]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
re PR rtl-optimization/83913 (Compile time and memory hog w/ selective scheduling)
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
85ec4feb 2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
9fdcd34e 24#include "cfghooks.h"
c7131fb2 25#include "tree.h"
e855c69d 26#include "rtl.h"
c7131fb2 27#include "df.h"
4d0cdd0c 28#include "memmodel.h"
e855c69d 29#include "tm_p.h"
60393bbc
AM
30#include "cfgrtl.h"
31#include "cfganal.h"
32#include "cfgbuild.h"
e855c69d
AB
33#include "insn-config.h"
34#include "insn-attr.h"
e855c69d
AB
35#include "recog.h"
36#include "params.h"
37#include "target.h"
e855c69d 38#include "sched-int.h"
5936d944 39#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
40
41#ifdef INSN_SCHEDULING
c7131fb2
AM
42#include "regset.h"
43#include "cfgloop.h"
e855c69d
AB
44#include "sel-sched-ir.h"
45/* We don't have to use it except for sel_print_insn. */
46#include "sel-sched-dump.h"
47
48/* A vector holding bb info for whole scheduling pass. */
7de76362 49vec<sel_global_bb_info_def> sel_global_bb_info;
e855c69d
AB
50
51/* A vector holding bb info. */
7de76362 52vec<sel_region_bb_info_def> sel_region_bb_info;
e855c69d
AB
53
54/* A pool for allocating all lists. */
fcb87c50 55object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
e855c69d
AB
56
57/* This contains information about successors for compute_av_set. */
58struct succs_info current_succs;
59
60/* Data structure to describe interaction with the generic scheduler utils. */
61static struct common_sched_info_def sel_common_sched_info;
62
63/* The loop nest being pipelined. */
64struct loop *current_loop_nest;
65
66/* LOOP_NESTS is a vector containing the corresponding loop nest for
67 each region. */
7de76362 68static vec<loop_p> loop_nests;
e855c69d
AB
69
70/* Saves blocks already in loop regions, indexed by bb->index. */
71static sbitmap bbs_in_loop_rgns = NULL;
72
73/* CFG hooks that are saved before changing create_basic_block hook. */
74static struct cfg_hooks orig_cfg_hooks;
75\f
76
77/* Array containing reverse topological index of function basic blocks,
78 indexed by BB->INDEX. */
79static int *rev_top_order_index = NULL;
80
81/* Length of the above array. */
82static int rev_top_order_index_len = -1;
83
84/* A regset pool structure. */
85static struct
86{
87 /* The stack to which regsets are returned. */
88 regset *v;
89
90 /* Its pointer. */
91 int n;
92
93 /* Its size. */
94 int s;
95
96 /* In VV we save all generated regsets so that, when destructing the
97 pool, we can compare it with V and check that every regset was returned
98 back to pool. */
99 regset *vv;
100
101 /* The pointer of VV stack. */
102 int nn;
103
104 /* Its size. */
105 int ss;
106
107 /* The difference between allocated and returned regsets. */
108 int diff;
109} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
110
111/* This represents the nop pool. */
112static struct
113{
114 /* The vector which holds previously emitted nops. */
115 insn_t *v;
116
117 /* Its pointer. */
118 int n;
119
120 /* Its size. */
b8698a0f 121 int s;
e855c69d
AB
122} nop_pool = { NULL, 0, 0 };
123
124/* The pool for basic block notes. */
66e8df53 125static vec<rtx_note *> bb_note_pool;
e855c69d
AB
126
127/* A NOP pattern used to emit placeholder insns. */
128rtx nop_pattern = NULL_RTX;
129/* A special instruction that resides in EXIT_BLOCK.
130 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
c5db5458 131rtx_insn *exit_insn = NULL;
e855c69d 132
b8698a0f 133/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
134 was removed. */
135bool preheader_removed = false;
136\f
137
138/* Forward static declarations. */
139static void fence_clear (fence_t);
140
141static void deps_init_id (idata_t, insn_t, bool);
142static void init_id_from_df (idata_t, insn_t, bool);
143static expr_t set_insn_init (expr_t, vinsn_t, int);
144
145static void cfg_preds (basic_block, insn_t **, int *);
146static void prepare_insn_expr (insn_t, int);
9771b263 147static void free_history_vect (vec<expr_history_def> &);
e855c69d
AB
148
149static void move_bb_info (basic_block, basic_block);
150static void remove_empty_bb (basic_block, bool);
262d8232 151static void sel_merge_blocks (basic_block, basic_block);
e855c69d 152static void sel_remove_loop_preheader (void);
753de8cf 153static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
154
155static bool insn_is_the_only_one_in_bb_p (insn_t);
156static void create_initial_data_sets (basic_block);
157
b5b8b0ac 158static void free_av_set (basic_block);
e855c69d
AB
159static void invalidate_av_set (basic_block);
160static void extend_insn_data (void);
92e265ac 161static void sel_init_new_insn (insn_t, int, int = -1);
e855c69d
AB
162static void finish_insns (void);
163\f
164/* Various list functions. */
165
166/* Copy an instruction list L. */
167ilist_t
168ilist_copy (ilist_t l)
169{
170 ilist_t head = NULL, *tailp = &head;
171
172 while (l)
173 {
174 ilist_add (tailp, ILIST_INSN (l));
175 tailp = &ILIST_NEXT (*tailp);
176 l = ILIST_NEXT (l);
177 }
178
179 return head;
180}
181
182/* Invert an instruction list L. */
183ilist_t
184ilist_invert (ilist_t l)
185{
186 ilist_t res = NULL;
187
188 while (l)
189 {
190 ilist_add (&res, ILIST_INSN (l));
191 l = ILIST_NEXT (l);
192 }
193
194 return res;
195}
196
197/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
198void
199blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
200{
201 bnd_t bnd;
202
203 _list_add (lp);
204 bnd = BLIST_BND (*lp);
205
6144a836 206 BND_TO (bnd) = to;
e855c69d
AB
207 BND_PTR (bnd) = ptr;
208 BND_AV (bnd) = NULL;
209 BND_AV1 (bnd) = NULL;
210 BND_DC (bnd) = dc;
211}
212
213/* Remove the list note pointed to by LP. */
214void
215blist_remove (blist_t *lp)
216{
217 bnd_t b = BLIST_BND (*lp);
218
219 av_set_clear (&BND_AV (b));
220 av_set_clear (&BND_AV1 (b));
221 ilist_clear (&BND_PTR (b));
222
223 _list_remove (lp);
224}
225
226/* Init a fence tail L. */
227void
228flist_tail_init (flist_tail_t l)
229{
230 FLIST_TAIL_HEAD (l) = NULL;
231 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
232}
233
234/* Try to find fence corresponding to INSN in L. */
235fence_t
236flist_lookup (flist_t l, insn_t insn)
237{
238 while (l)
239 {
240 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241 return FLIST_FENCE (l);
242
243 l = FLIST_NEXT (l);
244 }
245
246 return NULL;
247}
248
249/* Init the fields of F before running fill_insns. */
250static void
251init_fence_for_scheduling (fence_t f)
252{
253 FENCE_BNDS (f) = NULL;
254 FENCE_PROCESSED_P (f) = false;
255 FENCE_SCHEDULED_P (f) = false;
256}
257
258/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
259static void
b8698a0f 260flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
6144a836 261 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
b8698a0f 262 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 263 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
264 bool starts_cycle_p, bool after_stall_p)
265{
266 fence_t f;
267
268 _list_add (lp);
269 f = FLIST_FENCE (*lp);
270
271 FENCE_INSN (f) = insn;
272
273 gcc_assert (state != NULL);
274 FENCE_STATE (f) = state;
275
276 FENCE_CYCLE (f) = cycle;
277 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279 FENCE_AFTER_STALL_P (f) = after_stall_p;
280
281 gcc_assert (dc != NULL);
282 FENCE_DC (f) = dc;
283
284 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285 FENCE_TC (f) = tc;
286
287 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 288 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
289 FENCE_EXECUTING_INSNS (f) = executing_insns;
290 FENCE_READY_TICKS (f) = ready_ticks;
291 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292 FENCE_SCHED_NEXT (f) = sched_next;
293
294 init_fence_for_scheduling (f);
295}
296
297/* Remove the head node of the list pointed to by LP. */
298static void
299flist_remove (flist_t *lp)
300{
301 if (FENCE_INSN (FLIST_FENCE (*lp)))
302 fence_clear (FLIST_FENCE (*lp));
303 _list_remove (lp);
304}
305
306/* Clear the fence list pointed to by LP. */
307void
308flist_clear (flist_t *lp)
309{
310 while (*lp)
311 flist_remove (lp);
312}
313
314/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
315void
316def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317{
318 def_t d;
b8698a0f 319
e855c69d
AB
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
322
323 d->orig_insn = original_insn;
324 d->crosses_call = crosses_call;
325}
326\f
327
328/* Functions to work with target contexts. */
329
b8698a0f 330/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
331 that there are no uninitialized (null) target contexts. */
332static tc_t bulk_tc = (tc_t) 1;
333
b8698a0f 334/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
335 implementations for them. */
336
337/* Allocate a store for the target context. */
338static tc_t
339alloc_target_context (void)
340{
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
343}
344
345/* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348static void
349init_target_context (tc_t tc, bool clean_p)
350{
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
353}
354
355/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357tc_t
358create_target_context (bool clean_p)
359{
360 tc_t tc = alloc_target_context ();
361
362 init_target_context (tc, clean_p);
363 return tc;
364}
365
366/* Copy TC to the current backend context. */
367void
368set_target_context (tc_t tc)
369{
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
372}
373
374/* TC is about to be destroyed. Free any internal data. */
375static void
376clear_target_context (tc_t tc)
377{
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
380}
381
382/* Clear and free it. */
383static void
384delete_target_context (tc_t tc)
385{
386 clear_target_context (tc);
387
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
390}
391
392/* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394static void
395copy_target_context (tc_t to, tc_t from)
396{
397 tc_t tmp = create_target_context (false);
398
399 set_target_context (from);
400 init_target_context (to, false);
401
402 set_target_context (tmp);
403 delete_target_context (tmp);
404}
405
406/* Create a copy of TC. */
407static tc_t
408create_copy_of_target_context (tc_t tc)
409{
410 tc_t copy = alloc_target_context ();
411
412 copy_target_context (copy, tc);
413
414 return copy;
415}
416
417/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419void
420reset_target_context (tc_t tc, bool clean_p)
421{
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
424}
425\f
b8698a0f 426/* Functions to work with dependence contexts.
88302d54 427 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
430
431/* Make a copy of FROM in TO. */
432static void
433copy_deps_context (deps_t to, deps_t from)
434{
bcf33775 435 init_deps (to, false);
e855c69d
AB
436 deps_join (to, from);
437}
438
439/* Allocate store for dep context. */
440static deps_t
441alloc_deps_context (void)
442{
88302d54 443 return XNEW (struct deps_desc);
e855c69d
AB
444}
445
446/* Allocate and initialize dep context. */
447static deps_t
448create_deps_context (void)
449{
450 deps_t dc = alloc_deps_context ();
451
bcf33775 452 init_deps (dc, false);
e855c69d
AB
453 return dc;
454}
455
456/* Create a copy of FROM. */
457static deps_t
458create_copy_of_deps_context (deps_t from)
459{
460 deps_t to = alloc_deps_context ();
461
462 copy_deps_context (to, from);
463 return to;
464}
465
466/* Clean up internal data of DC. */
467static void
468clear_deps_context (deps_t dc)
469{
470 free_deps (dc);
471}
472
473/* Clear and free DC. */
474static void
475delete_deps_context (deps_t dc)
476{
477 clear_deps_context (dc);
478 free (dc);
479}
480
481/* Clear and init DC. */
482static void
483reset_deps_context (deps_t dc)
484{
485 clear_deps_context (dc);
bcf33775 486 init_deps (dc, false);
e855c69d
AB
487}
488
b8698a0f 489/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
490 dependence context. */
491static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 {
493 NULL,
494
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
506
507 0, 0, 0
508 };
509
510/* Process INSN and add its impact on DC. */
511void
512advance_deps_context (deps_t dc, insn_t insn)
513{
514 sched_deps_info = &advance_deps_context_sched_deps_info;
6144a836 515 deps_analyze_insn (dc, insn);
e855c69d
AB
516}
517\f
518
519/* Functions to work with DFA states. */
520
521/* Allocate store for a DFA state. */
522static state_t
523state_alloc (void)
524{
525 return xmalloc (dfa_state_size);
526}
527
528/* Allocate and initialize DFA state. */
529static state_t
530state_create (void)
531{
532 state_t state = state_alloc ();
533
534 state_reset (state);
535 advance_state (state);
536 return state;
537}
538
539/* Free DFA state. */
540static void
541state_free (state_t state)
542{
543 free (state);
544}
545
546/* Make a copy of FROM in TO. */
547static void
548state_copy (state_t to, state_t from)
549{
550 memcpy (to, from, dfa_state_size);
551}
552
553/* Create a copy of FROM. */
554static state_t
555state_create_copy (state_t from)
556{
557 state_t to = state_alloc ();
558
559 state_copy (to, from);
560 return to;
561}
562\f
563
564/* Functions to work with fences. */
565
566/* Clear the fence. */
567static void
568fence_clear (fence_t f)
569{
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
573
574 ilist_clear (&FENCE_BNDS (f));
575
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
578
04695783 579 free (s);
e855c69d
AB
580
581 if (dc != NULL)
582 delete_deps_context (dc);
583
584 if (tc != NULL)
585 delete_target_context (tc);
9771b263 586 vec_free (FENCE_EXECUTING_INSNS (f));
e855c69d
AB
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
589}
590
591/* Init a list of fences with successors of OLD_FENCE. */
592void
593init_fences (insn_t old_fence)
594{
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
599
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602 {
b8698a0f 603
e855c69d
AB
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
6144a836 613 NULL /* last_scheduled_insn */,
e855c69d
AB
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
6144a836 617 NULL /* sched_next */,
b8698a0f 618 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 619 issue_rate, /* issue_more */
b8698a0f 620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
621 }
622}
623
624/* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
b8698a0f 626 propagated from fallthrough edge if it is available;
e855c69d 627 2) deps context and cycle is propagated from more probable edge;
b8698a0f 628 3) all other fields are set to corresponding constant values.
e855c69d 629
b8698a0f 630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
633static void
634merge_fences (fence_t f, insn_t insn,
b8698a0f 635 state_t state, deps_t dc, void *tc,
6144a836
DM
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
e855c69d 638 int *ready_ticks, int ready_ticks_size,
136e01a3 639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
640{
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
b8698a0f 646 /* Check if we can decide which path fences came.
e855c69d
AB
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
b8698a0f
L
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
e855c69d
AB
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
b8698a0f 658
e855c69d
AB
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
b8698a0f 661
e855c69d
AB
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 669 FENCE_ISSUE_MORE (f) = issue_rate;
9771b263 670 vec_free (executing_insns);
e855c69d
AB
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
9771b263
DN
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
e855c69d
AB
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 }
678 else
679 {
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
b8698a0f 684
e855c69d
AB
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
688
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 {
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
b8698a0f 696
e855c69d
AB
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
b8698a0f 699
e855c69d 700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 701 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
702 }
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 {
b8698a0f 706 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
707 edges. */
708 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
709 != BLOCK_FOR_INSN (last_scheduled_insn_old));
710
711 state_free (FENCE_STATE (f));
712 FENCE_STATE (f) = state;
713
714 delete_target_context (FENCE_TC (f));
715 FENCE_TC (f) = tc;
716
717 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 718 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
719 }
720 else
721 {
722 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
723 state_free (state);
724 delete_target_context (tc);
725
726 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727 != BLOCK_FOR_INSN (last_scheduled_insn));
728 }
729
730 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
731 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
732 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
733 {
734 if (succ == insn)
735 {
736 /* No same successor allowed from several edges. */
737 gcc_assert (!edge_old);
738 edge_old = si.e1;
739 }
740 }
741 /* Find edge of second predecessor (last_scheduled_insn->insn). */
742 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
743 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
744 {
745 if (succ == insn)
746 {
747 /* No same successor allowed from several edges. */
748 gcc_assert (!edge_new);
749 edge_new = si.e1;
750 }
751 }
752
753 /* Check if we can choose most probable predecessor. */
754 if (edge_old == NULL || edge_new == NULL)
755 {
756 reset_deps_context (FENCE_DC (f));
757 delete_deps_context (dc);
9771b263 758 vec_free (executing_insns);
e855c69d 759 free (ready_ticks);
b8698a0f 760
e855c69d
AB
761 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
762 if (FENCE_EXECUTING_INSNS (f))
9771b263
DN
763 FENCE_EXECUTING_INSNS (f)->block_remove (0,
764 FENCE_EXECUTING_INSNS (f)->length ());
e855c69d
AB
765 if (FENCE_READY_TICKS (f))
766 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
767 }
768 else
769 if (edge_new->probability > edge_old->probability)
770 {
771 delete_deps_context (FENCE_DC (f));
772 FENCE_DC (f) = dc;
9771b263 773 vec_free (FENCE_EXECUTING_INSNS (f));
e855c69d
AB
774 FENCE_EXECUTING_INSNS (f) = executing_insns;
775 free (FENCE_READY_TICKS (f));
776 FENCE_READY_TICKS (f) = ready_ticks;
777 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
778 FENCE_CYCLE (f) = cycle;
779 }
780 else
781 {
782 /* Leave DC and CYCLE untouched. */
783 delete_deps_context (dc);
9771b263 784 vec_free (executing_insns);
e855c69d
AB
785 free (ready_ticks);
786 }
787 }
788
789 /* Fill remaining invariant fields. */
790 if (after_stall_p)
791 FENCE_AFTER_STALL_P (f) = 1;
792
793 FENCE_ISSUED_INSNS (f) = 0;
794 FENCE_STARTS_CYCLE_P (f) = 1;
795 FENCE_SCHED_NEXT (f) = NULL;
796}
797
b8698a0f 798/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
799 other parameters. */
800static void
801add_to_fences (flist_tail_t new_fences, insn_t insn,
6144a836
DM
802 state_t state, deps_t dc, void *tc,
803 rtx_insn *last_scheduled_insn,
804 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
805 int ready_ticks_size, rtx_insn *sched_next, int cycle,
136e01a3
AB
806 int cycle_issued_insns, int issue_rate,
807 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
808{
809 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
810
811 if (! f)
812 {
813 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 814 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 815 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 816 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
817
818 FLIST_TAIL_TAILP (new_fences)
819 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
820 }
821 else
822 {
b8698a0f
L
823 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
824 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 825 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
826 }
827}
828
829/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
830void
831move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
832{
833 fence_t f, old;
834 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
835
836 old = FLIST_FENCE (old_fences);
b8698a0f 837 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
838 FENCE_INSN (FLIST_FENCE (old_fences)));
839 if (f)
840 {
841 merge_fences (f, old->insn, old->state, old->dc, old->tc,
842 old->last_scheduled_insn, old->executing_insns,
843 old->ready_ticks, old->ready_ticks_size,
136e01a3 844 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
845 old->after_stall_p);
846 }
847 else
848 {
849 _list_add (tailp);
850 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
851 *FLIST_FENCE (*tailp) = *old;
852 init_fence_for_scheduling (FLIST_FENCE (*tailp));
853 }
854 FENCE_INSN (old) = NULL;
855}
856
b8698a0f 857/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
858 as a clean one. */
859void
860add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
861{
862 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 863
e855c69d
AB
864 add_to_fences (new_fences,
865 succ, state_create (), create_deps_context (),
866 create_target_context (true),
6144a836 867 NULL, NULL,
e855c69d 868 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
6144a836 869 NULL, FENCE_CYCLE (fence) + 1,
136e01a3 870 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
871}
872
b8698a0f 873/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
874 from FENCE and SUCC. */
875void
876add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
877{
b8698a0f 878 int * new_ready_ticks
e855c69d 879 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 880
e855c69d
AB
881 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
882 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
883 add_to_fences (new_fences,
884 succ, state_create_copy (FENCE_STATE (fence)),
885 create_copy_of_deps_context (FENCE_DC (fence)),
886 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 887 FENCE_LAST_SCHEDULED_INSN (fence),
9771b263 888 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
e855c69d
AB
889 new_ready_ticks,
890 FENCE_READY_TICKS_SIZE (fence),
891 FENCE_SCHED_NEXT (fence),
892 FENCE_CYCLE (fence),
893 FENCE_ISSUED_INSNS (fence),
136e01a3 894 FENCE_ISSUE_MORE (fence),
e855c69d
AB
895 FENCE_STARTS_CYCLE_P (fence),
896 FENCE_AFTER_STALL_P (fence));
897}
898\f
899
900/* Functions to work with regset and nop pools. */
901
902/* Returns the new regset from pool. It might have some of the bits set
903 from the previous usage. */
904regset
905get_regset_from_pool (void)
906{
907 regset rs;
908
909 if (regset_pool.n != 0)
910 rs = regset_pool.v[--regset_pool.n];
911 else
912 /* We need to create the regset. */
913 {
914 rs = ALLOC_REG_SET (&reg_obstack);
915
916 if (regset_pool.nn == regset_pool.ss)
917 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
918 (regset_pool.ss = 2 * regset_pool.ss + 1));
919 regset_pool.vv[regset_pool.nn++] = rs;
920 }
921
922 regset_pool.diff++;
923
924 return rs;
925}
926
927/* Same as above, but returns the empty regset. */
928regset
929get_clear_regset_from_pool (void)
930{
931 regset rs = get_regset_from_pool ();
932
933 CLEAR_REG_SET (rs);
934 return rs;
935}
936
937/* Return regset RS to the pool for future use. */
938void
939return_regset_to_pool (regset rs)
940{
9ef1bf71 941 gcc_assert (rs);
e855c69d
AB
942 regset_pool.diff--;
943
944 if (regset_pool.n == regset_pool.s)
945 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
946 (regset_pool.s = 2 * regset_pool.s + 1));
947 regset_pool.v[regset_pool.n++] = rs;
948}
949
950/* This is used as a qsort callback for sorting regset pool stacks.
951 X and XX are addresses of two regsets. They are never equal. */
952static int
953cmp_v_in_regset_pool (const void *x, const void *xx)
954{
d38933a0
SB
955 uintptr_t r1 = (uintptr_t) *((const regset *) x);
956 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
957 if (r1 > r2)
958 return 1;
959 else if (r1 < r2)
960 return -1;
961 gcc_unreachable ();
e855c69d
AB
962}
963
b2b29377 964/* Free the regset pool possibly checking for memory leaks. */
e855c69d
AB
965void
966free_regset_pool (void)
967{
b2b29377
MM
968 if (flag_checking)
969 {
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
b8698a0f 973
b2b29377
MM
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
b8698a0f 977
b2b29377 978 int diff = 0;
b8698a0f 979
b2b29377 980 gcc_assert (n <= nn);
b8698a0f 981
b2b29377
MM
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 985
b2b29377
MM
986 while (ii < nn)
987 {
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
b8698a0f 993
b2b29377
MM
994 ii++;
995 }
b8698a0f 996
b2b29377
MM
997 gcc_assert (diff == regset_pool.diff);
998 }
b8698a0f 999
e855c69d
AB
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
b8698a0f 1002
e855c69d
AB
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
b8698a0f 1012
e855c69d
AB
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019}
1020\f
1021
b8698a0f
L
1022/* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026/* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028static vinsn_t nop_vinsn = NULL;
1029
1030/* Emit a nop before INSN, taking it from pool. */
1031insn_t
1032get_nop_from_pool (insn_t insn)
1033{
6144a836 1034 rtx nop_pat;
e855c69d
AB
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1038
1039 if (old_p)
6144a836 1040 nop_pat = nop_pool.v[--nop_pool.n];
e855c69d 1041 else
6144a836 1042 nop_pat = nop_pattern;
e855c69d 1043
6144a836 1044 nop = emit_insn_before (nop_pat, insn);
e855c69d
AB
1045
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1053
1054 return nop;
1055}
1056
1057/* Remove NOP from the instruction stream and return it to the pool. */
1058void
b5b8b0ac 1059return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1060{
1061 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1062 sel_remove_insn (nop, false, full_tidying);
e855c69d 1063
1f397f45 1064 /* We'll recycle this nop. */
4654c0cf 1065 nop->set_undeleted ();
1f397f45 1066
e855c69d 1067 if (nop_pool.n == nop_pool.s)
6144a836 1068 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
e855c69d
AB
1069 (nop_pool.s = 2 * nop_pool.s + 1));
1070 nop_pool.v[nop_pool.n++] = nop;
1071}
1072
1073/* Free the nop pool. */
1074void
1075free_nop_pool (void)
1076{
1077 nop_pool.n = 0;
1078 nop_pool.s = 0;
1079 free (nop_pool.v);
1080 nop_pool.v = NULL;
1081}
1082\f
1083
b8698a0f 1084/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1085 The callback is given two rtxes XX and YY and writes the new rtxes
1086 to NX and NY in case some needs to be skipped. */
1087static int
1088skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089{
1090 const_rtx x = *xx;
1091 const_rtx y = *yy;
b8698a0f 1092
e855c69d
AB
1093 if (GET_CODE (x) == UNSPEC
1094 && (targetm.sched.skip_rtx_p == NULL
1095 || targetm.sched.skip_rtx_p (x)))
1096 {
1097 *nx = XVECEXP (x, 0, 0);
1098 *ny = CONST_CAST_RTX (y);
1099 return 1;
1100 }
b8698a0f 1101
e855c69d
AB
1102 if (GET_CODE (y) == UNSPEC
1103 && (targetm.sched.skip_rtx_p == NULL
1104 || targetm.sched.skip_rtx_p (y)))
1105 {
1106 *nx = CONST_CAST_RTX (x);
1107 *ny = XVECEXP (y, 0, 0);
1108 return 1;
1109 }
b8698a0f 1110
e855c69d
AB
1111 return 0;
1112}
1113
b8698a0f 1114/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1115 to support ia64 speculation. When changes are needed, new rtx X and new mode
1116 NMODE are written, and the callback returns true. */
1117static int
ef4bddc2
RS
1118hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1119 rtx *nx, machine_mode* nmode)
e855c69d 1120{
b8698a0f 1121 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1122 && targetm.sched.skip_rtx_p
1123 && targetm.sched.skip_rtx_p (x))
1124 {
1125 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1126 *nmode = VOIDmode;
e855c69d
AB
1127 return 1;
1128 }
b8698a0f 1129
e855c69d
AB
1130 return 0;
1131}
1132
1133/* Returns LHS and RHS are ok to be scheduled separately. */
1134static bool
1135lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136{
1137 if (lhs == NULL || rhs == NULL)
1138 return false;
1139
807e902e
KZ
1140 /* Do not schedule constants as rhs: no point to use reg, if const
1141 can be used. Moreover, scheduling const as rhs may lead to mode
1142 mismatch cause consts don't have modes but they could be merged
1143 from branches where the same const used in different modes. */
e855c69d
AB
1144 if (CONSTANT_P (rhs))
1145 return false;
1146
1147 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1148 if (COMPARISON_P (rhs))
1149 return false;
1150
1151 /* Do not allow single REG to be an rhs. */
1152 if (REG_P (rhs))
1153 return false;
1154
b8698a0f 1155 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1156 restriction. */
1157 /* FIXME: remove this later. */
1158 if (MEM_P (lhs))
1159 return false;
1160
1161 /* This will filter all tricky things like ZERO_EXTRACT etc.
1162 For now we don't handle it. */
1163 if (!REG_P (lhs) && !MEM_P (lhs))
1164 return false;
1165
1166 return true;
1167}
1168
b8698a0f
L
1169/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1170 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1171 used e.g. for insns from recovery blocks. */
1172static void
1173vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174{
1175 hash_rtx_callback_function hrcf;
1176 int insn_class;
1177
3d30f4e8 1178 VINSN_INSN_RTX (vi) = insn;
e855c69d
AB
1179 VINSN_COUNT (vi) = 0;
1180 vi->cost = -1;
b8698a0f 1181
9ef1bf71
AM
1182 if (INSN_NOP_P (insn))
1183 return;
1184
e855c69d
AB
1185 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187 else
1188 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1189
e855c69d
AB
1190 /* Hash vinsn depending on whether it is separable or not. */
1191 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192 if (VINSN_SEPARABLE_P (vi))
1193 {
1194 rtx rhs = VINSN_RHS (vi);
1195
1196 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199 VOIDmode, NULL, NULL,
1200 false, hrcf);
1201 }
1202 else
1203 {
1204 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205 NULL, NULL, false, hrcf);
1206 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1207 }
b8698a0f 1208
e855c69d
AB
1209 insn_class = haifa_classify_insn (insn);
1210 if (insn_class >= 2
1211 && (!targetm.sched.get_insn_spec_ds
1212 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213 == 0)))
1214 VINSN_MAY_TRAP_P (vi) = true;
1215 else
1216 VINSN_MAY_TRAP_P (vi) = false;
1217}
1218
1219/* Indicate that VI has become the part of an rtx object. */
1220void
1221vinsn_attach (vinsn_t vi)
1222{
1223 /* Assert that VI is not pending for deletion. */
1224 gcc_assert (VINSN_INSN_RTX (vi));
1225
1226 VINSN_COUNT (vi)++;
1227}
1228
b8698a0f 1229/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1230 VINSN_TYPE (VI). */
1231static vinsn_t
1232vinsn_create (insn_t insn, bool force_unique_p)
1233{
1234 vinsn_t vi = XCNEW (struct vinsn_def);
1235
1236 vinsn_init (vi, insn, force_unique_p);
1237 return vi;
1238}
1239
1240/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1241 the copy. */
b8698a0f 1242vinsn_t
e855c69d
AB
1243vinsn_copy (vinsn_t vi, bool reattach_p)
1244{
9ee1fbb1 1245 rtx_insn *copy;
e855c69d
AB
1246 bool unique = VINSN_UNIQUE_P (vi);
1247 vinsn_t new_vi;
b8698a0f 1248
e855c69d
AB
1249 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251 if (reattach_p)
1252 {
1253 vinsn_detach (vi);
1254 vinsn_attach (new_vi);
1255 }
1256
1257 return new_vi;
1258}
1259
1260/* Delete the VI vinsn and free its data. */
1261static void
1262vinsn_delete (vinsn_t vi)
1263{
1264 gcc_assert (VINSN_COUNT (vi) == 0);
1265
9ef1bf71
AM
1266 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267 {
1268 return_regset_to_pool (VINSN_REG_SETS (vi));
1269 return_regset_to_pool (VINSN_REG_USES (vi));
1270 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1271 }
e855c69d
AB
1272
1273 free (vi);
1274}
1275
b8698a0f 1276/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1277 Remove VI if it is no longer needed. */
1278void
1279vinsn_detach (vinsn_t vi)
1280{
1281 gcc_assert (VINSN_COUNT (vi) > 0);
1282
1283 if (--VINSN_COUNT (vi) == 0)
1284 vinsn_delete (vi);
1285}
1286
1287/* Returns TRUE if VI is a branch. */
1288bool
1289vinsn_cond_branch_p (vinsn_t vi)
1290{
1291 insn_t insn;
1292
1293 if (!VINSN_UNIQUE_P (vi))
1294 return false;
1295
1296 insn = VINSN_INSN_RTX (vi);
1297 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298 return false;
1299
1300 return control_flow_insn_p (insn);
1301}
1302
1303/* Return latency of INSN. */
1304static int
647d790d 1305sel_insn_rtx_cost (rtx_insn *insn)
e855c69d
AB
1306{
1307 int cost;
1308
1309 /* A USE insn, or something else we don't need to
1310 understand. We can't pass these directly to
1311 result_ready_cost or insn_default_latency because it will
1312 trigger a fatal error for unrecognizable insns. */
1313 if (recog_memoized (insn) < 0)
1314 cost = 0;
1315 else
1316 {
1317 cost = insn_default_latency (insn);
1318
1319 if (cost < 0)
1320 cost = 0;
1321 }
1322
1323 return cost;
1324}
1325
1326/* Return the cost of the VI.
ffc1ded5 1327 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
e855c69d
AB
1328int
1329sel_vinsn_cost (vinsn_t vi)
1330{
1331 int cost = vi->cost;
1332
1333 if (cost < 0)
1334 {
1335 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336 vi->cost = cost;
1337 }
1338
1339 return cost;
1340}
1341\f
1342
1343/* Functions for insn emitting. */
1344
1345/* Emit new insn after AFTER based on PATTERN and initialize its data from
1346 EXPR and SEQNO. */
1347insn_t
1348sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349{
1350 insn_t new_insn;
1351
1352 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353
1354 new_insn = emit_insn_after (pattern, after);
1355 set_insn_init (expr, NULL, seqno);
1356 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357
1358 return new_insn;
1359}
1360
1361/* Force newly generated vinsns to be unique. */
1362static bool init_insn_force_unique_p = false;
1363
1364/* Emit new speculation recovery insn after AFTER based on PATTERN and
1365 initialize its data from EXPR and SEQNO. */
1366insn_t
1367sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 insn_t after)
1369{
1370 insn_t insn;
1371
1372 gcc_assert (!init_insn_force_unique_p);
1373
1374 init_insn_force_unique_p = true;
1375 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376 CANT_MOVE (insn) = 1;
1377 init_insn_force_unique_p = false;
1378
1379 return insn;
1380}
1381
1382/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1383 take it as a new vinsn instead of EXPR's vinsn.
1384 We simplify insns later, after scheduling region in
e855c69d
AB
1385 simplify_changed_insns. */
1386insn_t
b8698a0f 1387sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1388 insn_t after)
1389{
1390 expr_t emit_expr;
1391 insn_t insn;
1392 int flags;
b8698a0f
L
1393
1394 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1395 seqno);
1396 insn = EXPR_INSN_RTX (emit_expr);
fe08255d
AB
1397
1398 /* The insn may come from the transformation cache, which may hold already
1399 deleted insns, so mark it as not deleted. */
4654c0cf 1400 insn->set_undeleted ();
fe08255d 1401
b8698a0f 1402 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1403
1404 flags = INSN_INIT_TODO_SSID;
1405 if (INSN_LUID (insn) == 0)
1406 flags |= INSN_INIT_TODO_LUID;
1407 sel_init_new_insn (insn, flags);
1408
1409 return insn;
1410}
1411
1412/* Move insn from EXPR after AFTER. */
1413insn_t
1414sel_move_insn (expr_t expr, int seqno, insn_t after)
1415{
1416 insn_t insn = EXPR_INSN_RTX (expr);
1417 basic_block bb = BLOCK_FOR_INSN (after);
1418 insn_t next = NEXT_INSN (after);
1419
1420 /* Assert that in move_op we disconnected this insn properly. */
1421 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
0f82e5c9
DM
1422 SET_PREV_INSN (insn) = after;
1423 SET_NEXT_INSN (insn) = next;
e855c69d 1424
0f82e5c9
DM
1425 SET_NEXT_INSN (after) = insn;
1426 SET_PREV_INSN (next) = insn;
e855c69d
AB
1427
1428 /* Update links from insn to bb and vice versa. */
1429 df_insn_change_bb (insn, bb);
1430 if (BB_END (bb) == after)
1130d5e3 1431 BB_END (bb) = insn;
b8698a0f 1432
e855c69d
AB
1433 prepare_insn_expr (insn, seqno);
1434 return insn;
1435}
1436
1437\f
1438/* Functions to work with right-hand sides. */
1439
b8698a0f 1440/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1441 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1442 COMPARE_VINSNS is true. Write to INDP the index on which
1443 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1444 retain VECT's sort order. */
1445static bool
9771b263 1446find_in_history_vect_1 (vec<expr_history_def> vect,
b8698a0f 1447 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1448 bool compare_vinsns, int *indp)
1449{
1450 expr_history_def *arr;
9771b263 1451 int i, j, len = vect.length ();
e855c69d
AB
1452
1453 if (len == 0)
1454 {
1455 *indp = 0;
1456 return false;
1457 }
1458
9771b263 1459 arr = vect.address ();
e855c69d
AB
1460 i = 0, j = len - 1;
1461
1462 while (i <= j)
1463 {
1464 unsigned auid = arr[i].uid;
b8698a0f 1465 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1466
1467 if (auid == uid
b8698a0f
L
1468 /* When undoing transformation on a bookkeeping copy, the new vinsn
1469 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1470 This is because the insn whose copy we're checking was possibly
1471 substituted itself. */
b8698a0f 1472 && (! compare_vinsns
e855c69d
AB
1473 || vinsn_equal_p (avinsn, new_vinsn)))
1474 {
1475 *indp = i;
1476 return true;
1477 }
1478 else if (auid > uid)
1479 break;
1480 i++;
1481 }
1482
1483 *indp = i;
1484 return false;
1485}
1486
b8698a0f
L
1487/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1488 the position found or -1, if no such value is in vector.
e855c69d
AB
1489 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1490int
9771b263 1491find_in_history_vect (vec<expr_history_def> vect, rtx insn,
e855c69d
AB
1492 vinsn_t new_vinsn, bool originators_p)
1493{
1494 int ind;
1495
b8698a0f 1496 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1497 false, &ind))
1498 return ind;
1499
1500 if (INSN_ORIGINATORS (insn) && originators_p)
1501 {
1502 unsigned uid;
1503 bitmap_iterator bi;
1504
1505 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1506 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1507 return ind;
1508 }
b8698a0f 1509
e855c69d
AB
1510 return -1;
1511}
1512
b8698a0f
L
1513/* Insert new element in a sorted history vector pointed to by PVECT,
1514 if it is not there already. The element is searched using
e855c69d
AB
1515 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1516 the history of a transformation. */
1517void
9771b263 1518insert_in_history_vect (vec<expr_history_def> *pvect,
e855c69d 1519 unsigned uid, enum local_trans_type type,
b8698a0f 1520 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1521 ds_t spec_ds)
1522{
9771b263 1523 vec<expr_history_def> vect = *pvect;
e855c69d
AB
1524 expr_history_def temp;
1525 bool res;
1526 int ind;
1527
1528 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1529
1530 if (res)
1531 {
9771b263 1532 expr_history_def *phist = &vect[ind];
e855c69d 1533
b8698a0f 1534 /* It is possible that speculation types of expressions that were
e855c69d
AB
1535 propagated through different paths will be different here. In this
1536 case, merge the status to get the correct check later. */
1537 if (phist->spec_ds != spec_ds)
1538 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1539 return;
1540 }
b8698a0f 1541
e855c69d
AB
1542 temp.uid = uid;
1543 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1544 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1545 temp.spec_ds = spec_ds;
1546 temp.type = type;
1547
1548 vinsn_attach (old_expr_vinsn);
1549 vinsn_attach (new_expr_vinsn);
9771b263 1550 vect.safe_insert (ind, temp);
e855c69d
AB
1551 *pvect = vect;
1552}
1553
1554/* Free history vector PVECT. */
1555static void
9771b263 1556free_history_vect (vec<expr_history_def> &pvect)
e855c69d
AB
1557{
1558 unsigned i;
1559 expr_history_def *phist;
1560
9771b263 1561 if (! pvect.exists ())
e855c69d 1562 return;
b8698a0f 1563
9771b263 1564 for (i = 0; pvect.iterate (i, &phist); i++)
e855c69d
AB
1565 {
1566 vinsn_detach (phist->old_expr_vinsn);
1567 vinsn_detach (phist->new_expr_vinsn);
1568 }
b8698a0f 1569
9771b263 1570 pvect.release ();
e855c69d
AB
1571}
1572
5d369d58
AB
1573/* Merge vector FROM to PVECT. */
1574static void
9771b263
DN
1575merge_history_vect (vec<expr_history_def> *pvect,
1576 vec<expr_history_def> from)
5d369d58
AB
1577{
1578 expr_history_def *phist;
1579 int i;
1580
1581 /* We keep this vector sorted. */
9771b263 1582 for (i = 0; from.iterate (i, &phist); i++)
5d369d58
AB
1583 insert_in_history_vect (pvect, phist->uid, phist->type,
1584 phist->old_expr_vinsn, phist->new_expr_vinsn,
1585 phist->spec_ds);
1586}
e855c69d
AB
1587
1588/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1589bool
1590vinsn_equal_p (vinsn_t x, vinsn_t y)
1591{
1592 rtx_equal_p_callback_function repcf;
1593
1594 if (x == y)
1595 return true;
1596
1597 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1598 return false;
1599
1600 if (VINSN_HASH (x) != VINSN_HASH (y))
1601 return false;
1602
1603 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1604 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1605 {
1606 /* Compare RHSes of VINSNs. */
1607 gcc_assert (VINSN_RHS (x));
1608 gcc_assert (VINSN_RHS (y));
1609
1610 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1611 }
1612
1613 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1614}
1615\f
1616
1617/* Functions for working with expressions. */
1618
1619/* Initialize EXPR. */
1620static void
1621init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1622 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1623 ds_t spec_to_check_ds, int orig_sched_cycle,
9771b263
DN
1624 vec<expr_history_def> history,
1625 signed char target_available,
e855c69d
AB
1626 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1627 bool cant_move)
1628{
1629 vinsn_attach (vi);
1630
1631 EXPR_VINSN (expr) = vi;
1632 EXPR_SPEC (expr) = spec;
1633 EXPR_USEFULNESS (expr) = use;
1634 EXPR_PRIORITY (expr) = priority;
1635 EXPR_PRIORITY_ADJ (expr) = 0;
1636 EXPR_SCHED_TIMES (expr) = sched_times;
1637 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1638 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1639 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1640 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1641
9771b263 1642 if (history.exists ())
e855c69d
AB
1643 EXPR_HISTORY_OF_CHANGES (expr) = history;
1644 else
9771b263 1645 EXPR_HISTORY_OF_CHANGES (expr).create (0);
e855c69d
AB
1646
1647 EXPR_TARGET_AVAILABLE (expr) = target_available;
1648 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1649 EXPR_WAS_RENAMED (expr) = was_renamed;
1650 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1651 EXPR_CANT_MOVE (expr) = cant_move;
1652}
1653
1654/* Make a copy of the expr FROM into the expr TO. */
1655void
1656copy_expr (expr_t to, expr_t from)
1657{
6e1aa848 1658 vec<expr_history_def> temp = vNULL;
e855c69d 1659
9771b263 1660 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
e855c69d
AB
1661 {
1662 unsigned i;
1663 expr_history_def *phist;
1664
9771b263 1665 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
b8698a0f 1666 for (i = 0;
9771b263 1667 temp.iterate (i, &phist);
e855c69d
AB
1668 i++)
1669 {
1670 vinsn_attach (phist->old_expr_vinsn);
1671 vinsn_attach (phist->new_expr_vinsn);
1672 }
1673 }
1674
b8698a0f 1675 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1676 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1677 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1678 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1679 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1680 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1681 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1682 EXPR_CANT_MOVE (from));
1683}
1684
b8698a0f 1685/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1686 "uninteresting" data such as bitmap cache. */
1687void
1688copy_expr_onside (expr_t to, expr_t from)
1689{
1690 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1691 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
9771b263 1692 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
6e1aa848 1693 vNULL,
e855c69d
AB
1694 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1695 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1696 EXPR_CANT_MOVE (from));
1697}
1698
1699/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1700 initializing new insns. */
1701static void
1702prepare_insn_expr (insn_t insn, int seqno)
1703{
1704 expr_t expr = INSN_EXPR (insn);
1705 ds_t ds;
b8698a0f 1706
e855c69d
AB
1707 INSN_SEQNO (insn) = seqno;
1708 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1709 EXPR_SPEC (expr) = 0;
1710 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1711 EXPR_WAS_SUBSTITUTED (expr) = 0;
1712 EXPR_WAS_RENAMED (expr) = 0;
1713 EXPR_TARGET_AVAILABLE (expr) = 1;
1714 INSN_LIVE_VALID_P (insn) = false;
1715
1716 /* ??? If this expression is speculative, make its dependence
1717 as weak as possible. We can filter this expression later
1718 in process_spec_exprs, because we do not distinguish
1719 between the status we got during compute_av_set and the
1720 existing status. To be fixed. */
1721 ds = EXPR_SPEC_DONE_DS (expr);
1722 if (ds)
1723 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1724
9771b263 1725 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
e855c69d
AB
1726}
1727
1728/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1729 is non-null when expressions are merged from different successors at
e855c69d
AB
1730 a split point. */
1731static void
1732update_target_availability (expr_t to, expr_t from, insn_t split_point)
1733{
b8698a0f 1734 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1735 || EXPR_TARGET_AVAILABLE (from) < 0)
1736 EXPR_TARGET_AVAILABLE (to) = -1;
1737 else
1738 {
1739 /* We try to detect the case when one of the expressions
1740 can only be reached through another one. In this case,
1741 we can do better. */
1742 if (split_point == NULL)
1743 {
1744 int toind, fromind;
1745
1746 toind = EXPR_ORIG_BB_INDEX (to);
1747 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1748
e855c69d 1749 if (toind && toind == fromind)
b8698a0f 1750 /* Do nothing -- everything is done in
e855c69d
AB
1751 merge_with_other_exprs. */
1752 ;
1753 else
1754 EXPR_TARGET_AVAILABLE (to) = -1;
1755 }
854b5fd7
AM
1756 else if (EXPR_TARGET_AVAILABLE (from) == 0
1757 && EXPR_LHS (from)
1758 && REG_P (EXPR_LHS (from))
1759 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1760 EXPR_TARGET_AVAILABLE (to) = -1;
e855c69d
AB
1761 else
1762 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1763 }
1764}
1765
1766/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1767 is non-null when expressions are merged from different successors at
e855c69d
AB
1768 a split point. */
1769static void
1770update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1771{
1772 ds_t old_to_ds, old_from_ds;
1773
1774 old_to_ds = EXPR_SPEC_DONE_DS (to);
1775 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1776
e855c69d
AB
1777 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1778 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1779 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1780
1781 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1782 speculative with a control&data speculative one, we really have
e855c69d
AB
1783 to change vinsn too. Also, when speculative status is changed,
1784 we also need to record this as a transformation in expr's history. */
1785 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1786 {
1787 old_to_ds = ds_get_speculation_types (old_to_ds);
1788 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1789
e855c69d
AB
1790 if (old_to_ds != old_from_ds)
1791 {
1792 ds_t record_ds;
b8698a0f
L
1793
1794 /* When both expressions are speculative, we need to change
e855c69d
AB
1795 the vinsn first. */
1796 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1797 {
1798 int res;
b8698a0f 1799
e855c69d
AB
1800 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1801 gcc_assert (res >= 0);
1802 }
1803
1804 if (split_point != NULL)
1805 {
1806 /* Record the change with proper status. */
1807 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1808 record_ds &= ~(old_to_ds & SPECULATIVE);
1809 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1810
1811 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1812 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1813 EXPR_VINSN (from), EXPR_VINSN (to),
1814 record_ds);
1815 }
1816 }
1817 }
1818}
1819
1820
1821/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1822 this is done along different paths. */
1823void
1824merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1825{
bf3a40e9
DM
1826 /* Choose the maximum of the specs of merged exprs. This is required
1827 for correctness of bookkeeping. */
1828 if (EXPR_SPEC (to) < EXPR_SPEC (from))
e855c69d
AB
1829 EXPR_SPEC (to) = EXPR_SPEC (from);
1830
1831 if (split_point)
1832 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1833 else
b8698a0f 1834 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1835 EXPR_USEFULNESS (from));
1836
1837 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1838 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1839
8e9a9b01
AB
1840 /* We merge sched-times half-way to the larger value to avoid the endless
1841 pipelining of unneeded insns. The average seems to be good compromise
1842 between pipelining opportunities and avoiding extra work. */
1843 if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1844 EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1845 + 1) / 2);
e855c69d
AB
1846
1847 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848 EXPR_ORIG_BB_INDEX (to) = 0;
1849
b8698a0f 1850 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1851 EXPR_ORIG_SCHED_CYCLE (from));
1852
e855c69d
AB
1853 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1856
5d369d58
AB
1857 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1859 update_target_availability (to, from, split_point);
1860 update_speculative_bits (to, from, split_point);
1861}
1862
1863/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1864 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1865 are merged from different successors at a split point. */
1866void
1867merge_expr (expr_t to, expr_t from, insn_t split_point)
1868{
1869 vinsn_t to_vi = EXPR_VINSN (to);
1870 vinsn_t from_vi = EXPR_VINSN (from);
1871
1872 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1873
1874 /* Make sure that speculative pattern is propagated into exprs that
1875 have non-speculative one. This will provide us with consistent
1876 speculative bits and speculative patterns inside expr. */
11a6609c
AB
1877 if (EXPR_SPEC_DONE_DS (to) == 0
1878 && (EXPR_SPEC_DONE_DS (from) != 0
1879 /* Do likewise for volatile insns, so that we always retain
1880 the may_trap_p bit on the resulting expression. However,
1881 avoid propagating the trapping bit into the instructions
1882 already speculated. This would result in replacing the
1883 speculative pattern with the non-speculative one and breaking
1884 the speculation support. */
1885 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1886 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
e855c69d
AB
1887 change_vinsn_in_expr (to, EXPR_VINSN (from));
1888
1889 merge_expr_data (to, from, split_point);
1890 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1891}
1892
1893/* Clear the information of this EXPR. */
1894void
1895clear_expr (expr_t expr)
1896{
b8698a0f 1897
e855c69d
AB
1898 vinsn_detach (EXPR_VINSN (expr));
1899 EXPR_VINSN (expr) = NULL;
1900
9771b263 1901 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
e855c69d
AB
1902}
1903
1904/* For a given LV_SET, mark EXPR having unavailable target register. */
1905static void
1906set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1907{
1908 if (EXPR_SEPARABLE_P (expr))
1909 {
1910 if (REG_P (EXPR_LHS (expr))
cf3d5824 1911 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
e855c69d 1912 {
b8698a0f
L
1913 /* If it's an insn like r1 = use (r1, ...), and it exists in
1914 different forms in each of the av_sets being merged, we can't say
1915 whether original destination register is available or not.
1916 However, this still works if destination register is not used
e855c69d
AB
1917 in the original expression: if the branch at which LV_SET we're
1918 looking here is not actually 'other branch' in sense that same
b8698a0f 1919 expression is available through it (but it can't be determined
e855c69d 1920 at computation stage because of transformations on one of the
b8698a0f
L
1921 branches), it still won't affect the availability.
1922 Liveness of a register somewhere on a code motion path means
1923 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1924 'other' branch, live at the point immediately following
1925 the original operation, or is read by the original operation.
1926 The latter case is filtered out in the condition below.
1927 It still doesn't cover the case when register is defined and used
1928 somewhere within the code motion path, and in this case we could
1929 miss a unifying code motion along both branches using a renamed
1930 register, but it won't affect a code correctness since upon
1931 an actual code motion a bookkeeping code would be generated. */
cf3d5824
SG
1932 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1933 EXPR_LHS (expr)))
e855c69d
AB
1934 EXPR_TARGET_AVAILABLE (expr) = -1;
1935 else
1936 EXPR_TARGET_AVAILABLE (expr) = false;
1937 }
1938 }
1939 else
1940 {
1941 unsigned regno;
1942 reg_set_iterator rsi;
b8698a0f
L
1943
1944 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1945 0, regno, rsi)
1946 if (bitmap_bit_p (lv_set, regno))
1947 {
1948 EXPR_TARGET_AVAILABLE (expr) = false;
1949 break;
1950 }
1951
1952 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1953 0, regno, rsi)
1954 if (bitmap_bit_p (lv_set, regno))
1955 {
1956 EXPR_TARGET_AVAILABLE (expr) = false;
1957 break;
1958 }
1959 }
1960}
1961
b8698a0f 1962/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1963 or dependence status have changed, 2 when also the target register
1964 became unavailable, 0 if nothing had to be changed. */
1965int
1966speculate_expr (expr_t expr, ds_t ds)
1967{
1968 int res;
9ee1fbb1 1969 rtx_insn *orig_insn_rtx;
e855c69d
AB
1970 rtx spec_pat;
1971 ds_t target_ds, current_ds;
1972
1973 /* Obtain the status we need to put on EXPR. */
1974 target_ds = (ds & SPECULATIVE);
1975 current_ds = EXPR_SPEC_DONE_DS (expr);
1976 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1977
1978 orig_insn_rtx = EXPR_INSN_RTX (expr);
1979
1980 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1981
1982 switch (res)
1983 {
1984 case 0:
1985 EXPR_SPEC_DONE_DS (expr) = ds;
1986 return current_ds != ds ? 1 : 0;
b8698a0f 1987
e855c69d
AB
1988 case 1:
1989 {
9ee1fbb1
DM
1990 rtx_insn *spec_insn_rtx =
1991 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
e855c69d
AB
1992 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1993
1994 change_vinsn_in_expr (expr, spec_vinsn);
1995 EXPR_SPEC_DONE_DS (expr) = ds;
1996 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1997
b8698a0f 1998 /* Do not allow clobbering the address register of speculative
e855c69d 1999 insns. */
cf3d5824
SG
2000 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2001 expr_dest_reg (expr)))
e855c69d
AB
2002 {
2003 EXPR_TARGET_AVAILABLE (expr) = false;
2004 return 2;
2005 }
2006
2007 return 1;
2008 }
2009
2010 case -1:
2011 return -1;
2012
2013 default:
2014 gcc_unreachable ();
2015 return -1;
2016 }
2017}
2018
2019/* Return a destination register, if any, of EXPR. */
2020rtx
2021expr_dest_reg (expr_t expr)
2022{
2023 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2024
2025 if (dest != NULL_RTX && REG_P (dest))
2026 return dest;
2027
2028 return NULL_RTX;
2029}
2030
2031/* Returns the REGNO of the R's destination. */
2032unsigned
2033expr_dest_regno (expr_t expr)
2034{
2035 rtx dest = expr_dest_reg (expr);
2036
2037 gcc_assert (dest != NULL_RTX);
2038 return REGNO (dest);
2039}
2040
b8698a0f 2041/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2042 AV_SET having unavailable target register. */
2043void
2044mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2045{
2046 expr_t expr;
2047 av_set_iterator avi;
2048
2049 FOR_EACH_EXPR (expr, avi, join_set)
2050 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2051 set_unavailable_target_for_expr (expr, lv_set);
2052}
2053\f
2054
cf3d5824
SG
2055/* Returns true if REG (at least partially) is present in REGS. */
2056bool
2057register_unavailable_p (regset regs, rtx reg)
2058{
2059 unsigned regno, end_regno;
2060
2061 regno = REGNO (reg);
2062 if (bitmap_bit_p (regs, regno))
2063 return true;
2064
2065 end_regno = END_REGNO (reg);
2066
2067 while (++regno < end_regno)
2068 if (bitmap_bit_p (regs, regno))
2069 return true;
2070
2071 return false;
2072}
2073
e855c69d
AB
2074/* Av set functions. */
2075
2076/* Add a new element to av set SETP.
2077 Return the element added. */
2078static av_set_t
2079av_set_add_element (av_set_t *setp)
2080{
2081 /* Insert at the beginning of the list. */
2082 _list_add (setp);
2083 return *setp;
2084}
2085
2086/* Add EXPR to SETP. */
2087void
2088av_set_add (av_set_t *setp, expr_t expr)
2089{
2090 av_set_t elem;
b8698a0f 2091
e855c69d
AB
2092 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2093 elem = av_set_add_element (setp);
2094 copy_expr (_AV_SET_EXPR (elem), expr);
2095}
2096
2097/* Same, but do not copy EXPR. */
2098static void
2099av_set_add_nocopy (av_set_t *setp, expr_t expr)
2100{
2101 av_set_t elem;
2102
2103 elem = av_set_add_element (setp);
2104 *_AV_SET_EXPR (elem) = *expr;
2105}
2106
2107/* Remove expr pointed to by IP from the av_set. */
2108void
2109av_set_iter_remove (av_set_iterator *ip)
2110{
2111 clear_expr (_AV_SET_EXPR (*ip->lp));
2112 _list_iter_remove (ip);
2113}
2114
2115/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2116 sense of vinsn_equal_p function. Return NULL if no such expr is
2117 in SET was found. */
2118expr_t
2119av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2120{
2121 expr_t expr;
2122 av_set_iterator i;
2123
2124 FOR_EACH_EXPR (expr, i, set)
2125 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2126 return expr;
2127 return NULL;
2128}
2129
2130/* Same, but also remove the EXPR found. */
2131static expr_t
2132av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2133{
2134 expr_t expr;
2135 av_set_iterator i;
2136
2137 FOR_EACH_EXPR_1 (expr, i, setp)
2138 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2139 {
2140 _list_iter_remove_nofree (&i);
2141 return expr;
2142 }
2143 return NULL;
2144}
2145
2146/* Search for an expr in SET, such that it's equivalent to EXPR in the
2147 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2148 Returns NULL if no such expr is in SET was found. */
2149static expr_t
2150av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2151{
2152 expr_t cur_expr;
2153 av_set_iterator i;
2154
2155 FOR_EACH_EXPR (cur_expr, i, set)
2156 {
2157 if (cur_expr == expr)
2158 continue;
2159 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2160 return cur_expr;
2161 }
2162
2163 return NULL;
2164}
2165
2166/* If other expression is already in AVP, remove one of them. */
2167expr_t
2168merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2169{
2170 expr_t expr2;
2171
2172 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2173 if (expr2 != NULL)
2174 {
2175 /* Reset target availability on merge, since taking it only from one
2176 of the exprs would be controversial for different code. */
2177 EXPR_TARGET_AVAILABLE (expr2) = -1;
2178 EXPR_USEFULNESS (expr2) = 0;
2179
2180 merge_expr (expr2, expr, NULL);
b8698a0f 2181
e855c69d
AB
2182 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2183 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2184
e855c69d
AB
2185 av_set_iter_remove (ip);
2186 return expr2;
2187 }
2188
2189 return expr;
2190}
2191
2192/* Return true if there is an expr that correlates to VI in SET. */
2193bool
2194av_set_is_in_p (av_set_t set, vinsn_t vi)
2195{
2196 return av_set_lookup (set, vi) != NULL;
2197}
2198
2199/* Return a copy of SET. */
2200av_set_t
2201av_set_copy (av_set_t set)
2202{
2203 expr_t expr;
2204 av_set_iterator i;
2205 av_set_t res = NULL;
2206
2207 FOR_EACH_EXPR (expr, i, set)
2208 av_set_add (&res, expr);
2209
2210 return res;
2211}
2212
2213/* Join two av sets that do not have common elements by attaching second set
2214 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2215 _AV_SET_NEXT of first set's last element). */
2216static void
2217join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2218{
2219 gcc_assert (*to_tailp == NULL);
2220 *to_tailp = *fromp;
2221 *fromp = NULL;
2222}
2223
2224/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2225 pointed to by FROMP afterwards. */
2226void
2227av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2228{
2229 expr_t expr1;
2230 av_set_iterator i;
2231
2232 /* Delete from TOP all exprs, that present in FROMP. */
2233 FOR_EACH_EXPR_1 (expr1, i, top)
2234 {
2235 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2236
2237 if (expr2)
2238 {
2239 merge_expr (expr2, expr1, insn);
2240 av_set_iter_remove (&i);
2241 }
2242 }
2243
2244 join_distinct_sets (i.lp, fromp);
2245}
2246
b8698a0f 2247/* Same as above, but also update availability of target register in
e855c69d
AB
2248 TOP judging by TO_LV_SET and FROM_LV_SET. */
2249void
2250av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2251 regset from_lv_set, insn_t insn)
2252{
2253 expr_t expr1;
2254 av_set_iterator i;
2255 av_set_t *to_tailp, in_both_set = NULL;
2256
2257 /* Delete from TOP all expres, that present in FROMP. */
2258 FOR_EACH_EXPR_1 (expr1, i, top)
2259 {
2260 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2261
2262 if (expr2)
2263 {
b8698a0f 2264 /* It may be that the expressions have different destination
e855c69d
AB
2265 registers, in which case we need to check liveness here. */
2266 if (EXPR_SEPARABLE_P (expr1))
2267 {
b8698a0f 2268 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2269 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2270 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2271 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2272
2273 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2274 *other* register on the current path, we did it only
2275 for the current target register. Give up. */
2276 if (regno1 != regno2)
2277 EXPR_TARGET_AVAILABLE (expr2) = -1;
2278 }
2279 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2280 EXPR_TARGET_AVAILABLE (expr2) = -1;
2281
2282 merge_expr (expr2, expr1, insn);
2283 av_set_add_nocopy (&in_both_set, expr2);
2284 av_set_iter_remove (&i);
2285 }
2286 else
b8698a0f 2287 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2288 FROM_LV_SET. */
2289 set_unavailable_target_for_expr (expr1, from_lv_set);
2290 }
2291 to_tailp = i.lp;
2292
2293 /* These expressions are not present in TOP. Check liveness
2294 restrictions on TO_LV_SET. */
2295 FOR_EACH_EXPR (expr1, i, *fromp)
2296 set_unavailable_target_for_expr (expr1, to_lv_set);
2297
2298 join_distinct_sets (i.lp, &in_both_set);
2299 join_distinct_sets (to_tailp, fromp);
2300}
2301
2302/* Clear av_set pointed to by SETP. */
2303void
2304av_set_clear (av_set_t *setp)
2305{
2306 expr_t expr;
2307 av_set_iterator i;
2308
2309 FOR_EACH_EXPR_1 (expr, i, setp)
2310 av_set_iter_remove (&i);
2311
2312 gcc_assert (*setp == NULL);
2313}
2314
2315/* Leave only one non-speculative element in the SETP. */
2316void
2317av_set_leave_one_nonspec (av_set_t *setp)
2318{
2319 expr_t expr;
2320 av_set_iterator i;
2321 bool has_one_nonspec = false;
2322
b8698a0f 2323 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2324 (the first one). */
2325 FOR_EACH_EXPR_1 (expr, i, setp)
2326 {
2327 if (!EXPR_SPEC_DONE_DS (expr))
2328 {
2329 if (has_one_nonspec)
2330 av_set_iter_remove (&i);
2331 else
2332 has_one_nonspec = true;
2333 }
2334 }
2335}
2336
2337/* Return the N'th element of the SET. */
2338expr_t
2339av_set_element (av_set_t set, int n)
2340{
2341 expr_t expr;
2342 av_set_iterator i;
2343
2344 FOR_EACH_EXPR (expr, i, set)
2345 if (n-- == 0)
2346 return expr;
2347
2348 gcc_unreachable ();
2349 return NULL;
2350}
2351
2352/* Deletes all expressions from AVP that are conditional branches (IFs). */
2353void
2354av_set_substract_cond_branches (av_set_t *avp)
2355{
2356 av_set_iterator i;
2357 expr_t expr;
2358
2359 FOR_EACH_EXPR_1 (expr, i, avp)
2360 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2361 av_set_iter_remove (&i);
2362}
2363
b8698a0f 2364/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2365 value PROB / ALL_PROB. */
2366void
2367av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2368{
2369 av_set_iterator i;
2370 expr_t expr;
2371
2372 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2373 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2374 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2375 : 0);
2376}
2377
2378/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2379 and return it, merging history expressions. */
e855c69d 2380void
5d369d58 2381av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2382{
2383 av_set_iterator i;
5d369d58 2384 expr_t expr, expr2;
e855c69d
AB
2385
2386 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2387 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2388 av_set_iter_remove (&i);
5d369d58
AB
2389 else
2390 /* When updating av sets in bookkeeping blocks, we can add more insns
2391 there which will be transformed but the upper av sets will not
2392 reflect those transformations. We then fail to undo those
2393 when searching for such insns. So merge the history saved
2394 in the av set of the block we are processing. */
2395 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2396 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2397}
2398
2399\f
2400
2401/* Dependence hooks to initialize insn data. */
2402
2403/* This is used in hooks callable from dependence analysis when initializing
2404 instruction's data. */
2405static struct
2406{
2407 /* Where the dependence was found (lhs/rhs). */
2408 deps_where_t where;
2409
2410 /* The actual data object to initialize. */
2411 idata_t id;
2412
2413 /* True when the insn should not be made clonable. */
2414 bool force_unique_p;
2415
2416 /* True when insn should be treated as of type USE, i.e. never renamed. */
2417 bool force_use_p;
2418} deps_init_id_data;
2419
2420
b8698a0f 2421/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2422 clonable. */
2423static void
2424setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2425{
2426 int type;
b8698a0f 2427
e855c69d
AB
2428 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2429 That clonable insns which can be separated into lhs and rhs have type SET.
2430 Other clonable insns have type USE. */
2431 type = GET_CODE (insn);
2432
2433 /* Only regular insns could be cloned. */
2434 if (type == INSN && !force_unique_p)
2435 type = SET;
2436 else if (type == JUMP_INSN && simplejump_p (insn))
2437 type = PC;
b5b8b0ac
AO
2438 else if (type == DEBUG_INSN)
2439 type = !force_unique_p ? USE : INSN;
b8698a0f 2440
e855c69d
AB
2441 IDATA_TYPE (id) = type;
2442 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2443 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2444 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2445}
2446
2447/* Start initializing insn data. */
2448static void
2449deps_init_id_start_insn (insn_t insn)
2450{
2451 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2452
2453 setup_id_for_insn (deps_init_id_data.id, insn,
2454 deps_init_id_data.force_unique_p);
2455 deps_init_id_data.where = DEPS_IN_INSN;
2456}
2457
2458/* Start initializing lhs data. */
2459static void
2460deps_init_id_start_lhs (rtx lhs)
2461{
2462 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2463 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2464
2465 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2466 {
2467 IDATA_LHS (deps_init_id_data.id) = lhs;
2468 deps_init_id_data.where = DEPS_IN_LHS;
2469 }
2470}
2471
2472/* Finish initializing lhs data. */
2473static void
2474deps_init_id_finish_lhs (void)
2475{
2476 deps_init_id_data.where = DEPS_IN_INSN;
2477}
2478
2479/* Note a set of REGNO. */
2480static void
2481deps_init_id_note_reg_set (int regno)
2482{
2483 haifa_note_reg_set (regno);
2484
2485 if (deps_init_id_data.where == DEPS_IN_RHS)
2486 deps_init_id_data.force_use_p = true;
2487
2488 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2489 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2490
2491#ifdef STACK_REGS
b8698a0f 2492 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2493 renaming to avoid issues with find_used_regs. */
2494 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2495 deps_init_id_data.force_use_p = true;
2496#endif
2497}
2498
2499/* Note a clobber of REGNO. */
2500static void
2501deps_init_id_note_reg_clobber (int regno)
2502{
2503 haifa_note_reg_clobber (regno);
2504
2505 if (deps_init_id_data.where == DEPS_IN_RHS)
2506 deps_init_id_data.force_use_p = true;
2507
2508 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2509 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2510}
2511
2512/* Note a use of REGNO. */
2513static void
2514deps_init_id_note_reg_use (int regno)
2515{
2516 haifa_note_reg_use (regno);
2517
2518 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2519 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2520}
2521
2522/* Start initializing rhs data. */
2523static void
2524deps_init_id_start_rhs (rtx rhs)
2525{
2526 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2527
2528 /* And there was no sel_deps_reset_to_insn (). */
2529 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2530 {
2531 IDATA_RHS (deps_init_id_data.id) = rhs;
2532 deps_init_id_data.where = DEPS_IN_RHS;
2533 }
2534}
2535
2536/* Finish initializing rhs data. */
2537static void
2538deps_init_id_finish_rhs (void)
2539{
2540 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2541 || deps_init_id_data.where == DEPS_IN_INSN);
2542 deps_init_id_data.where = DEPS_IN_INSN;
2543}
2544
2545/* Finish initializing insn data. */
2546static void
2547deps_init_id_finish_insn (void)
2548{
2549 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2550
2551 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2552 {
2553 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2554 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2555
2556 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2557 || deps_init_id_data.force_use_p)
2558 {
b8698a0f 2559 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2560 separately. However, we still want to have them recorded
b8698a0f 2561 for the purposes of substitution. That's why we don't
e855c69d
AB
2562 simply call downgrade_to_use () here. */
2563 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2564 gcc_assert (!lhs == !rhs);
2565
2566 IDATA_TYPE (deps_init_id_data.id) = USE;
2567 }
2568 }
2569
2570 deps_init_id_data.where = DEPS_IN_NOWHERE;
2571}
2572
2573/* This is dependence info used for initializing insn's data. */
2574static struct sched_deps_info_def deps_init_id_sched_deps_info;
2575
2576/* This initializes most of the static part of the above structure. */
2577static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2578 {
2579 NULL,
2580
2581 deps_init_id_start_insn,
2582 deps_init_id_finish_insn,
2583 deps_init_id_start_lhs,
2584 deps_init_id_finish_lhs,
2585 deps_init_id_start_rhs,
2586 deps_init_id_finish_rhs,
2587 deps_init_id_note_reg_set,
2588 deps_init_id_note_reg_clobber,
2589 deps_init_id_note_reg_use,
2590 NULL, /* note_mem_dep */
2591 NULL, /* note_dep */
2592
2593 0, /* use_cselib */
2594 0, /* use_deps_list */
2595 0 /* generate_spec_deps */
2596 };
2597
2598/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2599 we don't actually need information about lhs and rhs. */
2600static void
2601setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2602{
2603 rtx pat = PATTERN (insn);
b8698a0f 2604
481683e1 2605 if (NONJUMP_INSN_P (insn)
b8698a0f 2606 && GET_CODE (pat) == SET
e855c69d
AB
2607 && !force_unique_p)
2608 {
2609 IDATA_RHS (id) = SET_SRC (pat);
2610 IDATA_LHS (id) = SET_DEST (pat);
2611 }
2612 else
2613 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2614}
2615
2616/* Possibly downgrade INSN to USE. */
2617static void
2618maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2619{
2620 bool must_be_use = false;
bfac633a 2621 df_ref def;
e855c69d
AB
2622 rtx lhs = IDATA_LHS (id);
2623 rtx rhs = IDATA_RHS (id);
b8698a0f 2624
e855c69d
AB
2625 /* We downgrade only SETs. */
2626 if (IDATA_TYPE (id) != SET)
2627 return;
2628
2629 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2630 {
2631 IDATA_TYPE (id) = USE;
2632 return;
2633 }
b8698a0f 2634
bfac633a 2635 FOR_EACH_INSN_DEF (def, insn)
e855c69d 2636 {
e855c69d
AB
2637 if (DF_REF_INSN (def)
2638 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2639 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2640 {
2641 must_be_use = true;
2642 break;
2643 }
2644
2645#ifdef STACK_REGS
b8698a0f 2646 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2647 renaming to avoid issues with find_used_regs. */
2648 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2649 {
2650 must_be_use = true;
2651 break;
2652 }
2653#endif
b8698a0f
L
2654 }
2655
e855c69d
AB
2656 if (must_be_use)
2657 IDATA_TYPE (id) = USE;
2658}
2659
74ea9ab6
AB
2660/* Setup implicit register clobbers calculated by sched-deps for INSN
2661 before reload and save them in ID. */
2662static void
2663setup_id_implicit_regs (idata_t id, insn_t insn)
2664{
2665 if (reload_completed)
2666 return;
2667
2668 HARD_REG_SET temp;
2669 unsigned regno;
2670 hard_reg_set_iterator hrsi;
2671
2672 get_implicit_reg_pending_clobbers (&temp, insn);
2673 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2674 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2675}
2676
e855c69d
AB
2677/* Setup register sets describing INSN in ID. */
2678static void
2679setup_id_reg_sets (idata_t id, insn_t insn)
2680{
bfac633a
RS
2681 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2682 df_ref def, use;
e855c69d 2683 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2684
bfac633a 2685 FOR_EACH_INSN_INFO_DEF (def, insn_info)
e855c69d 2686 {
e855c69d 2687 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2688
e855c69d
AB
2689 /* Post modifies are treated like clobbers by sched-deps.c. */
2690 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2691 | DF_REF_PRE_POST_MODIFY)))
2692 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2693 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2694 {
2695 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2696
2697#ifdef STACK_REGS
b8698a0f 2698 /* For stack registers, treat writes to them as writes
e855c69d
AB
2699 to the first one to be consistent with sched-deps.c. */
2700 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2701 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2702#endif
2703 }
2704 /* Mark special refs that generate read/write def pair. */
2705 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2706 || regno == STACK_POINTER_REGNUM)
2707 bitmap_set_bit (tmp, regno);
2708 }
b8698a0f 2709
bfac633a 2710 FOR_EACH_INSN_INFO_USE (use, insn_info)
e855c69d 2711 {
e855c69d
AB
2712 unsigned int regno = DF_REF_REGNO (use);
2713
2714 /* When these refs are met for the first time, skip them, as
2715 these uses are just counterparts of some defs. */
2716 if (bitmap_bit_p (tmp, regno))
2717 bitmap_clear_bit (tmp, regno);
2718 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2719 {
2720 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2721
2722#ifdef STACK_REGS
b8698a0f 2723 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2724 the first one to be consistent with sched-deps.c. */
2725 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2726 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2727#endif
2728 }
2729 }
2730
74ea9ab6
AB
2731 /* Also get implicit reg clobbers from sched-deps. */
2732 setup_id_implicit_regs (id, insn);
2733
e855c69d
AB
2734 return_regset_to_pool (tmp);
2735}
2736
2737/* Initialize instruction data for INSN in ID using DF's data. */
2738static void
2739init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2740{
2741 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2742
2743 setup_id_for_insn (id, insn, force_unique_p);
2744 setup_id_lhs_rhs (id, insn, force_unique_p);
2745
2746 if (INSN_NOP_P (insn))
2747 return;
2748
2749 maybe_downgrade_id_to_use (id, insn);
2750 setup_id_reg_sets (id, insn);
2751}
2752
2753/* Initialize instruction data for INSN in ID. */
2754static void
2755deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2756{
88302d54 2757 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2758
2759 deps_init_id_data.where = DEPS_IN_NOWHERE;
2760 deps_init_id_data.id = id;
2761 deps_init_id_data.force_unique_p = force_unique_p;
2762 deps_init_id_data.force_use_p = false;
2763
bcf33775 2764 init_deps (dc, false);
e855c69d
AB
2765 memcpy (&deps_init_id_sched_deps_info,
2766 &const_deps_init_id_sched_deps_info,
2767 sizeof (deps_init_id_sched_deps_info));
e855c69d
AB
2768 if (spec_info != NULL)
2769 deps_init_id_sched_deps_info.generate_spec_deps = 1;
e855c69d
AB
2770 sched_deps_info = &deps_init_id_sched_deps_info;
2771
6144a836 2772 deps_analyze_insn (dc, insn);
74ea9ab6
AB
2773 /* Implicit reg clobbers received from sched-deps separately. */
2774 setup_id_implicit_regs (id, insn);
e855c69d
AB
2775
2776 free_deps (dc);
e855c69d
AB
2777 deps_init_id_data.id = NULL;
2778}
2779
2780\f
a95b23b4
BS
2781struct sched_scan_info_def
2782{
2783 /* This hook notifies scheduler frontend to extend its internal per basic
2784 block data structures. This hook should be called once before a series of
2785 calls to bb_init (). */
2786 void (*extend_bb) (void);
2787
2788 /* This hook makes scheduler frontend to initialize its internal data
2789 structures for the passed basic block. */
2790 void (*init_bb) (basic_block);
2791
2792 /* This hook notifies scheduler frontend to extend its internal per insn data
2793 structures. This hook should be called once before a series of calls to
2794 insn_init (). */
2795 void (*extend_insn) (void);
2796
2797 /* This hook makes scheduler frontend to initialize its internal data
2798 structures for the passed insn. */
6144a836 2799 void (*init_insn) (insn_t);
a95b23b4
BS
2800};
2801
2802/* A driver function to add a set of basic blocks (BBS) to the
2803 scheduling region. */
2804static void
2805sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2806{
2807 unsigned i;
2808 basic_block bb;
2809
2810 if (ssi->extend_bb)
2811 ssi->extend_bb ();
2812
2813 if (ssi->init_bb)
9771b263 2814 FOR_EACH_VEC_ELT (bbs, i, bb)
a95b23b4
BS
2815 ssi->init_bb (bb);
2816
2817 if (ssi->extend_insn)
2818 ssi->extend_insn ();
2819
2820 if (ssi->init_insn)
9771b263 2821 FOR_EACH_VEC_ELT (bbs, i, bb)
a95b23b4 2822 {
6144a836 2823 rtx_insn *insn;
a95b23b4
BS
2824
2825 FOR_BB_INSNS (bb, insn)
2826 ssi->init_insn (insn);
2827 }
2828}
e855c69d
AB
2829
2830/* Implement hooks for collecting fundamental insn properties like if insn is
2831 an ASM or is within a SCHED_GROUP. */
2832
2833/* True when a "one-time init" data for INSN was already inited. */
2834static bool
2835first_time_insn_init (insn_t insn)
2836{
2837 return INSN_LIVE (insn) == NULL;
2838}
2839
2840/* Hash an entry in a transformed_insns hashtable. */
2841static hashval_t
2842hash_transformed_insns (const void *p)
2843{
2844 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2845}
2846
2847/* Compare the entries in a transformed_insns hashtable. */
2848static int
2849eq_transformed_insns (const void *p, const void *q)
2850{
9ee1fbb1
DM
2851 rtx_insn *i1 =
2852 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2853 rtx_insn *i2 =
2854 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
e855c69d
AB
2855
2856 if (INSN_UID (i1) == INSN_UID (i2))
2857 return 1;
2858 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2859}
2860
2861/* Free an entry in a transformed_insns hashtable. */
2862static void
2863free_transformed_insns (void *p)
2864{
2865 struct transformed_insns *pti = (struct transformed_insns *) p;
2866
2867 vinsn_detach (pti->vinsn_old);
2868 vinsn_detach (pti->vinsn_new);
2869 free (pti);
2870}
2871
b8698a0f 2872/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2873 we first see the insn. */
2874static void
2875init_first_time_insn_data (insn_t insn)
2876{
2877 /* This should not be set if this is the first time we init data for
2878 insn. */
2879 gcc_assert (first_time_insn_init (insn));
b8698a0f 2880
e855c69d
AB
2881 /* These are needed for nops too. */
2882 INSN_LIVE (insn) = get_regset_from_pool ();
2883 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2884
e855c69d
AB
2885 if (!INSN_NOP_P (insn))
2886 {
2887 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2888 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2889 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2890 = htab_create (16, hash_transformed_insns,
2891 eq_transformed_insns, free_transformed_insns);
bcf33775 2892 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2893 }
2894}
2895
b8698a0f 2896/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2897 Used for extra-large basic blocks. */
2898void
2899free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2900{
2901 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2902
bcf33775
AB
2903 if (! INSN_ANALYZED_DEPS (insn))
2904 return;
b8698a0f 2905
e855c69d
AB
2906 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2907 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2908 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2909
e855c69d
AB
2910 /* This is allocated only for bookkeeping insns. */
2911 if (INSN_ORIGINATORS (insn))
2912 BITMAP_FREE (INSN_ORIGINATORS (insn));
2913 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2914
2915 INSN_ANALYZED_DEPS (insn) = NULL;
2916
b8698a0f 2917 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2918 the deps context (as we believe that it should not happen). */
2919 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2920}
2921
2922/* Free the same data as above for INSN. */
2923static void
2924free_first_time_insn_data (insn_t insn)
2925{
2926 gcc_assert (! first_time_insn_init (insn));
2927
2928 free_data_for_scheduled_insn (insn);
2929 return_regset_to_pool (INSN_LIVE (insn));
2930 INSN_LIVE (insn) = NULL;
2931 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2932}
2933
2934/* Initialize region-scope data structures for basic blocks. */
2935static void
2936init_global_and_expr_for_bb (basic_block bb)
2937{
2938 if (sel_bb_empty_p (bb))
2939 return;
2940
2941 invalidate_av_set (bb);
2942}
2943
2944/* Data for global dependency analysis (to initialize CANT_MOVE and
2945 SCHED_GROUP_P). */
2946static struct
2947{
2948 /* Previous insn. */
2949 insn_t prev_insn;
2950} init_global_data;
2951
2952/* Determine if INSN is in the sched_group, is an asm or should not be
2953 cloned. After that initialize its expr. */
2954static void
2955init_global_and_expr_for_insn (insn_t insn)
2956{
2957 if (LABEL_P (insn))
2958 return;
2959
2960 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2961 {
6144a836 2962 init_global_data.prev_insn = NULL;
e855c69d
AB
2963 return;
2964 }
2965
2966 gcc_assert (INSN_P (insn));
2967
2968 if (SCHED_GROUP_P (insn))
2969 /* Setup a sched_group. */
2970 {
2971 insn_t prev_insn = init_global_data.prev_insn;
2972
2973 if (prev_insn)
2974 INSN_SCHED_NEXT (prev_insn) = insn;
2975
2976 init_global_data.prev_insn = insn;
2977 }
2978 else
6144a836 2979 init_global_data.prev_insn = NULL;
e855c69d
AB
2980
2981 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2982 || asm_noperands (PATTERN (insn)) >= 0)
2983 /* Mark INSN as an asm. */
2984 INSN_ASM_P (insn) = true;
2985
2986 {
2987 bool force_unique_p;
2988 ds_t spec_done_ds;
2989
cfeb0fa8
AB
2990 /* Certain instructions cannot be cloned, and frame related insns and
2991 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2992 their block. */
2993 if (prologue_epilogue_contains (insn))
2994 {
2995 if (RTX_FRAME_RELATED_P (insn))
2996 CANT_MOVE (insn) = 1;
2997 else
2998 {
2999 rtx note;
3000 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3001 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
3002 && ((enum insn_note) INTVAL (XEXP (note, 0))
3003 == NOTE_INSN_EPILOGUE_BEG))
3004 {
3005 CANT_MOVE (insn) = 1;
3006 break;
3007 }
3008 }
3009 force_unique_p = true;
3010 }
e855c69d 3011 else
cfeb0fa8
AB
3012 if (CANT_MOVE (insn)
3013 || INSN_ASM_P (insn)
3014 || SCHED_GROUP_P (insn)
07643d76 3015 || CALL_P (insn)
cfeb0fa8
AB
3016 /* Exception handling insns are always unique. */
3017 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3018 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
6bf2d156
DM
3019 || control_flow_insn_p (insn)
3020 || volatile_insn_p (PATTERN (insn))
3021 || (targetm.cannot_copy_insn_p
3022 && targetm.cannot_copy_insn_p (insn)))
cfeb0fa8
AB
3023 force_unique_p = true;
3024 else
3025 force_unique_p = false;
e855c69d
AB
3026
3027 if (targetm.sched.get_insn_spec_ds)
3028 {
3029 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3030 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3031 }
3032 else
3033 spec_done_ds = 0;
3034
3035 /* Initialize INSN's expr. */
3036 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3037 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
6e1aa848 3038 spec_done_ds, 0, 0, vNULL, true,
9771b263 3039 false, false, false, CANT_MOVE (insn));
e855c69d
AB
3040 }
3041
3042 init_first_time_insn_data (insn);
3043}
3044
3045/* Scan the region and initialize instruction data for basic blocks BBS. */
3046void
3047sel_init_global_and_expr (bb_vec_t bbs)
3048{
3049 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3050 const struct sched_scan_info_def ssi =
3051 {
3052 NULL, /* extend_bb */
3053 init_global_and_expr_for_bb, /* init_bb */
3054 extend_insn_data, /* extend_insn */
3055 init_global_and_expr_for_insn /* init_insn */
3056 };
b8698a0f 3057
a95b23b4 3058 sched_scan (&ssi, bbs);
e855c69d
AB
3059}
3060
3061/* Finalize region-scope data structures for basic blocks. */
3062static void
3063finish_global_and_expr_for_bb (basic_block bb)
3064{
3065 av_set_clear (&BB_AV_SET (bb));
3066 BB_AV_LEVEL (bb) = 0;
3067}
3068
3069/* Finalize INSN's data. */
3070static void
3071finish_global_and_expr_insn (insn_t insn)
3072{
3073 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3074 return;
3075
3076 gcc_assert (INSN_P (insn));
3077
3078 if (INSN_LUID (insn) > 0)
3079 {
3080 free_first_time_insn_data (insn);
3081 INSN_WS_LEVEL (insn) = 0;
3082 CANT_MOVE (insn) = 0;
b8698a0f
L
3083
3084 /* We can no longer assert this, as vinsns of this insn could be
3085 easily live in other insn's caches. This should be changed to
e855c69d
AB
3086 a counter-like approach among all vinsns. */
3087 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3088 clear_expr (INSN_EXPR (insn));
3089 }
3090}
3091
3092/* Finalize per instruction data for the whole region. */
3093void
3094sel_finish_global_and_expr (void)
3095{
3096 {
3097 bb_vec_t bbs;
3098 int i;
3099
9771b263 3100 bbs.create (current_nr_blocks);
e855c69d
AB
3101
3102 for (i = 0; i < current_nr_blocks; i++)
06e28de2 3103 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e855c69d
AB
3104
3105 /* Clear AV_SETs and INSN_EXPRs. */
3106 {
3107 const struct sched_scan_info_def ssi =
3108 {
3109 NULL, /* extend_bb */
3110 finish_global_and_expr_for_bb, /* init_bb */
3111 NULL, /* extend_insn */
3112 finish_global_and_expr_insn /* init_insn */
3113 };
3114
a95b23b4 3115 sched_scan (&ssi, bbs);
e855c69d
AB
3116 }
3117
9771b263 3118 bbs.release ();
e855c69d
AB
3119 }
3120
3121 finish_insns ();
3122}
3123\f
3124
b8698a0f
L
3125/* In the below hooks, we merely calculate whether or not a dependence
3126 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3127 when we'll start caching dependence requests. */
3128
3129/* Container to hold information for dependency analysis. */
3130static struct
3131{
3132 deps_t dc;
3133
3134 /* A variable to track which part of rtx we are scanning in
3135 sched-deps.c: sched_analyze_insn (). */
3136 deps_where_t where;
3137
3138 /* Current producer. */
3139 insn_t pro;
3140
3141 /* Current consumer. */
3142 vinsn_t con;
3143
3144 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3145 X is from { INSN, LHS, RHS }. */
3146 ds_t has_dep_p[DEPS_IN_NOWHERE];
3147} has_dependence_data;
3148
3149/* Start analyzing dependencies of INSN. */
3150static void
3151has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3152{
3153 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3154
3155 has_dependence_data.where = DEPS_IN_INSN;
3156}
3157
3158/* Finish analyzing dependencies of an insn. */
3159static void
3160has_dependence_finish_insn (void)
3161{
3162 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3163
3164 has_dependence_data.where = DEPS_IN_NOWHERE;
3165}
3166
3167/* Start analyzing dependencies of LHS. */
3168static void
3169has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3170{
3171 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3172
3173 if (VINSN_LHS (has_dependence_data.con) != NULL)
3174 has_dependence_data.where = DEPS_IN_LHS;
3175}
3176
3177/* Finish analyzing dependencies of an lhs. */
3178static void
3179has_dependence_finish_lhs (void)
3180{
3181 has_dependence_data.where = DEPS_IN_INSN;
3182}
3183
3184/* Start analyzing dependencies of RHS. */
3185static void
3186has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3187{
3188 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3189
3190 if (VINSN_RHS (has_dependence_data.con) != NULL)
3191 has_dependence_data.where = DEPS_IN_RHS;
3192}
3193
3194/* Start analyzing dependencies of an rhs. */
3195static void
3196has_dependence_finish_rhs (void)
3197{
3198 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3199 || has_dependence_data.where == DEPS_IN_INSN);
3200
3201 has_dependence_data.where = DEPS_IN_INSN;
3202}
3203
3204/* Note a set of REGNO. */
3205static void
3206has_dependence_note_reg_set (int regno)
3207{
3208 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3209
3210 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3211 VINSN_INSN_RTX
3212 (has_dependence_data.con)))
3213 {
3214 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3215
3216 if (reg_last->sets != NULL
3217 || reg_last->clobbers != NULL)
3218 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3219
50919d13 3220 if (reg_last->uses || reg_last->implicit_sets)
e855c69d
AB
3221 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3222 }
3223}
3224
3225/* Note a clobber of REGNO. */
3226static void
3227has_dependence_note_reg_clobber (int regno)
3228{
3229 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3230
3231 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3232 VINSN_INSN_RTX
3233 (has_dependence_data.con)))
3234 {
3235 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3236
3237 if (reg_last->sets)
3238 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3239
50919d13 3240 if (reg_last->uses || reg_last->implicit_sets)
e855c69d
AB
3241 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3242 }
3243}
3244
3245/* Note a use of REGNO. */
3246static void
3247has_dependence_note_reg_use (int regno)
3248{
3249 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3250
3251 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3252 VINSN_INSN_RTX
3253 (has_dependence_data.con)))
3254 {
3255 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3256
3257 if (reg_last->sets)
3258 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3259
50919d13 3260 if (reg_last->clobbers || reg_last->implicit_sets)
e855c69d
AB
3261 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3262
0d4acd90
AB
3263 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3264 is actually a check insn. We need to do this for any register
3265 read-read dependency with the check unless we track properly
3266 all registers written by BE_IN_SPEC-speculated insns, as
3267 we don't have explicit dependence lists. See PR 53975. */
e855c69d
AB
3268 if (reg_last->uses)
3269 {
3270 ds_t pro_spec_checked_ds;
3271
3272 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3273 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3274
0d4acd90 3275 if (pro_spec_checked_ds != 0)
e855c69d
AB
3276 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3277 NULL_RTX, NULL_RTX);
3278 }
3279 }
3280}
3281
3282/* Note a memory dependence. */
3283static void
3284has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3285 rtx pending_mem ATTRIBUTE_UNUSED,
3286 insn_t pending_insn ATTRIBUTE_UNUSED,
3287 ds_t ds ATTRIBUTE_UNUSED)
3288{
3289 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3290 VINSN_INSN_RTX (has_dependence_data.con)))
3291 {
3292 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3293
3294 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3295 }
3296}
3297
3298/* Note a dependence. */
3299static void
3300has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3301 ds_t ds ATTRIBUTE_UNUSED)
3302{
3303 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3304 VINSN_INSN_RTX (has_dependence_data.con)))
3305 {
3306 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3307
3308 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3309 }
3310}
3311
3312/* Mark the insn as having a hard dependence that prevents speculation. */
3313void
3314sel_mark_hard_insn (rtx insn)
3315{
3316 int i;
3317
3318 /* Only work when we're in has_dependence_p mode.
3319 ??? This is a hack, this should actually be a hook. */
3320 if (!has_dependence_data.dc || !has_dependence_data.pro)
3321 return;
3322
3323 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3324 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3325
3326 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3327 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3328}
3329
3330/* This structure holds the hooks for the dependency analysis used when
3331 actually processing dependencies in the scheduler. */
3332static struct sched_deps_info_def has_dependence_sched_deps_info;
3333
3334/* This initializes most of the fields of the above structure. */
3335static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3336 {
3337 NULL,
3338
3339 has_dependence_start_insn,
3340 has_dependence_finish_insn,
3341 has_dependence_start_lhs,
3342 has_dependence_finish_lhs,
3343 has_dependence_start_rhs,
3344 has_dependence_finish_rhs,
3345 has_dependence_note_reg_set,
3346 has_dependence_note_reg_clobber,
3347 has_dependence_note_reg_use,
3348 has_dependence_note_mem_dep,
3349 has_dependence_note_dep,
3350
3351 0, /* use_cselib */
3352 0, /* use_deps_list */
3353 0 /* generate_spec_deps */
3354 };
3355
3356/* Initialize has_dependence_sched_deps_info with extra spec field. */
3357static void
3358setup_has_dependence_sched_deps_info (void)
3359{
3360 memcpy (&has_dependence_sched_deps_info,
3361 &const_has_dependence_sched_deps_info,
3362 sizeof (has_dependence_sched_deps_info));
3363
3364 if (spec_info != NULL)
3365 has_dependence_sched_deps_info.generate_spec_deps = 1;
3366
3367 sched_deps_info = &has_dependence_sched_deps_info;
3368}
3369
3370/* Remove all dependences found and recorded in has_dependence_data array. */
3371void
3372sel_clear_has_dependence (void)
3373{
3374 int i;
3375
3376 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3377 has_dependence_data.has_dep_p[i] = 0;
3378}
3379
3380/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3381 to the dependence information array in HAS_DEP_PP. */
3382ds_t
3383has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3384{
3385 int i;
3386 ds_t ds;
88302d54 3387 struct deps_desc *dc;
e855c69d
AB
3388
3389 if (INSN_SIMPLEJUMP_P (pred))
3390 /* Unconditional jump is just a transfer of control flow.
3391 Ignore it. */
3392 return false;
3393
3394 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3395
3396 /* We init this field lazily. */
3397 if (dc->reg_last == NULL)
3398 init_deps_reg_last (dc);
b8698a0f 3399
e855c69d
AB
3400 if (!dc->readonly)
3401 {
3402 has_dependence_data.pro = NULL;
3403 /* Initialize empty dep context with information about PRED. */
3404 advance_deps_context (dc, pred);
3405 dc->readonly = 1;
3406 }
3407
3408 has_dependence_data.where = DEPS_IN_NOWHERE;
3409 has_dependence_data.pro = pred;
3410 has_dependence_data.con = EXPR_VINSN (expr);
3411 has_dependence_data.dc = dc;
3412
3413 sel_clear_has_dependence ();
3414
3415 /* Now catch all dependencies that would be generated between PRED and
3416 INSN. */
3417 setup_has_dependence_sched_deps_info ();
3418 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3419 has_dependence_data.dc = NULL;
3420
3421 /* When a barrier was found, set DEPS_IN_INSN bits. */
3422 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3423 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3424 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3425 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3426
3427 /* Do not allow stores to memory to move through checks. Currently
3428 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3429 obvious places to which this dependence can be attached.
e855c69d
AB
3430 FIMXE: this should go to a hook. */
3431 if (EXPR_LHS (expr)
3432 && MEM_P (EXPR_LHS (expr))
3433 && sel_insn_is_speculation_check (pred))
3434 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3435
e855c69d
AB
3436 *has_dep_pp = has_dependence_data.has_dep_p;
3437 ds = 0;
3438 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3439 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3440 NULL_RTX, NULL_RTX);
3441
3442 return ds;
3443}
3444\f
3445
b8698a0f
L
3446/* Dependence hooks implementation that checks dependence latency constraints
3447 on the insns being scheduled. The entry point for these routines is
3448 tick_check_p predicate. */
e855c69d
AB
3449
3450static struct
3451{
3452 /* An expr we are currently checking. */
3453 expr_t expr;
3454
3455 /* A minimal cycle for its scheduling. */
3456 int cycle;
3457
3458 /* Whether we have seen a true dependence while checking. */
3459 bool seen_true_dep_p;
3460} tick_check_data;
3461
3462/* Update minimal scheduling cycle for tick_check_insn given that it depends
3463 on PRO with status DS and weight DW. */
3464static void
3465tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3466{
3467 expr_t con_expr = tick_check_data.expr;
3468 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3469
3470 if (con_insn != pro_insn)
3471 {
3472 enum reg_note dt;
3473 int tick;
3474
3475 if (/* PROducer was removed from above due to pipelining. */
3476 !INSN_IN_STREAM_P (pro_insn)
3477 /* Or PROducer was originally on the next iteration regarding the
3478 CONsumer. */
3479 || (INSN_SCHED_TIMES (pro_insn)
3480 - EXPR_SCHED_TIMES (con_expr)) > 1)
3481 /* Don't count this dependence. */
3482 return;
3483
3484 dt = ds_to_dt (ds);
3485 if (dt == REG_DEP_TRUE)
3486 tick_check_data.seen_true_dep_p = true;
3487
3488 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3489
3490 {
3491 dep_def _dep, *dep = &_dep;
3492
3493 init_dep (dep, pro_insn, con_insn, dt);
3494
3495 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3496 }
3497
3498 /* When there are several kinds of dependencies between pro and con,
3499 only REG_DEP_TRUE should be taken into account. */
3500 if (tick > tick_check_data.cycle
3501 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3502 tick_check_data.cycle = tick;
3503 }
3504}
3505
3506/* An implementation of note_dep hook. */
3507static void
3508tick_check_note_dep (insn_t pro, ds_t ds)
3509{
3510 tick_check_dep_with_dw (pro, ds, 0);
3511}
3512
3513/* An implementation of note_mem_dep hook. */
3514static void
3515tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3516{
3517 dw_t dw;
3518
3519 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3520 ? estimate_dep_weak (mem1, mem2)
3521 : 0);
3522
3523 tick_check_dep_with_dw (pro, ds, dw);
3524}
3525
3526/* This structure contains hooks for dependence analysis used when determining
3527 whether an insn is ready for scheduling. */
3528static struct sched_deps_info_def tick_check_sched_deps_info =
3529 {
3530 NULL,
3531
3532 NULL,
3533 NULL,
3534 NULL,
3535 NULL,
3536 NULL,
3537 NULL,
3538 haifa_note_reg_set,
3539 haifa_note_reg_clobber,
3540 haifa_note_reg_use,
3541 tick_check_note_mem_dep,
3542 tick_check_note_dep,
3543
3544 0, 0, 0
3545 };
3546
3547/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3548 scheduled. Return 0 if all data from producers in DC is ready. */
3549int
3550tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3551{
3552 int cycles_left;
3553 /* Initialize variables. */
3554 tick_check_data.expr = expr;
3555 tick_check_data.cycle = 0;
3556 tick_check_data.seen_true_dep_p = false;
3557 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3558
e855c69d
AB
3559 gcc_assert (!dc->readonly);
3560 dc->readonly = 1;
3561 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3562 dc->readonly = 0;
3563
3564 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3565
3566 return cycles_left >= 0 ? cycles_left : 0;
3567}
3568\f
3569
3570/* Functions to work with insns. */
3571
3572/* Returns true if LHS of INSN is the same as DEST of an insn
3573 being moved. */
3574bool
3575lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3576{
3577 rtx lhs = INSN_LHS (insn);
3578
3579 if (lhs == NULL || dest == NULL)
3580 return false;
b8698a0f 3581
e855c69d
AB
3582 return rtx_equal_p (lhs, dest);
3583}
3584
3585/* Return s_i_d entry of INSN. Callable from debugger. */
3586sel_insn_data_def
3587insn_sid (insn_t insn)
3588{
3589 return *SID (insn);
3590}
3591
3592/* True when INSN is a speculative check. We can tell this by looking
3593 at the data structures of the selective scheduler, not by examining
3594 the pattern. */
3595bool
3596sel_insn_is_speculation_check (rtx insn)
3597{
9771b263 3598 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
e855c69d
AB
3599}
3600
b8698a0f 3601/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3602 for given INSN. */
3603void
ef4bddc2 3604get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
e855c69d
AB
3605{
3606 rtx pat = PATTERN (insn);
3607
3608 gcc_assert (dst_loc);
3609 gcc_assert (GET_CODE (pat) == SET);
3610
3611 *dst_loc = SET_DEST (pat);
3612
3613 gcc_assert (*dst_loc);
3614 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3615
3616 if (mode)
3617 *mode = GET_MODE (*dst_loc);
3618}
3619
b8698a0f 3620/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3621 creation. */
3622bool
3623bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3624{
3625 insn_t succ;
3626 succ_iterator si;
3627
3628 FOR_EACH_SUCC (succ, si, jump)
3629 if (sel_num_cfg_preds_gt_1 (succ))
3630 return true;
3631
3632 return false;
3633}
3634
3635/* Return 'true' if INSN is the only one in its basic block. */
3636static bool
3637insn_is_the_only_one_in_bb_p (insn_t insn)
3638{
3639 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3640}
3641
b8698a0f 3642/* Check that the region we're scheduling still has at most one
e855c69d
AB
3643 backedge. */
3644static void
3645verify_backedges (void)
3646{
3647 if (pipelining_p)
3648 {
3649 int i, n = 0;
3650 edge e;
3651 edge_iterator ei;
b8698a0f 3652
e855c69d 3653 for (i = 0; i < current_nr_blocks; i++)
06e28de2 3654 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
e855c69d
AB
3655 if (in_current_region_p (e->dest)
3656 && BLOCK_TO_BB (e->dest->index) < i)
3657 n++;
b8698a0f 3658
e855c69d
AB
3659 gcc_assert (n <= 1);
3660 }
3661}
e855c69d
AB
3662\f
3663
3664/* Functions to work with control flow. */
3665
b59ab570
AM
3666/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3667 are sorted in topological order (it might have been invalidated by
3668 redirecting an edge). */
3669static void
3670sel_recompute_toporder (void)
3671{
3672 int i, n, rgn;
3673 int *postorder, n_blocks;
3674
0cae8d31 3675 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
b59ab570
AM
3676 n_blocks = post_order_compute (postorder, false, false);
3677
3678 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3679 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3680 if (CONTAINING_RGN (postorder[i]) == rgn)
3681 {
3682 BLOCK_TO_BB (postorder[i]) = n;
3683 BB_TO_BLOCK (n) = postorder[i];
3684 n++;
3685 }
3686
3687 /* Assert that we updated info for all blocks. We may miss some blocks if
3688 this function is called when redirecting an edge made a block
3689 unreachable, but that block is not deleted yet. */
3690 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3691}
3692
e855c69d 3693/* Tidy the possibly empty block BB. */
65592aad 3694static bool
5f33b972 3695maybe_tidy_empty_bb (basic_block bb)
e855c69d 3696{
b7b5540a 3697 basic_block succ_bb, pred_bb, note_bb;
9771b263 3698 vec<basic_block> dom_bbs;
f2c45f08
AM
3699 edge e;
3700 edge_iterator ei;
e855c69d
AB
3701 bool rescan_p;
3702
3703 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3704 has incoming non-fallthrough edge, or it has no predecessors or
3705 successors. Otherwise remove it. */
b5b8b0ac 3706 if (!sel_bb_empty_p (bb)
b8698a0f 3707 || (single_succ_p (bb)
fefa31b5 3708 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
b8698a0f 3709 && (!single_pred_p (bb)
762bffba
AB
3710 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3711 || EDGE_COUNT (bb->preds) == 0
3712 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3713 return false;
3714
f2c45f08
AM
3715 /* Do not attempt to redirect complex edges. */
3716 FOR_EACH_EDGE (e, ei, bb->preds)
3717 if (e->flags & EDGE_COMPLEX)
3718 return false;
5ef5a3b7
JJ
3719 else if (e->flags & EDGE_FALLTHRU)
3720 {
3721 rtx note;
3722 /* If prev bb ends with asm goto, see if any of the
3723 ASM_OPERANDS_LABELs don't point to the fallthru
3724 label. Do not attempt to redirect it in that case. */
3725 if (JUMP_P (BB_END (e->src))
3726 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3727 {
3728 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3729
3730 for (i = 0; i < n; ++i)
3731 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3732 return false;
3733 }
3734 }
f2c45f08 3735
e855c69d
AB
3736 free_data_sets (bb);
3737
3738 /* Do not delete BB if it has more than one successor.
3739 That can occur when we moving a jump. */
3740 if (!single_succ_p (bb))
3741 {
3742 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3743 sel_merge_blocks (bb->prev_bb, bb);
3744 return true;
3745 }
3746
3747 succ_bb = single_succ (bb);
3748 rescan_p = true;
3749 pred_bb = NULL;
9771b263 3750 dom_bbs.create (0);
e855c69d 3751
b7b5540a
AB
3752 /* Save a pred/succ from the current region to attach the notes to. */
3753 note_bb = NULL;
3754 FOR_EACH_EDGE (e, ei, bb->preds)
3755 if (in_current_region_p (e->src))
3756 {
3757 note_bb = e->src;
3758 break;
3759 }
3760 if (note_bb == NULL)
3761 note_bb = succ_bb;
3762
e855c69d
AB
3763 /* Redirect all non-fallthru edges to the next bb. */
3764 while (rescan_p)
3765 {
e855c69d
AB
3766 rescan_p = false;
3767
3768 FOR_EACH_EDGE (e, ei, bb->preds)
3769 {
3770 pred_bb = e->src;
3771
3772 if (!(e->flags & EDGE_FALLTHRU))
3773 {
5f33b972 3774 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3775 the edge destination block (E->SUCC) along a fallthru edge.
3776
3777 We will update dominators here only when we'll get
3778 an unreachable block when redirecting, otherwise
3779 sel_redirect_edge_and_branch will take care of it. */
3780 if (e->dest != bb
3781 && single_pred_p (e->dest))
9771b263 3782 dom_bbs.safe_push (e->dest);
5f33b972 3783 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3784 rescan_p = true;
3785 break;
3786 }
5f33b972
AM
3787 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3788 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3789 still have to adjust it. */
3790 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3791 {
3792 /* If possible, try to remove the unneeded conditional jump. */
3793 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3794 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3795 {
3796 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3797 tidy_fallthru_edge (e);
3798 }
3799 else
3800 sel_redirect_edge_and_branch (e, succ_bb);
3801 rescan_p = true;
3802 break;
3803 }
e855c69d
AB
3804 }
3805 }
3806
e855c69d
AB
3807 if (can_merge_blocks_p (bb->prev_bb, bb))
3808 sel_merge_blocks (bb->prev_bb, bb);
3809 else
e855c69d 3810 {
262d8232 3811 /* This is a block without fallthru predecessor. Just delete it. */
b7b5540a
AB
3812 gcc_assert (note_bb);
3813 move_bb_info (note_bb, bb);
e855c69d
AB
3814 remove_empty_bb (bb, true);
3815 }
3816
9771b263 3817 if (!dom_bbs.is_empty ())
00c4e97c 3818 {
9771b263 3819 dom_bbs.safe_push (succ_bb);
00c4e97c 3820 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
9771b263 3821 dom_bbs.release ();
00c4e97c
AB
3822 }
3823
e855c69d
AB
3824 return true;
3825}
3826
b8698a0f 3827/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3828 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3829 is true, also try to optimize control flow on non-empty blocks. */
3830bool
3831tidy_control_flow (basic_block xbb, bool full_tidying)
3832{
3833 bool changed = true;
b5b8b0ac 3834 insn_t first, last;
b8698a0f 3835
e855c69d 3836 /* First check whether XBB is empty. */
5f33b972 3837 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3838 if (changed || !full_tidying)
3839 return changed;
b8698a0f 3840
e855c69d 3841 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3842 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3843 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3844 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3845 {
ab6dceab
AB
3846 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3847 before we fix up the fallthru edge. Correct that ordering by
3848 explicitly doing the latter before the former. */
3849 clear_expr (INSN_EXPR (BB_END (xbb)));
e855c69d 3850 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
ab6dceab
AB
3851 if (tidy_control_flow (xbb, false))
3852 return true;
e855c69d
AB
3853 }
3854
b5b8b0ac
AO
3855 first = sel_bb_head (xbb);
3856 last = sel_bb_end (xbb);
3857 if (MAY_HAVE_DEBUG_INSNS)
3858 {
3859 if (first != last && DEBUG_INSN_P (first))
3860 do
3861 first = NEXT_INSN (first);
3862 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3863
3864 if (first != last && DEBUG_INSN_P (last))
3865 do
3866 last = PREV_INSN (last);
3867 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3868 }
e855c69d 3869 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3870 to next basic block left after removing INSN from stream.
3871 If it is so, remove that jump and redirect edge to current
3872 basic block (where there was INSN before deletion). This way
3873 when NOP will be deleted several instructions later with its
3874 basic block we will not get a jump to next instruction, which
e855c69d 3875 can be harmful. */
b5b8b0ac 3876 if (first == last
e855c69d 3877 && !sel_bb_empty_p (xbb)
b5b8b0ac 3878 && INSN_NOP_P (last)
e855c69d
AB
3879 /* Flow goes fallthru from current block to the next. */
3880 && EDGE_COUNT (xbb->succs) == 1
3881 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3882 /* When successor is an EXIT block, it may not be the next block. */
fefa31b5 3883 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
3884 /* And unconditional jump in previous basic block leads to
3885 next basic block of XBB and this jump can be safely removed. */
3886 && in_current_region_p (xbb->prev_bb)
753de8cf 3887 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3888 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3889 /* Also this jump is not at the scheduling boundary. */
3890 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3891 {
b59ab570 3892 bool recompute_toporder_p;
e855c69d
AB
3893 /* Clear data structures of jump - jump itself will be removed
3894 by sel_redirect_edge_and_branch. */
3895 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3896 recompute_toporder_p
3897 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3898
e855c69d
AB
3899 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3900
3901 /* It can turn out that after removing unused jump, basic block
3902 that contained that jump, becomes empty too. In such case
3903 remove it too. */
3904 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3905 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3906 if (recompute_toporder_p)
b59ab570 3907 sel_recompute_toporder ();
e855c69d 3908 }
d787f788 3909
b2b29377
MM
3910 /* TODO: use separate flag for CFG checking. */
3911 if (flag_checking)
3912 {
3913 verify_backedges ();
3914 verify_dominators (CDI_DOMINATORS);
3915 }
d787f788 3916
e855c69d
AB
3917 return changed;
3918}
3919
b59ab570
AM
3920/* Purge meaningless empty blocks in the middle of a region. */
3921void
3922purge_empty_blocks (void)
3923{
9d0dcda1 3924 int i;
b59ab570 3925
9d0dcda1
AM
3926 /* Do not attempt to delete the first basic block in the region. */
3927 for (i = 1; i < current_nr_blocks; )
b59ab570 3928 {
06e28de2 3929 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
b59ab570 3930
5f33b972 3931 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3932 continue;
3933
3934 i++;
3935 }
3936}
3937
b8698a0f
L
3938/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3939 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3940 Return true if we have removed some blocks afterwards. */
3941bool
3942sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3943{
3944 basic_block bb = BLOCK_FOR_INSN (insn);
3945
3946 gcc_assert (INSN_IN_STREAM_P (insn));
3947
b5b8b0ac
AO
3948 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3949 {
3950 expr_t expr;
3951 av_set_iterator i;
3952
3953 /* When we remove a debug insn that is head of a BB, it remains
3954 in the AV_SET of the block, but it shouldn't. */
3955 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3956 if (EXPR_INSN_RTX (expr) == insn)
3957 {
3958 av_set_iter_remove (&i);
3959 break;
3960 }
3961 }
3962
e855c69d 3963 if (only_disconnect)
1f397f45 3964 remove_insn (insn);
e855c69d
AB
3965 else
3966 {
1f397f45 3967 delete_insn (insn);
e855c69d
AB
3968 clear_expr (INSN_EXPR (insn));
3969 }
3970
1f397f45
SB
3971 /* It is necessary to NULL these fields in case we are going to re-insert
3972 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3973 case, but also for NOPs that we will return to the nop pool. */
0f82e5c9
DM
3974 SET_PREV_INSN (insn) = NULL_RTX;
3975 SET_NEXT_INSN (insn) = NULL_RTX;
1f397f45 3976 set_block_for_insn (insn, NULL);
e855c69d
AB
3977
3978 return tidy_control_flow (bb, full_tidying);
3979}
3980
3981/* Estimate number of the insns in BB. */
3982static int
3983sel_estimate_number_of_insns (basic_block bb)
3984{
3985 int res = 0;
3986 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3987
3988 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3989 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3990 res++;
3991
3992 return res;
3993}
3994
3995/* We don't need separate luids for notes or labels. */
3996static int
3997sel_luid_for_non_insn (rtx x)
3998{
3999 gcc_assert (NOTE_P (x) || LABEL_P (x));
4000
4001 return -1;
4002}
4003
0d9439b0
SG
4004/* Find the proper seqno for inserting at INSN by successors.
4005 Return -1 if no successors with positive seqno exist. */
e855c69d 4006static int
6144a836 4007get_seqno_by_succs (rtx_insn *insn)
0d9439b0
SG
4008{
4009 basic_block bb = BLOCK_FOR_INSN (insn);
6144a836 4010 rtx_insn *tmp = insn, *end = BB_END (bb);
0d9439b0
SG
4011 int seqno;
4012 insn_t succ = NULL;
4013 succ_iterator si;
4014
4015 while (tmp != end)
4016 {
4017 tmp = NEXT_INSN (tmp);
4018 if (INSN_P (tmp))
4019 return INSN_SEQNO (tmp);
4020 }
4021
4022 seqno = INT_MAX;
4023
4024 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4025 if (INSN_SEQNO (succ) > 0)
4026 seqno = MIN (seqno, INSN_SEQNO (succ));
4027
4028 if (seqno == INT_MAX)
4029 return -1;
4030
4031 return seqno;
4032}
4033
92e265ac
AB
4034/* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4035 seqno in corner cases. */
0d9439b0 4036static int
92e265ac 4037get_seqno_for_a_jump (insn_t insn, int old_seqno)
e855c69d
AB
4038{
4039 int seqno;
4040
4041 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4042
4043 if (!sel_bb_head_p (insn))
4044 seqno = INSN_SEQNO (PREV_INSN (insn));
4045 else
4046 {
4047 basic_block bb = BLOCK_FOR_INSN (insn);
4048
4049 if (single_pred_p (bb)
4050 && !in_current_region_p (single_pred (bb)))
4051 {
4052 /* We can have preds outside a region when splitting edges
b8698a0f 4053 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
4054 There should be only one of them. */
4055 insn_t succ = NULL;
4056 succ_iterator si;
4057 bool first = true;
b8698a0f 4058
e855c69d
AB
4059 gcc_assert (flag_sel_sched_pipelining_outer_loops
4060 && current_loop_nest);
b8698a0f 4061 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
4062 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4063 {
4064 gcc_assert (first);
4065 first = false;
4066 }
4067
4068 gcc_assert (succ != NULL);
4069 seqno = INSN_SEQNO (succ);
4070 }
4071 else
4072 {
4073 insn_t *preds;
4074 int n;
4075
4076 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
e855c69d 4077
0d9439b0
SG
4078 gcc_assert (n > 0);
4079 /* For one predecessor, use simple method. */
4080 if (n == 1)
4081 seqno = INSN_SEQNO (preds[0]);
4082 else
4083 seqno = get_seqno_by_preds (insn);
b8698a0f 4084
e855c69d
AB
4085 free (preds);
4086 }
4087 }
4088
0d9439b0
SG
4089 /* We were unable to find a good seqno among preds. */
4090 if (seqno < 0)
4091 seqno = get_seqno_by_succs (insn);
4092
92e265ac
AB
4093 if (seqno < 0)
4094 {
4095 /* The only case where this could be here legally is that the only
4096 unscheduled insn was a conditional jump that got removed and turned
4097 into this unconditional one. Initialize from the old seqno
4098 of that jump passed down to here. */
4099 seqno = old_seqno;
4100 }
0d9439b0 4101
92e265ac 4102 gcc_assert (seqno >= 0);
e855c69d
AB
4103 return seqno;
4104}
4105
da7ba240
AB
4106/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4107 with positive seqno exist. */
e855c69d 4108int
b32d5189 4109get_seqno_by_preds (rtx_insn *insn)
e855c69d
AB
4110{
4111 basic_block bb = BLOCK_FOR_INSN (insn);
b32d5189 4112 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
e855c69d
AB
4113 insn_t *preds;
4114 int n, i, seqno;
4115
6598bb55
AB
4116 /* Loop backwards from INSN to HEAD including both. */
4117 while (1)
0d9439b0 4118 {
0d9439b0 4119 if (INSN_P (tmp))
6598bb55
AB
4120 return INSN_SEQNO (tmp);
4121 if (tmp == head)
4122 break;
4123 tmp = PREV_INSN (tmp);
0d9439b0 4124 }
b8698a0f 4125
e855c69d
AB
4126 cfg_preds (bb, &preds, &n);
4127 for (i = 0, seqno = -1; i < n; i++)
4128 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4129
e855c69d
AB
4130 return seqno;
4131}
4132
4133\f
4134
4135/* Extend pass-scope data structures for basic blocks. */
4136void
4137sel_extend_global_bb_info (void)
4138{
8b1c6fd7 4139 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
e855c69d
AB
4140}
4141
4142/* Extend region-scope data structures for basic blocks. */
4143static void
4144extend_region_bb_info (void)
4145{
8b1c6fd7 4146 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
e855c69d
AB
4147}
4148
4149/* Extend all data structures to fit for all basic blocks. */
4150static void
4151extend_bb_info (void)
4152{
4153 sel_extend_global_bb_info ();
4154 extend_region_bb_info ();
4155}
4156
4157/* Finalize pass-scope data structures for basic blocks. */
4158void
4159sel_finish_global_bb_info (void)
4160{
9771b263 4161 sel_global_bb_info.release ();
e855c69d
AB
4162}
4163
4164/* Finalize region-scope data structures for basic blocks. */
4165static void
4166finish_region_bb_info (void)
4167{
9771b263 4168 sel_region_bb_info.release ();
e855c69d
AB
4169}
4170\f
4171
4172/* Data for each insn in current region. */
7de76362 4173vec<sel_insn_data_def> s_i_d;
e855c69d 4174
e855c69d
AB
4175/* Extend data structures for insns from current region. */
4176static void
4177extend_insn_data (void)
4178{
4179 int reserve;
b8698a0f 4180
e855c69d
AB
4181 sched_extend_target ();
4182 sched_deps_init (false);
4183
4184 /* Extend data structures for insns from current region. */
9771b263
DN
4185 reserve = (sched_max_luid + 1 - s_i_d.length ());
4186 if (reserve > 0 && ! s_i_d.space (reserve))
bcf33775
AB
4187 {
4188 int size;
4189
4190 if (sched_max_luid / 2 > 1024)
4191 size = sched_max_luid + 1024;
4192 else
4193 size = 3 * sched_max_luid / 2;
b8698a0f 4194
bcf33775 4195
9771b263 4196 s_i_d.safe_grow_cleared (size);
bcf33775 4197 }
e855c69d
AB
4198}
4199
4200/* Finalize data structures for insns from current region. */
4201static void
4202finish_insns (void)
4203{
4204 unsigned i;
4205
4206 /* Clear here all dependence contexts that may have left from insns that were
4207 removed during the scheduling. */
9771b263 4208 for (i = 0; i < s_i_d.length (); i++)
e855c69d 4209 {
9771b263 4210 sel_insn_data_def *sid_entry = &s_i_d[i];
b8698a0f 4211
e855c69d
AB
4212 if (sid_entry->live)
4213 return_regset_to_pool (sid_entry->live);
4214 if (sid_entry->analyzed_deps)
4215 {
4216 BITMAP_FREE (sid_entry->analyzed_deps);
4217 BITMAP_FREE (sid_entry->found_deps);
4218 htab_delete (sid_entry->transformed_insns);
4219 free_deps (&sid_entry->deps_context);
4220 }
4221 if (EXPR_VINSN (&sid_entry->expr))
4222 {
4223 clear_expr (&sid_entry->expr);
b8698a0f 4224
e855c69d
AB
4225 /* Also, clear CANT_MOVE bit here, because we really don't want it
4226 to be passed to the next region. */
4227 CANT_MOVE_BY_LUID (i) = 0;
4228 }
4229 }
b8698a0f 4230
9771b263 4231 s_i_d.release ();
e855c69d
AB
4232}
4233
4234/* A proxy to pass initialization data to init_insn (). */
4235static sel_insn_data_def _insn_init_ssid;
4236static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4237
4238/* If true create a new vinsn. Otherwise use the one from EXPR. */
4239static bool insn_init_create_new_vinsn_p;
4240
4241/* Set all necessary data for initialization of the new insn[s]. */
4242static expr_t
4243set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4244{
4245 expr_t x = &insn_init_ssid->expr;
4246
4247 copy_expr_onside (x, expr);
4248 if (vi != NULL)
4249 {
4250 insn_init_create_new_vinsn_p = false;
4251 change_vinsn_in_expr (x, vi);
4252 }
4253 else
4254 insn_init_create_new_vinsn_p = true;
4255
4256 insn_init_ssid->seqno = seqno;
4257 return x;
4258}
4259
4260/* Init data for INSN. */
4261static void
4262init_insn_data (insn_t insn)
4263{
4264 expr_t expr;
4265 sel_insn_data_t ssid = insn_init_ssid;
4266
4267 /* The fields mentioned below are special and hence are not being
4268 propagated to the new insns. */
4269 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4270 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4271 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4272
4273 expr = INSN_EXPR (insn);
4274 copy_expr (expr, &ssid->expr);
4275 prepare_insn_expr (insn, ssid->seqno);
4276
4277 if (insn_init_create_new_vinsn_p)
4278 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4279
e855c69d
AB
4280 if (first_time_insn_init (insn))
4281 init_first_time_insn_data (insn);
4282}
4283
4284/* This is used to initialize spurious jumps generated by
92e265ac
AB
4285 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4286 in corner cases within get_seqno_for_a_jump. */
e855c69d 4287static void
92e265ac 4288init_simplejump_data (insn_t insn, int old_seqno)
e855c69d
AB
4289{
4290 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
9771b263 4291 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
6e1aa848 4292 vNULL, true, false, false,
e855c69d 4293 false, true);
92e265ac 4294 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
e855c69d
AB
4295 init_first_time_insn_data (insn);
4296}
4297
b8698a0f 4298/* Perform deferred initialization of insns. This is used to process
92e265ac
AB
4299 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4300 for initializing simplejumps in init_simplejump_data. */
4301static void
4302sel_init_new_insn (insn_t insn, int flags, int old_seqno)
e855c69d
AB
4303{
4304 /* We create data structures for bb when the first insn is emitted in it. */
4305 if (INSN_P (insn)
4306 && INSN_IN_STREAM_P (insn)
4307 && insn_is_the_only_one_in_bb_p (insn))
4308 {
4309 extend_bb_info ();
4310 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4311 }
b8698a0f 4312
e855c69d 4313 if (flags & INSN_INIT_TODO_LUID)
a95b23b4
BS
4314 {
4315 sched_extend_luids ();
4316 sched_init_insn_luid (insn);
4317 }
e855c69d
AB
4318
4319 if (flags & INSN_INIT_TODO_SSID)
4320 {
4321 extend_insn_data ();
4322 init_insn_data (insn);
4323 clear_expr (&insn_init_ssid->expr);
4324 }
4325
4326 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4327 {
4328 extend_insn_data ();
92e265ac 4329 init_simplejump_data (insn, old_seqno);
e855c69d 4330 }
b8698a0f 4331
e855c69d
AB
4332 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4333 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4334}
4335\f
4336
4337/* Functions to init/finish work with lv sets. */
4338
4339/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4340static void
4341init_lv_set (basic_block bb)
4342{
4343 gcc_assert (!BB_LV_SET_VALID_P (bb));
4344
4345 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4346 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4347 BB_LV_SET_VALID_P (bb) = true;
4348}
4349
4350/* Copy liveness information to BB from FROM_BB. */
4351static void
4352copy_lv_set_from (basic_block bb, basic_block from_bb)
4353{
4354 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4355
e855c69d
AB
4356 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4357 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4358}
e855c69d
AB
4359
4360/* Initialize lv set of all bb headers. */
4361void
4362init_lv_sets (void)
4363{
4364 basic_block bb;
4365
4366 /* Initialize of LV sets. */
11cd3bed 4367 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
4368 init_lv_set (bb);
4369
4370 /* Don't forget EXIT_BLOCK. */
fefa31b5 4371 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4372}
4373
4374/* Release lv set of HEAD. */
4375static void
4376free_lv_set (basic_block bb)
4377{
4378 gcc_assert (BB_LV_SET (bb) != NULL);
4379
4380 return_regset_to_pool (BB_LV_SET (bb));
4381 BB_LV_SET (bb) = NULL;
4382 BB_LV_SET_VALID_P (bb) = false;
4383}
4384
4385/* Finalize lv sets of all bb headers. */
4386void
4387free_lv_sets (void)
4388{
4389 basic_block bb;
4390
4391 /* Don't forget EXIT_BLOCK. */
fefa31b5 4392 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4393
4394 /* Free LV sets. */
11cd3bed 4395 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
4396 if (BB_LV_SET (bb))
4397 free_lv_set (bb);
4398}
4399
5c416724
DM
4400/* Mark AV_SET for BB as invalid, so this set will be updated the next time
4401 compute_av() processes BB. This function is called when creating new basic
4402 blocks, as well as for blocks (either new or existing) where new jumps are
4403 created when the control flow is being updated. */
e855c69d
AB
4404static void
4405invalidate_av_set (basic_block bb)
4406{
e855c69d
AB
4407 BB_AV_LEVEL (bb) = -1;
4408}
4409
4410/* Create initial data sets for BB (they will be invalid). */
4411static void
4412create_initial_data_sets (basic_block bb)
4413{
4414 if (BB_LV_SET (bb))
4415 BB_LV_SET_VALID_P (bb) = false;
4416 else
4417 BB_LV_SET (bb) = get_regset_from_pool ();
4418 invalidate_av_set (bb);
4419}
4420
4421/* Free av set of BB. */
4422static void
4423free_av_set (basic_block bb)
4424{
4425 av_set_clear (&BB_AV_SET (bb));
4426 BB_AV_LEVEL (bb) = 0;
4427}
4428
4429/* Free data sets of BB. */
4430void
4431free_data_sets (basic_block bb)
4432{
4433 free_lv_set (bb);
4434 free_av_set (bb);
4435}
4436
e855c69d
AB
4437/* Exchange data sets of TO and FROM. */
4438void
4439exchange_data_sets (basic_block to, basic_block from)
4440{
6b4db501
MM
4441 /* Exchange lv sets of TO and FROM. */
4442 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4443 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4444
4445 /* Exchange av sets of TO and FROM. */
4446 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4447 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
e855c69d
AB
4448}
4449
4450/* Copy data sets of FROM to TO. */
4451void
4452copy_data_sets (basic_block to, basic_block from)
4453{
4454 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4455 gcc_assert (BB_AV_SET (to) == NULL);
4456
4457 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4458 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4459
4460 if (BB_AV_SET_VALID_P (from))
4461 {
4462 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4463 }
4464 if (BB_LV_SET_VALID_P (from))
4465 {
4466 gcc_assert (BB_LV_SET (to) != NULL);
4467 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4468 }
4469}
4470
4471/* Return an av set for INSN, if any. */
4472av_set_t
4473get_av_set (insn_t insn)
4474{
4475 av_set_t av_set;
4476
4477 gcc_assert (AV_SET_VALID_P (insn));
4478
4479 if (sel_bb_head_p (insn))
4480 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4481 else
4482 av_set = NULL;
4483
4484 return av_set;
4485}
4486
4487/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4488int
4489get_av_level (insn_t insn)
4490{
4491 int av_level;
4492
4493 gcc_assert (INSN_P (insn));
4494
4495 if (sel_bb_head_p (insn))
4496 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4497 else
4498 av_level = INSN_WS_LEVEL (insn);
4499
4500 return av_level;
4501}
4502
4503\f
4504
4505/* Variables to work with control-flow graph. */
4506
4507/* The basic block that already has been processed by the sched_data_update (),
4508 but hasn't been in sel_add_bb () yet. */
7de76362 4509static vec<basic_block> last_added_blocks;
e855c69d
AB
4510
4511/* A pool for allocating successor infos. */
4512static struct
4513{
4514 /* A stack for saving succs_info structures. */
4515 struct succs_info *stack;
4516
4517 /* Its size. */
4518 int size;
4519
4520 /* Top of the stack. */
4521 int top;
4522
4523 /* Maximal value of the top. */
4524 int max_top;
4525} succs_info_pool;
4526
4527/* Functions to work with control-flow graph. */
4528
4529/* Return basic block note of BB. */
c5db5458 4530rtx_insn *
e855c69d
AB
4531sel_bb_head (basic_block bb)
4532{
c5db5458 4533 rtx_insn *head;
e855c69d 4534
fefa31b5 4535 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
e855c69d
AB
4536 {
4537 gcc_assert (exit_insn != NULL_RTX);
4538 head = exit_insn;
4539 }
4540 else
4541 {
e67d1102 4542 rtx_note *note = bb_note (bb);
e855c69d
AB
4543 head = next_nonnote_insn (note);
4544
89ad0f25 4545 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
c5db5458 4546 head = NULL;
e855c69d
AB
4547 }
4548
4549 return head;
4550}
4551
4552/* Return true if INSN is a basic block header. */
4553bool
4554sel_bb_head_p (insn_t insn)
4555{
4556 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4557}
4558
4559/* Return last insn of BB. */
c5db5458 4560rtx_insn *
e855c69d
AB
4561sel_bb_end (basic_block bb)
4562{
4563 if (sel_bb_empty_p (bb))
c5db5458 4564 return NULL;
e855c69d 4565
fefa31b5 4566 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4567
4568 return BB_END (bb);
4569}
4570
4571/* Return true if INSN is the last insn in its basic block. */
4572bool
4573sel_bb_end_p (insn_t insn)
4574{
4575 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4576}
4577
4578/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4579bool
4580sel_bb_empty_p (basic_block bb)
4581{
4582 return sel_bb_head (bb) == NULL;
4583}
4584
4585/* True when BB belongs to the current scheduling region. */
4586bool
4587in_current_region_p (basic_block bb)
4588{
4589 if (bb->index < NUM_FIXED_BLOCKS)
4590 return false;
4591
4592 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4593}
4594
4595/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4596basic_block
68a1a6c0 4597fallthru_bb_of_jump (const rtx_insn *jump)
e855c69d
AB
4598{
4599 if (!JUMP_P (jump))
4600 return NULL;
4601
e855c69d
AB
4602 if (!any_condjump_p (jump))
4603 return NULL;
4604
268bab85
AB
4605 /* A basic block that ends with a conditional jump may still have one successor
4606 (and be followed by a barrier), we are not interested. */
4607 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4608 return NULL;
4609
e855c69d
AB
4610 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4611}
4612
4613/* Remove all notes from BB. */
4614static void
4615init_bb (basic_block bb)
4616{
4617 remove_notes (bb_note (bb), BB_END (bb));
b311fd0f 4618 BB_NOTE_LIST (bb) = note_list;
e855c69d
AB
4619}
4620
4621void
a95b23b4 4622sel_init_bbs (bb_vec_t bbs)
e855c69d
AB
4623{
4624 const struct sched_scan_info_def ssi =
4625 {
4626 extend_bb_info, /* extend_bb */
4627 init_bb, /* init_bb */
4628 NULL, /* extend_insn */
4629 NULL /* init_insn */
4630 };
4631
a95b23b4 4632 sched_scan (&ssi, bbs);
e855c69d
AB
4633}
4634
7898b93b 4635/* Restore notes for the whole region. */
e855c69d 4636static void
7898b93b 4637sel_restore_notes (void)
e855c69d
AB
4638{
4639 int bb;
7898b93b 4640 insn_t insn;
e855c69d
AB
4641
4642 for (bb = 0; bb < current_nr_blocks; bb++)
4643 {
4644 basic_block first, last;
4645
4646 first = EBB_FIRST_BB (bb);
4647 last = EBB_LAST_BB (bb)->next_bb;
4648
4649 do
4650 {
4651 note_list = BB_NOTE_LIST (first);
4652 restore_other_notes (NULL, first);
b311fd0f 4653 BB_NOTE_LIST (first) = NULL;
e855c69d 4654
7898b93b
AM
4655 FOR_BB_INSNS (first, insn)
4656 if (NONDEBUG_INSN_P (insn))
4657 reemit_notes (insn);
4658
e855c69d
AB
4659 first = first->next_bb;
4660 }
4661 while (first != last);
4662 }
4663}
4664
4665/* Free per-bb data structures. */
4666void
4667sel_finish_bbs (void)
4668{
7898b93b 4669 sel_restore_notes ();
e855c69d
AB
4670
4671 /* Remove current loop preheader from this loop. */
4672 if (current_loop_nest)
4673 sel_remove_loop_preheader ();
4674
4675 finish_region_bb_info ();
4676}
4677
4678/* Return true if INSN has a single successor of type FLAGS. */
4679bool
4680sel_insn_has_single_succ_p (insn_t insn, int flags)
4681{
4682 insn_t succ;
4683 succ_iterator si;
4684 bool first_p = true;
4685
4686 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4687 {
4688 if (first_p)
4689 first_p = false;
4690 else
4691 return false;
4692 }
4693
4694 return true;
4695}
4696
4697/* Allocate successor's info. */
4698static struct succs_info *
4699alloc_succs_info (void)
4700{
4701 if (succs_info_pool.top == succs_info_pool.max_top)
4702 {
4703 int i;
b8698a0f 4704
e855c69d
AB
4705 if (++succs_info_pool.max_top >= succs_info_pool.size)
4706 gcc_unreachable ();
4707
4708 i = ++succs_info_pool.top;
9771b263
DN
4709 succs_info_pool.stack[i].succs_ok.create (10);
4710 succs_info_pool.stack[i].succs_other.create (10);
4711 succs_info_pool.stack[i].probs_ok.create (10);
e855c69d
AB
4712 }
4713 else
4714 succs_info_pool.top++;
4715
4716 return &succs_info_pool.stack[succs_info_pool.top];
4717}
4718
4719/* Free successor's info. */
4720void
4721free_succs_info (struct succs_info * sinfo)
4722{
b8698a0f 4723 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4724 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4725 succs_info_pool.top--;
4726
4727 /* Clear stale info. */
9771b263
DN
4728 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4729 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4730 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
e855c69d
AB
4731 sinfo->all_prob = 0;
4732 sinfo->succs_ok_n = 0;
4733 sinfo->all_succs_n = 0;
4734}
4735
b8698a0f 4736/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4737 to the FOR_EACH_SUCC_1 iterator. */
4738struct succs_info *
4739compute_succs_info (insn_t insn, short flags)
4740{
4741 succ_iterator si;
4742 insn_t succ;
4743 struct succs_info *sinfo = alloc_succs_info ();
4744
4745 /* Traverse *all* successors and decide what to do with each. */
4746 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4747 {
4748 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4749 perform code motion through inner loops. */
4750 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4751
4752 if (current_flags & flags)
4753 {
9771b263
DN
4754 sinfo->succs_ok.safe_push (succ);
4755 sinfo->probs_ok.safe_push (
4756 /* FIXME: Improve calculation when skipping
4757 inner loop to exits. */
9aad8d93
JH
4758 si.bb_end
4759 ? (si.e1->probability.initialized_p ()
4760 ? si.e1->probability.to_reg_br_prob_base ()
4761 : 0)
4762 : REG_BR_PROB_BASE);
e855c69d
AB
4763 sinfo->succs_ok_n++;
4764 }
4765 else
9771b263 4766 sinfo->succs_other.safe_push (succ);
e855c69d
AB
4767
4768 /* Compute all_prob. */
4769 if (!si.bb_end)
4770 sinfo->all_prob = REG_BR_PROB_BASE;
357067f2
JH
4771 else if (si.e1->probability.initialized_p ())
4772 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
e855c69d
AB
4773
4774 sinfo->all_succs_n++;
4775 }
4776
4777 return sinfo;
4778}
4779
b8698a0f 4780/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4781 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4782static void
4783cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4784{
4785 edge e;
4786 edge_iterator ei;
4787
4788 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4789
4790 FOR_EACH_EDGE (e, ei, bb->preds)
4791 {
4792 basic_block pred_bb = e->src;
4793 insn_t bb_end = BB_END (pred_bb);
4794
3e6a3f6f
AB
4795 if (!in_current_region_p (pred_bb))
4796 {
4797 gcc_assert (flag_sel_sched_pipelining_outer_loops
4798 && current_loop_nest);
4799 continue;
4800 }
e855c69d
AB
4801
4802 if (sel_bb_empty_p (pred_bb))
4803 cfg_preds_1 (pred_bb, preds, n, size);
4804 else
4805 {
4806 if (*n == *size)
b8698a0f 4807 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4808 (*size = 2 * *size + 1));
4809 (*preds)[(*n)++] = bb_end;
4810 }
4811 }
4812
3e6a3f6f
AB
4813 gcc_assert (*n != 0
4814 || (flag_sel_sched_pipelining_outer_loops
4815 && current_loop_nest));
e855c69d
AB
4816}
4817
b8698a0f
L
4818/* Find all predecessors of BB and record them in PREDS and their number
4819 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4820 edges are processed. */
4821static void
4822cfg_preds (basic_block bb, insn_t **preds, int *n)
4823{
4824 int size = 0;
4825
4826 *preds = NULL;
4827 *n = 0;
4828 cfg_preds_1 (bb, preds, n, &size);
4829}
4830
4831/* Returns true if we are moving INSN through join point. */
4832bool
4833sel_num_cfg_preds_gt_1 (insn_t insn)
4834{
4835 basic_block bb;
4836
4837 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4838 return false;
4839
4840 bb = BLOCK_FOR_INSN (insn);
4841
4842 while (1)
4843 {
4844 if (EDGE_COUNT (bb->preds) > 1)
4845 return true;
4846
4847 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4848 bb = EDGE_PRED (bb, 0)->src;
4849
4850 if (!sel_bb_empty_p (bb))
4851 break;
4852 }
4853
4854 return false;
4855}
4856
b8698a0f 4857/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4858 code in sched-ebb.c. */
4859bool
4860bb_ends_ebb_p (basic_block bb)
4861{
4862 basic_block next_bb = bb_next_bb (bb);
4863 edge e;
b8698a0f 4864
fefa31b5 4865 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
4866 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4867 || (LABEL_P (BB_HEAD (next_bb))
4868 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4869 Work around that. */
4870 && !single_pred_p (next_bb)))
4871 return true;
4872
4873 if (!in_current_region_p (next_bb))
4874 return true;
4875
0fd4b31d
NF
4876 e = find_fallthru_edge (bb->succs);
4877 if (e)
4878 {
4879 gcc_assert (e->dest == next_bb);
4880
4881 return false;
4882 }
e855c69d
AB
4883
4884 return true;
4885}
4886
4887/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4888 successor of INSN. */
4889bool
4890in_same_ebb_p (insn_t insn, insn_t succ)
4891{
4892 basic_block ptr = BLOCK_FOR_INSN (insn);
4893
c3284718 4894 for (;;)
e855c69d
AB
4895 {
4896 if (ptr == BLOCK_FOR_INSN (succ))
4897 return true;
b8698a0f 4898
e855c69d
AB
4899 if (bb_ends_ebb_p (ptr))
4900 return false;
4901
4902 ptr = bb_next_bb (ptr);
4903 }
4904
4905 gcc_unreachable ();
4906 return false;
4907}
4908
4909/* Recomputes the reverse topological order for the function and
4910 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4911 modified appropriately. */
4912static void
4913recompute_rev_top_order (void)
4914{
4915 int *postorder;
4916 int n_blocks, i;
4917
8b1c6fd7
DM
4918 if (!rev_top_order_index
4919 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
e855c69d 4920 {
8b1c6fd7 4921 rev_top_order_index_len = last_basic_block_for_fn (cfun);
e855c69d
AB
4922 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4923 rev_top_order_index_len);
4924 }
4925
0cae8d31 4926 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
e855c69d
AB
4927
4928 n_blocks = post_order_compute (postorder, true, false);
0cae8d31 4929 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
e855c69d
AB
4930
4931 /* Build reverse function: for each basic block with BB->INDEX == K
4932 rev_top_order_index[K] is it's reverse topological sort number. */
4933 for (i = 0; i < n_blocks; i++)
4934 {
4935 gcc_assert (postorder[i] < rev_top_order_index_len);
4936 rev_top_order_index[postorder[i]] = i;
4937 }
4938
4939 free (postorder);
4940}
4941
4942/* Clear all flags from insns in BB that could spoil its rescheduling. */
4943void
4944clear_outdated_rtx_info (basic_block bb)
4945{
b32d5189 4946 rtx_insn *insn;
e855c69d
AB
4947
4948 FOR_BB_INSNS (bb, insn)
4949 if (INSN_P (insn))
4950 {
4951 SCHED_GROUP_P (insn) = 0;
4952 INSN_AFTER_STALL_P (insn) = 0;
4953 INSN_SCHED_TIMES (insn) = 0;
4954 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4955
4956 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4957 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4958 the expression, and currently we'll be unable to do this. */
4959 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4960 }
4961}
4962
4963/* Add BB_NOTE to the pool of available basic block notes. */
4964static void
4965return_bb_to_pool (basic_block bb)
4966{
e67d1102 4967 rtx_note *note = bb_note (bb);
e855c69d
AB
4968
4969 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4970 && bb->aux == NULL);
4971
4972 /* It turns out that current cfg infrastructure does not support
4973 reuse of basic blocks. Don't bother for now. */
9771b263 4974 /*bb_note_pool.safe_push (note);*/
e855c69d
AB
4975}
4976
4977/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
66e8df53 4978static rtx_note *
e855c69d
AB
4979get_bb_note_from_pool (void)
4980{
9771b263 4981 if (bb_note_pool.is_empty ())
66e8df53 4982 return NULL;
e855c69d
AB
4983 else
4984 {
66e8df53 4985 rtx_note *note = bb_note_pool.pop ();
e855c69d 4986
0f82e5c9
DM
4987 SET_PREV_INSN (note) = NULL_RTX;
4988 SET_NEXT_INSN (note) = NULL_RTX;
e855c69d
AB
4989
4990 return note;
4991 }
4992}
4993
4994/* Free bb_note_pool. */
4995void
4996free_bb_note_pool (void)
4997{
9771b263 4998 bb_note_pool.release ();
e855c69d
AB
4999}
5000
5001/* Setup scheduler pool and successor structure. */
5002void
5003alloc_sched_pools (void)
5004{
5005 int succs_size;
5006
5007 succs_size = MAX_WS + 1;
b8698a0f 5008 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
5009 succs_info_pool.size = succs_size;
5010 succs_info_pool.top = -1;
5011 succs_info_pool.max_top = -1;
e855c69d
AB
5012}
5013
5014/* Free the pools. */
5015void
5016free_sched_pools (void)
5017{
5018 int i;
b8698a0f 5019
8bb6373a 5020 sched_lists_pool.release ();
e855c69d 5021 gcc_assert (succs_info_pool.top == -1);
85f5dbea 5022 for (i = 0; i <= succs_info_pool.max_top; i++)
e855c69d 5023 {
9771b263
DN
5024 succs_info_pool.stack[i].succs_ok.release ();
5025 succs_info_pool.stack[i].succs_other.release ();
5026 succs_info_pool.stack[i].probs_ok.release ();
e855c69d
AB
5027 }
5028 free (succs_info_pool.stack);
5029}
5030\f
5031
b8698a0f 5032/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
5033 topological order. */
5034static int
5035find_place_to_insert_bb (basic_block bb, int rgn)
5036{
5037 bool has_preds_outside_rgn = false;
5038 edge e;
5039 edge_iterator ei;
b8698a0f 5040
e855c69d
AB
5041 /* Find whether we have preds outside the region. */
5042 FOR_EACH_EDGE (e, ei, bb->preds)
5043 if (!in_current_region_p (e->src))
5044 {
5045 has_preds_outside_rgn = true;
5046 break;
5047 }
b8698a0f 5048
e855c69d
AB
5049 /* Recompute the top order -- needed when we have > 1 pred
5050 and in case we don't have preds outside. */
5051 if (flag_sel_sched_pipelining_outer_loops
5052 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5053 {
5054 int i, bbi = bb->index, cur_bbi;
5055
5056 recompute_rev_top_order ();
5057 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5058 {
5059 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 5060 if (rev_top_order_index[bbi]
e855c69d
AB
5061 < rev_top_order_index[cur_bbi])
5062 break;
5063 }
b8698a0f 5064
073a8998 5065 /* We skipped the right block, so we increase i. We accommodate
e855c69d
AB
5066 it for increasing by step later, so we decrease i. */
5067 return (i + 1) - 1;
5068 }
5069 else if (has_preds_outside_rgn)
5070 {
5071 /* This is the case when we generate an extra empty block
5072 to serve as region head during pipelining. */
5073 e = EDGE_SUCC (bb, 0);
5074 gcc_assert (EDGE_COUNT (bb->succs) == 1
5075 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5076 && (BLOCK_TO_BB (e->dest->index) == 0));
5077 return -1;
5078 }
5079
5080 /* We don't have preds outside the region. We should have
5081 the only pred, because the multiple preds case comes from
5082 the pipelining of outer loops, and that is handled above.
5083 Just take the bbi of this single pred. */
5084 if (EDGE_COUNT (bb->succs) > 0)
5085 {
5086 int pred_bbi;
b8698a0f 5087
e855c69d 5088 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 5089
e855c69d
AB
5090 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5091 return BLOCK_TO_BB (pred_bbi);
5092 }
5093 else
5094 /* BB has no successors. It is safe to put it in the end. */
5095 return current_nr_blocks - 1;
5096}
5097
5098/* Deletes an empty basic block freeing its data. */
5099static void
5100delete_and_free_basic_block (basic_block bb)
5101{
5102 gcc_assert (sel_bb_empty_p (bb));
5103
5104 if (BB_LV_SET (bb))
5105 free_lv_set (bb);
5106
5107 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5108
b8698a0f
L
5109 /* Can't assert av_set properties because we use sel_aremove_bb
5110 when removing loop preheader from the region. At the point of
e855c69d
AB
5111 removing the preheader we already have deallocated sel_region_bb_info. */
5112 gcc_assert (BB_LV_SET (bb) == NULL
5113 && !BB_LV_SET_VALID_P (bb)
5114 && BB_AV_LEVEL (bb) == 0
5115 && BB_AV_SET (bb) == NULL);
b8698a0f 5116
e855c69d
AB
5117 delete_basic_block (bb);
5118}
5119
5120/* Add BB to the current region and update the region data. */
5121static void
5122add_block_to_current_region (basic_block bb)
5123{
5124 int i, pos, bbi = -2, rgn;
5125
5126 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5127 bbi = find_place_to_insert_bb (bb, rgn);
5128 bbi += 1;
5129 pos = RGN_BLOCKS (rgn) + bbi;
5130
5131 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5132 && ebb_head[bbi] == pos);
b8698a0f 5133
e855c69d
AB
5134 /* Make a place for the new block. */
5135 extend_regions ();
5136
5137 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5138 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 5139
e855c69d
AB
5140 memmove (rgn_bb_table + pos + 1,
5141 rgn_bb_table + pos,
5142 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5143
5144 /* Initialize data for BB. */
5145 rgn_bb_table[pos] = bb->index;
5146 BLOCK_TO_BB (bb->index) = bbi;
5147 CONTAINING_RGN (bb->index) = rgn;
5148
5149 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5150
e855c69d
AB
5151 for (i = rgn + 1; i <= nr_regions; i++)
5152 RGN_BLOCKS (i)++;
5153}
5154
5155/* Remove BB from the current region and update the region data. */
5156static void
5157remove_bb_from_region (basic_block bb)
5158{
5159 int i, pos, bbi = -2, rgn;
5160
5161 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5162 bbi = BLOCK_TO_BB (bb->index);
5163 pos = RGN_BLOCKS (rgn) + bbi;
5164
5165 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5166 && ebb_head[bbi] == pos);
5167
5168 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5169 BLOCK_TO_BB (rgn_bb_table[i])--;
5170
5171 memmove (rgn_bb_table + pos,
5172 rgn_bb_table + pos + 1,
5173 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5174
5175 RGN_NR_BLOCKS (rgn)--;
5176 for (i = rgn + 1; i <= nr_regions; i++)
5177 RGN_BLOCKS (i)--;
5178}
5179
b8698a0f 5180/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5181 blocks from last_added_blocks vector. */
5182static void
5183sel_add_bb (basic_block bb)
5184{
5185 /* Extend luids so that new notes will receive zero luids. */
a95b23b4 5186 sched_extend_luids ();
e855c69d 5187 sched_init_bbs ();
a95b23b4 5188 sel_init_bbs (last_added_blocks);
e855c69d 5189
b8698a0f 5190 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5191 the only element that equals to bb; otherwise, the vector
5192 should not be NULL. */
9771b263 5193 gcc_assert (last_added_blocks.exists ());
b8698a0f 5194
e855c69d
AB
5195 if (bb != NULL)
5196 {
9771b263
DN
5197 gcc_assert (last_added_blocks.length () == 1
5198 && last_added_blocks[0] == bb);
e855c69d
AB
5199 add_block_to_current_region (bb);
5200
5201 /* We associate creating/deleting data sets with the first insn
5202 appearing / disappearing in the bb. */
5203 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5204 create_initial_data_sets (bb);
b8698a0f 5205
9771b263 5206 last_added_blocks.release ();
e855c69d
AB
5207 }
5208 else
5209 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5210 {
5211 int i;
5212 basic_block temp_bb = NULL;
5213
b8698a0f 5214 for (i = 0;
9771b263 5215 last_added_blocks.iterate (i, &bb); i++)
e855c69d
AB
5216 {
5217 add_block_to_current_region (bb);
5218 temp_bb = bb;
5219 }
5220
b8698a0f 5221 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5222 to update. */
5223 gcc_assert (temp_bb != NULL);
5224 bb = temp_bb;
5225
9771b263 5226 last_added_blocks.release ();
e855c69d
AB
5227 }
5228
5229 rgn_setup_region (CONTAINING_RGN (bb->index));
5230}
5231
b8698a0f 5232/* Remove BB from the current region and update all data.
e855c69d
AB
5233 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5234static void
5235sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5236{
262d8232
AB
5237 unsigned idx = bb->index;
5238
e855c69d 5239 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5240
e855c69d
AB
5241 remove_bb_from_region (bb);
5242 return_bb_to_pool (bb);
262d8232 5243 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5244
e855c69d 5245 if (remove_from_cfg_p)
00c4e97c
AB
5246 {
5247 basic_block succ = single_succ (bb);
5248 delete_and_free_basic_block (bb);
5249 set_immediate_dominator (CDI_DOMINATORS, succ,
5250 recompute_dominator (CDI_DOMINATORS, succ));
5251 }
e855c69d 5252
262d8232 5253 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5254}
5255
5256/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5257static void
5258move_bb_info (basic_block merge_bb, basic_block empty_bb)
5259{
b7b5540a
AB
5260 if (in_current_region_p (merge_bb))
5261 concat_note_lists (BB_NOTE_LIST (empty_bb),
b311fd0f
DM
5262 &BB_NOTE_LIST (merge_bb));
5263 BB_NOTE_LIST (empty_bb) = NULL;
e855c69d
AB
5264
5265}
5266
e855c69d
AB
5267/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5268 region, but keep it in CFG. */
5269static void
5270remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5271{
5272 /* The block should contain just a note or a label.
5273 We try to check whether it is unused below. */
5274 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5275 || LABEL_P (BB_HEAD (empty_bb)));
5276
5277 /* If basic block has predecessors or successors, redirect them. */
5278 if (remove_from_cfg_p
5279 && (EDGE_COUNT (empty_bb->preds) > 0
5280 || EDGE_COUNT (empty_bb->succs) > 0))
5281 {
5282 basic_block pred;
5283 basic_block succ;
5284
5285 /* We need to init PRED and SUCC before redirecting edges. */
5286 if (EDGE_COUNT (empty_bb->preds) > 0)
5287 {
5288 edge e;
5289
5290 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5291
5292 e = EDGE_PRED (empty_bb, 0);
5293 gcc_assert (e->src == empty_bb->prev_bb
5294 && (e->flags & EDGE_FALLTHRU));
5295
5296 pred = empty_bb->prev_bb;
5297 }
5298 else
5299 pred = NULL;
5300
5301 if (EDGE_COUNT (empty_bb->succs) > 0)
5302 {
5303 /* We do not check fallthruness here as above, because
5304 after removing a jump the edge may actually be not fallthru. */
5305 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5306 succ = EDGE_SUCC (empty_bb, 0)->dest;
5307 }
5308 else
5309 succ = NULL;
5310
5311 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5312 {
5313 edge e = EDGE_PRED (empty_bb, 0);
5314
5315 if (e->flags & EDGE_FALLTHRU)
5316 redirect_edge_succ_nodup (e, succ);
5317 else
5318 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5319 }
5320
5321 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5322 {
5323 edge e = EDGE_SUCC (empty_bb, 0);
5324
5325 if (find_edge (pred, e->dest) == NULL)
5326 redirect_edge_pred (e, pred);
5327 }
5328 }
5329
5330 /* Finish removing. */
5331 sel_remove_bb (empty_bb, remove_from_cfg_p);
5332}
5333
b8698a0f 5334/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5335 per-bb data structures. */
5336static basic_block
5337sel_create_basic_block (void *headp, void *endp, basic_block after)
5338{
5339 basic_block new_bb;
66e8df53 5340 rtx_note *new_bb_note;
b8698a0f
L
5341
5342 gcc_assert (flag_sel_sched_pipelining_outer_loops
9771b263 5343 || !last_added_blocks.exists ());
e855c69d
AB
5344
5345 new_bb_note = get_bb_note_from_pool ();
5346
5347 if (new_bb_note == NULL_RTX)
5348 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5349 else
5350 {
e00022e9
DM
5351 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5352 (rtx_insn *) endp,
e855c69d
AB
5353 new_bb_note, after);
5354 new_bb->aux = NULL;
5355 }
5356
9771b263 5357 last_added_blocks.safe_push (new_bb);
e855c69d
AB
5358
5359 return new_bb;
5360}
5361
5362/* Implement sched_init_only_bb (). */
5363static void
5364sel_init_only_bb (basic_block bb, basic_block after)
5365{
5366 gcc_assert (after == NULL);
5367
5368 extend_regions ();
5369 rgn_make_new_region_out_of_new_block (bb);
5370}
5371
5372/* Update the latch when we've splitted or merged it from FROM block to TO.
5373 This should be checked for all outer loops, too. */
5374static void
5375change_loops_latches (basic_block from, basic_block to)
5376{
5377 gcc_assert (from != to);
5378
5379 if (current_loop_nest)
5380 {
5381 struct loop *loop;
5382
5383 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5384 if (considered_for_pipelining_p (loop) && loop->latch == from)
5385 {
5386 gcc_assert (loop == current_loop_nest);
5387 loop->latch = to;
5388 gcc_assert (loop_latch_edge (loop));
5389 }
5390 }
5391}
5392
b8698a0f 5393/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5394 per-bb data structures. Returns the newly created bb. */
5395static basic_block
5396sel_split_block (basic_block bb, rtx after)
5397{
5398 basic_block new_bb;
5399 insn_t insn;
5400
5401 new_bb = sched_split_block_1 (bb, after);
5402 sel_add_bb (new_bb);
5403
5404 /* This should be called after sel_add_bb, because this uses
b8698a0f 5405 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5406 FIXME: this function may be a no-op now. */
5407 change_loops_latches (bb, new_bb);
5408
5409 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5410 FOR_BB_INSNS (new_bb, insn)
5411 if (INSN_P (insn))
5412 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5413
5414 if (sel_bb_empty_p (bb))
5415 {
5416 gcc_assert (!sel_bb_empty_p (new_bb));
5417
5418 /* NEW_BB has data sets that need to be updated and BB holds
5419 data sets that should be removed. Exchange these data sets
5420 so that we won't lose BB's valid data sets. */
5421 exchange_data_sets (new_bb, bb);
5422 free_data_sets (bb);
5423 }
5424
5425 if (!sel_bb_empty_p (new_bb)
5426 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5427 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5428
5429 return new_bb;
5430}
5431
5432/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5433 Otherwise returns NULL. */
9ee1fbb1 5434static rtx_insn *
e855c69d
AB
5435check_for_new_jump (basic_block bb, int prev_max_uid)
5436{
9ee1fbb1 5437 rtx_insn *end;
e855c69d
AB
5438
5439 end = sel_bb_end (bb);
5440 if (end && INSN_UID (end) >= prev_max_uid)
5441 return end;
5442 return NULL;
5443}
5444
b8698a0f 5445/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d 5446 New means having UID at least equal to PREV_MAX_UID. */
9ee1fbb1 5447static rtx_insn *
e855c69d
AB
5448find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5449{
9ee1fbb1 5450 rtx_insn *jump;
e855c69d
AB
5451
5452 /* Return immediately if no new insns were emitted. */
5453 if (get_max_uid () == prev_max_uid)
5454 return NULL;
b8698a0f 5455
e855c69d
AB
5456 /* Now check both blocks for new jumps. It will ever be only one. */
5457 if ((jump = check_for_new_jump (from, prev_max_uid)))
5458 return jump;
5459
5460 if (jump_bb != NULL
5461 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5462 return jump;
5463 return NULL;
5464}
5465
5466/* Splits E and adds the newly created basic block to the current region.
5467 Returns this basic block. */
5468basic_block
5469sel_split_edge (edge e)
5470{
5471 basic_block new_bb, src, other_bb = NULL;
5472 int prev_max_uid;
9ee1fbb1 5473 rtx_insn *jump;
e855c69d
AB
5474
5475 src = e->src;
5476 prev_max_uid = get_max_uid ();
5477 new_bb = split_edge (e);
5478
b8698a0f 5479 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5480 && current_loop_nest)
5481 {
5482 int i;
5483 basic_block bb;
5484
b8698a0f 5485 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5486 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5487 for (i = 0;
9771b263 5488 last_added_blocks.iterate (i, &bb); i++)
e855c69d
AB
5489 if (!bb->loop_father)
5490 {
5491 add_bb_to_loop (bb, e->dest->loop_father);
5492
5493 gcc_assert (!other_bb && (new_bb->index != bb->index));
5494 other_bb = bb;
5495 }
5496 }
5497
5498 /* Add all last_added_blocks to the region. */
5499 sel_add_bb (NULL);
5500
5501 jump = find_new_jump (src, new_bb, prev_max_uid);
5502 if (jump)
5503 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5504
5505 /* Put the correct lv set on this block. */
5506 if (other_bb && !sel_bb_empty_p (other_bb))
5507 compute_live (sel_bb_head (other_bb));
5508
5509 return new_bb;
5510}
5511
5512/* Implement sched_create_empty_bb (). */
5513static basic_block
5514sel_create_empty_bb (basic_block after)
5515{
5516 basic_block new_bb;
5517
5518 new_bb = sched_create_empty_bb_1 (after);
5519
5520 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5521 later. */
9771b263
DN
5522 gcc_assert (last_added_blocks.length () == 1
5523 && last_added_blocks[0] == new_bb);
e855c69d 5524
9771b263 5525 last_added_blocks.release ();
e855c69d
AB
5526 return new_bb;
5527}
5528
5529/* Implement sched_create_recovery_block. ORIG_INSN is where block
5530 will be splitted to insert a check. */
5531basic_block
5532sel_create_recovery_block (insn_t orig_insn)
5533{
5534 basic_block first_bb, second_bb, recovery_block;
5535 basic_block before_recovery = NULL;
9ee1fbb1 5536 rtx_insn *jump;
e855c69d
AB
5537
5538 first_bb = BLOCK_FOR_INSN (orig_insn);
5539 if (sel_bb_end_p (orig_insn))
5540 {
5541 /* Avoid introducing an empty block while splitting. */
5542 gcc_assert (single_succ_p (first_bb));
5543 second_bb = single_succ (first_bb);
5544 }
5545 else
5546 second_bb = sched_split_block (first_bb, orig_insn);
5547
5548 recovery_block = sched_create_recovery_block (&before_recovery);
5549 if (before_recovery)
fefa31b5 5550 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
5551
5552 gcc_assert (sel_bb_empty_p (recovery_block));
5553 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5554 if (current_loops != NULL)
5555 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5556
e855c69d 5557 sel_add_bb (recovery_block);
b8698a0f 5558
e855c69d
AB
5559 jump = BB_END (recovery_block);
5560 gcc_assert (sel_bb_head (recovery_block) == jump);
5561 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5562
5563 return recovery_block;
5564}
5565
5566/* Merge basic block B into basic block A. */
262d8232 5567static void
e855c69d
AB
5568sel_merge_blocks (basic_block a, basic_block b)
5569{
262d8232
AB
5570 gcc_assert (sel_bb_empty_p (b)
5571 && EDGE_COUNT (b->preds) == 1
5572 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5573
262d8232
AB
5574 move_bb_info (b->prev_bb, b);
5575 remove_empty_bb (b, false);
5576 merge_blocks (a, b);
e855c69d
AB
5577 change_loops_latches (b, a);
5578}
5579
5580/* A wrapper for redirect_edge_and_branch_force, which also initializes
92e265ac 5581 data structures for possibly created bb and insns. */
e855c69d
AB
5582void
5583sel_redirect_edge_and_branch_force (edge e, basic_block to)
5584{
00c4e97c 5585 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d 5586 int prev_max_uid;
9ee1fbb1 5587 rtx_insn *jump;
92e265ac 5588 int old_seqno = -1;
b8698a0f 5589
00c4e97c
AB
5590 /* This function is now used only for bookkeeping code creation, where
5591 we'll never get the single pred of orig_dest block and thus will not
5592 hit unreachable blocks when updating dominator info. */
5593 gcc_assert (!sel_bb_empty_p (e->src)
5594 && !single_pred_p (orig_dest));
e855c69d
AB
5595 src = e->src;
5596 prev_max_uid = get_max_uid ();
92e265ac
AB
5597 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5598 when the conditional jump being redirected may become unconditional. */
5599 if (any_condjump_p (BB_END (src))
5600 && INSN_SEQNO (BB_END (src)) >= 0)
5601 old_seqno = INSN_SEQNO (BB_END (src));
e855c69d 5602
92e265ac 5603 jump_bb = redirect_edge_and_branch_force (e, to);
e855c69d
AB
5604 if (jump_bb != NULL)
5605 sel_add_bb (jump_bb);
5606
5607 /* This function could not be used to spoil the loop structure by now,
5608 thus we don't care to update anything. But check it to be sure. */
5609 if (current_loop_nest
5610 && pipelining_p)
5611 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5612
e855c69d
AB
5613 jump = find_new_jump (src, jump_bb, prev_max_uid);
5614 if (jump)
92e265ac
AB
5615 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5616 old_seqno);
00c4e97c
AB
5617 set_immediate_dominator (CDI_DOMINATORS, to,
5618 recompute_dominator (CDI_DOMINATORS, to));
5619 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5620 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5621}
5622
b59ab570
AM
5623/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5624 redirected edge are in reverse topological order. */
5625bool
e855c69d
AB
5626sel_redirect_edge_and_branch (edge e, basic_block to)
5627{
5628 bool latch_edge_p;
00c4e97c 5629 basic_block src, orig_dest = e->dest;
e855c69d 5630 int prev_max_uid;
9ee1fbb1 5631 rtx_insn *jump;
f2c45f08 5632 edge redirected;
b59ab570 5633 bool recompute_toporder_p = false;
00c4e97c 5634 bool maybe_unreachable = single_pred_p (orig_dest);
92e265ac 5635 int old_seqno = -1;
e855c69d
AB
5636
5637 latch_edge_p = (pipelining_p
5638 && current_loop_nest
5639 && e == loop_latch_edge (current_loop_nest));
5640
5641 src = e->src;
5642 prev_max_uid = get_max_uid ();
f2c45f08 5643
92e265ac
AB
5644 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5645 when the conditional jump being redirected may become unconditional. */
5646 if (any_condjump_p (BB_END (src))
5647 && INSN_SEQNO (BB_END (src)) >= 0)
5648 old_seqno = INSN_SEQNO (BB_END (src));
5649
f2c45f08
AM
5650 redirected = redirect_edge_and_branch (e, to);
5651
9771b263 5652 gcc_assert (redirected && !last_added_blocks.exists ());
e855c69d
AB
5653
5654 /* When we've redirected a latch edge, update the header. */
5655 if (latch_edge_p)
5656 {
5657 current_loop_nest->header = to;
5658 gcc_assert (loop_latch_edge (current_loop_nest));
5659 }
5660
b59ab570
AM
5661 /* In rare situations, the topological relation between the blocks connected
5662 by the redirected edge can change (see PR42245 for an example). Update
5663 block_to_bb/bb_to_block. */
5664 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5665 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5666 recompute_toporder_p = true;
5667
e855c69d
AB
5668 jump = find_new_jump (src, NULL, prev_max_uid);
5669 if (jump)
92e265ac 5670 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
b59ab570 5671
00c4e97c
AB
5672 /* Only update dominator info when we don't have unreachable blocks.
5673 Otherwise we'll update in maybe_tidy_empty_bb. */
5674 if (!maybe_unreachable)
5675 {
5676 set_immediate_dominator (CDI_DOMINATORS, to,
5677 recompute_dominator (CDI_DOMINATORS, to));
5678 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5679 recompute_dominator (CDI_DOMINATORS, orig_dest));
5680 }
b59ab570 5681 return recompute_toporder_p;
e855c69d
AB
5682}
5683
5684/* This variable holds the cfg hooks used by the selective scheduler. */
5685static struct cfg_hooks sel_cfg_hooks;
5686
5687/* Register sel-sched cfg hooks. */
5688void
5689sel_register_cfg_hooks (void)
5690{
5691 sched_split_block = sel_split_block;
5692
5693 orig_cfg_hooks = get_cfg_hooks ();
5694 sel_cfg_hooks = orig_cfg_hooks;
5695
5696 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5697
5698 set_cfg_hooks (sel_cfg_hooks);
5699
5700 sched_init_only_bb = sel_init_only_bb;
5701 sched_split_block = sel_split_block;
5702 sched_create_empty_bb = sel_create_empty_bb;
5703}
5704
5705/* Unregister sel-sched cfg hooks. */
5706void
5707sel_unregister_cfg_hooks (void)
5708{
5709 sched_create_empty_bb = NULL;
5710 sched_split_block = NULL;
5711 sched_init_only_bb = NULL;
5712
5713 set_cfg_hooks (orig_cfg_hooks);
5714}
5715\f
5716
5717/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5718 LABEL is where this jump should be directed. */
9c068b73 5719rtx_insn *
e855c69d
AB
5720create_insn_rtx_from_pattern (rtx pattern, rtx label)
5721{
9c068b73 5722 rtx_insn *insn_rtx;
e855c69d
AB
5723
5724 gcc_assert (!INSN_P (pattern));
5725
5726 start_sequence ();
5727
5728 if (label == NULL_RTX)
5729 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5730 else if (DEBUG_INSN_P (label))
5731 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5732 else
5733 {
5734 insn_rtx = emit_jump_insn (pattern);
5735 JUMP_LABEL (insn_rtx) = label;
5736 ++LABEL_NUSES (label);
5737 }
5738
5739 end_sequence ();
5740
a95b23b4 5741 sched_extend_luids ();
e855c69d
AB
5742 sched_extend_target ();
5743 sched_deps_init (false);
5744
5745 /* Initialize INSN_CODE now. */
5746 recog_memoized (insn_rtx);
5747 return insn_rtx;
5748}
5749
5750/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5751 must not be clonable. */
5752vinsn_t
6144a836 5753create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
e855c69d
AB
5754{
5755 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5756
5757 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5758 return vinsn_create (insn_rtx, force_unique_p);
5759}
5760
5761/* Create a copy of INSN_RTX. */
9c068b73 5762rtx_insn *
e855c69d
AB
5763create_copy_of_insn_rtx (rtx insn_rtx)
5764{
9c068b73
DM
5765 rtx_insn *res;
5766 rtx link;
e855c69d 5767
b5b8b0ac
AO
5768 if (DEBUG_INSN_P (insn_rtx))
5769 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5770 insn_rtx);
5771
e855c69d
AB
5772 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5773
5774 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5775 NULL_RTX);
d734e6c4 5776
1581a12c
BS
5777 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5778 rtx *ptail = &REG_NOTES (res);
5779 while (*ptail != NULL_RTX)
5780 ptail = &XEXP (*ptail, 1);
5781
d734e6c4
JJ
5782 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5783 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5784 there too, but are supposed to be sticky, so we copy them. */
5785 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5786 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5787 && REG_NOTE_KIND (link) != REG_EQUAL
5788 && REG_NOTE_KIND (link) != REG_EQUIV)
5789 {
1581a12c
BS
5790 *ptail = duplicate_reg_note (link);
5791 ptail = &XEXP (*ptail, 1);
d734e6c4
JJ
5792 }
5793
e855c69d
AB
5794 return res;
5795}
5796
5797/* Change vinsn field of EXPR to hold NEW_VINSN. */
5798void
5799change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5800{
5801 vinsn_detach (EXPR_VINSN (expr));
5802
5803 EXPR_VINSN (expr) = new_vinsn;
5804 vinsn_attach (new_vinsn);
5805}
5806
5807/* Helpers for global init. */
5808/* This structure is used to be able to call existing bundling mechanism
5809 and calculate insn priorities. */
b8698a0f 5810static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5811{
5812 NULL, /* init_ready_list */
5813 NULL, /* can_schedule_ready_p */
5814 NULL, /* schedule_more_p */
5815 NULL, /* new_ready */
5816 NULL, /* rgn_rank */
5817 sel_print_insn, /* rgn_print_insn */
5818 contributes_to_priority,
356c23b3 5819 NULL, /* insn_finishes_block_p */
e855c69d
AB
5820
5821 NULL, NULL,
5822 NULL, NULL,
5823 0, 0,
5824
5825 NULL, /* add_remove_insn */
5826 NULL, /* begin_schedule_ready */
86014d07 5827 NULL, /* begin_move_insn */
e855c69d 5828 NULL, /* advance_target_bb */
26965010
BS
5829
5830 NULL,
5831 NULL,
5832
e855c69d
AB
5833 SEL_SCHED | NEW_BBS
5834};
5835
5836/* Setup special insns used in the scheduler. */
b8698a0f 5837void
e855c69d
AB
5838setup_nop_and_exit_insns (void)
5839{
5840 gcc_assert (nop_pattern == NULL_RTX
5841 && exit_insn == NULL_RTX);
5842
9ef1bf71 5843 nop_pattern = constm1_rtx;
e855c69d
AB
5844
5845 start_sequence ();
5846 emit_insn (nop_pattern);
5847 exit_insn = get_insns ();
5848 end_sequence ();
fefa31b5 5849 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
5850}
5851
5852/* Free special insns used in the scheduler. */
5853void
5854free_nop_and_exit_insns (void)
5855{
c5db5458 5856 exit_insn = NULL;
e855c69d
AB
5857 nop_pattern = NULL_RTX;
5858}
5859
5860/* Setup a special vinsn used in new insns initialization. */
5861void
5862setup_nop_vinsn (void)
5863{
5864 nop_vinsn = vinsn_create (exit_insn, false);
5865 vinsn_attach (nop_vinsn);
5866}
5867
5868/* Free a special vinsn used in new insns initialization. */
5869void
5870free_nop_vinsn (void)
5871{
5872 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5873 vinsn_detach (nop_vinsn);
5874 nop_vinsn = NULL;
5875}
5876
5877/* Call a set_sched_flags hook. */
5878void
5879sel_set_sched_flags (void)
5880{
b8698a0f 5881 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5882 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5883 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5884 sometimes change c_s_i later. So put the correct flags again. */
5885 if (spec_info && targetm.sched.set_sched_flags)
5886 targetm.sched.set_sched_flags (spec_info);
5887}
5888
5889/* Setup pointers to global sched info structures. */
5890void
5891sel_setup_sched_infos (void)
5892{
5893 rgn_setup_common_sched_info ();
5894
5895 memcpy (&sel_common_sched_info, common_sched_info,
5896 sizeof (sel_common_sched_info));
5897
5898 sel_common_sched_info.fix_recovery_cfg = NULL;
5899 sel_common_sched_info.add_block = NULL;
5900 sel_common_sched_info.estimate_number_of_insns
5901 = sel_estimate_number_of_insns;
5902 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5903 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5904
5905 common_sched_info = &sel_common_sched_info;
5906
5907 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5908 current_sched_info->sched_max_insns_priority =
e855c69d 5909 get_rgn_sched_max_insns_priority ();
b8698a0f 5910
e855c69d
AB
5911 sel_set_sched_flags ();
5912}
5913\f
5914
5915/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5916 *BB_ORD_INDEX after that is increased. */
5917static void
5918sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5919{
5920 RGN_NR_BLOCKS (rgn) += 1;
5921 RGN_DONT_CALC_DEPS (rgn) = 0;
5922 RGN_HAS_REAL_EBB (rgn) = 0;
5923 CONTAINING_RGN (bb->index) = rgn;
5924 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5925 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5926 (*bb_ord_index)++;
5927
5928 /* FIXME: it is true only when not scheduling ebbs. */
5929 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5930}
5931
5932/* Functions to support pipelining of outer loops. */
5933
5934/* Creates a new empty region and returns it's number. */
5935static int
5936sel_create_new_region (void)
5937{
5938 int new_rgn_number = nr_regions;
5939
5940 RGN_NR_BLOCKS (new_rgn_number) = 0;
5941
5942 /* FIXME: This will work only when EBBs are not created. */
5943 if (new_rgn_number != 0)
b8698a0f 5944 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5945 RGN_NR_BLOCKS (new_rgn_number - 1);
5946 else
5947 RGN_BLOCKS (new_rgn_number) = 0;
5948
5949 /* Set the blocks of the next region so the other functions may
5950 calculate the number of blocks in the region. */
b8698a0f 5951 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5952 RGN_NR_BLOCKS (new_rgn_number);
5953
5954 nr_regions++;
5955
5956 return new_rgn_number;
5957}
5958
5959/* If X has a smaller topological sort number than Y, returns -1;
5960 if greater, returns 1. */
5961static int
5962bb_top_order_comparator (const void *x, const void *y)
5963{
5964 basic_block bb1 = *(const basic_block *) x;
5965 basic_block bb2 = *(const basic_block *) y;
5966
b8698a0f
L
5967 gcc_assert (bb1 == bb2
5968 || rev_top_order_index[bb1->index]
e855c69d
AB
5969 != rev_top_order_index[bb2->index]);
5970
5971 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5972 bbs with greater number should go earlier. */
5973 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5974 return -1;
5975 else
5976 return 1;
5977}
5978
b8698a0f 5979/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5980 to pipeline LOOP, return -1. */
5981static int
5982make_region_from_loop (struct loop *loop)
5983{
5984 unsigned int i;
5985 int new_rgn_number = -1;
5986 struct loop *inner;
5987
5988 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5989 int bb_ord_index = 0;
5990 basic_block *loop_blocks;
5991 basic_block preheader_block;
5992
b8698a0f 5993 if (loop->num_nodes
e855c69d
AB
5994 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5995 return -1;
b8698a0f 5996
e855c69d
AB
5997 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5998 for (inner = loop->inner; inner; inner = inner->inner)
5999 if (flow_bb_inside_loop_p (inner, loop->latch))
6000 return -1;
6001
6002 loop->ninsns = num_loop_insns (loop);
6003 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6004 return -1;
6005
6006 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6007
6008 for (i = 0; i < loop->num_nodes; i++)
6009 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6010 {
6011 free (loop_blocks);
6012 return -1;
6013 }
6014
6015 preheader_block = loop_preheader_edge (loop)->src;
6016 gcc_assert (preheader_block);
6017 gcc_assert (loop_blocks[0] == loop->header);
6018
6019 new_rgn_number = sel_create_new_region ();
6020
6021 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
d7c028c0 6022 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
e855c69d
AB
6023
6024 for (i = 0; i < loop->num_nodes; i++)
6025 {
6026 /* Add only those blocks that haven't been scheduled in the inner loop.
6027 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 6028 be added to the region (and they actually don't belong to the loop
e855c69d
AB
6029 body, but to the region containing that loop body). */
6030
6031 gcc_assert (new_rgn_number >= 0);
6032
d7c028c0 6033 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
e855c69d 6034 {
b8698a0f 6035 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d 6036 new_rgn_number);
d7c028c0 6037 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
e855c69d
AB
6038 }
6039 }
6040
6041 free (loop_blocks);
6042 MARK_LOOP_FOR_PIPELINING (loop);
6043
6044 return new_rgn_number;
6045}
6046
6047/* Create a new region from preheader blocks LOOP_BLOCKS. */
6048void
9771b263 6049make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
e855c69d
AB
6050{
6051 unsigned int i;
6052 int new_rgn_number = -1;
6053 basic_block bb;
6054
6055 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6056 int bb_ord_index = 0;
6057
6058 new_rgn_number = sel_create_new_region ();
6059
9771b263 6060 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
e855c69d
AB
6061 {
6062 gcc_assert (new_rgn_number >= 0);
6063
6064 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6065 }
6066
9771b263 6067 vec_free (loop_blocks);
e855c69d
AB
6068}
6069
6070
6071/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 6072 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
6073 is created. */
6074static bool
6075make_regions_from_loop_nest (struct loop *loop)
b8698a0f 6076{
e855c69d
AB
6077 struct loop *cur_loop;
6078 int rgn_number;
6079
6080 /* Traverse all inner nodes of the loop. */
6081 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
d7c028c0 6082 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
e855c69d
AB
6083 return false;
6084
6085 /* At this moment all regular inner loops should have been pipelined.
6086 Try to create a region from this loop. */
6087 rgn_number = make_region_from_loop (loop);
6088
6089 if (rgn_number < 0)
6090 return false;
6091
9771b263 6092 loop_nests.safe_push (loop);
e855c69d
AB
6093 return true;
6094}
6095
6096/* Initalize data structures needed. */
6097void
6098sel_init_pipelining (void)
6099{
6100 /* Collect loop information to be used in outer loops pipelining. */
6101 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6102 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6103 | LOOPS_HAVE_RECORDED_EXITS
6104 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6105 current_loop_nest = NULL;
6106
8b1c6fd7 6107 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 6108 bitmap_clear (bbs_in_loop_rgns);
e855c69d
AB
6109
6110 recompute_rev_top_order ();
6111}
6112
6113/* Returns a struct loop for region RGN. */
6114loop_p
6115get_loop_nest_for_rgn (unsigned int rgn)
6116{
6117 /* Regions created with extend_rgns don't have corresponding loop nests,
6118 because they don't represent loops. */
9771b263
DN
6119 if (rgn < loop_nests.length ())
6120 return loop_nests[rgn];
e855c69d
AB
6121 else
6122 return NULL;
6123}
6124
6125/* True when LOOP was included into pipelining regions. */
6126bool
6127considered_for_pipelining_p (struct loop *loop)
6128{
6129 if (loop_depth (loop) == 0)
6130 return false;
6131
b8698a0f
L
6132 /* Now, the loop could be too large or irreducible. Check whether its
6133 region is in LOOP_NESTS.
6134 We determine the region number of LOOP as the region number of its
6135 latch. We can't use header here, because this header could be
e855c69d
AB
6136 just removed preheader and it will give us the wrong region number.
6137 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 6138 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
6139 {
6140 int rgn = CONTAINING_RGN (loop->latch->index);
6141
9771b263 6142 gcc_assert ((unsigned) rgn < loop_nests.length ());
e855c69d
AB
6143 return true;
6144 }
b8698a0f 6145
e855c69d
AB
6146 return false;
6147}
6148
b8698a0f 6149/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
6150 for pipelining. */
6151static void
6152make_regions_from_the_rest (void)
6153{
6154 int cur_rgn_blocks;
6155 int *loop_hdr;
6156 int i;
6157
6158 basic_block bb;
6159 edge e;
6160 edge_iterator ei;
6161 int *degree;
e855c69d
AB
6162
6163 /* Index in rgn_bb_table where to start allocating new regions. */
6164 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 6165
b8698a0f 6166 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
6167 any loop or belong to irreducible loops. Prepare the data structures
6168 for extend_rgns. */
6169
6170 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6171 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6172 loop. */
8b1c6fd7
DM
6173 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6174 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
e855c69d
AB
6175
6176
6177 /* For each basic block that belongs to some loop assign the number
6178 of innermost loop it belongs to. */
8b1c6fd7 6179 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
e855c69d
AB
6180 loop_hdr[i] = -1;
6181
11cd3bed 6182 FOR_EACH_BB_FN (bb, cfun)
e855c69d 6183 {
13dfd554 6184 if (bb->loop_father && bb->loop_father->num != 0
e855c69d
AB
6185 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6186 loop_hdr[bb->index] = bb->loop_father->num;
6187 }
6188
b8698a0f 6189 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6190 edges, that are going out of bbs that are not yet scheduled.
6191 The basic blocks that are scheduled have degree value of zero. */
11cd3bed 6192 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6193 {
6194 degree[bb->index] = 0;
6195
d7c028c0 6196 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
e855c69d
AB
6197 {
6198 FOR_EACH_EDGE (e, ei, bb->preds)
d7c028c0 6199 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
e855c69d
AB
6200 degree[bb->index]++;
6201 }
6202 else
6203 degree[bb->index] = -1;
6204 }
6205
6206 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6207
6208 /* Any block that did not end up in a region is placed into a region
6209 by itself. */
11cd3bed 6210 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6211 if (degree[bb->index] >= 0)
6212 {
6213 rgn_bb_table[cur_rgn_blocks] = bb->index;
6214 RGN_NR_BLOCKS (nr_regions) = 1;
6215 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6216 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6217 RGN_HAS_REAL_EBB (nr_regions) = 0;
6218 CONTAINING_RGN (bb->index) = nr_regions++;
6219 BLOCK_TO_BB (bb->index) = 0;
6220 }
6221
6222 free (degree);
6223 free (loop_hdr);
6224}
6225
6226/* Free data structures used in pipelining of loops. */
6227void sel_finish_pipelining (void)
6228{
e855c69d
AB
6229 struct loop *loop;
6230
6231 /* Release aux fields so we don't free them later by mistake. */
f0bd40b1 6232 FOR_EACH_LOOP (loop, 0)
e855c69d
AB
6233 loop->aux = NULL;
6234
6235 loop_optimizer_finalize ();
6236
9771b263 6237 loop_nests.release ();
e855c69d
AB
6238
6239 free (rev_top_order_index);
6240 rev_top_order_index = NULL;
6241}
6242
b8698a0f 6243/* This function replaces the find_rgns when
e855c69d 6244 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6245void
e855c69d
AB
6246sel_find_rgns (void)
6247{
6248 sel_init_pipelining ();
6249 extend_regions ();
6250
6251 if (current_loops)
6252 {
6253 loop_p loop;
e855c69d 6254
f0bd40b1
RB
6255 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6256 ? LI_FROM_INNERMOST
6257 : LI_ONLY_INNERMOST))
e855c69d
AB
6258 make_regions_from_loop_nest (loop);
6259 }
6260
6261 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6262 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6263 to irreducible loops. */
6264 make_regions_from_the_rest ();
6265
6266 /* We don't need bbs_in_loop_rgns anymore. */
6267 sbitmap_free (bbs_in_loop_rgns);
6268 bbs_in_loop_rgns = NULL;
6269}
6270
ea4d630f
AM
6271/* Add the preheader blocks from previous loop to current region taking
6272 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
e855c69d
AB
6273 This function is only used with -fsel-sched-pipelining-outer-loops. */
6274void
ea4d630f 6275sel_add_loop_preheaders (bb_vec_t *bbs)
e855c69d
AB
6276{
6277 int i;
6278 basic_block bb;
9771b263 6279 vec<basic_block> *preheader_blocks
e855c69d
AB
6280 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6281
9771b263
DN
6282 if (!preheader_blocks)
6283 return;
6284
6285 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
8ec4d0ad 6286 {
9771b263
DN
6287 bbs->safe_push (bb);
6288 last_added_blocks.safe_push (bb);
e855c69d 6289 sel_add_bb (bb);
8ec4d0ad 6290 }
e855c69d 6291
9771b263 6292 vec_free (preheader_blocks);
e855c69d
AB
6293}
6294
b8698a0f
L
6295/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6296 Please note that the function should also work when pipelining_p is
6297 false, because it is used when deciding whether we should or should
e855c69d
AB
6298 not reschedule pipelined code. */
6299bool
6300sel_is_loop_preheader_p (basic_block bb)
6301{
6302 if (current_loop_nest)
6303 {
6304 struct loop *outer;
6305
6306 if (preheader_removed)
6307 return false;
6308
6309 /* Preheader is the first block in the region. */
6310 if (BLOCK_TO_BB (bb->index) == 0)
6311 return true;
6312
6313 /* We used to find a preheader with the topological information.
6314 Check that the above code is equivalent to what we did before. */
6315
6316 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6317 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6318 < BLOCK_TO_BB (current_loop_nest->header->index)));
6319
6320 /* Support the situation when the latch block of outer loop
6321 could be from here. */
6322 for (outer = loop_outer (current_loop_nest);
6323 outer;
6324 outer = loop_outer (outer))
6325 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6326 gcc_unreachable ();
6327 }
6328
6329 return false;
6330}
6331
753de8cf
AM
6332/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6333 can be removed, making the corresponding edge fallthrough (assuming that
6334 all basic blocks between JUMP_BB and DEST_BB are empty). */
6335static bool
6336bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6337{
b4550bf7
AM
6338 if (!onlyjump_p (BB_END (jump_bb))
6339 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6340 return false;
6341
b8698a0f 6342 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6343 not DEST_BB. */
6344 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6345 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6346 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6347 return false;
6348
6349 /* If not anything of the upper. */
6350 return true;
6351}
6352
6353/* Removes the loop preheader from the current region and saves it in
b8698a0f 6354 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6355 region that represents an outer loop. */
6356static void
6357sel_remove_loop_preheader (void)
6358{
6359 int i, old_len;
6360 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6361 basic_block bb;
6362 bool all_empty_p = true;
9771b263 6363 vec<basic_block> *preheader_blocks
e855c69d
AB
6364 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6365
9771b263
DN
6366 vec_check_alloc (preheader_blocks, 0);
6367
e855c69d 6368 gcc_assert (current_loop_nest);
9771b263 6369 old_len = preheader_blocks->length ();
e855c69d
AB
6370
6371 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6372 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6373 {
06e28de2 6374 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
e855c69d 6375
b8698a0f 6376 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6377 corresponding loop, then it should be a preheader. */
6378 if (sel_is_loop_preheader_p (bb))
6379 {
9771b263 6380 preheader_blocks->safe_push (bb);
e855c69d
AB
6381 if (BB_END (bb) != bb_note (bb))
6382 all_empty_p = false;
6383 }
6384 }
b8698a0f 6385
e855c69d 6386 /* Remove these blocks only after iterating over the whole region. */
9771b263 6387 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
e855c69d 6388 {
9771b263 6389 bb = (*preheader_blocks)[i];
e855c69d
AB
6390 sel_remove_bb (bb, false);
6391 }
6392
6393 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6394 {
6395 if (!all_empty_p)
6396 /* Immediately create new region from preheader. */
9771b263 6397 make_region_from_loop_preheader (preheader_blocks);
e855c69d
AB
6398 else
6399 {
6400 /* If all preheader blocks are empty - dont create new empty region.
6401 Instead, remove them completely. */
9771b263 6402 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
e855c69d
AB
6403 {
6404 edge e;
6405 edge_iterator ei;
6406 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6407
6408 /* Redirect all incoming edges to next basic block. */
6409 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6410 {
6411 if (! (e->flags & EDGE_FALLTHRU))
6412 redirect_edge_and_branch (e, bb->next_bb);
6413 else
6414 redirect_edge_succ (e, bb->next_bb);
6415 }
6416 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6417 delete_and_free_basic_block (bb);
6418
b8698a0f
L
6419 /* Check if after deleting preheader there is a nonconditional
6420 jump in PREV_BB that leads to the next basic block NEXT_BB.
6421 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6422 basic block if it becomes empty. */
6423 if (next_bb->prev_bb == prev_bb
fefa31b5 6424 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
753de8cf 6425 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6426 {
6427 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6428 if (BB_END (prev_bb) == bb_note (prev_bb))
6429 free_data_sets (prev_bb);
6430 }
00c4e97c
AB
6431
6432 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6433 recompute_dominator (CDI_DOMINATORS,
6434 next_bb));
e855c69d
AB
6435 }
6436 }
9771b263 6437 vec_free (preheader_blocks);
e855c69d
AB
6438 }
6439 else
6440 /* Store preheader within the father's loop structure. */
6441 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6442 preheader_blocks);
6443}
68975683 6444
e855c69d 6445#endif