bookkeeping blocks, we can add more insns
2374 there which will be transformed but the upper av sets will not
2375 reflect those transformations. We then fail to undo those
2376 when searching for such insns. So merge the history saved
2377 in the av set of the block we are processing. */
2378 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2379 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2380}
2381
2382\f
2383
2384/* Dependence hooks to initialize insn data. */
2385
2386/* This is used in hooks callable from dependence analysis when initializing
2387 instruction's data. */
2388static struct
2389{
2390 /* Where the dependence was found (lhs/rhs). */
2391 deps_where_t where;
2392
2393 /* The actual data object to initialize. */
2394 idata_t id;
2395
2396 /* True when the insn should not be made clonable. */
2397 bool force_unique_p;
2398
2399 /* True when insn should be treated as of type USE, i.e. never renamed. */
2400 bool force_use_p;
2401} deps_init_id_data;
2402
2403
b8698a0f 2404/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2405 clonable. */
2406static void
2407setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2408{
2409 int type;
b8698a0f 2410
e855c69d
AB
2411 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2412 That clonable insns which can be separated into lhs and rhs have type SET.
2413 Other clonable insns have type USE. */
2414 type = GET_CODE (insn);
2415
2416 /* Only regular insns could be cloned. */
2417 if (type == INSN && !force_unique_p)
2418 type = SET;
2419 else if (type == JUMP_INSN && simplejump_p (insn))
2420 type = PC;
b5b8b0ac
AO
2421 else if (type == DEBUG_INSN)
2422 type = !force_unique_p ? USE : INSN;
b8698a0f 2423
e855c69d
AB
2424 IDATA_TYPE (id) = type;
2425 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2426 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2427 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2428}
2429
2430/* Start initializing insn data. */
2431static void
2432deps_init_id_start_insn (insn_t insn)
2433{
2434 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2435
2436 setup_id_for_insn (deps_init_id_data.id, insn,
2437 deps_init_id_data.force_unique_p);
2438 deps_init_id_data.where = DEPS_IN_INSN;
2439}
2440
2441/* Start initializing lhs data. */
2442static void
2443deps_init_id_start_lhs (rtx lhs)
2444{
2445 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2446 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2447
2448 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2449 {
2450 IDATA_LHS (deps_init_id_data.id) = lhs;
2451 deps_init_id_data.where = DEPS_IN_LHS;
2452 }
2453}
2454
2455/* Finish initializing lhs data. */
2456static void
2457deps_init_id_finish_lhs (void)
2458{
2459 deps_init_id_data.where = DEPS_IN_INSN;
2460}
2461
2462/* Note a set of REGNO. */
2463static void
2464deps_init_id_note_reg_set (int regno)
2465{
2466 haifa_note_reg_set (regno);
2467
2468 if (deps_init_id_data.where == DEPS_IN_RHS)
2469 deps_init_id_data.force_use_p = true;
2470
2471 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2472 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2473
2474#ifdef STACK_REGS
b8698a0f 2475 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2476 renaming to avoid issues with find_used_regs. */
2477 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2478 deps_init_id_data.force_use_p = true;
2479#endif
2480}
2481
2482/* Note a clobber of REGNO. */
2483static void
2484deps_init_id_note_reg_clobber (int regno)
2485{
2486 haifa_note_reg_clobber (regno);
2487
2488 if (deps_init_id_data.where == DEPS_IN_RHS)
2489 deps_init_id_data.force_use_p = true;
2490
2491 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2492 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2493}
2494
2495/* Note a use of REGNO. */
2496static void
2497deps_init_id_note_reg_use (int regno)
2498{
2499 haifa_note_reg_use (regno);
2500
2501 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2502 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2503}
2504
2505/* Start initializing rhs data. */
2506static void
2507deps_init_id_start_rhs (rtx rhs)
2508{
2509 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2510
2511 /* And there was no sel_deps_reset_to_insn (). */
2512 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2513 {
2514 IDATA_RHS (deps_init_id_data.id) = rhs;
2515 deps_init_id_data.where = DEPS_IN_RHS;
2516 }
2517}
2518
2519/* Finish initializing rhs data. */
2520static void
2521deps_init_id_finish_rhs (void)
2522{
2523 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2524 || deps_init_id_data.where == DEPS_IN_INSN);
2525 deps_init_id_data.where = DEPS_IN_INSN;
2526}
2527
2528/* Finish initializing insn data. */
2529static void
2530deps_init_id_finish_insn (void)
2531{
2532 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2533
2534 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2535 {
2536 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2537 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2538
2539 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2540 || deps_init_id_data.force_use_p)
2541 {
b8698a0f 2542 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2543 separately. However, we still want to have them recorded
b8698a0f 2544 for the purposes of substitution. That's why we don't
e855c69d
AB
2545 simply call downgrade_to_use () here. */
2546 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2547 gcc_assert (!lhs == !rhs);
2548
2549 IDATA_TYPE (deps_init_id_data.id) = USE;
2550 }
2551 }
2552
2553 deps_init_id_data.where = DEPS_IN_NOWHERE;
2554}
2555
2556/* This is dependence info used for initializing insn's data. */
2557static struct sched_deps_info_def deps_init_id_sched_deps_info;
2558
2559/* This initializes most of the static part of the above structure. */
2560static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2561 {
2562 NULL,
2563
2564 deps_init_id_start_insn,
2565 deps_init_id_finish_insn,
2566 deps_init_id_start_lhs,
2567 deps_init_id_finish_lhs,
2568 deps_init_id_start_rhs,
2569 deps_init_id_finish_rhs,
2570 deps_init_id_note_reg_set,
2571 deps_init_id_note_reg_clobber,
2572 deps_init_id_note_reg_use,
2573 NULL, /* note_mem_dep */
2574 NULL, /* note_dep */
2575
2576 0, /* use_cselib */
2577 0, /* use_deps_list */
2578 0 /* generate_spec_deps */
2579 };
2580
2581/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2582 we don't actually need information about lhs and rhs. */
2583static void
2584setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2585{
2586 rtx pat = PATTERN (insn);
b8698a0f 2587
481683e1 2588 if (NONJUMP_INSN_P (insn)
b8698a0f 2589 && GET_CODE (pat) == SET
e855c69d
AB
2590 && !force_unique_p)
2591 {
2592 IDATA_RHS (id) = SET_SRC (pat);
2593 IDATA_LHS (id) = SET_DEST (pat);
2594 }
2595 else
2596 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2597}
2598
2599/* Possibly downgrade INSN to USE. */
2600static void
2601maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2602{
2603 bool must_be_use = false;
2604 unsigned uid = INSN_UID (insn);
57512f53 2605 df_ref *rec;
e855c69d
AB
2606 rtx lhs = IDATA_LHS (id);
2607 rtx rhs = IDATA_RHS (id);
b8698a0f 2608
e855c69d
AB
2609 /* We downgrade only SETs. */
2610 if (IDATA_TYPE (id) != SET)
2611 return;
2612
2613 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2614 {
2615 IDATA_TYPE (id) = USE;
2616 return;
2617 }
b8698a0f 2618
e855c69d
AB
2619 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2620 {
57512f53 2621 df_ref def = *rec;
b8698a0f 2622
e855c69d
AB
2623 if (DF_REF_INSN (def)
2624 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2625 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2626 {
2627 must_be_use = true;
2628 break;
2629 }
2630
2631#ifdef STACK_REGS
b8698a0f 2632 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2633 renaming to avoid issues with find_used_regs. */
2634 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2635 {
2636 must_be_use = true;
2637 break;
2638 }
2639#endif
b8698a0f
L
2640 }
2641
e855c69d
AB
2642 if (must_be_use)
2643 IDATA_TYPE (id) = USE;
2644}
2645
2646/* Setup register sets describing INSN in ID. */
2647static void
2648setup_id_reg_sets (idata_t id, insn_t insn)
2649{
2650 unsigned uid = INSN_UID (insn);
57512f53 2651 df_ref *rec;
e855c69d 2652 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2653
e855c69d
AB
2654 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2655 {
57512f53 2656 df_ref def = *rec;
e855c69d 2657 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2658
e855c69d
AB
2659 /* Post modifies are treated like clobbers by sched-deps.c. */
2660 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2661 | DF_REF_PRE_POST_MODIFY)))
2662 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2663 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2664 {
2665 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2666
2667#ifdef STACK_REGS
b8698a0f 2668 /* For stack registers, treat writes to them as writes
e855c69d
AB
2669 to the first one to be consistent with sched-deps.c. */
2670 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2671 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2672#endif
2673 }
2674 /* Mark special refs that generate read/write def pair. */
2675 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2676 || regno == STACK_POINTER_REGNUM)
2677 bitmap_set_bit (tmp, regno);
2678 }
b8698a0f 2679
e855c69d
AB
2680 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2681 {
57512f53 2682 df_ref use = *rec;
e855c69d
AB
2683 unsigned int regno = DF_REF_REGNO (use);
2684
2685 /* When these refs are met for the first time, skip them, as
2686 these uses are just counterparts of some defs. */
2687 if (bitmap_bit_p (tmp, regno))
2688 bitmap_clear_bit (tmp, regno);
2689 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2690 {
2691 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2692
2693#ifdef STACK_REGS
b8698a0f 2694 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2695 the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2698#endif
2699 }
2700 }
2701
2702 return_regset_to_pool (tmp);
2703}
2704
2705/* Initialize instruction data for INSN in ID using DF's data. */
2706static void
2707init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2708{
2709 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2710
2711 setup_id_for_insn (id, insn, force_unique_p);
2712 setup_id_lhs_rhs (id, insn, force_unique_p);
2713
2714 if (INSN_NOP_P (insn))
2715 return;
2716
2717 maybe_downgrade_id_to_use (id, insn);
2718 setup_id_reg_sets (id, insn);
2719}
2720
2721/* Initialize instruction data for INSN in ID. */
2722static void
2723deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2724{
88302d54 2725 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2726
2727 deps_init_id_data.where = DEPS_IN_NOWHERE;
2728 deps_init_id_data.id = id;
2729 deps_init_id_data.force_unique_p = force_unique_p;
2730 deps_init_id_data.force_use_p = false;
2731
bcf33775 2732 init_deps (dc, false);
e855c69d
AB
2733
2734 memcpy (&deps_init_id_sched_deps_info,
2735 &const_deps_init_id_sched_deps_info,
2736 sizeof (deps_init_id_sched_deps_info));
2737
2738 if (spec_info != NULL)
2739 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2740
2741 sched_deps_info = &deps_init_id_sched_deps_info;
2742
2743 deps_analyze_insn (dc, insn);
2744
2745 free_deps (dc);
2746
2747 deps_init_id_data.id = NULL;
2748}
2749
2750\f
a95b23b4
BS
2751struct sched_scan_info_def
2752{
2753 /* This hook notifies scheduler frontend to extend its internal per basic
2754 block data structures. This hook should be called once before a series of
2755 calls to bb_init (). */
2756 void (*extend_bb) (void);
2757
2758 /* This hook makes scheduler frontend to initialize its internal data
2759 structures for the passed basic block. */
2760 void (*init_bb) (basic_block);
2761
2762 /* This hook notifies scheduler frontend to extend its internal per insn data
2763 structures. This hook should be called once before a series of calls to
2764 insn_init (). */
2765 void (*extend_insn) (void);
2766
2767 /* This hook makes scheduler frontend to initialize its internal data
2768 structures for the passed insn. */
2769 void (*init_insn) (rtx);
2770};
2771
2772/* A driver function to add a set of basic blocks (BBS) to the
2773 scheduling region. */
2774static void
2775sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2776{
2777 unsigned i;
2778 basic_block bb;
2779
2780 if (ssi->extend_bb)
2781 ssi->extend_bb ();
2782
2783 if (ssi->init_bb)
2784 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2785 ssi->init_bb (bb);
2786
2787 if (ssi->extend_insn)
2788 ssi->extend_insn ();
2789
2790 if (ssi->init_insn)
2791 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2792 {
2793 rtx insn;
2794
2795 FOR_BB_INSNS (bb, insn)
2796 ssi->init_insn (insn);
2797 }
2798}
e855c69d
AB
2799
2800/* Implement hooks for collecting fundamental insn properties like if insn is
2801 an ASM or is within a SCHED_GROUP. */
2802
2803/* True when a "one-time init" data for INSN was already inited. */
2804static bool
2805first_time_insn_init (insn_t insn)
2806{
2807 return INSN_LIVE (insn) == NULL;
2808}
2809
2810/* Hash an entry in a transformed_insns hashtable. */
2811static hashval_t
2812hash_transformed_insns (const void *p)
2813{
2814 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2815}
2816
2817/* Compare the entries in a transformed_insns hashtable. */
2818static int
2819eq_transformed_insns (const void *p, const void *q)
2820{
2821 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2822 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2823
2824 if (INSN_UID (i1) == INSN_UID (i2))
2825 return 1;
2826 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2827}
2828
2829/* Free an entry in a transformed_insns hashtable. */
2830static void
2831free_transformed_insns (void *p)
2832{
2833 struct transformed_insns *pti = (struct transformed_insns *) p;
2834
2835 vinsn_detach (pti->vinsn_old);
2836 vinsn_detach (pti->vinsn_new);
2837 free (pti);
2838}
2839
b8698a0f 2840/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2841 we first see the insn. */
2842static void
2843init_first_time_insn_data (insn_t insn)
2844{
2845 /* This should not be set if this is the first time we init data for
2846 insn. */
2847 gcc_assert (first_time_insn_init (insn));
b8698a0f 2848
e855c69d
AB
2849 /* These are needed for nops too. */
2850 INSN_LIVE (insn) = get_regset_from_pool ();
2851 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2852
e855c69d
AB
2853 if (!INSN_NOP_P (insn))
2854 {
2855 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2856 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2857 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2858 = htab_create (16, hash_transformed_insns,
2859 eq_transformed_insns, free_transformed_insns);
bcf33775 2860 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2861 }
2862}
2863
b8698a0f 2864/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2865 Used for extra-large basic blocks. */
2866void
2867free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2868{
2869 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2870
bcf33775
AB
2871 if (! INSN_ANALYZED_DEPS (insn))
2872 return;
b8698a0f 2873
e855c69d
AB
2874 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2875 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2876 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2877
e855c69d
AB
2878 /* This is allocated only for bookkeeping insns. */
2879 if (INSN_ORIGINATORS (insn))
2880 BITMAP_FREE (INSN_ORIGINATORS (insn));
2881 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2882
2883 INSN_ANALYZED_DEPS (insn) = NULL;
2884
b8698a0f 2885 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2886 the deps context (as we believe that it should not happen). */
2887 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2888}
2889
2890/* Free the same data as above for INSN. */
2891static void
2892free_first_time_insn_data (insn_t insn)
2893{
2894 gcc_assert (! first_time_insn_init (insn));
2895
2896 free_data_for_scheduled_insn (insn);
2897 return_regset_to_pool (INSN_LIVE (insn));
2898 INSN_LIVE (insn) = NULL;
2899 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2900}
2901
2902/* Initialize region-scope data structures for basic blocks. */
2903static void
2904init_global_and_expr_for_bb (basic_block bb)
2905{
2906 if (sel_bb_empty_p (bb))
2907 return;
2908
2909 invalidate_av_set (bb);
2910}
2911
2912/* Data for global dependency analysis (to initialize CANT_MOVE and
2913 SCHED_GROUP_P). */
2914static struct
2915{
2916 /* Previous insn. */
2917 insn_t prev_insn;
2918} init_global_data;
2919
2920/* Determine if INSN is in the sched_group, is an asm or should not be
2921 cloned. After that initialize its expr. */
2922static void
2923init_global_and_expr_for_insn (insn_t insn)
2924{
2925 if (LABEL_P (insn))
2926 return;
2927
2928 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2929 {
2930 init_global_data.prev_insn = NULL_RTX;
2931 return;
2932 }
2933
2934 gcc_assert (INSN_P (insn));
2935
2936 if (SCHED_GROUP_P (insn))
2937 /* Setup a sched_group. */
2938 {
2939 insn_t prev_insn = init_global_data.prev_insn;
2940
2941 if (prev_insn)
2942 INSN_SCHED_NEXT (prev_insn) = insn;
2943
2944 init_global_data.prev_insn = insn;
2945 }
2946 else
2947 init_global_data.prev_insn = NULL_RTX;
2948
2949 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2950 || asm_noperands (PATTERN (insn)) >= 0)
2951 /* Mark INSN as an asm. */
2952 INSN_ASM_P (insn) = true;
2953
2954 {
2955 bool force_unique_p;
2956 ds_t spec_done_ds;
2957
cfeb0fa8
AB
2958 /* Certain instructions cannot be cloned, and frame related insns and
2959 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2960 their block. */
2961 if (prologue_epilogue_contains (insn))
2962 {
2963 if (RTX_FRAME_RELATED_P (insn))
2964 CANT_MOVE (insn) = 1;
2965 else
2966 {
2967 rtx note;
2968 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2969 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2970 && ((enum insn_note) INTVAL (XEXP (note, 0))
2971 == NOTE_INSN_EPILOGUE_BEG))
2972 {
2973 CANT_MOVE (insn) = 1;
2974 break;
2975 }
2976 }
2977 force_unique_p = true;
2978 }
e855c69d 2979 else
cfeb0fa8
AB
2980 if (CANT_MOVE (insn)
2981 || INSN_ASM_P (insn)
2982 || SCHED_GROUP_P (insn)
07643d76 2983 || CALL_P (insn)
cfeb0fa8
AB
2984 /* Exception handling insns are always unique. */
2985 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2986 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
6bf2d156
DM
2987 || control_flow_insn_p (insn)
2988 || volatile_insn_p (PATTERN (insn))
2989 || (targetm.cannot_copy_insn_p
2990 && targetm.cannot_copy_insn_p (insn)))
cfeb0fa8
AB
2991 force_unique_p = true;
2992 else
2993 force_unique_p = false;
e855c69d
AB
2994
2995 if (targetm.sched.get_insn_spec_ds)
2996 {
2997 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2998 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2999 }
3000 else
3001 spec_done_ds = 0;
3002
3003 /* Initialize INSN's expr. */
3004 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3005 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 3006 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
3007 CANT_MOVE (insn));
3008 }
3009
3010 init_first_time_insn_data (insn);
3011}
3012
3013/* Scan the region and initialize instruction data for basic blocks BBS. */
3014void
3015sel_init_global_and_expr (bb_vec_t bbs)
3016{
3017 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3018 const struct sched_scan_info_def ssi =
3019 {
3020 NULL, /* extend_bb */
3021 init_global_and_expr_for_bb, /* init_bb */
3022 extend_insn_data, /* extend_insn */
3023 init_global_and_expr_for_insn /* init_insn */
3024 };
b8698a0f 3025
a95b23b4 3026 sched_scan (&ssi, bbs);
e855c69d
AB
3027}
3028
3029/* Finalize region-scope data structures for basic blocks. */
3030static void
3031finish_global_and_expr_for_bb (basic_block bb)
3032{
3033 av_set_clear (&BB_AV_SET (bb));
3034 BB_AV_LEVEL (bb) = 0;
3035}
3036
3037/* Finalize INSN's data. */
3038static void
3039finish_global_and_expr_insn (insn_t insn)
3040{
3041 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3042 return;
3043
3044 gcc_assert (INSN_P (insn));
3045
3046 if (INSN_LUID (insn) > 0)
3047 {
3048 free_first_time_insn_data (insn);
3049 INSN_WS_LEVEL (insn) = 0;
3050 CANT_MOVE (insn) = 0;
b8698a0f
L
3051
3052 /* We can no longer assert this, as vinsns of this insn could be
3053 easily live in other insn's caches. This should be changed to
e855c69d
AB
3054 a counter-like approach among all vinsns. */
3055 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3056 clear_expr (INSN_EXPR (insn));
3057 }
3058}
3059
3060/* Finalize per instruction data for the whole region. */
3061void
3062sel_finish_global_and_expr (void)
3063{
3064 {
3065 bb_vec_t bbs;
3066 int i;
3067
3068 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3069
3070 for (i = 0; i < current_nr_blocks; i++)
3071 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3072
3073 /* Clear AV_SETs and INSN_EXPRs. */
3074 {
3075 const struct sched_scan_info_def ssi =
3076 {
3077 NULL, /* extend_bb */
3078 finish_global_and_expr_for_bb, /* init_bb */
3079 NULL, /* extend_insn */
3080 finish_global_and_expr_insn /* init_insn */
3081 };
3082
a95b23b4 3083 sched_scan (&ssi, bbs);
e855c69d
AB
3084 }
3085
3086 VEC_free (basic_block, heap, bbs);
3087 }
3088
3089 finish_insns ();
3090}
3091\f
3092
b8698a0f
L
3093/* In the below hooks, we merely calculate whether or not a dependence
3094 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3095 when we'll start caching dependence requests. */
3096
3097/* Container to hold information for dependency analysis. */
3098static struct
3099{
3100 deps_t dc;
3101
3102 /* A variable to track which part of rtx we are scanning in
3103 sched-deps.c: sched_analyze_insn (). */
3104 deps_where_t where;
3105
3106 /* Current producer. */
3107 insn_t pro;
3108
3109 /* Current consumer. */
3110 vinsn_t con;
3111
3112 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3113 X is from { INSN, LHS, RHS }. */
3114 ds_t has_dep_p[DEPS_IN_NOWHERE];
3115} has_dependence_data;
3116
3117/* Start analyzing dependencies of INSN. */
3118static void
3119has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3120{
3121 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3122
3123 has_dependence_data.where = DEPS_IN_INSN;
3124}
3125
3126/* Finish analyzing dependencies of an insn. */
3127static void
3128has_dependence_finish_insn (void)
3129{
3130 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3131
3132 has_dependence_data.where = DEPS_IN_NOWHERE;
3133}
3134
3135/* Start analyzing dependencies of LHS. */
3136static void
3137has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3138{
3139 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3140
3141 if (VINSN_LHS (has_dependence_data.con) != NULL)
3142 has_dependence_data.where = DEPS_IN_LHS;
3143}
3144
3145/* Finish analyzing dependencies of an lhs. */
3146static void
3147has_dependence_finish_lhs (void)
3148{
3149 has_dependence_data.where = DEPS_IN_INSN;
3150}
3151
3152/* Start analyzing dependencies of RHS. */
3153static void
3154has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3155{
3156 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3157
3158 if (VINSN_RHS (has_dependence_data.con) != NULL)
3159 has_dependence_data.where = DEPS_IN_RHS;
3160}
3161
3162/* Start analyzing dependencies of an rhs. */
3163static void
3164has_dependence_finish_rhs (void)
3165{
3166 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3167 || has_dependence_data.where == DEPS_IN_INSN);
3168
3169 has_dependence_data.where = DEPS_IN_INSN;
3170}
3171
3172/* Note a set of REGNO. */
3173static void
3174has_dependence_note_reg_set (int regno)
3175{
3176 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3177
3178 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3179 VINSN_INSN_RTX
3180 (has_dependence_data.con)))
3181 {
3182 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3183
3184 if (reg_last->sets != NULL
3185 || reg_last->clobbers != NULL)
3186 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3187
3188 if (reg_last->uses)
3189 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3190 }
3191}
3192
3193/* Note a clobber of REGNO. */
3194static void
3195has_dependence_note_reg_clobber (int regno)
3196{
3197 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3198
3199 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3200 VINSN_INSN_RTX
3201 (has_dependence_data.con)))
3202 {
3203 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3204
3205 if (reg_last->sets)
3206 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3207
e855c69d
AB
3208 if (reg_last->uses)
3209 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3210 }
3211}
3212
3213/* Note a use of REGNO. */
3214static void
3215has_dependence_note_reg_use (int regno)
3216{
3217 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3218
3219 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3220 VINSN_INSN_RTX
3221 (has_dependence_data.con)))
3222 {
3223 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3224
3225 if (reg_last->sets)
3226 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3227
3228 if (reg_last->clobbers)
3229 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3230
0d4acd90
AB
3231 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3232 is actually a check insn. We need to do this for any register
3233 read-read dependency with the check unless we track properly
3234 all registers written by BE_IN_SPEC-speculated insns, as
3235 we don't have explicit dependence lists. See PR 53975. */
e855c69d
AB
3236 if (reg_last->uses)
3237 {
3238 ds_t pro_spec_checked_ds;
3239
3240 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3241 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3242
0d4acd90 3243 if (pro_spec_checked_ds != 0)
e855c69d
AB
3244 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3245 NULL_RTX, NULL_RTX);
3246 }
3247 }
3248}
3249
3250/* Note a memory dependence. */
3251static void
3252has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3253 rtx pending_mem ATTRIBUTE_UNUSED,
3254 insn_t pending_insn ATTRIBUTE_UNUSED,
3255 ds_t ds ATTRIBUTE_UNUSED)
3256{
3257 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3258 VINSN_INSN_RTX (has_dependence_data.con)))
3259 {
3260 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3261
3262 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3263 }
3264}
3265
3266/* Note a dependence. */
3267static void
3268has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3269 ds_t ds ATTRIBUTE_UNUSED)
3270{
3271 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3272 VINSN_INSN_RTX (has_dependence_data.con)))
3273 {
3274 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3275
3276 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3277 }
3278}
3279
3280/* Mark the insn as having a hard dependence that prevents speculation. */
3281void
3282sel_mark_hard_insn (rtx insn)
3283{
3284 int i;
3285
3286 /* Only work when we're in has_dependence_p mode.
3287 ??? This is a hack, this should actually be a hook. */
3288 if (!has_dependence_data.dc || !has_dependence_data.pro)
3289 return;
3290
3291 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3292 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3293
3294 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3295 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3296}
3297
3298/* This structure holds the hooks for the dependency analysis used when
3299 actually processing dependencies in the scheduler. */
3300static struct sched_deps_info_def has_dependence_sched_deps_info;
3301
3302/* This initializes most of the fields of the above structure. */
3303static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3304 {
3305 NULL,
3306
3307 has_dependence_start_insn,
3308 has_dependence_finish_insn,
3309 has_dependence_start_lhs,
3310 has_dependence_finish_lhs,
3311 has_dependence_start_rhs,
3312 has_dependence_finish_rhs,
3313 has_dependence_note_reg_set,
3314 has_dependence_note_reg_clobber,
3315 has_dependence_note_reg_use,
3316 has_dependence_note_mem_dep,
3317 has_dependence_note_dep,
3318
3319 0, /* use_cselib */
3320 0, /* use_deps_list */
3321 0 /* generate_spec_deps */
3322 };
3323
3324/* Initialize has_dependence_sched_deps_info with extra spec field. */
3325static void
3326setup_has_dependence_sched_deps_info (void)
3327{
3328 memcpy (&has_dependence_sched_deps_info,
3329 &const_has_dependence_sched_deps_info,
3330 sizeof (has_dependence_sched_deps_info));
3331
3332 if (spec_info != NULL)
3333 has_dependence_sched_deps_info.generate_spec_deps = 1;
3334
3335 sched_deps_info = &has_dependence_sched_deps_info;
3336}
3337
3338/* Remove all dependences found and recorded in has_dependence_data array. */
3339void
3340sel_clear_has_dependence (void)
3341{
3342 int i;
3343
3344 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3345 has_dependence_data.has_dep_p[i] = 0;
3346}
3347
3348/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3349 to the dependence information array in HAS_DEP_PP. */
3350ds_t
3351has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3352{
3353 int i;
3354 ds_t ds;
88302d54 3355 struct deps_desc *dc;
e855c69d
AB
3356
3357 if (INSN_SIMPLEJUMP_P (pred))
3358 /* Unconditional jump is just a transfer of control flow.
3359 Ignore it. */
3360 return false;
3361
3362 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3363
3364 /* We init this field lazily. */
3365 if (dc->reg_last == NULL)
3366 init_deps_reg_last (dc);
b8698a0f 3367
e855c69d
AB
3368 if (!dc->readonly)
3369 {
3370 has_dependence_data.pro = NULL;
3371 /* Initialize empty dep context with information about PRED. */
3372 advance_deps_context (dc, pred);
3373 dc->readonly = 1;
3374 }
3375
3376 has_dependence_data.where = DEPS_IN_NOWHERE;
3377 has_dependence_data.pro = pred;
3378 has_dependence_data.con = EXPR_VINSN (expr);
3379 has_dependence_data.dc = dc;
3380
3381 sel_clear_has_dependence ();
3382
3383 /* Now catch all dependencies that would be generated between PRED and
3384 INSN. */
3385 setup_has_dependence_sched_deps_info ();
3386 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3387 has_dependence_data.dc = NULL;
3388
3389 /* When a barrier was found, set DEPS_IN_INSN bits. */
3390 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3391 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3392 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3393 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3394
3395 /* Do not allow stores to memory to move through checks. Currently
3396 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3397 obvious places to which this dependence can be attached.
e855c69d
AB
3398 FIMXE: this should go to a hook. */
3399 if (EXPR_LHS (expr)
3400 && MEM_P (EXPR_LHS (expr))
3401 && sel_insn_is_speculation_check (pred))
3402 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3403
e855c69d
AB
3404 *has_dep_pp = has_dependence_data.has_dep_p;
3405 ds = 0;
3406 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3407 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3408 NULL_RTX, NULL_RTX);
3409
3410 return ds;
3411}
3412\f
3413
b8698a0f
L
3414/* Dependence hooks implementation that checks dependence latency constraints
3415 on the insns being scheduled. The entry point for these routines is
3416 tick_check_p predicate. */
e855c69d
AB
3417
3418static struct
3419{
3420 /* An expr we are currently checking. */
3421 expr_t expr;
3422
3423 /* A minimal cycle for its scheduling. */
3424 int cycle;
3425
3426 /* Whether we have seen a true dependence while checking. */
3427 bool seen_true_dep_p;
3428} tick_check_data;
3429
3430/* Update minimal scheduling cycle for tick_check_insn given that it depends
3431 on PRO with status DS and weight DW. */
3432static void
3433tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3434{
3435 expr_t con_expr = tick_check_data.expr;
3436 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3437
3438 if (con_insn != pro_insn)
3439 {
3440 enum reg_note dt;
3441 int tick;
3442
3443 if (/* PROducer was removed from above due to pipelining. */
3444 !INSN_IN_STREAM_P (pro_insn)
3445 /* Or PROducer was originally on the next iteration regarding the
3446 CONsumer. */
3447 || (INSN_SCHED_TIMES (pro_insn)
3448 - EXPR_SCHED_TIMES (con_expr)) > 1)
3449 /* Don't count this dependence. */
3450 return;
3451
3452 dt = ds_to_dt (ds);
3453 if (dt == REG_DEP_TRUE)
3454 tick_check_data.seen_true_dep_p = true;
3455
3456 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3457
3458 {
3459 dep_def _dep, *dep = &_dep;
3460
3461 init_dep (dep, pro_insn, con_insn, dt);
3462
3463 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3464 }
3465
3466 /* When there are several kinds of dependencies between pro and con,
3467 only REG_DEP_TRUE should be taken into account. */
3468 if (tick > tick_check_data.cycle
3469 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3470 tick_check_data.cycle = tick;
3471 }
3472}
3473
3474/* An implementation of note_dep hook. */
3475static void
3476tick_check_note_dep (insn_t pro, ds_t ds)
3477{
3478 tick_check_dep_with_dw (pro, ds, 0);
3479}
3480
3481/* An implementation of note_mem_dep hook. */
3482static void
3483tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3484{
3485 dw_t dw;
3486
3487 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3488 ? estimate_dep_weak (mem1, mem2)
3489 : 0);
3490
3491 tick_check_dep_with_dw (pro, ds, dw);
3492}
3493
3494/* This structure contains hooks for dependence analysis used when determining
3495 whether an insn is ready for scheduling. */
3496static struct sched_deps_info_def tick_check_sched_deps_info =
3497 {
3498 NULL,
3499
3500 NULL,
3501 NULL,
3502 NULL,
3503 NULL,
3504 NULL,
3505 NULL,
3506 haifa_note_reg_set,
3507 haifa_note_reg_clobber,
3508 haifa_note_reg_use,
3509 tick_check_note_mem_dep,
3510 tick_check_note_dep,
3511
3512 0, 0, 0
3513 };
3514
3515/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3516 scheduled. Return 0 if all data from producers in DC is ready. */
3517int
3518tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3519{
3520 int cycles_left;
3521 /* Initialize variables. */
3522 tick_check_data.expr = expr;
3523 tick_check_data.cycle = 0;
3524 tick_check_data.seen_true_dep_p = false;
3525 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3526
e855c69d
AB
3527 gcc_assert (!dc->readonly);
3528 dc->readonly = 1;
3529 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3530 dc->readonly = 0;
3531
3532 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3533
3534 return cycles_left >= 0 ? cycles_left : 0;
3535}
3536\f
3537
3538/* Functions to work with insns. */
3539
3540/* Returns true if LHS of INSN is the same as DEST of an insn
3541 being moved. */
3542bool
3543lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3544{
3545 rtx lhs = INSN_LHS (insn);
3546
3547 if (lhs == NULL || dest == NULL)
3548 return false;
b8698a0f 3549
e855c69d
AB
3550 return rtx_equal_p (lhs, dest);
3551}
3552
3553/* Return s_i_d entry of INSN. Callable from debugger. */
3554sel_insn_data_def
3555insn_sid (insn_t insn)
3556{
3557 return *SID (insn);
3558}
3559
3560/* True when INSN is a speculative check. We can tell this by looking
3561 at the data structures of the selective scheduler, not by examining
3562 the pattern. */
3563bool
3564sel_insn_is_speculation_check (rtx insn)
3565{
3566 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3567}
3568
b8698a0f 3569/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3570 for given INSN. */
3571void
3572get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3573{
3574 rtx pat = PATTERN (insn);
3575
3576 gcc_assert (dst_loc);
3577 gcc_assert (GET_CODE (pat) == SET);
3578
3579 *dst_loc = SET_DEST (pat);
3580
3581 gcc_assert (*dst_loc);
3582 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3583
3584 if (mode)
3585 *mode = GET_MODE (*dst_loc);
3586}
3587
b8698a0f 3588/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3589 creation. */
3590bool
3591bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3592{
3593 insn_t succ;
3594 succ_iterator si;
3595
3596 FOR_EACH_SUCC (succ, si, jump)
3597 if (sel_num_cfg_preds_gt_1 (succ))
3598 return true;
3599
3600 return false;
3601}
3602
3603/* Return 'true' if INSN is the only one in its basic block. */
3604static bool
3605insn_is_the_only_one_in_bb_p (insn_t insn)
3606{
3607 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3608}
3609
3610#ifdef ENABLE_CHECKING
b8698a0f 3611/* Check that the region we're scheduling still has at most one
e855c69d
AB
3612 backedge. */
3613static void
3614verify_backedges (void)
3615{
3616 if (pipelining_p)
3617 {
3618 int i, n = 0;
3619 edge e;
3620 edge_iterator ei;
b8698a0f 3621
e855c69d
AB
3622 for (i = 0; i < current_nr_blocks; i++)
3623 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3624 if (in_current_region_p (e->dest)
3625 && BLOCK_TO_BB (e->dest->index) < i)
3626 n++;
b8698a0f 3627
e855c69d
AB
3628 gcc_assert (n <= 1);
3629 }
3630}
3631#endif
3632\f
3633
3634/* Functions to work with control flow. */
3635
b59ab570
AM
3636/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3637 are sorted in topological order (it might have been invalidated by
3638 redirecting an edge). */
3639static void
3640sel_recompute_toporder (void)
3641{
3642 int i, n, rgn;
3643 int *postorder, n_blocks;
3644
3645 postorder = XALLOCAVEC (int, n_basic_blocks);
3646 n_blocks = post_order_compute (postorder, false, false);
3647
3648 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3649 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3650 if (CONTAINING_RGN (postorder[i]) == rgn)
3651 {
3652 BLOCK_TO_BB (postorder[i]) = n;
3653 BB_TO_BLOCK (n) = postorder[i];
3654 n++;
3655 }
3656
3657 /* Assert that we updated info for all blocks. We may miss some blocks if
3658 this function is called when redirecting an edge made a block
3659 unreachable, but that block is not deleted yet. */
3660 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3661}
3662
e855c69d 3663/* Tidy the possibly empty block BB. */
65592aad 3664static bool
5f33b972 3665maybe_tidy_empty_bb (basic_block bb)
e855c69d 3666{
b7b5540a 3667 basic_block succ_bb, pred_bb, note_bb;
00c4e97c 3668 VEC (basic_block, heap) *dom_bbs;
f2c45f08
AM
3669 edge e;
3670 edge_iterator ei;
e855c69d
AB
3671 bool rescan_p;
3672
3673 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3674 has incoming non-fallthrough edge, or it has no predecessors or
3675 successors. Otherwise remove it. */
b5b8b0ac 3676 if (!sel_bb_empty_p (bb)
b8698a0f 3677 || (single_succ_p (bb)
e855c69d 3678 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3679 && (!single_pred_p (bb)
762bffba
AB
3680 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3681 || EDGE_COUNT (bb->preds) == 0
3682 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3683 return false;
3684
f2c45f08
AM
3685 /* Do not attempt to redirect complex edges. */
3686 FOR_EACH_EDGE (e, ei, bb->preds)
3687 if (e->flags & EDGE_COMPLEX)
3688 return false;
5ef5a3b7
JJ
3689 else if (e->flags & EDGE_FALLTHRU)
3690 {
3691 rtx note;
3692 /* If prev bb ends with asm goto, see if any of the
3693 ASM_OPERANDS_LABELs don't point to the fallthru
3694 label. Do not attempt to redirect it in that case. */
3695 if (JUMP_P (BB_END (e->src))
3696 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3697 {
3698 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3699
3700 for (i = 0; i < n; ++i)
3701 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3702 return false;
3703 }
3704 }
f2c45f08 3705
e855c69d
AB
3706 free_data_sets (bb);
3707
3708 /* Do not delete BB if it has more than one successor.
3709 That can occur when we moving a jump. */
3710 if (!single_succ_p (bb))
3711 {
3712 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3713 sel_merge_blocks (bb->prev_bb, bb);
3714 return true;
3715 }
3716
3717 succ_bb = single_succ (bb);
3718 rescan_p = true;
3719 pred_bb = NULL;
00c4e97c 3720 dom_bbs = NULL;
e855c69d 3721
b7b5540a
AB
3722 /* Save a pred/succ from the current region to attach the notes to. */
3723 note_bb = NULL;
3724 FOR_EACH_EDGE (e, ei, bb->preds)
3725 if (in_current_region_p (e->src))
3726 {
3727 note_bb = e->src;
3728 break;
3729 }
3730 if (note_bb == NULL)
3731 note_bb = succ_bb;
3732
e855c69d
AB
3733 /* Redirect all non-fallthru edges to the next bb. */
3734 while (rescan_p)
3735 {
e855c69d
AB
3736 rescan_p = false;
3737
3738 FOR_EACH_EDGE (e, ei, bb->preds)
3739 {
3740 pred_bb = e->src;
3741
3742 if (!(e->flags & EDGE_FALLTHRU))
3743 {
5f33b972 3744 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3745 the edge destination block (E->SUCC) along a fallthru edge.
3746
3747 We will update dominators here only when we'll get
3748 an unreachable block when redirecting, otherwise
3749 sel_redirect_edge_and_branch will take care of it. */
3750 if (e->dest != bb
3751 && single_pred_p (e->dest))
3752 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
5f33b972 3753 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3754 rescan_p = true;
3755 break;
3756 }
5f33b972
AM
3757 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3758 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3759 still have to adjust it. */
3760 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3761 {
3762 /* If possible, try to remove the unneeded conditional jump. */
3763 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3764 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3765 {
3766 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3767 tidy_fallthru_edge (e);
3768 }
3769 else
3770 sel_redirect_edge_and_branch (e, succ_bb);
3771 rescan_p = true;
3772 break;
3773 }
e855c69d
AB
3774 }
3775 }
3776
e855c69d
AB
3777 if (can_merge_blocks_p (bb->prev_bb, bb))
3778 sel_merge_blocks (bb->prev_bb, bb);
3779 else
e855c69d 3780 {
262d8232 3781 /* This is a block without fallthru predecessor. Just delete it. */
b7b5540a
AB
3782 gcc_assert (note_bb);
3783 move_bb_info (note_bb, bb);
e855c69d
AB
3784 remove_empty_bb (bb, true);
3785 }
3786
00c4e97c
AB
3787 if (!VEC_empty (basic_block, dom_bbs))
3788 {
3789 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3790 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3791 VEC_free (basic_block, heap, dom_bbs);
3792 }
3793
e855c69d
AB
3794 return true;
3795}
3796
b8698a0f 3797/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3798 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3799 is true, also try to optimize control flow on non-empty blocks. */
3800bool
3801tidy_control_flow (basic_block xbb, bool full_tidying)
3802{
3803 bool changed = true;
b5b8b0ac 3804 insn_t first, last;
b8698a0f 3805
e855c69d 3806 /* First check whether XBB is empty. */
5f33b972 3807 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3808 if (changed || !full_tidying)
3809 return changed;
b8698a0f 3810
e855c69d 3811 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3812 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3813 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3814 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3815 {
3816 if (sel_remove_insn (BB_END (xbb), false, false))
3817 return true;
3818 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3819 }
3820
b5b8b0ac
AO
3821 first = sel_bb_head (xbb);
3822 last = sel_bb_end (xbb);
3823 if (MAY_HAVE_DEBUG_INSNS)
3824 {
3825 if (first != last && DEBUG_INSN_P (first))
3826 do
3827 first = NEXT_INSN (first);
3828 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3829
3830 if (first != last && DEBUG_INSN_P (last))
3831 do
3832 last = PREV_INSN (last);
3833 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3834 }
e855c69d 3835 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3836 to next basic block left after removing INSN from stream.
3837 If it is so, remove that jump and redirect edge to current
3838 basic block (where there was INSN before deletion). This way
3839 when NOP will be deleted several instructions later with its
3840 basic block we will not get a jump to next instruction, which
e855c69d 3841 can be harmful. */
b5b8b0ac 3842 if (first == last
e855c69d 3843 && !sel_bb_empty_p (xbb)
b5b8b0ac 3844 && INSN_NOP_P (last)
e855c69d
AB
3845 /* Flow goes fallthru from current block to the next. */
3846 && EDGE_COUNT (xbb->succs) == 1
3847 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3848 /* When successor is an EXIT block, it may not be the next block. */
3849 && single_succ (xbb) != EXIT_BLOCK_PTR
3850 /* And unconditional jump in previous basic block leads to
3851 next basic block of XBB and this jump can be safely removed. */
3852 && in_current_region_p (xbb->prev_bb)
753de8cf 3853 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3854 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3855 /* Also this jump is not at the scheduling boundary. */
3856 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3857 {
b59ab570 3858 bool recompute_toporder_p;
e855c69d
AB
3859 /* Clear data structures of jump - jump itself will be removed
3860 by sel_redirect_edge_and_branch. */
3861 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3862 recompute_toporder_p
3863 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3864
e855c69d
AB
3865 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3866
3867 /* It can turn out that after removing unused jump, basic block
3868 that contained that jump, becomes empty too. In such case
3869 remove it too. */
3870 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3871 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3872 if (recompute_toporder_p)
b59ab570 3873 sel_recompute_toporder ();
e855c69d 3874 }
d787f788
AM
3875
3876#ifdef ENABLE_CHECKING
3877 verify_backedges ();
00c4e97c 3878 verify_dominators (CDI_DOMINATORS);
d787f788
AM
3879#endif
3880
e855c69d
AB
3881 return changed;
3882}
3883
b59ab570
AM
3884/* Purge meaningless empty blocks in the middle of a region. */
3885void
3886purge_empty_blocks (void)
3887{
9d0dcda1 3888 int i;
b59ab570 3889
9d0dcda1
AM
3890 /* Do not attempt to delete the first basic block in the region. */
3891 for (i = 1; i < current_nr_blocks; )
b59ab570
AM
3892 {
3893 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3894
5f33b972 3895 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3896 continue;
3897
3898 i++;
3899 }
3900}
3901
b8698a0f
L
3902/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3903 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3904 Return true if we have removed some blocks afterwards. */
3905bool
3906sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3907{
3908 basic_block bb = BLOCK_FOR_INSN (insn);
3909
3910 gcc_assert (INSN_IN_STREAM_P (insn));
3911
b5b8b0ac
AO
3912 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3913 {
3914 expr_t expr;
3915 av_set_iterator i;
3916
3917 /* When we remove a debug insn that is head of a BB, it remains
3918 in the AV_SET of the block, but it shouldn't. */
3919 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3920 if (EXPR_INSN_RTX (expr) == insn)
3921 {
3922 av_set_iter_remove (&i);
3923 break;
3924 }
3925 }
3926
e855c69d
AB
3927 if (only_disconnect)
3928 {
3929 insn_t prev = PREV_INSN (insn);
3930 insn_t next = NEXT_INSN (insn);
3931 basic_block bb = BLOCK_FOR_INSN (insn);
3932
3933 NEXT_INSN (prev) = next;
3934 PREV_INSN (next) = prev;
3935
3936 if (BB_HEAD (bb) == insn)
3937 {
3938 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3939 BB_HEAD (bb) = prev;
3940 }
3941 if (BB_END (bb) == insn)
3942 BB_END (bb) = prev;
3943 }
3944 else
3945 {
3946 remove_insn (insn);
3947 clear_expr (INSN_EXPR (insn));
3948 }
3949
3950 /* It is necessary to null this fields before calling add_insn (). */
3951 PREV_INSN (insn) = NULL_RTX;
3952 NEXT_INSN (insn) = NULL_RTX;
3953
3954 return tidy_control_flow (bb, full_tidying);
3955}
3956
3957/* Estimate number of the insns in BB. */
3958static int
3959sel_estimate_number_of_insns (basic_block bb)
3960{
3961 int res = 0;
3962 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3963
3964 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3965 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3966 res++;
3967
3968 return res;
3969}
3970
3971/* We don't need separate luids for notes or labels. */
3972static int
3973sel_luid_for_non_insn (rtx x)
3974{
3975 gcc_assert (NOTE_P (x) || LABEL_P (x));
3976
3977 return -1;
3978}
3979
0d9439b0
SG
3980/* Find the proper seqno for inserting at INSN by successors.
3981 Return -1 if no successors with positive seqno exist. */
e855c69d 3982static int
0d9439b0
SG
3983get_seqno_by_succs (rtx insn)
3984{
3985 basic_block bb = BLOCK_FOR_INSN (insn);
3986 rtx tmp = insn, end = BB_END (bb);
3987 int seqno;
3988 insn_t succ = NULL;
3989 succ_iterator si;
3990
3991 while (tmp != end)
3992 {
3993 tmp = NEXT_INSN (tmp);
3994 if (INSN_P (tmp))
3995 return INSN_SEQNO (tmp);
3996 }
3997
3998 seqno = INT_MAX;
3999
4000 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4001 if (INSN_SEQNO (succ) > 0)
4002 seqno = MIN (seqno, INSN_SEQNO (succ));
4003
4004 if (seqno == INT_MAX)
4005 return -1;
4006
4007 return seqno;
4008}
4009
4010/* Compute seqno for INSN by its preds or succs. */
4011static int
4012get_seqno_for_a_jump (insn_t insn)
e855c69d
AB
4013{
4014 int seqno;
4015
4016 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4017
4018 if (!sel_bb_head_p (insn))
4019 seqno = INSN_SEQNO (PREV_INSN (insn));
4020 else
4021 {
4022 basic_block bb = BLOCK_FOR_INSN (insn);
4023
4024 if (single_pred_p (bb)
4025 && !in_current_region_p (single_pred (bb)))
4026 {
4027 /* We can have preds outside a region when splitting edges
b8698a0f 4028 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
4029 There should be only one of them. */
4030 insn_t succ = NULL;
4031 succ_iterator si;
4032 bool first = true;
b8698a0f 4033
e855c69d
AB
4034 gcc_assert (flag_sel_sched_pipelining_outer_loops
4035 && current_loop_nest);
b8698a0f 4036 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
4037 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4038 {
4039 gcc_assert (first);
4040 first = false;
4041 }
4042
4043 gcc_assert (succ != NULL);
4044 seqno = INSN_SEQNO (succ);
4045 }
4046 else
4047 {
4048 insn_t *preds;
4049 int n;
4050
4051 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
e855c69d 4052
0d9439b0
SG
4053 gcc_assert (n > 0);
4054 /* For one predecessor, use simple method. */
4055 if (n == 1)
4056 seqno = INSN_SEQNO (preds[0]);
4057 else
4058 seqno = get_seqno_by_preds (insn);
b8698a0f 4059
e855c69d
AB
4060 free (preds);
4061 }
4062 }
4063
0d9439b0
SG
4064 /* We were unable to find a good seqno among preds. */
4065 if (seqno < 0)
4066 seqno = get_seqno_by_succs (insn);
4067
4068 gcc_assert (seqno >= 0);
4069
e855c69d
AB
4070 return seqno;
4071}
4072
da7ba240
AB
4073/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4074 with positive seqno exist. */
e855c69d
AB
4075int
4076get_seqno_by_preds (rtx insn)
4077{
4078 basic_block bb = BLOCK_FOR_INSN (insn);
4079 rtx tmp = insn, head = BB_HEAD (bb);
4080 insn_t *preds;
4081 int n, i, seqno;
4082
4083 while (tmp != head)
0d9439b0 4084 {
e855c69d 4085 tmp = PREV_INSN (tmp);
0d9439b0
SG
4086 if (INSN_P (tmp))
4087 return INSN_SEQNO (tmp);
4088 }
b8698a0f 4089
e855c69d
AB
4090 cfg_preds (bb, &preds, &n);
4091 for (i = 0, seqno = -1; i < n; i++)
4092 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4093
e855c69d
AB
4094 return seqno;
4095}
4096
4097\f
4098
4099/* Extend pass-scope data structures for basic blocks. */
4100void
4101sel_extend_global_bb_info (void)
4102{
4103 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4104 last_basic_block);
4105}
4106
4107/* Extend region-scope data structures for basic blocks. */
4108static void
4109extend_region_bb_info (void)
4110{
4111 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4112 last_basic_block);
4113}
4114
4115/* Extend all data structures to fit for all basic blocks. */
4116static void
4117extend_bb_info (void)
4118{
4119 sel_extend_global_bb_info ();
4120 extend_region_bb_info ();
4121}
4122
4123/* Finalize pass-scope data structures for basic blocks. */
4124void
4125sel_finish_global_bb_info (void)
4126{
4127 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4128}
4129
4130/* Finalize region-scope data structures for basic blocks. */
4131static void
4132finish_region_bb_info (void)
4133{
4134 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4135}
4136\f
4137
4138/* Data for each insn in current region. */
4139VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4140
e855c69d
AB
4141/* Extend data structures for insns from current region. */
4142static void
4143extend_insn_data (void)
4144{
4145 int reserve;
b8698a0f 4146
e855c69d
AB
4147 sched_extend_target ();
4148 sched_deps_init (false);
4149
4150 /* Extend data structures for insns from current region. */
b8698a0f 4151 reserve = (sched_max_luid + 1
e855c69d 4152 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 4153 if (reserve > 0
e855c69d 4154 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
4155 {
4156 int size;
4157
4158 if (sched_max_luid / 2 > 1024)
4159 size = sched_max_luid + 1024;
4160 else
4161 size = 3 * sched_max_luid / 2;
b8698a0f 4162
bcf33775
AB
4163
4164 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4165 }
e855c69d
AB
4166}
4167
4168/* Finalize data structures for insns from current region. */
4169static void
4170finish_insns (void)
4171{
4172 unsigned i;
4173
4174 /* Clear here all dependence contexts that may have left from insns that were
4175 removed during the scheduling. */
4176 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4177 {
0823efed 4178 sel_insn_data_def *sid_entry = &VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 4179
e855c69d
AB
4180 if (sid_entry->live)
4181 return_regset_to_pool (sid_entry->live);
4182 if (sid_entry->analyzed_deps)
4183 {
4184 BITMAP_FREE (sid_entry->analyzed_deps);
4185 BITMAP_FREE (sid_entry->found_deps);
4186 htab_delete (sid_entry->transformed_insns);
4187 free_deps (&sid_entry->deps_context);
4188 }
4189 if (EXPR_VINSN (&sid_entry->expr))
4190 {
4191 clear_expr (&sid_entry->expr);
b8698a0f 4192
e855c69d
AB
4193 /* Also, clear CANT_MOVE bit here, because we really don't want it
4194 to be passed to the next region. */
4195 CANT_MOVE_BY_LUID (i) = 0;
4196 }
4197 }
b8698a0f 4198
e855c69d
AB
4199 VEC_free (sel_insn_data_def, heap, s_i_d);
4200}
4201
4202/* A proxy to pass initialization data to init_insn (). */
4203static sel_insn_data_def _insn_init_ssid;
4204static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4205
4206/* If true create a new vinsn. Otherwise use the one from EXPR. */
4207static bool insn_init_create_new_vinsn_p;
4208
4209/* Set all necessary data for initialization of the new insn[s]. */
4210static expr_t
4211set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4212{
4213 expr_t x = &insn_init_ssid->expr;
4214
4215 copy_expr_onside (x, expr);
4216 if (vi != NULL)
4217 {
4218 insn_init_create_new_vinsn_p = false;
4219 change_vinsn_in_expr (x, vi);
4220 }
4221 else
4222 insn_init_create_new_vinsn_p = true;
4223
4224 insn_init_ssid->seqno = seqno;
4225 return x;
4226}
4227
4228/* Init data for INSN. */
4229static void
4230init_insn_data (insn_t insn)
4231{
4232 expr_t expr;
4233 sel_insn_data_t ssid = insn_init_ssid;
4234
4235 /* The fields mentioned below are special and hence are not being
4236 propagated to the new insns. */
4237 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4238 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4239 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4240
4241 expr = INSN_EXPR (insn);
4242 copy_expr (expr, &ssid->expr);
4243 prepare_insn_expr (insn, ssid->seqno);
4244
4245 if (insn_init_create_new_vinsn_p)
4246 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4247
e855c69d
AB
4248 if (first_time_insn_init (insn))
4249 init_first_time_insn_data (insn);
4250}
4251
4252/* This is used to initialize spurious jumps generated by
4253 sel_redirect_edge (). */
4254static void
4255init_simplejump_data (insn_t insn)
4256{
4257 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4258 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d 4259 false, true);
0d9439b0 4260 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
e855c69d
AB
4261 init_first_time_insn_data (insn);
4262}
4263
b8698a0f 4264/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4265 a new jump that may be created by redirect_edge. */
4266void
4267sel_init_new_insn (insn_t insn, int flags)
4268{
4269 /* We create data structures for bb when the first insn is emitted in it. */
4270 if (INSN_P (insn)
4271 && INSN_IN_STREAM_P (insn)
4272 && insn_is_the_only_one_in_bb_p (insn))
4273 {
4274 extend_bb_info ();
4275 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4276 }
b8698a0f 4277
e855c69d 4278 if (flags & INSN_INIT_TODO_LUID)
a95b23b4
BS
4279 {
4280 sched_extend_luids ();
4281 sched_init_insn_luid (insn);
4282 }
e855c69d
AB
4283
4284 if (flags & INSN_INIT_TODO_SSID)
4285 {
4286 extend_insn_data ();
4287 init_insn_data (insn);
4288 clear_expr (&insn_init_ssid->expr);
4289 }
4290
4291 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4292 {
4293 extend_insn_data ();
4294 init_simplejump_data (insn);
4295 }
b8698a0f 4296
e855c69d
AB
4297 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4298 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4299}
4300\f
4301
4302/* Functions to init/finish work with lv sets. */
4303
4304/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4305static void
4306init_lv_set (basic_block bb)
4307{
4308 gcc_assert (!BB_LV_SET_VALID_P (bb));
4309
4310 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4311 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4312 BB_LV_SET_VALID_P (bb) = true;
4313}
4314
4315/* Copy liveness information to BB from FROM_BB. */
4316static void
4317copy_lv_set_from (basic_block bb, basic_block from_bb)
4318{
4319 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4320
e855c69d
AB
4321 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4322 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4323}
e855c69d
AB
4324
4325/* Initialize lv set of all bb headers. */
4326void
4327init_lv_sets (void)
4328{
4329 basic_block bb;
4330
4331 /* Initialize of LV sets. */
4332 FOR_EACH_BB (bb)
4333 init_lv_set (bb);
4334
4335 /* Don't forget EXIT_BLOCK. */
4336 init_lv_set (EXIT_BLOCK_PTR);
4337}
4338
4339/* Release lv set of HEAD. */
4340static void
4341free_lv_set (basic_block bb)
4342{
4343 gcc_assert (BB_LV_SET (bb) != NULL);
4344
4345 return_regset_to_pool (BB_LV_SET (bb));
4346 BB_LV_SET (bb) = NULL;
4347 BB_LV_SET_VALID_P (bb) = false;
4348}
4349
4350/* Finalize lv sets of all bb headers. */
4351void
4352free_lv_sets (void)
4353{
4354 basic_block bb;
4355
4356 /* Don't forget EXIT_BLOCK. */
4357 free_lv_set (EXIT_BLOCK_PTR);
4358
4359 /* Free LV sets. */
4360 FOR_EACH_BB (bb)
4361 if (BB_LV_SET (bb))
4362 free_lv_set (bb);
4363}
4364
5c416724
DM
4365/* Mark AV_SET for BB as invalid, so this set will be updated the next time
4366 compute_av() processes BB. This function is called when creating new basic
4367 blocks, as well as for blocks (either new or existing) where new jumps are
4368 created when the control flow is being updated. */
e855c69d
AB
4369static void
4370invalidate_av_set (basic_block bb)
4371{
e855c69d
AB
4372 BB_AV_LEVEL (bb) = -1;
4373}
4374
4375/* Create initial data sets for BB (they will be invalid). */
4376static void
4377create_initial_data_sets (basic_block bb)
4378{
4379 if (BB_LV_SET (bb))
4380 BB_LV_SET_VALID_P (bb) = false;
4381 else
4382 BB_LV_SET (bb) = get_regset_from_pool ();
4383 invalidate_av_set (bb);
4384}
4385
4386/* Free av set of BB. */
4387static void
4388free_av_set (basic_block bb)
4389{
4390 av_set_clear (&BB_AV_SET (bb));
4391 BB_AV_LEVEL (bb) = 0;
4392}
4393
4394/* Free data sets of BB. */
4395void
4396free_data_sets (basic_block bb)
4397{
4398 free_lv_set (bb);
4399 free_av_set (bb);
4400}
4401
4402/* Exchange lv sets of TO and FROM. */
4403static void
4404exchange_lv_sets (basic_block to, basic_block from)
4405{
4406 {
4407 regset to_lv_set = BB_LV_SET (to);
4408
4409 BB_LV_SET (to) = BB_LV_SET (from);
4410 BB_LV_SET (from) = to_lv_set;
4411 }
4412
4413 {
4414 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4415
4416 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4417 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4418 }
4419}
4420
4421
4422/* Exchange av sets of TO and FROM. */
4423static void
4424exchange_av_sets (basic_block to, basic_block from)
4425{
4426 {
4427 av_set_t to_av_set = BB_AV_SET (to);
4428
4429 BB_AV_SET (to) = BB_AV_SET (from);
4430 BB_AV_SET (from) = to_av_set;
4431 }
4432
4433 {
4434 int to_av_level = BB_AV_LEVEL (to);
4435
4436 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4437 BB_AV_LEVEL (from) = to_av_level;
4438 }
4439}
4440
4441/* Exchange data sets of TO and FROM. */
4442void
4443exchange_data_sets (basic_block to, basic_block from)
4444{
4445 exchange_lv_sets (to, from);
4446 exchange_av_sets (to, from);
4447}
4448
4449/* Copy data sets of FROM to TO. */
4450void
4451copy_data_sets (basic_block to, basic_block from)
4452{
4453 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4454 gcc_assert (BB_AV_SET (to) == NULL);
4455
4456 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4457 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4458
4459 if (BB_AV_SET_VALID_P (from))
4460 {
4461 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4462 }
4463 if (BB_LV_SET_VALID_P (from))
4464 {
4465 gcc_assert (BB_LV_SET (to) != NULL);
4466 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4467 }
4468}
4469
4470/* Return an av set for INSN, if any. */
4471av_set_t
4472get_av_set (insn_t insn)
4473{
4474 av_set_t av_set;
4475
4476 gcc_assert (AV_SET_VALID_P (insn));
4477
4478 if (sel_bb_head_p (insn))
4479 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4480 else
4481 av_set = NULL;
4482
4483 return av_set;
4484}
4485
4486/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4487int
4488get_av_level (insn_t insn)
4489{
4490 int av_level;
4491
4492 gcc_assert (INSN_P (insn));
4493
4494 if (sel_bb_head_p (insn))
4495 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4496 else
4497 av_level = INSN_WS_LEVEL (insn);
4498
4499 return av_level;
4500}
4501
4502\f
4503
4504/* Variables to work with control-flow graph. */
4505
4506/* The basic block that already has been processed by the sched_data_update (),
4507 but hasn't been in sel_add_bb () yet. */
4508static VEC (basic_block, heap) *last_added_blocks = NULL;
4509
4510/* A pool for allocating successor infos. */
4511static struct
4512{
4513 /* A stack for saving succs_info structures. */
4514 struct succs_info *stack;
4515
4516 /* Its size. */
4517 int size;
4518
4519 /* Top of the stack. */
4520 int top;
4521
4522 /* Maximal value of the top. */
4523 int max_top;
4524} succs_info_pool;
4525
4526/* Functions to work with control-flow graph. */
4527
4528/* Return basic block note of BB. */
4529insn_t
4530sel_bb_head (basic_block bb)
4531{
4532 insn_t head;
4533
4534 if (bb == EXIT_BLOCK_PTR)
4535 {
4536 gcc_assert (exit_insn != NULL_RTX);
4537 head = exit_insn;
4538 }
4539 else
4540 {
4541 insn_t note;
4542
4543 note = bb_note (bb);
4544 head = next_nonnote_insn (note);
4545
89ad0f25 4546 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
e855c69d
AB
4547 head = NULL_RTX;
4548 }
4549
4550 return head;
4551}
4552
4553/* Return true if INSN is a basic block header. */
4554bool
4555sel_bb_head_p (insn_t insn)
4556{
4557 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4558}
4559
4560/* Return last insn of BB. */
4561insn_t
4562sel_bb_end (basic_block bb)
4563{
4564 if (sel_bb_empty_p (bb))
4565 return NULL_RTX;
4566
4567 gcc_assert (bb != EXIT_BLOCK_PTR);
4568
4569 return BB_END (bb);
4570}
4571
4572/* Return true if INSN is the last insn in its basic block. */
4573bool
4574sel_bb_end_p (insn_t insn)
4575{
4576 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4577}
4578
4579/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4580bool
4581sel_bb_empty_p (basic_block bb)
4582{
4583 return sel_bb_head (bb) == NULL;
4584}
4585
4586/* True when BB belongs to the current scheduling region. */
4587bool
4588in_current_region_p (basic_block bb)
4589{
4590 if (bb->index < NUM_FIXED_BLOCKS)
4591 return false;
4592
4593 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4594}
4595
4596/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4597basic_block
4598fallthru_bb_of_jump (rtx jump)
4599{
4600 if (!JUMP_P (jump))
4601 return NULL;
4602
e855c69d
AB
4603 if (!any_condjump_p (jump))
4604 return NULL;
4605
268bab85
AB
4606 /* A basic block that ends with a conditional jump may still have one successor
4607 (and be followed by a barrier), we are not interested. */
4608 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4609 return NULL;
4610
e855c69d
AB
4611 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4612}
4613
4614/* Remove all notes from BB. */
4615static void
4616init_bb (basic_block bb)
4617{
4618 remove_notes (bb_note (bb), BB_END (bb));
4619 BB_NOTE_LIST (bb) = note_list;
4620}
4621
4622void
a95b23b4 4623sel_init_bbs (bb_vec_t bbs)
e855c69d
AB
4624{
4625 const struct sched_scan_info_def ssi =
4626 {
4627 extend_bb_info, /* extend_bb */
4628 init_bb, /* init_bb */
4629 NULL, /* extend_insn */
4630 NULL /* init_insn */
4631 };
4632
a95b23b4 4633 sched_scan (&ssi, bbs);
e855c69d
AB
4634}
4635
7898b93b 4636/* Restore notes for the whole region. */
e855c69d 4637static void
7898b93b 4638sel_restore_notes (void)
e855c69d
AB
4639{
4640 int bb;
7898b93b 4641 insn_t insn;
e855c69d
AB
4642
4643 for (bb = 0; bb < current_nr_blocks; bb++)
4644 {
4645 basic_block first, last;
4646
4647 first = EBB_FIRST_BB (bb);
4648 last = EBB_LAST_BB (bb)->next_bb;
4649
4650 do
4651 {
4652 note_list = BB_NOTE_LIST (first);
4653 restore_other_notes (NULL, first);
4654 BB_NOTE_LIST (first) = NULL_RTX;
4655
7898b93b
AM
4656 FOR_BB_INSNS (first, insn)
4657 if (NONDEBUG_INSN_P (insn))
4658 reemit_notes (insn);
4659
e855c69d
AB
4660 first = first->next_bb;
4661 }
4662 while (first != last);
4663 }
4664}
4665
4666/* Free per-bb data structures. */
4667void
4668sel_finish_bbs (void)
4669{
7898b93b 4670 sel_restore_notes ();
e855c69d
AB
4671
4672 /* Remove current loop preheader from this loop. */
4673 if (current_loop_nest)
4674 sel_remove_loop_preheader ();
4675
4676 finish_region_bb_info ();
4677}
4678
4679/* Return true if INSN has a single successor of type FLAGS. */
4680bool
4681sel_insn_has_single_succ_p (insn_t insn, int flags)
4682{
4683 insn_t succ;
4684 succ_iterator si;
4685 bool first_p = true;
4686
4687 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4688 {
4689 if (first_p)
4690 first_p = false;
4691 else
4692 return false;
4693 }
4694
4695 return true;
4696}
4697
4698/* Allocate successor's info. */
4699static struct succs_info *
4700alloc_succs_info (void)
4701{
4702 if (succs_info_pool.top == succs_info_pool.max_top)
4703 {
4704 int i;
b8698a0f 4705
e855c69d
AB
4706 if (++succs_info_pool.max_top >= succs_info_pool.size)
4707 gcc_unreachable ();
4708
4709 i = ++succs_info_pool.top;
4710 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4711 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4712 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4713 }
4714 else
4715 succs_info_pool.top++;
4716
4717 return &succs_info_pool.stack[succs_info_pool.top];
4718}
4719
4720/* Free successor's info. */
4721void
4722free_succs_info (struct succs_info * sinfo)
4723{
b8698a0f 4724 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4725 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4726 succs_info_pool.top--;
4727
4728 /* Clear stale info. */
b8698a0f 4729 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4730 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4731 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4732 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4733 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4734 0, VEC_length (int, sinfo->probs_ok));
4735 sinfo->all_prob = 0;
4736 sinfo->succs_ok_n = 0;
4737 sinfo->all_succs_n = 0;
4738}
4739
b8698a0f 4740/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4741 to the FOR_EACH_SUCC_1 iterator. */
4742struct succs_info *
4743compute_succs_info (insn_t insn, short flags)
4744{
4745 succ_iterator si;
4746 insn_t succ;
4747 struct succs_info *sinfo = alloc_succs_info ();
4748
4749 /* Traverse *all* successors and decide what to do with each. */
4750 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4751 {
4752 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4753 perform code motion through inner loops. */
4754 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4755
4756 if (current_flags & flags)
4757 {
4758 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4759 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4760 /* FIXME: Improve calculation when skipping
e855c69d 4761 inner loop to exits. */
b8698a0f
L
4762 (si.bb_end
4763 ? si.e1->probability
e855c69d
AB
4764 : REG_BR_PROB_BASE));
4765 sinfo->succs_ok_n++;
4766 }
4767 else
4768 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4769
4770 /* Compute all_prob. */
4771 if (!si.bb_end)
4772 sinfo->all_prob = REG_BR_PROB_BASE;
4773 else
4774 sinfo->all_prob += si.e1->probability;
4775
4776 sinfo->all_succs_n++;
4777 }
4778
4779 return sinfo;
4780}
4781
b8698a0f 4782/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4783 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4784static void
4785cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4786{
4787 edge e;
4788 edge_iterator ei;
4789
4790 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4791
4792 FOR_EACH_EDGE (e, ei, bb->preds)
4793 {
4794 basic_block pred_bb = e->src;
4795 insn_t bb_end = BB_END (pred_bb);
4796
3e6a3f6f
AB
4797 if (!in_current_region_p (pred_bb))
4798 {
4799 gcc_assert (flag_sel_sched_pipelining_outer_loops
4800 && current_loop_nest);
4801 continue;
4802 }
e855c69d
AB
4803
4804 if (sel_bb_empty_p (pred_bb))
4805 cfg_preds_1 (pred_bb, preds, n, size);
4806 else
4807 {
4808 if (*n == *size)
b8698a0f 4809 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4810 (*size = 2 * *size + 1));
4811 (*preds)[(*n)++] = bb_end;
4812 }
4813 }
4814
3e6a3f6f
AB
4815 gcc_assert (*n != 0
4816 || (flag_sel_sched_pipelining_outer_loops
4817 && current_loop_nest));
e855c69d
AB
4818}
4819
b8698a0f
L
4820/* Find all predecessors of BB and record them in PREDS and their number
4821 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4822 edges are processed. */
4823static void
4824cfg_preds (basic_block bb, insn_t **preds, int *n)
4825{
4826 int size = 0;
4827
4828 *preds = NULL;
4829 *n = 0;
4830 cfg_preds_1 (bb, preds, n, &size);
4831}
4832
4833/* Returns true if we are moving INSN through join point. */
4834bool
4835sel_num_cfg_preds_gt_1 (insn_t insn)
4836{
4837 basic_block bb;
4838
4839 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4840 return false;
4841
4842 bb = BLOCK_FOR_INSN (insn);
4843
4844 while (1)
4845 {
4846 if (EDGE_COUNT (bb->preds) > 1)
4847 return true;
4848
4849 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4850 bb = EDGE_PRED (bb, 0)->src;
4851
4852 if (!sel_bb_empty_p (bb))
4853 break;
4854 }
4855
4856 return false;
4857}
4858
b8698a0f 4859/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4860 code in sched-ebb.c. */
4861bool
4862bb_ends_ebb_p (basic_block bb)
4863{
4864 basic_block next_bb = bb_next_bb (bb);
4865 edge e;
b8698a0f 4866
e855c69d
AB
4867 if (next_bb == EXIT_BLOCK_PTR
4868 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4869 || (LABEL_P (BB_HEAD (next_bb))
4870 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4871 Work around that. */
4872 && !single_pred_p (next_bb)))
4873 return true;
4874
4875 if (!in_current_region_p (next_bb))
4876 return true;
4877
0fd4b31d
NF
4878 e = find_fallthru_edge (bb->succs);
4879 if (e)
4880 {
4881 gcc_assert (e->dest == next_bb);
4882
4883 return false;
4884 }
e855c69d
AB
4885
4886 return true;
4887}
4888
4889/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4890 successor of INSN. */
4891bool
4892in_same_ebb_p (insn_t insn, insn_t succ)
4893{
4894 basic_block ptr = BLOCK_FOR_INSN (insn);
4895
4896 for(;;)
4897 {
4898 if (ptr == BLOCK_FOR_INSN (succ))
4899 return true;
b8698a0f 4900
e855c69d
AB
4901 if (bb_ends_ebb_p (ptr))
4902 return false;
4903
4904 ptr = bb_next_bb (ptr);
4905 }
4906
4907 gcc_unreachable ();
4908 return false;
4909}
4910
4911/* Recomputes the reverse topological order for the function and
4912 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4913 modified appropriately. */
4914static void
4915recompute_rev_top_order (void)
4916{
4917 int *postorder;
4918 int n_blocks, i;
4919
4920 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4921 {
b8698a0f 4922 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4923 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4924 rev_top_order_index_len);
4925 }
4926
4927 postorder = XNEWVEC (int, n_basic_blocks);
4928
4929 n_blocks = post_order_compute (postorder, true, false);
4930 gcc_assert (n_basic_blocks == n_blocks);
4931
4932 /* Build reverse function: for each basic block with BB->INDEX == K
4933 rev_top_order_index[K] is it's reverse topological sort number. */
4934 for (i = 0; i < n_blocks; i++)
4935 {
4936 gcc_assert (postorder[i] < rev_top_order_index_len);
4937 rev_top_order_index[postorder[i]] = i;
4938 }
4939
4940 free (postorder);
4941}
4942
4943/* Clear all flags from insns in BB that could spoil its rescheduling. */
4944void
4945clear_outdated_rtx_info (basic_block bb)
4946{
4947 rtx insn;
4948
4949 FOR_BB_INSNS (bb, insn)
4950 if (INSN_P (insn))
4951 {
4952 SCHED_GROUP_P (insn) = 0;
4953 INSN_AFTER_STALL_P (insn) = 0;
4954 INSN_SCHED_TIMES (insn) = 0;
4955 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4956
4957 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4958 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4959 the expression, and currently we'll be unable to do this. */
4960 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4961 }
4962}
4963
4964/* Add BB_NOTE to the pool of available basic block notes. */
4965static void
4966return_bb_to_pool (basic_block bb)
4967{
4968 rtx note = bb_note (bb);
4969
4970 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4971 && bb->aux == NULL);
4972
4973 /* It turns out that current cfg infrastructure does not support
4974 reuse of basic blocks. Don't bother for now. */
4975 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4976}
4977
4978/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4979static rtx
4980get_bb_note_from_pool (void)
4981{
4982 if (VEC_empty (rtx, bb_note_pool))
4983 return NULL_RTX;
4984 else
4985 {
4986 rtx note = VEC_pop (rtx, bb_note_pool);
4987
4988 PREV_INSN (note) = NULL_RTX;
4989 NEXT_INSN (note) = NULL_RTX;
4990
4991 return note;
4992 }
4993}
4994
4995/* Free bb_note_pool. */
4996void
4997free_bb_note_pool (void)
4998{
4999 VEC_free (rtx, heap, bb_note_pool);
5000}
5001
5002/* Setup scheduler pool and successor structure. */
5003void
5004alloc_sched_pools (void)
5005{
5006 int succs_size;
5007
5008 succs_size = MAX_WS + 1;
b8698a0f 5009 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
5010 succs_info_pool.size = succs_size;
5011 succs_info_pool.top = -1;
5012 succs_info_pool.max_top = -1;
5013
b8698a0f 5014 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
5015 sizeof (struct _list_node), 500);
5016}
5017
5018/* Free the pools. */
5019void
5020free_sched_pools (void)
5021{
5022 int i;
b8698a0f 5023
e855c69d
AB
5024 free_alloc_pool (sched_lists_pool);
5025 gcc_assert (succs_info_pool.top == -1);
5026 for (i = 0; i < succs_info_pool.max_top; i++)
5027 {
5028 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
5029 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
5030 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
5031 }
5032 free (succs_info_pool.stack);
5033}
5034\f
5035
b8698a0f 5036/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
5037 topological order. */
5038static int
5039find_place_to_insert_bb (basic_block bb, int rgn)
5040{
5041 bool has_preds_outside_rgn = false;
5042 edge e;
5043 edge_iterator ei;
b8698a0f 5044
e855c69d
AB
5045 /* Find whether we have preds outside the region. */
5046 FOR_EACH_EDGE (e, ei, bb->preds)
5047 if (!in_current_region_p (e->src))
5048 {
5049 has_preds_outside_rgn = true;
5050 break;
5051 }
b8698a0f 5052
e855c69d
AB
5053 /* Recompute the top order -- needed when we have > 1 pred
5054 and in case we don't have preds outside. */
5055 if (flag_sel_sched_pipelining_outer_loops
5056 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5057 {
5058 int i, bbi = bb->index, cur_bbi;
5059
5060 recompute_rev_top_order ();
5061 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5062 {
5063 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 5064 if (rev_top_order_index[bbi]
e855c69d
AB
5065 < rev_top_order_index[cur_bbi])
5066 break;
5067 }
b8698a0f 5068
073a8998 5069 /* We skipped the right block, so we increase i. We accommodate
e855c69d
AB
5070 it for increasing by step later, so we decrease i. */
5071 return (i + 1) - 1;
5072 }
5073 else if (has_preds_outside_rgn)
5074 {
5075 /* This is the case when we generate an extra empty block
5076 to serve as region head during pipelining. */
5077 e = EDGE_SUCC (bb, 0);
5078 gcc_assert (EDGE_COUNT (bb->succs) == 1
5079 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5080 && (BLOCK_TO_BB (e->dest->index) == 0));
5081 return -1;
5082 }
5083
5084 /* We don't have preds outside the region. We should have
5085 the only pred, because the multiple preds case comes from
5086 the pipelining of outer loops, and that is handled above.
5087 Just take the bbi of this single pred. */
5088 if (EDGE_COUNT (bb->succs) > 0)
5089 {
5090 int pred_bbi;
b8698a0f 5091
e855c69d 5092 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 5093
e855c69d
AB
5094 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5095 return BLOCK_TO_BB (pred_bbi);
5096 }
5097 else
5098 /* BB has no successors. It is safe to put it in the end. */
5099 return current_nr_blocks - 1;
5100}
5101
5102/* Deletes an empty basic block freeing its data. */
5103static void
5104delete_and_free_basic_block (basic_block bb)
5105{
5106 gcc_assert (sel_bb_empty_p (bb));
5107
5108 if (BB_LV_SET (bb))
5109 free_lv_set (bb);
5110
5111 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5112
b8698a0f
L
5113 /* Can't assert av_set properties because we use sel_aremove_bb
5114 when removing loop preheader from the region. At the point of
e855c69d
AB
5115 removing the preheader we already have deallocated sel_region_bb_info. */
5116 gcc_assert (BB_LV_SET (bb) == NULL
5117 && !BB_LV_SET_VALID_P (bb)
5118 && BB_AV_LEVEL (bb) == 0
5119 && BB_AV_SET (bb) == NULL);
b8698a0f 5120
e855c69d
AB
5121 delete_basic_block (bb);
5122}
5123
5124/* Add BB to the current region and update the region data. */
5125static void
5126add_block_to_current_region (basic_block bb)
5127{
5128 int i, pos, bbi = -2, rgn;
5129
5130 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5131 bbi = find_place_to_insert_bb (bb, rgn);
5132 bbi += 1;
5133 pos = RGN_BLOCKS (rgn) + bbi;
5134
5135 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5136 && ebb_head[bbi] == pos);
b8698a0f 5137
e855c69d
AB
5138 /* Make a place for the new block. */
5139 extend_regions ();
5140
5141 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5142 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 5143
e855c69d
AB
5144 memmove (rgn_bb_table + pos + 1,
5145 rgn_bb_table + pos,
5146 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5147
5148 /* Initialize data for BB. */
5149 rgn_bb_table[pos] = bb->index;
5150 BLOCK_TO_BB (bb->index) = bbi;
5151 CONTAINING_RGN (bb->index) = rgn;
5152
5153 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5154
e855c69d
AB
5155 for (i = rgn + 1; i <= nr_regions; i++)
5156 RGN_BLOCKS (i)++;
5157}
5158
5159/* Remove BB from the current region and update the region data. */
5160static void
5161remove_bb_from_region (basic_block bb)
5162{
5163 int i, pos, bbi = -2, rgn;
5164
5165 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5166 bbi = BLOCK_TO_BB (bb->index);
5167 pos = RGN_BLOCKS (rgn) + bbi;
5168
5169 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5170 && ebb_head[bbi] == pos);
5171
5172 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5173 BLOCK_TO_BB (rgn_bb_table[i])--;
5174
5175 memmove (rgn_bb_table + pos,
5176 rgn_bb_table + pos + 1,
5177 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5178
5179 RGN_NR_BLOCKS (rgn)--;
5180 for (i = rgn + 1; i <= nr_regions; i++)
5181 RGN_BLOCKS (i)--;
5182}
5183
b8698a0f 5184/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5185 blocks from last_added_blocks vector. */
5186static void
5187sel_add_bb (basic_block bb)
5188{
5189 /* Extend luids so that new notes will receive zero luids. */
a95b23b4 5190 sched_extend_luids ();
e855c69d 5191 sched_init_bbs ();
a95b23b4 5192 sel_init_bbs (last_added_blocks);
e855c69d 5193
b8698a0f 5194 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5195 the only element that equals to bb; otherwise, the vector
5196 should not be NULL. */
5197 gcc_assert (last_added_blocks != NULL);
b8698a0f 5198
e855c69d
AB
5199 if (bb != NULL)
5200 {
5201 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
5202 && VEC_index (basic_block,
5203 last_added_blocks, 0) == bb);
e855c69d
AB
5204 add_block_to_current_region (bb);
5205
5206 /* We associate creating/deleting data sets with the first insn
5207 appearing / disappearing in the bb. */
5208 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5209 create_initial_data_sets (bb);
b8698a0f 5210
e855c69d
AB
5211 VEC_free (basic_block, heap, last_added_blocks);
5212 }
5213 else
5214 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5215 {
5216 int i;
5217 basic_block temp_bb = NULL;
5218
b8698a0f 5219 for (i = 0;
e855c69d
AB
5220 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5221 {
5222 add_block_to_current_region (bb);
5223 temp_bb = bb;
5224 }
5225
b8698a0f 5226 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5227 to update. */
5228 gcc_assert (temp_bb != NULL);
5229 bb = temp_bb;
5230
5231 VEC_free (basic_block, heap, last_added_blocks);
5232 }
5233
5234 rgn_setup_region (CONTAINING_RGN (bb->index));
5235}
5236
b8698a0f 5237/* Remove BB from the current region and update all data.
e855c69d
AB
5238 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5239static void
5240sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5241{
262d8232
AB
5242 unsigned idx = bb->index;
5243
e855c69d 5244 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5245
e855c69d
AB
5246 remove_bb_from_region (bb);
5247 return_bb_to_pool (bb);
262d8232 5248 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5249
e855c69d 5250 if (remove_from_cfg_p)
00c4e97c
AB
5251 {
5252 basic_block succ = single_succ (bb);
5253 delete_and_free_basic_block (bb);
5254 set_immediate_dominator (CDI_DOMINATORS, succ,
5255 recompute_dominator (CDI_DOMINATORS, succ));
5256 }
e855c69d 5257
262d8232 5258 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5259}
5260
5261/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5262static void
5263move_bb_info (basic_block merge_bb, basic_block empty_bb)
5264{
b7b5540a
AB
5265 if (in_current_region_p (merge_bb))
5266 concat_note_lists (BB_NOTE_LIST (empty_bb),
5267 &BB_NOTE_LIST (merge_bb));
e855c69d
AB
5268 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5269
5270}
5271
e855c69d
AB
5272/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5273 region, but keep it in CFG. */
5274static void
5275remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5276{
5277 /* The block should contain just a note or a label.
5278 We try to check whether it is unused below. */
5279 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5280 || LABEL_P (BB_HEAD (empty_bb)));
5281
5282 /* If basic block has predecessors or successors, redirect them. */
5283 if (remove_from_cfg_p
5284 && (EDGE_COUNT (empty_bb->preds) > 0
5285 || EDGE_COUNT (empty_bb->succs) > 0))
5286 {
5287 basic_block pred;
5288 basic_block succ;
5289
5290 /* We need to init PRED and SUCC before redirecting edges. */
5291 if (EDGE_COUNT (empty_bb->preds) > 0)
5292 {
5293 edge e;
5294
5295 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5296
5297 e = EDGE_PRED (empty_bb, 0);
5298 gcc_assert (e->src == empty_bb->prev_bb
5299 && (e->flags & EDGE_FALLTHRU));
5300
5301 pred = empty_bb->prev_bb;
5302 }
5303 else
5304 pred = NULL;
5305
5306 if (EDGE_COUNT (empty_bb->succs) > 0)
5307 {
5308 /* We do not check fallthruness here as above, because
5309 after removing a jump the edge may actually be not fallthru. */
5310 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5311 succ = EDGE_SUCC (empty_bb, 0)->dest;
5312 }
5313 else
5314 succ = NULL;
5315
5316 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5317 {
5318 edge e = EDGE_PRED (empty_bb, 0);
5319
5320 if (e->flags & EDGE_FALLTHRU)
5321 redirect_edge_succ_nodup (e, succ);
5322 else
5323 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5324 }
5325
5326 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5327 {
5328 edge e = EDGE_SUCC (empty_bb, 0);
5329
5330 if (find_edge (pred, e->dest) == NULL)
5331 redirect_edge_pred (e, pred);
5332 }
5333 }
5334
5335 /* Finish removing. */
5336 sel_remove_bb (empty_bb, remove_from_cfg_p);
5337}
5338
b8698a0f 5339/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5340 per-bb data structures. */
5341static basic_block
5342sel_create_basic_block (void *headp, void *endp, basic_block after)
5343{
5344 basic_block new_bb;
5345 insn_t new_bb_note;
b8698a0f
L
5346
5347 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5348 || last_added_blocks == NULL);
5349
5350 new_bb_note = get_bb_note_from_pool ();
5351
5352 if (new_bb_note == NULL_RTX)
5353 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5354 else
5355 {
5356 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5357 new_bb_note, after);
5358 new_bb->aux = NULL;
5359 }
5360
5361 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5362
5363 return new_bb;
5364}
5365
5366/* Implement sched_init_only_bb (). */
5367static void
5368sel_init_only_bb (basic_block bb, basic_block after)
5369{
5370 gcc_assert (after == NULL);
5371
5372 extend_regions ();
5373 rgn_make_new_region_out_of_new_block (bb);
5374}
5375
5376/* Update the latch when we've splitted or merged it from FROM block to TO.
5377 This should be checked for all outer loops, too. */
5378static void
5379change_loops_latches (basic_block from, basic_block to)
5380{
5381 gcc_assert (from != to);
5382
5383 if (current_loop_nest)
5384 {
5385 struct loop *loop;
5386
5387 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5388 if (considered_for_pipelining_p (loop) && loop->latch == from)
5389 {
5390 gcc_assert (loop == current_loop_nest);
5391 loop->latch = to;
5392 gcc_assert (loop_latch_edge (loop));
5393 }
5394 }
5395}
5396
b8698a0f 5397/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5398 per-bb data structures. Returns the newly created bb. */
5399static basic_block
5400sel_split_block (basic_block bb, rtx after)
5401{
5402 basic_block new_bb;
5403 insn_t insn;
5404
5405 new_bb = sched_split_block_1 (bb, after);
5406 sel_add_bb (new_bb);
5407
5408 /* This should be called after sel_add_bb, because this uses
b8698a0f 5409 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5410 FIXME: this function may be a no-op now. */
5411 change_loops_latches (bb, new_bb);
5412
5413 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5414 FOR_BB_INSNS (new_bb, insn)
5415 if (INSN_P (insn))
5416 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5417
5418 if (sel_bb_empty_p (bb))
5419 {
5420 gcc_assert (!sel_bb_empty_p (new_bb));
5421
5422 /* NEW_BB has data sets that need to be updated and BB holds
5423 data sets that should be removed. Exchange these data sets
5424 so that we won't lose BB's valid data sets. */
5425 exchange_data_sets (new_bb, bb);
5426 free_data_sets (bb);
5427 }
5428
5429 if (!sel_bb_empty_p (new_bb)
5430 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5431 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5432
5433 return new_bb;
5434}
5435
5436/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5437 Otherwise returns NULL. */
5438static rtx
5439check_for_new_jump (basic_block bb, int prev_max_uid)
5440{
5441 rtx end;
5442
5443 end = sel_bb_end (bb);
5444 if (end && INSN_UID (end) >= prev_max_uid)
5445 return end;
5446 return NULL;
5447}
5448
b8698a0f 5449/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5450 New means having UID at least equal to PREV_MAX_UID. */
5451static rtx
5452find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5453{
5454 rtx jump;
5455
5456 /* Return immediately if no new insns were emitted. */
5457 if (get_max_uid () == prev_max_uid)
5458 return NULL;
b8698a0f 5459
e855c69d
AB
5460 /* Now check both blocks for new jumps. It will ever be only one. */
5461 if ((jump = check_for_new_jump (from, prev_max_uid)))
5462 return jump;
5463
5464 if (jump_bb != NULL
5465 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5466 return jump;
5467 return NULL;
5468}
5469
5470/* Splits E and adds the newly created basic block to the current region.
5471 Returns this basic block. */
5472basic_block
5473sel_split_edge (edge e)
5474{
5475 basic_block new_bb, src, other_bb = NULL;
5476 int prev_max_uid;
5477 rtx jump;
5478
5479 src = e->src;
5480 prev_max_uid = get_max_uid ();
5481 new_bb = split_edge (e);
5482
b8698a0f 5483 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5484 && current_loop_nest)
5485 {
5486 int i;
5487 basic_block bb;
5488
b8698a0f 5489 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5490 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5491 for (i = 0;
e855c69d
AB
5492 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5493 if (!bb->loop_father)
5494 {
5495 add_bb_to_loop (bb, e->dest->loop_father);
5496
5497 gcc_assert (!other_bb && (new_bb->index != bb->index));
5498 other_bb = bb;
5499 }
5500 }
5501
5502 /* Add all last_added_blocks to the region. */
5503 sel_add_bb (NULL);
5504
5505 jump = find_new_jump (src, new_bb, prev_max_uid);
5506 if (jump)
5507 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5508
5509 /* Put the correct lv set on this block. */
5510 if (other_bb && !sel_bb_empty_p (other_bb))
5511 compute_live (sel_bb_head (other_bb));
5512
5513 return new_bb;
5514}
5515
5516/* Implement sched_create_empty_bb (). */
5517static basic_block
5518sel_create_empty_bb (basic_block after)
5519{
5520 basic_block new_bb;
5521
5522 new_bb = sched_create_empty_bb_1 (after);
5523
5524 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5525 later. */
5526 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5527 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5528
5529 VEC_free (basic_block, heap, last_added_blocks);
5530 return new_bb;
5531}
5532
5533/* Implement sched_create_recovery_block. ORIG_INSN is where block
5534 will be splitted to insert a check. */
5535basic_block
5536sel_create_recovery_block (insn_t orig_insn)
5537{
5538 basic_block first_bb, second_bb, recovery_block;
5539 basic_block before_recovery = NULL;
5540 rtx jump;
5541
5542 first_bb = BLOCK_FOR_INSN (orig_insn);
5543 if (sel_bb_end_p (orig_insn))
5544 {
5545 /* Avoid introducing an empty block while splitting. */
5546 gcc_assert (single_succ_p (first_bb));
5547 second_bb = single_succ (first_bb);
5548 }
5549 else
5550 second_bb = sched_split_block (first_bb, orig_insn);
5551
5552 recovery_block = sched_create_recovery_block (&before_recovery);
5553 if (before_recovery)
5554 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5555
5556 gcc_assert (sel_bb_empty_p (recovery_block));
5557 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5558 if (current_loops != NULL)
5559 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5560
e855c69d 5561 sel_add_bb (recovery_block);
b8698a0f 5562
e855c69d
AB
5563 jump = BB_END (recovery_block);
5564 gcc_assert (sel_bb_head (recovery_block) == jump);
5565 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5566
5567 return recovery_block;
5568}
5569
5570/* Merge basic block B into basic block A. */
262d8232 5571static void
e855c69d
AB
5572sel_merge_blocks (basic_block a, basic_block b)
5573{
262d8232
AB
5574 gcc_assert (sel_bb_empty_p (b)
5575 && EDGE_COUNT (b->preds) == 1
5576 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5577
262d8232
AB
5578 move_bb_info (b->prev_bb, b);
5579 remove_empty_bb (b, false);
5580 merge_blocks (a, b);
e855c69d
AB
5581 change_loops_latches (b, a);
5582}
5583
5584/* A wrapper for redirect_edge_and_branch_force, which also initializes
5585 data structures for possibly created bb and insns. Returns the newly
5586 added bb or NULL, when a bb was not needed. */
5587void
5588sel_redirect_edge_and_branch_force (edge e, basic_block to)
5589{
00c4e97c 5590 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d
AB
5591 int prev_max_uid;
5592 rtx jump;
b8698a0f 5593
00c4e97c
AB
5594 /* This function is now used only for bookkeeping code creation, where
5595 we'll never get the single pred of orig_dest block and thus will not
5596 hit unreachable blocks when updating dominator info. */
5597 gcc_assert (!sel_bb_empty_p (e->src)
5598 && !single_pred_p (orig_dest));
e855c69d
AB
5599 src = e->src;
5600 prev_max_uid = get_max_uid ();
5601 jump_bb = redirect_edge_and_branch_force (e, to);
5602
5603 if (jump_bb != NULL)
5604 sel_add_bb (jump_bb);
5605
5606 /* This function could not be used to spoil the loop structure by now,
5607 thus we don't care to update anything. But check it to be sure. */
5608 if (current_loop_nest
5609 && pipelining_p)
5610 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5611
e855c69d
AB
5612 jump = find_new_jump (src, jump_bb, prev_max_uid);
5613 if (jump)
5614 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
00c4e97c
AB
5615 set_immediate_dominator (CDI_DOMINATORS, to,
5616 recompute_dominator (CDI_DOMINATORS, to));
5617 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5618 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5619}
5620
b59ab570
AM
5621/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5622 redirected edge are in reverse topological order. */
5623bool
e855c69d
AB
5624sel_redirect_edge_and_branch (edge e, basic_block to)
5625{
5626 bool latch_edge_p;
00c4e97c 5627 basic_block src, orig_dest = e->dest;
e855c69d
AB
5628 int prev_max_uid;
5629 rtx jump;
f2c45f08 5630 edge redirected;
b59ab570 5631 bool recompute_toporder_p = false;
00c4e97c 5632 bool maybe_unreachable = single_pred_p (orig_dest);
e855c69d
AB
5633
5634 latch_edge_p = (pipelining_p
5635 && current_loop_nest
5636 && e == loop_latch_edge (current_loop_nest));
5637
5638 src = e->src;
5639 prev_max_uid = get_max_uid ();
f2c45f08
AM
5640
5641 redirected = redirect_edge_and_branch (e, to);
5642
5643 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5644
5645 /* When we've redirected a latch edge, update the header. */
5646 if (latch_edge_p)
5647 {
5648 current_loop_nest->header = to;
5649 gcc_assert (loop_latch_edge (current_loop_nest));
5650 }
5651
b59ab570
AM
5652 /* In rare situations, the topological relation between the blocks connected
5653 by the redirected edge can change (see PR42245 for an example). Update
5654 block_to_bb/bb_to_block. */
5655 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5656 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5657 recompute_toporder_p = true;
5658
e855c69d
AB
5659 jump = find_new_jump (src, NULL, prev_max_uid);
5660 if (jump)
5661 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570 5662
00c4e97c
AB
5663 /* Only update dominator info when we don't have unreachable blocks.
5664 Otherwise we'll update in maybe_tidy_empty_bb. */
5665 if (!maybe_unreachable)
5666 {
5667 set_immediate_dominator (CDI_DOMINATORS, to,
5668 recompute_dominator (CDI_DOMINATORS, to));
5669 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5670 recompute_dominator (CDI_DOMINATORS, orig_dest));
5671 }
b59ab570 5672 return recompute_toporder_p;
e855c69d
AB
5673}
5674
5675/* This variable holds the cfg hooks used by the selective scheduler. */
5676static struct cfg_hooks sel_cfg_hooks;
5677
5678/* Register sel-sched cfg hooks. */
5679void
5680sel_register_cfg_hooks (void)
5681{
5682 sched_split_block = sel_split_block;
5683
5684 orig_cfg_hooks = get_cfg_hooks ();
5685 sel_cfg_hooks = orig_cfg_hooks;
5686
5687 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5688
5689 set_cfg_hooks (sel_cfg_hooks);
5690
5691 sched_init_only_bb = sel_init_only_bb;
5692 sched_split_block = sel_split_block;
5693 sched_create_empty_bb = sel_create_empty_bb;
5694}
5695
5696/* Unregister sel-sched cfg hooks. */
5697void
5698sel_unregister_cfg_hooks (void)
5699{
5700 sched_create_empty_bb = NULL;
5701 sched_split_block = NULL;
5702 sched_init_only_bb = NULL;
5703
5704 set_cfg_hooks (orig_cfg_hooks);
5705}
5706\f
5707
5708/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5709 LABEL is where this jump should be directed. */
5710rtx
5711create_insn_rtx_from_pattern (rtx pattern, rtx label)
5712{
5713 rtx insn_rtx;
5714
5715 gcc_assert (!INSN_P (pattern));
5716
5717 start_sequence ();
5718
5719 if (label == NULL_RTX)
5720 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5721 else if (DEBUG_INSN_P (label))
5722 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5723 else
5724 {
5725 insn_rtx = emit_jump_insn (pattern);
5726 JUMP_LABEL (insn_rtx) = label;
5727 ++LABEL_NUSES (label);
5728 }
5729
5730 end_sequence ();
5731
a95b23b4 5732 sched_extend_luids ();
e855c69d
AB
5733 sched_extend_target ();
5734 sched_deps_init (false);
5735
5736 /* Initialize INSN_CODE now. */
5737 recog_memoized (insn_rtx);
5738 return insn_rtx;
5739}
5740
5741/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5742 must not be clonable. */
5743vinsn_t
5744create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5745{
5746 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5747
5748 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5749 return vinsn_create (insn_rtx, force_unique_p);
5750}
5751
5752/* Create a copy of INSN_RTX. */
5753rtx
5754create_copy_of_insn_rtx (rtx insn_rtx)
5755{
d734e6c4 5756 rtx res, link;
e855c69d 5757
b5b8b0ac
AO
5758 if (DEBUG_INSN_P (insn_rtx))
5759 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5760 insn_rtx);
5761
e855c69d
AB
5762 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5763
5764 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5765 NULL_RTX);
d734e6c4
JJ
5766
5767 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5768 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5769 there too, but are supposed to be sticky, so we copy them. */
5770 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5771 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5772 && REG_NOTE_KIND (link) != REG_EQUAL
5773 && REG_NOTE_KIND (link) != REG_EQUIV)
5774 {
5775 if (GET_CODE (link) == EXPR_LIST)
5776 add_reg_note (res, REG_NOTE_KIND (link),
5777 copy_insn_1 (XEXP (link, 0)));
5778 else
5779 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5780 }
5781
e855c69d
AB
5782 return res;
5783}
5784
5785/* Change vinsn field of EXPR to hold NEW_VINSN. */
5786void
5787change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5788{
5789 vinsn_detach (EXPR_VINSN (expr));
5790
5791 EXPR_VINSN (expr) = new_vinsn;
5792 vinsn_attach (new_vinsn);
5793}
5794
5795/* Helpers for global init. */
5796/* This structure is used to be able to call existing bundling mechanism
5797 and calculate insn priorities. */
b8698a0f 5798static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5799{
5800 NULL, /* init_ready_list */
5801 NULL, /* can_schedule_ready_p */
5802 NULL, /* schedule_more_p */
5803 NULL, /* new_ready */
5804 NULL, /* rgn_rank */
5805 sel_print_insn, /* rgn_print_insn */
5806 contributes_to_priority,
356c23b3 5807 NULL, /* insn_finishes_block_p */
e855c69d
AB
5808
5809 NULL, NULL,
5810 NULL, NULL,
5811 0, 0,
5812
5813 NULL, /* add_remove_insn */
5814 NULL, /* begin_schedule_ready */
86014d07 5815 NULL, /* begin_move_insn */
e855c69d 5816 NULL, /* advance_target_bb */
26965010
BS
5817
5818 NULL,
5819 NULL,
5820
e855c69d
AB
5821 SEL_SCHED | NEW_BBS
5822};
5823
5824/* Setup special insns used in the scheduler. */
b8698a0f 5825void
e855c69d
AB
5826setup_nop_and_exit_insns (void)
5827{
5828 gcc_assert (nop_pattern == NULL_RTX
5829 && exit_insn == NULL_RTX);
5830
9ef1bf71 5831 nop_pattern = constm1_rtx;
e855c69d
AB
5832
5833 start_sequence ();
5834 emit_insn (nop_pattern);
5835 exit_insn = get_insns ();
5836 end_sequence ();
5837 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5838}
5839
5840/* Free special insns used in the scheduler. */
5841void
5842free_nop_and_exit_insns (void)
5843{
5844 exit_insn = NULL_RTX;
5845 nop_pattern = NULL_RTX;
5846}
5847
5848/* Setup a special vinsn used in new insns initialization. */
5849void
5850setup_nop_vinsn (void)
5851{
5852 nop_vinsn = vinsn_create (exit_insn, false);
5853 vinsn_attach (nop_vinsn);
5854}
5855
5856/* Free a special vinsn used in new insns initialization. */
5857void
5858free_nop_vinsn (void)
5859{
5860 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5861 vinsn_detach (nop_vinsn);
5862 nop_vinsn = NULL;
5863}
5864
5865/* Call a set_sched_flags hook. */
5866void
5867sel_set_sched_flags (void)
5868{
b8698a0f 5869 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5870 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5871 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5872 sometimes change c_s_i later. So put the correct flags again. */
5873 if (spec_info && targetm.sched.set_sched_flags)
5874 targetm.sched.set_sched_flags (spec_info);
5875}
5876
5877/* Setup pointers to global sched info structures. */
5878void
5879sel_setup_sched_infos (void)
5880{
5881 rgn_setup_common_sched_info ();
5882
5883 memcpy (&sel_common_sched_info, common_sched_info,
5884 sizeof (sel_common_sched_info));
5885
5886 sel_common_sched_info.fix_recovery_cfg = NULL;
5887 sel_common_sched_info.add_block = NULL;
5888 sel_common_sched_info.estimate_number_of_insns
5889 = sel_estimate_number_of_insns;
5890 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5891 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5892
5893 common_sched_info = &sel_common_sched_info;
5894
5895 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5896 current_sched_info->sched_max_insns_priority =
e855c69d 5897 get_rgn_sched_max_insns_priority ();
b8698a0f 5898
e855c69d
AB
5899 sel_set_sched_flags ();
5900}
5901\f
5902
5903/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5904 *BB_ORD_INDEX after that is increased. */
5905static void
5906sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5907{
5908 RGN_NR_BLOCKS (rgn) += 1;
5909 RGN_DONT_CALC_DEPS (rgn) = 0;
5910 RGN_HAS_REAL_EBB (rgn) = 0;
5911 CONTAINING_RGN (bb->index) = rgn;
5912 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5913 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5914 (*bb_ord_index)++;
5915
5916 /* FIXME: it is true only when not scheduling ebbs. */
5917 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5918}
5919
5920/* Functions to support pipelining of outer loops. */
5921
5922/* Creates a new empty region and returns it's number. */
5923static int
5924sel_create_new_region (void)
5925{
5926 int new_rgn_number = nr_regions;
5927
5928 RGN_NR_BLOCKS (new_rgn_number) = 0;
5929
5930 /* FIXME: This will work only when EBBs are not created. */
5931 if (new_rgn_number != 0)
b8698a0f 5932 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5933 RGN_NR_BLOCKS (new_rgn_number - 1);
5934 else
5935 RGN_BLOCKS (new_rgn_number) = 0;
5936
5937 /* Set the blocks of the next region so the other functions may
5938 calculate the number of blocks in the region. */
b8698a0f 5939 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5940 RGN_NR_BLOCKS (new_rgn_number);
5941
5942 nr_regions++;
5943
5944 return new_rgn_number;
5945}
5946
5947/* If X has a smaller topological sort number than Y, returns -1;
5948 if greater, returns 1. */
5949static int
5950bb_top_order_comparator (const void *x, const void *y)
5951{
5952 basic_block bb1 = *(const basic_block *) x;
5953 basic_block bb2 = *(const basic_block *) y;
5954
b8698a0f
L
5955 gcc_assert (bb1 == bb2
5956 || rev_top_order_index[bb1->index]
e855c69d
AB
5957 != rev_top_order_index[bb2->index]);
5958
5959 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5960 bbs with greater number should go earlier. */
5961 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5962 return -1;
5963 else
5964 return 1;
5965}
5966
b8698a0f 5967/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5968 to pipeline LOOP, return -1. */
5969static int
5970make_region_from_loop (struct loop *loop)
5971{
5972 unsigned int i;
5973 int new_rgn_number = -1;
5974 struct loop *inner;
5975
5976 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5977 int bb_ord_index = 0;
5978 basic_block *loop_blocks;
5979 basic_block preheader_block;
5980
b8698a0f 5981 if (loop->num_nodes
e855c69d
AB
5982 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5983 return -1;
b8698a0f 5984
e855c69d
AB
5985 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5986 for (inner = loop->inner; inner; inner = inner->inner)
5987 if (flow_bb_inside_loop_p (inner, loop->latch))
5988 return -1;
5989
5990 loop->ninsns = num_loop_insns (loop);
5991 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5992 return -1;
5993
5994 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5995
5996 for (i = 0; i < loop->num_nodes; i++)
5997 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5998 {
5999 free (loop_blocks);
6000 return -1;
6001 }
6002
6003 preheader_block = loop_preheader_edge (loop)->src;
6004 gcc_assert (preheader_block);
6005 gcc_assert (loop_blocks[0] == loop->header);
6006
6007 new_rgn_number = sel_create_new_region ();
6008
6009 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6010 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
6011
6012 for (i = 0; i < loop->num_nodes; i++)
6013 {
6014 /* Add only those blocks that haven't been scheduled in the inner loop.
6015 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 6016 be added to the region (and they actually don't belong to the loop
e855c69d
AB
6017 body, but to the region containing that loop body). */
6018
6019 gcc_assert (new_rgn_number >= 0);
6020
6021 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
6022 {
b8698a0f 6023 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
6024 new_rgn_number);
6025 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
6026 }
6027 }
6028
6029 free (loop_blocks);
6030 MARK_LOOP_FOR_PIPELINING (loop);
6031
6032 return new_rgn_number;
6033}
6034
6035/* Create a new region from preheader blocks LOOP_BLOCKS. */
6036void
6037make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
6038{
6039 unsigned int i;
6040 int new_rgn_number = -1;
6041 basic_block bb;
6042
6043 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6044 int bb_ord_index = 0;
6045
6046 new_rgn_number = sel_create_new_region ();
6047
ac47786e 6048 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
e855c69d
AB
6049 {
6050 gcc_assert (new_rgn_number >= 0);
6051
6052 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6053 }
6054
6055 VEC_free (basic_block, heap, *loop_blocks);
6056 gcc_assert (*loop_blocks == NULL);
6057}
6058
6059
6060/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 6061 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
6062 is created. */
6063static bool
6064make_regions_from_loop_nest (struct loop *loop)
b8698a0f 6065{
e855c69d
AB
6066 struct loop *cur_loop;
6067 int rgn_number;
6068
6069 /* Traverse all inner nodes of the loop. */
6070 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6071 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
6072 return false;
6073
6074 /* At this moment all regular inner loops should have been pipelined.
6075 Try to create a region from this loop. */
6076 rgn_number = make_region_from_loop (loop);
6077
6078 if (rgn_number < 0)
6079 return false;
6080
6081 VEC_safe_push (loop_p, heap, loop_nests, loop);
6082 return true;
6083}
6084
6085/* Initalize data structures needed. */
6086void
6087sel_init_pipelining (void)
6088{
6089 /* Collect loop information to be used in outer loops pipelining. */
6090 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6091 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6092 | LOOPS_HAVE_RECORDED_EXITS
6093 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6094 current_loop_nest = NULL;
6095
6096 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
f61e445a 6097 bitmap_clear (bbs_in_loop_rgns);
e855c69d
AB
6098
6099 recompute_rev_top_order ();
6100}
6101
6102/* Returns a struct loop for region RGN. */
6103loop_p
6104get_loop_nest_for_rgn (unsigned int rgn)
6105{
6106 /* Regions created with extend_rgns don't have corresponding loop nests,
6107 because they don't represent loops. */
6108 if (rgn < VEC_length (loop_p, loop_nests))
6109 return VEC_index (loop_p, loop_nests, rgn);
6110 else
6111 return NULL;
6112}
6113
6114/* True when LOOP was included into pipelining regions. */
6115bool
6116considered_for_pipelining_p (struct loop *loop)
6117{
6118 if (loop_depth (loop) == 0)
6119 return false;
6120
b8698a0f
L
6121 /* Now, the loop could be too large or irreducible. Check whether its
6122 region is in LOOP_NESTS.
6123 We determine the region number of LOOP as the region number of its
6124 latch. We can't use header here, because this header could be
e855c69d
AB
6125 just removed preheader and it will give us the wrong region number.
6126 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 6127 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
6128 {
6129 int rgn = CONTAINING_RGN (loop->latch->index);
6130
6131 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6132 return true;
6133 }
b8698a0f 6134
e855c69d
AB
6135 return false;
6136}
6137
b8698a0f 6138/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
6139 for pipelining. */
6140static void
6141make_regions_from_the_rest (void)
6142{
6143 int cur_rgn_blocks;
6144 int *loop_hdr;
6145 int i;
6146
6147 basic_block bb;
6148 edge e;
6149 edge_iterator ei;
6150 int *degree;
e855c69d
AB
6151
6152 /* Index in rgn_bb_table where to start allocating new regions. */
6153 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 6154
b8698a0f 6155 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
6156 any loop or belong to irreducible loops. Prepare the data structures
6157 for extend_rgns. */
6158
6159 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6160 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6161 loop. */
6162 loop_hdr = XNEWVEC (int, last_basic_block);
6163 degree = XCNEWVEC (int, last_basic_block);
6164
6165
6166 /* For each basic block that belongs to some loop assign the number
6167 of innermost loop it belongs to. */
6168 for (i = 0; i < last_basic_block; i++)
6169 loop_hdr[i] = -1;
6170
6171 FOR_EACH_BB (bb)
6172 {
6173 if (bb->loop_father && !bb->loop_father->num == 0
6174 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6175 loop_hdr[bb->index] = bb->loop_father->num;
6176 }
6177
b8698a0f 6178 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6179 edges, that are going out of bbs that are not yet scheduled.
6180 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 6181 FOR_EACH_BB (bb)
e855c69d
AB
6182 {
6183 degree[bb->index] = 0;
6184
6185 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6186 {
6187 FOR_EACH_EDGE (e, ei, bb->preds)
6188 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6189 degree[bb->index]++;
6190 }
6191 else
6192 degree[bb->index] = -1;
6193 }
6194
6195 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6196
6197 /* Any block that did not end up in a region is placed into a region
6198 by itself. */
6199 FOR_EACH_BB (bb)
6200 if (degree[bb->index] >= 0)
6201 {
6202 rgn_bb_table[cur_rgn_blocks] = bb->index;
6203 RGN_NR_BLOCKS (nr_regions) = 1;
6204 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6205 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6206 RGN_HAS_REAL_EBB (nr_regions) = 0;
6207 CONTAINING_RGN (bb->index) = nr_regions++;
6208 BLOCK_TO_BB (bb->index) = 0;
6209 }
6210
6211 free (degree);
6212 free (loop_hdr);
6213}
6214
6215/* Free data structures used in pipelining of loops. */
6216void sel_finish_pipelining (void)
6217{
6218 loop_iterator li;
6219 struct loop *loop;
6220
6221 /* Release aux fields so we don't free them later by mistake. */
6222 FOR_EACH_LOOP (li, loop, 0)
6223 loop->aux = NULL;
6224
6225 loop_optimizer_finalize ();
6226
6227 VEC_free (loop_p, heap, loop_nests);
6228
6229 free (rev_top_order_index);
6230 rev_top_order_index = NULL;
6231}
6232
b8698a0f 6233/* This function replaces the find_rgns when
e855c69d 6234 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6235void
e855c69d
AB
6236sel_find_rgns (void)
6237{
6238 sel_init_pipelining ();
6239 extend_regions ();
6240
6241 if (current_loops)
6242 {
6243 loop_p loop;
6244 loop_iterator li;
6245
6246 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6247 ? LI_FROM_INNERMOST
6248 : LI_ONLY_INNERMOST))
6249 make_regions_from_loop_nest (loop);
6250 }
6251
6252 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6253 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6254 to irreducible loops. */
6255 make_regions_from_the_rest ();
6256
6257 /* We don't need bbs_in_loop_rgns anymore. */
6258 sbitmap_free (bbs_in_loop_rgns);
6259 bbs_in_loop_rgns = NULL;
6260}
6261
ea4d630f
AM
6262/* Add the preheader blocks from previous loop to current region taking
6263 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
e855c69d
AB
6264 This function is only used with -fsel-sched-pipelining-outer-loops. */
6265void
ea4d630f 6266sel_add_loop_preheaders (bb_vec_t *bbs)
e855c69d
AB
6267{
6268 int i;
6269 basic_block bb;
b8698a0f 6270 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6271 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6272
6273 for (i = 0;
6274 VEC_iterate (basic_block, preheader_blocks, i, bb);
6275 i++)
8ec4d0ad 6276 {
ea4d630f 6277 VEC_safe_push (basic_block, heap, *bbs, bb);
8ec4d0ad 6278 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6279 sel_add_bb (bb);
8ec4d0ad 6280 }
e855c69d
AB
6281
6282 VEC_free (basic_block, heap, preheader_blocks);
6283}
6284
b8698a0f
L
6285/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6286 Please note that the function should also work when pipelining_p is
6287 false, because it is used when deciding whether we should or should
e855c69d
AB
6288 not reschedule pipelined code. */
6289bool
6290sel_is_loop_preheader_p (basic_block bb)
6291{
6292 if (current_loop_nest)
6293 {
6294 struct loop *outer;
6295
6296 if (preheader_removed)
6297 return false;
6298
6299 /* Preheader is the first block in the region. */
6300 if (BLOCK_TO_BB (bb->index) == 0)
6301 return true;
6302
6303 /* We used to find a preheader with the topological information.
6304 Check that the above code is equivalent to what we did before. */
6305
6306 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6307 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6308 < BLOCK_TO_BB (current_loop_nest->header->index)));
6309
6310 /* Support the situation when the latch block of outer loop
6311 could be from here. */
6312 for (outer = loop_outer (current_loop_nest);
6313 outer;
6314 outer = loop_outer (outer))
6315 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6316 gcc_unreachable ();
6317 }
6318
6319 return false;
6320}
6321
753de8cf
AM
6322/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6323 can be removed, making the corresponding edge fallthrough (assuming that
6324 all basic blocks between JUMP_BB and DEST_BB are empty). */
6325static bool
6326bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6327{
b4550bf7
AM
6328 if (!onlyjump_p (BB_END (jump_bb))
6329 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6330 return false;
6331
b8698a0f 6332 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6333 not DEST_BB. */
6334 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6335 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6336 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6337 return false;
6338
6339 /* If not anything of the upper. */
6340 return true;
6341}
6342
6343/* Removes the loop preheader from the current region and saves it in
b8698a0f 6344 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6345 region that represents an outer loop. */
6346static void
6347sel_remove_loop_preheader (void)
6348{
6349 int i, old_len;
6350 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6351 basic_block bb;
6352 bool all_empty_p = true;
b8698a0f 6353 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6354 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6355
6356 gcc_assert (current_loop_nest);
6357 old_len = VEC_length (basic_block, preheader_blocks);
6358
6359 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6360 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6361 {
6362 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6363
b8698a0f 6364 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6365 corresponding loop, then it should be a preheader. */
6366 if (sel_is_loop_preheader_p (bb))
6367 {
6368 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6369 if (BB_END (bb) != bb_note (bb))
6370 all_empty_p = false;
6371 }
6372 }
b8698a0f 6373
e855c69d
AB
6374 /* Remove these blocks only after iterating over the whole region. */
6375 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6376 i >= old_len;
6377 i--)
6378 {
b8698a0f 6379 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6380 sel_remove_bb (bb, false);
6381 }
6382
6383 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6384 {
6385 if (!all_empty_p)
6386 /* Immediately create new region from preheader. */
6387 make_region_from_loop_preheader (&preheader_blocks);
6388 else
6389 {
6390 /* If all preheader blocks are empty - dont create new empty region.
6391 Instead, remove them completely. */
ac47786e 6392 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
e855c69d
AB
6393 {
6394 edge e;
6395 edge_iterator ei;
6396 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6397
6398 /* Redirect all incoming edges to next basic block. */
6399 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6400 {
6401 if (! (e->flags & EDGE_FALLTHRU))
6402 redirect_edge_and_branch (e, bb->next_bb);
6403 else
6404 redirect_edge_succ (e, bb->next_bb);
6405 }
6406 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6407 delete_and_free_basic_block (bb);
6408
b8698a0f
L
6409 /* Check if after deleting preheader there is a nonconditional
6410 jump in PREV_BB that leads to the next basic block NEXT_BB.
6411 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6412 basic block if it becomes empty. */
6413 if (next_bb->prev_bb == prev_bb
6414 && prev_bb != ENTRY_BLOCK_PTR
753de8cf 6415 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6416 {
6417 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6418 if (BB_END (prev_bb) == bb_note (prev_bb))
6419 free_data_sets (prev_bb);
6420 }
00c4e97c
AB
6421
6422 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6423 recompute_dominator (CDI_DOMINATORS,
6424 next_bb));
e855c69d
AB
6425 }
6426 }
6427 VEC_free (basic_block, heap, preheader_blocks);
6428 }
6429 else
6430 /* Store preheader within the father's loop structure. */
6431 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6432 preheader_blocks);
6433}
6434#endif