]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
gimplify.c (gimplify_modify_expr): When assigning to volatiles, copy the src value...
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
c02e2d5c 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
718f9c0f 24#include "diagnostic-core.h"
e855c69d
AB
25#include "toplev.h"
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "regs.h"
30#include "function.h"
31#include "flags.h"
32#include "insn-config.h"
33#include "insn-attr.h"
34#include "except.h"
35#include "toplev.h"
36#include "recog.h"
37#include "params.h"
38#include "target.h"
39#include "timevar.h"
40#include "tree-pass.h"
41#include "sched-int.h"
42#include "ggc.h"
43#include "tree.h"
44#include "vec.h"
45#include "langhooks.h"
46#include "rtlhooks-def.h"
5936d944 47#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
48
49#ifdef INSN_SCHEDULING
50#include "sel-sched-ir.h"
51/* We don't have to use it except for sel_print_insn. */
52#include "sel-sched-dump.h"
53
54/* A vector holding bb info for whole scheduling pass. */
55VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
56
57/* A vector holding bb info. */
58VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
59
60/* A pool for allocating all lists. */
61alloc_pool sched_lists_pool;
62
63/* This contains information about successors for compute_av_set. */
64struct succs_info current_succs;
65
66/* Data structure to describe interaction with the generic scheduler utils. */
67static struct common_sched_info_def sel_common_sched_info;
68
69/* The loop nest being pipelined. */
70struct loop *current_loop_nest;
71
72/* LOOP_NESTS is a vector containing the corresponding loop nest for
73 each region. */
74static VEC(loop_p, heap) *loop_nests = NULL;
75
76/* Saves blocks already in loop regions, indexed by bb->index. */
77static sbitmap bbs_in_loop_rgns = NULL;
78
79/* CFG hooks that are saved before changing create_basic_block hook. */
80static struct cfg_hooks orig_cfg_hooks;
81\f
82
83/* Array containing reverse topological index of function basic blocks,
84 indexed by BB->INDEX. */
85static int *rev_top_order_index = NULL;
86
87/* Length of the above array. */
88static int rev_top_order_index_len = -1;
89
90/* A regset pool structure. */
91static struct
92{
93 /* The stack to which regsets are returned. */
94 regset *v;
95
96 /* Its pointer. */
97 int n;
98
99 /* Its size. */
100 int s;
101
102 /* In VV we save all generated regsets so that, when destructing the
103 pool, we can compare it with V and check that every regset was returned
104 back to pool. */
105 regset *vv;
106
107 /* The pointer of VV stack. */
108 int nn;
109
110 /* Its size. */
111 int ss;
112
113 /* The difference between allocated and returned regsets. */
114 int diff;
115} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
116
117/* This represents the nop pool. */
118static struct
119{
120 /* The vector which holds previously emitted nops. */
121 insn_t *v;
122
123 /* Its pointer. */
124 int n;
125
126 /* Its size. */
b8698a0f 127 int s;
e855c69d
AB
128} nop_pool = { NULL, 0, 0 };
129
130/* The pool for basic block notes. */
131static rtx_vec_t bb_note_pool;
132
133/* A NOP pattern used to emit placeholder insns. */
134rtx nop_pattern = NULL_RTX;
135/* A special instruction that resides in EXIT_BLOCK.
136 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
137rtx exit_insn = NULL_RTX;
138
b8698a0f 139/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
140 was removed. */
141bool preheader_removed = false;
142\f
143
144/* Forward static declarations. */
145static void fence_clear (fence_t);
146
147static void deps_init_id (idata_t, insn_t, bool);
148static void init_id_from_df (idata_t, insn_t, bool);
149static expr_t set_insn_init (expr_t, vinsn_t, int);
150
151static void cfg_preds (basic_block, insn_t **, int *);
152static void prepare_insn_expr (insn_t, int);
153static void free_history_vect (VEC (expr_history_def, heap) **);
154
155static void move_bb_info (basic_block, basic_block);
156static void remove_empty_bb (basic_block, bool);
157static void sel_remove_loop_preheader (void);
158
159static bool insn_is_the_only_one_in_bb_p (insn_t);
160static void create_initial_data_sets (basic_block);
161
b5b8b0ac 162static void free_av_set (basic_block);
e855c69d
AB
163static void invalidate_av_set (basic_block);
164static void extend_insn_data (void);
165static void sel_init_new_insn (insn_t, int);
166static void finish_insns (void);
167\f
168/* Various list functions. */
169
170/* Copy an instruction list L. */
171ilist_t
172ilist_copy (ilist_t l)
173{
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184}
185
186/* Invert an instruction list L. */
187ilist_t
188ilist_invert (ilist_t l)
189{
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199}
200
201/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202void
203blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204{
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215}
216
217/* Remove the list note pointed to by LP. */
218void
219blist_remove (blist_t *lp)
220{
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228}
229
230/* Init a fence tail L. */
231void
232flist_tail_init (flist_tail_t l)
233{
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236}
237
238/* Try to find fence corresponding to INSN in L. */
239fence_t
240flist_lookup (flist_t l, insn_t insn)
241{
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251}
252
253/* Init the fields of F before running fill_insns. */
254static void
255init_fence_for_scheduling (fence_t f)
256{
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260}
261
262/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263static void
b8698a0f
L
264flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 267 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
268 bool starts_cycle_p, bool after_stall_p)
269{
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 292 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299}
300
301/* Remove the head node of the list pointed to by LP. */
302static void
303flist_remove (flist_t *lp)
304{
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308}
309
310/* Clear the fence list pointed to by LP. */
311void
312flist_clear (flist_t *lp)
313{
314 while (*lp)
315 flist_remove (lp);
316}
317
318/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319void
320def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321{
322 def_t d;
b8698a0f 323
e855c69d
AB
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329}
330\f
331
332/* Functions to work with target contexts. */
333
b8698a0f 334/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
335 that there are no uninitialized (null) target contexts. */
336static tc_t bulk_tc = (tc_t) 1;
337
b8698a0f 338/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
339 implementations for them. */
340
341/* Allocate a store for the target context. */
342static tc_t
343alloc_target_context (void)
344{
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347}
348
349/* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352static void
353init_target_context (tc_t tc, bool clean_p)
354{
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357}
358
359/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361tc_t
362create_target_context (bool clean_p)
363{
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368}
369
370/* Copy TC to the current backend context. */
371void
372set_target_context (tc_t tc)
373{
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376}
377
378/* TC is about to be destroyed. Free any internal data. */
379static void
380clear_target_context (tc_t tc)
381{
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384}
385
386/* Clear and free it. */
387static void
388delete_target_context (tc_t tc)
389{
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394}
395
396/* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398static void
399copy_target_context (tc_t to, tc_t from)
400{
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408}
409
410/* Create a copy of TC. */
411static tc_t
412create_copy_of_target_context (tc_t tc)
413{
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419}
420
421/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423void
424reset_target_context (tc_t tc, bool clean_p)
425{
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428}
429\f
b8698a0f 430/* Functions to work with dependence contexts.
88302d54 431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435/* Make a copy of FROM in TO. */
436static void
437copy_deps_context (deps_t to, deps_t from)
438{
bcf33775 439 init_deps (to, false);
e855c69d
AB
440 deps_join (to, from);
441}
442
443/* Allocate store for dep context. */
444static deps_t
445alloc_deps_context (void)
446{
88302d54 447 return XNEW (struct deps_desc);
e855c69d
AB
448}
449
450/* Allocate and initialize dep context. */
451static deps_t
452create_deps_context (void)
453{
454 deps_t dc = alloc_deps_context ();
455
bcf33775 456 init_deps (dc, false);
e855c69d
AB
457 return dc;
458}
459
460/* Create a copy of FROM. */
461static deps_t
462create_copy_of_deps_context (deps_t from)
463{
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468}
469
470/* Clean up internal data of DC. */
471static void
472clear_deps_context (deps_t dc)
473{
474 free_deps (dc);
475}
476
477/* Clear and free DC. */
478static void
479delete_deps_context (deps_t dc)
480{
481 clear_deps_context (dc);
482 free (dc);
483}
484
485/* Clear and init DC. */
486static void
487reset_deps_context (deps_t dc)
488{
489 clear_deps_context (dc);
bcf33775 490 init_deps (dc, false);
e855c69d
AB
491}
492
b8698a0f 493/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
494 dependence context. */
495static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514/* Process INSN and add its impact on DC. */
515void
516advance_deps_context (deps_t dc, insn_t insn)
517{
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520}
521\f
522
523/* Functions to work with DFA states. */
524
525/* Allocate store for a DFA state. */
526static state_t
527state_alloc (void)
528{
529 return xmalloc (dfa_state_size);
530}
531
532/* Allocate and initialize DFA state. */
533static state_t
534state_create (void)
535{
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541}
542
543/* Free DFA state. */
544static void
545state_free (state_t state)
546{
547 free (state);
548}
549
550/* Make a copy of FROM in TO. */
551static void
552state_copy (state_t to, state_t from)
553{
554 memcpy (to, from, dfa_state_size);
555}
556
557/* Create a copy of FROM. */
558static state_t
559state_create_copy (state_t from)
560{
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565}
566\f
567
568/* Functions to work with fences. */
569
570/* Clear the fence. */
571static void
572fence_clear (fence_t f)
573{
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
583 if (s != NULL)
584 free (s);
585
586 if (dc != NULL)
587 delete_deps_context (dc);
588
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
594}
595
596/* Init a list of fences with successors of OLD_FENCE. */
597void
598init_fences (insn_t old_fence)
599{
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
604
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 {
b8698a0f 608
e855c69d
AB
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
b8698a0f 618 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
b8698a0f 623 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 624 issue_rate, /* issue_more */
b8698a0f 625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
626 }
627}
628
629/* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
b8698a0f 631 propagated from fallthrough edge if it is available;
e855c69d 632 2) deps context and cycle is propagated from more probable edge;
b8698a0f 633 3) all other fields are set to corresponding constant values.
e855c69d 634
b8698a0f 635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
638static void
639merge_fences (fence_t f, insn_t insn,
b8698a0f 640 state_t state, deps_t dc, void *tc,
e855c69d
AB
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
136e01a3 643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
644{
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
b8698a0f 650 /* Check if we can decide which path fences came.
e855c69d
AB
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
b8698a0f
L
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
e855c69d
AB
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
b8698a0f 662
e855c69d
AB
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
b8698a0f 665
e855c69d
AB
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 673 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
b8698a0f 688
e855c69d
AB
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
b8698a0f 700
e855c69d
AB
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
b8698a0f 703
e855c69d 704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 705 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
b8698a0f 710 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 722 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
b8698a0f 764
e855c69d
AB
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800}
801
b8698a0f 802/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
803 other parameters. */
804static void
805add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
811{
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814 if (! f)
815 {
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 817 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 819 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
820
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 }
824 else
825 {
b8698a0f
L
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 828 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
829 }
830}
831
832/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833void
834move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835{
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839 old = FLIST_FENCE (old_fences);
b8698a0f 840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
843 {
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
136e01a3 847 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
848 old->after_stall_p);
849 }
850 else
851 {
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 }
857 FENCE_INSN (old) = NULL;
858}
859
b8698a0f 860/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
861 as a clean one. */
862void
863add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864{
865 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 866
e855c69d
AB
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
b8698a0f 870 NULL_RTX, NULL,
e855c69d
AB
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
874}
875
b8698a0f 876/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
877 from FENCE and SUCC. */
878void
879add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880{
b8698a0f 881 int * new_ready_ticks
e855c69d 882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 883
e855c69d
AB
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 890 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
136e01a3 897 FENCE_ISSUE_MORE (fence),
e855c69d
AB
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
900}
901\f
902
903/* Functions to work with regset and nop pools. */
904
905/* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907regset
908get_regset_from_pool (void)
909{
910 regset rs;
911
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
916 {
917 rs = ALLOC_REG_SET (&reg_obstack);
918
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
923 }
924
925 regset_pool.diff++;
926
927 return rs;
928}
929
930/* Same as above, but returns the empty regset. */
931regset
932get_clear_regset_from_pool (void)
933{
934 regset rs = get_regset_from_pool ();
935
936 CLEAR_REG_SET (rs);
937 return rs;
938}
939
940/* Return regset RS to the pool for future use. */
941void
942return_regset_to_pool (regset rs)
943{
944 regset_pool.diff--;
945
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
950}
951
68ad446f 952#ifdef ENABLE_CHECKING
e855c69d
AB
953/* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955static int
956cmp_v_in_regset_pool (const void *x, const void *xx)
957{
958 return *((const regset *) x) - *((const regset *) xx);
959}
68ad446f 960#endif
e855c69d
AB
961
962/* Free the regset pool possibly checking for memory leaks. */
963void
964free_regset_pool (void)
965{
966#ifdef ENABLE_CHECKING
967 {
968 regset *v = regset_pool.v;
969 int i = 0;
970 int n = regset_pool.n;
b8698a0f 971
e855c69d
AB
972 regset *vv = regset_pool.vv;
973 int ii = 0;
974 int nn = regset_pool.nn;
b8698a0f 975
e855c69d 976 int diff = 0;
b8698a0f 977
e855c69d 978 gcc_assert (n <= nn);
b8698a0f 979
e855c69d
AB
980 /* Sort both vectors so it will be possible to compare them. */
981 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
982 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 983
e855c69d
AB
984 while (ii < nn)
985 {
986 if (v[i] == vv[ii])
987 i++;
988 else
989 /* VV[II] was lost. */
990 diff++;
b8698a0f 991
e855c69d
AB
992 ii++;
993 }
b8698a0f 994
e855c69d
AB
995 gcc_assert (diff == regset_pool.diff);
996 }
997#endif
b8698a0f 998
e855c69d
AB
999 /* If not true - we have a memory leak. */
1000 gcc_assert (regset_pool.diff == 0);
b8698a0f 1001
e855c69d
AB
1002 while (regset_pool.n)
1003 {
1004 --regset_pool.n;
1005 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1006 }
1007
1008 free (regset_pool.v);
1009 regset_pool.v = NULL;
1010 regset_pool.s = 0;
b8698a0f 1011
e855c69d
AB
1012 free (regset_pool.vv);
1013 regset_pool.vv = NULL;
1014 regset_pool.nn = 0;
1015 regset_pool.ss = 0;
1016
1017 regset_pool.diff = 0;
1018}
1019\f
1020
b8698a0f
L
1021/* Functions to work with nop pools. NOP insns are used as temporary
1022 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1023 the data sets. When update is finished, NOPs are deleted. */
1024
1025/* A vinsn that is used to represent a nop. This vinsn is shared among all
1026 nops sel-sched generates. */
1027static vinsn_t nop_vinsn = NULL;
1028
1029/* Emit a nop before INSN, taking it from pool. */
1030insn_t
1031get_nop_from_pool (insn_t insn)
1032{
1033 insn_t nop;
1034 bool old_p = nop_pool.n != 0;
1035 int flags;
1036
1037 if (old_p)
1038 nop = nop_pool.v[--nop_pool.n];
1039 else
1040 nop = nop_pattern;
1041
1042 nop = emit_insn_before (nop, insn);
1043
1044 if (old_p)
1045 flags = INSN_INIT_TODO_SSID;
1046 else
1047 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1048
1049 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1050 sel_init_new_insn (nop, flags);
1051
1052 return nop;
1053}
1054
1055/* Remove NOP from the instruction stream and return it to the pool. */
1056void
b5b8b0ac 1057return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1058{
1059 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1060 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1061
1062 if (nop_pool.n == nop_pool.s)
b8698a0f 1063 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1064 (nop_pool.s = 2 * nop_pool.s + 1));
1065 nop_pool.v[nop_pool.n++] = nop;
1066}
1067
1068/* Free the nop pool. */
1069void
1070free_nop_pool (void)
1071{
1072 nop_pool.n = 0;
1073 nop_pool.s = 0;
1074 free (nop_pool.v);
1075 nop_pool.v = NULL;
1076}
1077\f
1078
b8698a0f 1079/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1080 The callback is given two rtxes XX and YY and writes the new rtxes
1081 to NX and NY in case some needs to be skipped. */
1082static int
1083skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1084{
1085 const_rtx x = *xx;
1086 const_rtx y = *yy;
b8698a0f 1087
e855c69d
AB
1088 if (GET_CODE (x) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (x)))
1091 {
1092 *nx = XVECEXP (x, 0, 0);
1093 *ny = CONST_CAST_RTX (y);
1094 return 1;
1095 }
b8698a0f 1096
e855c69d
AB
1097 if (GET_CODE (y) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (y)))
1100 {
1101 *nx = CONST_CAST_RTX (x);
1102 *ny = XVECEXP (y, 0, 0);
1103 return 1;
1104 }
b8698a0f 1105
e855c69d
AB
1106 return 0;
1107}
1108
b8698a0f 1109/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1110 to support ia64 speculation. When changes are needed, new rtx X and new mode
1111 NMODE are written, and the callback returns true. */
1112static int
1113hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1114 rtx *nx, enum machine_mode* nmode)
1115{
b8698a0f 1116 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1117 && targetm.sched.skip_rtx_p
1118 && targetm.sched.skip_rtx_p (x))
1119 {
1120 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1121 *nmode = VOIDmode;
e855c69d
AB
1122 return 1;
1123 }
b8698a0f 1124
e855c69d
AB
1125 return 0;
1126}
1127
1128/* Returns LHS and RHS are ok to be scheduled separately. */
1129static bool
1130lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1131{
1132 if (lhs == NULL || rhs == NULL)
1133 return false;
1134
b8698a0f
L
1135 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1136 to use reg, if const can be used. Moreover, scheduling const as rhs may
1137 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1138 merged from branches where the same const used in different modes. */
1139 if (CONSTANT_P (rhs))
1140 return false;
1141
1142 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1143 if (COMPARISON_P (rhs))
1144 return false;
1145
1146 /* Do not allow single REG to be an rhs. */
1147 if (REG_P (rhs))
1148 return false;
1149
b8698a0f 1150 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1151 restriction. */
1152 /* FIXME: remove this later. */
1153 if (MEM_P (lhs))
1154 return false;
1155
1156 /* This will filter all tricky things like ZERO_EXTRACT etc.
1157 For now we don't handle it. */
1158 if (!REG_P (lhs) && !MEM_P (lhs))
1159 return false;
1160
1161 return true;
1162}
1163
b8698a0f
L
1164/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1165 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1166 used e.g. for insns from recovery blocks. */
1167static void
1168vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1169{
1170 hash_rtx_callback_function hrcf;
1171 int insn_class;
1172
1173 VINSN_INSN_RTX (vi) = insn;
1174 VINSN_COUNT (vi) = 0;
1175 vi->cost = -1;
b8698a0f 1176
e855c69d
AB
1177 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1178 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1179 else
1180 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1181
e855c69d
AB
1182 /* Hash vinsn depending on whether it is separable or not. */
1183 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1184 if (VINSN_SEPARABLE_P (vi))
1185 {
1186 rtx rhs = VINSN_RHS (vi);
1187
1188 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1189 NULL, NULL, false, hrcf);
1190 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1191 VOIDmode, NULL, NULL,
1192 false, hrcf);
1193 }
1194 else
1195 {
1196 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1199 }
b8698a0f 1200
e855c69d
AB
1201 insn_class = haifa_classify_insn (insn);
1202 if (insn_class >= 2
1203 && (!targetm.sched.get_insn_spec_ds
1204 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1205 == 0)))
1206 VINSN_MAY_TRAP_P (vi) = true;
1207 else
1208 VINSN_MAY_TRAP_P (vi) = false;
1209}
1210
1211/* Indicate that VI has become the part of an rtx object. */
1212void
1213vinsn_attach (vinsn_t vi)
1214{
1215 /* Assert that VI is not pending for deletion. */
1216 gcc_assert (VINSN_INSN_RTX (vi));
1217
1218 VINSN_COUNT (vi)++;
1219}
1220
b8698a0f 1221/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1222 VINSN_TYPE (VI). */
1223static vinsn_t
1224vinsn_create (insn_t insn, bool force_unique_p)
1225{
1226 vinsn_t vi = XCNEW (struct vinsn_def);
1227
1228 vinsn_init (vi, insn, force_unique_p);
1229 return vi;
1230}
1231
1232/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1233 the copy. */
b8698a0f 1234vinsn_t
e855c69d
AB
1235vinsn_copy (vinsn_t vi, bool reattach_p)
1236{
1237 rtx copy;
1238 bool unique = VINSN_UNIQUE_P (vi);
1239 vinsn_t new_vi;
b8698a0f 1240
e855c69d
AB
1241 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1242 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1243 if (reattach_p)
1244 {
1245 vinsn_detach (vi);
1246 vinsn_attach (new_vi);
1247 }
1248
1249 return new_vi;
1250}
1251
1252/* Delete the VI vinsn and free its data. */
1253static void
1254vinsn_delete (vinsn_t vi)
1255{
1256 gcc_assert (VINSN_COUNT (vi) == 0);
1257
1258 return_regset_to_pool (VINSN_REG_SETS (vi));
1259 return_regset_to_pool (VINSN_REG_USES (vi));
1260 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1261
1262 free (vi);
1263}
1264
b8698a0f 1265/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1266 Remove VI if it is no longer needed. */
1267void
1268vinsn_detach (vinsn_t vi)
1269{
1270 gcc_assert (VINSN_COUNT (vi) > 0);
1271
1272 if (--VINSN_COUNT (vi) == 0)
1273 vinsn_delete (vi);
1274}
1275
1276/* Returns TRUE if VI is a branch. */
1277bool
1278vinsn_cond_branch_p (vinsn_t vi)
1279{
1280 insn_t insn;
1281
1282 if (!VINSN_UNIQUE_P (vi))
1283 return false;
1284
1285 insn = VINSN_INSN_RTX (vi);
1286 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1287 return false;
1288
1289 return control_flow_insn_p (insn);
1290}
1291
1292/* Return latency of INSN. */
1293static int
1294sel_insn_rtx_cost (rtx insn)
1295{
1296 int cost;
1297
1298 /* A USE insn, or something else we don't need to
1299 understand. We can't pass these directly to
1300 result_ready_cost or insn_default_latency because it will
1301 trigger a fatal error for unrecognizable insns. */
1302 if (recog_memoized (insn) < 0)
1303 cost = 0;
1304 else
1305 {
1306 cost = insn_default_latency (insn);
1307
1308 if (cost < 0)
1309 cost = 0;
1310 }
1311
1312 return cost;
1313}
1314
1315/* Return the cost of the VI.
1316 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1317int
1318sel_vinsn_cost (vinsn_t vi)
1319{
1320 int cost = vi->cost;
1321
1322 if (cost < 0)
1323 {
1324 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1325 vi->cost = cost;
1326 }
1327
1328 return cost;
1329}
1330\f
1331
1332/* Functions for insn emitting. */
1333
1334/* Emit new insn after AFTER based on PATTERN and initialize its data from
1335 EXPR and SEQNO. */
1336insn_t
1337sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1338{
1339 insn_t new_insn;
1340
1341 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1342
1343 new_insn = emit_insn_after (pattern, after);
1344 set_insn_init (expr, NULL, seqno);
1345 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1346
1347 return new_insn;
1348}
1349
1350/* Force newly generated vinsns to be unique. */
1351static bool init_insn_force_unique_p = false;
1352
1353/* Emit new speculation recovery insn after AFTER based on PATTERN and
1354 initialize its data from EXPR and SEQNO. */
1355insn_t
1356sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1357 insn_t after)
1358{
1359 insn_t insn;
1360
1361 gcc_assert (!init_insn_force_unique_p);
1362
1363 init_insn_force_unique_p = true;
1364 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1365 CANT_MOVE (insn) = 1;
1366 init_insn_force_unique_p = false;
1367
1368 return insn;
1369}
1370
1371/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1372 take it as a new vinsn instead of EXPR's vinsn.
1373 We simplify insns later, after scheduling region in
e855c69d
AB
1374 simplify_changed_insns. */
1375insn_t
b8698a0f 1376sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1377 insn_t after)
1378{
1379 expr_t emit_expr;
1380 insn_t insn;
1381 int flags;
b8698a0f
L
1382
1383 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1384 seqno);
1385 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1386 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1387
1388 flags = INSN_INIT_TODO_SSID;
1389 if (INSN_LUID (insn) == 0)
1390 flags |= INSN_INIT_TODO_LUID;
1391 sel_init_new_insn (insn, flags);
1392
1393 return insn;
1394}
1395
1396/* Move insn from EXPR after AFTER. */
1397insn_t
1398sel_move_insn (expr_t expr, int seqno, insn_t after)
1399{
1400 insn_t insn = EXPR_INSN_RTX (expr);
1401 basic_block bb = BLOCK_FOR_INSN (after);
1402 insn_t next = NEXT_INSN (after);
1403
1404 /* Assert that in move_op we disconnected this insn properly. */
1405 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1406 PREV_INSN (insn) = after;
1407 NEXT_INSN (insn) = next;
1408
1409 NEXT_INSN (after) = insn;
1410 PREV_INSN (next) = insn;
1411
1412 /* Update links from insn to bb and vice versa. */
1413 df_insn_change_bb (insn, bb);
1414 if (BB_END (bb) == after)
1415 BB_END (bb) = insn;
b8698a0f 1416
e855c69d
AB
1417 prepare_insn_expr (insn, seqno);
1418 return insn;
1419}
1420
1421\f
1422/* Functions to work with right-hand sides. */
1423
b8698a0f 1424/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1425 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1426 COMPARE_VINSNS is true. Write to INDP the index on which
1427 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1428 retain VECT's sort order. */
1429static bool
b8698a0f
L
1430find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1431 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1432 bool compare_vinsns, int *indp)
1433{
1434 expr_history_def *arr;
1435 int i, j, len = VEC_length (expr_history_def, vect);
1436
1437 if (len == 0)
1438 {
1439 *indp = 0;
1440 return false;
1441 }
1442
1443 arr = VEC_address (expr_history_def, vect);
1444 i = 0, j = len - 1;
1445
1446 while (i <= j)
1447 {
1448 unsigned auid = arr[i].uid;
b8698a0f 1449 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1450
1451 if (auid == uid
b8698a0f
L
1452 /* When undoing transformation on a bookkeeping copy, the new vinsn
1453 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1454 This is because the insn whose copy we're checking was possibly
1455 substituted itself. */
b8698a0f 1456 && (! compare_vinsns
e855c69d
AB
1457 || vinsn_equal_p (avinsn, new_vinsn)))
1458 {
1459 *indp = i;
1460 return true;
1461 }
1462 else if (auid > uid)
1463 break;
1464 i++;
1465 }
1466
1467 *indp = i;
1468 return false;
1469}
1470
b8698a0f
L
1471/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1472 the position found or -1, if no such value is in vector.
e855c69d
AB
1473 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1474int
b8698a0f 1475find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1476 vinsn_t new_vinsn, bool originators_p)
1477{
1478 int ind;
1479
b8698a0f 1480 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1481 false, &ind))
1482 return ind;
1483
1484 if (INSN_ORIGINATORS (insn) && originators_p)
1485 {
1486 unsigned uid;
1487 bitmap_iterator bi;
1488
1489 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1490 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1491 return ind;
1492 }
b8698a0f 1493
e855c69d
AB
1494 return -1;
1495}
1496
b8698a0f
L
1497/* Insert new element in a sorted history vector pointed to by PVECT,
1498 if it is not there already. The element is searched using
e855c69d
AB
1499 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1500 the history of a transformation. */
1501void
1502insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1503 unsigned uid, enum local_trans_type type,
b8698a0f 1504 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1505 ds_t spec_ds)
1506{
1507 VEC(expr_history_def, heap) *vect = *pvect;
1508 expr_history_def temp;
1509 bool res;
1510 int ind;
1511
1512 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1513
1514 if (res)
1515 {
1516 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1517
b8698a0f 1518 /* It is possible that speculation types of expressions that were
e855c69d
AB
1519 propagated through different paths will be different here. In this
1520 case, merge the status to get the correct check later. */
1521 if (phist->spec_ds != spec_ds)
1522 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1523 return;
1524 }
b8698a0f 1525
e855c69d
AB
1526 temp.uid = uid;
1527 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1528 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1529 temp.spec_ds = spec_ds;
1530 temp.type = type;
1531
1532 vinsn_attach (old_expr_vinsn);
1533 vinsn_attach (new_expr_vinsn);
1534 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1535 *pvect = vect;
1536}
1537
1538/* Free history vector PVECT. */
1539static void
1540free_history_vect (VEC (expr_history_def, heap) **pvect)
1541{
1542 unsigned i;
1543 expr_history_def *phist;
1544
1545 if (! *pvect)
1546 return;
b8698a0f
L
1547
1548 for (i = 0;
e855c69d
AB
1549 VEC_iterate (expr_history_def, *pvect, i, phist);
1550 i++)
1551 {
1552 vinsn_detach (phist->old_expr_vinsn);
1553 vinsn_detach (phist->new_expr_vinsn);
1554 }
b8698a0f 1555
e855c69d
AB
1556 VEC_free (expr_history_def, heap, *pvect);
1557 *pvect = NULL;
1558}
1559
1560
1561/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1562bool
1563vinsn_equal_p (vinsn_t x, vinsn_t y)
1564{
1565 rtx_equal_p_callback_function repcf;
1566
1567 if (x == y)
1568 return true;
1569
1570 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1571 return false;
1572
1573 if (VINSN_HASH (x) != VINSN_HASH (y))
1574 return false;
1575
1576 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1577 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1578 {
1579 /* Compare RHSes of VINSNs. */
1580 gcc_assert (VINSN_RHS (x));
1581 gcc_assert (VINSN_RHS (y));
1582
1583 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1584 }
1585
1586 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1587}
1588\f
1589
1590/* Functions for working with expressions. */
1591
1592/* Initialize EXPR. */
1593static void
1594init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1595 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1596 ds_t spec_to_check_ds, int orig_sched_cycle,
b8698a0f 1597 VEC(expr_history_def, heap) *history, bool target_available,
e855c69d
AB
1598 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1599 bool cant_move)
1600{
1601 vinsn_attach (vi);
1602
1603 EXPR_VINSN (expr) = vi;
1604 EXPR_SPEC (expr) = spec;
1605 EXPR_USEFULNESS (expr) = use;
1606 EXPR_PRIORITY (expr) = priority;
1607 EXPR_PRIORITY_ADJ (expr) = 0;
1608 EXPR_SCHED_TIMES (expr) = sched_times;
1609 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1610 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1611 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1612 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1613
1614 if (history)
1615 EXPR_HISTORY_OF_CHANGES (expr) = history;
1616 else
1617 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1618
1619 EXPR_TARGET_AVAILABLE (expr) = target_available;
1620 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1621 EXPR_WAS_RENAMED (expr) = was_renamed;
1622 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1623 EXPR_CANT_MOVE (expr) = cant_move;
1624}
1625
1626/* Make a copy of the expr FROM into the expr TO. */
1627void
1628copy_expr (expr_t to, expr_t from)
1629{
1630 VEC(expr_history_def, heap) *temp = NULL;
1631
1632 if (EXPR_HISTORY_OF_CHANGES (from))
1633 {
1634 unsigned i;
1635 expr_history_def *phist;
1636
1637 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1638 for (i = 0;
e855c69d
AB
1639 VEC_iterate (expr_history_def, temp, i, phist);
1640 i++)
1641 {
1642 vinsn_attach (phist->old_expr_vinsn);
1643 vinsn_attach (phist->new_expr_vinsn);
1644 }
1645 }
1646
b8698a0f 1647 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1648 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1649 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1650 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1651 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1652 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1653 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1654 EXPR_CANT_MOVE (from));
1655}
1656
b8698a0f 1657/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1658 "uninteresting" data such as bitmap cache. */
1659void
1660copy_expr_onside (expr_t to, expr_t from)
1661{
1662 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1663 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1664 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1665 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1666 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1667 EXPR_CANT_MOVE (from));
1668}
1669
1670/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1671 initializing new insns. */
1672static void
1673prepare_insn_expr (insn_t insn, int seqno)
1674{
1675 expr_t expr = INSN_EXPR (insn);
1676 ds_t ds;
b8698a0f 1677
e855c69d
AB
1678 INSN_SEQNO (insn) = seqno;
1679 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1680 EXPR_SPEC (expr) = 0;
1681 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1682 EXPR_WAS_SUBSTITUTED (expr) = 0;
1683 EXPR_WAS_RENAMED (expr) = 0;
1684 EXPR_TARGET_AVAILABLE (expr) = 1;
1685 INSN_LIVE_VALID_P (insn) = false;
1686
1687 /* ??? If this expression is speculative, make its dependence
1688 as weak as possible. We can filter this expression later
1689 in process_spec_exprs, because we do not distinguish
1690 between the status we got during compute_av_set and the
1691 existing status. To be fixed. */
1692 ds = EXPR_SPEC_DONE_DS (expr);
1693 if (ds)
1694 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1695
1696 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1697}
1698
1699/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1700 is non-null when expressions are merged from different successors at
e855c69d
AB
1701 a split point. */
1702static void
1703update_target_availability (expr_t to, expr_t from, insn_t split_point)
1704{
b8698a0f 1705 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1706 || EXPR_TARGET_AVAILABLE (from) < 0)
1707 EXPR_TARGET_AVAILABLE (to) = -1;
1708 else
1709 {
1710 /* We try to detect the case when one of the expressions
1711 can only be reached through another one. In this case,
1712 we can do better. */
1713 if (split_point == NULL)
1714 {
1715 int toind, fromind;
1716
1717 toind = EXPR_ORIG_BB_INDEX (to);
1718 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1719
e855c69d 1720 if (toind && toind == fromind)
b8698a0f 1721 /* Do nothing -- everything is done in
e855c69d
AB
1722 merge_with_other_exprs. */
1723 ;
1724 else
1725 EXPR_TARGET_AVAILABLE (to) = -1;
1726 }
1727 else
1728 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1729 }
1730}
1731
1732/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1733 is non-null when expressions are merged from different successors at
e855c69d
AB
1734 a split point. */
1735static void
1736update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1737{
1738 ds_t old_to_ds, old_from_ds;
1739
1740 old_to_ds = EXPR_SPEC_DONE_DS (to);
1741 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1742
e855c69d
AB
1743 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1744 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1745 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1746
1747 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1748 speculative with a control&data speculative one, we really have
e855c69d
AB
1749 to change vinsn too. Also, when speculative status is changed,
1750 we also need to record this as a transformation in expr's history. */
1751 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1752 {
1753 old_to_ds = ds_get_speculation_types (old_to_ds);
1754 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1755
e855c69d
AB
1756 if (old_to_ds != old_from_ds)
1757 {
1758 ds_t record_ds;
b8698a0f
L
1759
1760 /* When both expressions are speculative, we need to change
e855c69d
AB
1761 the vinsn first. */
1762 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1763 {
1764 int res;
b8698a0f 1765
e855c69d
AB
1766 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1767 gcc_assert (res >= 0);
1768 }
1769
1770 if (split_point != NULL)
1771 {
1772 /* Record the change with proper status. */
1773 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1774 record_ds &= ~(old_to_ds & SPECULATIVE);
1775 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1776
1777 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1778 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1779 EXPR_VINSN (from), EXPR_VINSN (to),
1780 record_ds);
1781 }
1782 }
1783 }
1784}
1785
1786
1787/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1788 this is done along different paths. */
1789void
1790merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1791{
1792 int i;
1793 expr_history_def *phist;
b8698a0f 1794
e855c69d
AB
1795 /* For now, we just set the spec of resulting expr to be minimum of the specs
1796 of merged exprs. */
1797 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1798 EXPR_SPEC (to) = EXPR_SPEC (from);
1799
1800 if (split_point)
1801 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1802 else
b8698a0f 1803 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1804 EXPR_USEFULNESS (from));
1805
1806 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1807 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1808
1809 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1810 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1811
1812 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1813 EXPR_ORIG_BB_INDEX (to) = 0;
1814
b8698a0f 1815 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1816 EXPR_ORIG_SCHED_CYCLE (from));
1817
1818 /* We keep this vector sorted. */
b8698a0f
L
1819 for (i = 0;
1820 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
e855c69d
AB
1821 i, phist);
1822 i++)
b8698a0f
L
1823 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1824 phist->uid, phist->type,
1825 phist->old_expr_vinsn, phist->new_expr_vinsn,
e855c69d
AB
1826 phist->spec_ds);
1827
1828 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1829 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1830 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1831
1832 update_target_availability (to, from, split_point);
1833 update_speculative_bits (to, from, split_point);
1834}
1835
1836/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1837 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1838 are merged from different successors at a split point. */
1839void
1840merge_expr (expr_t to, expr_t from, insn_t split_point)
1841{
1842 vinsn_t to_vi = EXPR_VINSN (to);
1843 vinsn_t from_vi = EXPR_VINSN (from);
1844
1845 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1846
1847 /* Make sure that speculative pattern is propagated into exprs that
1848 have non-speculative one. This will provide us with consistent
1849 speculative bits and speculative patterns inside expr. */
1850 if (EXPR_SPEC_DONE_DS (to) == 0
1851 && EXPR_SPEC_DONE_DS (from) != 0)
1852 change_vinsn_in_expr (to, EXPR_VINSN (from));
1853
1854 merge_expr_data (to, from, split_point);
1855 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1856}
1857
1858/* Clear the information of this EXPR. */
1859void
1860clear_expr (expr_t expr)
1861{
b8698a0f 1862
e855c69d
AB
1863 vinsn_detach (EXPR_VINSN (expr));
1864 EXPR_VINSN (expr) = NULL;
1865
1866 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1867}
1868
1869/* For a given LV_SET, mark EXPR having unavailable target register. */
1870static void
1871set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1872{
1873 if (EXPR_SEPARABLE_P (expr))
1874 {
1875 if (REG_P (EXPR_LHS (expr))
1876 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1877 {
b8698a0f
L
1878 /* If it's an insn like r1 = use (r1, ...), and it exists in
1879 different forms in each of the av_sets being merged, we can't say
1880 whether original destination register is available or not.
1881 However, this still works if destination register is not used
e855c69d
AB
1882 in the original expression: if the branch at which LV_SET we're
1883 looking here is not actually 'other branch' in sense that same
b8698a0f 1884 expression is available through it (but it can't be determined
e855c69d 1885 at computation stage because of transformations on one of the
b8698a0f
L
1886 branches), it still won't affect the availability.
1887 Liveness of a register somewhere on a code motion path means
1888 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1889 'other' branch, live at the point immediately following
1890 the original operation, or is read by the original operation.
1891 The latter case is filtered out in the condition below.
1892 It still doesn't cover the case when register is defined and used
1893 somewhere within the code motion path, and in this case we could
1894 miss a unifying code motion along both branches using a renamed
1895 register, but it won't affect a code correctness since upon
1896 an actual code motion a bookkeeping code would be generated. */
b8698a0f 1897 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1898 REGNO (EXPR_LHS (expr))))
1899 EXPR_TARGET_AVAILABLE (expr) = -1;
1900 else
1901 EXPR_TARGET_AVAILABLE (expr) = false;
1902 }
1903 }
1904 else
1905 {
1906 unsigned regno;
1907 reg_set_iterator rsi;
b8698a0f
L
1908
1909 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1910 0, regno, rsi)
1911 if (bitmap_bit_p (lv_set, regno))
1912 {
1913 EXPR_TARGET_AVAILABLE (expr) = false;
1914 break;
1915 }
1916
1917 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1918 0, regno, rsi)
1919 if (bitmap_bit_p (lv_set, regno))
1920 {
1921 EXPR_TARGET_AVAILABLE (expr) = false;
1922 break;
1923 }
1924 }
1925}
1926
b8698a0f 1927/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1928 or dependence status have changed, 2 when also the target register
1929 became unavailable, 0 if nothing had to be changed. */
1930int
1931speculate_expr (expr_t expr, ds_t ds)
1932{
1933 int res;
1934 rtx orig_insn_rtx;
1935 rtx spec_pat;
1936 ds_t target_ds, current_ds;
1937
1938 /* Obtain the status we need to put on EXPR. */
1939 target_ds = (ds & SPECULATIVE);
1940 current_ds = EXPR_SPEC_DONE_DS (expr);
1941 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1942
1943 orig_insn_rtx = EXPR_INSN_RTX (expr);
1944
1945 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1946
1947 switch (res)
1948 {
1949 case 0:
1950 EXPR_SPEC_DONE_DS (expr) = ds;
1951 return current_ds != ds ? 1 : 0;
b8698a0f 1952
e855c69d
AB
1953 case 1:
1954 {
1955 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1956 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1957
1958 change_vinsn_in_expr (expr, spec_vinsn);
1959 EXPR_SPEC_DONE_DS (expr) = ds;
1960 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1961
b8698a0f 1962 /* Do not allow clobbering the address register of speculative
e855c69d 1963 insns. */
b8698a0f 1964 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1965 expr_dest_regno (expr)))
1966 {
1967 EXPR_TARGET_AVAILABLE (expr) = false;
1968 return 2;
1969 }
1970
1971 return 1;
1972 }
1973
1974 case -1:
1975 return -1;
1976
1977 default:
1978 gcc_unreachable ();
1979 return -1;
1980 }
1981}
1982
1983/* Return a destination register, if any, of EXPR. */
1984rtx
1985expr_dest_reg (expr_t expr)
1986{
1987 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1988
1989 if (dest != NULL_RTX && REG_P (dest))
1990 return dest;
1991
1992 return NULL_RTX;
1993}
1994
1995/* Returns the REGNO of the R's destination. */
1996unsigned
1997expr_dest_regno (expr_t expr)
1998{
1999 rtx dest = expr_dest_reg (expr);
2000
2001 gcc_assert (dest != NULL_RTX);
2002 return REGNO (dest);
2003}
2004
b8698a0f 2005/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2006 AV_SET having unavailable target register. */
2007void
2008mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2009{
2010 expr_t expr;
2011 av_set_iterator avi;
2012
2013 FOR_EACH_EXPR (expr, avi, join_set)
2014 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2015 set_unavailable_target_for_expr (expr, lv_set);
2016}
2017\f
2018
2019/* Av set functions. */
2020
2021/* Add a new element to av set SETP.
2022 Return the element added. */
2023static av_set_t
2024av_set_add_element (av_set_t *setp)
2025{
2026 /* Insert at the beginning of the list. */
2027 _list_add (setp);
2028 return *setp;
2029}
2030
2031/* Add EXPR to SETP. */
2032void
2033av_set_add (av_set_t *setp, expr_t expr)
2034{
2035 av_set_t elem;
b8698a0f 2036
e855c69d
AB
2037 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2038 elem = av_set_add_element (setp);
2039 copy_expr (_AV_SET_EXPR (elem), expr);
2040}
2041
2042/* Same, but do not copy EXPR. */
2043static void
2044av_set_add_nocopy (av_set_t *setp, expr_t expr)
2045{
2046 av_set_t elem;
2047
2048 elem = av_set_add_element (setp);
2049 *_AV_SET_EXPR (elem) = *expr;
2050}
2051
2052/* Remove expr pointed to by IP from the av_set. */
2053void
2054av_set_iter_remove (av_set_iterator *ip)
2055{
2056 clear_expr (_AV_SET_EXPR (*ip->lp));
2057 _list_iter_remove (ip);
2058}
2059
2060/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2061 sense of vinsn_equal_p function. Return NULL if no such expr is
2062 in SET was found. */
2063expr_t
2064av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2065{
2066 expr_t expr;
2067 av_set_iterator i;
2068
2069 FOR_EACH_EXPR (expr, i, set)
2070 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2071 return expr;
2072 return NULL;
2073}
2074
2075/* Same, but also remove the EXPR found. */
2076static expr_t
2077av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2078{
2079 expr_t expr;
2080 av_set_iterator i;
2081
2082 FOR_EACH_EXPR_1 (expr, i, setp)
2083 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2084 {
2085 _list_iter_remove_nofree (&i);
2086 return expr;
2087 }
2088 return NULL;
2089}
2090
2091/* Search for an expr in SET, such that it's equivalent to EXPR in the
2092 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2093 Returns NULL if no such expr is in SET was found. */
2094static expr_t
2095av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2096{
2097 expr_t cur_expr;
2098 av_set_iterator i;
2099
2100 FOR_EACH_EXPR (cur_expr, i, set)
2101 {
2102 if (cur_expr == expr)
2103 continue;
2104 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2105 return cur_expr;
2106 }
2107
2108 return NULL;
2109}
2110
2111/* If other expression is already in AVP, remove one of them. */
2112expr_t
2113merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2114{
2115 expr_t expr2;
2116
2117 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2118 if (expr2 != NULL)
2119 {
2120 /* Reset target availability on merge, since taking it only from one
2121 of the exprs would be controversial for different code. */
2122 EXPR_TARGET_AVAILABLE (expr2) = -1;
2123 EXPR_USEFULNESS (expr2) = 0;
2124
2125 merge_expr (expr2, expr, NULL);
b8698a0f 2126
e855c69d
AB
2127 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2128 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2129
e855c69d
AB
2130 av_set_iter_remove (ip);
2131 return expr2;
2132 }
2133
2134 return expr;
2135}
2136
2137/* Return true if there is an expr that correlates to VI in SET. */
2138bool
2139av_set_is_in_p (av_set_t set, vinsn_t vi)
2140{
2141 return av_set_lookup (set, vi) != NULL;
2142}
2143
2144/* Return a copy of SET. */
2145av_set_t
2146av_set_copy (av_set_t set)
2147{
2148 expr_t expr;
2149 av_set_iterator i;
2150 av_set_t res = NULL;
2151
2152 FOR_EACH_EXPR (expr, i, set)
2153 av_set_add (&res, expr);
2154
2155 return res;
2156}
2157
2158/* Join two av sets that do not have common elements by attaching second set
2159 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2160 _AV_SET_NEXT of first set's last element). */
2161static void
2162join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2163{
2164 gcc_assert (*to_tailp == NULL);
2165 *to_tailp = *fromp;
2166 *fromp = NULL;
2167}
2168
2169/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2170 pointed to by FROMP afterwards. */
2171void
2172av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2173{
2174 expr_t expr1;
2175 av_set_iterator i;
2176
2177 /* Delete from TOP all exprs, that present in FROMP. */
2178 FOR_EACH_EXPR_1 (expr1, i, top)
2179 {
2180 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2181
2182 if (expr2)
2183 {
2184 merge_expr (expr2, expr1, insn);
2185 av_set_iter_remove (&i);
2186 }
2187 }
2188
2189 join_distinct_sets (i.lp, fromp);
2190}
2191
b8698a0f 2192/* Same as above, but also update availability of target register in
e855c69d
AB
2193 TOP judging by TO_LV_SET and FROM_LV_SET. */
2194void
2195av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2196 regset from_lv_set, insn_t insn)
2197{
2198 expr_t expr1;
2199 av_set_iterator i;
2200 av_set_t *to_tailp, in_both_set = NULL;
2201
2202 /* Delete from TOP all expres, that present in FROMP. */
2203 FOR_EACH_EXPR_1 (expr1, i, top)
2204 {
2205 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2206
2207 if (expr2)
2208 {
b8698a0f 2209 /* It may be that the expressions have different destination
e855c69d
AB
2210 registers, in which case we need to check liveness here. */
2211 if (EXPR_SEPARABLE_P (expr1))
2212 {
b8698a0f 2213 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2214 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2215 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2216 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2217
2218 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2219 *other* register on the current path, we did it only
2220 for the current target register. Give up. */
2221 if (regno1 != regno2)
2222 EXPR_TARGET_AVAILABLE (expr2) = -1;
2223 }
2224 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2225 EXPR_TARGET_AVAILABLE (expr2) = -1;
2226
2227 merge_expr (expr2, expr1, insn);
2228 av_set_add_nocopy (&in_both_set, expr2);
2229 av_set_iter_remove (&i);
2230 }
2231 else
b8698a0f 2232 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2233 FROM_LV_SET. */
2234 set_unavailable_target_for_expr (expr1, from_lv_set);
2235 }
2236 to_tailp = i.lp;
2237
2238 /* These expressions are not present in TOP. Check liveness
2239 restrictions on TO_LV_SET. */
2240 FOR_EACH_EXPR (expr1, i, *fromp)
2241 set_unavailable_target_for_expr (expr1, to_lv_set);
2242
2243 join_distinct_sets (i.lp, &in_both_set);
2244 join_distinct_sets (to_tailp, fromp);
2245}
2246
2247/* Clear av_set pointed to by SETP. */
2248void
2249av_set_clear (av_set_t *setp)
2250{
2251 expr_t expr;
2252 av_set_iterator i;
2253
2254 FOR_EACH_EXPR_1 (expr, i, setp)
2255 av_set_iter_remove (&i);
2256
2257 gcc_assert (*setp == NULL);
2258}
2259
2260/* Leave only one non-speculative element in the SETP. */
2261void
2262av_set_leave_one_nonspec (av_set_t *setp)
2263{
2264 expr_t expr;
2265 av_set_iterator i;
2266 bool has_one_nonspec = false;
2267
b8698a0f 2268 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2269 (the first one). */
2270 FOR_EACH_EXPR_1 (expr, i, setp)
2271 {
2272 if (!EXPR_SPEC_DONE_DS (expr))
2273 {
2274 if (has_one_nonspec)
2275 av_set_iter_remove (&i);
2276 else
2277 has_one_nonspec = true;
2278 }
2279 }
2280}
2281
2282/* Return the N'th element of the SET. */
2283expr_t
2284av_set_element (av_set_t set, int n)
2285{
2286 expr_t expr;
2287 av_set_iterator i;
2288
2289 FOR_EACH_EXPR (expr, i, set)
2290 if (n-- == 0)
2291 return expr;
2292
2293 gcc_unreachable ();
2294 return NULL;
2295}
2296
2297/* Deletes all expressions from AVP that are conditional branches (IFs). */
2298void
2299av_set_substract_cond_branches (av_set_t *avp)
2300{
2301 av_set_iterator i;
2302 expr_t expr;
2303
2304 FOR_EACH_EXPR_1 (expr, i, avp)
2305 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2306 av_set_iter_remove (&i);
2307}
2308
b8698a0f 2309/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2310 value PROB / ALL_PROB. */
2311void
2312av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2313{
2314 av_set_iterator i;
2315 expr_t expr;
2316
2317 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2318 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2319 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2320 : 0);
2321}
2322
2323/* Leave in AVP only those expressions, which are present in AV,
2324 and return it. */
2325void
2326av_set_intersect (av_set_t *avp, av_set_t av)
2327{
2328 av_set_iterator i;
2329 expr_t expr;
2330
2331 FOR_EACH_EXPR_1 (expr, i, avp)
2332 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2333 av_set_iter_remove (&i);
2334}
2335
2336\f
2337
2338/* Dependence hooks to initialize insn data. */
2339
2340/* This is used in hooks callable from dependence analysis when initializing
2341 instruction's data. */
2342static struct
2343{
2344 /* Where the dependence was found (lhs/rhs). */
2345 deps_where_t where;
2346
2347 /* The actual data object to initialize. */
2348 idata_t id;
2349
2350 /* True when the insn should not be made clonable. */
2351 bool force_unique_p;
2352
2353 /* True when insn should be treated as of type USE, i.e. never renamed. */
2354 bool force_use_p;
2355} deps_init_id_data;
2356
2357
b8698a0f 2358/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2359 clonable. */
2360static void
2361setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2362{
2363 int type;
b8698a0f 2364
e855c69d
AB
2365 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2366 That clonable insns which can be separated into lhs and rhs have type SET.
2367 Other clonable insns have type USE. */
2368 type = GET_CODE (insn);
2369
2370 /* Only regular insns could be cloned. */
2371 if (type == INSN && !force_unique_p)
2372 type = SET;
2373 else if (type == JUMP_INSN && simplejump_p (insn))
2374 type = PC;
b5b8b0ac
AO
2375 else if (type == DEBUG_INSN)
2376 type = !force_unique_p ? USE : INSN;
b8698a0f 2377
e855c69d
AB
2378 IDATA_TYPE (id) = type;
2379 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2380 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2381 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2382}
2383
2384/* Start initializing insn data. */
2385static void
2386deps_init_id_start_insn (insn_t insn)
2387{
2388 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2389
2390 setup_id_for_insn (deps_init_id_data.id, insn,
2391 deps_init_id_data.force_unique_p);
2392 deps_init_id_data.where = DEPS_IN_INSN;
2393}
2394
2395/* Start initializing lhs data. */
2396static void
2397deps_init_id_start_lhs (rtx lhs)
2398{
2399 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2400 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2401
2402 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2403 {
2404 IDATA_LHS (deps_init_id_data.id) = lhs;
2405 deps_init_id_data.where = DEPS_IN_LHS;
2406 }
2407}
2408
2409/* Finish initializing lhs data. */
2410static void
2411deps_init_id_finish_lhs (void)
2412{
2413 deps_init_id_data.where = DEPS_IN_INSN;
2414}
2415
2416/* Note a set of REGNO. */
2417static void
2418deps_init_id_note_reg_set (int regno)
2419{
2420 haifa_note_reg_set (regno);
2421
2422 if (deps_init_id_data.where == DEPS_IN_RHS)
2423 deps_init_id_data.force_use_p = true;
2424
2425 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2426 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2427
2428#ifdef STACK_REGS
b8698a0f 2429 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2430 renaming to avoid issues with find_used_regs. */
2431 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2432 deps_init_id_data.force_use_p = true;
2433#endif
2434}
2435
2436/* Note a clobber of REGNO. */
2437static void
2438deps_init_id_note_reg_clobber (int regno)
2439{
2440 haifa_note_reg_clobber (regno);
2441
2442 if (deps_init_id_data.where == DEPS_IN_RHS)
2443 deps_init_id_data.force_use_p = true;
2444
2445 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2446 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2447}
2448
2449/* Note a use of REGNO. */
2450static void
2451deps_init_id_note_reg_use (int regno)
2452{
2453 haifa_note_reg_use (regno);
2454
2455 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2456 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2457}
2458
2459/* Start initializing rhs data. */
2460static void
2461deps_init_id_start_rhs (rtx rhs)
2462{
2463 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2464
2465 /* And there was no sel_deps_reset_to_insn (). */
2466 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2467 {
2468 IDATA_RHS (deps_init_id_data.id) = rhs;
2469 deps_init_id_data.where = DEPS_IN_RHS;
2470 }
2471}
2472
2473/* Finish initializing rhs data. */
2474static void
2475deps_init_id_finish_rhs (void)
2476{
2477 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2478 || deps_init_id_data.where == DEPS_IN_INSN);
2479 deps_init_id_data.where = DEPS_IN_INSN;
2480}
2481
2482/* Finish initializing insn data. */
2483static void
2484deps_init_id_finish_insn (void)
2485{
2486 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2487
2488 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2489 {
2490 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2491 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2492
2493 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2494 || deps_init_id_data.force_use_p)
2495 {
b8698a0f 2496 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2497 separately. However, we still want to have them recorded
b8698a0f 2498 for the purposes of substitution. That's why we don't
e855c69d
AB
2499 simply call downgrade_to_use () here. */
2500 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2501 gcc_assert (!lhs == !rhs);
2502
2503 IDATA_TYPE (deps_init_id_data.id) = USE;
2504 }
2505 }
2506
2507 deps_init_id_data.where = DEPS_IN_NOWHERE;
2508}
2509
2510/* This is dependence info used for initializing insn's data. */
2511static struct sched_deps_info_def deps_init_id_sched_deps_info;
2512
2513/* This initializes most of the static part of the above structure. */
2514static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2515 {
2516 NULL,
2517
2518 deps_init_id_start_insn,
2519 deps_init_id_finish_insn,
2520 deps_init_id_start_lhs,
2521 deps_init_id_finish_lhs,
2522 deps_init_id_start_rhs,
2523 deps_init_id_finish_rhs,
2524 deps_init_id_note_reg_set,
2525 deps_init_id_note_reg_clobber,
2526 deps_init_id_note_reg_use,
2527 NULL, /* note_mem_dep */
2528 NULL, /* note_dep */
2529
2530 0, /* use_cselib */
2531 0, /* use_deps_list */
2532 0 /* generate_spec_deps */
2533 };
2534
2535/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2536 we don't actually need information about lhs and rhs. */
2537static void
2538setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2539{
2540 rtx pat = PATTERN (insn);
b8698a0f 2541
481683e1 2542 if (NONJUMP_INSN_P (insn)
b8698a0f 2543 && GET_CODE (pat) == SET
e855c69d
AB
2544 && !force_unique_p)
2545 {
2546 IDATA_RHS (id) = SET_SRC (pat);
2547 IDATA_LHS (id) = SET_DEST (pat);
2548 }
2549 else
2550 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2551}
2552
2553/* Possibly downgrade INSN to USE. */
2554static void
2555maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2556{
2557 bool must_be_use = false;
2558 unsigned uid = INSN_UID (insn);
57512f53 2559 df_ref *rec;
e855c69d
AB
2560 rtx lhs = IDATA_LHS (id);
2561 rtx rhs = IDATA_RHS (id);
b8698a0f 2562
e855c69d
AB
2563 /* We downgrade only SETs. */
2564 if (IDATA_TYPE (id) != SET)
2565 return;
2566
2567 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2568 {
2569 IDATA_TYPE (id) = USE;
2570 return;
2571 }
b8698a0f 2572
e855c69d
AB
2573 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2574 {
57512f53 2575 df_ref def = *rec;
b8698a0f 2576
e855c69d
AB
2577 if (DF_REF_INSN (def)
2578 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2579 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2580 {
2581 must_be_use = true;
2582 break;
2583 }
2584
2585#ifdef STACK_REGS
b8698a0f 2586 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2587 renaming to avoid issues with find_used_regs. */
2588 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2589 {
2590 must_be_use = true;
2591 break;
2592 }
2593#endif
b8698a0f
L
2594 }
2595
e855c69d
AB
2596 if (must_be_use)
2597 IDATA_TYPE (id) = USE;
2598}
2599
2600/* Setup register sets describing INSN in ID. */
2601static void
2602setup_id_reg_sets (idata_t id, insn_t insn)
2603{
2604 unsigned uid = INSN_UID (insn);
57512f53 2605 df_ref *rec;
e855c69d 2606 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2607
e855c69d
AB
2608 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2609 {
57512f53 2610 df_ref def = *rec;
e855c69d 2611 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2612
e855c69d
AB
2613 /* Post modifies are treated like clobbers by sched-deps.c. */
2614 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2615 | DF_REF_PRE_POST_MODIFY)))
2616 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2617 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2618 {
2619 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2620
2621#ifdef STACK_REGS
b8698a0f 2622 /* For stack registers, treat writes to them as writes
e855c69d
AB
2623 to the first one to be consistent with sched-deps.c. */
2624 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2625 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2626#endif
2627 }
2628 /* Mark special refs that generate read/write def pair. */
2629 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2630 || regno == STACK_POINTER_REGNUM)
2631 bitmap_set_bit (tmp, regno);
2632 }
b8698a0f 2633
e855c69d
AB
2634 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2635 {
57512f53 2636 df_ref use = *rec;
e855c69d
AB
2637 unsigned int regno = DF_REF_REGNO (use);
2638
2639 /* When these refs are met for the first time, skip them, as
2640 these uses are just counterparts of some defs. */
2641 if (bitmap_bit_p (tmp, regno))
2642 bitmap_clear_bit (tmp, regno);
2643 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2644 {
2645 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2646
2647#ifdef STACK_REGS
b8698a0f 2648 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2649 the first one to be consistent with sched-deps.c. */
2650 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2651 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2652#endif
2653 }
2654 }
2655
2656 return_regset_to_pool (tmp);
2657}
2658
2659/* Initialize instruction data for INSN in ID using DF's data. */
2660static void
2661init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2662{
2663 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2664
2665 setup_id_for_insn (id, insn, force_unique_p);
2666 setup_id_lhs_rhs (id, insn, force_unique_p);
2667
2668 if (INSN_NOP_P (insn))
2669 return;
2670
2671 maybe_downgrade_id_to_use (id, insn);
2672 setup_id_reg_sets (id, insn);
2673}
2674
2675/* Initialize instruction data for INSN in ID. */
2676static void
2677deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2678{
88302d54 2679 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2680
2681 deps_init_id_data.where = DEPS_IN_NOWHERE;
2682 deps_init_id_data.id = id;
2683 deps_init_id_data.force_unique_p = force_unique_p;
2684 deps_init_id_data.force_use_p = false;
2685
bcf33775 2686 init_deps (dc, false);
e855c69d
AB
2687
2688 memcpy (&deps_init_id_sched_deps_info,
2689 &const_deps_init_id_sched_deps_info,
2690 sizeof (deps_init_id_sched_deps_info));
2691
2692 if (spec_info != NULL)
2693 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2694
2695 sched_deps_info = &deps_init_id_sched_deps_info;
2696
2697 deps_analyze_insn (dc, insn);
2698
2699 free_deps (dc);
2700
2701 deps_init_id_data.id = NULL;
2702}
2703
2704\f
2705
2706/* Implement hooks for collecting fundamental insn properties like if insn is
2707 an ASM or is within a SCHED_GROUP. */
2708
2709/* True when a "one-time init" data for INSN was already inited. */
2710static bool
2711first_time_insn_init (insn_t insn)
2712{
2713 return INSN_LIVE (insn) == NULL;
2714}
2715
2716/* Hash an entry in a transformed_insns hashtable. */
2717static hashval_t
2718hash_transformed_insns (const void *p)
2719{
2720 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2721}
2722
2723/* Compare the entries in a transformed_insns hashtable. */
2724static int
2725eq_transformed_insns (const void *p, const void *q)
2726{
2727 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2728 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2729
2730 if (INSN_UID (i1) == INSN_UID (i2))
2731 return 1;
2732 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2733}
2734
2735/* Free an entry in a transformed_insns hashtable. */
2736static void
2737free_transformed_insns (void *p)
2738{
2739 struct transformed_insns *pti = (struct transformed_insns *) p;
2740
2741 vinsn_detach (pti->vinsn_old);
2742 vinsn_detach (pti->vinsn_new);
2743 free (pti);
2744}
2745
b8698a0f 2746/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2747 we first see the insn. */
2748static void
2749init_first_time_insn_data (insn_t insn)
2750{
2751 /* This should not be set if this is the first time we init data for
2752 insn. */
2753 gcc_assert (first_time_insn_init (insn));
b8698a0f 2754
e855c69d
AB
2755 /* These are needed for nops too. */
2756 INSN_LIVE (insn) = get_regset_from_pool ();
2757 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2758
e855c69d
AB
2759 if (!INSN_NOP_P (insn))
2760 {
2761 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2762 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2763 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2764 = htab_create (16, hash_transformed_insns,
2765 eq_transformed_insns, free_transformed_insns);
bcf33775 2766 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2767 }
2768}
2769
b8698a0f 2770/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2771 Used for extra-large basic blocks. */
2772void
2773free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2774{
2775 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2776
bcf33775
AB
2777 if (! INSN_ANALYZED_DEPS (insn))
2778 return;
b8698a0f 2779
e855c69d
AB
2780 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2781 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2782 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2783
e855c69d
AB
2784 /* This is allocated only for bookkeeping insns. */
2785 if (INSN_ORIGINATORS (insn))
2786 BITMAP_FREE (INSN_ORIGINATORS (insn));
2787 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2788
2789 INSN_ANALYZED_DEPS (insn) = NULL;
2790
b8698a0f 2791 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2792 the deps context (as we believe that it should not happen). */
2793 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2794}
2795
2796/* Free the same data as above for INSN. */
2797static void
2798free_first_time_insn_data (insn_t insn)
2799{
2800 gcc_assert (! first_time_insn_init (insn));
2801
2802 free_data_for_scheduled_insn (insn);
2803 return_regset_to_pool (INSN_LIVE (insn));
2804 INSN_LIVE (insn) = NULL;
2805 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2806}
2807
2808/* Initialize region-scope data structures for basic blocks. */
2809static void
2810init_global_and_expr_for_bb (basic_block bb)
2811{
2812 if (sel_bb_empty_p (bb))
2813 return;
2814
2815 invalidate_av_set (bb);
2816}
2817
2818/* Data for global dependency analysis (to initialize CANT_MOVE and
2819 SCHED_GROUP_P). */
2820static struct
2821{
2822 /* Previous insn. */
2823 insn_t prev_insn;
2824} init_global_data;
2825
2826/* Determine if INSN is in the sched_group, is an asm or should not be
2827 cloned. After that initialize its expr. */
2828static void
2829init_global_and_expr_for_insn (insn_t insn)
2830{
2831 if (LABEL_P (insn))
2832 return;
2833
2834 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2835 {
2836 init_global_data.prev_insn = NULL_RTX;
2837 return;
2838 }
2839
2840 gcc_assert (INSN_P (insn));
2841
2842 if (SCHED_GROUP_P (insn))
2843 /* Setup a sched_group. */
2844 {
2845 insn_t prev_insn = init_global_data.prev_insn;
2846
2847 if (prev_insn)
2848 INSN_SCHED_NEXT (prev_insn) = insn;
2849
2850 init_global_data.prev_insn = insn;
2851 }
2852 else
2853 init_global_data.prev_insn = NULL_RTX;
2854
2855 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2856 || asm_noperands (PATTERN (insn)) >= 0)
2857 /* Mark INSN as an asm. */
2858 INSN_ASM_P (insn) = true;
2859
2860 {
2861 bool force_unique_p;
2862 ds_t spec_done_ds;
2863
2864 /* Certain instructions cannot be cloned. */
2865 if (CANT_MOVE (insn)
2866 || INSN_ASM_P (insn)
2867 || SCHED_GROUP_P (insn)
b8698a0f 2868 || prologue_epilogue_contains (insn)
e855c69d 2869 /* Exception handling insns are always unique. */
8f4f502f 2870 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
e855c69d
AB
2871 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2872 || control_flow_insn_p (insn))
2873 force_unique_p = true;
2874 else
2875 force_unique_p = false;
2876
2877 if (targetm.sched.get_insn_spec_ds)
2878 {
2879 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2880 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2881 }
2882 else
2883 spec_done_ds = 0;
2884
2885 /* Initialize INSN's expr. */
2886 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2887 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 2888 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
2889 CANT_MOVE (insn));
2890 }
2891
2892 init_first_time_insn_data (insn);
2893}
2894
2895/* Scan the region and initialize instruction data for basic blocks BBS. */
2896void
2897sel_init_global_and_expr (bb_vec_t bbs)
2898{
2899 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2900 const struct sched_scan_info_def ssi =
2901 {
2902 NULL, /* extend_bb */
2903 init_global_and_expr_for_bb, /* init_bb */
2904 extend_insn_data, /* extend_insn */
2905 init_global_and_expr_for_insn /* init_insn */
2906 };
b8698a0f 2907
e855c69d
AB
2908 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2909}
2910
2911/* Finalize region-scope data structures for basic blocks. */
2912static void
2913finish_global_and_expr_for_bb (basic_block bb)
2914{
2915 av_set_clear (&BB_AV_SET (bb));
2916 BB_AV_LEVEL (bb) = 0;
2917}
2918
2919/* Finalize INSN's data. */
2920static void
2921finish_global_and_expr_insn (insn_t insn)
2922{
2923 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2924 return;
2925
2926 gcc_assert (INSN_P (insn));
2927
2928 if (INSN_LUID (insn) > 0)
2929 {
2930 free_first_time_insn_data (insn);
2931 INSN_WS_LEVEL (insn) = 0;
2932 CANT_MOVE (insn) = 0;
b8698a0f
L
2933
2934 /* We can no longer assert this, as vinsns of this insn could be
2935 easily live in other insn's caches. This should be changed to
e855c69d
AB
2936 a counter-like approach among all vinsns. */
2937 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2938 clear_expr (INSN_EXPR (insn));
2939 }
2940}
2941
2942/* Finalize per instruction data for the whole region. */
2943void
2944sel_finish_global_and_expr (void)
2945{
2946 {
2947 bb_vec_t bbs;
2948 int i;
2949
2950 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2951
2952 for (i = 0; i < current_nr_blocks; i++)
2953 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2954
2955 /* Clear AV_SETs and INSN_EXPRs. */
2956 {
2957 const struct sched_scan_info_def ssi =
2958 {
2959 NULL, /* extend_bb */
2960 finish_global_and_expr_for_bb, /* init_bb */
2961 NULL, /* extend_insn */
2962 finish_global_and_expr_insn /* init_insn */
2963 };
2964
2965 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2966 }
2967
2968 VEC_free (basic_block, heap, bbs);
2969 }
2970
2971 finish_insns ();
2972}
2973\f
2974
b8698a0f
L
2975/* In the below hooks, we merely calculate whether or not a dependence
2976 exists, and in what part of insn. However, we will need more data
e855c69d
AB
2977 when we'll start caching dependence requests. */
2978
2979/* Container to hold information for dependency analysis. */
2980static struct
2981{
2982 deps_t dc;
2983
2984 /* A variable to track which part of rtx we are scanning in
2985 sched-deps.c: sched_analyze_insn (). */
2986 deps_where_t where;
2987
2988 /* Current producer. */
2989 insn_t pro;
2990
2991 /* Current consumer. */
2992 vinsn_t con;
2993
2994 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2995 X is from { INSN, LHS, RHS }. */
2996 ds_t has_dep_p[DEPS_IN_NOWHERE];
2997} has_dependence_data;
2998
2999/* Start analyzing dependencies of INSN. */
3000static void
3001has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3002{
3003 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3004
3005 has_dependence_data.where = DEPS_IN_INSN;
3006}
3007
3008/* Finish analyzing dependencies of an insn. */
3009static void
3010has_dependence_finish_insn (void)
3011{
3012 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3013
3014 has_dependence_data.where = DEPS_IN_NOWHERE;
3015}
3016
3017/* Start analyzing dependencies of LHS. */
3018static void
3019has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3020{
3021 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3022
3023 if (VINSN_LHS (has_dependence_data.con) != NULL)
3024 has_dependence_data.where = DEPS_IN_LHS;
3025}
3026
3027/* Finish analyzing dependencies of an lhs. */
3028static void
3029has_dependence_finish_lhs (void)
3030{
3031 has_dependence_data.where = DEPS_IN_INSN;
3032}
3033
3034/* Start analyzing dependencies of RHS. */
3035static void
3036has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3037{
3038 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3039
3040 if (VINSN_RHS (has_dependence_data.con) != NULL)
3041 has_dependence_data.where = DEPS_IN_RHS;
3042}
3043
3044/* Start analyzing dependencies of an rhs. */
3045static void
3046has_dependence_finish_rhs (void)
3047{
3048 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3049 || has_dependence_data.where == DEPS_IN_INSN);
3050
3051 has_dependence_data.where = DEPS_IN_INSN;
3052}
3053
3054/* Note a set of REGNO. */
3055static void
3056has_dependence_note_reg_set (int regno)
3057{
3058 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3059
3060 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3061 VINSN_INSN_RTX
3062 (has_dependence_data.con)))
3063 {
3064 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3065
3066 if (reg_last->sets != NULL
3067 || reg_last->clobbers != NULL)
3068 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3069
3070 if (reg_last->uses)
3071 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3072 }
3073}
3074
3075/* Note a clobber of REGNO. */
3076static void
3077has_dependence_note_reg_clobber (int regno)
3078{
3079 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3080
3081 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3082 VINSN_INSN_RTX
3083 (has_dependence_data.con)))
3084 {
3085 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3086
3087 if (reg_last->sets)
3088 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3089
e855c69d
AB
3090 if (reg_last->uses)
3091 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3092 }
3093}
3094
3095/* Note a use of REGNO. */
3096static void
3097has_dependence_note_reg_use (int regno)
3098{
3099 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3100
3101 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3102 VINSN_INSN_RTX
3103 (has_dependence_data.con)))
3104 {
3105 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3106
3107 if (reg_last->sets)
3108 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3109
3110 if (reg_last->clobbers)
3111 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3112
3113 /* Handle BE_IN_SPEC. */
3114 if (reg_last->uses)
3115 {
3116 ds_t pro_spec_checked_ds;
3117
3118 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3119 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3120
3121 if (pro_spec_checked_ds != 0)
3122 /* Merge BE_IN_SPEC bits into *DSP. */
3123 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3124 NULL_RTX, NULL_RTX);
3125 }
3126 }
3127}
3128
3129/* Note a memory dependence. */
3130static void
3131has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3132 rtx pending_mem ATTRIBUTE_UNUSED,
3133 insn_t pending_insn ATTRIBUTE_UNUSED,
3134 ds_t ds ATTRIBUTE_UNUSED)
3135{
3136 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3137 VINSN_INSN_RTX (has_dependence_data.con)))
3138 {
3139 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3140
3141 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3142 }
3143}
3144
3145/* Note a dependence. */
3146static void
3147has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3148 ds_t ds ATTRIBUTE_UNUSED)
3149{
3150 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3151 VINSN_INSN_RTX (has_dependence_data.con)))
3152 {
3153 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3154
3155 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3156 }
3157}
3158
3159/* Mark the insn as having a hard dependence that prevents speculation. */
3160void
3161sel_mark_hard_insn (rtx insn)
3162{
3163 int i;
3164
3165 /* Only work when we're in has_dependence_p mode.
3166 ??? This is a hack, this should actually be a hook. */
3167 if (!has_dependence_data.dc || !has_dependence_data.pro)
3168 return;
3169
3170 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3171 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3172
3173 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3174 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3175}
3176
3177/* This structure holds the hooks for the dependency analysis used when
3178 actually processing dependencies in the scheduler. */
3179static struct sched_deps_info_def has_dependence_sched_deps_info;
3180
3181/* This initializes most of the fields of the above structure. */
3182static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3183 {
3184 NULL,
3185
3186 has_dependence_start_insn,
3187 has_dependence_finish_insn,
3188 has_dependence_start_lhs,
3189 has_dependence_finish_lhs,
3190 has_dependence_start_rhs,
3191 has_dependence_finish_rhs,
3192 has_dependence_note_reg_set,
3193 has_dependence_note_reg_clobber,
3194 has_dependence_note_reg_use,
3195 has_dependence_note_mem_dep,
3196 has_dependence_note_dep,
3197
3198 0, /* use_cselib */
3199 0, /* use_deps_list */
3200 0 /* generate_spec_deps */
3201 };
3202
3203/* Initialize has_dependence_sched_deps_info with extra spec field. */
3204static void
3205setup_has_dependence_sched_deps_info (void)
3206{
3207 memcpy (&has_dependence_sched_deps_info,
3208 &const_has_dependence_sched_deps_info,
3209 sizeof (has_dependence_sched_deps_info));
3210
3211 if (spec_info != NULL)
3212 has_dependence_sched_deps_info.generate_spec_deps = 1;
3213
3214 sched_deps_info = &has_dependence_sched_deps_info;
3215}
3216
3217/* Remove all dependences found and recorded in has_dependence_data array. */
3218void
3219sel_clear_has_dependence (void)
3220{
3221 int i;
3222
3223 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3224 has_dependence_data.has_dep_p[i] = 0;
3225}
3226
3227/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3228 to the dependence information array in HAS_DEP_PP. */
3229ds_t
3230has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3231{
3232 int i;
3233 ds_t ds;
88302d54 3234 struct deps_desc *dc;
e855c69d
AB
3235
3236 if (INSN_SIMPLEJUMP_P (pred))
3237 /* Unconditional jump is just a transfer of control flow.
3238 Ignore it. */
3239 return false;
3240
3241 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3242
3243 /* We init this field lazily. */
3244 if (dc->reg_last == NULL)
3245 init_deps_reg_last (dc);
b8698a0f 3246
e855c69d
AB
3247 if (!dc->readonly)
3248 {
3249 has_dependence_data.pro = NULL;
3250 /* Initialize empty dep context with information about PRED. */
3251 advance_deps_context (dc, pred);
3252 dc->readonly = 1;
3253 }
3254
3255 has_dependence_data.where = DEPS_IN_NOWHERE;
3256 has_dependence_data.pro = pred;
3257 has_dependence_data.con = EXPR_VINSN (expr);
3258 has_dependence_data.dc = dc;
3259
3260 sel_clear_has_dependence ();
3261
3262 /* Now catch all dependencies that would be generated between PRED and
3263 INSN. */
3264 setup_has_dependence_sched_deps_info ();
3265 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3266 has_dependence_data.dc = NULL;
3267
3268 /* When a barrier was found, set DEPS_IN_INSN bits. */
3269 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3270 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3271 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3272 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3273
3274 /* Do not allow stores to memory to move through checks. Currently
3275 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3276 obvious places to which this dependence can be attached.
e855c69d
AB
3277 FIMXE: this should go to a hook. */
3278 if (EXPR_LHS (expr)
3279 && MEM_P (EXPR_LHS (expr))
3280 && sel_insn_is_speculation_check (pred))
3281 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3282
e855c69d
AB
3283 *has_dep_pp = has_dependence_data.has_dep_p;
3284 ds = 0;
3285 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3286 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3287 NULL_RTX, NULL_RTX);
3288
3289 return ds;
3290}
3291\f
3292
b8698a0f
L
3293/* Dependence hooks implementation that checks dependence latency constraints
3294 on the insns being scheduled. The entry point for these routines is
3295 tick_check_p predicate. */
e855c69d
AB
3296
3297static struct
3298{
3299 /* An expr we are currently checking. */
3300 expr_t expr;
3301
3302 /* A minimal cycle for its scheduling. */
3303 int cycle;
3304
3305 /* Whether we have seen a true dependence while checking. */
3306 bool seen_true_dep_p;
3307} tick_check_data;
3308
3309/* Update minimal scheduling cycle for tick_check_insn given that it depends
3310 on PRO with status DS and weight DW. */
3311static void
3312tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3313{
3314 expr_t con_expr = tick_check_data.expr;
3315 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3316
3317 if (con_insn != pro_insn)
3318 {
3319 enum reg_note dt;
3320 int tick;
3321
3322 if (/* PROducer was removed from above due to pipelining. */
3323 !INSN_IN_STREAM_P (pro_insn)
3324 /* Or PROducer was originally on the next iteration regarding the
3325 CONsumer. */
3326 || (INSN_SCHED_TIMES (pro_insn)
3327 - EXPR_SCHED_TIMES (con_expr)) > 1)
3328 /* Don't count this dependence. */
3329 return;
3330
3331 dt = ds_to_dt (ds);
3332 if (dt == REG_DEP_TRUE)
3333 tick_check_data.seen_true_dep_p = true;
3334
3335 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3336
3337 {
3338 dep_def _dep, *dep = &_dep;
3339
3340 init_dep (dep, pro_insn, con_insn, dt);
3341
3342 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3343 }
3344
3345 /* When there are several kinds of dependencies between pro and con,
3346 only REG_DEP_TRUE should be taken into account. */
3347 if (tick > tick_check_data.cycle
3348 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3349 tick_check_data.cycle = tick;
3350 }
3351}
3352
3353/* An implementation of note_dep hook. */
3354static void
3355tick_check_note_dep (insn_t pro, ds_t ds)
3356{
3357 tick_check_dep_with_dw (pro, ds, 0);
3358}
3359
3360/* An implementation of note_mem_dep hook. */
3361static void
3362tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3363{
3364 dw_t dw;
3365
3366 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3367 ? estimate_dep_weak (mem1, mem2)
3368 : 0);
3369
3370 tick_check_dep_with_dw (pro, ds, dw);
3371}
3372
3373/* This structure contains hooks for dependence analysis used when determining
3374 whether an insn is ready for scheduling. */
3375static struct sched_deps_info_def tick_check_sched_deps_info =
3376 {
3377 NULL,
3378
3379 NULL,
3380 NULL,
3381 NULL,
3382 NULL,
3383 NULL,
3384 NULL,
3385 haifa_note_reg_set,
3386 haifa_note_reg_clobber,
3387 haifa_note_reg_use,
3388 tick_check_note_mem_dep,
3389 tick_check_note_dep,
3390
3391 0, 0, 0
3392 };
3393
3394/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3395 scheduled. Return 0 if all data from producers in DC is ready. */
3396int
3397tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3398{
3399 int cycles_left;
3400 /* Initialize variables. */
3401 tick_check_data.expr = expr;
3402 tick_check_data.cycle = 0;
3403 tick_check_data.seen_true_dep_p = false;
3404 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3405
e855c69d
AB
3406 gcc_assert (!dc->readonly);
3407 dc->readonly = 1;
3408 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3409 dc->readonly = 0;
3410
3411 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3412
3413 return cycles_left >= 0 ? cycles_left : 0;
3414}
3415\f
3416
3417/* Functions to work with insns. */
3418
3419/* Returns true if LHS of INSN is the same as DEST of an insn
3420 being moved. */
3421bool
3422lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3423{
3424 rtx lhs = INSN_LHS (insn);
3425
3426 if (lhs == NULL || dest == NULL)
3427 return false;
b8698a0f 3428
e855c69d
AB
3429 return rtx_equal_p (lhs, dest);
3430}
3431
3432/* Return s_i_d entry of INSN. Callable from debugger. */
3433sel_insn_data_def
3434insn_sid (insn_t insn)
3435{
3436 return *SID (insn);
3437}
3438
3439/* True when INSN is a speculative check. We can tell this by looking
3440 at the data structures of the selective scheduler, not by examining
3441 the pattern. */
3442bool
3443sel_insn_is_speculation_check (rtx insn)
3444{
3445 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3446}
3447
b8698a0f 3448/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3449 for given INSN. */
3450void
3451get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3452{
3453 rtx pat = PATTERN (insn);
3454
3455 gcc_assert (dst_loc);
3456 gcc_assert (GET_CODE (pat) == SET);
3457
3458 *dst_loc = SET_DEST (pat);
3459
3460 gcc_assert (*dst_loc);
3461 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3462
3463 if (mode)
3464 *mode = GET_MODE (*dst_loc);
3465}
3466
b8698a0f 3467/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3468 creation. */
3469bool
3470bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3471{
3472 insn_t succ;
3473 succ_iterator si;
3474
3475 FOR_EACH_SUCC (succ, si, jump)
3476 if (sel_num_cfg_preds_gt_1 (succ))
3477 return true;
3478
3479 return false;
3480}
3481
3482/* Return 'true' if INSN is the only one in its basic block. */
3483static bool
3484insn_is_the_only_one_in_bb_p (insn_t insn)
3485{
3486 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3487}
3488
3489#ifdef ENABLE_CHECKING
b8698a0f 3490/* Check that the region we're scheduling still has at most one
e855c69d
AB
3491 backedge. */
3492static void
3493verify_backedges (void)
3494{
3495 if (pipelining_p)
3496 {
3497 int i, n = 0;
3498 edge e;
3499 edge_iterator ei;
b8698a0f 3500
e855c69d
AB
3501 for (i = 0; i < current_nr_blocks; i++)
3502 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3503 if (in_current_region_p (e->dest)
3504 && BLOCK_TO_BB (e->dest->index) < i)
3505 n++;
b8698a0f 3506
e855c69d
AB
3507 gcc_assert (n <= 1);
3508 }
3509}
3510#endif
3511\f
3512
3513/* Functions to work with control flow. */
3514
b59ab570
AM
3515/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3516 are sorted in topological order (it might have been invalidated by
3517 redirecting an edge). */
3518static void
3519sel_recompute_toporder (void)
3520{
3521 int i, n, rgn;
3522 int *postorder, n_blocks;
3523
3524 postorder = XALLOCAVEC (int, n_basic_blocks);
3525 n_blocks = post_order_compute (postorder, false, false);
3526
3527 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3528 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3529 if (CONTAINING_RGN (postorder[i]) == rgn)
3530 {
3531 BLOCK_TO_BB (postorder[i]) = n;
3532 BB_TO_BLOCK (n) = postorder[i];
3533 n++;
3534 }
3535
3536 /* Assert that we updated info for all blocks. We may miss some blocks if
3537 this function is called when redirecting an edge made a block
3538 unreachable, but that block is not deleted yet. */
3539 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3540}
3541
e855c69d 3542/* Tidy the possibly empty block BB. */
b59ab570
AM
3543static bool
3544maybe_tidy_empty_bb (basic_block bb, bool recompute_toporder_p)
e855c69d
AB
3545{
3546 basic_block succ_bb, pred_bb;
f2c45f08
AM
3547 edge e;
3548 edge_iterator ei;
e855c69d
AB
3549 bool rescan_p;
3550
3551 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3552 has incoming non-fallthrough edge, or it has no predecessors or
3553 successors. Otherwise remove it. */
b5b8b0ac 3554 if (!sel_bb_empty_p (bb)
b8698a0f 3555 || (single_succ_p (bb)
e855c69d 3556 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3557 && (!single_pred_p (bb)
762bffba
AB
3558 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3559 || EDGE_COUNT (bb->preds) == 0
3560 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3561 return false;
3562
f2c45f08
AM
3563 /* Do not attempt to redirect complex edges. */
3564 FOR_EACH_EDGE (e, ei, bb->preds)
3565 if (e->flags & EDGE_COMPLEX)
3566 return false;
3567
e855c69d
AB
3568 free_data_sets (bb);
3569
3570 /* Do not delete BB if it has more than one successor.
3571 That can occur when we moving a jump. */
3572 if (!single_succ_p (bb))
3573 {
3574 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3575 sel_merge_blocks (bb->prev_bb, bb);
3576 return true;
3577 }
3578
3579 succ_bb = single_succ (bb);
3580 rescan_p = true;
3581 pred_bb = NULL;
3582
3583 /* Redirect all non-fallthru edges to the next bb. */
3584 while (rescan_p)
3585 {
e855c69d
AB
3586 rescan_p = false;
3587
3588 FOR_EACH_EDGE (e, ei, bb->preds)
3589 {
3590 pred_bb = e->src;
3591
3592 if (!(e->flags & EDGE_FALLTHRU))
3593 {
b59ab570 3594 recompute_toporder_p |= sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3595 rescan_p = true;
3596 break;
3597 }
3598 }
3599 }
3600
3601 /* If it is possible - merge BB with its predecessor. */
3602 if (can_merge_blocks_p (bb->prev_bb, bb))
3603 sel_merge_blocks (bb->prev_bb, bb);
3604 else
3605 /* Otherwise this is a block without fallthru predecessor.
3606 Just delete it. */
3607 {
3608 gcc_assert (pred_bb != NULL);
3609
762bffba
AB
3610 if (in_current_region_p (pred_bb))
3611 move_bb_info (pred_bb, bb);
e855c69d
AB
3612 remove_empty_bb (bb, true);
3613 }
3614
b59ab570
AM
3615 if (recompute_toporder_p)
3616 sel_recompute_toporder ();
3617
e855c69d
AB
3618#ifdef ENABLE_CHECKING
3619 verify_backedges ();
3620#endif
3621
3622 return true;
3623}
3624
b8698a0f 3625/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3626 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3627 is true, also try to optimize control flow on non-empty blocks. */
3628bool
3629tidy_control_flow (basic_block xbb, bool full_tidying)
3630{
3631 bool changed = true;
b5b8b0ac 3632 insn_t first, last;
b8698a0f 3633
e855c69d 3634 /* First check whether XBB is empty. */
b59ab570 3635 changed = maybe_tidy_empty_bb (xbb, false);
e855c69d
AB
3636 if (changed || !full_tidying)
3637 return changed;
b8698a0f 3638
e855c69d
AB
3639 /* Check if there is a unnecessary jump after insn left. */
3640 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3641 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3642 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3643 {
3644 if (sel_remove_insn (BB_END (xbb), false, false))
3645 return true;
3646 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3647 }
3648
b5b8b0ac
AO
3649 first = sel_bb_head (xbb);
3650 last = sel_bb_end (xbb);
3651 if (MAY_HAVE_DEBUG_INSNS)
3652 {
3653 if (first != last && DEBUG_INSN_P (first))
3654 do
3655 first = NEXT_INSN (first);
3656 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3657
3658 if (first != last && DEBUG_INSN_P (last))
3659 do
3660 last = PREV_INSN (last);
3661 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3662 }
e855c69d 3663 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3664 to next basic block left after removing INSN from stream.
3665 If it is so, remove that jump and redirect edge to current
3666 basic block (where there was INSN before deletion). This way
3667 when NOP will be deleted several instructions later with its
3668 basic block we will not get a jump to next instruction, which
e855c69d 3669 can be harmful. */
b5b8b0ac 3670 if (first == last
e855c69d 3671 && !sel_bb_empty_p (xbb)
b5b8b0ac 3672 && INSN_NOP_P (last)
e855c69d
AB
3673 /* Flow goes fallthru from current block to the next. */
3674 && EDGE_COUNT (xbb->succs) == 1
3675 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3676 /* When successor is an EXIT block, it may not be the next block. */
3677 && single_succ (xbb) != EXIT_BLOCK_PTR
3678 /* And unconditional jump in previous basic block leads to
3679 next basic block of XBB and this jump can be safely removed. */
3680 && in_current_region_p (xbb->prev_bb)
3681 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3682 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3683 /* Also this jump is not at the scheduling boundary. */
3684 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3685 {
b59ab570 3686 bool recompute_toporder_p;
e855c69d
AB
3687 /* Clear data structures of jump - jump itself will be removed
3688 by sel_redirect_edge_and_branch. */
3689 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3690 recompute_toporder_p
3691 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3692
e855c69d
AB
3693 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3694
3695 /* It can turn out that after removing unused jump, basic block
3696 that contained that jump, becomes empty too. In such case
3697 remove it too. */
3698 if (sel_bb_empty_p (xbb->prev_bb))
b59ab570
AM
3699 changed = maybe_tidy_empty_bb (xbb->prev_bb, recompute_toporder_p);
3700 else if (recompute_toporder_p)
3701 sel_recompute_toporder ();
e855c69d
AB
3702 }
3703
3704 return changed;
3705}
3706
b59ab570
AM
3707/* Purge meaningless empty blocks in the middle of a region. */
3708void
3709purge_empty_blocks (void)
3710{
3711 /* Do not attempt to delete preheader. */
3712 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
3713
3714 while (i < current_nr_blocks)
3715 {
3716 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3717
3718 if (maybe_tidy_empty_bb (b, false))
3719 continue;
3720
3721 i++;
3722 }
3723}
3724
b8698a0f
L
3725/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3726 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3727 Return true if we have removed some blocks afterwards. */
3728bool
3729sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3730{
3731 basic_block bb = BLOCK_FOR_INSN (insn);
3732
3733 gcc_assert (INSN_IN_STREAM_P (insn));
3734
b5b8b0ac
AO
3735 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3736 {
3737 expr_t expr;
3738 av_set_iterator i;
3739
3740 /* When we remove a debug insn that is head of a BB, it remains
3741 in the AV_SET of the block, but it shouldn't. */
3742 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3743 if (EXPR_INSN_RTX (expr) == insn)
3744 {
3745 av_set_iter_remove (&i);
3746 break;
3747 }
3748 }
3749
e855c69d
AB
3750 if (only_disconnect)
3751 {
3752 insn_t prev = PREV_INSN (insn);
3753 insn_t next = NEXT_INSN (insn);
3754 basic_block bb = BLOCK_FOR_INSN (insn);
3755
3756 NEXT_INSN (prev) = next;
3757 PREV_INSN (next) = prev;
3758
3759 if (BB_HEAD (bb) == insn)
3760 {
3761 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3762 BB_HEAD (bb) = prev;
3763 }
3764 if (BB_END (bb) == insn)
3765 BB_END (bb) = prev;
3766 }
3767 else
3768 {
3769 remove_insn (insn);
3770 clear_expr (INSN_EXPR (insn));
3771 }
3772
3773 /* It is necessary to null this fields before calling add_insn (). */
3774 PREV_INSN (insn) = NULL_RTX;
3775 NEXT_INSN (insn) = NULL_RTX;
3776
3777 return tidy_control_flow (bb, full_tidying);
3778}
3779
3780/* Estimate number of the insns in BB. */
3781static int
3782sel_estimate_number_of_insns (basic_block bb)
3783{
3784 int res = 0;
3785 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3786
3787 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3788 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3789 res++;
3790
3791 return res;
3792}
3793
3794/* We don't need separate luids for notes or labels. */
3795static int
3796sel_luid_for_non_insn (rtx x)
3797{
3798 gcc_assert (NOTE_P (x) || LABEL_P (x));
3799
3800 return -1;
3801}
3802
3803/* Return seqno of the only predecessor of INSN. */
3804static int
3805get_seqno_of_a_pred (insn_t insn)
3806{
3807 int seqno;
3808
3809 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3810
3811 if (!sel_bb_head_p (insn))
3812 seqno = INSN_SEQNO (PREV_INSN (insn));
3813 else
3814 {
3815 basic_block bb = BLOCK_FOR_INSN (insn);
3816
3817 if (single_pred_p (bb)
3818 && !in_current_region_p (single_pred (bb)))
3819 {
3820 /* We can have preds outside a region when splitting edges
b8698a0f 3821 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
3822 There should be only one of them. */
3823 insn_t succ = NULL;
3824 succ_iterator si;
3825 bool first = true;
b8698a0f 3826
e855c69d
AB
3827 gcc_assert (flag_sel_sched_pipelining_outer_loops
3828 && current_loop_nest);
b8698a0f 3829 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
3830 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3831 {
3832 gcc_assert (first);
3833 first = false;
3834 }
3835
3836 gcc_assert (succ != NULL);
3837 seqno = INSN_SEQNO (succ);
3838 }
3839 else
3840 {
3841 insn_t *preds;
3842 int n;
3843
3844 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3845 gcc_assert (n == 1);
3846
3847 seqno = INSN_SEQNO (preds[0]);
b8698a0f 3848
e855c69d
AB
3849 free (preds);
3850 }
3851 }
3852
3853 return seqno;
3854}
3855
da7ba240
AB
3856/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3857 with positive seqno exist. */
e855c69d
AB
3858int
3859get_seqno_by_preds (rtx insn)
3860{
3861 basic_block bb = BLOCK_FOR_INSN (insn);
3862 rtx tmp = insn, head = BB_HEAD (bb);
3863 insn_t *preds;
3864 int n, i, seqno;
3865
3866 while (tmp != head)
3867 if (INSN_P (tmp))
3868 return INSN_SEQNO (tmp);
3869 else
3870 tmp = PREV_INSN (tmp);
b8698a0f 3871
e855c69d
AB
3872 cfg_preds (bb, &preds, &n);
3873 for (i = 0, seqno = -1; i < n; i++)
3874 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3875
e855c69d
AB
3876 return seqno;
3877}
3878
3879\f
3880
3881/* Extend pass-scope data structures for basic blocks. */
3882void
3883sel_extend_global_bb_info (void)
3884{
3885 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3886 last_basic_block);
3887}
3888
3889/* Extend region-scope data structures for basic blocks. */
3890static void
3891extend_region_bb_info (void)
3892{
3893 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3894 last_basic_block);
3895}
3896
3897/* Extend all data structures to fit for all basic blocks. */
3898static void
3899extend_bb_info (void)
3900{
3901 sel_extend_global_bb_info ();
3902 extend_region_bb_info ();
3903}
3904
3905/* Finalize pass-scope data structures for basic blocks. */
3906void
3907sel_finish_global_bb_info (void)
3908{
3909 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3910}
3911
3912/* Finalize region-scope data structures for basic blocks. */
3913static void
3914finish_region_bb_info (void)
3915{
3916 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3917}
3918\f
3919
3920/* Data for each insn in current region. */
3921VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3922
3923/* A vector for the insns we've emitted. */
3924static insn_vec_t new_insns = NULL;
3925
3926/* Extend data structures for insns from current region. */
3927static void
3928extend_insn_data (void)
3929{
3930 int reserve;
b8698a0f 3931
e855c69d
AB
3932 sched_extend_target ();
3933 sched_deps_init (false);
3934
3935 /* Extend data structures for insns from current region. */
b8698a0f 3936 reserve = (sched_max_luid + 1
e855c69d 3937 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 3938 if (reserve > 0
e855c69d 3939 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
3940 {
3941 int size;
3942
3943 if (sched_max_luid / 2 > 1024)
3944 size = sched_max_luid + 1024;
3945 else
3946 size = 3 * sched_max_luid / 2;
b8698a0f 3947
bcf33775
AB
3948
3949 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3950 }
e855c69d
AB
3951}
3952
3953/* Finalize data structures for insns from current region. */
3954static void
3955finish_insns (void)
3956{
3957 unsigned i;
3958
3959 /* Clear here all dependence contexts that may have left from insns that were
3960 removed during the scheduling. */
3961 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3962 {
3963 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 3964
e855c69d
AB
3965 if (sid_entry->live)
3966 return_regset_to_pool (sid_entry->live);
3967 if (sid_entry->analyzed_deps)
3968 {
3969 BITMAP_FREE (sid_entry->analyzed_deps);
3970 BITMAP_FREE (sid_entry->found_deps);
3971 htab_delete (sid_entry->transformed_insns);
3972 free_deps (&sid_entry->deps_context);
3973 }
3974 if (EXPR_VINSN (&sid_entry->expr))
3975 {
3976 clear_expr (&sid_entry->expr);
b8698a0f 3977
e855c69d
AB
3978 /* Also, clear CANT_MOVE bit here, because we really don't want it
3979 to be passed to the next region. */
3980 CANT_MOVE_BY_LUID (i) = 0;
3981 }
3982 }
b8698a0f 3983
e855c69d
AB
3984 VEC_free (sel_insn_data_def, heap, s_i_d);
3985}
3986
3987/* A proxy to pass initialization data to init_insn (). */
3988static sel_insn_data_def _insn_init_ssid;
3989static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3990
3991/* If true create a new vinsn. Otherwise use the one from EXPR. */
3992static bool insn_init_create_new_vinsn_p;
3993
3994/* Set all necessary data for initialization of the new insn[s]. */
3995static expr_t
3996set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3997{
3998 expr_t x = &insn_init_ssid->expr;
3999
4000 copy_expr_onside (x, expr);
4001 if (vi != NULL)
4002 {
4003 insn_init_create_new_vinsn_p = false;
4004 change_vinsn_in_expr (x, vi);
4005 }
4006 else
4007 insn_init_create_new_vinsn_p = true;
4008
4009 insn_init_ssid->seqno = seqno;
4010 return x;
4011}
4012
4013/* Init data for INSN. */
4014static void
4015init_insn_data (insn_t insn)
4016{
4017 expr_t expr;
4018 sel_insn_data_t ssid = insn_init_ssid;
4019
4020 /* The fields mentioned below are special and hence are not being
4021 propagated to the new insns. */
4022 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4023 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4024 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4025
4026 expr = INSN_EXPR (insn);
4027 copy_expr (expr, &ssid->expr);
4028 prepare_insn_expr (insn, ssid->seqno);
4029
4030 if (insn_init_create_new_vinsn_p)
4031 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4032
e855c69d
AB
4033 if (first_time_insn_init (insn))
4034 init_first_time_insn_data (insn);
4035}
4036
4037/* This is used to initialize spurious jumps generated by
4038 sel_redirect_edge (). */
4039static void
4040init_simplejump_data (insn_t insn)
4041{
4042 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4043 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d
AB
4044 false, true);
4045 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4046 init_first_time_insn_data (insn);
4047}
4048
b8698a0f 4049/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4050 a new jump that may be created by redirect_edge. */
4051void
4052sel_init_new_insn (insn_t insn, int flags)
4053{
4054 /* We create data structures for bb when the first insn is emitted in it. */
4055 if (INSN_P (insn)
4056 && INSN_IN_STREAM_P (insn)
4057 && insn_is_the_only_one_in_bb_p (insn))
4058 {
4059 extend_bb_info ();
4060 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4061 }
b8698a0f 4062
e855c69d
AB
4063 if (flags & INSN_INIT_TODO_LUID)
4064 sched_init_luids (NULL, NULL, NULL, insn);
4065
4066 if (flags & INSN_INIT_TODO_SSID)
4067 {
4068 extend_insn_data ();
4069 init_insn_data (insn);
4070 clear_expr (&insn_init_ssid->expr);
4071 }
4072
4073 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4074 {
4075 extend_insn_data ();
4076 init_simplejump_data (insn);
4077 }
b8698a0f 4078
e855c69d
AB
4079 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4080 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4081}
4082\f
4083
4084/* Functions to init/finish work with lv sets. */
4085
4086/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4087static void
4088init_lv_set (basic_block bb)
4089{
4090 gcc_assert (!BB_LV_SET_VALID_P (bb));
4091
4092 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4093 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4094 BB_LV_SET_VALID_P (bb) = true;
4095}
4096
4097/* Copy liveness information to BB from FROM_BB. */
4098static void
4099copy_lv_set_from (basic_block bb, basic_block from_bb)
4100{
4101 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4102
e855c69d
AB
4103 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4104 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4105}
e855c69d
AB
4106
4107/* Initialize lv set of all bb headers. */
4108void
4109init_lv_sets (void)
4110{
4111 basic_block bb;
4112
4113 /* Initialize of LV sets. */
4114 FOR_EACH_BB (bb)
4115 init_lv_set (bb);
4116
4117 /* Don't forget EXIT_BLOCK. */
4118 init_lv_set (EXIT_BLOCK_PTR);
4119}
4120
4121/* Release lv set of HEAD. */
4122static void
4123free_lv_set (basic_block bb)
4124{
4125 gcc_assert (BB_LV_SET (bb) != NULL);
4126
4127 return_regset_to_pool (BB_LV_SET (bb));
4128 BB_LV_SET (bb) = NULL;
4129 BB_LV_SET_VALID_P (bb) = false;
4130}
4131
4132/* Finalize lv sets of all bb headers. */
4133void
4134free_lv_sets (void)
4135{
4136 basic_block bb;
4137
4138 /* Don't forget EXIT_BLOCK. */
4139 free_lv_set (EXIT_BLOCK_PTR);
4140
4141 /* Free LV sets. */
4142 FOR_EACH_BB (bb)
4143 if (BB_LV_SET (bb))
4144 free_lv_set (bb);
4145}
4146
4147/* Initialize an invalid AV_SET for BB.
4148 This set will be updated next time compute_av () process BB. */
4149static void
4150invalidate_av_set (basic_block bb)
4151{
4152 gcc_assert (BB_AV_LEVEL (bb) <= 0
4153 && BB_AV_SET (bb) == NULL);
4154
4155 BB_AV_LEVEL (bb) = -1;
4156}
4157
4158/* Create initial data sets for BB (they will be invalid). */
4159static void
4160create_initial_data_sets (basic_block bb)
4161{
4162 if (BB_LV_SET (bb))
4163 BB_LV_SET_VALID_P (bb) = false;
4164 else
4165 BB_LV_SET (bb) = get_regset_from_pool ();
4166 invalidate_av_set (bb);
4167}
4168
4169/* Free av set of BB. */
4170static void
4171free_av_set (basic_block bb)
4172{
4173 av_set_clear (&BB_AV_SET (bb));
4174 BB_AV_LEVEL (bb) = 0;
4175}
4176
4177/* Free data sets of BB. */
4178void
4179free_data_sets (basic_block bb)
4180{
4181 free_lv_set (bb);
4182 free_av_set (bb);
4183}
4184
4185/* Exchange lv sets of TO and FROM. */
4186static void
4187exchange_lv_sets (basic_block to, basic_block from)
4188{
4189 {
4190 regset to_lv_set = BB_LV_SET (to);
4191
4192 BB_LV_SET (to) = BB_LV_SET (from);
4193 BB_LV_SET (from) = to_lv_set;
4194 }
4195
4196 {
4197 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4198
4199 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4200 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4201 }
4202}
4203
4204
4205/* Exchange av sets of TO and FROM. */
4206static void
4207exchange_av_sets (basic_block to, basic_block from)
4208{
4209 {
4210 av_set_t to_av_set = BB_AV_SET (to);
4211
4212 BB_AV_SET (to) = BB_AV_SET (from);
4213 BB_AV_SET (from) = to_av_set;
4214 }
4215
4216 {
4217 int to_av_level = BB_AV_LEVEL (to);
4218
4219 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4220 BB_AV_LEVEL (from) = to_av_level;
4221 }
4222}
4223
4224/* Exchange data sets of TO and FROM. */
4225void
4226exchange_data_sets (basic_block to, basic_block from)
4227{
4228 exchange_lv_sets (to, from);
4229 exchange_av_sets (to, from);
4230}
4231
4232/* Copy data sets of FROM to TO. */
4233void
4234copy_data_sets (basic_block to, basic_block from)
4235{
4236 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4237 gcc_assert (BB_AV_SET (to) == NULL);
4238
4239 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4240 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4241
4242 if (BB_AV_SET_VALID_P (from))
4243 {
4244 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4245 }
4246 if (BB_LV_SET_VALID_P (from))
4247 {
4248 gcc_assert (BB_LV_SET (to) != NULL);
4249 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4250 }
4251}
4252
4253/* Return an av set for INSN, if any. */
4254av_set_t
4255get_av_set (insn_t insn)
4256{
4257 av_set_t av_set;
4258
4259 gcc_assert (AV_SET_VALID_P (insn));
4260
4261 if (sel_bb_head_p (insn))
4262 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4263 else
4264 av_set = NULL;
4265
4266 return av_set;
4267}
4268
4269/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4270int
4271get_av_level (insn_t insn)
4272{
4273 int av_level;
4274
4275 gcc_assert (INSN_P (insn));
4276
4277 if (sel_bb_head_p (insn))
4278 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4279 else
4280 av_level = INSN_WS_LEVEL (insn);
4281
4282 return av_level;
4283}
4284
4285\f
4286
4287/* Variables to work with control-flow graph. */
4288
4289/* The basic block that already has been processed by the sched_data_update (),
4290 but hasn't been in sel_add_bb () yet. */
4291static VEC (basic_block, heap) *last_added_blocks = NULL;
4292
4293/* A pool for allocating successor infos. */
4294static struct
4295{
4296 /* A stack for saving succs_info structures. */
4297 struct succs_info *stack;
4298
4299 /* Its size. */
4300 int size;
4301
4302 /* Top of the stack. */
4303 int top;
4304
4305 /* Maximal value of the top. */
4306 int max_top;
4307} succs_info_pool;
4308
4309/* Functions to work with control-flow graph. */
4310
4311/* Return basic block note of BB. */
4312insn_t
4313sel_bb_head (basic_block bb)
4314{
4315 insn_t head;
4316
4317 if (bb == EXIT_BLOCK_PTR)
4318 {
4319 gcc_assert (exit_insn != NULL_RTX);
4320 head = exit_insn;
4321 }
4322 else
4323 {
4324 insn_t note;
4325
4326 note = bb_note (bb);
4327 head = next_nonnote_insn (note);
4328
4329 if (head && BLOCK_FOR_INSN (head) != bb)
4330 head = NULL_RTX;
4331 }
4332
4333 return head;
4334}
4335
4336/* Return true if INSN is a basic block header. */
4337bool
4338sel_bb_head_p (insn_t insn)
4339{
4340 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4341}
4342
4343/* Return last insn of BB. */
4344insn_t
4345sel_bb_end (basic_block bb)
4346{
4347 if (sel_bb_empty_p (bb))
4348 return NULL_RTX;
4349
4350 gcc_assert (bb != EXIT_BLOCK_PTR);
4351
4352 return BB_END (bb);
4353}
4354
4355/* Return true if INSN is the last insn in its basic block. */
4356bool
4357sel_bb_end_p (insn_t insn)
4358{
4359 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4360}
4361
4362/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4363bool
4364sel_bb_empty_p (basic_block bb)
4365{
4366 return sel_bb_head (bb) == NULL;
4367}
4368
4369/* True when BB belongs to the current scheduling region. */
4370bool
4371in_current_region_p (basic_block bb)
4372{
4373 if (bb->index < NUM_FIXED_BLOCKS)
4374 return false;
4375
4376 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4377}
4378
4379/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4380basic_block
4381fallthru_bb_of_jump (rtx jump)
4382{
4383 if (!JUMP_P (jump))
4384 return NULL;
4385
4386 if (any_uncondjump_p (jump))
4387 return single_succ (BLOCK_FOR_INSN (jump));
4388
4389 if (!any_condjump_p (jump))
4390 return NULL;
4391
268bab85
AB
4392 /* A basic block that ends with a conditional jump may still have one successor
4393 (and be followed by a barrier), we are not interested. */
4394 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4395 return NULL;
4396
e855c69d
AB
4397 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4398}
4399
4400/* Remove all notes from BB. */
4401static void
4402init_bb (basic_block bb)
4403{
4404 remove_notes (bb_note (bb), BB_END (bb));
4405 BB_NOTE_LIST (bb) = note_list;
4406}
4407
4408void
4409sel_init_bbs (bb_vec_t bbs, basic_block bb)
4410{
4411 const struct sched_scan_info_def ssi =
4412 {
4413 extend_bb_info, /* extend_bb */
4414 init_bb, /* init_bb */
4415 NULL, /* extend_insn */
4416 NULL /* init_insn */
4417 };
4418
4419 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4420}
4421
7898b93b 4422/* Restore notes for the whole region. */
e855c69d 4423static void
7898b93b 4424sel_restore_notes (void)
e855c69d
AB
4425{
4426 int bb;
7898b93b 4427 insn_t insn;
e855c69d
AB
4428
4429 for (bb = 0; bb < current_nr_blocks; bb++)
4430 {
4431 basic_block first, last;
4432
4433 first = EBB_FIRST_BB (bb);
4434 last = EBB_LAST_BB (bb)->next_bb;
4435
4436 do
4437 {
4438 note_list = BB_NOTE_LIST (first);
4439 restore_other_notes (NULL, first);
4440 BB_NOTE_LIST (first) = NULL_RTX;
4441
7898b93b
AM
4442 FOR_BB_INSNS (first, insn)
4443 if (NONDEBUG_INSN_P (insn))
4444 reemit_notes (insn);
4445
e855c69d
AB
4446 first = first->next_bb;
4447 }
4448 while (first != last);
4449 }
4450}
4451
4452/* Free per-bb data structures. */
4453void
4454sel_finish_bbs (void)
4455{
7898b93b 4456 sel_restore_notes ();
e855c69d
AB
4457
4458 /* Remove current loop preheader from this loop. */
4459 if (current_loop_nest)
4460 sel_remove_loop_preheader ();
4461
4462 finish_region_bb_info ();
4463}
4464
4465/* Return true if INSN has a single successor of type FLAGS. */
4466bool
4467sel_insn_has_single_succ_p (insn_t insn, int flags)
4468{
4469 insn_t succ;
4470 succ_iterator si;
4471 bool first_p = true;
4472
4473 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4474 {
4475 if (first_p)
4476 first_p = false;
4477 else
4478 return false;
4479 }
4480
4481 return true;
4482}
4483
4484/* Allocate successor's info. */
4485static struct succs_info *
4486alloc_succs_info (void)
4487{
4488 if (succs_info_pool.top == succs_info_pool.max_top)
4489 {
4490 int i;
b8698a0f 4491
e855c69d
AB
4492 if (++succs_info_pool.max_top >= succs_info_pool.size)
4493 gcc_unreachable ();
4494
4495 i = ++succs_info_pool.top;
4496 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4497 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4498 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4499 }
4500 else
4501 succs_info_pool.top++;
4502
4503 return &succs_info_pool.stack[succs_info_pool.top];
4504}
4505
4506/* Free successor's info. */
4507void
4508free_succs_info (struct succs_info * sinfo)
4509{
b8698a0f 4510 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4511 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4512 succs_info_pool.top--;
4513
4514 /* Clear stale info. */
b8698a0f 4515 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4516 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4517 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4518 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4519 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4520 0, VEC_length (int, sinfo->probs_ok));
4521 sinfo->all_prob = 0;
4522 sinfo->succs_ok_n = 0;
4523 sinfo->all_succs_n = 0;
4524}
4525
b8698a0f 4526/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4527 to the FOR_EACH_SUCC_1 iterator. */
4528struct succs_info *
4529compute_succs_info (insn_t insn, short flags)
4530{
4531 succ_iterator si;
4532 insn_t succ;
4533 struct succs_info *sinfo = alloc_succs_info ();
4534
4535 /* Traverse *all* successors and decide what to do with each. */
4536 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4537 {
4538 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4539 perform code motion through inner loops. */
4540 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4541
4542 if (current_flags & flags)
4543 {
4544 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4545 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4546 /* FIXME: Improve calculation when skipping
e855c69d 4547 inner loop to exits. */
b8698a0f
L
4548 (si.bb_end
4549 ? si.e1->probability
e855c69d
AB
4550 : REG_BR_PROB_BASE));
4551 sinfo->succs_ok_n++;
4552 }
4553 else
4554 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4555
4556 /* Compute all_prob. */
4557 if (!si.bb_end)
4558 sinfo->all_prob = REG_BR_PROB_BASE;
4559 else
4560 sinfo->all_prob += si.e1->probability;
4561
4562 sinfo->all_succs_n++;
4563 }
4564
4565 return sinfo;
4566}
4567
b8698a0f 4568/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4569 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4570static void
4571cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4572{
4573 edge e;
4574 edge_iterator ei;
4575
4576 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4577
4578 FOR_EACH_EDGE (e, ei, bb->preds)
4579 {
4580 basic_block pred_bb = e->src;
4581 insn_t bb_end = BB_END (pred_bb);
4582
4583 /* ??? This code is not supposed to walk out of a region. */
4584 gcc_assert (in_current_region_p (pred_bb));
4585
4586 if (sel_bb_empty_p (pred_bb))
4587 cfg_preds_1 (pred_bb, preds, n, size);
4588 else
4589 {
4590 if (*n == *size)
b8698a0f 4591 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4592 (*size = 2 * *size + 1));
4593 (*preds)[(*n)++] = bb_end;
4594 }
4595 }
4596
4597 gcc_assert (*n != 0);
4598}
4599
b8698a0f
L
4600/* Find all predecessors of BB and record them in PREDS and their number
4601 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4602 edges are processed. */
4603static void
4604cfg_preds (basic_block bb, insn_t **preds, int *n)
4605{
4606 int size = 0;
4607
4608 *preds = NULL;
4609 *n = 0;
4610 cfg_preds_1 (bb, preds, n, &size);
4611}
4612
4613/* Returns true if we are moving INSN through join point. */
4614bool
4615sel_num_cfg_preds_gt_1 (insn_t insn)
4616{
4617 basic_block bb;
4618
4619 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4620 return false;
4621
4622 bb = BLOCK_FOR_INSN (insn);
4623
4624 while (1)
4625 {
4626 if (EDGE_COUNT (bb->preds) > 1)
4627 return true;
4628
4629 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4630 bb = EDGE_PRED (bb, 0)->src;
4631
4632 if (!sel_bb_empty_p (bb))
4633 break;
4634 }
4635
4636 return false;
4637}
4638
b8698a0f 4639/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4640 code in sched-ebb.c. */
4641bool
4642bb_ends_ebb_p (basic_block bb)
4643{
4644 basic_block next_bb = bb_next_bb (bb);
4645 edge e;
4646 edge_iterator ei;
b8698a0f 4647
e855c69d
AB
4648 if (next_bb == EXIT_BLOCK_PTR
4649 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4650 || (LABEL_P (BB_HEAD (next_bb))
4651 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4652 Work around that. */
4653 && !single_pred_p (next_bb)))
4654 return true;
4655
4656 if (!in_current_region_p (next_bb))
4657 return true;
4658
4659 FOR_EACH_EDGE (e, ei, bb->succs)
4660 if ((e->flags & EDGE_FALLTHRU) != 0)
4661 {
4662 gcc_assert (e->dest == next_bb);
4663
4664 return false;
4665 }
4666
4667 return true;
4668}
4669
4670/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4671 successor of INSN. */
4672bool
4673in_same_ebb_p (insn_t insn, insn_t succ)
4674{
4675 basic_block ptr = BLOCK_FOR_INSN (insn);
4676
4677 for(;;)
4678 {
4679 if (ptr == BLOCK_FOR_INSN (succ))
4680 return true;
b8698a0f 4681
e855c69d
AB
4682 if (bb_ends_ebb_p (ptr))
4683 return false;
4684
4685 ptr = bb_next_bb (ptr);
4686 }
4687
4688 gcc_unreachable ();
4689 return false;
4690}
4691
4692/* Recomputes the reverse topological order for the function and
4693 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4694 modified appropriately. */
4695static void
4696recompute_rev_top_order (void)
4697{
4698 int *postorder;
4699 int n_blocks, i;
4700
4701 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4702 {
b8698a0f 4703 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4704 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4705 rev_top_order_index_len);
4706 }
4707
4708 postorder = XNEWVEC (int, n_basic_blocks);
4709
4710 n_blocks = post_order_compute (postorder, true, false);
4711 gcc_assert (n_basic_blocks == n_blocks);
4712
4713 /* Build reverse function: for each basic block with BB->INDEX == K
4714 rev_top_order_index[K] is it's reverse topological sort number. */
4715 for (i = 0; i < n_blocks; i++)
4716 {
4717 gcc_assert (postorder[i] < rev_top_order_index_len);
4718 rev_top_order_index[postorder[i]] = i;
4719 }
4720
4721 free (postorder);
4722}
4723
4724/* Clear all flags from insns in BB that could spoil its rescheduling. */
4725void
4726clear_outdated_rtx_info (basic_block bb)
4727{
4728 rtx insn;
4729
4730 FOR_BB_INSNS (bb, insn)
4731 if (INSN_P (insn))
4732 {
4733 SCHED_GROUP_P (insn) = 0;
4734 INSN_AFTER_STALL_P (insn) = 0;
4735 INSN_SCHED_TIMES (insn) = 0;
4736 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4737
4738 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4739 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4740 the expression, and currently we'll be unable to do this. */
4741 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4742 }
4743}
4744
4745/* Add BB_NOTE to the pool of available basic block notes. */
4746static void
4747return_bb_to_pool (basic_block bb)
4748{
4749 rtx note = bb_note (bb);
4750
4751 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4752 && bb->aux == NULL);
4753
4754 /* It turns out that current cfg infrastructure does not support
4755 reuse of basic blocks. Don't bother for now. */
4756 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4757}
4758
4759/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4760static rtx
4761get_bb_note_from_pool (void)
4762{
4763 if (VEC_empty (rtx, bb_note_pool))
4764 return NULL_RTX;
4765 else
4766 {
4767 rtx note = VEC_pop (rtx, bb_note_pool);
4768
4769 PREV_INSN (note) = NULL_RTX;
4770 NEXT_INSN (note) = NULL_RTX;
4771
4772 return note;
4773 }
4774}
4775
4776/* Free bb_note_pool. */
4777void
4778free_bb_note_pool (void)
4779{
4780 VEC_free (rtx, heap, bb_note_pool);
4781}
4782
4783/* Setup scheduler pool and successor structure. */
4784void
4785alloc_sched_pools (void)
4786{
4787 int succs_size;
4788
4789 succs_size = MAX_WS + 1;
b8698a0f 4790 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4791 succs_info_pool.size = succs_size;
4792 succs_info_pool.top = -1;
4793 succs_info_pool.max_top = -1;
4794
b8698a0f 4795 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4796 sizeof (struct _list_node), 500);
4797}
4798
4799/* Free the pools. */
4800void
4801free_sched_pools (void)
4802{
4803 int i;
b8698a0f 4804
e855c69d
AB
4805 free_alloc_pool (sched_lists_pool);
4806 gcc_assert (succs_info_pool.top == -1);
4807 for (i = 0; i < succs_info_pool.max_top; i++)
4808 {
4809 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4810 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4811 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4812 }
4813 free (succs_info_pool.stack);
4814}
4815\f
4816
b8698a0f 4817/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
4818 topological order. */
4819static int
4820find_place_to_insert_bb (basic_block bb, int rgn)
4821{
4822 bool has_preds_outside_rgn = false;
4823 edge e;
4824 edge_iterator ei;
b8698a0f 4825
e855c69d
AB
4826 /* Find whether we have preds outside the region. */
4827 FOR_EACH_EDGE (e, ei, bb->preds)
4828 if (!in_current_region_p (e->src))
4829 {
4830 has_preds_outside_rgn = true;
4831 break;
4832 }
b8698a0f 4833
e855c69d
AB
4834 /* Recompute the top order -- needed when we have > 1 pred
4835 and in case we don't have preds outside. */
4836 if (flag_sel_sched_pipelining_outer_loops
4837 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4838 {
4839 int i, bbi = bb->index, cur_bbi;
4840
4841 recompute_rev_top_order ();
4842 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4843 {
4844 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 4845 if (rev_top_order_index[bbi]
e855c69d
AB
4846 < rev_top_order_index[cur_bbi])
4847 break;
4848 }
b8698a0f 4849
e855c69d
AB
4850 /* We skipped the right block, so we increase i. We accomodate
4851 it for increasing by step later, so we decrease i. */
4852 return (i + 1) - 1;
4853 }
4854 else if (has_preds_outside_rgn)
4855 {
4856 /* This is the case when we generate an extra empty block
4857 to serve as region head during pipelining. */
4858 e = EDGE_SUCC (bb, 0);
4859 gcc_assert (EDGE_COUNT (bb->succs) == 1
4860 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4861 && (BLOCK_TO_BB (e->dest->index) == 0));
4862 return -1;
4863 }
4864
4865 /* We don't have preds outside the region. We should have
4866 the only pred, because the multiple preds case comes from
4867 the pipelining of outer loops, and that is handled above.
4868 Just take the bbi of this single pred. */
4869 if (EDGE_COUNT (bb->succs) > 0)
4870 {
4871 int pred_bbi;
b8698a0f 4872
e855c69d 4873 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 4874
e855c69d
AB
4875 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4876 return BLOCK_TO_BB (pred_bbi);
4877 }
4878 else
4879 /* BB has no successors. It is safe to put it in the end. */
4880 return current_nr_blocks - 1;
4881}
4882
4883/* Deletes an empty basic block freeing its data. */
4884static void
4885delete_and_free_basic_block (basic_block bb)
4886{
4887 gcc_assert (sel_bb_empty_p (bb));
4888
4889 if (BB_LV_SET (bb))
4890 free_lv_set (bb);
4891
4892 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4893
b8698a0f
L
4894 /* Can't assert av_set properties because we use sel_aremove_bb
4895 when removing loop preheader from the region. At the point of
e855c69d
AB
4896 removing the preheader we already have deallocated sel_region_bb_info. */
4897 gcc_assert (BB_LV_SET (bb) == NULL
4898 && !BB_LV_SET_VALID_P (bb)
4899 && BB_AV_LEVEL (bb) == 0
4900 && BB_AV_SET (bb) == NULL);
b8698a0f 4901
e855c69d
AB
4902 delete_basic_block (bb);
4903}
4904
4905/* Add BB to the current region and update the region data. */
4906static void
4907add_block_to_current_region (basic_block bb)
4908{
4909 int i, pos, bbi = -2, rgn;
4910
4911 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4912 bbi = find_place_to_insert_bb (bb, rgn);
4913 bbi += 1;
4914 pos = RGN_BLOCKS (rgn) + bbi;
4915
4916 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4917 && ebb_head[bbi] == pos);
b8698a0f 4918
e855c69d
AB
4919 /* Make a place for the new block. */
4920 extend_regions ();
4921
4922 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4923 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 4924
e855c69d
AB
4925 memmove (rgn_bb_table + pos + 1,
4926 rgn_bb_table + pos,
4927 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4928
4929 /* Initialize data for BB. */
4930 rgn_bb_table[pos] = bb->index;
4931 BLOCK_TO_BB (bb->index) = bbi;
4932 CONTAINING_RGN (bb->index) = rgn;
4933
4934 RGN_NR_BLOCKS (rgn)++;
b8698a0f 4935
e855c69d
AB
4936 for (i = rgn + 1; i <= nr_regions; i++)
4937 RGN_BLOCKS (i)++;
4938}
4939
4940/* Remove BB from the current region and update the region data. */
4941static void
4942remove_bb_from_region (basic_block bb)
4943{
4944 int i, pos, bbi = -2, rgn;
4945
4946 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4947 bbi = BLOCK_TO_BB (bb->index);
4948 pos = RGN_BLOCKS (rgn) + bbi;
4949
4950 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4951 && ebb_head[bbi] == pos);
4952
4953 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4954 BLOCK_TO_BB (rgn_bb_table[i])--;
4955
4956 memmove (rgn_bb_table + pos,
4957 rgn_bb_table + pos + 1,
4958 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4959
4960 RGN_NR_BLOCKS (rgn)--;
4961 for (i = rgn + 1; i <= nr_regions; i++)
4962 RGN_BLOCKS (i)--;
4963}
4964
b8698a0f 4965/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
4966 blocks from last_added_blocks vector. */
4967static void
4968sel_add_bb (basic_block bb)
4969{
4970 /* Extend luids so that new notes will receive zero luids. */
4971 sched_init_luids (NULL, NULL, NULL, NULL);
4972 sched_init_bbs ();
4973 sel_init_bbs (last_added_blocks, NULL);
4974
b8698a0f 4975 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
4976 the only element that equals to bb; otherwise, the vector
4977 should not be NULL. */
4978 gcc_assert (last_added_blocks != NULL);
b8698a0f 4979
e855c69d
AB
4980 if (bb != NULL)
4981 {
4982 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
4983 && VEC_index (basic_block,
4984 last_added_blocks, 0) == bb);
e855c69d
AB
4985 add_block_to_current_region (bb);
4986
4987 /* We associate creating/deleting data sets with the first insn
4988 appearing / disappearing in the bb. */
4989 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4990 create_initial_data_sets (bb);
b8698a0f 4991
e855c69d
AB
4992 VEC_free (basic_block, heap, last_added_blocks);
4993 }
4994 else
4995 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4996 {
4997 int i;
4998 basic_block temp_bb = NULL;
4999
b8698a0f 5000 for (i = 0;
e855c69d
AB
5001 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5002 {
5003 add_block_to_current_region (bb);
5004 temp_bb = bb;
5005 }
5006
b8698a0f 5007 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5008 to update. */
5009 gcc_assert (temp_bb != NULL);
5010 bb = temp_bb;
5011
5012 VEC_free (basic_block, heap, last_added_blocks);
5013 }
5014
5015 rgn_setup_region (CONTAINING_RGN (bb->index));
5016}
5017
b8698a0f 5018/* Remove BB from the current region and update all data.
e855c69d
AB
5019 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5020static void
5021sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5022{
5023 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5024
e855c69d
AB
5025 remove_bb_from_region (bb);
5026 return_bb_to_pool (bb);
5027 bitmap_clear_bit (blocks_to_reschedule, bb->index);
b8698a0f 5028
e855c69d
AB
5029 if (remove_from_cfg_p)
5030 delete_and_free_basic_block (bb);
5031
5032 rgn_setup_region (CONTAINING_RGN (bb->index));
5033}
5034
5035/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5036static void
5037move_bb_info (basic_block merge_bb, basic_block empty_bb)
5038{
5039 gcc_assert (in_current_region_p (merge_bb));
5040
b8698a0f 5041 concat_note_lists (BB_NOTE_LIST (empty_bb),
e855c69d
AB
5042 &BB_NOTE_LIST (merge_bb));
5043 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5044
5045}
5046
b8698a0f
L
5047/* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
5048 EMPTY_BB's note lists into its predecessor instead of putting them
5049 into the successor. When REMOVE_FROM_CFG_P is true, also remove
e855c69d
AB
5050 the empty block. */
5051void
5052sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
5053 bool remove_from_cfg_p)
5054{
5055 basic_block merge_bb;
5056
5057 gcc_assert (sel_bb_empty_p (empty_bb));
5058
5059 if (merge_up_p)
5060 {
5061 merge_bb = empty_bb->prev_bb;
5062 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
5063 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
5064 }
5065 else
5066 {
5067 edge e;
5068 edge_iterator ei;
5069
5070 merge_bb = bb_next_bb (empty_bb);
5071
b8698a0f 5072 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
e855c69d
AB
5073 successor block. */
5074 for (ei = ei_start (empty_bb->preds);
5075 (e = ei_safe_edge (ei)); )
5076 {
5077 if (! (e->flags & EDGE_FALLTHRU))
5078 sel_redirect_edge_and_branch (e, merge_bb);
5079 else
5080 ei_next (&ei);
5081 }
5082
5083 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
5084 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
5085 }
5086
5087 move_bb_info (merge_bb, empty_bb);
5088 remove_empty_bb (empty_bb, remove_from_cfg_p);
5089}
5090
5091/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5092 region, but keep it in CFG. */
5093static void
5094remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5095{
5096 /* The block should contain just a note or a label.
5097 We try to check whether it is unused below. */
5098 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5099 || LABEL_P (BB_HEAD (empty_bb)));
5100
5101 /* If basic block has predecessors or successors, redirect them. */
5102 if (remove_from_cfg_p
5103 && (EDGE_COUNT (empty_bb->preds) > 0
5104 || EDGE_COUNT (empty_bb->succs) > 0))
5105 {
5106 basic_block pred;
5107 basic_block succ;
5108
5109 /* We need to init PRED and SUCC before redirecting edges. */
5110 if (EDGE_COUNT (empty_bb->preds) > 0)
5111 {
5112 edge e;
5113
5114 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5115
5116 e = EDGE_PRED (empty_bb, 0);
5117 gcc_assert (e->src == empty_bb->prev_bb
5118 && (e->flags & EDGE_FALLTHRU));
5119
5120 pred = empty_bb->prev_bb;
5121 }
5122 else
5123 pred = NULL;
5124
5125 if (EDGE_COUNT (empty_bb->succs) > 0)
5126 {
5127 /* We do not check fallthruness here as above, because
5128 after removing a jump the edge may actually be not fallthru. */
5129 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5130 succ = EDGE_SUCC (empty_bb, 0)->dest;
5131 }
5132 else
5133 succ = NULL;
5134
5135 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5136 {
5137 edge e = EDGE_PRED (empty_bb, 0);
5138
5139 if (e->flags & EDGE_FALLTHRU)
5140 redirect_edge_succ_nodup (e, succ);
5141 else
5142 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5143 }
5144
5145 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5146 {
5147 edge e = EDGE_SUCC (empty_bb, 0);
5148
5149 if (find_edge (pred, e->dest) == NULL)
5150 redirect_edge_pred (e, pred);
5151 }
5152 }
5153
5154 /* Finish removing. */
5155 sel_remove_bb (empty_bb, remove_from_cfg_p);
5156}
5157
b8698a0f 5158/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5159 per-bb data structures. */
5160static basic_block
5161sel_create_basic_block (void *headp, void *endp, basic_block after)
5162{
5163 basic_block new_bb;
5164 insn_t new_bb_note;
b8698a0f
L
5165
5166 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5167 || last_added_blocks == NULL);
5168
5169 new_bb_note = get_bb_note_from_pool ();
5170
5171 if (new_bb_note == NULL_RTX)
5172 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5173 else
5174 {
5175 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5176 new_bb_note, after);
5177 new_bb->aux = NULL;
5178 }
5179
5180 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5181
5182 return new_bb;
5183}
5184
5185/* Implement sched_init_only_bb (). */
5186static void
5187sel_init_only_bb (basic_block bb, basic_block after)
5188{
5189 gcc_assert (after == NULL);
5190
5191 extend_regions ();
5192 rgn_make_new_region_out_of_new_block (bb);
5193}
5194
5195/* Update the latch when we've splitted or merged it from FROM block to TO.
5196 This should be checked for all outer loops, too. */
5197static void
5198change_loops_latches (basic_block from, basic_block to)
5199{
5200 gcc_assert (from != to);
5201
5202 if (current_loop_nest)
5203 {
5204 struct loop *loop;
5205
5206 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5207 if (considered_for_pipelining_p (loop) && loop->latch == from)
5208 {
5209 gcc_assert (loop == current_loop_nest);
5210 loop->latch = to;
5211 gcc_assert (loop_latch_edge (loop));
5212 }
5213 }
5214}
5215
b8698a0f 5216/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5217 per-bb data structures. Returns the newly created bb. */
5218static basic_block
5219sel_split_block (basic_block bb, rtx after)
5220{
5221 basic_block new_bb;
5222 insn_t insn;
5223
5224 new_bb = sched_split_block_1 (bb, after);
5225 sel_add_bb (new_bb);
5226
5227 /* This should be called after sel_add_bb, because this uses
b8698a0f 5228 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5229 FIXME: this function may be a no-op now. */
5230 change_loops_latches (bb, new_bb);
5231
5232 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5233 FOR_BB_INSNS (new_bb, insn)
5234 if (INSN_P (insn))
5235 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5236
5237 if (sel_bb_empty_p (bb))
5238 {
5239 gcc_assert (!sel_bb_empty_p (new_bb));
5240
5241 /* NEW_BB has data sets that need to be updated and BB holds
5242 data sets that should be removed. Exchange these data sets
5243 so that we won't lose BB's valid data sets. */
5244 exchange_data_sets (new_bb, bb);
5245 free_data_sets (bb);
5246 }
5247
5248 if (!sel_bb_empty_p (new_bb)
5249 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5250 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5251
5252 return new_bb;
5253}
5254
5255/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5256 Otherwise returns NULL. */
5257static rtx
5258check_for_new_jump (basic_block bb, int prev_max_uid)
5259{
5260 rtx end;
5261
5262 end = sel_bb_end (bb);
5263 if (end && INSN_UID (end) >= prev_max_uid)
5264 return end;
5265 return NULL;
5266}
5267
b8698a0f 5268/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5269 New means having UID at least equal to PREV_MAX_UID. */
5270static rtx
5271find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5272{
5273 rtx jump;
5274
5275 /* Return immediately if no new insns were emitted. */
5276 if (get_max_uid () == prev_max_uid)
5277 return NULL;
b8698a0f 5278
e855c69d
AB
5279 /* Now check both blocks for new jumps. It will ever be only one. */
5280 if ((jump = check_for_new_jump (from, prev_max_uid)))
5281 return jump;
5282
5283 if (jump_bb != NULL
5284 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5285 return jump;
5286 return NULL;
5287}
5288
5289/* Splits E and adds the newly created basic block to the current region.
5290 Returns this basic block. */
5291basic_block
5292sel_split_edge (edge e)
5293{
5294 basic_block new_bb, src, other_bb = NULL;
5295 int prev_max_uid;
5296 rtx jump;
5297
5298 src = e->src;
5299 prev_max_uid = get_max_uid ();
5300 new_bb = split_edge (e);
5301
b8698a0f 5302 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5303 && current_loop_nest)
5304 {
5305 int i;
5306 basic_block bb;
5307
b8698a0f 5308 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5309 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5310 for (i = 0;
e855c69d
AB
5311 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5312 if (!bb->loop_father)
5313 {
5314 add_bb_to_loop (bb, e->dest->loop_father);
5315
5316 gcc_assert (!other_bb && (new_bb->index != bb->index));
5317 other_bb = bb;
5318 }
5319 }
5320
5321 /* Add all last_added_blocks to the region. */
5322 sel_add_bb (NULL);
5323
5324 jump = find_new_jump (src, new_bb, prev_max_uid);
5325 if (jump)
5326 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5327
5328 /* Put the correct lv set on this block. */
5329 if (other_bb && !sel_bb_empty_p (other_bb))
5330 compute_live (sel_bb_head (other_bb));
5331
5332 return new_bb;
5333}
5334
5335/* Implement sched_create_empty_bb (). */
5336static basic_block
5337sel_create_empty_bb (basic_block after)
5338{
5339 basic_block new_bb;
5340
5341 new_bb = sched_create_empty_bb_1 (after);
5342
5343 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5344 later. */
5345 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5346 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5347
5348 VEC_free (basic_block, heap, last_added_blocks);
5349 return new_bb;
5350}
5351
5352/* Implement sched_create_recovery_block. ORIG_INSN is where block
5353 will be splitted to insert a check. */
5354basic_block
5355sel_create_recovery_block (insn_t orig_insn)
5356{
5357 basic_block first_bb, second_bb, recovery_block;
5358 basic_block before_recovery = NULL;
5359 rtx jump;
5360
5361 first_bb = BLOCK_FOR_INSN (orig_insn);
5362 if (sel_bb_end_p (orig_insn))
5363 {
5364 /* Avoid introducing an empty block while splitting. */
5365 gcc_assert (single_succ_p (first_bb));
5366 second_bb = single_succ (first_bb);
5367 }
5368 else
5369 second_bb = sched_split_block (first_bb, orig_insn);
5370
5371 recovery_block = sched_create_recovery_block (&before_recovery);
5372 if (before_recovery)
5373 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5374
5375 gcc_assert (sel_bb_empty_p (recovery_block));
5376 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5377 if (current_loops != NULL)
5378 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5379
e855c69d 5380 sel_add_bb (recovery_block);
b8698a0f 5381
e855c69d
AB
5382 jump = BB_END (recovery_block);
5383 gcc_assert (sel_bb_head (recovery_block) == jump);
5384 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5385
5386 return recovery_block;
5387}
5388
5389/* Merge basic block B into basic block A. */
5390void
5391sel_merge_blocks (basic_block a, basic_block b)
5392{
e855c69d
AB
5393 sel_remove_empty_bb (b, true, false);
5394 merge_blocks (a, b);
5395
5396 change_loops_latches (b, a);
5397}
5398
5399/* A wrapper for redirect_edge_and_branch_force, which also initializes
5400 data structures for possibly created bb and insns. Returns the newly
5401 added bb or NULL, when a bb was not needed. */
5402void
5403sel_redirect_edge_and_branch_force (edge e, basic_block to)
5404{
5405 basic_block jump_bb, src;
5406 int prev_max_uid;
5407 rtx jump;
b8698a0f 5408
e855c69d 5409 gcc_assert (!sel_bb_empty_p (e->src));
b8698a0f 5410
e855c69d
AB
5411 src = e->src;
5412 prev_max_uid = get_max_uid ();
5413 jump_bb = redirect_edge_and_branch_force (e, to);
5414
5415 if (jump_bb != NULL)
5416 sel_add_bb (jump_bb);
5417
5418 /* This function could not be used to spoil the loop structure by now,
5419 thus we don't care to update anything. But check it to be sure. */
5420 if (current_loop_nest
5421 && pipelining_p)
5422 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5423
e855c69d
AB
5424 jump = find_new_jump (src, jump_bb, prev_max_uid);
5425 if (jump)
5426 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5427}
5428
b59ab570
AM
5429/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5430 redirected edge are in reverse topological order. */
5431bool
e855c69d
AB
5432sel_redirect_edge_and_branch (edge e, basic_block to)
5433{
5434 bool latch_edge_p;
5435 basic_block src;
5436 int prev_max_uid;
5437 rtx jump;
f2c45f08 5438 edge redirected;
b59ab570 5439 bool recompute_toporder_p = false;
e855c69d
AB
5440
5441 latch_edge_p = (pipelining_p
5442 && current_loop_nest
5443 && e == loop_latch_edge (current_loop_nest));
5444
5445 src = e->src;
5446 prev_max_uid = get_max_uid ();
f2c45f08
AM
5447
5448 redirected = redirect_edge_and_branch (e, to);
5449
5450 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5451
5452 /* When we've redirected a latch edge, update the header. */
5453 if (latch_edge_p)
5454 {
5455 current_loop_nest->header = to;
5456 gcc_assert (loop_latch_edge (current_loop_nest));
5457 }
5458
b59ab570
AM
5459 /* In rare situations, the topological relation between the blocks connected
5460 by the redirected edge can change (see PR42245 for an example). Update
5461 block_to_bb/bb_to_block. */
5462 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5463 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5464 recompute_toporder_p = true;
5465
e855c69d
AB
5466 jump = find_new_jump (src, NULL, prev_max_uid);
5467 if (jump)
5468 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570
AM
5469
5470 return recompute_toporder_p;
e855c69d
AB
5471}
5472
5473/* This variable holds the cfg hooks used by the selective scheduler. */
5474static struct cfg_hooks sel_cfg_hooks;
5475
5476/* Register sel-sched cfg hooks. */
5477void
5478sel_register_cfg_hooks (void)
5479{
5480 sched_split_block = sel_split_block;
5481
5482 orig_cfg_hooks = get_cfg_hooks ();
5483 sel_cfg_hooks = orig_cfg_hooks;
5484
5485 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5486
5487 set_cfg_hooks (sel_cfg_hooks);
5488
5489 sched_init_only_bb = sel_init_only_bb;
5490 sched_split_block = sel_split_block;
5491 sched_create_empty_bb = sel_create_empty_bb;
5492}
5493
5494/* Unregister sel-sched cfg hooks. */
5495void
5496sel_unregister_cfg_hooks (void)
5497{
5498 sched_create_empty_bb = NULL;
5499 sched_split_block = NULL;
5500 sched_init_only_bb = NULL;
5501
5502 set_cfg_hooks (orig_cfg_hooks);
5503}
5504\f
5505
5506/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5507 LABEL is where this jump should be directed. */
5508rtx
5509create_insn_rtx_from_pattern (rtx pattern, rtx label)
5510{
5511 rtx insn_rtx;
5512
5513 gcc_assert (!INSN_P (pattern));
5514
5515 start_sequence ();
5516
5517 if (label == NULL_RTX)
5518 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5519 else if (DEBUG_INSN_P (label))
5520 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5521 else
5522 {
5523 insn_rtx = emit_jump_insn (pattern);
5524 JUMP_LABEL (insn_rtx) = label;
5525 ++LABEL_NUSES (label);
5526 }
5527
5528 end_sequence ();
5529
5530 sched_init_luids (NULL, NULL, NULL, NULL);
5531 sched_extend_target ();
5532 sched_deps_init (false);
5533
5534 /* Initialize INSN_CODE now. */
5535 recog_memoized (insn_rtx);
5536 return insn_rtx;
5537}
5538
5539/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5540 must not be clonable. */
5541vinsn_t
5542create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5543{
5544 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5545
5546 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5547 return vinsn_create (insn_rtx, force_unique_p);
5548}
5549
5550/* Create a copy of INSN_RTX. */
5551rtx
5552create_copy_of_insn_rtx (rtx insn_rtx)
5553{
5554 rtx res;
5555
b5b8b0ac
AO
5556 if (DEBUG_INSN_P (insn_rtx))
5557 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5558 insn_rtx);
5559
e855c69d
AB
5560 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5561
5562 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5563 NULL_RTX);
5564 return res;
5565}
5566
5567/* Change vinsn field of EXPR to hold NEW_VINSN. */
5568void
5569change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5570{
5571 vinsn_detach (EXPR_VINSN (expr));
5572
5573 EXPR_VINSN (expr) = new_vinsn;
5574 vinsn_attach (new_vinsn);
5575}
5576
5577/* Helpers for global init. */
5578/* This structure is used to be able to call existing bundling mechanism
5579 and calculate insn priorities. */
b8698a0f 5580static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5581{
5582 NULL, /* init_ready_list */
5583 NULL, /* can_schedule_ready_p */
5584 NULL, /* schedule_more_p */
5585 NULL, /* new_ready */
5586 NULL, /* rgn_rank */
5587 sel_print_insn, /* rgn_print_insn */
5588 contributes_to_priority,
356c23b3 5589 NULL, /* insn_finishes_block_p */
e855c69d
AB
5590
5591 NULL, NULL,
5592 NULL, NULL,
5593 0, 0,
5594
5595 NULL, /* add_remove_insn */
5596 NULL, /* begin_schedule_ready */
5597 NULL, /* advance_target_bb */
5598 SEL_SCHED | NEW_BBS
5599};
5600
5601/* Setup special insns used in the scheduler. */
b8698a0f 5602void
e855c69d
AB
5603setup_nop_and_exit_insns (void)
5604{
5605 gcc_assert (nop_pattern == NULL_RTX
5606 && exit_insn == NULL_RTX);
5607
5608 nop_pattern = gen_nop ();
5609
5610 start_sequence ();
5611 emit_insn (nop_pattern);
5612 exit_insn = get_insns ();
5613 end_sequence ();
5614 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5615}
5616
5617/* Free special insns used in the scheduler. */
5618void
5619free_nop_and_exit_insns (void)
5620{
5621 exit_insn = NULL_RTX;
5622 nop_pattern = NULL_RTX;
5623}
5624
5625/* Setup a special vinsn used in new insns initialization. */
5626void
5627setup_nop_vinsn (void)
5628{
5629 nop_vinsn = vinsn_create (exit_insn, false);
5630 vinsn_attach (nop_vinsn);
5631}
5632
5633/* Free a special vinsn used in new insns initialization. */
5634void
5635free_nop_vinsn (void)
5636{
5637 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5638 vinsn_detach (nop_vinsn);
5639 nop_vinsn = NULL;
5640}
5641
5642/* Call a set_sched_flags hook. */
5643void
5644sel_set_sched_flags (void)
5645{
b8698a0f 5646 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5647 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5648 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5649 sometimes change c_s_i later. So put the correct flags again. */
5650 if (spec_info && targetm.sched.set_sched_flags)
5651 targetm.sched.set_sched_flags (spec_info);
5652}
5653
5654/* Setup pointers to global sched info structures. */
5655void
5656sel_setup_sched_infos (void)
5657{
5658 rgn_setup_common_sched_info ();
5659
5660 memcpy (&sel_common_sched_info, common_sched_info,
5661 sizeof (sel_common_sched_info));
5662
5663 sel_common_sched_info.fix_recovery_cfg = NULL;
5664 sel_common_sched_info.add_block = NULL;
5665 sel_common_sched_info.estimate_number_of_insns
5666 = sel_estimate_number_of_insns;
5667 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5668 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5669
5670 common_sched_info = &sel_common_sched_info;
5671
5672 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5673 current_sched_info->sched_max_insns_priority =
e855c69d 5674 get_rgn_sched_max_insns_priority ();
b8698a0f 5675
e855c69d
AB
5676 sel_set_sched_flags ();
5677}
5678\f
5679
5680/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5681 *BB_ORD_INDEX after that is increased. */
5682static void
5683sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5684{
5685 RGN_NR_BLOCKS (rgn) += 1;
5686 RGN_DONT_CALC_DEPS (rgn) = 0;
5687 RGN_HAS_REAL_EBB (rgn) = 0;
5688 CONTAINING_RGN (bb->index) = rgn;
5689 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5690 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5691 (*bb_ord_index)++;
5692
5693 /* FIXME: it is true only when not scheduling ebbs. */
5694 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5695}
5696
5697/* Functions to support pipelining of outer loops. */
5698
5699/* Creates a new empty region and returns it's number. */
5700static int
5701sel_create_new_region (void)
5702{
5703 int new_rgn_number = nr_regions;
5704
5705 RGN_NR_BLOCKS (new_rgn_number) = 0;
5706
5707 /* FIXME: This will work only when EBBs are not created. */
5708 if (new_rgn_number != 0)
b8698a0f 5709 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5710 RGN_NR_BLOCKS (new_rgn_number - 1);
5711 else
5712 RGN_BLOCKS (new_rgn_number) = 0;
5713
5714 /* Set the blocks of the next region so the other functions may
5715 calculate the number of blocks in the region. */
b8698a0f 5716 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5717 RGN_NR_BLOCKS (new_rgn_number);
5718
5719 nr_regions++;
5720
5721 return new_rgn_number;
5722}
5723
5724/* If X has a smaller topological sort number than Y, returns -1;
5725 if greater, returns 1. */
5726static int
5727bb_top_order_comparator (const void *x, const void *y)
5728{
5729 basic_block bb1 = *(const basic_block *) x;
5730 basic_block bb2 = *(const basic_block *) y;
5731
b8698a0f
L
5732 gcc_assert (bb1 == bb2
5733 || rev_top_order_index[bb1->index]
e855c69d
AB
5734 != rev_top_order_index[bb2->index]);
5735
5736 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5737 bbs with greater number should go earlier. */
5738 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5739 return -1;
5740 else
5741 return 1;
5742}
5743
b8698a0f 5744/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5745 to pipeline LOOP, return -1. */
5746static int
5747make_region_from_loop (struct loop *loop)
5748{
5749 unsigned int i;
5750 int new_rgn_number = -1;
5751 struct loop *inner;
5752
5753 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5754 int bb_ord_index = 0;
5755 basic_block *loop_blocks;
5756 basic_block preheader_block;
5757
b8698a0f 5758 if (loop->num_nodes
e855c69d
AB
5759 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5760 return -1;
b8698a0f 5761
e855c69d
AB
5762 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5763 for (inner = loop->inner; inner; inner = inner->inner)
5764 if (flow_bb_inside_loop_p (inner, loop->latch))
5765 return -1;
5766
5767 loop->ninsns = num_loop_insns (loop);
5768 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5769 return -1;
5770
5771 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5772
5773 for (i = 0; i < loop->num_nodes; i++)
5774 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5775 {
5776 free (loop_blocks);
5777 return -1;
5778 }
5779
5780 preheader_block = loop_preheader_edge (loop)->src;
5781 gcc_assert (preheader_block);
5782 gcc_assert (loop_blocks[0] == loop->header);
5783
5784 new_rgn_number = sel_create_new_region ();
5785
5786 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5787 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5788
5789 for (i = 0; i < loop->num_nodes; i++)
5790 {
5791 /* Add only those blocks that haven't been scheduled in the inner loop.
5792 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5793 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5794 body, but to the region containing that loop body). */
5795
5796 gcc_assert (new_rgn_number >= 0);
5797
5798 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5799 {
b8698a0f 5800 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
5801 new_rgn_number);
5802 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5803 }
5804 }
5805
5806 free (loop_blocks);
5807 MARK_LOOP_FOR_PIPELINING (loop);
5808
5809 return new_rgn_number;
5810}
5811
5812/* Create a new region from preheader blocks LOOP_BLOCKS. */
5813void
5814make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5815{
5816 unsigned int i;
5817 int new_rgn_number = -1;
5818 basic_block bb;
5819
5820 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5821 int bb_ord_index = 0;
5822
5823 new_rgn_number = sel_create_new_region ();
5824
5825 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5826 {
5827 gcc_assert (new_rgn_number >= 0);
5828
5829 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5830 }
5831
5832 VEC_free (basic_block, heap, *loop_blocks);
5833 gcc_assert (*loop_blocks == NULL);
5834}
5835
5836
5837/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 5838 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
5839 is created. */
5840static bool
5841make_regions_from_loop_nest (struct loop *loop)
b8698a0f 5842{
e855c69d
AB
5843 struct loop *cur_loop;
5844 int rgn_number;
5845
5846 /* Traverse all inner nodes of the loop. */
5847 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5848 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5849 return false;
5850
5851 /* At this moment all regular inner loops should have been pipelined.
5852 Try to create a region from this loop. */
5853 rgn_number = make_region_from_loop (loop);
5854
5855 if (rgn_number < 0)
5856 return false;
5857
5858 VEC_safe_push (loop_p, heap, loop_nests, loop);
5859 return true;
5860}
5861
5862/* Initalize data structures needed. */
5863void
5864sel_init_pipelining (void)
5865{
5866 /* Collect loop information to be used in outer loops pipelining. */
5867 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5868 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5869 | LOOPS_HAVE_RECORDED_EXITS
5870 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5871 current_loop_nest = NULL;
5872
5873 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5874 sbitmap_zero (bbs_in_loop_rgns);
5875
5876 recompute_rev_top_order ();
5877}
5878
5879/* Returns a struct loop for region RGN. */
5880loop_p
5881get_loop_nest_for_rgn (unsigned int rgn)
5882{
5883 /* Regions created with extend_rgns don't have corresponding loop nests,
5884 because they don't represent loops. */
5885 if (rgn < VEC_length (loop_p, loop_nests))
5886 return VEC_index (loop_p, loop_nests, rgn);
5887 else
5888 return NULL;
5889}
5890
5891/* True when LOOP was included into pipelining regions. */
5892bool
5893considered_for_pipelining_p (struct loop *loop)
5894{
5895 if (loop_depth (loop) == 0)
5896 return false;
5897
b8698a0f
L
5898 /* Now, the loop could be too large or irreducible. Check whether its
5899 region is in LOOP_NESTS.
5900 We determine the region number of LOOP as the region number of its
5901 latch. We can't use header here, because this header could be
e855c69d
AB
5902 just removed preheader and it will give us the wrong region number.
5903 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 5904 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
5905 {
5906 int rgn = CONTAINING_RGN (loop->latch->index);
5907
5908 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5909 return true;
5910 }
b8698a0f 5911
e855c69d
AB
5912 return false;
5913}
5914
b8698a0f 5915/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
5916 for pipelining. */
5917static void
5918make_regions_from_the_rest (void)
5919{
5920 int cur_rgn_blocks;
5921 int *loop_hdr;
5922 int i;
5923
5924 basic_block bb;
5925 edge e;
5926 edge_iterator ei;
5927 int *degree;
e855c69d
AB
5928
5929 /* Index in rgn_bb_table where to start allocating new regions. */
5930 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 5931
b8698a0f 5932 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
5933 any loop or belong to irreducible loops. Prepare the data structures
5934 for extend_rgns. */
5935
5936 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5937 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5938 loop. */
5939 loop_hdr = XNEWVEC (int, last_basic_block);
5940 degree = XCNEWVEC (int, last_basic_block);
5941
5942
5943 /* For each basic block that belongs to some loop assign the number
5944 of innermost loop it belongs to. */
5945 for (i = 0; i < last_basic_block; i++)
5946 loop_hdr[i] = -1;
5947
5948 FOR_EACH_BB (bb)
5949 {
5950 if (bb->loop_father && !bb->loop_father->num == 0
5951 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5952 loop_hdr[bb->index] = bb->loop_father->num;
5953 }
5954
b8698a0f 5955 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
5956 edges, that are going out of bbs that are not yet scheduled.
5957 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 5958 FOR_EACH_BB (bb)
e855c69d
AB
5959 {
5960 degree[bb->index] = 0;
5961
5962 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5963 {
5964 FOR_EACH_EDGE (e, ei, bb->preds)
5965 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5966 degree[bb->index]++;
5967 }
5968 else
5969 degree[bb->index] = -1;
5970 }
5971
5972 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5973
5974 /* Any block that did not end up in a region is placed into a region
5975 by itself. */
5976 FOR_EACH_BB (bb)
5977 if (degree[bb->index] >= 0)
5978 {
5979 rgn_bb_table[cur_rgn_blocks] = bb->index;
5980 RGN_NR_BLOCKS (nr_regions) = 1;
5981 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5982 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5983 RGN_HAS_REAL_EBB (nr_regions) = 0;
5984 CONTAINING_RGN (bb->index) = nr_regions++;
5985 BLOCK_TO_BB (bb->index) = 0;
5986 }
5987
5988 free (degree);
5989 free (loop_hdr);
5990}
5991
5992/* Free data structures used in pipelining of loops. */
5993void sel_finish_pipelining (void)
5994{
5995 loop_iterator li;
5996 struct loop *loop;
5997
5998 /* Release aux fields so we don't free them later by mistake. */
5999 FOR_EACH_LOOP (li, loop, 0)
6000 loop->aux = NULL;
6001
6002 loop_optimizer_finalize ();
6003
6004 VEC_free (loop_p, heap, loop_nests);
6005
6006 free (rev_top_order_index);
6007 rev_top_order_index = NULL;
6008}
6009
b8698a0f 6010/* This function replaces the find_rgns when
e855c69d 6011 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6012void
e855c69d
AB
6013sel_find_rgns (void)
6014{
6015 sel_init_pipelining ();
6016 extend_regions ();
6017
6018 if (current_loops)
6019 {
6020 loop_p loop;
6021 loop_iterator li;
6022
6023 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6024 ? LI_FROM_INNERMOST
6025 : LI_ONLY_INNERMOST))
6026 make_regions_from_loop_nest (loop);
6027 }
6028
6029 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6030 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6031 to irreducible loops. */
6032 make_regions_from_the_rest ();
6033
6034 /* We don't need bbs_in_loop_rgns anymore. */
6035 sbitmap_free (bbs_in_loop_rgns);
6036 bbs_in_loop_rgns = NULL;
6037}
6038
b8698a0f
L
6039/* Adds the preheader blocks from previous loop to current region taking
6040 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
e855c69d
AB
6041 This function is only used with -fsel-sched-pipelining-outer-loops. */
6042void
6043sel_add_loop_preheaders (void)
6044{
6045 int i;
6046 basic_block bb;
b8698a0f 6047 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6048 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6049
6050 for (i = 0;
6051 VEC_iterate (basic_block, preheader_blocks, i, bb);
6052 i++)
8ec4d0ad
AM
6053 {
6054 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6055 sel_add_bb (bb);
8ec4d0ad 6056 }
e855c69d
AB
6057
6058 VEC_free (basic_block, heap, preheader_blocks);
6059}
6060
b8698a0f
L
6061/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6062 Please note that the function should also work when pipelining_p is
6063 false, because it is used when deciding whether we should or should
e855c69d
AB
6064 not reschedule pipelined code. */
6065bool
6066sel_is_loop_preheader_p (basic_block bb)
6067{
6068 if (current_loop_nest)
6069 {
6070 struct loop *outer;
6071
6072 if (preheader_removed)
6073 return false;
6074
6075 /* Preheader is the first block in the region. */
6076 if (BLOCK_TO_BB (bb->index) == 0)
6077 return true;
6078
6079 /* We used to find a preheader with the topological information.
6080 Check that the above code is equivalent to what we did before. */
6081
6082 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6083 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6084 < BLOCK_TO_BB (current_loop_nest->header->index)));
6085
6086 /* Support the situation when the latch block of outer loop
6087 could be from here. */
6088 for (outer = loop_outer (current_loop_nest);
6089 outer;
6090 outer = loop_outer (outer))
6091 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6092 gcc_unreachable ();
6093 }
6094
6095 return false;
6096}
6097
6098/* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
6099bool
6100jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
6101{
6102 basic_block jump_bb = BLOCK_FOR_INSN (jump);
6103
b8698a0f 6104 /* It is not jump, jump with side-effects or jump can lead to several
e855c69d
AB
6105 basic blocks. */
6106 if (!onlyjump_p (jump)
6107 || !any_uncondjump_p (jump))
6108 return false;
6109
b8698a0f 6110 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6111 not DEST_BB. */
6112 if (EDGE_COUNT (jump_bb->succs) != 1
6113 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
6114 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6115 return false;
6116
6117 /* If not anything of the upper. */
6118 return true;
6119}
6120
6121/* Removes the loop preheader from the current region and saves it in
b8698a0f 6122 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6123 region that represents an outer loop. */
6124static void
6125sel_remove_loop_preheader (void)
6126{
6127 int i, old_len;
6128 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6129 basic_block bb;
6130 bool all_empty_p = true;
b8698a0f 6131 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6132 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6133
6134 gcc_assert (current_loop_nest);
6135 old_len = VEC_length (basic_block, preheader_blocks);
6136
6137 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6138 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6139 {
6140 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6141
b8698a0f 6142 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6143 corresponding loop, then it should be a preheader. */
6144 if (sel_is_loop_preheader_p (bb))
6145 {
6146 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6147 if (BB_END (bb) != bb_note (bb))
6148 all_empty_p = false;
6149 }
6150 }
b8698a0f 6151
e855c69d
AB
6152 /* Remove these blocks only after iterating over the whole region. */
6153 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6154 i >= old_len;
6155 i--)
6156 {
b8698a0f 6157 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6158 sel_remove_bb (bb, false);
6159 }
6160
6161 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6162 {
6163 if (!all_empty_p)
6164 /* Immediately create new region from preheader. */
6165 make_region_from_loop_preheader (&preheader_blocks);
6166 else
6167 {
6168 /* If all preheader blocks are empty - dont create new empty region.
6169 Instead, remove them completely. */
6170 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6171 {
6172 edge e;
6173 edge_iterator ei;
6174 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6175
6176 /* Redirect all incoming edges to next basic block. */
6177 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6178 {
6179 if (! (e->flags & EDGE_FALLTHRU))
6180 redirect_edge_and_branch (e, bb->next_bb);
6181 else
6182 redirect_edge_succ (e, bb->next_bb);
6183 }
6184 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6185 delete_and_free_basic_block (bb);
6186
b8698a0f
L
6187 /* Check if after deleting preheader there is a nonconditional
6188 jump in PREV_BB that leads to the next basic block NEXT_BB.
6189 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6190 basic block if it becomes empty. */
6191 if (next_bb->prev_bb == prev_bb
6192 && prev_bb != ENTRY_BLOCK_PTR
6193 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6194 {
6195 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6196 if (BB_END (prev_bb) == bb_note (prev_bb))
6197 free_data_sets (prev_bb);
6198 }
6199 }
6200 }
6201 VEC_free (basic_block, heap, preheader_blocks);
6202 }
6203 else
6204 /* Store preheader within the father's loop structure. */
6205 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6206 preheader_blocks);
6207}
6208#endif