]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
pr40835.c: Require a thumb1 target, do not force -march=armv5e.
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
32e8bb8e 2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "toplev.h"
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
34#include "toplev.h"
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "sched-int.h"
41#include "ggc.h"
42#include "tree.h"
43#include "vec.h"
44#include "langhooks.h"
45#include "rtlhooks-def.h"
46
47#ifdef INSN_SCHEDULING
48#include "sel-sched-ir.h"
49/* We don't have to use it except for sel_print_insn. */
50#include "sel-sched-dump.h"
51
52/* A vector holding bb info for whole scheduling pass. */
53VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55/* A vector holding bb info. */
56VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58/* A pool for allocating all lists. */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set. */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils. */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined. */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72static VEC(loop_p, heap) *loop_nests = NULL;
73
74/* Saves blocks already in loop regions, indexed by bb->index. */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook. */
78static struct cfg_hooks orig_cfg_hooks;
79\f
80
81/* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array. */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure. */
89static struct
90{
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool. */
116static struct
117{
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
125 int s;
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes. */
129static rtx_vec_t bb_note_pool;
130
131/* A NOP pattern used to emit placeholder insns. */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135rtx exit_insn = NULL_RTX;
136
137/* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139bool preheader_removed = false;
140\f
141
142/* Forward static declarations. */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
151static void free_history_vect (VEC (expr_history_def, heap) **);
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
155static void sel_remove_loop_preheader (void);
156
157static bool insn_is_the_only_one_in_bb_p (insn_t);
158static void create_initial_data_sets (basic_block);
159
b5b8b0ac 160static void free_av_set (basic_block);
e855c69d
AB
161static void invalidate_av_set (basic_block);
162static void extend_insn_data (void);
163static void sel_init_new_insn (insn_t, int);
164static void finish_insns (void);
165\f
166/* Various list functions. */
167
168/* Copy an instruction list L. */
169ilist_t
170ilist_copy (ilist_t l)
171{
172 ilist_t head = NULL, *tailp = &head;
173
174 while (l)
175 {
176 ilist_add (tailp, ILIST_INSN (l));
177 tailp = &ILIST_NEXT (*tailp);
178 l = ILIST_NEXT (l);
179 }
180
181 return head;
182}
183
184/* Invert an instruction list L. */
185ilist_t
186ilist_invert (ilist_t l)
187{
188 ilist_t res = NULL;
189
190 while (l)
191 {
192 ilist_add (&res, ILIST_INSN (l));
193 l = ILIST_NEXT (l);
194 }
195
196 return res;
197}
198
199/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
200void
201blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
202{
203 bnd_t bnd;
204
205 _list_add (lp);
206 bnd = BLIST_BND (*lp);
207
208 BND_TO (bnd) = to;
209 BND_PTR (bnd) = ptr;
210 BND_AV (bnd) = NULL;
211 BND_AV1 (bnd) = NULL;
212 BND_DC (bnd) = dc;
213}
214
215/* Remove the list note pointed to by LP. */
216void
217blist_remove (blist_t *lp)
218{
219 bnd_t b = BLIST_BND (*lp);
220
221 av_set_clear (&BND_AV (b));
222 av_set_clear (&BND_AV1 (b));
223 ilist_clear (&BND_PTR (b));
224
225 _list_remove (lp);
226}
227
228/* Init a fence tail L. */
229void
230flist_tail_init (flist_tail_t l)
231{
232 FLIST_TAIL_HEAD (l) = NULL;
233 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
234}
235
236/* Try to find fence corresponding to INSN in L. */
237fence_t
238flist_lookup (flist_t l, insn_t insn)
239{
240 while (l)
241 {
242 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
243 return FLIST_FENCE (l);
244
245 l = FLIST_NEXT (l);
246 }
247
248 return NULL;
249}
250
251/* Init the fields of F before running fill_insns. */
252static void
253init_fence_for_scheduling (fence_t f)
254{
255 FENCE_BNDS (f) = NULL;
256 FENCE_PROCESSED_P (f) = false;
257 FENCE_SCHEDULED_P (f) = false;
258}
259
260/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
261static void
262flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
263 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
264 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
265 int cycle, int cycle_issued_insns,
266 bool starts_cycle_p, bool after_stall_p)
267{
268 fence_t f;
269
270 _list_add (lp);
271 f = FLIST_FENCE (*lp);
272
273 FENCE_INSN (f) = insn;
274
275 gcc_assert (state != NULL);
276 FENCE_STATE (f) = state;
277
278 FENCE_CYCLE (f) = cycle;
279 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
280 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
281 FENCE_AFTER_STALL_P (f) = after_stall_p;
282
283 gcc_assert (dc != NULL);
284 FENCE_DC (f) = dc;
285
286 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
287 FENCE_TC (f) = tc;
288
289 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
290 FENCE_EXECUTING_INSNS (f) = executing_insns;
291 FENCE_READY_TICKS (f) = ready_ticks;
292 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
293 FENCE_SCHED_NEXT (f) = sched_next;
294
295 init_fence_for_scheduling (f);
296}
297
298/* Remove the head node of the list pointed to by LP. */
299static void
300flist_remove (flist_t *lp)
301{
302 if (FENCE_INSN (FLIST_FENCE (*lp)))
303 fence_clear (FLIST_FENCE (*lp));
304 _list_remove (lp);
305}
306
307/* Clear the fence list pointed to by LP. */
308void
309flist_clear (flist_t *lp)
310{
311 while (*lp)
312 flist_remove (lp);
313}
314
315/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
316void
317def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
318{
319 def_t d;
320
321 _list_add (dl);
322 d = DEF_LIST_DEF (*dl);
323
324 d->orig_insn = original_insn;
325 d->crosses_call = crosses_call;
326}
327\f
328
329/* Functions to work with target contexts. */
330
331/* Bulk target context. It is convenient for debugging purposes to ensure
332 that there are no uninitialized (null) target contexts. */
333static tc_t bulk_tc = (tc_t) 1;
334
335/* Target hooks wrappers. In the future we can provide some default
336 implementations for them. */
337
338/* Allocate a store for the target context. */
339static tc_t
340alloc_target_context (void)
341{
342 return (targetm.sched.alloc_sched_context
343 ? targetm.sched.alloc_sched_context () : bulk_tc);
344}
345
346/* Init target context TC.
347 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
348 Overwise, copy current backend context to TC. */
349static void
350init_target_context (tc_t tc, bool clean_p)
351{
352 if (targetm.sched.init_sched_context)
353 targetm.sched.init_sched_context (tc, clean_p);
354}
355
356/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
357 int init_target_context (). */
358tc_t
359create_target_context (bool clean_p)
360{
361 tc_t tc = alloc_target_context ();
362
363 init_target_context (tc, clean_p);
364 return tc;
365}
366
367/* Copy TC to the current backend context. */
368void
369set_target_context (tc_t tc)
370{
371 if (targetm.sched.set_sched_context)
372 targetm.sched.set_sched_context (tc);
373}
374
375/* TC is about to be destroyed. Free any internal data. */
376static void
377clear_target_context (tc_t tc)
378{
379 if (targetm.sched.clear_sched_context)
380 targetm.sched.clear_sched_context (tc);
381}
382
383/* Clear and free it. */
384static void
385delete_target_context (tc_t tc)
386{
387 clear_target_context (tc);
388
389 if (targetm.sched.free_sched_context)
390 targetm.sched.free_sched_context (tc);
391}
392
393/* Make a copy of FROM in TO.
394 NB: May be this should be a hook. */
395static void
396copy_target_context (tc_t to, tc_t from)
397{
398 tc_t tmp = create_target_context (false);
399
400 set_target_context (from);
401 init_target_context (to, false);
402
403 set_target_context (tmp);
404 delete_target_context (tmp);
405}
406
407/* Create a copy of TC. */
408static tc_t
409create_copy_of_target_context (tc_t tc)
410{
411 tc_t copy = alloc_target_context ();
412
413 copy_target_context (copy, tc);
414
415 return copy;
416}
417
418/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
419 is the same as in init_target_context (). */
420void
421reset_target_context (tc_t tc, bool clean_p)
422{
423 clear_target_context (tc);
424 init_target_context (tc, clean_p);
425}
426\f
427/* Functions to work with dependence contexts.
428 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence
429 context. It accumulates information about processed insns to decide if
430 current insn is dependent on the processed ones. */
431
432/* Make a copy of FROM in TO. */
433static void
434copy_deps_context (deps_t to, deps_t from)
435{
bcf33775 436 init_deps (to, false);
e855c69d
AB
437 deps_join (to, from);
438}
439
440/* Allocate store for dep context. */
441static deps_t
442alloc_deps_context (void)
443{
444 return XNEW (struct deps);
445}
446
447/* Allocate and initialize dep context. */
448static deps_t
449create_deps_context (void)
450{
451 deps_t dc = alloc_deps_context ();
452
bcf33775 453 init_deps (dc, false);
e855c69d
AB
454 return dc;
455}
456
457/* Create a copy of FROM. */
458static deps_t
459create_copy_of_deps_context (deps_t from)
460{
461 deps_t to = alloc_deps_context ();
462
463 copy_deps_context (to, from);
464 return to;
465}
466
467/* Clean up internal data of DC. */
468static void
469clear_deps_context (deps_t dc)
470{
471 free_deps (dc);
472}
473
474/* Clear and free DC. */
475static void
476delete_deps_context (deps_t dc)
477{
478 clear_deps_context (dc);
479 free (dc);
480}
481
482/* Clear and init DC. */
483static void
484reset_deps_context (deps_t dc)
485{
486 clear_deps_context (dc);
bcf33775 487 init_deps (dc, false);
e855c69d
AB
488}
489
490/* This structure describes the dependence analysis hooks for advancing
491 dependence context. */
492static struct sched_deps_info_def advance_deps_context_sched_deps_info =
493 {
494 NULL,
495
496 NULL, /* start_insn */
497 NULL, /* finish_insn */
498 NULL, /* start_lhs */
499 NULL, /* finish_lhs */
500 NULL, /* start_rhs */
501 NULL, /* finish_rhs */
502 haifa_note_reg_set,
503 haifa_note_reg_clobber,
504 haifa_note_reg_use,
505 NULL, /* note_mem_dep */
506 NULL, /* note_dep */
507
508 0, 0, 0
509 };
510
511/* Process INSN and add its impact on DC. */
512void
513advance_deps_context (deps_t dc, insn_t insn)
514{
515 sched_deps_info = &advance_deps_context_sched_deps_info;
516 deps_analyze_insn (dc, insn);
517}
518\f
519
520/* Functions to work with DFA states. */
521
522/* Allocate store for a DFA state. */
523static state_t
524state_alloc (void)
525{
526 return xmalloc (dfa_state_size);
527}
528
529/* Allocate and initialize DFA state. */
530static state_t
531state_create (void)
532{
533 state_t state = state_alloc ();
534
535 state_reset (state);
536 advance_state (state);
537 return state;
538}
539
540/* Free DFA state. */
541static void
542state_free (state_t state)
543{
544 free (state);
545}
546
547/* Make a copy of FROM in TO. */
548static void
549state_copy (state_t to, state_t from)
550{
551 memcpy (to, from, dfa_state_size);
552}
553
554/* Create a copy of FROM. */
555static state_t
556state_create_copy (state_t from)
557{
558 state_t to = state_alloc ();
559
560 state_copy (to, from);
561 return to;
562}
563\f
564
565/* Functions to work with fences. */
566
567/* Clear the fence. */
568static void
569fence_clear (fence_t f)
570{
571 state_t s = FENCE_STATE (f);
572 deps_t dc = FENCE_DC (f);
573 void *tc = FENCE_TC (f);
574
575 ilist_clear (&FENCE_BNDS (f));
576
577 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
578 || (s == NULL && dc == NULL && tc == NULL));
579
580 if (s != NULL)
581 free (s);
582
583 if (dc != NULL)
584 delete_deps_context (dc);
585
586 if (tc != NULL)
587 delete_target_context (tc);
588 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
589 free (FENCE_READY_TICKS (f));
590 FENCE_READY_TICKS (f) = NULL;
591}
592
593/* Init a list of fences with successors of OLD_FENCE. */
594void
595init_fences (insn_t old_fence)
596{
597 insn_t succ;
598 succ_iterator si;
599 bool first = true;
600 int ready_ticks_size = get_max_uid () + 1;
601
602 FOR_EACH_SUCC_1 (succ, si, old_fence,
603 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
604 {
605
606 if (first)
607 first = false;
608 else
609 gcc_assert (flag_sel_sched_pipelining_outer_loops);
610
611 flist_add (&fences, succ,
612 state_create (),
613 create_deps_context () /* dc */,
614 create_target_context (true) /* tc */,
615 NULL_RTX /* last_scheduled_insn */,
616 NULL, /* executing_insns */
617 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
618 ready_ticks_size,
619 NULL_RTX /* sched_next */,
620 1 /* cycle */, 0 /* cycle_issued_insns */,
621 1 /* starts_cycle_p */, 0 /* after_stall_p */);
622 }
623}
624
625/* Merges two fences (filling fields of fence F with resulting values) by
626 following rules: 1) state, target context and last scheduled insn are
627 propagated from fallthrough edge if it is available;
628 2) deps context and cycle is propagated from more probable edge;
629 3) all other fields are set to corresponding constant values.
630
631 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
632 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P
633 are the corresponding fields of the second fence. */
634static void
635merge_fences (fence_t f, insn_t insn,
636 state_t state, deps_t dc, void *tc,
637 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, bool after_stall_p)
640{
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
658
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
661
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 VEC_free (rtx, gc, executing_insns);
670 free (ready_ticks);
671 if (FENCE_EXECUTING_INSNS (f))
672 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
673 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
674 if (FENCE_READY_TICKS (f))
675 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
676 }
677 else
678 {
679 edge edge_old = NULL, edge_new = NULL;
680 edge candidate;
681 succ_iterator si;
682 insn_t succ;
683
684 /* Find fallthrough edge. */
685 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
686 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
687
688 if (!candidate
689 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
690 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
691 {
692 /* No fallthrough edge leading to basic block of INSN. */
693 state_reset (FENCE_STATE (f));
694 state_free (state);
695
696 reset_target_context (FENCE_TC (f), true);
697 delete_target_context (tc);
698
699 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
700 }
701 else
702 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
703 {
704 /* Would be weird if same insn is successor of several fallthrough
705 edges. */
706 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
707 != BLOCK_FOR_INSN (last_scheduled_insn_old));
708
709 state_free (FENCE_STATE (f));
710 FENCE_STATE (f) = state;
711
712 delete_target_context (FENCE_TC (f));
713 FENCE_TC (f) = tc;
714
715 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
716 }
717 else
718 {
719 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
720 state_free (state);
721 delete_target_context (tc);
722
723 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
724 != BLOCK_FOR_INSN (last_scheduled_insn));
725 }
726
727 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
728 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
729 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
730 {
731 if (succ == insn)
732 {
733 /* No same successor allowed from several edges. */
734 gcc_assert (!edge_old);
735 edge_old = si.e1;
736 }
737 }
738 /* Find edge of second predecessor (last_scheduled_insn->insn). */
739 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
741 {
742 if (succ == insn)
743 {
744 /* No same successor allowed from several edges. */
745 gcc_assert (!edge_new);
746 edge_new = si.e1;
747 }
748 }
749
750 /* Check if we can choose most probable predecessor. */
751 if (edge_old == NULL || edge_new == NULL)
752 {
753 reset_deps_context (FENCE_DC (f));
754 delete_deps_context (dc);
755 VEC_free (rtx, gc, executing_insns);
756 free (ready_ticks);
757
758 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
759 if (FENCE_EXECUTING_INSNS (f))
760 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
761 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
762 if (FENCE_READY_TICKS (f))
763 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
764 }
765 else
766 if (edge_new->probability > edge_old->probability)
767 {
768 delete_deps_context (FENCE_DC (f));
769 FENCE_DC (f) = dc;
770 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
771 FENCE_EXECUTING_INSNS (f) = executing_insns;
772 free (FENCE_READY_TICKS (f));
773 FENCE_READY_TICKS (f) = ready_ticks;
774 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
775 FENCE_CYCLE (f) = cycle;
776 }
777 else
778 {
779 /* Leave DC and CYCLE untouched. */
780 delete_deps_context (dc);
781 VEC_free (rtx, gc, executing_insns);
782 free (ready_ticks);
783 }
784 }
785
786 /* Fill remaining invariant fields. */
787 if (after_stall_p)
788 FENCE_AFTER_STALL_P (f) = 1;
789
790 FENCE_ISSUED_INSNS (f) = 0;
791 FENCE_STARTS_CYCLE_P (f) = 1;
792 FENCE_SCHED_NEXT (f) = NULL;
793}
794
795/* Add a new fence to NEW_FENCES list, initializing it from all
796 other parameters. */
797static void
798add_to_fences (flist_tail_t new_fences, insn_t insn,
799 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
800 VEC(rtx, gc) *executing_insns, int *ready_ticks,
801 int ready_ticks_size, rtx sched_next, int cycle,
802 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p)
803{
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806 if (! f)
807 {
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
809 last_scheduled_insn, executing_insns, ready_ticks,
810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811 starts_cycle_p, after_stall_p);
812
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 }
816 else
817 {
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
820 sched_next, cycle, after_stall_p);
821 }
822}
823
824/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825void
826move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827{
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831 old = FLIST_FENCE (old_fences);
832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
835 {
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
839 old->sched_next, old->cycle,
840 old->after_stall_p);
841 }
842 else
843 {
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 }
849 FENCE_INSN (old) = NULL;
850}
851
852/* Add a new fence to NEW_FENCES list and initialize most of its data
853 as a clean one. */
854void
855add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856{
857 int ready_ticks_size = get_max_uid () + 1;
858
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
862 NULL_RTX, NULL,
863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864 NULL_RTX, FENCE_CYCLE (fence) + 1,
865 0, 1, FENCE_AFTER_STALL_P (fence));
866}
867
868/* Add a new fence to NEW_FENCES list and initialize all of its data
869 from FENCE and SUCC. */
870void
871add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872{
873 int * new_ready_ticks
874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
875
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
882 FENCE_LAST_SCHEDULED_INSN (fence),
883 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
889 FENCE_STARTS_CYCLE_P (fence),
890 FENCE_AFTER_STALL_P (fence));
891}
892\f
893
894/* Functions to work with regset and nop pools. */
895
896/* Returns the new regset from pool. It might have some of the bits set
897 from the previous usage. */
898regset
899get_regset_from_pool (void)
900{
901 regset rs;
902
903 if (regset_pool.n != 0)
904 rs = regset_pool.v[--regset_pool.n];
905 else
906 /* We need to create the regset. */
907 {
908 rs = ALLOC_REG_SET (&reg_obstack);
909
910 if (regset_pool.nn == regset_pool.ss)
911 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
912 (regset_pool.ss = 2 * regset_pool.ss + 1));
913 regset_pool.vv[regset_pool.nn++] = rs;
914 }
915
916 regset_pool.diff++;
917
918 return rs;
919}
920
921/* Same as above, but returns the empty regset. */
922regset
923get_clear_regset_from_pool (void)
924{
925 regset rs = get_regset_from_pool ();
926
927 CLEAR_REG_SET (rs);
928 return rs;
929}
930
931/* Return regset RS to the pool for future use. */
932void
933return_regset_to_pool (regset rs)
934{
935 regset_pool.diff--;
936
937 if (regset_pool.n == regset_pool.s)
938 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
939 (regset_pool.s = 2 * regset_pool.s + 1));
940 regset_pool.v[regset_pool.n++] = rs;
941}
942
68ad446f 943#ifdef ENABLE_CHECKING
e855c69d
AB
944/* This is used as a qsort callback for sorting regset pool stacks.
945 X and XX are addresses of two regsets. They are never equal. */
946static int
947cmp_v_in_regset_pool (const void *x, const void *xx)
948{
949 return *((const regset *) x) - *((const regset *) xx);
950}
68ad446f 951#endif
e855c69d
AB
952
953/* Free the regset pool possibly checking for memory leaks. */
954void
955free_regset_pool (void)
956{
957#ifdef ENABLE_CHECKING
958 {
959 regset *v = regset_pool.v;
960 int i = 0;
961 int n = regset_pool.n;
962
963 regset *vv = regset_pool.vv;
964 int ii = 0;
965 int nn = regset_pool.nn;
966
967 int diff = 0;
968
969 gcc_assert (n <= nn);
970
971 /* Sort both vectors so it will be possible to compare them. */
972 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
973 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
974
975 while (ii < nn)
976 {
977 if (v[i] == vv[ii])
978 i++;
979 else
980 /* VV[II] was lost. */
981 diff++;
982
983 ii++;
984 }
985
986 gcc_assert (diff == regset_pool.diff);
987 }
988#endif
989
990 /* If not true - we have a memory leak. */
991 gcc_assert (regset_pool.diff == 0);
992
993 while (regset_pool.n)
994 {
995 --regset_pool.n;
996 FREE_REG_SET (regset_pool.v[regset_pool.n]);
997 }
998
999 free (regset_pool.v);
1000 regset_pool.v = NULL;
1001 regset_pool.s = 0;
1002
1003 free (regset_pool.vv);
1004 regset_pool.vv = NULL;
1005 regset_pool.nn = 0;
1006 regset_pool.ss = 0;
1007
1008 regset_pool.diff = 0;
1009}
1010\f
1011
1012/* Functions to work with nop pools. NOP insns are used as temporary
1013 placeholders of the insns being scheduled to allow correct update of
1014 the data sets. When update is finished, NOPs are deleted. */
1015
1016/* A vinsn that is used to represent a nop. This vinsn is shared among all
1017 nops sel-sched generates. */
1018static vinsn_t nop_vinsn = NULL;
1019
1020/* Emit a nop before INSN, taking it from pool. */
1021insn_t
1022get_nop_from_pool (insn_t insn)
1023{
1024 insn_t nop;
1025 bool old_p = nop_pool.n != 0;
1026 int flags;
1027
1028 if (old_p)
1029 nop = nop_pool.v[--nop_pool.n];
1030 else
1031 nop = nop_pattern;
1032
1033 nop = emit_insn_before (nop, insn);
1034
1035 if (old_p)
1036 flags = INSN_INIT_TODO_SSID;
1037 else
1038 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1039
1040 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1041 sel_init_new_insn (nop, flags);
1042
1043 return nop;
1044}
1045
1046/* Remove NOP from the instruction stream and return it to the pool. */
1047void
b5b8b0ac 1048return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1049{
1050 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1051 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1052
1053 if (nop_pool.n == nop_pool.s)
1054 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1055 (nop_pool.s = 2 * nop_pool.s + 1));
1056 nop_pool.v[nop_pool.n++] = nop;
1057}
1058
1059/* Free the nop pool. */
1060void
1061free_nop_pool (void)
1062{
1063 nop_pool.n = 0;
1064 nop_pool.s = 0;
1065 free (nop_pool.v);
1066 nop_pool.v = NULL;
1067}
1068\f
1069
1070/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1071 The callback is given two rtxes XX and YY and writes the new rtxes
1072 to NX and NY in case some needs to be skipped. */
1073static int
1074skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1075{
1076 const_rtx x = *xx;
1077 const_rtx y = *yy;
1078
1079 if (GET_CODE (x) == UNSPEC
1080 && (targetm.sched.skip_rtx_p == NULL
1081 || targetm.sched.skip_rtx_p (x)))
1082 {
1083 *nx = XVECEXP (x, 0, 0);
1084 *ny = CONST_CAST_RTX (y);
1085 return 1;
1086 }
1087
1088 if (GET_CODE (y) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (y)))
1091 {
1092 *nx = CONST_CAST_RTX (x);
1093 *ny = XVECEXP (y, 0, 0);
1094 return 1;
1095 }
1096
1097 return 0;
1098}
1099
1100/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1101 to support ia64 speculation. When changes are needed, new rtx X and new mode
1102 NMODE are written, and the callback returns true. */
1103static int
1104hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1105 rtx *nx, enum machine_mode* nmode)
1106{
1107 if (GET_CODE (x) == UNSPEC
1108 && targetm.sched.skip_rtx_p
1109 && targetm.sched.skip_rtx_p (x))
1110 {
1111 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1112 *nmode = VOIDmode;
e855c69d
AB
1113 return 1;
1114 }
1115
1116 return 0;
1117}
1118
1119/* Returns LHS and RHS are ok to be scheduled separately. */
1120static bool
1121lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1122{
1123 if (lhs == NULL || rhs == NULL)
1124 return false;
1125
1126 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1127 to use reg, if const can be used. Moreover, scheduling const as rhs may
1128 lead to mode mismatch cause consts don't have modes but they could be
1129 merged from branches where the same const used in different modes. */
1130 if (CONSTANT_P (rhs))
1131 return false;
1132
1133 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1134 if (COMPARISON_P (rhs))
1135 return false;
1136
1137 /* Do not allow single REG to be an rhs. */
1138 if (REG_P (rhs))
1139 return false;
1140
1141 /* See comment at find_used_regs_1 (*1) for explanation of this
1142 restriction. */
1143 /* FIXME: remove this later. */
1144 if (MEM_P (lhs))
1145 return false;
1146
1147 /* This will filter all tricky things like ZERO_EXTRACT etc.
1148 For now we don't handle it. */
1149 if (!REG_P (lhs) && !MEM_P (lhs))
1150 return false;
1151
1152 return true;
1153}
1154
1155/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1156 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1157 used e.g. for insns from recovery blocks. */
1158static void
1159vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1160{
1161 hash_rtx_callback_function hrcf;
1162 int insn_class;
1163
1164 VINSN_INSN_RTX (vi) = insn;
1165 VINSN_COUNT (vi) = 0;
1166 vi->cost = -1;
1167
1168 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1169 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1170 else
1171 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1172
1173 /* Hash vinsn depending on whether it is separable or not. */
1174 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1175 if (VINSN_SEPARABLE_P (vi))
1176 {
1177 rtx rhs = VINSN_RHS (vi);
1178
1179 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1180 NULL, NULL, false, hrcf);
1181 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1182 VOIDmode, NULL, NULL,
1183 false, hrcf);
1184 }
1185 else
1186 {
1187 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1188 NULL, NULL, false, hrcf);
1189 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1190 }
1191
1192 insn_class = haifa_classify_insn (insn);
1193 if (insn_class >= 2
1194 && (!targetm.sched.get_insn_spec_ds
1195 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1196 == 0)))
1197 VINSN_MAY_TRAP_P (vi) = true;
1198 else
1199 VINSN_MAY_TRAP_P (vi) = false;
1200}
1201
1202/* Indicate that VI has become the part of an rtx object. */
1203void
1204vinsn_attach (vinsn_t vi)
1205{
1206 /* Assert that VI is not pending for deletion. */
1207 gcc_assert (VINSN_INSN_RTX (vi));
1208
1209 VINSN_COUNT (vi)++;
1210}
1211
1212/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1213 VINSN_TYPE (VI). */
1214static vinsn_t
1215vinsn_create (insn_t insn, bool force_unique_p)
1216{
1217 vinsn_t vi = XCNEW (struct vinsn_def);
1218
1219 vinsn_init (vi, insn, force_unique_p);
1220 return vi;
1221}
1222
1223/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1224 the copy. */
1225vinsn_t
1226vinsn_copy (vinsn_t vi, bool reattach_p)
1227{
1228 rtx copy;
1229 bool unique = VINSN_UNIQUE_P (vi);
1230 vinsn_t new_vi;
1231
1232 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1233 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1234 if (reattach_p)
1235 {
1236 vinsn_detach (vi);
1237 vinsn_attach (new_vi);
1238 }
1239
1240 return new_vi;
1241}
1242
1243/* Delete the VI vinsn and free its data. */
1244static void
1245vinsn_delete (vinsn_t vi)
1246{
1247 gcc_assert (VINSN_COUNT (vi) == 0);
1248
1249 return_regset_to_pool (VINSN_REG_SETS (vi));
1250 return_regset_to_pool (VINSN_REG_USES (vi));
1251 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1252
1253 free (vi);
1254}
1255
1256/* Indicate that VI is no longer a part of some rtx object.
1257 Remove VI if it is no longer needed. */
1258void
1259vinsn_detach (vinsn_t vi)
1260{
1261 gcc_assert (VINSN_COUNT (vi) > 0);
1262
1263 if (--VINSN_COUNT (vi) == 0)
1264 vinsn_delete (vi);
1265}
1266
1267/* Returns TRUE if VI is a branch. */
1268bool
1269vinsn_cond_branch_p (vinsn_t vi)
1270{
1271 insn_t insn;
1272
1273 if (!VINSN_UNIQUE_P (vi))
1274 return false;
1275
1276 insn = VINSN_INSN_RTX (vi);
1277 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1278 return false;
1279
1280 return control_flow_insn_p (insn);
1281}
1282
1283/* Return latency of INSN. */
1284static int
1285sel_insn_rtx_cost (rtx insn)
1286{
1287 int cost;
1288
1289 /* A USE insn, or something else we don't need to
1290 understand. We can't pass these directly to
1291 result_ready_cost or insn_default_latency because it will
1292 trigger a fatal error for unrecognizable insns. */
1293 if (recog_memoized (insn) < 0)
1294 cost = 0;
1295 else
1296 {
1297 cost = insn_default_latency (insn);
1298
1299 if (cost < 0)
1300 cost = 0;
1301 }
1302
1303 return cost;
1304}
1305
1306/* Return the cost of the VI.
1307 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1308int
1309sel_vinsn_cost (vinsn_t vi)
1310{
1311 int cost = vi->cost;
1312
1313 if (cost < 0)
1314 {
1315 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1316 vi->cost = cost;
1317 }
1318
1319 return cost;
1320}
1321\f
1322
1323/* Functions for insn emitting. */
1324
1325/* Emit new insn after AFTER based on PATTERN and initialize its data from
1326 EXPR and SEQNO. */
1327insn_t
1328sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1329{
1330 insn_t new_insn;
1331
1332 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1333
1334 new_insn = emit_insn_after (pattern, after);
1335 set_insn_init (expr, NULL, seqno);
1336 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1337
1338 return new_insn;
1339}
1340
1341/* Force newly generated vinsns to be unique. */
1342static bool init_insn_force_unique_p = false;
1343
1344/* Emit new speculation recovery insn after AFTER based on PATTERN and
1345 initialize its data from EXPR and SEQNO. */
1346insn_t
1347sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1348 insn_t after)
1349{
1350 insn_t insn;
1351
1352 gcc_assert (!init_insn_force_unique_p);
1353
1354 init_insn_force_unique_p = true;
1355 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1356 CANT_MOVE (insn) = 1;
1357 init_insn_force_unique_p = false;
1358
1359 return insn;
1360}
1361
1362/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1363 take it as a new vinsn instead of EXPR's vinsn.
1364 We simplify insns later, after scheduling region in
1365 simplify_changed_insns. */
1366insn_t
1367sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1368 insn_t after)
1369{
1370 expr_t emit_expr;
1371 insn_t insn;
1372 int flags;
1373
1374 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1375 seqno);
1376 insn = EXPR_INSN_RTX (emit_expr);
1377 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1378
1379 flags = INSN_INIT_TODO_SSID;
1380 if (INSN_LUID (insn) == 0)
1381 flags |= INSN_INIT_TODO_LUID;
1382 sel_init_new_insn (insn, flags);
1383
1384 return insn;
1385}
1386
1387/* Move insn from EXPR after AFTER. */
1388insn_t
1389sel_move_insn (expr_t expr, int seqno, insn_t after)
1390{
1391 insn_t insn = EXPR_INSN_RTX (expr);
1392 basic_block bb = BLOCK_FOR_INSN (after);
1393 insn_t next = NEXT_INSN (after);
1394
1395 /* Assert that in move_op we disconnected this insn properly. */
1396 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1397 PREV_INSN (insn) = after;
1398 NEXT_INSN (insn) = next;
1399
1400 NEXT_INSN (after) = insn;
1401 PREV_INSN (next) = insn;
1402
1403 /* Update links from insn to bb and vice versa. */
1404 df_insn_change_bb (insn, bb);
1405 if (BB_END (bb) == after)
1406 BB_END (bb) = insn;
1407
1408 prepare_insn_expr (insn, seqno);
1409 return insn;
1410}
1411
1412\f
1413/* Functions to work with right-hand sides. */
1414
1415/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1416 VECT and return true when found. Use NEW_VINSN for comparison only when
1417 COMPARE_VINSNS is true. Write to INDP the index on which
1418 the search has stopped, such that inserting the new element at INDP will
1419 retain VECT's sort order. */
1420static bool
1421find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1422 unsigned uid, vinsn_t new_vinsn,
1423 bool compare_vinsns, int *indp)
1424{
1425 expr_history_def *arr;
1426 int i, j, len = VEC_length (expr_history_def, vect);
1427
1428 if (len == 0)
1429 {
1430 *indp = 0;
1431 return false;
1432 }
1433
1434 arr = VEC_address (expr_history_def, vect);
1435 i = 0, j = len - 1;
1436
1437 while (i <= j)
1438 {
1439 unsigned auid = arr[i].uid;
1440 vinsn_t avinsn = arr[i].new_expr_vinsn;
1441
1442 if (auid == uid
1443 /* When undoing transformation on a bookkeeping copy, the new vinsn
1444 may not be exactly equal to the one that is saved in the vector.
1445 This is because the insn whose copy we're checking was possibly
1446 substituted itself. */
1447 && (! compare_vinsns
1448 || vinsn_equal_p (avinsn, new_vinsn)))
1449 {
1450 *indp = i;
1451 return true;
1452 }
1453 else if (auid > uid)
1454 break;
1455 i++;
1456 }
1457
1458 *indp = i;
1459 return false;
1460}
1461
1462/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1463 the position found or -1, if no such value is in vector.
1464 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1465int
1466find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1467 vinsn_t new_vinsn, bool originators_p)
1468{
1469 int ind;
1470
1471 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1472 false, &ind))
1473 return ind;
1474
1475 if (INSN_ORIGINATORS (insn) && originators_p)
1476 {
1477 unsigned uid;
1478 bitmap_iterator bi;
1479
1480 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1481 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1482 return ind;
1483 }
1484
1485 return -1;
1486}
1487
1488/* Insert new element in a sorted history vector pointed to by PVECT,
1489 if it is not there already. The element is searched using
1490 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1491 the history of a transformation. */
1492void
1493insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1494 unsigned uid, enum local_trans_type type,
1495 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1496 ds_t spec_ds)
1497{
1498 VEC(expr_history_def, heap) *vect = *pvect;
1499 expr_history_def temp;
1500 bool res;
1501 int ind;
1502
1503 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1504
1505 if (res)
1506 {
1507 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1508
e855c69d
AB
1509 /* It is possible that speculation types of expressions that were
1510 propagated through different paths will be different here. In this
1511 case, merge the status to get the correct check later. */
1512 if (phist->spec_ds != spec_ds)
1513 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1514 return;
1515 }
1516
1517 temp.uid = uid;
1518 temp.old_expr_vinsn = old_expr_vinsn;
1519 temp.new_expr_vinsn = new_expr_vinsn;
1520 temp.spec_ds = spec_ds;
1521 temp.type = type;
1522
1523 vinsn_attach (old_expr_vinsn);
1524 vinsn_attach (new_expr_vinsn);
1525 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1526 *pvect = vect;
1527}
1528
1529/* Free history vector PVECT. */
1530static void
1531free_history_vect (VEC (expr_history_def, heap) **pvect)
1532{
1533 unsigned i;
1534 expr_history_def *phist;
1535
1536 if (! *pvect)
1537 return;
1538
1539 for (i = 0;
1540 VEC_iterate (expr_history_def, *pvect, i, phist);
1541 i++)
1542 {
1543 vinsn_detach (phist->old_expr_vinsn);
1544 vinsn_detach (phist->new_expr_vinsn);
1545 }
1546
1547 VEC_free (expr_history_def, heap, *pvect);
1548 *pvect = NULL;
1549}
1550
1551
1552/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1553bool
1554vinsn_equal_p (vinsn_t x, vinsn_t y)
1555{
1556 rtx_equal_p_callback_function repcf;
1557
1558 if (x == y)
1559 return true;
1560
1561 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1562 return false;
1563
1564 if (VINSN_HASH (x) != VINSN_HASH (y))
1565 return false;
1566
1567 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1568 if (VINSN_SEPARABLE_P (x))
1569 {
1570 /* Compare RHSes of VINSNs. */
1571 gcc_assert (VINSN_RHS (x));
1572 gcc_assert (VINSN_RHS (y));
1573
1574 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1575 }
1576
1577 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1578}
1579\f
1580
1581/* Functions for working with expressions. */
1582
1583/* Initialize EXPR. */
1584static void
1585init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1586 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1587 ds_t spec_to_check_ds, int orig_sched_cycle,
1588 VEC(expr_history_def, heap) *history, bool target_available,
1589 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1590 bool cant_move)
1591{
1592 vinsn_attach (vi);
1593
1594 EXPR_VINSN (expr) = vi;
1595 EXPR_SPEC (expr) = spec;
1596 EXPR_USEFULNESS (expr) = use;
1597 EXPR_PRIORITY (expr) = priority;
1598 EXPR_PRIORITY_ADJ (expr) = 0;
1599 EXPR_SCHED_TIMES (expr) = sched_times;
1600 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1601 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1602 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1603 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1604
1605 if (history)
1606 EXPR_HISTORY_OF_CHANGES (expr) = history;
1607 else
1608 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1609
1610 EXPR_TARGET_AVAILABLE (expr) = target_available;
1611 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1612 EXPR_WAS_RENAMED (expr) = was_renamed;
1613 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1614 EXPR_CANT_MOVE (expr) = cant_move;
1615}
1616
1617/* Make a copy of the expr FROM into the expr TO. */
1618void
1619copy_expr (expr_t to, expr_t from)
1620{
1621 VEC(expr_history_def, heap) *temp = NULL;
1622
1623 if (EXPR_HISTORY_OF_CHANGES (from))
1624 {
1625 unsigned i;
1626 expr_history_def *phist;
1627
1628 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1629 for (i = 0;
1630 VEC_iterate (expr_history_def, temp, i, phist);
1631 i++)
1632 {
1633 vinsn_attach (phist->old_expr_vinsn);
1634 vinsn_attach (phist->new_expr_vinsn);
1635 }
1636 }
1637
1638 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1639 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1640 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1641 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1642 EXPR_ORIG_SCHED_CYCLE (from), temp,
1643 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1644 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1645 EXPR_CANT_MOVE (from));
1646}
1647
1648/* Same, but the final expr will not ever be in av sets, so don't copy
1649 "uninteresting" data such as bitmap cache. */
1650void
1651copy_expr_onside (expr_t to, expr_t from)
1652{
1653 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1654 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1655 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1656 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1657 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1658 EXPR_CANT_MOVE (from));
1659}
1660
1661/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1662 initializing new insns. */
1663static void
1664prepare_insn_expr (insn_t insn, int seqno)
1665{
1666 expr_t expr = INSN_EXPR (insn);
1667 ds_t ds;
1668
1669 INSN_SEQNO (insn) = seqno;
1670 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1671 EXPR_SPEC (expr) = 0;
1672 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1673 EXPR_WAS_SUBSTITUTED (expr) = 0;
1674 EXPR_WAS_RENAMED (expr) = 0;
1675 EXPR_TARGET_AVAILABLE (expr) = 1;
1676 INSN_LIVE_VALID_P (insn) = false;
1677
1678 /* ??? If this expression is speculative, make its dependence
1679 as weak as possible. We can filter this expression later
1680 in process_spec_exprs, because we do not distinguish
1681 between the status we got during compute_av_set and the
1682 existing status. To be fixed. */
1683 ds = EXPR_SPEC_DONE_DS (expr);
1684 if (ds)
1685 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1686
1687 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1688}
1689
1690/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1691 is non-null when expressions are merged from different successors at
1692 a split point. */
1693static void
1694update_target_availability (expr_t to, expr_t from, insn_t split_point)
1695{
1696 if (EXPR_TARGET_AVAILABLE (to) < 0
1697 || EXPR_TARGET_AVAILABLE (from) < 0)
1698 EXPR_TARGET_AVAILABLE (to) = -1;
1699 else
1700 {
1701 /* We try to detect the case when one of the expressions
1702 can only be reached through another one. In this case,
1703 we can do better. */
1704 if (split_point == NULL)
1705 {
1706 int toind, fromind;
1707
1708 toind = EXPR_ORIG_BB_INDEX (to);
1709 fromind = EXPR_ORIG_BB_INDEX (from);
1710
1711 if (toind && toind == fromind)
1712 /* Do nothing -- everything is done in
1713 merge_with_other_exprs. */
1714 ;
1715 else
1716 EXPR_TARGET_AVAILABLE (to) = -1;
1717 }
1718 else
1719 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1720 }
1721}
1722
1723/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1724 is non-null when expressions are merged from different successors at
1725 a split point. */
1726static void
1727update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1728{
1729 ds_t old_to_ds, old_from_ds;
1730
1731 old_to_ds = EXPR_SPEC_DONE_DS (to);
1732 old_from_ds = EXPR_SPEC_DONE_DS (from);
1733
1734 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1735 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1736 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1737
1738 /* When merging e.g. control & data speculative exprs, or a control
1739 speculative with a control&data speculative one, we really have
1740 to change vinsn too. Also, when speculative status is changed,
1741 we also need to record this as a transformation in expr's history. */
1742 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1743 {
1744 old_to_ds = ds_get_speculation_types (old_to_ds);
1745 old_from_ds = ds_get_speculation_types (old_from_ds);
1746
1747 if (old_to_ds != old_from_ds)
1748 {
1749 ds_t record_ds;
1750
1751 /* When both expressions are speculative, we need to change
1752 the vinsn first. */
1753 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1754 {
1755 int res;
1756
1757 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1758 gcc_assert (res >= 0);
1759 }
1760
1761 if (split_point != NULL)
1762 {
1763 /* Record the change with proper status. */
1764 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1765 record_ds &= ~(old_to_ds & SPECULATIVE);
1766 record_ds &= ~(old_from_ds & SPECULATIVE);
1767
1768 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1769 INSN_UID (split_point), TRANS_SPECULATION,
1770 EXPR_VINSN (from), EXPR_VINSN (to),
1771 record_ds);
1772 }
1773 }
1774 }
1775}
1776
1777
1778/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1779 this is done along different paths. */
1780void
1781merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1782{
1783 int i;
1784 expr_history_def *phist;
1785
1786 /* For now, we just set the spec of resulting expr to be minimum of the specs
1787 of merged exprs. */
1788 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1789 EXPR_SPEC (to) = EXPR_SPEC (from);
1790
1791 if (split_point)
1792 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1793 else
1794 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1795 EXPR_USEFULNESS (from));
1796
1797 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1798 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1799
1800 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1801 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1802
1803 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1804 EXPR_ORIG_BB_INDEX (to) = 0;
1805
1806 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1807 EXPR_ORIG_SCHED_CYCLE (from));
1808
1809 /* We keep this vector sorted. */
1810 for (i = 0;
1811 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1812 i, phist);
1813 i++)
1814 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1815 phist->uid, phist->type,
1816 phist->old_expr_vinsn, phist->new_expr_vinsn,
1817 phist->spec_ds);
1818
1819 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1820 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1821 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1822
1823 update_target_availability (to, from, split_point);
1824 update_speculative_bits (to, from, split_point);
1825}
1826
1827/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1828 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1829 are merged from different successors at a split point. */
1830void
1831merge_expr (expr_t to, expr_t from, insn_t split_point)
1832{
1833 vinsn_t to_vi = EXPR_VINSN (to);
1834 vinsn_t from_vi = EXPR_VINSN (from);
1835
1836 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1837
1838 /* Make sure that speculative pattern is propagated into exprs that
1839 have non-speculative one. This will provide us with consistent
1840 speculative bits and speculative patterns inside expr. */
1841 if (EXPR_SPEC_DONE_DS (to) == 0
1842 && EXPR_SPEC_DONE_DS (from) != 0)
1843 change_vinsn_in_expr (to, EXPR_VINSN (from));
1844
1845 merge_expr_data (to, from, split_point);
1846 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1847}
1848
1849/* Clear the information of this EXPR. */
1850void
1851clear_expr (expr_t expr)
1852{
1853
1854 vinsn_detach (EXPR_VINSN (expr));
1855 EXPR_VINSN (expr) = NULL;
1856
1857 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1858}
1859
1860/* For a given LV_SET, mark EXPR having unavailable target register. */
1861static void
1862set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1863{
1864 if (EXPR_SEPARABLE_P (expr))
1865 {
1866 if (REG_P (EXPR_LHS (expr))
1867 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1868 {
1869 /* If it's an insn like r1 = use (r1, ...), and it exists in
1870 different forms in each of the av_sets being merged, we can't say
1871 whether original destination register is available or not.
1872 However, this still works if destination register is not used
1873 in the original expression: if the branch at which LV_SET we're
1874 looking here is not actually 'other branch' in sense that same
1875 expression is available through it (but it can't be determined
1876 at computation stage because of transformations on one of the
1877 branches), it still won't affect the availability.
1878 Liveness of a register somewhere on a code motion path means
1879 it's either read somewhere on a codemotion path, live on
1880 'other' branch, live at the point immediately following
1881 the original operation, or is read by the original operation.
1882 The latter case is filtered out in the condition below.
1883 It still doesn't cover the case when register is defined and used
1884 somewhere within the code motion path, and in this case we could
1885 miss a unifying code motion along both branches using a renamed
1886 register, but it won't affect a code correctness since upon
1887 an actual code motion a bookkeeping code would be generated. */
1888 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1889 REGNO (EXPR_LHS (expr))))
1890 EXPR_TARGET_AVAILABLE (expr) = -1;
1891 else
1892 EXPR_TARGET_AVAILABLE (expr) = false;
1893 }
1894 }
1895 else
1896 {
1897 unsigned regno;
1898 reg_set_iterator rsi;
1899
1900 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1901 0, regno, rsi)
1902 if (bitmap_bit_p (lv_set, regno))
1903 {
1904 EXPR_TARGET_AVAILABLE (expr) = false;
1905 break;
1906 }
1907
1908 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1909 0, regno, rsi)
1910 if (bitmap_bit_p (lv_set, regno))
1911 {
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1913 break;
1914 }
1915 }
1916}
1917
1918/* Try to make EXPR speculative. Return 1 when EXPR's pattern
1919 or dependence status have changed, 2 when also the target register
1920 became unavailable, 0 if nothing had to be changed. */
1921int
1922speculate_expr (expr_t expr, ds_t ds)
1923{
1924 int res;
1925 rtx orig_insn_rtx;
1926 rtx spec_pat;
1927 ds_t target_ds, current_ds;
1928
1929 /* Obtain the status we need to put on EXPR. */
1930 target_ds = (ds & SPECULATIVE);
1931 current_ds = EXPR_SPEC_DONE_DS (expr);
1932 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1933
1934 orig_insn_rtx = EXPR_INSN_RTX (expr);
1935
1936 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1937
1938 switch (res)
1939 {
1940 case 0:
1941 EXPR_SPEC_DONE_DS (expr) = ds;
1942 return current_ds != ds ? 1 : 0;
1943
1944 case 1:
1945 {
1946 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1947 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1948
1949 change_vinsn_in_expr (expr, spec_vinsn);
1950 EXPR_SPEC_DONE_DS (expr) = ds;
1951 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1952
1953 /* Do not allow clobbering the address register of speculative
1954 insns. */
1955 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1956 expr_dest_regno (expr)))
1957 {
1958 EXPR_TARGET_AVAILABLE (expr) = false;
1959 return 2;
1960 }
1961
1962 return 1;
1963 }
1964
1965 case -1:
1966 return -1;
1967
1968 default:
1969 gcc_unreachable ();
1970 return -1;
1971 }
1972}
1973
1974/* Return a destination register, if any, of EXPR. */
1975rtx
1976expr_dest_reg (expr_t expr)
1977{
1978 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1979
1980 if (dest != NULL_RTX && REG_P (dest))
1981 return dest;
1982
1983 return NULL_RTX;
1984}
1985
1986/* Returns the REGNO of the R's destination. */
1987unsigned
1988expr_dest_regno (expr_t expr)
1989{
1990 rtx dest = expr_dest_reg (expr);
1991
1992 gcc_assert (dest != NULL_RTX);
1993 return REGNO (dest);
1994}
1995
1996/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
1997 AV_SET having unavailable target register. */
1998void
1999mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2000{
2001 expr_t expr;
2002 av_set_iterator avi;
2003
2004 FOR_EACH_EXPR (expr, avi, join_set)
2005 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2006 set_unavailable_target_for_expr (expr, lv_set);
2007}
2008\f
2009
2010/* Av set functions. */
2011
2012/* Add a new element to av set SETP.
2013 Return the element added. */
2014static av_set_t
2015av_set_add_element (av_set_t *setp)
2016{
2017 /* Insert at the beginning of the list. */
2018 _list_add (setp);
2019 return *setp;
2020}
2021
2022/* Add EXPR to SETP. */
2023void
2024av_set_add (av_set_t *setp, expr_t expr)
2025{
2026 av_set_t elem;
2027
2028 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2029 elem = av_set_add_element (setp);
2030 copy_expr (_AV_SET_EXPR (elem), expr);
2031}
2032
2033/* Same, but do not copy EXPR. */
2034static void
2035av_set_add_nocopy (av_set_t *setp, expr_t expr)
2036{
2037 av_set_t elem;
2038
2039 elem = av_set_add_element (setp);
2040 *_AV_SET_EXPR (elem) = *expr;
2041}
2042
2043/* Remove expr pointed to by IP from the av_set. */
2044void
2045av_set_iter_remove (av_set_iterator *ip)
2046{
2047 clear_expr (_AV_SET_EXPR (*ip->lp));
2048 _list_iter_remove (ip);
2049}
2050
2051/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2052 sense of vinsn_equal_p function. Return NULL if no such expr is
2053 in SET was found. */
2054expr_t
2055av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2056{
2057 expr_t expr;
2058 av_set_iterator i;
2059
2060 FOR_EACH_EXPR (expr, i, set)
2061 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2062 return expr;
2063 return NULL;
2064}
2065
2066/* Same, but also remove the EXPR found. */
2067static expr_t
2068av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2069{
2070 expr_t expr;
2071 av_set_iterator i;
2072
2073 FOR_EACH_EXPR_1 (expr, i, setp)
2074 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2075 {
2076 _list_iter_remove_nofree (&i);
2077 return expr;
2078 }
2079 return NULL;
2080}
2081
2082/* Search for an expr in SET, such that it's equivalent to EXPR in the
2083 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2084 Returns NULL if no such expr is in SET was found. */
2085static expr_t
2086av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2087{
2088 expr_t cur_expr;
2089 av_set_iterator i;
2090
2091 FOR_EACH_EXPR (cur_expr, i, set)
2092 {
2093 if (cur_expr == expr)
2094 continue;
2095 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2096 return cur_expr;
2097 }
2098
2099 return NULL;
2100}
2101
2102/* If other expression is already in AVP, remove one of them. */
2103expr_t
2104merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2105{
2106 expr_t expr2;
2107
2108 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2109 if (expr2 != NULL)
2110 {
2111 /* Reset target availability on merge, since taking it only from one
2112 of the exprs would be controversial for different code. */
2113 EXPR_TARGET_AVAILABLE (expr2) = -1;
2114 EXPR_USEFULNESS (expr2) = 0;
2115
2116 merge_expr (expr2, expr, NULL);
2117
2118 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2119 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2120
2121 av_set_iter_remove (ip);
2122 return expr2;
2123 }
2124
2125 return expr;
2126}
2127
2128/* Return true if there is an expr that correlates to VI in SET. */
2129bool
2130av_set_is_in_p (av_set_t set, vinsn_t vi)
2131{
2132 return av_set_lookup (set, vi) != NULL;
2133}
2134
2135/* Return a copy of SET. */
2136av_set_t
2137av_set_copy (av_set_t set)
2138{
2139 expr_t expr;
2140 av_set_iterator i;
2141 av_set_t res = NULL;
2142
2143 FOR_EACH_EXPR (expr, i, set)
2144 av_set_add (&res, expr);
2145
2146 return res;
2147}
2148
2149/* Join two av sets that do not have common elements by attaching second set
2150 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2151 _AV_SET_NEXT of first set's last element). */
2152static void
2153join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2154{
2155 gcc_assert (*to_tailp == NULL);
2156 *to_tailp = *fromp;
2157 *fromp = NULL;
2158}
2159
2160/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2161 pointed to by FROMP afterwards. */
2162void
2163av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2164{
2165 expr_t expr1;
2166 av_set_iterator i;
2167
2168 /* Delete from TOP all exprs, that present in FROMP. */
2169 FOR_EACH_EXPR_1 (expr1, i, top)
2170 {
2171 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2172
2173 if (expr2)
2174 {
2175 merge_expr (expr2, expr1, insn);
2176 av_set_iter_remove (&i);
2177 }
2178 }
2179
2180 join_distinct_sets (i.lp, fromp);
2181}
2182
2183/* Same as above, but also update availability of target register in
2184 TOP judging by TO_LV_SET and FROM_LV_SET. */
2185void
2186av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2187 regset from_lv_set, insn_t insn)
2188{
2189 expr_t expr1;
2190 av_set_iterator i;
2191 av_set_t *to_tailp, in_both_set = NULL;
2192
2193 /* Delete from TOP all expres, that present in FROMP. */
2194 FOR_EACH_EXPR_1 (expr1, i, top)
2195 {
2196 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2197
2198 if (expr2)
2199 {
2200 /* It may be that the expressions have different destination
2201 registers, in which case we need to check liveness here. */
2202 if (EXPR_SEPARABLE_P (expr1))
2203 {
2204 int regno1 = (REG_P (EXPR_LHS (expr1))
2205 ? (int) expr_dest_regno (expr1) : -1);
2206 int regno2 = (REG_P (EXPR_LHS (expr2))
2207 ? (int) expr_dest_regno (expr2) : -1);
2208
2209 /* ??? We don't have a way to check restrictions for
2210 *other* register on the current path, we did it only
2211 for the current target register. Give up. */
2212 if (regno1 != regno2)
2213 EXPR_TARGET_AVAILABLE (expr2) = -1;
2214 }
2215 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2216 EXPR_TARGET_AVAILABLE (expr2) = -1;
2217
2218 merge_expr (expr2, expr1, insn);
2219 av_set_add_nocopy (&in_both_set, expr2);
2220 av_set_iter_remove (&i);
2221 }
2222 else
2223 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2224 FROM_LV_SET. */
2225 set_unavailable_target_for_expr (expr1, from_lv_set);
2226 }
2227 to_tailp = i.lp;
2228
2229 /* These expressions are not present in TOP. Check liveness
2230 restrictions on TO_LV_SET. */
2231 FOR_EACH_EXPR (expr1, i, *fromp)
2232 set_unavailable_target_for_expr (expr1, to_lv_set);
2233
2234 join_distinct_sets (i.lp, &in_both_set);
2235 join_distinct_sets (to_tailp, fromp);
2236}
2237
2238/* Clear av_set pointed to by SETP. */
2239void
2240av_set_clear (av_set_t *setp)
2241{
2242 expr_t expr;
2243 av_set_iterator i;
2244
2245 FOR_EACH_EXPR_1 (expr, i, setp)
2246 av_set_iter_remove (&i);
2247
2248 gcc_assert (*setp == NULL);
2249}
2250
2251/* Leave only one non-speculative element in the SETP. */
2252void
2253av_set_leave_one_nonspec (av_set_t *setp)
2254{
2255 expr_t expr;
2256 av_set_iterator i;
2257 bool has_one_nonspec = false;
2258
2259 /* Keep all speculative exprs, and leave one non-speculative
2260 (the first one). */
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 {
2263 if (!EXPR_SPEC_DONE_DS (expr))
2264 {
2265 if (has_one_nonspec)
2266 av_set_iter_remove (&i);
2267 else
2268 has_one_nonspec = true;
2269 }
2270 }
2271}
2272
2273/* Return the N'th element of the SET. */
2274expr_t
2275av_set_element (av_set_t set, int n)
2276{
2277 expr_t expr;
2278 av_set_iterator i;
2279
2280 FOR_EACH_EXPR (expr, i, set)
2281 if (n-- == 0)
2282 return expr;
2283
2284 gcc_unreachable ();
2285 return NULL;
2286}
2287
2288/* Deletes all expressions from AVP that are conditional branches (IFs). */
2289void
2290av_set_substract_cond_branches (av_set_t *avp)
2291{
2292 av_set_iterator i;
2293 expr_t expr;
2294
2295 FOR_EACH_EXPR_1 (expr, i, avp)
2296 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2297 av_set_iter_remove (&i);
2298}
2299
2300/* Multiplies usefulness attribute of each member of av-set *AVP by
2301 value PROB / ALL_PROB. */
2302void
2303av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2304{
2305 av_set_iterator i;
2306 expr_t expr;
2307
2308 FOR_EACH_EXPR (expr, i, av)
2309 EXPR_USEFULNESS (expr) = (all_prob
2310 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2311 : 0);
2312}
2313
2314/* Leave in AVP only those expressions, which are present in AV,
2315 and return it. */
2316void
2317av_set_intersect (av_set_t *avp, av_set_t av)
2318{
2319 av_set_iterator i;
2320 expr_t expr;
2321
2322 FOR_EACH_EXPR_1 (expr, i, avp)
2323 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2324 av_set_iter_remove (&i);
2325}
2326
2327\f
2328
2329/* Dependence hooks to initialize insn data. */
2330
2331/* This is used in hooks callable from dependence analysis when initializing
2332 instruction's data. */
2333static struct
2334{
2335 /* Where the dependence was found (lhs/rhs). */
2336 deps_where_t where;
2337
2338 /* The actual data object to initialize. */
2339 idata_t id;
2340
2341 /* True when the insn should not be made clonable. */
2342 bool force_unique_p;
2343
2344 /* True when insn should be treated as of type USE, i.e. never renamed. */
2345 bool force_use_p;
2346} deps_init_id_data;
2347
2348
2349/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2350 clonable. */
2351static void
2352setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2353{
2354 int type;
2355
2356 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2357 That clonable insns which can be separated into lhs and rhs have type SET.
2358 Other clonable insns have type USE. */
2359 type = GET_CODE (insn);
2360
2361 /* Only regular insns could be cloned. */
2362 if (type == INSN && !force_unique_p)
2363 type = SET;
2364 else if (type == JUMP_INSN && simplejump_p (insn))
2365 type = PC;
b5b8b0ac
AO
2366 else if (type == DEBUG_INSN)
2367 type = !force_unique_p ? USE : INSN;
e855c69d
AB
2368
2369 IDATA_TYPE (id) = type;
2370 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2371 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2372 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2373}
2374
2375/* Start initializing insn data. */
2376static void
2377deps_init_id_start_insn (insn_t insn)
2378{
2379 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2380
2381 setup_id_for_insn (deps_init_id_data.id, insn,
2382 deps_init_id_data.force_unique_p);
2383 deps_init_id_data.where = DEPS_IN_INSN;
2384}
2385
2386/* Start initializing lhs data. */
2387static void
2388deps_init_id_start_lhs (rtx lhs)
2389{
2390 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2391 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2392
2393 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2394 {
2395 IDATA_LHS (deps_init_id_data.id) = lhs;
2396 deps_init_id_data.where = DEPS_IN_LHS;
2397 }
2398}
2399
2400/* Finish initializing lhs data. */
2401static void
2402deps_init_id_finish_lhs (void)
2403{
2404 deps_init_id_data.where = DEPS_IN_INSN;
2405}
2406
2407/* Note a set of REGNO. */
2408static void
2409deps_init_id_note_reg_set (int regno)
2410{
2411 haifa_note_reg_set (regno);
2412
2413 if (deps_init_id_data.where == DEPS_IN_RHS)
2414 deps_init_id_data.force_use_p = true;
2415
2416 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2417 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2418
2419#ifdef STACK_REGS
2420 /* Make instructions that set stack registers to be ineligible for
2421 renaming to avoid issues with find_used_regs. */
2422 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2423 deps_init_id_data.force_use_p = true;
2424#endif
2425}
2426
2427/* Note a clobber of REGNO. */
2428static void
2429deps_init_id_note_reg_clobber (int regno)
2430{
2431 haifa_note_reg_clobber (regno);
2432
2433 if (deps_init_id_data.where == DEPS_IN_RHS)
2434 deps_init_id_data.force_use_p = true;
2435
2436 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2437 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2438}
2439
2440/* Note a use of REGNO. */
2441static void
2442deps_init_id_note_reg_use (int regno)
2443{
2444 haifa_note_reg_use (regno);
2445
2446 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2447 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2448}
2449
2450/* Start initializing rhs data. */
2451static void
2452deps_init_id_start_rhs (rtx rhs)
2453{
2454 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2455
2456 /* And there was no sel_deps_reset_to_insn (). */
2457 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2458 {
2459 IDATA_RHS (deps_init_id_data.id) = rhs;
2460 deps_init_id_data.where = DEPS_IN_RHS;
2461 }
2462}
2463
2464/* Finish initializing rhs data. */
2465static void
2466deps_init_id_finish_rhs (void)
2467{
2468 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2469 || deps_init_id_data.where == DEPS_IN_INSN);
2470 deps_init_id_data.where = DEPS_IN_INSN;
2471}
2472
2473/* Finish initializing insn data. */
2474static void
2475deps_init_id_finish_insn (void)
2476{
2477 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2478
2479 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2480 {
2481 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2482 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2483
2484 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2485 || deps_init_id_data.force_use_p)
2486 {
2487 /* This should be a USE, as we don't want to schedule its RHS
2488 separately. However, we still want to have them recorded
2489 for the purposes of substitution. That's why we don't
2490 simply call downgrade_to_use () here. */
2491 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2492 gcc_assert (!lhs == !rhs);
2493
2494 IDATA_TYPE (deps_init_id_data.id) = USE;
2495 }
2496 }
2497
2498 deps_init_id_data.where = DEPS_IN_NOWHERE;
2499}
2500
2501/* This is dependence info used for initializing insn's data. */
2502static struct sched_deps_info_def deps_init_id_sched_deps_info;
2503
2504/* This initializes most of the static part of the above structure. */
2505static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2506 {
2507 NULL,
2508
2509 deps_init_id_start_insn,
2510 deps_init_id_finish_insn,
2511 deps_init_id_start_lhs,
2512 deps_init_id_finish_lhs,
2513 deps_init_id_start_rhs,
2514 deps_init_id_finish_rhs,
2515 deps_init_id_note_reg_set,
2516 deps_init_id_note_reg_clobber,
2517 deps_init_id_note_reg_use,
2518 NULL, /* note_mem_dep */
2519 NULL, /* note_dep */
2520
2521 0, /* use_cselib */
2522 0, /* use_deps_list */
2523 0 /* generate_spec_deps */
2524 };
2525
2526/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2527 we don't actually need information about lhs and rhs. */
2528static void
2529setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2530{
2531 rtx pat = PATTERN (insn);
2532
481683e1 2533 if (NONJUMP_INSN_P (insn)
e855c69d
AB
2534 && GET_CODE (pat) == SET
2535 && !force_unique_p)
2536 {
2537 IDATA_RHS (id) = SET_SRC (pat);
2538 IDATA_LHS (id) = SET_DEST (pat);
2539 }
2540 else
2541 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2542}
2543
2544/* Possibly downgrade INSN to USE. */
2545static void
2546maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2547{
2548 bool must_be_use = false;
2549 unsigned uid = INSN_UID (insn);
57512f53 2550 df_ref *rec;
e855c69d
AB
2551 rtx lhs = IDATA_LHS (id);
2552 rtx rhs = IDATA_RHS (id);
2553
2554 /* We downgrade only SETs. */
2555 if (IDATA_TYPE (id) != SET)
2556 return;
2557
2558 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2559 {
2560 IDATA_TYPE (id) = USE;
2561 return;
2562 }
2563
2564 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2565 {
57512f53 2566 df_ref def = *rec;
e855c69d
AB
2567
2568 if (DF_REF_INSN (def)
2569 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2570 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2571 {
2572 must_be_use = true;
2573 break;
2574 }
2575
2576#ifdef STACK_REGS
2577 /* Make instructions that set stack registers to be ineligible for
2578 renaming to avoid issues with find_used_regs. */
2579 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2580 {
2581 must_be_use = true;
2582 break;
2583 }
2584#endif
2585 }
2586
2587 if (must_be_use)
2588 IDATA_TYPE (id) = USE;
2589}
2590
2591/* Setup register sets describing INSN in ID. */
2592static void
2593setup_id_reg_sets (idata_t id, insn_t insn)
2594{
2595 unsigned uid = INSN_UID (insn);
57512f53 2596 df_ref *rec;
e855c69d
AB
2597 regset tmp = get_clear_regset_from_pool ();
2598
2599 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2600 {
57512f53 2601 df_ref def = *rec;
e855c69d
AB
2602 unsigned int regno = DF_REF_REGNO (def);
2603
2604 /* Post modifies are treated like clobbers by sched-deps.c. */
2605 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2606 | DF_REF_PRE_POST_MODIFY)))
2607 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2608 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2609 {
2610 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2611
2612#ifdef STACK_REGS
2613 /* For stack registers, treat writes to them as writes
2614 to the first one to be consistent with sched-deps.c. */
2615 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2616 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2617#endif
2618 }
2619 /* Mark special refs that generate read/write def pair. */
2620 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2621 || regno == STACK_POINTER_REGNUM)
2622 bitmap_set_bit (tmp, regno);
2623 }
2624
2625 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2626 {
57512f53 2627 df_ref use = *rec;
e855c69d
AB
2628 unsigned int regno = DF_REF_REGNO (use);
2629
2630 /* When these refs are met for the first time, skip them, as
2631 these uses are just counterparts of some defs. */
2632 if (bitmap_bit_p (tmp, regno))
2633 bitmap_clear_bit (tmp, regno);
2634 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2635 {
2636 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2637
2638#ifdef STACK_REGS
2639 /* For stack registers, treat reads from them as reads from
2640 the first one to be consistent with sched-deps.c. */
2641 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2642 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2643#endif
2644 }
2645 }
2646
2647 return_regset_to_pool (tmp);
2648}
2649
2650/* Initialize instruction data for INSN in ID using DF's data. */
2651static void
2652init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2653{
2654 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2655
2656 setup_id_for_insn (id, insn, force_unique_p);
2657 setup_id_lhs_rhs (id, insn, force_unique_p);
2658
2659 if (INSN_NOP_P (insn))
2660 return;
2661
2662 maybe_downgrade_id_to_use (id, insn);
2663 setup_id_reg_sets (id, insn);
2664}
2665
2666/* Initialize instruction data for INSN in ID. */
2667static void
2668deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2669{
2670 struct deps _dc, *dc = &_dc;
2671
2672 deps_init_id_data.where = DEPS_IN_NOWHERE;
2673 deps_init_id_data.id = id;
2674 deps_init_id_data.force_unique_p = force_unique_p;
2675 deps_init_id_data.force_use_p = false;
2676
bcf33775 2677 init_deps (dc, false);
e855c69d
AB
2678
2679 memcpy (&deps_init_id_sched_deps_info,
2680 &const_deps_init_id_sched_deps_info,
2681 sizeof (deps_init_id_sched_deps_info));
2682
2683 if (spec_info != NULL)
2684 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2685
2686 sched_deps_info = &deps_init_id_sched_deps_info;
2687
2688 deps_analyze_insn (dc, insn);
2689
2690 free_deps (dc);
2691
2692 deps_init_id_data.id = NULL;
2693}
2694
2695\f
2696
2697/* Implement hooks for collecting fundamental insn properties like if insn is
2698 an ASM or is within a SCHED_GROUP. */
2699
2700/* True when a "one-time init" data for INSN was already inited. */
2701static bool
2702first_time_insn_init (insn_t insn)
2703{
2704 return INSN_LIVE (insn) == NULL;
2705}
2706
2707/* Hash an entry in a transformed_insns hashtable. */
2708static hashval_t
2709hash_transformed_insns (const void *p)
2710{
2711 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2712}
2713
2714/* Compare the entries in a transformed_insns hashtable. */
2715static int
2716eq_transformed_insns (const void *p, const void *q)
2717{
2718 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2719 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2720
2721 if (INSN_UID (i1) == INSN_UID (i2))
2722 return 1;
2723 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2724}
2725
2726/* Free an entry in a transformed_insns hashtable. */
2727static void
2728free_transformed_insns (void *p)
2729{
2730 struct transformed_insns *pti = (struct transformed_insns *) p;
2731
2732 vinsn_detach (pti->vinsn_old);
2733 vinsn_detach (pti->vinsn_new);
2734 free (pti);
2735}
2736
2737/* Init the s_i_d data for INSN which should be inited just once, when
2738 we first see the insn. */
2739static void
2740init_first_time_insn_data (insn_t insn)
2741{
2742 /* This should not be set if this is the first time we init data for
2743 insn. */
2744 gcc_assert (first_time_insn_init (insn));
2745
2746 /* These are needed for nops too. */
2747 INSN_LIVE (insn) = get_regset_from_pool ();
2748 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2749
e855c69d
AB
2750 if (!INSN_NOP_P (insn))
2751 {
2752 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2753 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2754 INSN_TRANSFORMED_INSNS (insn)
2755 = htab_create (16, hash_transformed_insns,
2756 eq_transformed_insns, free_transformed_insns);
bcf33775 2757 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2758 }
2759}
2760
bcf33775
AB
2761/* Free almost all above data for INSN that is scheduled already.
2762 Used for extra-large basic blocks. */
2763void
2764free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2765{
2766 gcc_assert (! first_time_insn_init (insn));
bcf33775
AB
2767
2768 if (! INSN_ANALYZED_DEPS (insn))
2769 return;
2770
e855c69d
AB
2771 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2772 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2773 htab_delete (INSN_TRANSFORMED_INSNS (insn));
bcf33775 2774
e855c69d
AB
2775 /* This is allocated only for bookkeeping insns. */
2776 if (INSN_ORIGINATORS (insn))
2777 BITMAP_FREE (INSN_ORIGINATORS (insn));
2778 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2779
2780 INSN_ANALYZED_DEPS (insn) = NULL;
2781
2782 /* Clear the readonly flag so we would ICE when trying to recalculate
2783 the deps context (as we believe that it should not happen). */
2784 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2785}
2786
2787/* Free the same data as above for INSN. */
2788static void
2789free_first_time_insn_data (insn_t insn)
2790{
2791 gcc_assert (! first_time_insn_init (insn));
2792
2793 free_data_for_scheduled_insn (insn);
2794 return_regset_to_pool (INSN_LIVE (insn));
2795 INSN_LIVE (insn) = NULL;
2796 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2797}
2798
2799/* Initialize region-scope data structures for basic blocks. */
2800static void
2801init_global_and_expr_for_bb (basic_block bb)
2802{
2803 if (sel_bb_empty_p (bb))
2804 return;
2805
2806 invalidate_av_set (bb);
2807}
2808
2809/* Data for global dependency analysis (to initialize CANT_MOVE and
2810 SCHED_GROUP_P). */
2811static struct
2812{
2813 /* Previous insn. */
2814 insn_t prev_insn;
2815} init_global_data;
2816
2817/* Determine if INSN is in the sched_group, is an asm or should not be
2818 cloned. After that initialize its expr. */
2819static void
2820init_global_and_expr_for_insn (insn_t insn)
2821{
2822 if (LABEL_P (insn))
2823 return;
2824
2825 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2826 {
2827 init_global_data.prev_insn = NULL_RTX;
2828 return;
2829 }
2830
2831 gcc_assert (INSN_P (insn));
2832
2833 if (SCHED_GROUP_P (insn))
2834 /* Setup a sched_group. */
2835 {
2836 insn_t prev_insn = init_global_data.prev_insn;
2837
2838 if (prev_insn)
2839 INSN_SCHED_NEXT (prev_insn) = insn;
2840
2841 init_global_data.prev_insn = insn;
2842 }
2843 else
2844 init_global_data.prev_insn = NULL_RTX;
2845
2846 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2847 || asm_noperands (PATTERN (insn)) >= 0)
2848 /* Mark INSN as an asm. */
2849 INSN_ASM_P (insn) = true;
2850
2851 {
2852 bool force_unique_p;
2853 ds_t spec_done_ds;
2854
2855 /* Certain instructions cannot be cloned. */
2856 if (CANT_MOVE (insn)
2857 || INSN_ASM_P (insn)
2858 || SCHED_GROUP_P (insn)
2859 || prologue_epilogue_contains (insn)
2860 /* Exception handling insns are always unique. */
2861 || (flag_non_call_exceptions && can_throw_internal (insn))
2862 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2863 || control_flow_insn_p (insn))
2864 force_unique_p = true;
2865 else
2866 force_unique_p = false;
2867
2868 if (targetm.sched.get_insn_spec_ds)
2869 {
2870 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2871 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2872 }
2873 else
2874 spec_done_ds = 0;
2875
2876 /* Initialize INSN's expr. */
2877 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2878 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2879 spec_done_ds, 0, 0, NULL, true, false, false, false,
2880 CANT_MOVE (insn));
2881 }
2882
2883 init_first_time_insn_data (insn);
2884}
2885
2886/* Scan the region and initialize instruction data for basic blocks BBS. */
2887void
2888sel_init_global_and_expr (bb_vec_t bbs)
2889{
2890 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2891 const struct sched_scan_info_def ssi =
2892 {
2893 NULL, /* extend_bb */
2894 init_global_and_expr_for_bb, /* init_bb */
2895 extend_insn_data, /* extend_insn */
2896 init_global_and_expr_for_insn /* init_insn */
2897 };
2898
2899 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2900}
2901
2902/* Finalize region-scope data structures for basic blocks. */
2903static void
2904finish_global_and_expr_for_bb (basic_block bb)
2905{
2906 av_set_clear (&BB_AV_SET (bb));
2907 BB_AV_LEVEL (bb) = 0;
2908}
2909
2910/* Finalize INSN's data. */
2911static void
2912finish_global_and_expr_insn (insn_t insn)
2913{
2914 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2915 return;
2916
2917 gcc_assert (INSN_P (insn));
2918
2919 if (INSN_LUID (insn) > 0)
2920 {
2921 free_first_time_insn_data (insn);
2922 INSN_WS_LEVEL (insn) = 0;
2923 CANT_MOVE (insn) = 0;
2924
2925 /* We can no longer assert this, as vinsns of this insn could be
2926 easily live in other insn's caches. This should be changed to
2927 a counter-like approach among all vinsns. */
2928 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2929 clear_expr (INSN_EXPR (insn));
2930 }
2931}
2932
2933/* Finalize per instruction data for the whole region. */
2934void
2935sel_finish_global_and_expr (void)
2936{
2937 {
2938 bb_vec_t bbs;
2939 int i;
2940
2941 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2942
2943 for (i = 0; i < current_nr_blocks; i++)
2944 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2945
2946 /* Clear AV_SETs and INSN_EXPRs. */
2947 {
2948 const struct sched_scan_info_def ssi =
2949 {
2950 NULL, /* extend_bb */
2951 finish_global_and_expr_for_bb, /* init_bb */
2952 NULL, /* extend_insn */
2953 finish_global_and_expr_insn /* init_insn */
2954 };
2955
2956 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2957 }
2958
2959 VEC_free (basic_block, heap, bbs);
2960 }
2961
2962 finish_insns ();
2963}
2964\f
2965
2966/* In the below hooks, we merely calculate whether or not a dependence
2967 exists, and in what part of insn. However, we will need more data
2968 when we'll start caching dependence requests. */
2969
2970/* Container to hold information for dependency analysis. */
2971static struct
2972{
2973 deps_t dc;
2974
2975 /* A variable to track which part of rtx we are scanning in
2976 sched-deps.c: sched_analyze_insn (). */
2977 deps_where_t where;
2978
2979 /* Current producer. */
2980 insn_t pro;
2981
2982 /* Current consumer. */
2983 vinsn_t con;
2984
2985 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2986 X is from { INSN, LHS, RHS }. */
2987 ds_t has_dep_p[DEPS_IN_NOWHERE];
2988} has_dependence_data;
2989
2990/* Start analyzing dependencies of INSN. */
2991static void
2992has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
2993{
2994 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
2995
2996 has_dependence_data.where = DEPS_IN_INSN;
2997}
2998
2999/* Finish analyzing dependencies of an insn. */
3000static void
3001has_dependence_finish_insn (void)
3002{
3003 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3004
3005 has_dependence_data.where = DEPS_IN_NOWHERE;
3006}
3007
3008/* Start analyzing dependencies of LHS. */
3009static void
3010has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3011{
3012 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3013
3014 if (VINSN_LHS (has_dependence_data.con) != NULL)
3015 has_dependence_data.where = DEPS_IN_LHS;
3016}
3017
3018/* Finish analyzing dependencies of an lhs. */
3019static void
3020has_dependence_finish_lhs (void)
3021{
3022 has_dependence_data.where = DEPS_IN_INSN;
3023}
3024
3025/* Start analyzing dependencies of RHS. */
3026static void
3027has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3028{
3029 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3030
3031 if (VINSN_RHS (has_dependence_data.con) != NULL)
3032 has_dependence_data.where = DEPS_IN_RHS;
3033}
3034
3035/* Start analyzing dependencies of an rhs. */
3036static void
3037has_dependence_finish_rhs (void)
3038{
3039 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3040 || has_dependence_data.where == DEPS_IN_INSN);
3041
3042 has_dependence_data.where = DEPS_IN_INSN;
3043}
3044
3045/* Note a set of REGNO. */
3046static void
3047has_dependence_note_reg_set (int regno)
3048{
3049 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3050
3051 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3052 VINSN_INSN_RTX
3053 (has_dependence_data.con)))
3054 {
3055 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3056
3057 if (reg_last->sets != NULL
3058 || reg_last->clobbers != NULL)
3059 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3060
3061 if (reg_last->uses)
3062 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3063 }
3064}
3065
3066/* Note a clobber of REGNO. */
3067static void
3068has_dependence_note_reg_clobber (int regno)
3069{
3070 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3071
3072 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3073 VINSN_INSN_RTX
3074 (has_dependence_data.con)))
3075 {
3076 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3077
3078 if (reg_last->sets)
3079 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3080
3081 if (reg_last->uses)
3082 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3083 }
3084}
3085
3086/* Note a use of REGNO. */
3087static void
3088has_dependence_note_reg_use (int regno)
3089{
3090 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3091
3092 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3093 VINSN_INSN_RTX
3094 (has_dependence_data.con)))
3095 {
3096 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3097
3098 if (reg_last->sets)
3099 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3100
3101 if (reg_last->clobbers)
3102 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3103
3104 /* Handle BE_IN_SPEC. */
3105 if (reg_last->uses)
3106 {
3107 ds_t pro_spec_checked_ds;
3108
3109 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3110 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3111
3112 if (pro_spec_checked_ds != 0)
3113 /* Merge BE_IN_SPEC bits into *DSP. */
3114 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3115 NULL_RTX, NULL_RTX);
3116 }
3117 }
3118}
3119
3120/* Note a memory dependence. */
3121static void
3122has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3123 rtx pending_mem ATTRIBUTE_UNUSED,
3124 insn_t pending_insn ATTRIBUTE_UNUSED,
3125 ds_t ds ATTRIBUTE_UNUSED)
3126{
3127 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3128 VINSN_INSN_RTX (has_dependence_data.con)))
3129 {
3130 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3131
3132 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3133 }
3134}
3135
3136/* Note a dependence. */
3137static void
3138has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3139 ds_t ds ATTRIBUTE_UNUSED)
3140{
3141 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3142 VINSN_INSN_RTX (has_dependence_data.con)))
3143 {
3144 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3145
3146 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3147 }
3148}
3149
3150/* Mark the insn as having a hard dependence that prevents speculation. */
3151void
3152sel_mark_hard_insn (rtx insn)
3153{
3154 int i;
3155
3156 /* Only work when we're in has_dependence_p mode.
3157 ??? This is a hack, this should actually be a hook. */
3158 if (!has_dependence_data.dc || !has_dependence_data.pro)
3159 return;
3160
3161 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3162 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3163
3164 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3165 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3166}
3167
3168/* This structure holds the hooks for the dependency analysis used when
3169 actually processing dependencies in the scheduler. */
3170static struct sched_deps_info_def has_dependence_sched_deps_info;
3171
3172/* This initializes most of the fields of the above structure. */
3173static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3174 {
3175 NULL,
3176
3177 has_dependence_start_insn,
3178 has_dependence_finish_insn,
3179 has_dependence_start_lhs,
3180 has_dependence_finish_lhs,
3181 has_dependence_start_rhs,
3182 has_dependence_finish_rhs,
3183 has_dependence_note_reg_set,
3184 has_dependence_note_reg_clobber,
3185 has_dependence_note_reg_use,
3186 has_dependence_note_mem_dep,
3187 has_dependence_note_dep,
3188
3189 0, /* use_cselib */
3190 0, /* use_deps_list */
3191 0 /* generate_spec_deps */
3192 };
3193
3194/* Initialize has_dependence_sched_deps_info with extra spec field. */
3195static void
3196setup_has_dependence_sched_deps_info (void)
3197{
3198 memcpy (&has_dependence_sched_deps_info,
3199 &const_has_dependence_sched_deps_info,
3200 sizeof (has_dependence_sched_deps_info));
3201
3202 if (spec_info != NULL)
3203 has_dependence_sched_deps_info.generate_spec_deps = 1;
3204
3205 sched_deps_info = &has_dependence_sched_deps_info;
3206}
3207
3208/* Remove all dependences found and recorded in has_dependence_data array. */
3209void
3210sel_clear_has_dependence (void)
3211{
3212 int i;
3213
3214 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3215 has_dependence_data.has_dep_p[i] = 0;
3216}
3217
3218/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3219 to the dependence information array in HAS_DEP_PP. */
3220ds_t
3221has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3222{
3223 int i;
3224 ds_t ds;
3225 struct deps *dc;
3226
3227 if (INSN_SIMPLEJUMP_P (pred))
3228 /* Unconditional jump is just a transfer of control flow.
3229 Ignore it. */
3230 return false;
3231
3232 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3233
3234 /* We init this field lazily. */
3235 if (dc->reg_last == NULL)
3236 init_deps_reg_last (dc);
3237
e855c69d
AB
3238 if (!dc->readonly)
3239 {
3240 has_dependence_data.pro = NULL;
3241 /* Initialize empty dep context with information about PRED. */
3242 advance_deps_context (dc, pred);
3243 dc->readonly = 1;
3244 }
3245
3246 has_dependence_data.where = DEPS_IN_NOWHERE;
3247 has_dependence_data.pro = pred;
3248 has_dependence_data.con = EXPR_VINSN (expr);
3249 has_dependence_data.dc = dc;
3250
3251 sel_clear_has_dependence ();
3252
3253 /* Now catch all dependencies that would be generated between PRED and
3254 INSN. */
3255 setup_has_dependence_sched_deps_info ();
3256 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3257 has_dependence_data.dc = NULL;
3258
3259 /* When a barrier was found, set DEPS_IN_INSN bits. */
3260 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3261 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3262 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3263 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3264
3265 /* Do not allow stores to memory to move through checks. Currently
3266 we don't move this to sched-deps.c as the check doesn't have
3267 obvious places to which this dependence can be attached.
3268 FIMXE: this should go to a hook. */
3269 if (EXPR_LHS (expr)
3270 && MEM_P (EXPR_LHS (expr))
3271 && sel_insn_is_speculation_check (pred))
3272 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3273
3274 *has_dep_pp = has_dependence_data.has_dep_p;
3275 ds = 0;
3276 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3277 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3278 NULL_RTX, NULL_RTX);
3279
3280 return ds;
3281}
3282\f
3283
3284/* Dependence hooks implementation that checks dependence latency constraints
3285 on the insns being scheduled. The entry point for these routines is
3286 tick_check_p predicate. */
3287
3288static struct
3289{
3290 /* An expr we are currently checking. */
3291 expr_t expr;
3292
3293 /* A minimal cycle for its scheduling. */
3294 int cycle;
3295
3296 /* Whether we have seen a true dependence while checking. */
3297 bool seen_true_dep_p;
3298} tick_check_data;
3299
3300/* Update minimal scheduling cycle for tick_check_insn given that it depends
3301 on PRO with status DS and weight DW. */
3302static void
3303tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3304{
3305 expr_t con_expr = tick_check_data.expr;
3306 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3307
3308 if (con_insn != pro_insn)
3309 {
3310 enum reg_note dt;
3311 int tick;
3312
3313 if (/* PROducer was removed from above due to pipelining. */
3314 !INSN_IN_STREAM_P (pro_insn)
3315 /* Or PROducer was originally on the next iteration regarding the
3316 CONsumer. */
3317 || (INSN_SCHED_TIMES (pro_insn)
3318 - EXPR_SCHED_TIMES (con_expr)) > 1)
3319 /* Don't count this dependence. */
3320 return;
3321
3322 dt = ds_to_dt (ds);
3323 if (dt == REG_DEP_TRUE)
3324 tick_check_data.seen_true_dep_p = true;
3325
3326 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3327
3328 {
3329 dep_def _dep, *dep = &_dep;
3330
3331 init_dep (dep, pro_insn, con_insn, dt);
3332
3333 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3334 }
3335
3336 /* When there are several kinds of dependencies between pro and con,
3337 only REG_DEP_TRUE should be taken into account. */
3338 if (tick > tick_check_data.cycle
3339 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3340 tick_check_data.cycle = tick;
3341 }
3342}
3343
3344/* An implementation of note_dep hook. */
3345static void
3346tick_check_note_dep (insn_t pro, ds_t ds)
3347{
3348 tick_check_dep_with_dw (pro, ds, 0);
3349}
3350
3351/* An implementation of note_mem_dep hook. */
3352static void
3353tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3354{
3355 dw_t dw;
3356
3357 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3358 ? estimate_dep_weak (mem1, mem2)
3359 : 0);
3360
3361 tick_check_dep_with_dw (pro, ds, dw);
3362}
3363
3364/* This structure contains hooks for dependence analysis used when determining
3365 whether an insn is ready for scheduling. */
3366static struct sched_deps_info_def tick_check_sched_deps_info =
3367 {
3368 NULL,
3369
3370 NULL,
3371 NULL,
3372 NULL,
3373 NULL,
3374 NULL,
3375 NULL,
3376 haifa_note_reg_set,
3377 haifa_note_reg_clobber,
3378 haifa_note_reg_use,
3379 tick_check_note_mem_dep,
3380 tick_check_note_dep,
3381
3382 0, 0, 0
3383 };
3384
3385/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3386 scheduled. Return 0 if all data from producers in DC is ready. */
3387int
3388tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3389{
3390 int cycles_left;
3391 /* Initialize variables. */
3392 tick_check_data.expr = expr;
3393 tick_check_data.cycle = 0;
3394 tick_check_data.seen_true_dep_p = false;
3395 sched_deps_info = &tick_check_sched_deps_info;
3396
3397 gcc_assert (!dc->readonly);
3398 dc->readonly = 1;
3399 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3400 dc->readonly = 0;
3401
3402 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3403
3404 return cycles_left >= 0 ? cycles_left : 0;
3405}
3406\f
3407
3408/* Functions to work with insns. */
3409
3410/* Returns true if LHS of INSN is the same as DEST of an insn
3411 being moved. */
3412bool
3413lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3414{
3415 rtx lhs = INSN_LHS (insn);
3416
3417 if (lhs == NULL || dest == NULL)
3418 return false;
3419
3420 return rtx_equal_p (lhs, dest);
3421}
3422
3423/* Return s_i_d entry of INSN. Callable from debugger. */
3424sel_insn_data_def
3425insn_sid (insn_t insn)
3426{
3427 return *SID (insn);
3428}
3429
3430/* True when INSN is a speculative check. We can tell this by looking
3431 at the data structures of the selective scheduler, not by examining
3432 the pattern. */
3433bool
3434sel_insn_is_speculation_check (rtx insn)
3435{
3436 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3437}
3438
3439/* Extracts machine mode MODE and destination location DST_LOC
3440 for given INSN. */
3441void
3442get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3443{
3444 rtx pat = PATTERN (insn);
3445
3446 gcc_assert (dst_loc);
3447 gcc_assert (GET_CODE (pat) == SET);
3448
3449 *dst_loc = SET_DEST (pat);
3450
3451 gcc_assert (*dst_loc);
3452 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3453
3454 if (mode)
3455 *mode = GET_MODE (*dst_loc);
3456}
3457
3458/* Returns true when moving through JUMP will result in bookkeeping
3459 creation. */
3460bool
3461bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3462{
3463 insn_t succ;
3464 succ_iterator si;
3465
3466 FOR_EACH_SUCC (succ, si, jump)
3467 if (sel_num_cfg_preds_gt_1 (succ))
3468 return true;
3469
3470 return false;
3471}
3472
3473/* Return 'true' if INSN is the only one in its basic block. */
3474static bool
3475insn_is_the_only_one_in_bb_p (insn_t insn)
3476{
3477 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3478}
3479
3480#ifdef ENABLE_CHECKING
3481/* Check that the region we're scheduling still has at most one
3482 backedge. */
3483static void
3484verify_backedges (void)
3485{
3486 if (pipelining_p)
3487 {
3488 int i, n = 0;
3489 edge e;
3490 edge_iterator ei;
3491
3492 for (i = 0; i < current_nr_blocks; i++)
3493 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3494 if (in_current_region_p (e->dest)
3495 && BLOCK_TO_BB (e->dest->index) < i)
3496 n++;
3497
3498 gcc_assert (n <= 1);
3499 }
3500}
3501#endif
3502\f
3503
3504/* Functions to work with control flow. */
3505
3506/* Tidy the possibly empty block BB. */
3507bool
3508maybe_tidy_empty_bb (basic_block bb)
3509{
3510 basic_block succ_bb, pred_bb;
f2c45f08
AM
3511 edge e;
3512 edge_iterator ei;
e855c69d
AB
3513 bool rescan_p;
3514
3515 /* Keep empty bb only if this block immediately precedes EXIT and
3516 has incoming non-fallthrough edge. Otherwise remove it. */
b5b8b0ac 3517 if (!sel_bb_empty_p (bb)
e855c69d
AB
3518 || (single_succ_p (bb)
3519 && single_succ (bb) == EXIT_BLOCK_PTR
3520 && (!single_pred_p (bb)
3521 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU))))
3522 return false;
3523
f2c45f08
AM
3524 /* Do not attempt to redirect complex edges. */
3525 FOR_EACH_EDGE (e, ei, bb->preds)
3526 if (e->flags & EDGE_COMPLEX)
3527 return false;
3528
e855c69d
AB
3529 free_data_sets (bb);
3530
3531 /* Do not delete BB if it has more than one successor.
3532 That can occur when we moving a jump. */
3533 if (!single_succ_p (bb))
3534 {
3535 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3536 sel_merge_blocks (bb->prev_bb, bb);
3537 return true;
3538 }
3539
3540 succ_bb = single_succ (bb);
3541 rescan_p = true;
3542 pred_bb = NULL;
3543
3544 /* Redirect all non-fallthru edges to the next bb. */
3545 while (rescan_p)
3546 {
e855c69d
AB
3547 rescan_p = false;
3548
3549 FOR_EACH_EDGE (e, ei, bb->preds)
3550 {
3551 pred_bb = e->src;
3552
3553 if (!(e->flags & EDGE_FALLTHRU))
3554 {
3555 sel_redirect_edge_and_branch (e, succ_bb);
3556 rescan_p = true;
3557 break;
3558 }
3559 }
3560 }
3561
3562 /* If it is possible - merge BB with its predecessor. */
3563 if (can_merge_blocks_p (bb->prev_bb, bb))
3564 sel_merge_blocks (bb->prev_bb, bb);
3565 else
3566 /* Otherwise this is a block without fallthru predecessor.
3567 Just delete it. */
3568 {
3569 gcc_assert (pred_bb != NULL);
3570
3571 move_bb_info (pred_bb, bb);
3572 remove_empty_bb (bb, true);
3573 }
3574
3575#ifdef ENABLE_CHECKING
3576 verify_backedges ();
3577#endif
3578
3579 return true;
3580}
3581
3582/* Tidy the control flow after we have removed original insn from
3583 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3584 is true, also try to optimize control flow on non-empty blocks. */
3585bool
3586tidy_control_flow (basic_block xbb, bool full_tidying)
3587{
3588 bool changed = true;
b5b8b0ac 3589 insn_t first, last;
e855c69d
AB
3590
3591 /* First check whether XBB is empty. */
3592 changed = maybe_tidy_empty_bb (xbb);
3593 if (changed || !full_tidying)
3594 return changed;
3595
3596 /* Check if there is a unnecessary jump after insn left. */
3597 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3598 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3599 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3600 {
3601 if (sel_remove_insn (BB_END (xbb), false, false))
3602 return true;
3603 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3604 }
3605
b5b8b0ac
AO
3606 first = sel_bb_head (xbb);
3607 last = sel_bb_end (xbb);
3608 if (MAY_HAVE_DEBUG_INSNS)
3609 {
3610 if (first != last && DEBUG_INSN_P (first))
3611 do
3612 first = NEXT_INSN (first);
3613 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3614
3615 if (first != last && DEBUG_INSN_P (last))
3616 do
3617 last = PREV_INSN (last);
3618 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3619 }
e855c69d
AB
3620 /* Check if there is an unnecessary jump in previous basic block leading
3621 to next basic block left after removing INSN from stream.
3622 If it is so, remove that jump and redirect edge to current
3623 basic block (where there was INSN before deletion). This way
3624 when NOP will be deleted several instructions later with its
3625 basic block we will not get a jump to next instruction, which
3626 can be harmful. */
b5b8b0ac 3627 if (first == last
e855c69d 3628 && !sel_bb_empty_p (xbb)
b5b8b0ac 3629 && INSN_NOP_P (last)
e855c69d
AB
3630 /* Flow goes fallthru from current block to the next. */
3631 && EDGE_COUNT (xbb->succs) == 1
3632 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3633 /* When successor is an EXIT block, it may not be the next block. */
3634 && single_succ (xbb) != EXIT_BLOCK_PTR
3635 /* And unconditional jump in previous basic block leads to
3636 next basic block of XBB and this jump can be safely removed. */
3637 && in_current_region_p (xbb->prev_bb)
3638 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3639 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3640 /* Also this jump is not at the scheduling boundary. */
3641 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3642 {
3643 /* Clear data structures of jump - jump itself will be removed
3644 by sel_redirect_edge_and_branch. */
3645 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3646 sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3647 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3648
3649 /* It can turn out that after removing unused jump, basic block
3650 that contained that jump, becomes empty too. In such case
3651 remove it too. */
3652 if (sel_bb_empty_p (xbb->prev_bb))
3653 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3654 }
3655
3656 return changed;
3657}
3658
3659/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3660 do not delete insn's data, because it will be later re-emitted.
3661 Return true if we have removed some blocks afterwards. */
3662bool
3663sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3664{
3665 basic_block bb = BLOCK_FOR_INSN (insn);
3666
3667 gcc_assert (INSN_IN_STREAM_P (insn));
3668
b5b8b0ac
AO
3669 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3670 {
3671 expr_t expr;
3672 av_set_iterator i;
3673
3674 /* When we remove a debug insn that is head of a BB, it remains
3675 in the AV_SET of the block, but it shouldn't. */
3676 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3677 if (EXPR_INSN_RTX (expr) == insn)
3678 {
3679 av_set_iter_remove (&i);
3680 break;
3681 }
3682 }
3683
e855c69d
AB
3684 if (only_disconnect)
3685 {
3686 insn_t prev = PREV_INSN (insn);
3687 insn_t next = NEXT_INSN (insn);
3688 basic_block bb = BLOCK_FOR_INSN (insn);
3689
3690 NEXT_INSN (prev) = next;
3691 PREV_INSN (next) = prev;
3692
3693 if (BB_HEAD (bb) == insn)
3694 {
3695 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3696 BB_HEAD (bb) = prev;
3697 }
3698 if (BB_END (bb) == insn)
3699 BB_END (bb) = prev;
3700 }
3701 else
3702 {
3703 remove_insn (insn);
3704 clear_expr (INSN_EXPR (insn));
3705 }
3706
3707 /* It is necessary to null this fields before calling add_insn (). */
3708 PREV_INSN (insn) = NULL_RTX;
3709 NEXT_INSN (insn) = NULL_RTX;
3710
3711 return tidy_control_flow (bb, full_tidying);
3712}
3713
3714/* Estimate number of the insns in BB. */
3715static int
3716sel_estimate_number_of_insns (basic_block bb)
3717{
3718 int res = 0;
3719 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3720
3721 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3722 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3723 res++;
3724
3725 return res;
3726}
3727
3728/* We don't need separate luids for notes or labels. */
3729static int
3730sel_luid_for_non_insn (rtx x)
3731{
3732 gcc_assert (NOTE_P (x) || LABEL_P (x));
3733
3734 return -1;
3735}
3736
3737/* Return seqno of the only predecessor of INSN. */
3738static int
3739get_seqno_of_a_pred (insn_t insn)
3740{
3741 int seqno;
3742
3743 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3744
3745 if (!sel_bb_head_p (insn))
3746 seqno = INSN_SEQNO (PREV_INSN (insn));
3747 else
3748 {
3749 basic_block bb = BLOCK_FOR_INSN (insn);
3750
3751 if (single_pred_p (bb)
3752 && !in_current_region_p (single_pred (bb)))
3753 {
3754 /* We can have preds outside a region when splitting edges
3755 for pipelining of an outer loop. Use succ instead.
3756 There should be only one of them. */
3757 insn_t succ = NULL;
3758 succ_iterator si;
3759 bool first = true;
3760
3761 gcc_assert (flag_sel_sched_pipelining_outer_loops
3762 && current_loop_nest);
3763 FOR_EACH_SUCC_1 (succ, si, insn,
3764 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3765 {
3766 gcc_assert (first);
3767 first = false;
3768 }
3769
3770 gcc_assert (succ != NULL);
3771 seqno = INSN_SEQNO (succ);
3772 }
3773 else
3774 {
3775 insn_t *preds;
3776 int n;
3777
3778 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3779 gcc_assert (n == 1);
3780
3781 seqno = INSN_SEQNO (preds[0]);
3782
3783 free (preds);
3784 }
3785 }
3786
3787 return seqno;
3788}
3789
da7ba240
AB
3790/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3791 with positive seqno exist. */
e855c69d
AB
3792int
3793get_seqno_by_preds (rtx insn)
3794{
3795 basic_block bb = BLOCK_FOR_INSN (insn);
3796 rtx tmp = insn, head = BB_HEAD (bb);
3797 insn_t *preds;
3798 int n, i, seqno;
3799
3800 while (tmp != head)
3801 if (INSN_P (tmp))
3802 return INSN_SEQNO (tmp);
3803 else
3804 tmp = PREV_INSN (tmp);
3805
3806 cfg_preds (bb, &preds, &n);
3807 for (i = 0, seqno = -1; i < n; i++)
3808 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3809
e855c69d
AB
3810 return seqno;
3811}
3812
3813\f
3814
3815/* Extend pass-scope data structures for basic blocks. */
3816void
3817sel_extend_global_bb_info (void)
3818{
3819 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3820 last_basic_block);
3821}
3822
3823/* Extend region-scope data structures for basic blocks. */
3824static void
3825extend_region_bb_info (void)
3826{
3827 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3828 last_basic_block);
3829}
3830
3831/* Extend all data structures to fit for all basic blocks. */
3832static void
3833extend_bb_info (void)
3834{
3835 sel_extend_global_bb_info ();
3836 extend_region_bb_info ();
3837}
3838
3839/* Finalize pass-scope data structures for basic blocks. */
3840void
3841sel_finish_global_bb_info (void)
3842{
3843 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3844}
3845
3846/* Finalize region-scope data structures for basic blocks. */
3847static void
3848finish_region_bb_info (void)
3849{
3850 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3851}
3852\f
3853
3854/* Data for each insn in current region. */
3855VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3856
3857/* A vector for the insns we've emitted. */
3858static insn_vec_t new_insns = NULL;
3859
3860/* Extend data structures for insns from current region. */
3861static void
3862extend_insn_data (void)
3863{
3864 int reserve;
3865
3866 sched_extend_target ();
3867 sched_deps_init (false);
3868
3869 /* Extend data structures for insns from current region. */
3870 reserve = (sched_max_luid + 1
3871 - VEC_length (sel_insn_data_def, s_i_d));
3872 if (reserve > 0
3873 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
3874 {
3875 int size;
3876
3877 if (sched_max_luid / 2 > 1024)
3878 size = sched_max_luid + 1024;
3879 else
3880 size = 3 * sched_max_luid / 2;
3881
3882
3883 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3884 }
e855c69d
AB
3885}
3886
3887/* Finalize data structures for insns from current region. */
3888static void
3889finish_insns (void)
3890{
3891 unsigned i;
3892
3893 /* Clear here all dependence contexts that may have left from insns that were
3894 removed during the scheduling. */
3895 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3896 {
3897 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3898
3899 if (sid_entry->live)
3900 return_regset_to_pool (sid_entry->live);
3901 if (sid_entry->analyzed_deps)
3902 {
3903 BITMAP_FREE (sid_entry->analyzed_deps);
3904 BITMAP_FREE (sid_entry->found_deps);
3905 htab_delete (sid_entry->transformed_insns);
3906 free_deps (&sid_entry->deps_context);
3907 }
3908 if (EXPR_VINSN (&sid_entry->expr))
3909 {
3910 clear_expr (&sid_entry->expr);
3911
3912 /* Also, clear CANT_MOVE bit here, because we really don't want it
3913 to be passed to the next region. */
3914 CANT_MOVE_BY_LUID (i) = 0;
3915 }
3916 }
3917
3918 VEC_free (sel_insn_data_def, heap, s_i_d);
3919}
3920
3921/* A proxy to pass initialization data to init_insn (). */
3922static sel_insn_data_def _insn_init_ssid;
3923static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3924
3925/* If true create a new vinsn. Otherwise use the one from EXPR. */
3926static bool insn_init_create_new_vinsn_p;
3927
3928/* Set all necessary data for initialization of the new insn[s]. */
3929static expr_t
3930set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3931{
3932 expr_t x = &insn_init_ssid->expr;
3933
3934 copy_expr_onside (x, expr);
3935 if (vi != NULL)
3936 {
3937 insn_init_create_new_vinsn_p = false;
3938 change_vinsn_in_expr (x, vi);
3939 }
3940 else
3941 insn_init_create_new_vinsn_p = true;
3942
3943 insn_init_ssid->seqno = seqno;
3944 return x;
3945}
3946
3947/* Init data for INSN. */
3948static void
3949init_insn_data (insn_t insn)
3950{
3951 expr_t expr;
3952 sel_insn_data_t ssid = insn_init_ssid;
3953
3954 /* The fields mentioned below are special and hence are not being
3955 propagated to the new insns. */
3956 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
3957 && !ssid->after_stall_p && ssid->sched_cycle == 0);
3958 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
3959
3960 expr = INSN_EXPR (insn);
3961 copy_expr (expr, &ssid->expr);
3962 prepare_insn_expr (insn, ssid->seqno);
3963
3964 if (insn_init_create_new_vinsn_p)
3965 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
3966
3967 if (first_time_insn_init (insn))
3968 init_first_time_insn_data (insn);
3969}
3970
3971/* This is used to initialize spurious jumps generated by
3972 sel_redirect_edge (). */
3973static void
3974init_simplejump_data (insn_t insn)
3975{
3976 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
3977 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
3978 false, true);
3979 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
3980 init_first_time_insn_data (insn);
3981}
3982
3983/* Perform deferred initialization of insns. This is used to process
3984 a new jump that may be created by redirect_edge. */
3985void
3986sel_init_new_insn (insn_t insn, int flags)
3987{
3988 /* We create data structures for bb when the first insn is emitted in it. */
3989 if (INSN_P (insn)
3990 && INSN_IN_STREAM_P (insn)
3991 && insn_is_the_only_one_in_bb_p (insn))
3992 {
3993 extend_bb_info ();
3994 create_initial_data_sets (BLOCK_FOR_INSN (insn));
3995 }
3996
3997 if (flags & INSN_INIT_TODO_LUID)
3998 sched_init_luids (NULL, NULL, NULL, insn);
3999
4000 if (flags & INSN_INIT_TODO_SSID)
4001 {
4002 extend_insn_data ();
4003 init_insn_data (insn);
4004 clear_expr (&insn_init_ssid->expr);
4005 }
4006
4007 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4008 {
4009 extend_insn_data ();
4010 init_simplejump_data (insn);
4011 }
4012
4013 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4014 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4015}
4016\f
4017
4018/* Functions to init/finish work with lv sets. */
4019
4020/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4021static void
4022init_lv_set (basic_block bb)
4023{
4024 gcc_assert (!BB_LV_SET_VALID_P (bb));
4025
4026 BB_LV_SET (bb) = get_regset_from_pool ();
4027 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4028 BB_LV_SET_VALID_P (bb) = true;
4029}
4030
4031/* Copy liveness information to BB from FROM_BB. */
4032static void
4033copy_lv_set_from (basic_block bb, basic_block from_bb)
4034{
4035 gcc_assert (!BB_LV_SET_VALID_P (bb));
4036
4037 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4038 BB_LV_SET_VALID_P (bb) = true;
4039}
4040
4041/* Initialize lv set of all bb headers. */
4042void
4043init_lv_sets (void)
4044{
4045 basic_block bb;
4046
4047 /* Initialize of LV sets. */
4048 FOR_EACH_BB (bb)
4049 init_lv_set (bb);
4050
4051 /* Don't forget EXIT_BLOCK. */
4052 init_lv_set (EXIT_BLOCK_PTR);
4053}
4054
4055/* Release lv set of HEAD. */
4056static void
4057free_lv_set (basic_block bb)
4058{
4059 gcc_assert (BB_LV_SET (bb) != NULL);
4060
4061 return_regset_to_pool (BB_LV_SET (bb));
4062 BB_LV_SET (bb) = NULL;
4063 BB_LV_SET_VALID_P (bb) = false;
4064}
4065
4066/* Finalize lv sets of all bb headers. */
4067void
4068free_lv_sets (void)
4069{
4070 basic_block bb;
4071
4072 /* Don't forget EXIT_BLOCK. */
4073 free_lv_set (EXIT_BLOCK_PTR);
4074
4075 /* Free LV sets. */
4076 FOR_EACH_BB (bb)
4077 if (BB_LV_SET (bb))
4078 free_lv_set (bb);
4079}
4080
4081/* Initialize an invalid AV_SET for BB.
4082 This set will be updated next time compute_av () process BB. */
4083static void
4084invalidate_av_set (basic_block bb)
4085{
4086 gcc_assert (BB_AV_LEVEL (bb) <= 0
4087 && BB_AV_SET (bb) == NULL);
4088
4089 BB_AV_LEVEL (bb) = -1;
4090}
4091
4092/* Create initial data sets for BB (they will be invalid). */
4093static void
4094create_initial_data_sets (basic_block bb)
4095{
4096 if (BB_LV_SET (bb))
4097 BB_LV_SET_VALID_P (bb) = false;
4098 else
4099 BB_LV_SET (bb) = get_regset_from_pool ();
4100 invalidate_av_set (bb);
4101}
4102
4103/* Free av set of BB. */
4104static void
4105free_av_set (basic_block bb)
4106{
4107 av_set_clear (&BB_AV_SET (bb));
4108 BB_AV_LEVEL (bb) = 0;
4109}
4110
4111/* Free data sets of BB. */
4112void
4113free_data_sets (basic_block bb)
4114{
4115 free_lv_set (bb);
4116 free_av_set (bb);
4117}
4118
4119/* Exchange lv sets of TO and FROM. */
4120static void
4121exchange_lv_sets (basic_block to, basic_block from)
4122{
4123 {
4124 regset to_lv_set = BB_LV_SET (to);
4125
4126 BB_LV_SET (to) = BB_LV_SET (from);
4127 BB_LV_SET (from) = to_lv_set;
4128 }
4129
4130 {
4131 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4132
4133 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4134 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4135 }
4136}
4137
4138
4139/* Exchange av sets of TO and FROM. */
4140static void
4141exchange_av_sets (basic_block to, basic_block from)
4142{
4143 {
4144 av_set_t to_av_set = BB_AV_SET (to);
4145
4146 BB_AV_SET (to) = BB_AV_SET (from);
4147 BB_AV_SET (from) = to_av_set;
4148 }
4149
4150 {
4151 int to_av_level = BB_AV_LEVEL (to);
4152
4153 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4154 BB_AV_LEVEL (from) = to_av_level;
4155 }
4156}
4157
4158/* Exchange data sets of TO and FROM. */
4159void
4160exchange_data_sets (basic_block to, basic_block from)
4161{
4162 exchange_lv_sets (to, from);
4163 exchange_av_sets (to, from);
4164}
4165
4166/* Copy data sets of FROM to TO. */
4167void
4168copy_data_sets (basic_block to, basic_block from)
4169{
4170 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4171 gcc_assert (BB_AV_SET (to) == NULL);
4172
4173 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4174 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4175
4176 if (BB_AV_SET_VALID_P (from))
4177 {
4178 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4179 }
4180 if (BB_LV_SET_VALID_P (from))
4181 {
4182 gcc_assert (BB_LV_SET (to) != NULL);
4183 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4184 }
4185}
4186
4187/* Return an av set for INSN, if any. */
4188av_set_t
4189get_av_set (insn_t insn)
4190{
4191 av_set_t av_set;
4192
4193 gcc_assert (AV_SET_VALID_P (insn));
4194
4195 if (sel_bb_head_p (insn))
4196 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4197 else
4198 av_set = NULL;
4199
4200 return av_set;
4201}
4202
4203/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4204int
4205get_av_level (insn_t insn)
4206{
4207 int av_level;
4208
4209 gcc_assert (INSN_P (insn));
4210
4211 if (sel_bb_head_p (insn))
4212 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4213 else
4214 av_level = INSN_WS_LEVEL (insn);
4215
4216 return av_level;
4217}
4218
4219\f
4220
4221/* Variables to work with control-flow graph. */
4222
4223/* The basic block that already has been processed by the sched_data_update (),
4224 but hasn't been in sel_add_bb () yet. */
4225static VEC (basic_block, heap) *last_added_blocks = NULL;
4226
4227/* A pool for allocating successor infos. */
4228static struct
4229{
4230 /* A stack for saving succs_info structures. */
4231 struct succs_info *stack;
4232
4233 /* Its size. */
4234 int size;
4235
4236 /* Top of the stack. */
4237 int top;
4238
4239 /* Maximal value of the top. */
4240 int max_top;
4241} succs_info_pool;
4242
4243/* Functions to work with control-flow graph. */
4244
4245/* Return basic block note of BB. */
4246insn_t
4247sel_bb_head (basic_block bb)
4248{
4249 insn_t head;
4250
4251 if (bb == EXIT_BLOCK_PTR)
4252 {
4253 gcc_assert (exit_insn != NULL_RTX);
4254 head = exit_insn;
4255 }
4256 else
4257 {
4258 insn_t note;
4259
4260 note = bb_note (bb);
4261 head = next_nonnote_insn (note);
4262
4263 if (head && BLOCK_FOR_INSN (head) != bb)
4264 head = NULL_RTX;
4265 }
4266
4267 return head;
4268}
4269
4270/* Return true if INSN is a basic block header. */
4271bool
4272sel_bb_head_p (insn_t insn)
4273{
4274 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4275}
4276
4277/* Return last insn of BB. */
4278insn_t
4279sel_bb_end (basic_block bb)
4280{
4281 if (sel_bb_empty_p (bb))
4282 return NULL_RTX;
4283
4284 gcc_assert (bb != EXIT_BLOCK_PTR);
4285
4286 return BB_END (bb);
4287}
4288
4289/* Return true if INSN is the last insn in its basic block. */
4290bool
4291sel_bb_end_p (insn_t insn)
4292{
4293 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4294}
4295
4296/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4297bool
4298sel_bb_empty_p (basic_block bb)
4299{
4300 return sel_bb_head (bb) == NULL;
4301}
4302
4303/* True when BB belongs to the current scheduling region. */
4304bool
4305in_current_region_p (basic_block bb)
4306{
4307 if (bb->index < NUM_FIXED_BLOCKS)
4308 return false;
4309
4310 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4311}
4312
4313/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4314basic_block
4315fallthru_bb_of_jump (rtx jump)
4316{
4317 if (!JUMP_P (jump))
4318 return NULL;
4319
4320 if (any_uncondjump_p (jump))
4321 return single_succ (BLOCK_FOR_INSN (jump));
4322
4323 if (!any_condjump_p (jump))
4324 return NULL;
4325
268bab85
AB
4326 /* A basic block that ends with a conditional jump may still have one successor
4327 (and be followed by a barrier), we are not interested. */
4328 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4329 return NULL;
4330
e855c69d
AB
4331 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4332}
4333
4334/* Remove all notes from BB. */
4335static void
4336init_bb (basic_block bb)
4337{
4338 remove_notes (bb_note (bb), BB_END (bb));
4339 BB_NOTE_LIST (bb) = note_list;
4340}
4341
4342void
4343sel_init_bbs (bb_vec_t bbs, basic_block bb)
4344{
4345 const struct sched_scan_info_def ssi =
4346 {
4347 extend_bb_info, /* extend_bb */
4348 init_bb, /* init_bb */
4349 NULL, /* extend_insn */
4350 NULL /* init_insn */
4351 };
4352
4353 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4354}
4355
4356/* Restore other notes for the whole region. */
4357static void
4358sel_restore_other_notes (void)
4359{
4360 int bb;
4361
4362 for (bb = 0; bb < current_nr_blocks; bb++)
4363 {
4364 basic_block first, last;
4365
4366 first = EBB_FIRST_BB (bb);
4367 last = EBB_LAST_BB (bb)->next_bb;
4368
4369 do
4370 {
4371 note_list = BB_NOTE_LIST (first);
4372 restore_other_notes (NULL, first);
4373 BB_NOTE_LIST (first) = NULL_RTX;
4374
4375 first = first->next_bb;
4376 }
4377 while (first != last);
4378 }
4379}
4380
4381/* Free per-bb data structures. */
4382void
4383sel_finish_bbs (void)
4384{
4385 sel_restore_other_notes ();
4386
4387 /* Remove current loop preheader from this loop. */
4388 if (current_loop_nest)
4389 sel_remove_loop_preheader ();
4390
4391 finish_region_bb_info ();
4392}
4393
4394/* Return true if INSN has a single successor of type FLAGS. */
4395bool
4396sel_insn_has_single_succ_p (insn_t insn, int flags)
4397{
4398 insn_t succ;
4399 succ_iterator si;
4400 bool first_p = true;
4401
4402 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4403 {
4404 if (first_p)
4405 first_p = false;
4406 else
4407 return false;
4408 }
4409
4410 return true;
4411}
4412
4413/* Allocate successor's info. */
4414static struct succs_info *
4415alloc_succs_info (void)
4416{
4417 if (succs_info_pool.top == succs_info_pool.max_top)
4418 {
4419 int i;
4420
4421 if (++succs_info_pool.max_top >= succs_info_pool.size)
4422 gcc_unreachable ();
4423
4424 i = ++succs_info_pool.top;
4425 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4426 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4427 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4428 }
4429 else
4430 succs_info_pool.top++;
4431
4432 return &succs_info_pool.stack[succs_info_pool.top];
4433}
4434
4435/* Free successor's info. */
4436void
4437free_succs_info (struct succs_info * sinfo)
4438{
4439 gcc_assert (succs_info_pool.top >= 0
4440 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4441 succs_info_pool.top--;
4442
4443 /* Clear stale info. */
4444 VEC_block_remove (rtx, sinfo->succs_ok,
4445 0, VEC_length (rtx, sinfo->succs_ok));
4446 VEC_block_remove (rtx, sinfo->succs_other,
4447 0, VEC_length (rtx, sinfo->succs_other));
4448 VEC_block_remove (int, sinfo->probs_ok,
4449 0, VEC_length (int, sinfo->probs_ok));
4450 sinfo->all_prob = 0;
4451 sinfo->succs_ok_n = 0;
4452 sinfo->all_succs_n = 0;
4453}
4454
4455/* Compute successor info for INSN. FLAGS are the flags passed
4456 to the FOR_EACH_SUCC_1 iterator. */
4457struct succs_info *
4458compute_succs_info (insn_t insn, short flags)
4459{
4460 succ_iterator si;
4461 insn_t succ;
4462 struct succs_info *sinfo = alloc_succs_info ();
4463
4464 /* Traverse *all* successors and decide what to do with each. */
4465 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4466 {
4467 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4468 perform code motion through inner loops. */
4469 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4470
4471 if (current_flags & flags)
4472 {
4473 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4474 VEC_safe_push (int, heap, sinfo->probs_ok,
4475 /* FIXME: Improve calculation when skipping
4476 inner loop to exits. */
4477 (si.bb_end
4478 ? si.e1->probability
4479 : REG_BR_PROB_BASE));
4480 sinfo->succs_ok_n++;
4481 }
4482 else
4483 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4484
4485 /* Compute all_prob. */
4486 if (!si.bb_end)
4487 sinfo->all_prob = REG_BR_PROB_BASE;
4488 else
4489 sinfo->all_prob += si.e1->probability;
4490
4491 sinfo->all_succs_n++;
4492 }
4493
4494 return sinfo;
4495}
4496
4497/* Return the predecessors of BB in PREDS and their number in N.
4498 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4499static void
4500cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4501{
4502 edge e;
4503 edge_iterator ei;
4504
4505 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4506
4507 FOR_EACH_EDGE (e, ei, bb->preds)
4508 {
4509 basic_block pred_bb = e->src;
4510 insn_t bb_end = BB_END (pred_bb);
4511
4512 /* ??? This code is not supposed to walk out of a region. */
4513 gcc_assert (in_current_region_p (pred_bb));
4514
4515 if (sel_bb_empty_p (pred_bb))
4516 cfg_preds_1 (pred_bb, preds, n, size);
4517 else
4518 {
4519 if (*n == *size)
4520 *preds = XRESIZEVEC (insn_t, *preds,
4521 (*size = 2 * *size + 1));
4522 (*preds)[(*n)++] = bb_end;
4523 }
4524 }
4525
4526 gcc_assert (*n != 0);
4527}
4528
4529/* Find all predecessors of BB and record them in PREDS and their number
4530 in N. Empty blocks are skipped, and only normal (forward in-region)
4531 edges are processed. */
4532static void
4533cfg_preds (basic_block bb, insn_t **preds, int *n)
4534{
4535 int size = 0;
4536
4537 *preds = NULL;
4538 *n = 0;
4539 cfg_preds_1 (bb, preds, n, &size);
4540}
4541
4542/* Returns true if we are moving INSN through join point. */
4543bool
4544sel_num_cfg_preds_gt_1 (insn_t insn)
4545{
4546 basic_block bb;
4547
4548 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4549 return false;
4550
4551 bb = BLOCK_FOR_INSN (insn);
4552
4553 while (1)
4554 {
4555 if (EDGE_COUNT (bb->preds) > 1)
4556 return true;
4557
4558 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4559 bb = EDGE_PRED (bb, 0)->src;
4560
4561 if (!sel_bb_empty_p (bb))
4562 break;
4563 }
4564
4565 return false;
4566}
4567
4568/* Returns true when BB should be the end of an ebb. Adapted from the
4569 code in sched-ebb.c. */
4570bool
4571bb_ends_ebb_p (basic_block bb)
4572{
4573 basic_block next_bb = bb_next_bb (bb);
4574 edge e;
4575 edge_iterator ei;
4576
4577 if (next_bb == EXIT_BLOCK_PTR
4578 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4579 || (LABEL_P (BB_HEAD (next_bb))
4580 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4581 Work around that. */
4582 && !single_pred_p (next_bb)))
4583 return true;
4584
4585 if (!in_current_region_p (next_bb))
4586 return true;
4587
4588 FOR_EACH_EDGE (e, ei, bb->succs)
4589 if ((e->flags & EDGE_FALLTHRU) != 0)
4590 {
4591 gcc_assert (e->dest == next_bb);
4592
4593 return false;
4594 }
4595
4596 return true;
4597}
4598
4599/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4600 successor of INSN. */
4601bool
4602in_same_ebb_p (insn_t insn, insn_t succ)
4603{
4604 basic_block ptr = BLOCK_FOR_INSN (insn);
4605
4606 for(;;)
4607 {
4608 if (ptr == BLOCK_FOR_INSN (succ))
4609 return true;
4610
4611 if (bb_ends_ebb_p (ptr))
4612 return false;
4613
4614 ptr = bb_next_bb (ptr);
4615 }
4616
4617 gcc_unreachable ();
4618 return false;
4619}
4620
4621/* Recomputes the reverse topological order for the function and
4622 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4623 modified appropriately. */
4624static void
4625recompute_rev_top_order (void)
4626{
4627 int *postorder;
4628 int n_blocks, i;
4629
4630 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4631 {
4632 rev_top_order_index_len = last_basic_block;
4633 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4634 rev_top_order_index_len);
4635 }
4636
4637 postorder = XNEWVEC (int, n_basic_blocks);
4638
4639 n_blocks = post_order_compute (postorder, true, false);
4640 gcc_assert (n_basic_blocks == n_blocks);
4641
4642 /* Build reverse function: for each basic block with BB->INDEX == K
4643 rev_top_order_index[K] is it's reverse topological sort number. */
4644 for (i = 0; i < n_blocks; i++)
4645 {
4646 gcc_assert (postorder[i] < rev_top_order_index_len);
4647 rev_top_order_index[postorder[i]] = i;
4648 }
4649
4650 free (postorder);
4651}
4652
4653/* Clear all flags from insns in BB that could spoil its rescheduling. */
4654void
4655clear_outdated_rtx_info (basic_block bb)
4656{
4657 rtx insn;
4658
4659 FOR_BB_INSNS (bb, insn)
4660 if (INSN_P (insn))
4661 {
4662 SCHED_GROUP_P (insn) = 0;
4663 INSN_AFTER_STALL_P (insn) = 0;
4664 INSN_SCHED_TIMES (insn) = 0;
4665 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4666
4667 /* We cannot use the changed caches, as previously we could ignore
4668 the LHS dependence due to enabled renaming and transform
4669 the expression, and currently we'll be unable to do this. */
4670 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4671 }
4672}
4673
4674/* Add BB_NOTE to the pool of available basic block notes. */
4675static void
4676return_bb_to_pool (basic_block bb)
4677{
4678 rtx note = bb_note (bb);
4679
4680 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4681 && bb->aux == NULL);
4682
4683 /* It turns out that current cfg infrastructure does not support
4684 reuse of basic blocks. Don't bother for now. */
4685 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4686}
4687
4688/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4689static rtx
4690get_bb_note_from_pool (void)
4691{
4692 if (VEC_empty (rtx, bb_note_pool))
4693 return NULL_RTX;
4694 else
4695 {
4696 rtx note = VEC_pop (rtx, bb_note_pool);
4697
4698 PREV_INSN (note) = NULL_RTX;
4699 NEXT_INSN (note) = NULL_RTX;
4700
4701 return note;
4702 }
4703}
4704
4705/* Free bb_note_pool. */
4706void
4707free_bb_note_pool (void)
4708{
4709 VEC_free (rtx, heap, bb_note_pool);
4710}
4711
4712/* Setup scheduler pool and successor structure. */
4713void
4714alloc_sched_pools (void)
4715{
4716 int succs_size;
4717
4718 succs_size = MAX_WS + 1;
4719 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4720 succs_info_pool.size = succs_size;
4721 succs_info_pool.top = -1;
4722 succs_info_pool.max_top = -1;
4723
4724 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4725 sizeof (struct _list_node), 500);
4726}
4727
4728/* Free the pools. */
4729void
4730free_sched_pools (void)
4731{
4732 int i;
4733
4734 free_alloc_pool (sched_lists_pool);
4735 gcc_assert (succs_info_pool.top == -1);
4736 for (i = 0; i < succs_info_pool.max_top; i++)
4737 {
4738 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4739 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4740 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4741 }
4742 free (succs_info_pool.stack);
4743}
4744\f
4745
4746/* Returns a position in RGN where BB can be inserted retaining
4747 topological order. */
4748static int
4749find_place_to_insert_bb (basic_block bb, int rgn)
4750{
4751 bool has_preds_outside_rgn = false;
4752 edge e;
4753 edge_iterator ei;
4754
4755 /* Find whether we have preds outside the region. */
4756 FOR_EACH_EDGE (e, ei, bb->preds)
4757 if (!in_current_region_p (e->src))
4758 {
4759 has_preds_outside_rgn = true;
4760 break;
4761 }
4762
4763 /* Recompute the top order -- needed when we have > 1 pred
4764 and in case we don't have preds outside. */
4765 if (flag_sel_sched_pipelining_outer_loops
4766 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4767 {
4768 int i, bbi = bb->index, cur_bbi;
4769
4770 recompute_rev_top_order ();
4771 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4772 {
4773 cur_bbi = BB_TO_BLOCK (i);
4774 if (rev_top_order_index[bbi]
4775 < rev_top_order_index[cur_bbi])
4776 break;
4777 }
4778
4779 /* We skipped the right block, so we increase i. We accomodate
4780 it for increasing by step later, so we decrease i. */
4781 return (i + 1) - 1;
4782 }
4783 else if (has_preds_outside_rgn)
4784 {
4785 /* This is the case when we generate an extra empty block
4786 to serve as region head during pipelining. */
4787 e = EDGE_SUCC (bb, 0);
4788 gcc_assert (EDGE_COUNT (bb->succs) == 1
4789 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4790 && (BLOCK_TO_BB (e->dest->index) == 0));
4791 return -1;
4792 }
4793
4794 /* We don't have preds outside the region. We should have
4795 the only pred, because the multiple preds case comes from
4796 the pipelining of outer loops, and that is handled above.
4797 Just take the bbi of this single pred. */
4798 if (EDGE_COUNT (bb->succs) > 0)
4799 {
4800 int pred_bbi;
4801
4802 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4803
4804 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4805 return BLOCK_TO_BB (pred_bbi);
4806 }
4807 else
4808 /* BB has no successors. It is safe to put it in the end. */
4809 return current_nr_blocks - 1;
4810}
4811
4812/* Deletes an empty basic block freeing its data. */
4813static void
4814delete_and_free_basic_block (basic_block bb)
4815{
4816 gcc_assert (sel_bb_empty_p (bb));
4817
4818 if (BB_LV_SET (bb))
4819 free_lv_set (bb);
4820
4821 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4822
4823 /* Can't assert av_set properties because we use sel_aremove_bb
4824 when removing loop preheader from the region. At the point of
4825 removing the preheader we already have deallocated sel_region_bb_info. */
4826 gcc_assert (BB_LV_SET (bb) == NULL
4827 && !BB_LV_SET_VALID_P (bb)
4828 && BB_AV_LEVEL (bb) == 0
4829 && BB_AV_SET (bb) == NULL);
4830
4831 delete_basic_block (bb);
4832}
4833
4834/* Add BB to the current region and update the region data. */
4835static void
4836add_block_to_current_region (basic_block bb)
4837{
4838 int i, pos, bbi = -2, rgn;
4839
4840 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4841 bbi = find_place_to_insert_bb (bb, rgn);
4842 bbi += 1;
4843 pos = RGN_BLOCKS (rgn) + bbi;
4844
4845 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4846 && ebb_head[bbi] == pos);
4847
4848 /* Make a place for the new block. */
4849 extend_regions ();
4850
4851 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4852 BLOCK_TO_BB (rgn_bb_table[i])++;
4853
4854 memmove (rgn_bb_table + pos + 1,
4855 rgn_bb_table + pos,
4856 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4857
4858 /* Initialize data for BB. */
4859 rgn_bb_table[pos] = bb->index;
4860 BLOCK_TO_BB (bb->index) = bbi;
4861 CONTAINING_RGN (bb->index) = rgn;
4862
4863 RGN_NR_BLOCKS (rgn)++;
4864
4865 for (i = rgn + 1; i <= nr_regions; i++)
4866 RGN_BLOCKS (i)++;
4867}
4868
4869/* Remove BB from the current region and update the region data. */
4870static void
4871remove_bb_from_region (basic_block bb)
4872{
4873 int i, pos, bbi = -2, rgn;
4874
4875 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4876 bbi = BLOCK_TO_BB (bb->index);
4877 pos = RGN_BLOCKS (rgn) + bbi;
4878
4879 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4880 && ebb_head[bbi] == pos);
4881
4882 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4883 BLOCK_TO_BB (rgn_bb_table[i])--;
4884
4885 memmove (rgn_bb_table + pos,
4886 rgn_bb_table + pos + 1,
4887 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4888
4889 RGN_NR_BLOCKS (rgn)--;
4890 for (i = rgn + 1; i <= nr_regions; i++)
4891 RGN_BLOCKS (i)--;
4892}
4893
4894/* Add BB to the current region and update all data. If BB is NULL, add all
4895 blocks from last_added_blocks vector. */
4896static void
4897sel_add_bb (basic_block bb)
4898{
4899 /* Extend luids so that new notes will receive zero luids. */
4900 sched_init_luids (NULL, NULL, NULL, NULL);
4901 sched_init_bbs ();
4902 sel_init_bbs (last_added_blocks, NULL);
4903
4904 /* When bb is passed explicitly, the vector should contain
4905 the only element that equals to bb; otherwise, the vector
4906 should not be NULL. */
4907 gcc_assert (last_added_blocks != NULL);
4908
4909 if (bb != NULL)
4910 {
4911 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4912 && VEC_index (basic_block,
4913 last_added_blocks, 0) == bb);
4914 add_block_to_current_region (bb);
4915
4916 /* We associate creating/deleting data sets with the first insn
4917 appearing / disappearing in the bb. */
4918 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4919 create_initial_data_sets (bb);
4920
4921 VEC_free (basic_block, heap, last_added_blocks);
4922 }
4923 else
4924 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4925 {
4926 int i;
4927 basic_block temp_bb = NULL;
4928
4929 for (i = 0;
4930 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
4931 {
4932 add_block_to_current_region (bb);
4933 temp_bb = bb;
4934 }
4935
4936 /* We need to fetch at least one bb so we know the region
4937 to update. */
4938 gcc_assert (temp_bb != NULL);
4939 bb = temp_bb;
4940
4941 VEC_free (basic_block, heap, last_added_blocks);
4942 }
4943
4944 rgn_setup_region (CONTAINING_RGN (bb->index));
4945}
4946
4947/* Remove BB from the current region and update all data.
4948 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
4949static void
4950sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
4951{
4952 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
4953
4954 remove_bb_from_region (bb);
4955 return_bb_to_pool (bb);
4956 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4957
4958 if (remove_from_cfg_p)
4959 delete_and_free_basic_block (bb);
4960
4961 rgn_setup_region (CONTAINING_RGN (bb->index));
4962}
4963
4964/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
4965static void
4966move_bb_info (basic_block merge_bb, basic_block empty_bb)
4967{
4968 gcc_assert (in_current_region_p (merge_bb));
4969
4970 concat_note_lists (BB_NOTE_LIST (empty_bb),
4971 &BB_NOTE_LIST (merge_bb));
4972 BB_NOTE_LIST (empty_bb) = NULL_RTX;
4973
4974}
4975
4976/* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
4977 EMPTY_BB's note lists into its predecessor instead of putting them
4978 into the successor. When REMOVE_FROM_CFG_P is true, also remove
4979 the empty block. */
4980void
4981sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
4982 bool remove_from_cfg_p)
4983{
4984 basic_block merge_bb;
4985
4986 gcc_assert (sel_bb_empty_p (empty_bb));
4987
4988 if (merge_up_p)
4989 {
4990 merge_bb = empty_bb->prev_bb;
4991 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
4992 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
4993 }
4994 else
4995 {
4996 edge e;
4997 edge_iterator ei;
4998
4999 merge_bb = bb_next_bb (empty_bb);
5000
5001 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
5002 successor block. */
5003 for (ei = ei_start (empty_bb->preds);
5004 (e = ei_safe_edge (ei)); )
5005 {
5006 if (! (e->flags & EDGE_FALLTHRU))
5007 sel_redirect_edge_and_branch (e, merge_bb);
5008 else
5009 ei_next (&ei);
5010 }
5011
5012 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
5013 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
5014 }
5015
5016 move_bb_info (merge_bb, empty_bb);
5017 remove_empty_bb (empty_bb, remove_from_cfg_p);
5018}
5019
5020/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5021 region, but keep it in CFG. */
5022static void
5023remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5024{
5025 /* The block should contain just a note or a label.
5026 We try to check whether it is unused below. */
5027 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5028 || LABEL_P (BB_HEAD (empty_bb)));
5029
5030 /* If basic block has predecessors or successors, redirect them. */
5031 if (remove_from_cfg_p
5032 && (EDGE_COUNT (empty_bb->preds) > 0
5033 || EDGE_COUNT (empty_bb->succs) > 0))
5034 {
5035 basic_block pred;
5036 basic_block succ;
5037
5038 /* We need to init PRED and SUCC before redirecting edges. */
5039 if (EDGE_COUNT (empty_bb->preds) > 0)
5040 {
5041 edge e;
5042
5043 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5044
5045 e = EDGE_PRED (empty_bb, 0);
5046 gcc_assert (e->src == empty_bb->prev_bb
5047 && (e->flags & EDGE_FALLTHRU));
5048
5049 pred = empty_bb->prev_bb;
5050 }
5051 else
5052 pred = NULL;
5053
5054 if (EDGE_COUNT (empty_bb->succs) > 0)
5055 {
5056 /* We do not check fallthruness here as above, because
5057 after removing a jump the edge may actually be not fallthru. */
5058 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5059 succ = EDGE_SUCC (empty_bb, 0)->dest;
5060 }
5061 else
5062 succ = NULL;
5063
5064 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5065 {
5066 edge e = EDGE_PRED (empty_bb, 0);
5067
5068 if (e->flags & EDGE_FALLTHRU)
5069 redirect_edge_succ_nodup (e, succ);
5070 else
5071 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5072 }
5073
5074 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5075 {
5076 edge e = EDGE_SUCC (empty_bb, 0);
5077
5078 if (find_edge (pred, e->dest) == NULL)
5079 redirect_edge_pred (e, pred);
5080 }
5081 }
5082
5083 /* Finish removing. */
5084 sel_remove_bb (empty_bb, remove_from_cfg_p);
5085}
5086
5087/* An implementation of create_basic_block hook, which additionally updates
5088 per-bb data structures. */
5089static basic_block
5090sel_create_basic_block (void *headp, void *endp, basic_block after)
5091{
5092 basic_block new_bb;
5093 insn_t new_bb_note;
5094
5095 gcc_assert (flag_sel_sched_pipelining_outer_loops
5096 || last_added_blocks == NULL);
5097
5098 new_bb_note = get_bb_note_from_pool ();
5099
5100 if (new_bb_note == NULL_RTX)
5101 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5102 else
5103 {
5104 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5105 new_bb_note, after);
5106 new_bb->aux = NULL;
5107 }
5108
5109 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5110
5111 return new_bb;
5112}
5113
5114/* Implement sched_init_only_bb (). */
5115static void
5116sel_init_only_bb (basic_block bb, basic_block after)
5117{
5118 gcc_assert (after == NULL);
5119
5120 extend_regions ();
5121 rgn_make_new_region_out_of_new_block (bb);
5122}
5123
5124/* Update the latch when we've splitted or merged it from FROM block to TO.
5125 This should be checked for all outer loops, too. */
5126static void
5127change_loops_latches (basic_block from, basic_block to)
5128{
5129 gcc_assert (from != to);
5130
5131 if (current_loop_nest)
5132 {
5133 struct loop *loop;
5134
5135 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5136 if (considered_for_pipelining_p (loop) && loop->latch == from)
5137 {
5138 gcc_assert (loop == current_loop_nest);
5139 loop->latch = to;
5140 gcc_assert (loop_latch_edge (loop));
5141 }
5142 }
5143}
5144
5145/* Splits BB on two basic blocks, adding it to the region and extending
5146 per-bb data structures. Returns the newly created bb. */
5147static basic_block
5148sel_split_block (basic_block bb, rtx after)
5149{
5150 basic_block new_bb;
5151 insn_t insn;
5152
5153 new_bb = sched_split_block_1 (bb, after);
5154 sel_add_bb (new_bb);
5155
5156 /* This should be called after sel_add_bb, because this uses
5157 CONTAINING_RGN for the new block, which is not yet initialized.
5158 FIXME: this function may be a no-op now. */
5159 change_loops_latches (bb, new_bb);
5160
5161 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5162 FOR_BB_INSNS (new_bb, insn)
5163 if (INSN_P (insn))
5164 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5165
5166 if (sel_bb_empty_p (bb))
5167 {
5168 gcc_assert (!sel_bb_empty_p (new_bb));
5169
5170 /* NEW_BB has data sets that need to be updated and BB holds
5171 data sets that should be removed. Exchange these data sets
5172 so that we won't lose BB's valid data sets. */
5173 exchange_data_sets (new_bb, bb);
5174 free_data_sets (bb);
5175 }
5176
5177 if (!sel_bb_empty_p (new_bb)
5178 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5179 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5180
5181 return new_bb;
5182}
5183
5184/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5185 Otherwise returns NULL. */
5186static rtx
5187check_for_new_jump (basic_block bb, int prev_max_uid)
5188{
5189 rtx end;
5190
5191 end = sel_bb_end (bb);
5192 if (end && INSN_UID (end) >= prev_max_uid)
5193 return end;
5194 return NULL;
5195}
5196
5197/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5198 New means having UID at least equal to PREV_MAX_UID. */
5199static rtx
5200find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5201{
5202 rtx jump;
5203
5204 /* Return immediately if no new insns were emitted. */
5205 if (get_max_uid () == prev_max_uid)
5206 return NULL;
5207
5208 /* Now check both blocks for new jumps. It will ever be only one. */
5209 if ((jump = check_for_new_jump (from, prev_max_uid)))
5210 return jump;
5211
5212 if (jump_bb != NULL
5213 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5214 return jump;
5215 return NULL;
5216}
5217
5218/* Splits E and adds the newly created basic block to the current region.
5219 Returns this basic block. */
5220basic_block
5221sel_split_edge (edge e)
5222{
5223 basic_block new_bb, src, other_bb = NULL;
5224 int prev_max_uid;
5225 rtx jump;
5226
5227 src = e->src;
5228 prev_max_uid = get_max_uid ();
5229 new_bb = split_edge (e);
5230
5231 if (flag_sel_sched_pipelining_outer_loops
5232 && current_loop_nest)
5233 {
5234 int i;
5235 basic_block bb;
5236
5237 /* Some of the basic blocks might not have been added to the loop.
5238 Add them here, until this is fixed in force_fallthru. */
5239 for (i = 0;
5240 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5241 if (!bb->loop_father)
5242 {
5243 add_bb_to_loop (bb, e->dest->loop_father);
5244
5245 gcc_assert (!other_bb && (new_bb->index != bb->index));
5246 other_bb = bb;
5247 }
5248 }
5249
5250 /* Add all last_added_blocks to the region. */
5251 sel_add_bb (NULL);
5252
5253 jump = find_new_jump (src, new_bb, prev_max_uid);
5254 if (jump)
5255 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5256
5257 /* Put the correct lv set on this block. */
5258 if (other_bb && !sel_bb_empty_p (other_bb))
5259 compute_live (sel_bb_head (other_bb));
5260
5261 return new_bb;
5262}
5263
5264/* Implement sched_create_empty_bb (). */
5265static basic_block
5266sel_create_empty_bb (basic_block after)
5267{
5268 basic_block new_bb;
5269
5270 new_bb = sched_create_empty_bb_1 (after);
5271
5272 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5273 later. */
5274 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5275 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5276
5277 VEC_free (basic_block, heap, last_added_blocks);
5278 return new_bb;
5279}
5280
5281/* Implement sched_create_recovery_block. ORIG_INSN is where block
5282 will be splitted to insert a check. */
5283basic_block
5284sel_create_recovery_block (insn_t orig_insn)
5285{
5286 basic_block first_bb, second_bb, recovery_block;
5287 basic_block before_recovery = NULL;
5288 rtx jump;
5289
5290 first_bb = BLOCK_FOR_INSN (orig_insn);
5291 if (sel_bb_end_p (orig_insn))
5292 {
5293 /* Avoid introducing an empty block while splitting. */
5294 gcc_assert (single_succ_p (first_bb));
5295 second_bb = single_succ (first_bb);
5296 }
5297 else
5298 second_bb = sched_split_block (first_bb, orig_insn);
5299
5300 recovery_block = sched_create_recovery_block (&before_recovery);
5301 if (before_recovery)
5302 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5303
5304 gcc_assert (sel_bb_empty_p (recovery_block));
5305 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5306 if (current_loops != NULL)
5307 add_bb_to_loop (recovery_block, first_bb->loop_father);
5308
5309 sel_add_bb (recovery_block);
5310
5311 jump = BB_END (recovery_block);
5312 gcc_assert (sel_bb_head (recovery_block) == jump);
5313 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5314
5315 return recovery_block;
5316}
5317
5318/* Merge basic block B into basic block A. */
5319void
5320sel_merge_blocks (basic_block a, basic_block b)
5321{
e855c69d
AB
5322 sel_remove_empty_bb (b, true, false);
5323 merge_blocks (a, b);
5324
5325 change_loops_latches (b, a);
5326}
5327
5328/* A wrapper for redirect_edge_and_branch_force, which also initializes
5329 data structures for possibly created bb and insns. Returns the newly
5330 added bb or NULL, when a bb was not needed. */
5331void
5332sel_redirect_edge_and_branch_force (edge e, basic_block to)
5333{
5334 basic_block jump_bb, src;
5335 int prev_max_uid;
5336 rtx jump;
5337
5338 gcc_assert (!sel_bb_empty_p (e->src));
5339
5340 src = e->src;
5341 prev_max_uid = get_max_uid ();
5342 jump_bb = redirect_edge_and_branch_force (e, to);
5343
5344 if (jump_bb != NULL)
5345 sel_add_bb (jump_bb);
5346
5347 /* This function could not be used to spoil the loop structure by now,
5348 thus we don't care to update anything. But check it to be sure. */
5349 if (current_loop_nest
5350 && pipelining_p)
5351 gcc_assert (loop_latch_edge (current_loop_nest));
5352
5353 jump = find_new_jump (src, jump_bb, prev_max_uid);
5354 if (jump)
5355 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5356}
5357
5358/* A wrapper for redirect_edge_and_branch. */
5359void
5360sel_redirect_edge_and_branch (edge e, basic_block to)
5361{
5362 bool latch_edge_p;
5363 basic_block src;
5364 int prev_max_uid;
5365 rtx jump;
f2c45f08 5366 edge redirected;
e855c69d
AB
5367
5368 latch_edge_p = (pipelining_p
5369 && current_loop_nest
5370 && e == loop_latch_edge (current_loop_nest));
5371
5372 src = e->src;
5373 prev_max_uid = get_max_uid ();
f2c45f08
AM
5374
5375 redirected = redirect_edge_and_branch (e, to);
5376
5377 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5378
5379 /* When we've redirected a latch edge, update the header. */
5380 if (latch_edge_p)
5381 {
5382 current_loop_nest->header = to;
5383 gcc_assert (loop_latch_edge (current_loop_nest));
5384 }
5385
5386 jump = find_new_jump (src, NULL, prev_max_uid);
5387 if (jump)
5388 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5389}
5390
5391/* This variable holds the cfg hooks used by the selective scheduler. */
5392static struct cfg_hooks sel_cfg_hooks;
5393
5394/* Register sel-sched cfg hooks. */
5395void
5396sel_register_cfg_hooks (void)
5397{
5398 sched_split_block = sel_split_block;
5399
5400 orig_cfg_hooks = get_cfg_hooks ();
5401 sel_cfg_hooks = orig_cfg_hooks;
5402
5403 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5404
5405 set_cfg_hooks (sel_cfg_hooks);
5406
5407 sched_init_only_bb = sel_init_only_bb;
5408 sched_split_block = sel_split_block;
5409 sched_create_empty_bb = sel_create_empty_bb;
5410}
5411
5412/* Unregister sel-sched cfg hooks. */
5413void
5414sel_unregister_cfg_hooks (void)
5415{
5416 sched_create_empty_bb = NULL;
5417 sched_split_block = NULL;
5418 sched_init_only_bb = NULL;
5419
5420 set_cfg_hooks (orig_cfg_hooks);
5421}
5422\f
5423
5424/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5425 LABEL is where this jump should be directed. */
5426rtx
5427create_insn_rtx_from_pattern (rtx pattern, rtx label)
5428{
5429 rtx insn_rtx;
5430
5431 gcc_assert (!INSN_P (pattern));
5432
5433 start_sequence ();
5434
5435 if (label == NULL_RTX)
5436 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5437 else if (DEBUG_INSN_P (label))
5438 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5439 else
5440 {
5441 insn_rtx = emit_jump_insn (pattern);
5442 JUMP_LABEL (insn_rtx) = label;
5443 ++LABEL_NUSES (label);
5444 }
5445
5446 end_sequence ();
5447
5448 sched_init_luids (NULL, NULL, NULL, NULL);
5449 sched_extend_target ();
5450 sched_deps_init (false);
5451
5452 /* Initialize INSN_CODE now. */
5453 recog_memoized (insn_rtx);
5454 return insn_rtx;
5455}
5456
5457/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5458 must not be clonable. */
5459vinsn_t
5460create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5461{
5462 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5463
5464 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5465 return vinsn_create (insn_rtx, force_unique_p);
5466}
5467
5468/* Create a copy of INSN_RTX. */
5469rtx
5470create_copy_of_insn_rtx (rtx insn_rtx)
5471{
5472 rtx res;
5473
b5b8b0ac
AO
5474 if (DEBUG_INSN_P (insn_rtx))
5475 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5476 insn_rtx);
5477
e855c69d
AB
5478 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5479
5480 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5481 NULL_RTX);
5482 return res;
5483}
5484
5485/* Change vinsn field of EXPR to hold NEW_VINSN. */
5486void
5487change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5488{
5489 vinsn_detach (EXPR_VINSN (expr));
5490
5491 EXPR_VINSN (expr) = new_vinsn;
5492 vinsn_attach (new_vinsn);
5493}
5494
5495/* Helpers for global init. */
5496/* This structure is used to be able to call existing bundling mechanism
5497 and calculate insn priorities. */
5498static struct haifa_sched_info sched_sel_haifa_sched_info =
5499{
5500 NULL, /* init_ready_list */
5501 NULL, /* can_schedule_ready_p */
5502 NULL, /* schedule_more_p */
5503 NULL, /* new_ready */
5504 NULL, /* rgn_rank */
5505 sel_print_insn, /* rgn_print_insn */
5506 contributes_to_priority,
356c23b3 5507 NULL, /* insn_finishes_block_p */
e855c69d
AB
5508
5509 NULL, NULL,
5510 NULL, NULL,
5511 0, 0,
5512
5513 NULL, /* add_remove_insn */
5514 NULL, /* begin_schedule_ready */
5515 NULL, /* advance_target_bb */
5516 SEL_SCHED | NEW_BBS
5517};
5518
5519/* Setup special insns used in the scheduler. */
5520void
5521setup_nop_and_exit_insns (void)
5522{
5523 gcc_assert (nop_pattern == NULL_RTX
5524 && exit_insn == NULL_RTX);
5525
5526 nop_pattern = gen_nop ();
5527
5528 start_sequence ();
5529 emit_insn (nop_pattern);
5530 exit_insn = get_insns ();
5531 end_sequence ();
5532 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5533}
5534
5535/* Free special insns used in the scheduler. */
5536void
5537free_nop_and_exit_insns (void)
5538{
5539 exit_insn = NULL_RTX;
5540 nop_pattern = NULL_RTX;
5541}
5542
5543/* Setup a special vinsn used in new insns initialization. */
5544void
5545setup_nop_vinsn (void)
5546{
5547 nop_vinsn = vinsn_create (exit_insn, false);
5548 vinsn_attach (nop_vinsn);
5549}
5550
5551/* Free a special vinsn used in new insns initialization. */
5552void
5553free_nop_vinsn (void)
5554{
5555 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5556 vinsn_detach (nop_vinsn);
5557 nop_vinsn = NULL;
5558}
5559
5560/* Call a set_sched_flags hook. */
5561void
5562sel_set_sched_flags (void)
5563{
5564 /* ??? This means that set_sched_flags were called, and we decided to
5565 support speculation. However, set_sched_flags also modifies flags
5566 on current_sched_info, doing this only at global init. And we
5567 sometimes change c_s_i later. So put the correct flags again. */
5568 if (spec_info && targetm.sched.set_sched_flags)
5569 targetm.sched.set_sched_flags (spec_info);
5570}
5571
5572/* Setup pointers to global sched info structures. */
5573void
5574sel_setup_sched_infos (void)
5575{
5576 rgn_setup_common_sched_info ();
5577
5578 memcpy (&sel_common_sched_info, common_sched_info,
5579 sizeof (sel_common_sched_info));
5580
5581 sel_common_sched_info.fix_recovery_cfg = NULL;
5582 sel_common_sched_info.add_block = NULL;
5583 sel_common_sched_info.estimate_number_of_insns
5584 = sel_estimate_number_of_insns;
5585 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5586 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5587
5588 common_sched_info = &sel_common_sched_info;
5589
5590 current_sched_info = &sched_sel_haifa_sched_info;
5591 current_sched_info->sched_max_insns_priority =
5592 get_rgn_sched_max_insns_priority ();
5593
5594 sel_set_sched_flags ();
5595}
5596\f
5597
5598/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5599 *BB_ORD_INDEX after that is increased. */
5600static void
5601sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5602{
5603 RGN_NR_BLOCKS (rgn) += 1;
5604 RGN_DONT_CALC_DEPS (rgn) = 0;
5605 RGN_HAS_REAL_EBB (rgn) = 0;
5606 CONTAINING_RGN (bb->index) = rgn;
5607 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5608 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5609 (*bb_ord_index)++;
5610
5611 /* FIXME: it is true only when not scheduling ebbs. */
5612 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5613}
5614
5615/* Functions to support pipelining of outer loops. */
5616
5617/* Creates a new empty region and returns it's number. */
5618static int
5619sel_create_new_region (void)
5620{
5621 int new_rgn_number = nr_regions;
5622
5623 RGN_NR_BLOCKS (new_rgn_number) = 0;
5624
5625 /* FIXME: This will work only when EBBs are not created. */
5626 if (new_rgn_number != 0)
5627 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5628 RGN_NR_BLOCKS (new_rgn_number - 1);
5629 else
5630 RGN_BLOCKS (new_rgn_number) = 0;
5631
5632 /* Set the blocks of the next region so the other functions may
5633 calculate the number of blocks in the region. */
5634 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5635 RGN_NR_BLOCKS (new_rgn_number);
5636
5637 nr_regions++;
5638
5639 return new_rgn_number;
5640}
5641
5642/* If X has a smaller topological sort number than Y, returns -1;
5643 if greater, returns 1. */
5644static int
5645bb_top_order_comparator (const void *x, const void *y)
5646{
5647 basic_block bb1 = *(const basic_block *) x;
5648 basic_block bb2 = *(const basic_block *) y;
5649
5650 gcc_assert (bb1 == bb2
5651 || rev_top_order_index[bb1->index]
5652 != rev_top_order_index[bb2->index]);
5653
5654 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5655 bbs with greater number should go earlier. */
5656 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5657 return -1;
5658 else
5659 return 1;
5660}
5661
5662/* Create a region for LOOP and return its number. If we don't want
5663 to pipeline LOOP, return -1. */
5664static int
5665make_region_from_loop (struct loop *loop)
5666{
5667 unsigned int i;
5668 int new_rgn_number = -1;
5669 struct loop *inner;
5670
5671 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5672 int bb_ord_index = 0;
5673 basic_block *loop_blocks;
5674 basic_block preheader_block;
5675
5676 if (loop->num_nodes
5677 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5678 return -1;
5679
5680 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5681 for (inner = loop->inner; inner; inner = inner->inner)
5682 if (flow_bb_inside_loop_p (inner, loop->latch))
5683 return -1;
5684
5685 loop->ninsns = num_loop_insns (loop);
5686 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5687 return -1;
5688
5689 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5690
5691 for (i = 0; i < loop->num_nodes; i++)
5692 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5693 {
5694 free (loop_blocks);
5695 return -1;
5696 }
5697
5698 preheader_block = loop_preheader_edge (loop)->src;
5699 gcc_assert (preheader_block);
5700 gcc_assert (loop_blocks[0] == loop->header);
5701
5702 new_rgn_number = sel_create_new_region ();
5703
5704 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5705 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5706
5707 for (i = 0; i < loop->num_nodes; i++)
5708 {
5709 /* Add only those blocks that haven't been scheduled in the inner loop.
5710 The exception is the basic blocks with bookkeeping code - they should
5711 be added to the region (and they actually don't belong to the loop
5712 body, but to the region containing that loop body). */
5713
5714 gcc_assert (new_rgn_number >= 0);
5715
5716 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5717 {
5718 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5719 new_rgn_number);
5720 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5721 }
5722 }
5723
5724 free (loop_blocks);
5725 MARK_LOOP_FOR_PIPELINING (loop);
5726
5727 return new_rgn_number;
5728}
5729
5730/* Create a new region from preheader blocks LOOP_BLOCKS. */
5731void
5732make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5733{
5734 unsigned int i;
5735 int new_rgn_number = -1;
5736 basic_block bb;
5737
5738 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5739 int bb_ord_index = 0;
5740
5741 new_rgn_number = sel_create_new_region ();
5742
5743 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5744 {
5745 gcc_assert (new_rgn_number >= 0);
5746
5747 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5748 }
5749
5750 VEC_free (basic_block, heap, *loop_blocks);
5751 gcc_assert (*loop_blocks == NULL);
5752}
5753
5754
5755/* Create region(s) from loop nest LOOP, such that inner loops will be
5756 pipelined before outer loops. Returns true when a region for LOOP
5757 is created. */
5758static bool
5759make_regions_from_loop_nest (struct loop *loop)
5760{
5761 struct loop *cur_loop;
5762 int rgn_number;
5763
5764 /* Traverse all inner nodes of the loop. */
5765 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5766 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5767 return false;
5768
5769 /* At this moment all regular inner loops should have been pipelined.
5770 Try to create a region from this loop. */
5771 rgn_number = make_region_from_loop (loop);
5772
5773 if (rgn_number < 0)
5774 return false;
5775
5776 VEC_safe_push (loop_p, heap, loop_nests, loop);
5777 return true;
5778}
5779
5780/* Initalize data structures needed. */
5781void
5782sel_init_pipelining (void)
5783{
5784 /* Collect loop information to be used in outer loops pipelining. */
5785 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5786 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5787 | LOOPS_HAVE_RECORDED_EXITS
5788 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5789 current_loop_nest = NULL;
5790
5791 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5792 sbitmap_zero (bbs_in_loop_rgns);
5793
5794 recompute_rev_top_order ();
5795}
5796
5797/* Returns a struct loop for region RGN. */
5798loop_p
5799get_loop_nest_for_rgn (unsigned int rgn)
5800{
5801 /* Regions created with extend_rgns don't have corresponding loop nests,
5802 because they don't represent loops. */
5803 if (rgn < VEC_length (loop_p, loop_nests))
5804 return VEC_index (loop_p, loop_nests, rgn);
5805 else
5806 return NULL;
5807}
5808
5809/* True when LOOP was included into pipelining regions. */
5810bool
5811considered_for_pipelining_p (struct loop *loop)
5812{
5813 if (loop_depth (loop) == 0)
5814 return false;
5815
5816 /* Now, the loop could be too large or irreducible. Check whether its
5817 region is in LOOP_NESTS.
5818 We determine the region number of LOOP as the region number of its
5819 latch. We can't use header here, because this header could be
5820 just removed preheader and it will give us the wrong region number.
5821 Latch can't be used because it could be in the inner loop too. */
5822 if (LOOP_MARKED_FOR_PIPELINING_P (loop) && pipelining_p)
5823 {
5824 int rgn = CONTAINING_RGN (loop->latch->index);
5825
5826 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5827 return true;
5828 }
5829
5830 return false;
5831}
5832
5833/* Makes regions from the rest of the blocks, after loops are chosen
5834 for pipelining. */
5835static void
5836make_regions_from_the_rest (void)
5837{
5838 int cur_rgn_blocks;
5839 int *loop_hdr;
5840 int i;
5841
5842 basic_block bb;
5843 edge e;
5844 edge_iterator ei;
5845 int *degree;
5846 int new_regions;
5847
5848 /* Index in rgn_bb_table where to start allocating new regions. */
5849 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5850 new_regions = nr_regions;
5851
5852 /* Make regions from all the rest basic blocks - those that don't belong to
5853 any loop or belong to irreducible loops. Prepare the data structures
5854 for extend_rgns. */
5855
5856 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5857 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5858 loop. */
5859 loop_hdr = XNEWVEC (int, last_basic_block);
5860 degree = XCNEWVEC (int, last_basic_block);
5861
5862
5863 /* For each basic block that belongs to some loop assign the number
5864 of innermost loop it belongs to. */
5865 for (i = 0; i < last_basic_block; i++)
5866 loop_hdr[i] = -1;
5867
5868 FOR_EACH_BB (bb)
5869 {
5870 if (bb->loop_father && !bb->loop_father->num == 0
5871 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5872 loop_hdr[bb->index] = bb->loop_father->num;
5873 }
5874
5875 /* For each basic block degree is calculated as the number of incoming
5876 edges, that are going out of bbs that are not yet scheduled.
5877 The basic blocks that are scheduled have degree value of zero. */
5878 FOR_EACH_BB (bb)
5879 {
5880 degree[bb->index] = 0;
5881
5882 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5883 {
5884 FOR_EACH_EDGE (e, ei, bb->preds)
5885 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5886 degree[bb->index]++;
5887 }
5888 else
5889 degree[bb->index] = -1;
5890 }
5891
5892 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5893
5894 /* Any block that did not end up in a region is placed into a region
5895 by itself. */
5896 FOR_EACH_BB (bb)
5897 if (degree[bb->index] >= 0)
5898 {
5899 rgn_bb_table[cur_rgn_blocks] = bb->index;
5900 RGN_NR_BLOCKS (nr_regions) = 1;
5901 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5902 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5903 RGN_HAS_REAL_EBB (nr_regions) = 0;
5904 CONTAINING_RGN (bb->index) = nr_regions++;
5905 BLOCK_TO_BB (bb->index) = 0;
5906 }
5907
5908 free (degree);
5909 free (loop_hdr);
5910}
5911
5912/* Free data structures used in pipelining of loops. */
5913void sel_finish_pipelining (void)
5914{
5915 loop_iterator li;
5916 struct loop *loop;
5917
5918 /* Release aux fields so we don't free them later by mistake. */
5919 FOR_EACH_LOOP (li, loop, 0)
5920 loop->aux = NULL;
5921
5922 loop_optimizer_finalize ();
5923
5924 VEC_free (loop_p, heap, loop_nests);
5925
5926 free (rev_top_order_index);
5927 rev_top_order_index = NULL;
5928}
5929
5930/* This function replaces the find_rgns when
5931 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
5932void
5933sel_find_rgns (void)
5934{
5935 sel_init_pipelining ();
5936 extend_regions ();
5937
5938 if (current_loops)
5939 {
5940 loop_p loop;
5941 loop_iterator li;
5942
5943 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
5944 ? LI_FROM_INNERMOST
5945 : LI_ONLY_INNERMOST))
5946 make_regions_from_loop_nest (loop);
5947 }
5948
5949 /* Make regions from all the rest basic blocks and schedule them.
5950 These blocks include blocks that don't belong to any loop or belong
5951 to irreducible loops. */
5952 make_regions_from_the_rest ();
5953
5954 /* We don't need bbs_in_loop_rgns anymore. */
5955 sbitmap_free (bbs_in_loop_rgns);
5956 bbs_in_loop_rgns = NULL;
5957}
5958
5959/* Adds the preheader blocks from previous loop to current region taking
5960 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
5961 This function is only used with -fsel-sched-pipelining-outer-loops. */
5962void
5963sel_add_loop_preheaders (void)
5964{
5965 int i;
5966 basic_block bb;
5967 VEC(basic_block, heap) *preheader_blocks
5968 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
5969
5970 for (i = 0;
5971 VEC_iterate (basic_block, preheader_blocks, i, bb);
5972 i++)
5973 sel_add_bb (bb);
5974
5975 VEC_free (basic_block, heap, preheader_blocks);
5976}
5977
5978/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
5979 Please note that the function should also work when pipelining_p is
5980 false, because it is used when deciding whether we should or should
5981 not reschedule pipelined code. */
5982bool
5983sel_is_loop_preheader_p (basic_block bb)
5984{
5985 if (current_loop_nest)
5986 {
5987 struct loop *outer;
5988
5989 if (preheader_removed)
5990 return false;
5991
5992 /* Preheader is the first block in the region. */
5993 if (BLOCK_TO_BB (bb->index) == 0)
5994 return true;
5995
5996 /* We used to find a preheader with the topological information.
5997 Check that the above code is equivalent to what we did before. */
5998
5999 if (in_current_region_p (current_loop_nest->header))
6000 gcc_assert (!(BLOCK_TO_BB (bb->index)
6001 < BLOCK_TO_BB (current_loop_nest->header->index)));
6002
6003 /* Support the situation when the latch block of outer loop
6004 could be from here. */
6005 for (outer = loop_outer (current_loop_nest);
6006 outer;
6007 outer = loop_outer (outer))
6008 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6009 gcc_unreachable ();
6010 }
6011
6012 return false;
6013}
6014
6015/* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
6016bool
6017jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
6018{
6019 basic_block jump_bb = BLOCK_FOR_INSN (jump);
6020
6021 /* It is not jump, jump with side-effects or jump can lead to several
6022 basic blocks. */
6023 if (!onlyjump_p (jump)
6024 || !any_uncondjump_p (jump))
6025 return false;
6026
6027 /* Several outgoing edges, abnormal edge or destination of jump is
6028 not DEST_BB. */
6029 if (EDGE_COUNT (jump_bb->succs) != 1
6030 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
6031 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6032 return false;
6033
6034 /* If not anything of the upper. */
6035 return true;
6036}
6037
6038/* Removes the loop preheader from the current region and saves it in
6039 PREHEADER_BLOCKS of the father loop, so they will be added later to
6040 region that represents an outer loop. */
6041static void
6042sel_remove_loop_preheader (void)
6043{
6044 int i, old_len;
6045 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6046 basic_block bb;
6047 bool all_empty_p = true;
6048 VEC(basic_block, heap) *preheader_blocks
6049 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6050
6051 gcc_assert (current_loop_nest);
6052 old_len = VEC_length (basic_block, preheader_blocks);
6053
6054 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6055 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6056 {
6057 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6058
6059 /* If the basic block belongs to region, but doesn't belong to
6060 corresponding loop, then it should be a preheader. */
6061 if (sel_is_loop_preheader_p (bb))
6062 {
6063 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6064 if (BB_END (bb) != bb_note (bb))
6065 all_empty_p = false;
6066 }
6067 }
6068
6069 /* Remove these blocks only after iterating over the whole region. */
6070 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6071 i >= old_len;
6072 i--)
6073 {
6074 bb = VEC_index (basic_block, preheader_blocks, i);
6075 sel_remove_bb (bb, false);
6076 }
6077
6078 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6079 {
6080 if (!all_empty_p)
6081 /* Immediately create new region from preheader. */
6082 make_region_from_loop_preheader (&preheader_blocks);
6083 else
6084 {
6085 /* If all preheader blocks are empty - dont create new empty region.
6086 Instead, remove them completely. */
6087 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6088 {
6089 edge e;
6090 edge_iterator ei;
6091 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6092
6093 /* Redirect all incoming edges to next basic block. */
6094 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6095 {
6096 if (! (e->flags & EDGE_FALLTHRU))
6097 redirect_edge_and_branch (e, bb->next_bb);
6098 else
6099 redirect_edge_succ (e, bb->next_bb);
6100 }
6101 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6102 delete_and_free_basic_block (bb);
6103
6104 /* Check if after deleting preheader there is a nonconditional
6105 jump in PREV_BB that leads to the next basic block NEXT_BB.
6106 If it is so - delete this jump and clear data sets of its
6107 basic block if it becomes empty. */
6108 if (next_bb->prev_bb == prev_bb
6109 && prev_bb != ENTRY_BLOCK_PTR
6110 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6111 {
6112 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6113 if (BB_END (prev_bb) == bb_note (prev_bb))
6114 free_data_sets (prev_bb);
6115 }
6116 }
6117 }
6118 VEC_free (basic_block, heap, preheader_blocks);
6119 }
6120 else
6121 /* Store preheader within the father's loop structure. */
6122 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6123 preheader_blocks);
6124}
6125#endif