]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
* doc/include/texinfo.tex: Update to version 2012-05-16.16.
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
86014d07
BS
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
e855c69d
AB
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
718f9c0f 25#include "diagnostic-core.h"
e855c69d
AB
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "regs.h"
30#include "function.h"
31#include "flags.h"
32#include "insn-config.h"
33#include "insn-attr.h"
34#include "except.h"
e855c69d
AB
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "sched-int.h"
41#include "ggc.h"
42#include "tree.h"
43#include "vec.h"
44#include "langhooks.h"
45#include "rtlhooks-def.h"
5936d944 46#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
47
48#ifdef INSN_SCHEDULING
49#include "sel-sched-ir.h"
50/* We don't have to use it except for sel_print_insn. */
51#include "sel-sched-dump.h"
52
53/* A vector holding bb info for whole scheduling pass. */
54VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55
56/* A vector holding bb info. */
57VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58
59/* A pool for allocating all lists. */
60alloc_pool sched_lists_pool;
61
62/* This contains information about successors for compute_av_set. */
63struct succs_info current_succs;
64
65/* Data structure to describe interaction with the generic scheduler utils. */
66static struct common_sched_info_def sel_common_sched_info;
67
68/* The loop nest being pipelined. */
69struct loop *current_loop_nest;
70
71/* LOOP_NESTS is a vector containing the corresponding loop nest for
72 each region. */
73static VEC(loop_p, heap) *loop_nests = NULL;
74
75/* Saves blocks already in loop regions, indexed by bb->index. */
76static sbitmap bbs_in_loop_rgns = NULL;
77
78/* CFG hooks that are saved before changing create_basic_block hook. */
79static struct cfg_hooks orig_cfg_hooks;
80\f
81
82/* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84static int *rev_top_order_index = NULL;
85
86/* Length of the above array. */
87static int rev_top_order_index_len = -1;
88
89/* A regset pool structure. */
90static struct
91{
92 /* The stack to which regsets are returned. */
93 regset *v;
94
95 /* Its pointer. */
96 int n;
97
98 /* Its size. */
99 int s;
100
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
103 back to pool. */
104 regset *vv;
105
106 /* The pointer of VV stack. */
107 int nn;
108
109 /* Its size. */
110 int ss;
111
112 /* The difference between allocated and returned regsets. */
113 int diff;
114} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115
116/* This represents the nop pool. */
117static struct
118{
119 /* The vector which holds previously emitted nops. */
120 insn_t *v;
121
122 /* Its pointer. */
123 int n;
124
125 /* Its size. */
b8698a0f 126 int s;
e855c69d
AB
127} nop_pool = { NULL, 0, 0 };
128
129/* The pool for basic block notes. */
130static rtx_vec_t bb_note_pool;
131
132/* A NOP pattern used to emit placeholder insns. */
133rtx nop_pattern = NULL_RTX;
134/* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136rtx exit_insn = NULL_RTX;
137
b8698a0f 138/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
139 was removed. */
140bool preheader_removed = false;
141\f
142
143/* Forward static declarations. */
144static void fence_clear (fence_t);
145
146static void deps_init_id (idata_t, insn_t, bool);
147static void init_id_from_df (idata_t, insn_t, bool);
148static expr_t set_insn_init (expr_t, vinsn_t, int);
149
150static void cfg_preds (basic_block, insn_t **, int *);
151static void prepare_insn_expr (insn_t, int);
152static void free_history_vect (VEC (expr_history_def, heap) **);
153
154static void move_bb_info (basic_block, basic_block);
155static void remove_empty_bb (basic_block, bool);
262d8232 156static void sel_merge_blocks (basic_block, basic_block);
e855c69d 157static void sel_remove_loop_preheader (void);
753de8cf 158static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
159
160static bool insn_is_the_only_one_in_bb_p (insn_t);
161static void create_initial_data_sets (basic_block);
162
b5b8b0ac 163static void free_av_set (basic_block);
e855c69d
AB
164static void invalidate_av_set (basic_block);
165static void extend_insn_data (void);
166static void sel_init_new_insn (insn_t, int);
167static void finish_insns (void);
168\f
169/* Various list functions. */
170
171/* Copy an instruction list L. */
172ilist_t
173ilist_copy (ilist_t l)
174{
175 ilist_t head = NULL, *tailp = &head;
176
177 while (l)
178 {
179 ilist_add (tailp, ILIST_INSN (l));
180 tailp = &ILIST_NEXT (*tailp);
181 l = ILIST_NEXT (l);
182 }
183
184 return head;
185}
186
187/* Invert an instruction list L. */
188ilist_t
189ilist_invert (ilist_t l)
190{
191 ilist_t res = NULL;
192
193 while (l)
194 {
195 ilist_add (&res, ILIST_INSN (l));
196 l = ILIST_NEXT (l);
197 }
198
199 return res;
200}
201
202/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
203void
204blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205{
206 bnd_t bnd;
207
208 _list_add (lp);
209 bnd = BLIST_BND (*lp);
210
211 BND_TO (bnd) = to;
212 BND_PTR (bnd) = ptr;
213 BND_AV (bnd) = NULL;
214 BND_AV1 (bnd) = NULL;
215 BND_DC (bnd) = dc;
216}
217
218/* Remove the list note pointed to by LP. */
219void
220blist_remove (blist_t *lp)
221{
222 bnd_t b = BLIST_BND (*lp);
223
224 av_set_clear (&BND_AV (b));
225 av_set_clear (&BND_AV1 (b));
226 ilist_clear (&BND_PTR (b));
227
228 _list_remove (lp);
229}
230
231/* Init a fence tail L. */
232void
233flist_tail_init (flist_tail_t l)
234{
235 FLIST_TAIL_HEAD (l) = NULL;
236 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
237}
238
239/* Try to find fence corresponding to INSN in L. */
240fence_t
241flist_lookup (flist_t l, insn_t insn)
242{
243 while (l)
244 {
245 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246 return FLIST_FENCE (l);
247
248 l = FLIST_NEXT (l);
249 }
250
251 return NULL;
252}
253
254/* Init the fields of F before running fill_insns. */
255static void
256init_fence_for_scheduling (fence_t f)
257{
258 FENCE_BNDS (f) = NULL;
259 FENCE_PROCESSED_P (f) = false;
260 FENCE_SCHEDULED_P (f) = false;
261}
262
263/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
264static void
b8698a0f
L
265flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 268 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
269 bool starts_cycle_p, bool after_stall_p)
270{
271 fence_t f;
272
273 _list_add (lp);
274 f = FLIST_FENCE (*lp);
275
276 FENCE_INSN (f) = insn;
277
278 gcc_assert (state != NULL);
279 FENCE_STATE (f) = state;
280
281 FENCE_CYCLE (f) = cycle;
282 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284 FENCE_AFTER_STALL_P (f) = after_stall_p;
285
286 gcc_assert (dc != NULL);
287 FENCE_DC (f) = dc;
288
289 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290 FENCE_TC (f) = tc;
291
292 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 293 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
294 FENCE_EXECUTING_INSNS (f) = executing_insns;
295 FENCE_READY_TICKS (f) = ready_ticks;
296 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297 FENCE_SCHED_NEXT (f) = sched_next;
298
299 init_fence_for_scheduling (f);
300}
301
302/* Remove the head node of the list pointed to by LP. */
303static void
304flist_remove (flist_t *lp)
305{
306 if (FENCE_INSN (FLIST_FENCE (*lp)))
307 fence_clear (FLIST_FENCE (*lp));
308 _list_remove (lp);
309}
310
311/* Clear the fence list pointed to by LP. */
312void
313flist_clear (flist_t *lp)
314{
315 while (*lp)
316 flist_remove (lp);
317}
318
319/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
320void
321def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322{
323 def_t d;
b8698a0f 324
e855c69d
AB
325 _list_add (dl);
326 d = DEF_LIST_DEF (*dl);
327
328 d->orig_insn = original_insn;
329 d->crosses_call = crosses_call;
330}
331\f
332
333/* Functions to work with target contexts. */
334
b8698a0f 335/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
336 that there are no uninitialized (null) target contexts. */
337static tc_t bulk_tc = (tc_t) 1;
338
b8698a0f 339/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
340 implementations for them. */
341
342/* Allocate a store for the target context. */
343static tc_t
344alloc_target_context (void)
345{
346 return (targetm.sched.alloc_sched_context
347 ? targetm.sched.alloc_sched_context () : bulk_tc);
348}
349
350/* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
353static void
354init_target_context (tc_t tc, bool clean_p)
355{
356 if (targetm.sched.init_sched_context)
357 targetm.sched.init_sched_context (tc, clean_p);
358}
359
360/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
362tc_t
363create_target_context (bool clean_p)
364{
365 tc_t tc = alloc_target_context ();
366
367 init_target_context (tc, clean_p);
368 return tc;
369}
370
371/* Copy TC to the current backend context. */
372void
373set_target_context (tc_t tc)
374{
375 if (targetm.sched.set_sched_context)
376 targetm.sched.set_sched_context (tc);
377}
378
379/* TC is about to be destroyed. Free any internal data. */
380static void
381clear_target_context (tc_t tc)
382{
383 if (targetm.sched.clear_sched_context)
384 targetm.sched.clear_sched_context (tc);
385}
386
387/* Clear and free it. */
388static void
389delete_target_context (tc_t tc)
390{
391 clear_target_context (tc);
392
393 if (targetm.sched.free_sched_context)
394 targetm.sched.free_sched_context (tc);
395}
396
397/* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
399static void
400copy_target_context (tc_t to, tc_t from)
401{
402 tc_t tmp = create_target_context (false);
403
404 set_target_context (from);
405 init_target_context (to, false);
406
407 set_target_context (tmp);
408 delete_target_context (tmp);
409}
410
411/* Create a copy of TC. */
412static tc_t
413create_copy_of_target_context (tc_t tc)
414{
415 tc_t copy = alloc_target_context ();
416
417 copy_target_context (copy, tc);
418
419 return copy;
420}
421
422/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
424void
425reset_target_context (tc_t tc, bool clean_p)
426{
427 clear_target_context (tc);
428 init_target_context (tc, clean_p);
429}
430\f
b8698a0f 431/* Functions to work with dependence contexts.
88302d54 432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
435
436/* Make a copy of FROM in TO. */
437static void
438copy_deps_context (deps_t to, deps_t from)
439{
bcf33775 440 init_deps (to, false);
e855c69d
AB
441 deps_join (to, from);
442}
443
444/* Allocate store for dep context. */
445static deps_t
446alloc_deps_context (void)
447{
88302d54 448 return XNEW (struct deps_desc);
e855c69d
AB
449}
450
451/* Allocate and initialize dep context. */
452static deps_t
453create_deps_context (void)
454{
455 deps_t dc = alloc_deps_context ();
456
bcf33775 457 init_deps (dc, false);
e855c69d
AB
458 return dc;
459}
460
461/* Create a copy of FROM. */
462static deps_t
463create_copy_of_deps_context (deps_t from)
464{
465 deps_t to = alloc_deps_context ();
466
467 copy_deps_context (to, from);
468 return to;
469}
470
471/* Clean up internal data of DC. */
472static void
473clear_deps_context (deps_t dc)
474{
475 free_deps (dc);
476}
477
478/* Clear and free DC. */
479static void
480delete_deps_context (deps_t dc)
481{
482 clear_deps_context (dc);
483 free (dc);
484}
485
486/* Clear and init DC. */
487static void
488reset_deps_context (deps_t dc)
489{
490 clear_deps_context (dc);
bcf33775 491 init_deps (dc, false);
e855c69d
AB
492}
493
b8698a0f 494/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
495 dependence context. */
496static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 {
498 NULL,
499
500 NULL, /* start_insn */
501 NULL, /* finish_insn */
502 NULL, /* start_lhs */
503 NULL, /* finish_lhs */
504 NULL, /* start_rhs */
505 NULL, /* finish_rhs */
506 haifa_note_reg_set,
507 haifa_note_reg_clobber,
508 haifa_note_reg_use,
509 NULL, /* note_mem_dep */
510 NULL, /* note_dep */
511
512 0, 0, 0
513 };
514
515/* Process INSN and add its impact on DC. */
516void
517advance_deps_context (deps_t dc, insn_t insn)
518{
519 sched_deps_info = &advance_deps_context_sched_deps_info;
520 deps_analyze_insn (dc, insn);
521}
522\f
523
524/* Functions to work with DFA states. */
525
526/* Allocate store for a DFA state. */
527static state_t
528state_alloc (void)
529{
530 return xmalloc (dfa_state_size);
531}
532
533/* Allocate and initialize DFA state. */
534static state_t
535state_create (void)
536{
537 state_t state = state_alloc ();
538
539 state_reset (state);
540 advance_state (state);
541 return state;
542}
543
544/* Free DFA state. */
545static void
546state_free (state_t state)
547{
548 free (state);
549}
550
551/* Make a copy of FROM in TO. */
552static void
553state_copy (state_t to, state_t from)
554{
555 memcpy (to, from, dfa_state_size);
556}
557
558/* Create a copy of FROM. */
559static state_t
560state_create_copy (state_t from)
561{
562 state_t to = state_alloc ();
563
564 state_copy (to, from);
565 return to;
566}
567\f
568
569/* Functions to work with fences. */
570
571/* Clear the fence. */
572static void
573fence_clear (fence_t f)
574{
575 state_t s = FENCE_STATE (f);
576 deps_t dc = FENCE_DC (f);
577 void *tc = FENCE_TC (f);
578
579 ilist_clear (&FENCE_BNDS (f));
580
581 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582 || (s == NULL && dc == NULL && tc == NULL));
583
04695783 584 free (s);
e855c69d
AB
585
586 if (dc != NULL)
587 delete_deps_context (dc);
588
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
594}
595
596/* Init a list of fences with successors of OLD_FENCE. */
597void
598init_fences (insn_t old_fence)
599{
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
604
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 {
b8698a0f 608
e855c69d
AB
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
b8698a0f 618 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
b8698a0f 623 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 624 issue_rate, /* issue_more */
b8698a0f 625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
626 }
627}
628
629/* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
b8698a0f 631 propagated from fallthrough edge if it is available;
e855c69d 632 2) deps context and cycle is propagated from more probable edge;
b8698a0f 633 3) all other fields are set to corresponding constant values.
e855c69d 634
b8698a0f 635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
638static void
639merge_fences (fence_t f, insn_t insn,
b8698a0f 640 state_t state, deps_t dc, void *tc,
e855c69d
AB
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
136e01a3 643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
644{
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
b8698a0f 650 /* Check if we can decide which path fences came.
e855c69d
AB
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
b8698a0f
L
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
e855c69d
AB
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
b8698a0f 662
e855c69d
AB
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
b8698a0f 665
e855c69d
AB
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 673 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
b8698a0f 688
e855c69d
AB
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
b8698a0f 700
e855c69d
AB
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
b8698a0f 703
e855c69d 704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 705 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
b8698a0f 710 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 722 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
b8698a0f 764
e855c69d
AB
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800}
801
b8698a0f 802/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
803 other parameters. */
804static void
805add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
811{
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814 if (! f)
815 {
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 817 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 819 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
820
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 }
824 else
825 {
b8698a0f
L
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 828 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
829 }
830}
831
832/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833void
834move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835{
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839 old = FLIST_FENCE (old_fences);
b8698a0f 840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
843 {
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
136e01a3 847 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
848 old->after_stall_p);
849 }
850 else
851 {
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 }
857 FENCE_INSN (old) = NULL;
858}
859
b8698a0f 860/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
861 as a clean one. */
862void
863add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864{
865 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 866
e855c69d
AB
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
b8698a0f 870 NULL_RTX, NULL,
e855c69d
AB
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
874}
875
b8698a0f 876/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
877 from FENCE and SUCC. */
878void
879add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880{
b8698a0f 881 int * new_ready_ticks
e855c69d 882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 883
e855c69d
AB
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 890 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
136e01a3 897 FENCE_ISSUE_MORE (fence),
e855c69d
AB
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
900}
901\f
902
903/* Functions to work with regset and nop pools. */
904
905/* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907regset
908get_regset_from_pool (void)
909{
910 regset rs;
911
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
916 {
917 rs = ALLOC_REG_SET (&reg_obstack);
918
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
923 }
924
925 regset_pool.diff++;
926
927 return rs;
928}
929
930/* Same as above, but returns the empty regset. */
931regset
932get_clear_regset_from_pool (void)
933{
934 regset rs = get_regset_from_pool ();
935
936 CLEAR_REG_SET (rs);
937 return rs;
938}
939
940/* Return regset RS to the pool for future use. */
941void
942return_regset_to_pool (regset rs)
943{
9ef1bf71 944 gcc_assert (rs);
e855c69d
AB
945 regset_pool.diff--;
946
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
951}
952
68ad446f 953#ifdef ENABLE_CHECKING
e855c69d
AB
954/* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956static int
957cmp_v_in_regset_pool (const void *x, const void *xx)
958{
959 return *((const regset *) x) - *((const regset *) xx);
960}
68ad446f 961#endif
e855c69d
AB
962
963/* Free the regset pool possibly checking for memory leaks. */
964void
965free_regset_pool (void)
966{
967#ifdef ENABLE_CHECKING
968 {
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
b8698a0f 972
e855c69d
AB
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
b8698a0f 976
e855c69d 977 int diff = 0;
b8698a0f 978
e855c69d 979 gcc_assert (n <= nn);
b8698a0f 980
e855c69d
AB
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 984
e855c69d
AB
985 while (ii < nn)
986 {
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
b8698a0f 992
e855c69d
AB
993 ii++;
994 }
b8698a0f 995
e855c69d
AB
996 gcc_assert (diff == regset_pool.diff);
997 }
998#endif
b8698a0f 999
e855c69d
AB
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
b8698a0f 1002
e855c69d
AB
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
b8698a0f 1012
e855c69d
AB
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019}
1020\f
1021
b8698a0f
L
1022/* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026/* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028static vinsn_t nop_vinsn = NULL;
1029
1030/* Emit a nop before INSN, taking it from pool. */
1031insn_t
1032get_nop_from_pool (insn_t insn)
1033{
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1037
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1042
1043 nop = emit_insn_before (nop, insn);
1044
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1052
1053 return nop;
1054}
1055
1056/* Remove NOP from the instruction stream and return it to the pool. */
1057void
b5b8b0ac 1058return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1059{
1060 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1061 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1062
1063 if (nop_pool.n == nop_pool.s)
b8698a0f 1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1067}
1068
1069/* Free the nop pool. */
1070void
1071free_nop_pool (void)
1072{
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1077}
1078\f
1079
b8698a0f 1080/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083static int
1084skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085{
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
b8698a0f 1088
e855c69d
AB
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1092 {
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1096 }
b8698a0f 1097
e855c69d
AB
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1101 {
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1105 }
b8698a0f 1106
e855c69d
AB
1107 return 0;
1108}
1109
b8698a0f 1110/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113static int
1114hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1116{
b8698a0f 1117 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1120 {
1121 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1122 *nmode = VOIDmode;
e855c69d
AB
1123 return 1;
1124 }
b8698a0f 1125
e855c69d
AB
1126 return 0;
1127}
1128
1129/* Returns LHS and RHS are ok to be scheduled separately. */
1130static bool
1131lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132{
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1135
b8698a0f
L
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1142
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1146
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1150
b8698a0f 1151 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1156
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1161
1162 return true;
1163}
1164
b8698a0f
L
1165/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1167 used e.g. for insns from recovery blocks. */
1168static void
1169vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170{
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1173
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
b8698a0f 1177
9ef1bf71
AM
1178 if (INSN_NOP_P (insn))
1179 return;
1180
e855c69d
AB
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1185
e855c69d
AB
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1189 {
1190 rtx rhs = VINSN_RHS (vi);
1191
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1197 }
1198 else
1199 {
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203 }
b8698a0f 1204
e855c69d
AB
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1213}
1214
1215/* Indicate that VI has become the part of an rtx object. */
1216void
1217vinsn_attach (vinsn_t vi)
1218{
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1221
1222 VINSN_COUNT (vi)++;
1223}
1224
b8698a0f 1225/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1226 VINSN_TYPE (VI). */
1227static vinsn_t
1228vinsn_create (insn_t insn, bool force_unique_p)
1229{
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1231
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1234}
1235
1236/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
b8698a0f 1238vinsn_t
e855c69d
AB
1239vinsn_copy (vinsn_t vi, bool reattach_p)
1240{
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
b8698a0f 1244
e855c69d
AB
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1248 {
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1251 }
1252
1253 return new_vi;
1254}
1255
1256/* Delete the VI vinsn and free its data. */
1257static void
1258vinsn_delete (vinsn_t vi)
1259{
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1261
9ef1bf71
AM
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263 {
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267 }
e855c69d
AB
1268
1269 free (vi);
1270}
1271
b8698a0f 1272/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1273 Remove VI if it is no longer needed. */
1274void
1275vinsn_detach (vinsn_t vi)
1276{
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1278
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1281}
1282
1283/* Returns TRUE if VI is a branch. */
1284bool
1285vinsn_cond_branch_p (vinsn_t vi)
1286{
1287 insn_t insn;
1288
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1291
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1295
1296 return control_flow_insn_p (insn);
1297}
1298
1299/* Return latency of INSN. */
1300static int
1301sel_insn_rtx_cost (rtx insn)
1302{
1303 int cost;
1304
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1312 {
1313 cost = insn_default_latency (insn);
1314
1315 if (cost < 0)
1316 cost = 0;
1317 }
1318
1319 return cost;
1320}
1321
1322/* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1324int
1325sel_vinsn_cost (vinsn_t vi)
1326{
1327 int cost = vi->cost;
1328
1329 if (cost < 0)
1330 {
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1333 }
1334
1335 return cost;
1336}
1337\f
1338
1339/* Functions for insn emitting. */
1340
1341/* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343insn_t
1344sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345{
1346 insn_t new_insn;
1347
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353
1354 return new_insn;
1355}
1356
1357/* Force newly generated vinsns to be unique. */
1358static bool init_insn_force_unique_p = false;
1359
1360/* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362insn_t
1363sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1365{
1366 insn_t insn;
1367
1368 gcc_assert (!init_insn_force_unique_p);
1369
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1374
1375 return insn;
1376}
1377
1378/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
e855c69d
AB
1381 simplify_changed_insns. */
1382insn_t
b8698a0f 1383sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1384 insn_t after)
1385{
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
b8698a0f
L
1389
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1394
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1399
1400 return insn;
1401}
1402
1403/* Move insn from EXPR after AFTER. */
1404insn_t
1405sel_move_insn (expr_t expr, int seqno, insn_t after)
1406{
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1410
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1415
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1418
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
b8698a0f 1423
e855c69d
AB
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1426}
1427
1428\f
1429/* Functions to work with right-hand sides. */
1430
b8698a0f 1431/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1432 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1435 retain VECT's sort order. */
1436static bool
b8698a0f
L
1437find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1439 bool compare_vinsns, int *indp)
1440{
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1443
1444 if (len == 0)
1445 {
1446 *indp = 0;
1447 return false;
1448 }
1449
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1452
1453 while (i <= j)
1454 {
1455 unsigned auid = arr[i].uid;
b8698a0f 1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1457
1458 if (auid == uid
b8698a0f
L
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
b8698a0f 1463 && (! compare_vinsns
e855c69d
AB
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1465 {
1466 *indp = i;
1467 return true;
1468 }
1469 else if (auid > uid)
1470 break;
1471 i++;
1472 }
1473
1474 *indp = i;
1475 return false;
1476}
1477
b8698a0f
L
1478/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
e855c69d
AB
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1481int
b8698a0f 1482find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1483 vinsn_t new_vinsn, bool originators_p)
1484{
1485 int ind;
1486
b8698a0f 1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1488 false, &ind))
1489 return ind;
1490
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1492 {
1493 unsigned uid;
1494 bitmap_iterator bi;
1495
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1499 }
b8698a0f 1500
e855c69d
AB
1501 return -1;
1502}
1503
b8698a0f
L
1504/* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
e855c69d
AB
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508void
1509insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
b8698a0f 1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1512 ds_t spec_ds)
1513{
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1518
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520
1521 if (res)
1522 {
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524
b8698a0f 1525 /* It is possible that speculation types of expressions that were
e855c69d
AB
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1531 }
b8698a0f 1532
e855c69d
AB
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1535 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1538
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1543}
1544
1545/* Free history vector PVECT. */
1546static void
1547free_history_vect (VEC (expr_history_def, heap) **pvect)
1548{
1549 unsigned i;
1550 expr_history_def *phist;
1551
1552 if (! *pvect)
1553 return;
b8698a0f
L
1554
1555 for (i = 0;
e855c69d
AB
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1558 {
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1561 }
b8698a0f 1562
e855c69d
AB
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1565}
1566
5d369d58
AB
1567/* Merge vector FROM to PVECT. */
1568static void
1569merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570 VEC (expr_history_def, heap) *from)
1571{
1572 expr_history_def *phist;
1573 int i;
1574
1575 /* We keep this vector sorted. */
1576 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577 insert_in_history_vect (pvect, phist->uid, phist->type,
1578 phist->old_expr_vinsn, phist->new_expr_vinsn,
1579 phist->spec_ds);
1580}
e855c69d
AB
1581
1582/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1583bool
1584vinsn_equal_p (vinsn_t x, vinsn_t y)
1585{
1586 rtx_equal_p_callback_function repcf;
1587
1588 if (x == y)
1589 return true;
1590
1591 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592 return false;
1593
1594 if (VINSN_HASH (x) != VINSN_HASH (y))
1595 return false;
1596
1597 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1598 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1599 {
1600 /* Compare RHSes of VINSNs. */
1601 gcc_assert (VINSN_RHS (x));
1602 gcc_assert (VINSN_RHS (y));
1603
1604 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1605 }
1606
1607 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1608}
1609\f
1610
1611/* Functions for working with expressions. */
1612
1613/* Initialize EXPR. */
1614static void
1615init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617 ds_t spec_to_check_ds, int orig_sched_cycle,
f3764768 1618 VEC(expr_history_def, heap) *history, signed char target_available,
e855c69d
AB
1619 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620 bool cant_move)
1621{
1622 vinsn_attach (vi);
1623
1624 EXPR_VINSN (expr) = vi;
1625 EXPR_SPEC (expr) = spec;
1626 EXPR_USEFULNESS (expr) = use;
1627 EXPR_PRIORITY (expr) = priority;
1628 EXPR_PRIORITY_ADJ (expr) = 0;
1629 EXPR_SCHED_TIMES (expr) = sched_times;
1630 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1634
1635 if (history)
1636 EXPR_HISTORY_OF_CHANGES (expr) = history;
1637 else
1638 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1639
1640 EXPR_TARGET_AVAILABLE (expr) = target_available;
1641 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642 EXPR_WAS_RENAMED (expr) = was_renamed;
1643 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644 EXPR_CANT_MOVE (expr) = cant_move;
1645}
1646
1647/* Make a copy of the expr FROM into the expr TO. */
1648void
1649copy_expr (expr_t to, expr_t from)
1650{
1651 VEC(expr_history_def, heap) *temp = NULL;
1652
1653 if (EXPR_HISTORY_OF_CHANGES (from))
1654 {
1655 unsigned i;
1656 expr_history_def *phist;
1657
1658 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1659 for (i = 0;
e855c69d
AB
1660 VEC_iterate (expr_history_def, temp, i, phist);
1661 i++)
1662 {
1663 vinsn_attach (phist->old_expr_vinsn);
1664 vinsn_attach (phist->new_expr_vinsn);
1665 }
1666 }
1667
b8698a0f 1668 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1669 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1672 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1673 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1674 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675 EXPR_CANT_MOVE (from));
1676}
1677
b8698a0f 1678/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1679 "uninteresting" data such as bitmap cache. */
1680void
1681copy_expr_onside (expr_t to, expr_t from)
1682{
1683 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688 EXPR_CANT_MOVE (from));
1689}
1690
1691/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1692 initializing new insns. */
1693static void
1694prepare_insn_expr (insn_t insn, int seqno)
1695{
1696 expr_t expr = INSN_EXPR (insn);
1697 ds_t ds;
b8698a0f 1698
e855c69d
AB
1699 INSN_SEQNO (insn) = seqno;
1700 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701 EXPR_SPEC (expr) = 0;
1702 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703 EXPR_WAS_SUBSTITUTED (expr) = 0;
1704 EXPR_WAS_RENAMED (expr) = 0;
1705 EXPR_TARGET_AVAILABLE (expr) = 1;
1706 INSN_LIVE_VALID_P (insn) = false;
1707
1708 /* ??? If this expression is speculative, make its dependence
1709 as weak as possible. We can filter this expression later
1710 in process_spec_exprs, because we do not distinguish
1711 between the status we got during compute_av_set and the
1712 existing status. To be fixed. */
1713 ds = EXPR_SPEC_DONE_DS (expr);
1714 if (ds)
1715 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1716
1717 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1718}
1719
1720/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1721 is non-null when expressions are merged from different successors at
e855c69d
AB
1722 a split point. */
1723static void
1724update_target_availability (expr_t to, expr_t from, insn_t split_point)
1725{
b8698a0f 1726 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1727 || EXPR_TARGET_AVAILABLE (from) < 0)
1728 EXPR_TARGET_AVAILABLE (to) = -1;
1729 else
1730 {
1731 /* We try to detect the case when one of the expressions
1732 can only be reached through another one. In this case,
1733 we can do better. */
1734 if (split_point == NULL)
1735 {
1736 int toind, fromind;
1737
1738 toind = EXPR_ORIG_BB_INDEX (to);
1739 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1740
e855c69d 1741 if (toind && toind == fromind)
b8698a0f 1742 /* Do nothing -- everything is done in
e855c69d
AB
1743 merge_with_other_exprs. */
1744 ;
1745 else
1746 EXPR_TARGET_AVAILABLE (to) = -1;
1747 }
854b5fd7
AM
1748 else if (EXPR_TARGET_AVAILABLE (from) == 0
1749 && EXPR_LHS (from)
1750 && REG_P (EXPR_LHS (from))
1751 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1752 EXPR_TARGET_AVAILABLE (to) = -1;
e855c69d
AB
1753 else
1754 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1755 }
1756}
1757
1758/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1759 is non-null when expressions are merged from different successors at
e855c69d
AB
1760 a split point. */
1761static void
1762update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1763{
1764 ds_t old_to_ds, old_from_ds;
1765
1766 old_to_ds = EXPR_SPEC_DONE_DS (to);
1767 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1768
e855c69d
AB
1769 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1770 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1771 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1772
1773 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1774 speculative with a control&data speculative one, we really have
e855c69d
AB
1775 to change vinsn too. Also, when speculative status is changed,
1776 we also need to record this as a transformation in expr's history. */
1777 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1778 {
1779 old_to_ds = ds_get_speculation_types (old_to_ds);
1780 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1781
e855c69d
AB
1782 if (old_to_ds != old_from_ds)
1783 {
1784 ds_t record_ds;
b8698a0f
L
1785
1786 /* When both expressions are speculative, we need to change
e855c69d
AB
1787 the vinsn first. */
1788 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1789 {
1790 int res;
b8698a0f 1791
e855c69d
AB
1792 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1793 gcc_assert (res >= 0);
1794 }
1795
1796 if (split_point != NULL)
1797 {
1798 /* Record the change with proper status. */
1799 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1800 record_ds &= ~(old_to_ds & SPECULATIVE);
1801 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1802
1803 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1804 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1805 EXPR_VINSN (from), EXPR_VINSN (to),
1806 record_ds);
1807 }
1808 }
1809 }
1810}
1811
1812
1813/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1814 this is done along different paths. */
1815void
1816merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1817{
bf3a40e9
DM
1818 /* Choose the maximum of the specs of merged exprs. This is required
1819 for correctness of bookkeeping. */
1820 if (EXPR_SPEC (to) < EXPR_SPEC (from))
e855c69d
AB
1821 EXPR_SPEC (to) = EXPR_SPEC (from);
1822
1823 if (split_point)
1824 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1825 else
b8698a0f 1826 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1827 EXPR_USEFULNESS (from));
1828
1829 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1830 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1831
1832 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1833 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1834
1835 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1836 EXPR_ORIG_BB_INDEX (to) = 0;
1837
b8698a0f 1838 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1839 EXPR_ORIG_SCHED_CYCLE (from));
1840
e855c69d
AB
1841 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1842 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1843 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1844
5d369d58
AB
1845 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1846 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1847 update_target_availability (to, from, split_point);
1848 update_speculative_bits (to, from, split_point);
1849}
1850
1851/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1852 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1853 are merged from different successors at a split point. */
1854void
1855merge_expr (expr_t to, expr_t from, insn_t split_point)
1856{
1857 vinsn_t to_vi = EXPR_VINSN (to);
1858 vinsn_t from_vi = EXPR_VINSN (from);
1859
1860 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1861
1862 /* Make sure that speculative pattern is propagated into exprs that
1863 have non-speculative one. This will provide us with consistent
1864 speculative bits and speculative patterns inside expr. */
1865 if (EXPR_SPEC_DONE_DS (to) == 0
1866 && EXPR_SPEC_DONE_DS (from) != 0)
1867 change_vinsn_in_expr (to, EXPR_VINSN (from));
1868
1869 merge_expr_data (to, from, split_point);
1870 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1871}
1872
1873/* Clear the information of this EXPR. */
1874void
1875clear_expr (expr_t expr)
1876{
b8698a0f 1877
e855c69d
AB
1878 vinsn_detach (EXPR_VINSN (expr));
1879 EXPR_VINSN (expr) = NULL;
1880
1881 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1882}
1883
1884/* For a given LV_SET, mark EXPR having unavailable target register. */
1885static void
1886set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1887{
1888 if (EXPR_SEPARABLE_P (expr))
1889 {
1890 if (REG_P (EXPR_LHS (expr))
cf3d5824 1891 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
e855c69d 1892 {
b8698a0f
L
1893 /* If it's an insn like r1 = use (r1, ...), and it exists in
1894 different forms in each of the av_sets being merged, we can't say
1895 whether original destination register is available or not.
1896 However, this still works if destination register is not used
e855c69d
AB
1897 in the original expression: if the branch at which LV_SET we're
1898 looking here is not actually 'other branch' in sense that same
b8698a0f 1899 expression is available through it (but it can't be determined
e855c69d 1900 at computation stage because of transformations on one of the
b8698a0f
L
1901 branches), it still won't affect the availability.
1902 Liveness of a register somewhere on a code motion path means
1903 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1904 'other' branch, live at the point immediately following
1905 the original operation, or is read by the original operation.
1906 The latter case is filtered out in the condition below.
1907 It still doesn't cover the case when register is defined and used
1908 somewhere within the code motion path, and in this case we could
1909 miss a unifying code motion along both branches using a renamed
1910 register, but it won't affect a code correctness since upon
1911 an actual code motion a bookkeeping code would be generated. */
cf3d5824
SG
1912 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1913 EXPR_LHS (expr)))
e855c69d
AB
1914 EXPR_TARGET_AVAILABLE (expr) = -1;
1915 else
1916 EXPR_TARGET_AVAILABLE (expr) = false;
1917 }
1918 }
1919 else
1920 {
1921 unsigned regno;
1922 reg_set_iterator rsi;
b8698a0f
L
1923
1924 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1925 0, regno, rsi)
1926 if (bitmap_bit_p (lv_set, regno))
1927 {
1928 EXPR_TARGET_AVAILABLE (expr) = false;
1929 break;
1930 }
1931
1932 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1933 0, regno, rsi)
1934 if (bitmap_bit_p (lv_set, regno))
1935 {
1936 EXPR_TARGET_AVAILABLE (expr) = false;
1937 break;
1938 }
1939 }
1940}
1941
b8698a0f 1942/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1943 or dependence status have changed, 2 when also the target register
1944 became unavailable, 0 if nothing had to be changed. */
1945int
1946speculate_expr (expr_t expr, ds_t ds)
1947{
1948 int res;
1949 rtx orig_insn_rtx;
1950 rtx spec_pat;
1951 ds_t target_ds, current_ds;
1952
1953 /* Obtain the status we need to put on EXPR. */
1954 target_ds = (ds & SPECULATIVE);
1955 current_ds = EXPR_SPEC_DONE_DS (expr);
1956 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1957
1958 orig_insn_rtx = EXPR_INSN_RTX (expr);
1959
1960 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1961
1962 switch (res)
1963 {
1964 case 0:
1965 EXPR_SPEC_DONE_DS (expr) = ds;
1966 return current_ds != ds ? 1 : 0;
b8698a0f 1967
e855c69d
AB
1968 case 1:
1969 {
1970 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1971 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1972
1973 change_vinsn_in_expr (expr, spec_vinsn);
1974 EXPR_SPEC_DONE_DS (expr) = ds;
1975 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1976
b8698a0f 1977 /* Do not allow clobbering the address register of speculative
e855c69d 1978 insns. */
cf3d5824
SG
1979 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1980 expr_dest_reg (expr)))
e855c69d
AB
1981 {
1982 EXPR_TARGET_AVAILABLE (expr) = false;
1983 return 2;
1984 }
1985
1986 return 1;
1987 }
1988
1989 case -1:
1990 return -1;
1991
1992 default:
1993 gcc_unreachable ();
1994 return -1;
1995 }
1996}
1997
1998/* Return a destination register, if any, of EXPR. */
1999rtx
2000expr_dest_reg (expr_t expr)
2001{
2002 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2003
2004 if (dest != NULL_RTX && REG_P (dest))
2005 return dest;
2006
2007 return NULL_RTX;
2008}
2009
2010/* Returns the REGNO of the R's destination. */
2011unsigned
2012expr_dest_regno (expr_t expr)
2013{
2014 rtx dest = expr_dest_reg (expr);
2015
2016 gcc_assert (dest != NULL_RTX);
2017 return REGNO (dest);
2018}
2019
b8698a0f 2020/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2021 AV_SET having unavailable target register. */
2022void
2023mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2024{
2025 expr_t expr;
2026 av_set_iterator avi;
2027
2028 FOR_EACH_EXPR (expr, avi, join_set)
2029 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2030 set_unavailable_target_for_expr (expr, lv_set);
2031}
2032\f
2033
cf3d5824
SG
2034/* Returns true if REG (at least partially) is present in REGS. */
2035bool
2036register_unavailable_p (regset regs, rtx reg)
2037{
2038 unsigned regno, end_regno;
2039
2040 regno = REGNO (reg);
2041 if (bitmap_bit_p (regs, regno))
2042 return true;
2043
2044 end_regno = END_REGNO (reg);
2045
2046 while (++regno < end_regno)
2047 if (bitmap_bit_p (regs, regno))
2048 return true;
2049
2050 return false;
2051}
2052
e855c69d
AB
2053/* Av set functions. */
2054
2055/* Add a new element to av set SETP.
2056 Return the element added. */
2057static av_set_t
2058av_set_add_element (av_set_t *setp)
2059{
2060 /* Insert at the beginning of the list. */
2061 _list_add (setp);
2062 return *setp;
2063}
2064
2065/* Add EXPR to SETP. */
2066void
2067av_set_add (av_set_t *setp, expr_t expr)
2068{
2069 av_set_t elem;
b8698a0f 2070
e855c69d
AB
2071 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2072 elem = av_set_add_element (setp);
2073 copy_expr (_AV_SET_EXPR (elem), expr);
2074}
2075
2076/* Same, but do not copy EXPR. */
2077static void
2078av_set_add_nocopy (av_set_t *setp, expr_t expr)
2079{
2080 av_set_t elem;
2081
2082 elem = av_set_add_element (setp);
2083 *_AV_SET_EXPR (elem) = *expr;
2084}
2085
2086/* Remove expr pointed to by IP from the av_set. */
2087void
2088av_set_iter_remove (av_set_iterator *ip)
2089{
2090 clear_expr (_AV_SET_EXPR (*ip->lp));
2091 _list_iter_remove (ip);
2092}
2093
2094/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2095 sense of vinsn_equal_p function. Return NULL if no such expr is
2096 in SET was found. */
2097expr_t
2098av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2099{
2100 expr_t expr;
2101 av_set_iterator i;
2102
2103 FOR_EACH_EXPR (expr, i, set)
2104 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2105 return expr;
2106 return NULL;
2107}
2108
2109/* Same, but also remove the EXPR found. */
2110static expr_t
2111av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2112{
2113 expr_t expr;
2114 av_set_iterator i;
2115
2116 FOR_EACH_EXPR_1 (expr, i, setp)
2117 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2118 {
2119 _list_iter_remove_nofree (&i);
2120 return expr;
2121 }
2122 return NULL;
2123}
2124
2125/* Search for an expr in SET, such that it's equivalent to EXPR in the
2126 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2127 Returns NULL if no such expr is in SET was found. */
2128static expr_t
2129av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2130{
2131 expr_t cur_expr;
2132 av_set_iterator i;
2133
2134 FOR_EACH_EXPR (cur_expr, i, set)
2135 {
2136 if (cur_expr == expr)
2137 continue;
2138 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2139 return cur_expr;
2140 }
2141
2142 return NULL;
2143}
2144
2145/* If other expression is already in AVP, remove one of them. */
2146expr_t
2147merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2148{
2149 expr_t expr2;
2150
2151 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2152 if (expr2 != NULL)
2153 {
2154 /* Reset target availability on merge, since taking it only from one
2155 of the exprs would be controversial for different code. */
2156 EXPR_TARGET_AVAILABLE (expr2) = -1;
2157 EXPR_USEFULNESS (expr2) = 0;
2158
2159 merge_expr (expr2, expr, NULL);
b8698a0f 2160
e855c69d
AB
2161 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2162 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2163
e855c69d
AB
2164 av_set_iter_remove (ip);
2165 return expr2;
2166 }
2167
2168 return expr;
2169}
2170
2171/* Return true if there is an expr that correlates to VI in SET. */
2172bool
2173av_set_is_in_p (av_set_t set, vinsn_t vi)
2174{
2175 return av_set_lookup (set, vi) != NULL;
2176}
2177
2178/* Return a copy of SET. */
2179av_set_t
2180av_set_copy (av_set_t set)
2181{
2182 expr_t expr;
2183 av_set_iterator i;
2184 av_set_t res = NULL;
2185
2186 FOR_EACH_EXPR (expr, i, set)
2187 av_set_add (&res, expr);
2188
2189 return res;
2190}
2191
2192/* Join two av sets that do not have common elements by attaching second set
2193 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2194 _AV_SET_NEXT of first set's last element). */
2195static void
2196join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2197{
2198 gcc_assert (*to_tailp == NULL);
2199 *to_tailp = *fromp;
2200 *fromp = NULL;
2201}
2202
2203/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2204 pointed to by FROMP afterwards. */
2205void
2206av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2207{
2208 expr_t expr1;
2209 av_set_iterator i;
2210
2211 /* Delete from TOP all exprs, that present in FROMP. */
2212 FOR_EACH_EXPR_1 (expr1, i, top)
2213 {
2214 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2215
2216 if (expr2)
2217 {
2218 merge_expr (expr2, expr1, insn);
2219 av_set_iter_remove (&i);
2220 }
2221 }
2222
2223 join_distinct_sets (i.lp, fromp);
2224}
2225
b8698a0f 2226/* Same as above, but also update availability of target register in
e855c69d
AB
2227 TOP judging by TO_LV_SET and FROM_LV_SET. */
2228void
2229av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2230 regset from_lv_set, insn_t insn)
2231{
2232 expr_t expr1;
2233 av_set_iterator i;
2234 av_set_t *to_tailp, in_both_set = NULL;
2235
2236 /* Delete from TOP all expres, that present in FROMP. */
2237 FOR_EACH_EXPR_1 (expr1, i, top)
2238 {
2239 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2240
2241 if (expr2)
2242 {
b8698a0f 2243 /* It may be that the expressions have different destination
e855c69d
AB
2244 registers, in which case we need to check liveness here. */
2245 if (EXPR_SEPARABLE_P (expr1))
2246 {
b8698a0f 2247 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2248 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2249 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2250 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2251
2252 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2253 *other* register on the current path, we did it only
2254 for the current target register. Give up. */
2255 if (regno1 != regno2)
2256 EXPR_TARGET_AVAILABLE (expr2) = -1;
2257 }
2258 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2259 EXPR_TARGET_AVAILABLE (expr2) = -1;
2260
2261 merge_expr (expr2, expr1, insn);
2262 av_set_add_nocopy (&in_both_set, expr2);
2263 av_set_iter_remove (&i);
2264 }
2265 else
b8698a0f 2266 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2267 FROM_LV_SET. */
2268 set_unavailable_target_for_expr (expr1, from_lv_set);
2269 }
2270 to_tailp = i.lp;
2271
2272 /* These expressions are not present in TOP. Check liveness
2273 restrictions on TO_LV_SET. */
2274 FOR_EACH_EXPR (expr1, i, *fromp)
2275 set_unavailable_target_for_expr (expr1, to_lv_set);
2276
2277 join_distinct_sets (i.lp, &in_both_set);
2278 join_distinct_sets (to_tailp, fromp);
2279}
2280
2281/* Clear av_set pointed to by SETP. */
2282void
2283av_set_clear (av_set_t *setp)
2284{
2285 expr_t expr;
2286 av_set_iterator i;
2287
2288 FOR_EACH_EXPR_1 (expr, i, setp)
2289 av_set_iter_remove (&i);
2290
2291 gcc_assert (*setp == NULL);
2292}
2293
2294/* Leave only one non-speculative element in the SETP. */
2295void
2296av_set_leave_one_nonspec (av_set_t *setp)
2297{
2298 expr_t expr;
2299 av_set_iterator i;
2300 bool has_one_nonspec = false;
2301
b8698a0f 2302 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2303 (the first one). */
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 {
2306 if (!EXPR_SPEC_DONE_DS (expr))
2307 {
2308 if (has_one_nonspec)
2309 av_set_iter_remove (&i);
2310 else
2311 has_one_nonspec = true;
2312 }
2313 }
2314}
2315
2316/* Return the N'th element of the SET. */
2317expr_t
2318av_set_element (av_set_t set, int n)
2319{
2320 expr_t expr;
2321 av_set_iterator i;
2322
2323 FOR_EACH_EXPR (expr, i, set)
2324 if (n-- == 0)
2325 return expr;
2326
2327 gcc_unreachable ();
2328 return NULL;
2329}
2330
2331/* Deletes all expressions from AVP that are conditional branches (IFs). */
2332void
2333av_set_substract_cond_branches (av_set_t *avp)
2334{
2335 av_set_iterator i;
2336 expr_t expr;
2337
2338 FOR_EACH_EXPR_1 (expr, i, avp)
2339 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2340 av_set_iter_remove (&i);
2341}
2342
b8698a0f 2343/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2344 value PROB / ALL_PROB. */
2345void
2346av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2347{
2348 av_set_iterator i;
2349 expr_t expr;
2350
2351 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2352 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2353 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2354 : 0);
2355}
2356
2357/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2358 and return it, merging history expressions. */
e855c69d 2359void
5d369d58 2360av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2361{
2362 av_set_iterator i;
5d369d58 2363 expr_t expr, expr2;
e855c69d
AB
2364
2365 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2366 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2367 av_set_iter_remove (&i);
5d369d58
AB
2368 else
2369 /* When updating av sets in bookkeeping blocks, we can add more insns
2370 there which will be transformed but the upper av sets will not
2371 reflect those transformations. We then fail to undo those
2372 when searching for such insns. So merge the history saved
2373 in the av set of the block we are processing. */
2374 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2375 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2376}
2377
2378\f
2379
2380/* Dependence hooks to initialize insn data. */
2381
2382/* This is used in hooks callable from dependence analysis when initializing
2383 instruction's data. */
2384static struct
2385{
2386 /* Where the dependence was found (lhs/rhs). */
2387 deps_where_t where;
2388
2389 /* The actual data object to initialize. */
2390 idata_t id;
2391
2392 /* True when the insn should not be made clonable. */
2393 bool force_unique_p;
2394
2395 /* True when insn should be treated as of type USE, i.e. never renamed. */
2396 bool force_use_p;
2397} deps_init_id_data;
2398
2399
b8698a0f 2400/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2401 clonable. */
2402static void
2403setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2404{
2405 int type;
b8698a0f 2406
e855c69d
AB
2407 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2408 That clonable insns which can be separated into lhs and rhs have type SET.
2409 Other clonable insns have type USE. */
2410 type = GET_CODE (insn);
2411
2412 /* Only regular insns could be cloned. */
2413 if (type == INSN && !force_unique_p)
2414 type = SET;
2415 else if (type == JUMP_INSN && simplejump_p (insn))
2416 type = PC;
b5b8b0ac
AO
2417 else if (type == DEBUG_INSN)
2418 type = !force_unique_p ? USE : INSN;
b8698a0f 2419
e855c69d
AB
2420 IDATA_TYPE (id) = type;
2421 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2422 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2423 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2424}
2425
2426/* Start initializing insn data. */
2427static void
2428deps_init_id_start_insn (insn_t insn)
2429{
2430 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2431
2432 setup_id_for_insn (deps_init_id_data.id, insn,
2433 deps_init_id_data.force_unique_p);
2434 deps_init_id_data.where = DEPS_IN_INSN;
2435}
2436
2437/* Start initializing lhs data. */
2438static void
2439deps_init_id_start_lhs (rtx lhs)
2440{
2441 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2442 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2443
2444 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2445 {
2446 IDATA_LHS (deps_init_id_data.id) = lhs;
2447 deps_init_id_data.where = DEPS_IN_LHS;
2448 }
2449}
2450
2451/* Finish initializing lhs data. */
2452static void
2453deps_init_id_finish_lhs (void)
2454{
2455 deps_init_id_data.where = DEPS_IN_INSN;
2456}
2457
2458/* Note a set of REGNO. */
2459static void
2460deps_init_id_note_reg_set (int regno)
2461{
2462 haifa_note_reg_set (regno);
2463
2464 if (deps_init_id_data.where == DEPS_IN_RHS)
2465 deps_init_id_data.force_use_p = true;
2466
2467 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2468 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2469
2470#ifdef STACK_REGS
b8698a0f 2471 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2472 renaming to avoid issues with find_used_regs. */
2473 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2474 deps_init_id_data.force_use_p = true;
2475#endif
2476}
2477
2478/* Note a clobber of REGNO. */
2479static void
2480deps_init_id_note_reg_clobber (int regno)
2481{
2482 haifa_note_reg_clobber (regno);
2483
2484 if (deps_init_id_data.where == DEPS_IN_RHS)
2485 deps_init_id_data.force_use_p = true;
2486
2487 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2488 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2489}
2490
2491/* Note a use of REGNO. */
2492static void
2493deps_init_id_note_reg_use (int regno)
2494{
2495 haifa_note_reg_use (regno);
2496
2497 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2498 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2499}
2500
2501/* Start initializing rhs data. */
2502static void
2503deps_init_id_start_rhs (rtx rhs)
2504{
2505 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2506
2507 /* And there was no sel_deps_reset_to_insn (). */
2508 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2509 {
2510 IDATA_RHS (deps_init_id_data.id) = rhs;
2511 deps_init_id_data.where = DEPS_IN_RHS;
2512 }
2513}
2514
2515/* Finish initializing rhs data. */
2516static void
2517deps_init_id_finish_rhs (void)
2518{
2519 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2520 || deps_init_id_data.where == DEPS_IN_INSN);
2521 deps_init_id_data.where = DEPS_IN_INSN;
2522}
2523
2524/* Finish initializing insn data. */
2525static void
2526deps_init_id_finish_insn (void)
2527{
2528 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2529
2530 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2531 {
2532 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2533 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2534
2535 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2536 || deps_init_id_data.force_use_p)
2537 {
b8698a0f 2538 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2539 separately. However, we still want to have them recorded
b8698a0f 2540 for the purposes of substitution. That's why we don't
e855c69d
AB
2541 simply call downgrade_to_use () here. */
2542 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2543 gcc_assert (!lhs == !rhs);
2544
2545 IDATA_TYPE (deps_init_id_data.id) = USE;
2546 }
2547 }
2548
2549 deps_init_id_data.where = DEPS_IN_NOWHERE;
2550}
2551
2552/* This is dependence info used for initializing insn's data. */
2553static struct sched_deps_info_def deps_init_id_sched_deps_info;
2554
2555/* This initializes most of the static part of the above structure. */
2556static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2557 {
2558 NULL,
2559
2560 deps_init_id_start_insn,
2561 deps_init_id_finish_insn,
2562 deps_init_id_start_lhs,
2563 deps_init_id_finish_lhs,
2564 deps_init_id_start_rhs,
2565 deps_init_id_finish_rhs,
2566 deps_init_id_note_reg_set,
2567 deps_init_id_note_reg_clobber,
2568 deps_init_id_note_reg_use,
2569 NULL, /* note_mem_dep */
2570 NULL, /* note_dep */
2571
2572 0, /* use_cselib */
2573 0, /* use_deps_list */
2574 0 /* generate_spec_deps */
2575 };
2576
2577/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2578 we don't actually need information about lhs and rhs. */
2579static void
2580setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2581{
2582 rtx pat = PATTERN (insn);
b8698a0f 2583
481683e1 2584 if (NONJUMP_INSN_P (insn)
b8698a0f 2585 && GET_CODE (pat) == SET
e855c69d
AB
2586 && !force_unique_p)
2587 {
2588 IDATA_RHS (id) = SET_SRC (pat);
2589 IDATA_LHS (id) = SET_DEST (pat);
2590 }
2591 else
2592 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2593}
2594
2595/* Possibly downgrade INSN to USE. */
2596static void
2597maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2598{
2599 bool must_be_use = false;
2600 unsigned uid = INSN_UID (insn);
57512f53 2601 df_ref *rec;
e855c69d
AB
2602 rtx lhs = IDATA_LHS (id);
2603 rtx rhs = IDATA_RHS (id);
b8698a0f 2604
e855c69d
AB
2605 /* We downgrade only SETs. */
2606 if (IDATA_TYPE (id) != SET)
2607 return;
2608
2609 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2610 {
2611 IDATA_TYPE (id) = USE;
2612 return;
2613 }
b8698a0f 2614
e855c69d
AB
2615 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2616 {
57512f53 2617 df_ref def = *rec;
b8698a0f 2618
e855c69d
AB
2619 if (DF_REF_INSN (def)
2620 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2621 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2622 {
2623 must_be_use = true;
2624 break;
2625 }
2626
2627#ifdef STACK_REGS
b8698a0f 2628 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2629 renaming to avoid issues with find_used_regs. */
2630 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2631 {
2632 must_be_use = true;
2633 break;
2634 }
2635#endif
b8698a0f
L
2636 }
2637
e855c69d
AB
2638 if (must_be_use)
2639 IDATA_TYPE (id) = USE;
2640}
2641
2642/* Setup register sets describing INSN in ID. */
2643static void
2644setup_id_reg_sets (idata_t id, insn_t insn)
2645{
2646 unsigned uid = INSN_UID (insn);
57512f53 2647 df_ref *rec;
e855c69d 2648 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2649
e855c69d
AB
2650 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2651 {
57512f53 2652 df_ref def = *rec;
e855c69d 2653 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2654
e855c69d
AB
2655 /* Post modifies are treated like clobbers by sched-deps.c. */
2656 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2657 | DF_REF_PRE_POST_MODIFY)))
2658 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2659 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2660 {
2661 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2662
2663#ifdef STACK_REGS
b8698a0f 2664 /* For stack registers, treat writes to them as writes
e855c69d
AB
2665 to the first one to be consistent with sched-deps.c. */
2666 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2667 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2668#endif
2669 }
2670 /* Mark special refs that generate read/write def pair. */
2671 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2672 || regno == STACK_POINTER_REGNUM)
2673 bitmap_set_bit (tmp, regno);
2674 }
b8698a0f 2675
e855c69d
AB
2676 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2677 {
57512f53 2678 df_ref use = *rec;
e855c69d
AB
2679 unsigned int regno = DF_REF_REGNO (use);
2680
2681 /* When these refs are met for the first time, skip them, as
2682 these uses are just counterparts of some defs. */
2683 if (bitmap_bit_p (tmp, regno))
2684 bitmap_clear_bit (tmp, regno);
2685 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2686 {
2687 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2688
2689#ifdef STACK_REGS
b8698a0f 2690 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2691 the first one to be consistent with sched-deps.c. */
2692 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2693 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2694#endif
2695 }
2696 }
2697
2698 return_regset_to_pool (tmp);
2699}
2700
2701/* Initialize instruction data for INSN in ID using DF's data. */
2702static void
2703init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2704{
2705 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2706
2707 setup_id_for_insn (id, insn, force_unique_p);
2708 setup_id_lhs_rhs (id, insn, force_unique_p);
2709
2710 if (INSN_NOP_P (insn))
2711 return;
2712
2713 maybe_downgrade_id_to_use (id, insn);
2714 setup_id_reg_sets (id, insn);
2715}
2716
2717/* Initialize instruction data for INSN in ID. */
2718static void
2719deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2720{
88302d54 2721 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2722
2723 deps_init_id_data.where = DEPS_IN_NOWHERE;
2724 deps_init_id_data.id = id;
2725 deps_init_id_data.force_unique_p = force_unique_p;
2726 deps_init_id_data.force_use_p = false;
2727
bcf33775 2728 init_deps (dc, false);
e855c69d
AB
2729
2730 memcpy (&deps_init_id_sched_deps_info,
2731 &const_deps_init_id_sched_deps_info,
2732 sizeof (deps_init_id_sched_deps_info));
2733
2734 if (spec_info != NULL)
2735 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2736
2737 sched_deps_info = &deps_init_id_sched_deps_info;
2738
2739 deps_analyze_insn (dc, insn);
2740
2741 free_deps (dc);
2742
2743 deps_init_id_data.id = NULL;
2744}
2745
2746\f
a95b23b4
BS
2747struct sched_scan_info_def
2748{
2749 /* This hook notifies scheduler frontend to extend its internal per basic
2750 block data structures. This hook should be called once before a series of
2751 calls to bb_init (). */
2752 void (*extend_bb) (void);
2753
2754 /* This hook makes scheduler frontend to initialize its internal data
2755 structures for the passed basic block. */
2756 void (*init_bb) (basic_block);
2757
2758 /* This hook notifies scheduler frontend to extend its internal per insn data
2759 structures. This hook should be called once before a series of calls to
2760 insn_init (). */
2761 void (*extend_insn) (void);
2762
2763 /* This hook makes scheduler frontend to initialize its internal data
2764 structures for the passed insn. */
2765 void (*init_insn) (rtx);
2766};
2767
2768/* A driver function to add a set of basic blocks (BBS) to the
2769 scheduling region. */
2770static void
2771sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2772{
2773 unsigned i;
2774 basic_block bb;
2775
2776 if (ssi->extend_bb)
2777 ssi->extend_bb ();
2778
2779 if (ssi->init_bb)
2780 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2781 ssi->init_bb (bb);
2782
2783 if (ssi->extend_insn)
2784 ssi->extend_insn ();
2785
2786 if (ssi->init_insn)
2787 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2788 {
2789 rtx insn;
2790
2791 FOR_BB_INSNS (bb, insn)
2792 ssi->init_insn (insn);
2793 }
2794}
e855c69d
AB
2795
2796/* Implement hooks for collecting fundamental insn properties like if insn is
2797 an ASM or is within a SCHED_GROUP. */
2798
2799/* True when a "one-time init" data for INSN was already inited. */
2800static bool
2801first_time_insn_init (insn_t insn)
2802{
2803 return INSN_LIVE (insn) == NULL;
2804}
2805
2806/* Hash an entry in a transformed_insns hashtable. */
2807static hashval_t
2808hash_transformed_insns (const void *p)
2809{
2810 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2811}
2812
2813/* Compare the entries in a transformed_insns hashtable. */
2814static int
2815eq_transformed_insns (const void *p, const void *q)
2816{
2817 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2818 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2819
2820 if (INSN_UID (i1) == INSN_UID (i2))
2821 return 1;
2822 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2823}
2824
2825/* Free an entry in a transformed_insns hashtable. */
2826static void
2827free_transformed_insns (void *p)
2828{
2829 struct transformed_insns *pti = (struct transformed_insns *) p;
2830
2831 vinsn_detach (pti->vinsn_old);
2832 vinsn_detach (pti->vinsn_new);
2833 free (pti);
2834}
2835
b8698a0f 2836/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2837 we first see the insn. */
2838static void
2839init_first_time_insn_data (insn_t insn)
2840{
2841 /* This should not be set if this is the first time we init data for
2842 insn. */
2843 gcc_assert (first_time_insn_init (insn));
b8698a0f 2844
e855c69d
AB
2845 /* These are needed for nops too. */
2846 INSN_LIVE (insn) = get_regset_from_pool ();
2847 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2848
e855c69d
AB
2849 if (!INSN_NOP_P (insn))
2850 {
2851 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2852 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2853 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2854 = htab_create (16, hash_transformed_insns,
2855 eq_transformed_insns, free_transformed_insns);
bcf33775 2856 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2857 }
2858}
2859
b8698a0f 2860/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2861 Used for extra-large basic blocks. */
2862void
2863free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2864{
2865 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2866
bcf33775
AB
2867 if (! INSN_ANALYZED_DEPS (insn))
2868 return;
b8698a0f 2869
e855c69d
AB
2870 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2871 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2872 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2873
e855c69d
AB
2874 /* This is allocated only for bookkeeping insns. */
2875 if (INSN_ORIGINATORS (insn))
2876 BITMAP_FREE (INSN_ORIGINATORS (insn));
2877 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2878
2879 INSN_ANALYZED_DEPS (insn) = NULL;
2880
b8698a0f 2881 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2882 the deps context (as we believe that it should not happen). */
2883 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2884}
2885
2886/* Free the same data as above for INSN. */
2887static void
2888free_first_time_insn_data (insn_t insn)
2889{
2890 gcc_assert (! first_time_insn_init (insn));
2891
2892 free_data_for_scheduled_insn (insn);
2893 return_regset_to_pool (INSN_LIVE (insn));
2894 INSN_LIVE (insn) = NULL;
2895 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2896}
2897
2898/* Initialize region-scope data structures for basic blocks. */
2899static void
2900init_global_and_expr_for_bb (basic_block bb)
2901{
2902 if (sel_bb_empty_p (bb))
2903 return;
2904
2905 invalidate_av_set (bb);
2906}
2907
2908/* Data for global dependency analysis (to initialize CANT_MOVE and
2909 SCHED_GROUP_P). */
2910static struct
2911{
2912 /* Previous insn. */
2913 insn_t prev_insn;
2914} init_global_data;
2915
2916/* Determine if INSN is in the sched_group, is an asm or should not be
2917 cloned. After that initialize its expr. */
2918static void
2919init_global_and_expr_for_insn (insn_t insn)
2920{
2921 if (LABEL_P (insn))
2922 return;
2923
2924 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2925 {
2926 init_global_data.prev_insn = NULL_RTX;
2927 return;
2928 }
2929
2930 gcc_assert (INSN_P (insn));
2931
2932 if (SCHED_GROUP_P (insn))
2933 /* Setup a sched_group. */
2934 {
2935 insn_t prev_insn = init_global_data.prev_insn;
2936
2937 if (prev_insn)
2938 INSN_SCHED_NEXT (prev_insn) = insn;
2939
2940 init_global_data.prev_insn = insn;
2941 }
2942 else
2943 init_global_data.prev_insn = NULL_RTX;
2944
2945 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2946 || asm_noperands (PATTERN (insn)) >= 0)
2947 /* Mark INSN as an asm. */
2948 INSN_ASM_P (insn) = true;
2949
2950 {
2951 bool force_unique_p;
2952 ds_t spec_done_ds;
2953
cfeb0fa8
AB
2954 /* Certain instructions cannot be cloned, and frame related insns and
2955 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2956 their block. */
2957 if (prologue_epilogue_contains (insn))
2958 {
2959 if (RTX_FRAME_RELATED_P (insn))
2960 CANT_MOVE (insn) = 1;
2961 else
2962 {
2963 rtx note;
2964 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2965 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2966 && ((enum insn_note) INTVAL (XEXP (note, 0))
2967 == NOTE_INSN_EPILOGUE_BEG))
2968 {
2969 CANT_MOVE (insn) = 1;
2970 break;
2971 }
2972 }
2973 force_unique_p = true;
2974 }
e855c69d 2975 else
cfeb0fa8
AB
2976 if (CANT_MOVE (insn)
2977 || INSN_ASM_P (insn)
2978 || SCHED_GROUP_P (insn)
07643d76 2979 || CALL_P (insn)
cfeb0fa8
AB
2980 /* Exception handling insns are always unique. */
2981 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2982 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
6bf2d156
DM
2983 || control_flow_insn_p (insn)
2984 || volatile_insn_p (PATTERN (insn))
2985 || (targetm.cannot_copy_insn_p
2986 && targetm.cannot_copy_insn_p (insn)))
cfeb0fa8
AB
2987 force_unique_p = true;
2988 else
2989 force_unique_p = false;
e855c69d
AB
2990
2991 if (targetm.sched.get_insn_spec_ds)
2992 {
2993 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2994 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2995 }
2996 else
2997 spec_done_ds = 0;
2998
2999 /* Initialize INSN's expr. */
3000 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3001 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 3002 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
3003 CANT_MOVE (insn));
3004 }
3005
3006 init_first_time_insn_data (insn);
3007}
3008
3009/* Scan the region and initialize instruction data for basic blocks BBS. */
3010void
3011sel_init_global_and_expr (bb_vec_t bbs)
3012{
3013 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3014 const struct sched_scan_info_def ssi =
3015 {
3016 NULL, /* extend_bb */
3017 init_global_and_expr_for_bb, /* init_bb */
3018 extend_insn_data, /* extend_insn */
3019 init_global_and_expr_for_insn /* init_insn */
3020 };
b8698a0f 3021
a95b23b4 3022 sched_scan (&ssi, bbs);
e855c69d
AB
3023}
3024
3025/* Finalize region-scope data structures for basic blocks. */
3026static void
3027finish_global_and_expr_for_bb (basic_block bb)
3028{
3029 av_set_clear (&BB_AV_SET (bb));
3030 BB_AV_LEVEL (bb) = 0;
3031}
3032
3033/* Finalize INSN's data. */
3034static void
3035finish_global_and_expr_insn (insn_t insn)
3036{
3037 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3038 return;
3039
3040 gcc_assert (INSN_P (insn));
3041
3042 if (INSN_LUID (insn) > 0)
3043 {
3044 free_first_time_insn_data (insn);
3045 INSN_WS_LEVEL (insn) = 0;
3046 CANT_MOVE (insn) = 0;
b8698a0f
L
3047
3048 /* We can no longer assert this, as vinsns of this insn could be
3049 easily live in other insn's caches. This should be changed to
e855c69d
AB
3050 a counter-like approach among all vinsns. */
3051 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3052 clear_expr (INSN_EXPR (insn));
3053 }
3054}
3055
3056/* Finalize per instruction data for the whole region. */
3057void
3058sel_finish_global_and_expr (void)
3059{
3060 {
3061 bb_vec_t bbs;
3062 int i;
3063
3064 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3065
3066 for (i = 0; i < current_nr_blocks; i++)
3067 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3068
3069 /* Clear AV_SETs and INSN_EXPRs. */
3070 {
3071 const struct sched_scan_info_def ssi =
3072 {
3073 NULL, /* extend_bb */
3074 finish_global_and_expr_for_bb, /* init_bb */
3075 NULL, /* extend_insn */
3076 finish_global_and_expr_insn /* init_insn */
3077 };
3078
a95b23b4 3079 sched_scan (&ssi, bbs);
e855c69d
AB
3080 }
3081
3082 VEC_free (basic_block, heap, bbs);
3083 }
3084
3085 finish_insns ();
3086}
3087\f
3088
b8698a0f
L
3089/* In the below hooks, we merely calculate whether or not a dependence
3090 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3091 when we'll start caching dependence requests. */
3092
3093/* Container to hold information for dependency analysis. */
3094static struct
3095{
3096 deps_t dc;
3097
3098 /* A variable to track which part of rtx we are scanning in
3099 sched-deps.c: sched_analyze_insn (). */
3100 deps_where_t where;
3101
3102 /* Current producer. */
3103 insn_t pro;
3104
3105 /* Current consumer. */
3106 vinsn_t con;
3107
3108 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3109 X is from { INSN, LHS, RHS }. */
3110 ds_t has_dep_p[DEPS_IN_NOWHERE];
3111} has_dependence_data;
3112
3113/* Start analyzing dependencies of INSN. */
3114static void
3115has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3116{
3117 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3118
3119 has_dependence_data.where = DEPS_IN_INSN;
3120}
3121
3122/* Finish analyzing dependencies of an insn. */
3123static void
3124has_dependence_finish_insn (void)
3125{
3126 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3127
3128 has_dependence_data.where = DEPS_IN_NOWHERE;
3129}
3130
3131/* Start analyzing dependencies of LHS. */
3132static void
3133has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3134{
3135 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3136
3137 if (VINSN_LHS (has_dependence_data.con) != NULL)
3138 has_dependence_data.where = DEPS_IN_LHS;
3139}
3140
3141/* Finish analyzing dependencies of an lhs. */
3142static void
3143has_dependence_finish_lhs (void)
3144{
3145 has_dependence_data.where = DEPS_IN_INSN;
3146}
3147
3148/* Start analyzing dependencies of RHS. */
3149static void
3150has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3151{
3152 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3153
3154 if (VINSN_RHS (has_dependence_data.con) != NULL)
3155 has_dependence_data.where = DEPS_IN_RHS;
3156}
3157
3158/* Start analyzing dependencies of an rhs. */
3159static void
3160has_dependence_finish_rhs (void)
3161{
3162 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3163 || has_dependence_data.where == DEPS_IN_INSN);
3164
3165 has_dependence_data.where = DEPS_IN_INSN;
3166}
3167
3168/* Note a set of REGNO. */
3169static void
3170has_dependence_note_reg_set (int regno)
3171{
3172 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3173
3174 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3175 VINSN_INSN_RTX
3176 (has_dependence_data.con)))
3177 {
3178 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3179
3180 if (reg_last->sets != NULL
3181 || reg_last->clobbers != NULL)
3182 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3183
3184 if (reg_last->uses)
3185 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3186 }
3187}
3188
3189/* Note a clobber of REGNO. */
3190static void
3191has_dependence_note_reg_clobber (int regno)
3192{
3193 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3194
3195 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3196 VINSN_INSN_RTX
3197 (has_dependence_data.con)))
3198 {
3199 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3200
3201 if (reg_last->sets)
3202 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3203
e855c69d
AB
3204 if (reg_last->uses)
3205 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3206 }
3207}
3208
3209/* Note a use of REGNO. */
3210static void
3211has_dependence_note_reg_use (int regno)
3212{
3213 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3214
3215 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3216 VINSN_INSN_RTX
3217 (has_dependence_data.con)))
3218 {
3219 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3220
3221 if (reg_last->sets)
3222 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3223
3224 if (reg_last->clobbers)
3225 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3226
3227 /* Handle BE_IN_SPEC. */
3228 if (reg_last->uses)
3229 {
3230 ds_t pro_spec_checked_ds;
3231
3232 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3233 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3234
ca31ca94
SG
3235 if (pro_spec_checked_ds != 0
3236 && bitmap_bit_p (INSN_REG_SETS (has_dependence_data.pro), regno))
e855c69d
AB
3237 /* Merge BE_IN_SPEC bits into *DSP. */
3238 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3239 NULL_RTX, NULL_RTX);
3240 }
3241 }
3242}
3243
3244/* Note a memory dependence. */
3245static void
3246has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3247 rtx pending_mem ATTRIBUTE_UNUSED,
3248 insn_t pending_insn ATTRIBUTE_UNUSED,
3249 ds_t ds ATTRIBUTE_UNUSED)
3250{
3251 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3252 VINSN_INSN_RTX (has_dependence_data.con)))
3253 {
3254 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3255
3256 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3257 }
3258}
3259
3260/* Note a dependence. */
3261static void
3262has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3263 ds_t ds ATTRIBUTE_UNUSED)
3264{
3265 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3266 VINSN_INSN_RTX (has_dependence_data.con)))
3267 {
3268 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3269
3270 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3271 }
3272}
3273
3274/* Mark the insn as having a hard dependence that prevents speculation. */
3275void
3276sel_mark_hard_insn (rtx insn)
3277{
3278 int i;
3279
3280 /* Only work when we're in has_dependence_p mode.
3281 ??? This is a hack, this should actually be a hook. */
3282 if (!has_dependence_data.dc || !has_dependence_data.pro)
3283 return;
3284
3285 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3286 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3287
3288 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3289 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3290}
3291
3292/* This structure holds the hooks for the dependency analysis used when
3293 actually processing dependencies in the scheduler. */
3294static struct sched_deps_info_def has_dependence_sched_deps_info;
3295
3296/* This initializes most of the fields of the above structure. */
3297static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3298 {
3299 NULL,
3300
3301 has_dependence_start_insn,
3302 has_dependence_finish_insn,
3303 has_dependence_start_lhs,
3304 has_dependence_finish_lhs,
3305 has_dependence_start_rhs,
3306 has_dependence_finish_rhs,
3307 has_dependence_note_reg_set,
3308 has_dependence_note_reg_clobber,
3309 has_dependence_note_reg_use,
3310 has_dependence_note_mem_dep,
3311 has_dependence_note_dep,
3312
3313 0, /* use_cselib */
3314 0, /* use_deps_list */
3315 0 /* generate_spec_deps */
3316 };
3317
3318/* Initialize has_dependence_sched_deps_info with extra spec field. */
3319static void
3320setup_has_dependence_sched_deps_info (void)
3321{
3322 memcpy (&has_dependence_sched_deps_info,
3323 &const_has_dependence_sched_deps_info,
3324 sizeof (has_dependence_sched_deps_info));
3325
3326 if (spec_info != NULL)
3327 has_dependence_sched_deps_info.generate_spec_deps = 1;
3328
3329 sched_deps_info = &has_dependence_sched_deps_info;
3330}
3331
3332/* Remove all dependences found and recorded in has_dependence_data array. */
3333void
3334sel_clear_has_dependence (void)
3335{
3336 int i;
3337
3338 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3339 has_dependence_data.has_dep_p[i] = 0;
3340}
3341
3342/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3343 to the dependence information array in HAS_DEP_PP. */
3344ds_t
3345has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3346{
3347 int i;
3348 ds_t ds;
88302d54 3349 struct deps_desc *dc;
e855c69d
AB
3350
3351 if (INSN_SIMPLEJUMP_P (pred))
3352 /* Unconditional jump is just a transfer of control flow.
3353 Ignore it. */
3354 return false;
3355
3356 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3357
3358 /* We init this field lazily. */
3359 if (dc->reg_last == NULL)
3360 init_deps_reg_last (dc);
b8698a0f 3361
e855c69d
AB
3362 if (!dc->readonly)
3363 {
3364 has_dependence_data.pro = NULL;
3365 /* Initialize empty dep context with information about PRED. */
3366 advance_deps_context (dc, pred);
3367 dc->readonly = 1;
3368 }
3369
3370 has_dependence_data.where = DEPS_IN_NOWHERE;
3371 has_dependence_data.pro = pred;
3372 has_dependence_data.con = EXPR_VINSN (expr);
3373 has_dependence_data.dc = dc;
3374
3375 sel_clear_has_dependence ();
3376
3377 /* Now catch all dependencies that would be generated between PRED and
3378 INSN. */
3379 setup_has_dependence_sched_deps_info ();
3380 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3381 has_dependence_data.dc = NULL;
3382
3383 /* When a barrier was found, set DEPS_IN_INSN bits. */
3384 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3385 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3386 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3387 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3388
3389 /* Do not allow stores to memory to move through checks. Currently
3390 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3391 obvious places to which this dependence can be attached.
e855c69d
AB
3392 FIMXE: this should go to a hook. */
3393 if (EXPR_LHS (expr)
3394 && MEM_P (EXPR_LHS (expr))
3395 && sel_insn_is_speculation_check (pred))
3396 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3397
e855c69d
AB
3398 *has_dep_pp = has_dependence_data.has_dep_p;
3399 ds = 0;
3400 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3401 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3402 NULL_RTX, NULL_RTX);
3403
3404 return ds;
3405}
3406\f
3407
b8698a0f
L
3408/* Dependence hooks implementation that checks dependence latency constraints
3409 on the insns being scheduled. The entry point for these routines is
3410 tick_check_p predicate. */
e855c69d
AB
3411
3412static struct
3413{
3414 /* An expr we are currently checking. */
3415 expr_t expr;
3416
3417 /* A minimal cycle for its scheduling. */
3418 int cycle;
3419
3420 /* Whether we have seen a true dependence while checking. */
3421 bool seen_true_dep_p;
3422} tick_check_data;
3423
3424/* Update minimal scheduling cycle for tick_check_insn given that it depends
3425 on PRO with status DS and weight DW. */
3426static void
3427tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3428{
3429 expr_t con_expr = tick_check_data.expr;
3430 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3431
3432 if (con_insn != pro_insn)
3433 {
3434 enum reg_note dt;
3435 int tick;
3436
3437 if (/* PROducer was removed from above due to pipelining. */
3438 !INSN_IN_STREAM_P (pro_insn)
3439 /* Or PROducer was originally on the next iteration regarding the
3440 CONsumer. */
3441 || (INSN_SCHED_TIMES (pro_insn)
3442 - EXPR_SCHED_TIMES (con_expr)) > 1)
3443 /* Don't count this dependence. */
3444 return;
3445
3446 dt = ds_to_dt (ds);
3447 if (dt == REG_DEP_TRUE)
3448 tick_check_data.seen_true_dep_p = true;
3449
3450 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3451
3452 {
3453 dep_def _dep, *dep = &_dep;
3454
3455 init_dep (dep, pro_insn, con_insn, dt);
3456
3457 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3458 }
3459
3460 /* When there are several kinds of dependencies between pro and con,
3461 only REG_DEP_TRUE should be taken into account. */
3462 if (tick > tick_check_data.cycle
3463 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3464 tick_check_data.cycle = tick;
3465 }
3466}
3467
3468/* An implementation of note_dep hook. */
3469static void
3470tick_check_note_dep (insn_t pro, ds_t ds)
3471{
3472 tick_check_dep_with_dw (pro, ds, 0);
3473}
3474
3475/* An implementation of note_mem_dep hook. */
3476static void
3477tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3478{
3479 dw_t dw;
3480
3481 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3482 ? estimate_dep_weak (mem1, mem2)
3483 : 0);
3484
3485 tick_check_dep_with_dw (pro, ds, dw);
3486}
3487
3488/* This structure contains hooks for dependence analysis used when determining
3489 whether an insn is ready for scheduling. */
3490static struct sched_deps_info_def tick_check_sched_deps_info =
3491 {
3492 NULL,
3493
3494 NULL,
3495 NULL,
3496 NULL,
3497 NULL,
3498 NULL,
3499 NULL,
3500 haifa_note_reg_set,
3501 haifa_note_reg_clobber,
3502 haifa_note_reg_use,
3503 tick_check_note_mem_dep,
3504 tick_check_note_dep,
3505
3506 0, 0, 0
3507 };
3508
3509/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3510 scheduled. Return 0 if all data from producers in DC is ready. */
3511int
3512tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3513{
3514 int cycles_left;
3515 /* Initialize variables. */
3516 tick_check_data.expr = expr;
3517 tick_check_data.cycle = 0;
3518 tick_check_data.seen_true_dep_p = false;
3519 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3520
e855c69d
AB
3521 gcc_assert (!dc->readonly);
3522 dc->readonly = 1;
3523 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3524 dc->readonly = 0;
3525
3526 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3527
3528 return cycles_left >= 0 ? cycles_left : 0;
3529}
3530\f
3531
3532/* Functions to work with insns. */
3533
3534/* Returns true if LHS of INSN is the same as DEST of an insn
3535 being moved. */
3536bool
3537lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3538{
3539 rtx lhs = INSN_LHS (insn);
3540
3541 if (lhs == NULL || dest == NULL)
3542 return false;
b8698a0f 3543
e855c69d
AB
3544 return rtx_equal_p (lhs, dest);
3545}
3546
3547/* Return s_i_d entry of INSN. Callable from debugger. */
3548sel_insn_data_def
3549insn_sid (insn_t insn)
3550{
3551 return *SID (insn);
3552}
3553
3554/* True when INSN is a speculative check. We can tell this by looking
3555 at the data structures of the selective scheduler, not by examining
3556 the pattern. */
3557bool
3558sel_insn_is_speculation_check (rtx insn)
3559{
3560 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3561}
3562
b8698a0f 3563/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3564 for given INSN. */
3565void
3566get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3567{
3568 rtx pat = PATTERN (insn);
3569
3570 gcc_assert (dst_loc);
3571 gcc_assert (GET_CODE (pat) == SET);
3572
3573 *dst_loc = SET_DEST (pat);
3574
3575 gcc_assert (*dst_loc);
3576 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3577
3578 if (mode)
3579 *mode = GET_MODE (*dst_loc);
3580}
3581
b8698a0f 3582/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3583 creation. */
3584bool
3585bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3586{
3587 insn_t succ;
3588 succ_iterator si;
3589
3590 FOR_EACH_SUCC (succ, si, jump)
3591 if (sel_num_cfg_preds_gt_1 (succ))
3592 return true;
3593
3594 return false;
3595}
3596
3597/* Return 'true' if INSN is the only one in its basic block. */
3598static bool
3599insn_is_the_only_one_in_bb_p (insn_t insn)
3600{
3601 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3602}
3603
3604#ifdef ENABLE_CHECKING
b8698a0f 3605/* Check that the region we're scheduling still has at most one
e855c69d
AB
3606 backedge. */
3607static void
3608verify_backedges (void)
3609{
3610 if (pipelining_p)
3611 {
3612 int i, n = 0;
3613 edge e;
3614 edge_iterator ei;
b8698a0f 3615
e855c69d
AB
3616 for (i = 0; i < current_nr_blocks; i++)
3617 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3618 if (in_current_region_p (e->dest)
3619 && BLOCK_TO_BB (e->dest->index) < i)
3620 n++;
b8698a0f 3621
e855c69d
AB
3622 gcc_assert (n <= 1);
3623 }
3624}
3625#endif
3626\f
3627
3628/* Functions to work with control flow. */
3629
b59ab570
AM
3630/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3631 are sorted in topological order (it might have been invalidated by
3632 redirecting an edge). */
3633static void
3634sel_recompute_toporder (void)
3635{
3636 int i, n, rgn;
3637 int *postorder, n_blocks;
3638
3639 postorder = XALLOCAVEC (int, n_basic_blocks);
3640 n_blocks = post_order_compute (postorder, false, false);
3641
3642 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3643 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3644 if (CONTAINING_RGN (postorder[i]) == rgn)
3645 {
3646 BLOCK_TO_BB (postorder[i]) = n;
3647 BB_TO_BLOCK (n) = postorder[i];
3648 n++;
3649 }
3650
3651 /* Assert that we updated info for all blocks. We may miss some blocks if
3652 this function is called when redirecting an edge made a block
3653 unreachable, but that block is not deleted yet. */
3654 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3655}
3656
e855c69d 3657/* Tidy the possibly empty block BB. */
65592aad 3658static bool
5f33b972 3659maybe_tidy_empty_bb (basic_block bb)
e855c69d 3660{
b7b5540a 3661 basic_block succ_bb, pred_bb, note_bb;
00c4e97c 3662 VEC (basic_block, heap) *dom_bbs;
f2c45f08
AM
3663 edge e;
3664 edge_iterator ei;
e855c69d
AB
3665 bool rescan_p;
3666
3667 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3668 has incoming non-fallthrough edge, or it has no predecessors or
3669 successors. Otherwise remove it. */
b5b8b0ac 3670 if (!sel_bb_empty_p (bb)
b8698a0f 3671 || (single_succ_p (bb)
e855c69d 3672 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3673 && (!single_pred_p (bb)
762bffba
AB
3674 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3675 || EDGE_COUNT (bb->preds) == 0
3676 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3677 return false;
3678
f2c45f08
AM
3679 /* Do not attempt to redirect complex edges. */
3680 FOR_EACH_EDGE (e, ei, bb->preds)
3681 if (e->flags & EDGE_COMPLEX)
3682 return false;
3683
e855c69d
AB
3684 free_data_sets (bb);
3685
3686 /* Do not delete BB if it has more than one successor.
3687 That can occur when we moving a jump. */
3688 if (!single_succ_p (bb))
3689 {
3690 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3691 sel_merge_blocks (bb->prev_bb, bb);
3692 return true;
3693 }
3694
3695 succ_bb = single_succ (bb);
3696 rescan_p = true;
3697 pred_bb = NULL;
00c4e97c 3698 dom_bbs = NULL;
e855c69d 3699
b7b5540a
AB
3700 /* Save a pred/succ from the current region to attach the notes to. */
3701 note_bb = NULL;
3702 FOR_EACH_EDGE (e, ei, bb->preds)
3703 if (in_current_region_p (e->src))
3704 {
3705 note_bb = e->src;
3706 break;
3707 }
3708 if (note_bb == NULL)
3709 note_bb = succ_bb;
3710
e855c69d
AB
3711 /* Redirect all non-fallthru edges to the next bb. */
3712 while (rescan_p)
3713 {
e855c69d
AB
3714 rescan_p = false;
3715
3716 FOR_EACH_EDGE (e, ei, bb->preds)
3717 {
3718 pred_bb = e->src;
3719
3720 if (!(e->flags & EDGE_FALLTHRU))
3721 {
5f33b972 3722 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3723 the edge destination block (E->SUCC) along a fallthru edge.
3724
3725 We will update dominators here only when we'll get
3726 an unreachable block when redirecting, otherwise
3727 sel_redirect_edge_and_branch will take care of it. */
3728 if (e->dest != bb
3729 && single_pred_p (e->dest))
3730 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
5f33b972 3731 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3732 rescan_p = true;
3733 break;
3734 }
5f33b972
AM
3735 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3736 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3737 still have to adjust it. */
3738 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3739 {
3740 /* If possible, try to remove the unneeded conditional jump. */
3741 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3742 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3743 {
3744 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3745 tidy_fallthru_edge (e);
3746 }
3747 else
3748 sel_redirect_edge_and_branch (e, succ_bb);
3749 rescan_p = true;
3750 break;
3751 }
e855c69d
AB
3752 }
3753 }
3754
e855c69d
AB
3755 if (can_merge_blocks_p (bb->prev_bb, bb))
3756 sel_merge_blocks (bb->prev_bb, bb);
3757 else
e855c69d 3758 {
262d8232 3759 /* This is a block without fallthru predecessor. Just delete it. */
b7b5540a
AB
3760 gcc_assert (note_bb);
3761 move_bb_info (note_bb, bb);
e855c69d
AB
3762 remove_empty_bb (bb, true);
3763 }
3764
00c4e97c
AB
3765 if (!VEC_empty (basic_block, dom_bbs))
3766 {
3767 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3768 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3769 VEC_free (basic_block, heap, dom_bbs);
3770 }
3771
e855c69d
AB
3772 return true;
3773}
3774
b8698a0f 3775/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3776 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3777 is true, also try to optimize control flow on non-empty blocks. */
3778bool
3779tidy_control_flow (basic_block xbb, bool full_tidying)
3780{
3781 bool changed = true;
b5b8b0ac 3782 insn_t first, last;
b8698a0f 3783
e855c69d 3784 /* First check whether XBB is empty. */
5f33b972 3785 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3786 if (changed || !full_tidying)
3787 return changed;
b8698a0f 3788
e855c69d 3789 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3790 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3791 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3792 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3793 {
3794 if (sel_remove_insn (BB_END (xbb), false, false))
3795 return true;
3796 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3797 }
3798
b5b8b0ac
AO
3799 first = sel_bb_head (xbb);
3800 last = sel_bb_end (xbb);
3801 if (MAY_HAVE_DEBUG_INSNS)
3802 {
3803 if (first != last && DEBUG_INSN_P (first))
3804 do
3805 first = NEXT_INSN (first);
3806 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3807
3808 if (first != last && DEBUG_INSN_P (last))
3809 do
3810 last = PREV_INSN (last);
3811 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3812 }
e855c69d 3813 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3814 to next basic block left after removing INSN from stream.
3815 If it is so, remove that jump and redirect edge to current
3816 basic block (where there was INSN before deletion). This way
3817 when NOP will be deleted several instructions later with its
3818 basic block we will not get a jump to next instruction, which
e855c69d 3819 can be harmful. */
b5b8b0ac 3820 if (first == last
e855c69d 3821 && !sel_bb_empty_p (xbb)
b5b8b0ac 3822 && INSN_NOP_P (last)
e855c69d
AB
3823 /* Flow goes fallthru from current block to the next. */
3824 && EDGE_COUNT (xbb->succs) == 1
3825 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3826 /* When successor is an EXIT block, it may not be the next block. */
3827 && single_succ (xbb) != EXIT_BLOCK_PTR
3828 /* And unconditional jump in previous basic block leads to
3829 next basic block of XBB and this jump can be safely removed. */
3830 && in_current_region_p (xbb->prev_bb)
753de8cf 3831 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3832 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3833 /* Also this jump is not at the scheduling boundary. */
3834 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3835 {
b59ab570 3836 bool recompute_toporder_p;
e855c69d
AB
3837 /* Clear data structures of jump - jump itself will be removed
3838 by sel_redirect_edge_and_branch. */
3839 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3840 recompute_toporder_p
3841 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3842
e855c69d
AB
3843 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3844
3845 /* It can turn out that after removing unused jump, basic block
3846 that contained that jump, becomes empty too. In such case
3847 remove it too. */
3848 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3849 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3850 if (recompute_toporder_p)
b59ab570 3851 sel_recompute_toporder ();
e855c69d 3852 }
d787f788
AM
3853
3854#ifdef ENABLE_CHECKING
3855 verify_backedges ();
00c4e97c 3856 verify_dominators (CDI_DOMINATORS);
d787f788
AM
3857#endif
3858
e855c69d
AB
3859 return changed;
3860}
3861
b59ab570
AM
3862/* Purge meaningless empty blocks in the middle of a region. */
3863void
3864purge_empty_blocks (void)
3865{
9d0dcda1 3866 int i;
b59ab570 3867
9d0dcda1
AM
3868 /* Do not attempt to delete the first basic block in the region. */
3869 for (i = 1; i < current_nr_blocks; )
b59ab570
AM
3870 {
3871 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3872
5f33b972 3873 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3874 continue;
3875
3876 i++;
3877 }
3878}
3879
b8698a0f
L
3880/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3881 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3882 Return true if we have removed some blocks afterwards. */
3883bool
3884sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3885{
3886 basic_block bb = BLOCK_FOR_INSN (insn);
3887
3888 gcc_assert (INSN_IN_STREAM_P (insn));
3889
b5b8b0ac
AO
3890 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3891 {
3892 expr_t expr;
3893 av_set_iterator i;
3894
3895 /* When we remove a debug insn that is head of a BB, it remains
3896 in the AV_SET of the block, but it shouldn't. */
3897 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3898 if (EXPR_INSN_RTX (expr) == insn)
3899 {
3900 av_set_iter_remove (&i);
3901 break;
3902 }
3903 }
3904
e855c69d
AB
3905 if (only_disconnect)
3906 {
3907 insn_t prev = PREV_INSN (insn);
3908 insn_t next = NEXT_INSN (insn);
3909 basic_block bb = BLOCK_FOR_INSN (insn);
3910
3911 NEXT_INSN (prev) = next;
3912 PREV_INSN (next) = prev;
3913
3914 if (BB_HEAD (bb) == insn)
3915 {
3916 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3917 BB_HEAD (bb) = prev;
3918 }
3919 if (BB_END (bb) == insn)
3920 BB_END (bb) = prev;
3921 }
3922 else
3923 {
3924 remove_insn (insn);
3925 clear_expr (INSN_EXPR (insn));
3926 }
3927
3928 /* It is necessary to null this fields before calling add_insn (). */
3929 PREV_INSN (insn) = NULL_RTX;
3930 NEXT_INSN (insn) = NULL_RTX;
3931
3932 return tidy_control_flow (bb, full_tidying);
3933}
3934
3935/* Estimate number of the insns in BB. */
3936static int
3937sel_estimate_number_of_insns (basic_block bb)
3938{
3939 int res = 0;
3940 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3941
3942 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3943 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3944 res++;
3945
3946 return res;
3947}
3948
3949/* We don't need separate luids for notes or labels. */
3950static int
3951sel_luid_for_non_insn (rtx x)
3952{
3953 gcc_assert (NOTE_P (x) || LABEL_P (x));
3954
3955 return -1;
3956}
3957
0d9439b0
SG
3958/* Find the proper seqno for inserting at INSN by successors.
3959 Return -1 if no successors with positive seqno exist. */
e855c69d 3960static int
0d9439b0
SG
3961get_seqno_by_succs (rtx insn)
3962{
3963 basic_block bb = BLOCK_FOR_INSN (insn);
3964 rtx tmp = insn, end = BB_END (bb);
3965 int seqno;
3966 insn_t succ = NULL;
3967 succ_iterator si;
3968
3969 while (tmp != end)
3970 {
3971 tmp = NEXT_INSN (tmp);
3972 if (INSN_P (tmp))
3973 return INSN_SEQNO (tmp);
3974 }
3975
3976 seqno = INT_MAX;
3977
3978 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3979 if (INSN_SEQNO (succ) > 0)
3980 seqno = MIN (seqno, INSN_SEQNO (succ));
3981
3982 if (seqno == INT_MAX)
3983 return -1;
3984
3985 return seqno;
3986}
3987
3988/* Compute seqno for INSN by its preds or succs. */
3989static int
3990get_seqno_for_a_jump (insn_t insn)
e855c69d
AB
3991{
3992 int seqno;
3993
3994 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3995
3996 if (!sel_bb_head_p (insn))
3997 seqno = INSN_SEQNO (PREV_INSN (insn));
3998 else
3999 {
4000 basic_block bb = BLOCK_FOR_INSN (insn);
4001
4002 if (single_pred_p (bb)
4003 && !in_current_region_p (single_pred (bb)))
4004 {
4005 /* We can have preds outside a region when splitting edges
b8698a0f 4006 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
4007 There should be only one of them. */
4008 insn_t succ = NULL;
4009 succ_iterator si;
4010 bool first = true;
b8698a0f 4011
e855c69d
AB
4012 gcc_assert (flag_sel_sched_pipelining_outer_loops
4013 && current_loop_nest);
b8698a0f 4014 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
4015 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4016 {
4017 gcc_assert (first);
4018 first = false;
4019 }
4020
4021 gcc_assert (succ != NULL);
4022 seqno = INSN_SEQNO (succ);
4023 }
4024 else
4025 {
4026 insn_t *preds;
4027 int n;
4028
4029 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
e855c69d 4030
0d9439b0
SG
4031 gcc_assert (n > 0);
4032 /* For one predecessor, use simple method. */
4033 if (n == 1)
4034 seqno = INSN_SEQNO (preds[0]);
4035 else
4036 seqno = get_seqno_by_preds (insn);
b8698a0f 4037
e855c69d
AB
4038 free (preds);
4039 }
4040 }
4041
0d9439b0
SG
4042 /* We were unable to find a good seqno among preds. */
4043 if (seqno < 0)
4044 seqno = get_seqno_by_succs (insn);
4045
4046 gcc_assert (seqno >= 0);
4047
e855c69d
AB
4048 return seqno;
4049}
4050
da7ba240
AB
4051/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4052 with positive seqno exist. */
e855c69d
AB
4053int
4054get_seqno_by_preds (rtx insn)
4055{
4056 basic_block bb = BLOCK_FOR_INSN (insn);
4057 rtx tmp = insn, head = BB_HEAD (bb);
4058 insn_t *preds;
4059 int n, i, seqno;
4060
4061 while (tmp != head)
0d9439b0 4062 {
e855c69d 4063 tmp = PREV_INSN (tmp);
0d9439b0
SG
4064 if (INSN_P (tmp))
4065 return INSN_SEQNO (tmp);
4066 }
b8698a0f 4067
e855c69d
AB
4068 cfg_preds (bb, &preds, &n);
4069 for (i = 0, seqno = -1; i < n; i++)
4070 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4071
e855c69d
AB
4072 return seqno;
4073}
4074
4075\f
4076
4077/* Extend pass-scope data structures for basic blocks. */
4078void
4079sel_extend_global_bb_info (void)
4080{
4081 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4082 last_basic_block);
4083}
4084
4085/* Extend region-scope data structures for basic blocks. */
4086static void
4087extend_region_bb_info (void)
4088{
4089 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4090 last_basic_block);
4091}
4092
4093/* Extend all data structures to fit for all basic blocks. */
4094static void
4095extend_bb_info (void)
4096{
4097 sel_extend_global_bb_info ();
4098 extend_region_bb_info ();
4099}
4100
4101/* Finalize pass-scope data structures for basic blocks. */
4102void
4103sel_finish_global_bb_info (void)
4104{
4105 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4106}
4107
4108/* Finalize region-scope data structures for basic blocks. */
4109static void
4110finish_region_bb_info (void)
4111{
4112 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4113}
4114\f
4115
4116/* Data for each insn in current region. */
4117VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4118
e855c69d
AB
4119/* Extend data structures for insns from current region. */
4120static void
4121extend_insn_data (void)
4122{
4123 int reserve;
b8698a0f 4124
e855c69d
AB
4125 sched_extend_target ();
4126 sched_deps_init (false);
4127
4128 /* Extend data structures for insns from current region. */
b8698a0f 4129 reserve = (sched_max_luid + 1
e855c69d 4130 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 4131 if (reserve > 0
e855c69d 4132 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
4133 {
4134 int size;
4135
4136 if (sched_max_luid / 2 > 1024)
4137 size = sched_max_luid + 1024;
4138 else
4139 size = 3 * sched_max_luid / 2;
b8698a0f 4140
bcf33775
AB
4141
4142 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4143 }
e855c69d
AB
4144}
4145
4146/* Finalize data structures for insns from current region. */
4147static void
4148finish_insns (void)
4149{
4150 unsigned i;
4151
4152 /* Clear here all dependence contexts that may have left from insns that were
4153 removed during the scheduling. */
4154 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4155 {
4156 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 4157
e855c69d
AB
4158 if (sid_entry->live)
4159 return_regset_to_pool (sid_entry->live);
4160 if (sid_entry->analyzed_deps)
4161 {
4162 BITMAP_FREE (sid_entry->analyzed_deps);
4163 BITMAP_FREE (sid_entry->found_deps);
4164 htab_delete (sid_entry->transformed_insns);
4165 free_deps (&sid_entry->deps_context);
4166 }
4167 if (EXPR_VINSN (&sid_entry->expr))
4168 {
4169 clear_expr (&sid_entry->expr);
b8698a0f 4170
e855c69d
AB
4171 /* Also, clear CANT_MOVE bit here, because we really don't want it
4172 to be passed to the next region. */
4173 CANT_MOVE_BY_LUID (i) = 0;
4174 }
4175 }
b8698a0f 4176
e855c69d
AB
4177 VEC_free (sel_insn_data_def, heap, s_i_d);
4178}
4179
4180/* A proxy to pass initialization data to init_insn (). */
4181static sel_insn_data_def _insn_init_ssid;
4182static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4183
4184/* If true create a new vinsn. Otherwise use the one from EXPR. */
4185static bool insn_init_create_new_vinsn_p;
4186
4187/* Set all necessary data for initialization of the new insn[s]. */
4188static expr_t
4189set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4190{
4191 expr_t x = &insn_init_ssid->expr;
4192
4193 copy_expr_onside (x, expr);
4194 if (vi != NULL)
4195 {
4196 insn_init_create_new_vinsn_p = false;
4197 change_vinsn_in_expr (x, vi);
4198 }
4199 else
4200 insn_init_create_new_vinsn_p = true;
4201
4202 insn_init_ssid->seqno = seqno;
4203 return x;
4204}
4205
4206/* Init data for INSN. */
4207static void
4208init_insn_data (insn_t insn)
4209{
4210 expr_t expr;
4211 sel_insn_data_t ssid = insn_init_ssid;
4212
4213 /* The fields mentioned below are special and hence are not being
4214 propagated to the new insns. */
4215 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4216 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4217 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4218
4219 expr = INSN_EXPR (insn);
4220 copy_expr (expr, &ssid->expr);
4221 prepare_insn_expr (insn, ssid->seqno);
4222
4223 if (insn_init_create_new_vinsn_p)
4224 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4225
e855c69d
AB
4226 if (first_time_insn_init (insn))
4227 init_first_time_insn_data (insn);
4228}
4229
4230/* This is used to initialize spurious jumps generated by
4231 sel_redirect_edge (). */
4232static void
4233init_simplejump_data (insn_t insn)
4234{
4235 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4236 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d 4237 false, true);
0d9439b0 4238 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
e855c69d
AB
4239 init_first_time_insn_data (insn);
4240}
4241
b8698a0f 4242/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4243 a new jump that may be created by redirect_edge. */
4244void
4245sel_init_new_insn (insn_t insn, int flags)
4246{
4247 /* We create data structures for bb when the first insn is emitted in it. */
4248 if (INSN_P (insn)
4249 && INSN_IN_STREAM_P (insn)
4250 && insn_is_the_only_one_in_bb_p (insn))
4251 {
4252 extend_bb_info ();
4253 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4254 }
b8698a0f 4255
e855c69d 4256 if (flags & INSN_INIT_TODO_LUID)
a95b23b4
BS
4257 {
4258 sched_extend_luids ();
4259 sched_init_insn_luid (insn);
4260 }
e855c69d
AB
4261
4262 if (flags & INSN_INIT_TODO_SSID)
4263 {
4264 extend_insn_data ();
4265 init_insn_data (insn);
4266 clear_expr (&insn_init_ssid->expr);
4267 }
4268
4269 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4270 {
4271 extend_insn_data ();
4272 init_simplejump_data (insn);
4273 }
b8698a0f 4274
e855c69d
AB
4275 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4276 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4277}
4278\f
4279
4280/* Functions to init/finish work with lv sets. */
4281
4282/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4283static void
4284init_lv_set (basic_block bb)
4285{
4286 gcc_assert (!BB_LV_SET_VALID_P (bb));
4287
4288 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4289 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4290 BB_LV_SET_VALID_P (bb) = true;
4291}
4292
4293/* Copy liveness information to BB from FROM_BB. */
4294static void
4295copy_lv_set_from (basic_block bb, basic_block from_bb)
4296{
4297 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4298
e855c69d
AB
4299 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4300 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4301}
e855c69d
AB
4302
4303/* Initialize lv set of all bb headers. */
4304void
4305init_lv_sets (void)
4306{
4307 basic_block bb;
4308
4309 /* Initialize of LV sets. */
4310 FOR_EACH_BB (bb)
4311 init_lv_set (bb);
4312
4313 /* Don't forget EXIT_BLOCK. */
4314 init_lv_set (EXIT_BLOCK_PTR);
4315}
4316
4317/* Release lv set of HEAD. */
4318static void
4319free_lv_set (basic_block bb)
4320{
4321 gcc_assert (BB_LV_SET (bb) != NULL);
4322
4323 return_regset_to_pool (BB_LV_SET (bb));
4324 BB_LV_SET (bb) = NULL;
4325 BB_LV_SET_VALID_P (bb) = false;
4326}
4327
4328/* Finalize lv sets of all bb headers. */
4329void
4330free_lv_sets (void)
4331{
4332 basic_block bb;
4333
4334 /* Don't forget EXIT_BLOCK. */
4335 free_lv_set (EXIT_BLOCK_PTR);
4336
4337 /* Free LV sets. */
4338 FOR_EACH_BB (bb)
4339 if (BB_LV_SET (bb))
4340 free_lv_set (bb);
4341}
4342
5c416724
DM
4343/* Mark AV_SET for BB as invalid, so this set will be updated the next time
4344 compute_av() processes BB. This function is called when creating new basic
4345 blocks, as well as for blocks (either new or existing) where new jumps are
4346 created when the control flow is being updated. */
e855c69d
AB
4347static void
4348invalidate_av_set (basic_block bb)
4349{
e855c69d
AB
4350 BB_AV_LEVEL (bb) = -1;
4351}
4352
4353/* Create initial data sets for BB (they will be invalid). */
4354static void
4355create_initial_data_sets (basic_block bb)
4356{
4357 if (BB_LV_SET (bb))
4358 BB_LV_SET_VALID_P (bb) = false;
4359 else
4360 BB_LV_SET (bb) = get_regset_from_pool ();
4361 invalidate_av_set (bb);
4362}
4363
4364/* Free av set of BB. */
4365static void
4366free_av_set (basic_block bb)
4367{
4368 av_set_clear (&BB_AV_SET (bb));
4369 BB_AV_LEVEL (bb) = 0;
4370}
4371
4372/* Free data sets of BB. */
4373void
4374free_data_sets (basic_block bb)
4375{
4376 free_lv_set (bb);
4377 free_av_set (bb);
4378}
4379
4380/* Exchange lv sets of TO and FROM. */
4381static void
4382exchange_lv_sets (basic_block to, basic_block from)
4383{
4384 {
4385 regset to_lv_set = BB_LV_SET (to);
4386
4387 BB_LV_SET (to) = BB_LV_SET (from);
4388 BB_LV_SET (from) = to_lv_set;
4389 }
4390
4391 {
4392 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4393
4394 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4395 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4396 }
4397}
4398
4399
4400/* Exchange av sets of TO and FROM. */
4401static void
4402exchange_av_sets (basic_block to, basic_block from)
4403{
4404 {
4405 av_set_t to_av_set = BB_AV_SET (to);
4406
4407 BB_AV_SET (to) = BB_AV_SET (from);
4408 BB_AV_SET (from) = to_av_set;
4409 }
4410
4411 {
4412 int to_av_level = BB_AV_LEVEL (to);
4413
4414 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4415 BB_AV_LEVEL (from) = to_av_level;
4416 }
4417}
4418
4419/* Exchange data sets of TO and FROM. */
4420void
4421exchange_data_sets (basic_block to, basic_block from)
4422{
4423 exchange_lv_sets (to, from);
4424 exchange_av_sets (to, from);
4425}
4426
4427/* Copy data sets of FROM to TO. */
4428void
4429copy_data_sets (basic_block to, basic_block from)
4430{
4431 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4432 gcc_assert (BB_AV_SET (to) == NULL);
4433
4434 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4435 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4436
4437 if (BB_AV_SET_VALID_P (from))
4438 {
4439 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4440 }
4441 if (BB_LV_SET_VALID_P (from))
4442 {
4443 gcc_assert (BB_LV_SET (to) != NULL);
4444 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4445 }
4446}
4447
4448/* Return an av set for INSN, if any. */
4449av_set_t
4450get_av_set (insn_t insn)
4451{
4452 av_set_t av_set;
4453
4454 gcc_assert (AV_SET_VALID_P (insn));
4455
4456 if (sel_bb_head_p (insn))
4457 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4458 else
4459 av_set = NULL;
4460
4461 return av_set;
4462}
4463
4464/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4465int
4466get_av_level (insn_t insn)
4467{
4468 int av_level;
4469
4470 gcc_assert (INSN_P (insn));
4471
4472 if (sel_bb_head_p (insn))
4473 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4474 else
4475 av_level = INSN_WS_LEVEL (insn);
4476
4477 return av_level;
4478}
4479
4480\f
4481
4482/* Variables to work with control-flow graph. */
4483
4484/* The basic block that already has been processed by the sched_data_update (),
4485 but hasn't been in sel_add_bb () yet. */
4486static VEC (basic_block, heap) *last_added_blocks = NULL;
4487
4488/* A pool for allocating successor infos. */
4489static struct
4490{
4491 /* A stack for saving succs_info structures. */
4492 struct succs_info *stack;
4493
4494 /* Its size. */
4495 int size;
4496
4497 /* Top of the stack. */
4498 int top;
4499
4500 /* Maximal value of the top. */
4501 int max_top;
4502} succs_info_pool;
4503
4504/* Functions to work with control-flow graph. */
4505
4506/* Return basic block note of BB. */
4507insn_t
4508sel_bb_head (basic_block bb)
4509{
4510 insn_t head;
4511
4512 if (bb == EXIT_BLOCK_PTR)
4513 {
4514 gcc_assert (exit_insn != NULL_RTX);
4515 head = exit_insn;
4516 }
4517 else
4518 {
4519 insn_t note;
4520
4521 note = bb_note (bb);
4522 head = next_nonnote_insn (note);
4523
89ad0f25 4524 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
e855c69d
AB
4525 head = NULL_RTX;
4526 }
4527
4528 return head;
4529}
4530
4531/* Return true if INSN is a basic block header. */
4532bool
4533sel_bb_head_p (insn_t insn)
4534{
4535 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4536}
4537
4538/* Return last insn of BB. */
4539insn_t
4540sel_bb_end (basic_block bb)
4541{
4542 if (sel_bb_empty_p (bb))
4543 return NULL_RTX;
4544
4545 gcc_assert (bb != EXIT_BLOCK_PTR);
4546
4547 return BB_END (bb);
4548}
4549
4550/* Return true if INSN is the last insn in its basic block. */
4551bool
4552sel_bb_end_p (insn_t insn)
4553{
4554 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4555}
4556
4557/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4558bool
4559sel_bb_empty_p (basic_block bb)
4560{
4561 return sel_bb_head (bb) == NULL;
4562}
4563
4564/* True when BB belongs to the current scheduling region. */
4565bool
4566in_current_region_p (basic_block bb)
4567{
4568 if (bb->index < NUM_FIXED_BLOCKS)
4569 return false;
4570
4571 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4572}
4573
4574/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4575basic_block
4576fallthru_bb_of_jump (rtx jump)
4577{
4578 if (!JUMP_P (jump))
4579 return NULL;
4580
e855c69d
AB
4581 if (!any_condjump_p (jump))
4582 return NULL;
4583
268bab85
AB
4584 /* A basic block that ends with a conditional jump may still have one successor
4585 (and be followed by a barrier), we are not interested. */
4586 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4587 return NULL;
4588
e855c69d
AB
4589 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4590}
4591
4592/* Remove all notes from BB. */
4593static void
4594init_bb (basic_block bb)
4595{
4596 remove_notes (bb_note (bb), BB_END (bb));
4597 BB_NOTE_LIST (bb) = note_list;
4598}
4599
4600void
a95b23b4 4601sel_init_bbs (bb_vec_t bbs)
e855c69d
AB
4602{
4603 const struct sched_scan_info_def ssi =
4604 {
4605 extend_bb_info, /* extend_bb */
4606 init_bb, /* init_bb */
4607 NULL, /* extend_insn */
4608 NULL /* init_insn */
4609 };
4610
a95b23b4 4611 sched_scan (&ssi, bbs);
e855c69d
AB
4612}
4613
7898b93b 4614/* Restore notes for the whole region. */
e855c69d 4615static void
7898b93b 4616sel_restore_notes (void)
e855c69d
AB
4617{
4618 int bb;
7898b93b 4619 insn_t insn;
e855c69d
AB
4620
4621 for (bb = 0; bb < current_nr_blocks; bb++)
4622 {
4623 basic_block first, last;
4624
4625 first = EBB_FIRST_BB (bb);
4626 last = EBB_LAST_BB (bb)->next_bb;
4627
4628 do
4629 {
4630 note_list = BB_NOTE_LIST (first);
4631 restore_other_notes (NULL, first);
4632 BB_NOTE_LIST (first) = NULL_RTX;
4633
7898b93b
AM
4634 FOR_BB_INSNS (first, insn)
4635 if (NONDEBUG_INSN_P (insn))
4636 reemit_notes (insn);
4637
e855c69d
AB
4638 first = first->next_bb;
4639 }
4640 while (first != last);
4641 }
4642}
4643
4644/* Free per-bb data structures. */
4645void
4646sel_finish_bbs (void)
4647{
7898b93b 4648 sel_restore_notes ();
e855c69d
AB
4649
4650 /* Remove current loop preheader from this loop. */
4651 if (current_loop_nest)
4652 sel_remove_loop_preheader ();
4653
4654 finish_region_bb_info ();
4655}
4656
4657/* Return true if INSN has a single successor of type FLAGS. */
4658bool
4659sel_insn_has_single_succ_p (insn_t insn, int flags)
4660{
4661 insn_t succ;
4662 succ_iterator si;
4663 bool first_p = true;
4664
4665 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4666 {
4667 if (first_p)
4668 first_p = false;
4669 else
4670 return false;
4671 }
4672
4673 return true;
4674}
4675
4676/* Allocate successor's info. */
4677static struct succs_info *
4678alloc_succs_info (void)
4679{
4680 if (succs_info_pool.top == succs_info_pool.max_top)
4681 {
4682 int i;
b8698a0f 4683
e855c69d
AB
4684 if (++succs_info_pool.max_top >= succs_info_pool.size)
4685 gcc_unreachable ();
4686
4687 i = ++succs_info_pool.top;
4688 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4689 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4690 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4691 }
4692 else
4693 succs_info_pool.top++;
4694
4695 return &succs_info_pool.stack[succs_info_pool.top];
4696}
4697
4698/* Free successor's info. */
4699void
4700free_succs_info (struct succs_info * sinfo)
4701{
b8698a0f 4702 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4703 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4704 succs_info_pool.top--;
4705
4706 /* Clear stale info. */
b8698a0f 4707 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4708 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4709 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4710 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4711 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4712 0, VEC_length (int, sinfo->probs_ok));
4713 sinfo->all_prob = 0;
4714 sinfo->succs_ok_n = 0;
4715 sinfo->all_succs_n = 0;
4716}
4717
b8698a0f 4718/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4719 to the FOR_EACH_SUCC_1 iterator. */
4720struct succs_info *
4721compute_succs_info (insn_t insn, short flags)
4722{
4723 succ_iterator si;
4724 insn_t succ;
4725 struct succs_info *sinfo = alloc_succs_info ();
4726
4727 /* Traverse *all* successors and decide what to do with each. */
4728 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4729 {
4730 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4731 perform code motion through inner loops. */
4732 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4733
4734 if (current_flags & flags)
4735 {
4736 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4737 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4738 /* FIXME: Improve calculation when skipping
e855c69d 4739 inner loop to exits. */
b8698a0f
L
4740 (si.bb_end
4741 ? si.e1->probability
e855c69d
AB
4742 : REG_BR_PROB_BASE));
4743 sinfo->succs_ok_n++;
4744 }
4745 else
4746 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4747
4748 /* Compute all_prob. */
4749 if (!si.bb_end)
4750 sinfo->all_prob = REG_BR_PROB_BASE;
4751 else
4752 sinfo->all_prob += si.e1->probability;
4753
4754 sinfo->all_succs_n++;
4755 }
4756
4757 return sinfo;
4758}
4759
b8698a0f 4760/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4761 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4762static void
4763cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4764{
4765 edge e;
4766 edge_iterator ei;
4767
4768 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4769
4770 FOR_EACH_EDGE (e, ei, bb->preds)
4771 {
4772 basic_block pred_bb = e->src;
4773 insn_t bb_end = BB_END (pred_bb);
4774
3e6a3f6f
AB
4775 if (!in_current_region_p (pred_bb))
4776 {
4777 gcc_assert (flag_sel_sched_pipelining_outer_loops
4778 && current_loop_nest);
4779 continue;
4780 }
e855c69d
AB
4781
4782 if (sel_bb_empty_p (pred_bb))
4783 cfg_preds_1 (pred_bb, preds, n, size);
4784 else
4785 {
4786 if (*n == *size)
b8698a0f 4787 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4788 (*size = 2 * *size + 1));
4789 (*preds)[(*n)++] = bb_end;
4790 }
4791 }
4792
3e6a3f6f
AB
4793 gcc_assert (*n != 0
4794 || (flag_sel_sched_pipelining_outer_loops
4795 && current_loop_nest));
e855c69d
AB
4796}
4797
b8698a0f
L
4798/* Find all predecessors of BB and record them in PREDS and their number
4799 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4800 edges are processed. */
4801static void
4802cfg_preds (basic_block bb, insn_t **preds, int *n)
4803{
4804 int size = 0;
4805
4806 *preds = NULL;
4807 *n = 0;
4808 cfg_preds_1 (bb, preds, n, &size);
4809}
4810
4811/* Returns true if we are moving INSN through join point. */
4812bool
4813sel_num_cfg_preds_gt_1 (insn_t insn)
4814{
4815 basic_block bb;
4816
4817 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4818 return false;
4819
4820 bb = BLOCK_FOR_INSN (insn);
4821
4822 while (1)
4823 {
4824 if (EDGE_COUNT (bb->preds) > 1)
4825 return true;
4826
4827 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4828 bb = EDGE_PRED (bb, 0)->src;
4829
4830 if (!sel_bb_empty_p (bb))
4831 break;
4832 }
4833
4834 return false;
4835}
4836
b8698a0f 4837/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4838 code in sched-ebb.c. */
4839bool
4840bb_ends_ebb_p (basic_block bb)
4841{
4842 basic_block next_bb = bb_next_bb (bb);
4843 edge e;
b8698a0f 4844
e855c69d
AB
4845 if (next_bb == EXIT_BLOCK_PTR
4846 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4847 || (LABEL_P (BB_HEAD (next_bb))
4848 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4849 Work around that. */
4850 && !single_pred_p (next_bb)))
4851 return true;
4852
4853 if (!in_current_region_p (next_bb))
4854 return true;
4855
0fd4b31d
NF
4856 e = find_fallthru_edge (bb->succs);
4857 if (e)
4858 {
4859 gcc_assert (e->dest == next_bb);
4860
4861 return false;
4862 }
e855c69d
AB
4863
4864 return true;
4865}
4866
4867/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4868 successor of INSN. */
4869bool
4870in_same_ebb_p (insn_t insn, insn_t succ)
4871{
4872 basic_block ptr = BLOCK_FOR_INSN (insn);
4873
4874 for(;;)
4875 {
4876 if (ptr == BLOCK_FOR_INSN (succ))
4877 return true;
b8698a0f 4878
e855c69d
AB
4879 if (bb_ends_ebb_p (ptr))
4880 return false;
4881
4882 ptr = bb_next_bb (ptr);
4883 }
4884
4885 gcc_unreachable ();
4886 return false;
4887}
4888
4889/* Recomputes the reverse topological order for the function and
4890 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4891 modified appropriately. */
4892static void
4893recompute_rev_top_order (void)
4894{
4895 int *postorder;
4896 int n_blocks, i;
4897
4898 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4899 {
b8698a0f 4900 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4901 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4902 rev_top_order_index_len);
4903 }
4904
4905 postorder = XNEWVEC (int, n_basic_blocks);
4906
4907 n_blocks = post_order_compute (postorder, true, false);
4908 gcc_assert (n_basic_blocks == n_blocks);
4909
4910 /* Build reverse function: for each basic block with BB->INDEX == K
4911 rev_top_order_index[K] is it's reverse topological sort number. */
4912 for (i = 0; i < n_blocks; i++)
4913 {
4914 gcc_assert (postorder[i] < rev_top_order_index_len);
4915 rev_top_order_index[postorder[i]] = i;
4916 }
4917
4918 free (postorder);
4919}
4920
4921/* Clear all flags from insns in BB that could spoil its rescheduling. */
4922void
4923clear_outdated_rtx_info (basic_block bb)
4924{
4925 rtx insn;
4926
4927 FOR_BB_INSNS (bb, insn)
4928 if (INSN_P (insn))
4929 {
4930 SCHED_GROUP_P (insn) = 0;
4931 INSN_AFTER_STALL_P (insn) = 0;
4932 INSN_SCHED_TIMES (insn) = 0;
4933 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4934
4935 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4936 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4937 the expression, and currently we'll be unable to do this. */
4938 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4939 }
4940}
4941
4942/* Add BB_NOTE to the pool of available basic block notes. */
4943static void
4944return_bb_to_pool (basic_block bb)
4945{
4946 rtx note = bb_note (bb);
4947
4948 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4949 && bb->aux == NULL);
4950
4951 /* It turns out that current cfg infrastructure does not support
4952 reuse of basic blocks. Don't bother for now. */
4953 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4954}
4955
4956/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4957static rtx
4958get_bb_note_from_pool (void)
4959{
4960 if (VEC_empty (rtx, bb_note_pool))
4961 return NULL_RTX;
4962 else
4963 {
4964 rtx note = VEC_pop (rtx, bb_note_pool);
4965
4966 PREV_INSN (note) = NULL_RTX;
4967 NEXT_INSN (note) = NULL_RTX;
4968
4969 return note;
4970 }
4971}
4972
4973/* Free bb_note_pool. */
4974void
4975free_bb_note_pool (void)
4976{
4977 VEC_free (rtx, heap, bb_note_pool);
4978}
4979
4980/* Setup scheduler pool and successor structure. */
4981void
4982alloc_sched_pools (void)
4983{
4984 int succs_size;
4985
4986 succs_size = MAX_WS + 1;
b8698a0f 4987 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4988 succs_info_pool.size = succs_size;
4989 succs_info_pool.top = -1;
4990 succs_info_pool.max_top = -1;
4991
b8698a0f 4992 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4993 sizeof (struct _list_node), 500);
4994}
4995
4996/* Free the pools. */
4997void
4998free_sched_pools (void)
4999{
5000 int i;
b8698a0f 5001
e855c69d
AB
5002 free_alloc_pool (sched_lists_pool);
5003 gcc_assert (succs_info_pool.top == -1);
5004 for (i = 0; i < succs_info_pool.max_top; i++)
5005 {
5006 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
5007 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
5008 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
5009 }
5010 free (succs_info_pool.stack);
5011}
5012\f
5013
b8698a0f 5014/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
5015 topological order. */
5016static int
5017find_place_to_insert_bb (basic_block bb, int rgn)
5018{
5019 bool has_preds_outside_rgn = false;
5020 edge e;
5021 edge_iterator ei;
b8698a0f 5022
e855c69d
AB
5023 /* Find whether we have preds outside the region. */
5024 FOR_EACH_EDGE (e, ei, bb->preds)
5025 if (!in_current_region_p (e->src))
5026 {
5027 has_preds_outside_rgn = true;
5028 break;
5029 }
b8698a0f 5030
e855c69d
AB
5031 /* Recompute the top order -- needed when we have > 1 pred
5032 and in case we don't have preds outside. */
5033 if (flag_sel_sched_pipelining_outer_loops
5034 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5035 {
5036 int i, bbi = bb->index, cur_bbi;
5037
5038 recompute_rev_top_order ();
5039 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5040 {
5041 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 5042 if (rev_top_order_index[bbi]
e855c69d
AB
5043 < rev_top_order_index[cur_bbi])
5044 break;
5045 }
b8698a0f 5046
e855c69d
AB
5047 /* We skipped the right block, so we increase i. We accomodate
5048 it for increasing by step later, so we decrease i. */
5049 return (i + 1) - 1;
5050 }
5051 else if (has_preds_outside_rgn)
5052 {
5053 /* This is the case when we generate an extra empty block
5054 to serve as region head during pipelining. */
5055 e = EDGE_SUCC (bb, 0);
5056 gcc_assert (EDGE_COUNT (bb->succs) == 1
5057 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5058 && (BLOCK_TO_BB (e->dest->index) == 0));
5059 return -1;
5060 }
5061
5062 /* We don't have preds outside the region. We should have
5063 the only pred, because the multiple preds case comes from
5064 the pipelining of outer loops, and that is handled above.
5065 Just take the bbi of this single pred. */
5066 if (EDGE_COUNT (bb->succs) > 0)
5067 {
5068 int pred_bbi;
b8698a0f 5069
e855c69d 5070 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 5071
e855c69d
AB
5072 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5073 return BLOCK_TO_BB (pred_bbi);
5074 }
5075 else
5076 /* BB has no successors. It is safe to put it in the end. */
5077 return current_nr_blocks - 1;
5078}
5079
5080/* Deletes an empty basic block freeing its data. */
5081static void
5082delete_and_free_basic_block (basic_block bb)
5083{
5084 gcc_assert (sel_bb_empty_p (bb));
5085
5086 if (BB_LV_SET (bb))
5087 free_lv_set (bb);
5088
5089 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5090
b8698a0f
L
5091 /* Can't assert av_set properties because we use sel_aremove_bb
5092 when removing loop preheader from the region. At the point of
e855c69d
AB
5093 removing the preheader we already have deallocated sel_region_bb_info. */
5094 gcc_assert (BB_LV_SET (bb) == NULL
5095 && !BB_LV_SET_VALID_P (bb)
5096 && BB_AV_LEVEL (bb) == 0
5097 && BB_AV_SET (bb) == NULL);
b8698a0f 5098
e855c69d
AB
5099 delete_basic_block (bb);
5100}
5101
5102/* Add BB to the current region and update the region data. */
5103static void
5104add_block_to_current_region (basic_block bb)
5105{
5106 int i, pos, bbi = -2, rgn;
5107
5108 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5109 bbi = find_place_to_insert_bb (bb, rgn);
5110 bbi += 1;
5111 pos = RGN_BLOCKS (rgn) + bbi;
5112
5113 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5114 && ebb_head[bbi] == pos);
b8698a0f 5115
e855c69d
AB
5116 /* Make a place for the new block. */
5117 extend_regions ();
5118
5119 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5120 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 5121
e855c69d
AB
5122 memmove (rgn_bb_table + pos + 1,
5123 rgn_bb_table + pos,
5124 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5125
5126 /* Initialize data for BB. */
5127 rgn_bb_table[pos] = bb->index;
5128 BLOCK_TO_BB (bb->index) = bbi;
5129 CONTAINING_RGN (bb->index) = rgn;
5130
5131 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5132
e855c69d
AB
5133 for (i = rgn + 1; i <= nr_regions; i++)
5134 RGN_BLOCKS (i)++;
5135}
5136
5137/* Remove BB from the current region and update the region data. */
5138static void
5139remove_bb_from_region (basic_block bb)
5140{
5141 int i, pos, bbi = -2, rgn;
5142
5143 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5144 bbi = BLOCK_TO_BB (bb->index);
5145 pos = RGN_BLOCKS (rgn) + bbi;
5146
5147 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5148 && ebb_head[bbi] == pos);
5149
5150 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5151 BLOCK_TO_BB (rgn_bb_table[i])--;
5152
5153 memmove (rgn_bb_table + pos,
5154 rgn_bb_table + pos + 1,
5155 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5156
5157 RGN_NR_BLOCKS (rgn)--;
5158 for (i = rgn + 1; i <= nr_regions; i++)
5159 RGN_BLOCKS (i)--;
5160}
5161
b8698a0f 5162/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5163 blocks from last_added_blocks vector. */
5164static void
5165sel_add_bb (basic_block bb)
5166{
5167 /* Extend luids so that new notes will receive zero luids. */
a95b23b4 5168 sched_extend_luids ();
e855c69d 5169 sched_init_bbs ();
a95b23b4 5170 sel_init_bbs (last_added_blocks);
e855c69d 5171
b8698a0f 5172 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5173 the only element that equals to bb; otherwise, the vector
5174 should not be NULL. */
5175 gcc_assert (last_added_blocks != NULL);
b8698a0f 5176
e855c69d
AB
5177 if (bb != NULL)
5178 {
5179 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
5180 && VEC_index (basic_block,
5181 last_added_blocks, 0) == bb);
e855c69d
AB
5182 add_block_to_current_region (bb);
5183
5184 /* We associate creating/deleting data sets with the first insn
5185 appearing / disappearing in the bb. */
5186 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5187 create_initial_data_sets (bb);
b8698a0f 5188
e855c69d
AB
5189 VEC_free (basic_block, heap, last_added_blocks);
5190 }
5191 else
5192 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5193 {
5194 int i;
5195 basic_block temp_bb = NULL;
5196
b8698a0f 5197 for (i = 0;
e855c69d
AB
5198 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5199 {
5200 add_block_to_current_region (bb);
5201 temp_bb = bb;
5202 }
5203
b8698a0f 5204 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5205 to update. */
5206 gcc_assert (temp_bb != NULL);
5207 bb = temp_bb;
5208
5209 VEC_free (basic_block, heap, last_added_blocks);
5210 }
5211
5212 rgn_setup_region (CONTAINING_RGN (bb->index));
5213}
5214
b8698a0f 5215/* Remove BB from the current region and update all data.
e855c69d
AB
5216 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5217static void
5218sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5219{
262d8232
AB
5220 unsigned idx = bb->index;
5221
e855c69d 5222 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5223
e855c69d
AB
5224 remove_bb_from_region (bb);
5225 return_bb_to_pool (bb);
262d8232 5226 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5227
e855c69d 5228 if (remove_from_cfg_p)
00c4e97c
AB
5229 {
5230 basic_block succ = single_succ (bb);
5231 delete_and_free_basic_block (bb);
5232 set_immediate_dominator (CDI_DOMINATORS, succ,
5233 recompute_dominator (CDI_DOMINATORS, succ));
5234 }
e855c69d 5235
262d8232 5236 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5237}
5238
5239/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5240static void
5241move_bb_info (basic_block merge_bb, basic_block empty_bb)
5242{
b7b5540a
AB
5243 if (in_current_region_p (merge_bb))
5244 concat_note_lists (BB_NOTE_LIST (empty_bb),
5245 &BB_NOTE_LIST (merge_bb));
e855c69d
AB
5246 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5247
5248}
5249
e855c69d
AB
5250/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5251 region, but keep it in CFG. */
5252static void
5253remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5254{
5255 /* The block should contain just a note or a label.
5256 We try to check whether it is unused below. */
5257 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5258 || LABEL_P (BB_HEAD (empty_bb)));
5259
5260 /* If basic block has predecessors or successors, redirect them. */
5261 if (remove_from_cfg_p
5262 && (EDGE_COUNT (empty_bb->preds) > 0
5263 || EDGE_COUNT (empty_bb->succs) > 0))
5264 {
5265 basic_block pred;
5266 basic_block succ;
5267
5268 /* We need to init PRED and SUCC before redirecting edges. */
5269 if (EDGE_COUNT (empty_bb->preds) > 0)
5270 {
5271 edge e;
5272
5273 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5274
5275 e = EDGE_PRED (empty_bb, 0);
5276 gcc_assert (e->src == empty_bb->prev_bb
5277 && (e->flags & EDGE_FALLTHRU));
5278
5279 pred = empty_bb->prev_bb;
5280 }
5281 else
5282 pred = NULL;
5283
5284 if (EDGE_COUNT (empty_bb->succs) > 0)
5285 {
5286 /* We do not check fallthruness here as above, because
5287 after removing a jump the edge may actually be not fallthru. */
5288 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5289 succ = EDGE_SUCC (empty_bb, 0)->dest;
5290 }
5291 else
5292 succ = NULL;
5293
5294 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5295 {
5296 edge e = EDGE_PRED (empty_bb, 0);
5297
5298 if (e->flags & EDGE_FALLTHRU)
5299 redirect_edge_succ_nodup (e, succ);
5300 else
5301 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5302 }
5303
5304 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5305 {
5306 edge e = EDGE_SUCC (empty_bb, 0);
5307
5308 if (find_edge (pred, e->dest) == NULL)
5309 redirect_edge_pred (e, pred);
5310 }
5311 }
5312
5313 /* Finish removing. */
5314 sel_remove_bb (empty_bb, remove_from_cfg_p);
5315}
5316
b8698a0f 5317/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5318 per-bb data structures. */
5319static basic_block
5320sel_create_basic_block (void *headp, void *endp, basic_block after)
5321{
5322 basic_block new_bb;
5323 insn_t new_bb_note;
b8698a0f
L
5324
5325 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5326 || last_added_blocks == NULL);
5327
5328 new_bb_note = get_bb_note_from_pool ();
5329
5330 if (new_bb_note == NULL_RTX)
5331 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5332 else
5333 {
5334 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5335 new_bb_note, after);
5336 new_bb->aux = NULL;
5337 }
5338
5339 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5340
5341 return new_bb;
5342}
5343
5344/* Implement sched_init_only_bb (). */
5345static void
5346sel_init_only_bb (basic_block bb, basic_block after)
5347{
5348 gcc_assert (after == NULL);
5349
5350 extend_regions ();
5351 rgn_make_new_region_out_of_new_block (bb);
5352}
5353
5354/* Update the latch when we've splitted or merged it from FROM block to TO.
5355 This should be checked for all outer loops, too. */
5356static void
5357change_loops_latches (basic_block from, basic_block to)
5358{
5359 gcc_assert (from != to);
5360
5361 if (current_loop_nest)
5362 {
5363 struct loop *loop;
5364
5365 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5366 if (considered_for_pipelining_p (loop) && loop->latch == from)
5367 {
5368 gcc_assert (loop == current_loop_nest);
5369 loop->latch = to;
5370 gcc_assert (loop_latch_edge (loop));
5371 }
5372 }
5373}
5374
b8698a0f 5375/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5376 per-bb data structures. Returns the newly created bb. */
5377static basic_block
5378sel_split_block (basic_block bb, rtx after)
5379{
5380 basic_block new_bb;
5381 insn_t insn;
5382
5383 new_bb = sched_split_block_1 (bb, after);
5384 sel_add_bb (new_bb);
5385
5386 /* This should be called after sel_add_bb, because this uses
b8698a0f 5387 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5388 FIXME: this function may be a no-op now. */
5389 change_loops_latches (bb, new_bb);
5390
5391 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5392 FOR_BB_INSNS (new_bb, insn)
5393 if (INSN_P (insn))
5394 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5395
5396 if (sel_bb_empty_p (bb))
5397 {
5398 gcc_assert (!sel_bb_empty_p (new_bb));
5399
5400 /* NEW_BB has data sets that need to be updated and BB holds
5401 data sets that should be removed. Exchange these data sets
5402 so that we won't lose BB's valid data sets. */
5403 exchange_data_sets (new_bb, bb);
5404 free_data_sets (bb);
5405 }
5406
5407 if (!sel_bb_empty_p (new_bb)
5408 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5409 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5410
5411 return new_bb;
5412}
5413
5414/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5415 Otherwise returns NULL. */
5416static rtx
5417check_for_new_jump (basic_block bb, int prev_max_uid)
5418{
5419 rtx end;
5420
5421 end = sel_bb_end (bb);
5422 if (end && INSN_UID (end) >= prev_max_uid)
5423 return end;
5424 return NULL;
5425}
5426
b8698a0f 5427/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5428 New means having UID at least equal to PREV_MAX_UID. */
5429static rtx
5430find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5431{
5432 rtx jump;
5433
5434 /* Return immediately if no new insns were emitted. */
5435 if (get_max_uid () == prev_max_uid)
5436 return NULL;
b8698a0f 5437
e855c69d
AB
5438 /* Now check both blocks for new jumps. It will ever be only one. */
5439 if ((jump = check_for_new_jump (from, prev_max_uid)))
5440 return jump;
5441
5442 if (jump_bb != NULL
5443 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5444 return jump;
5445 return NULL;
5446}
5447
5448/* Splits E and adds the newly created basic block to the current region.
5449 Returns this basic block. */
5450basic_block
5451sel_split_edge (edge e)
5452{
5453 basic_block new_bb, src, other_bb = NULL;
5454 int prev_max_uid;
5455 rtx jump;
5456
5457 src = e->src;
5458 prev_max_uid = get_max_uid ();
5459 new_bb = split_edge (e);
5460
b8698a0f 5461 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5462 && current_loop_nest)
5463 {
5464 int i;
5465 basic_block bb;
5466
b8698a0f 5467 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5468 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5469 for (i = 0;
e855c69d
AB
5470 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5471 if (!bb->loop_father)
5472 {
5473 add_bb_to_loop (bb, e->dest->loop_father);
5474
5475 gcc_assert (!other_bb && (new_bb->index != bb->index));
5476 other_bb = bb;
5477 }
5478 }
5479
5480 /* Add all last_added_blocks to the region. */
5481 sel_add_bb (NULL);
5482
5483 jump = find_new_jump (src, new_bb, prev_max_uid);
5484 if (jump)
5485 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5486
5487 /* Put the correct lv set on this block. */
5488 if (other_bb && !sel_bb_empty_p (other_bb))
5489 compute_live (sel_bb_head (other_bb));
5490
5491 return new_bb;
5492}
5493
5494/* Implement sched_create_empty_bb (). */
5495static basic_block
5496sel_create_empty_bb (basic_block after)
5497{
5498 basic_block new_bb;
5499
5500 new_bb = sched_create_empty_bb_1 (after);
5501
5502 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5503 later. */
5504 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5505 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5506
5507 VEC_free (basic_block, heap, last_added_blocks);
5508 return new_bb;
5509}
5510
5511/* Implement sched_create_recovery_block. ORIG_INSN is where block
5512 will be splitted to insert a check. */
5513basic_block
5514sel_create_recovery_block (insn_t orig_insn)
5515{
5516 basic_block first_bb, second_bb, recovery_block;
5517 basic_block before_recovery = NULL;
5518 rtx jump;
5519
5520 first_bb = BLOCK_FOR_INSN (orig_insn);
5521 if (sel_bb_end_p (orig_insn))
5522 {
5523 /* Avoid introducing an empty block while splitting. */
5524 gcc_assert (single_succ_p (first_bb));
5525 second_bb = single_succ (first_bb);
5526 }
5527 else
5528 second_bb = sched_split_block (first_bb, orig_insn);
5529
5530 recovery_block = sched_create_recovery_block (&before_recovery);
5531 if (before_recovery)
5532 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5533
5534 gcc_assert (sel_bb_empty_p (recovery_block));
5535 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5536 if (current_loops != NULL)
5537 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5538
e855c69d 5539 sel_add_bb (recovery_block);
b8698a0f 5540
e855c69d
AB
5541 jump = BB_END (recovery_block);
5542 gcc_assert (sel_bb_head (recovery_block) == jump);
5543 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5544
5545 return recovery_block;
5546}
5547
5548/* Merge basic block B into basic block A. */
262d8232 5549static void
e855c69d
AB
5550sel_merge_blocks (basic_block a, basic_block b)
5551{
262d8232
AB
5552 gcc_assert (sel_bb_empty_p (b)
5553 && EDGE_COUNT (b->preds) == 1
5554 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5555
262d8232
AB
5556 move_bb_info (b->prev_bb, b);
5557 remove_empty_bb (b, false);
5558 merge_blocks (a, b);
e855c69d
AB
5559 change_loops_latches (b, a);
5560}
5561
5562/* A wrapper for redirect_edge_and_branch_force, which also initializes
5563 data structures for possibly created bb and insns. Returns the newly
5564 added bb or NULL, when a bb was not needed. */
5565void
5566sel_redirect_edge_and_branch_force (edge e, basic_block to)
5567{
00c4e97c 5568 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d
AB
5569 int prev_max_uid;
5570 rtx jump;
b8698a0f 5571
00c4e97c
AB
5572 /* This function is now used only for bookkeeping code creation, where
5573 we'll never get the single pred of orig_dest block and thus will not
5574 hit unreachable blocks when updating dominator info. */
5575 gcc_assert (!sel_bb_empty_p (e->src)
5576 && !single_pred_p (orig_dest));
e855c69d
AB
5577 src = e->src;
5578 prev_max_uid = get_max_uid ();
5579 jump_bb = redirect_edge_and_branch_force (e, to);
5580
5581 if (jump_bb != NULL)
5582 sel_add_bb (jump_bb);
5583
5584 /* This function could not be used to spoil the loop structure by now,
5585 thus we don't care to update anything. But check it to be sure. */
5586 if (current_loop_nest
5587 && pipelining_p)
5588 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5589
e855c69d
AB
5590 jump = find_new_jump (src, jump_bb, prev_max_uid);
5591 if (jump)
5592 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
00c4e97c
AB
5593 set_immediate_dominator (CDI_DOMINATORS, to,
5594 recompute_dominator (CDI_DOMINATORS, to));
5595 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5596 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5597}
5598
b59ab570
AM
5599/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5600 redirected edge are in reverse topological order. */
5601bool
e855c69d
AB
5602sel_redirect_edge_and_branch (edge e, basic_block to)
5603{
5604 bool latch_edge_p;
00c4e97c 5605 basic_block src, orig_dest = e->dest;
e855c69d
AB
5606 int prev_max_uid;
5607 rtx jump;
f2c45f08 5608 edge redirected;
b59ab570 5609 bool recompute_toporder_p = false;
00c4e97c 5610 bool maybe_unreachable = single_pred_p (orig_dest);
e855c69d
AB
5611
5612 latch_edge_p = (pipelining_p
5613 && current_loop_nest
5614 && e == loop_latch_edge (current_loop_nest));
5615
5616 src = e->src;
5617 prev_max_uid = get_max_uid ();
f2c45f08
AM
5618
5619 redirected = redirect_edge_and_branch (e, to);
5620
5621 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5622
5623 /* When we've redirected a latch edge, update the header. */
5624 if (latch_edge_p)
5625 {
5626 current_loop_nest->header = to;
5627 gcc_assert (loop_latch_edge (current_loop_nest));
5628 }
5629
b59ab570
AM
5630 /* In rare situations, the topological relation between the blocks connected
5631 by the redirected edge can change (see PR42245 for an example). Update
5632 block_to_bb/bb_to_block. */
5633 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5634 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5635 recompute_toporder_p = true;
5636
e855c69d
AB
5637 jump = find_new_jump (src, NULL, prev_max_uid);
5638 if (jump)
5639 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570 5640
00c4e97c
AB
5641 /* Only update dominator info when we don't have unreachable blocks.
5642 Otherwise we'll update in maybe_tidy_empty_bb. */
5643 if (!maybe_unreachable)
5644 {
5645 set_immediate_dominator (CDI_DOMINATORS, to,
5646 recompute_dominator (CDI_DOMINATORS, to));
5647 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5648 recompute_dominator (CDI_DOMINATORS, orig_dest));
5649 }
b59ab570 5650 return recompute_toporder_p;
e855c69d
AB
5651}
5652
5653/* This variable holds the cfg hooks used by the selective scheduler. */
5654static struct cfg_hooks sel_cfg_hooks;
5655
5656/* Register sel-sched cfg hooks. */
5657void
5658sel_register_cfg_hooks (void)
5659{
5660 sched_split_block = sel_split_block;
5661
5662 orig_cfg_hooks = get_cfg_hooks ();
5663 sel_cfg_hooks = orig_cfg_hooks;
5664
5665 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5666
5667 set_cfg_hooks (sel_cfg_hooks);
5668
5669 sched_init_only_bb = sel_init_only_bb;
5670 sched_split_block = sel_split_block;
5671 sched_create_empty_bb = sel_create_empty_bb;
5672}
5673
5674/* Unregister sel-sched cfg hooks. */
5675void
5676sel_unregister_cfg_hooks (void)
5677{
5678 sched_create_empty_bb = NULL;
5679 sched_split_block = NULL;
5680 sched_init_only_bb = NULL;
5681
5682 set_cfg_hooks (orig_cfg_hooks);
5683}
5684\f
5685
5686/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5687 LABEL is where this jump should be directed. */
5688rtx
5689create_insn_rtx_from_pattern (rtx pattern, rtx label)
5690{
5691 rtx insn_rtx;
5692
5693 gcc_assert (!INSN_P (pattern));
5694
5695 start_sequence ();
5696
5697 if (label == NULL_RTX)
5698 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5699 else if (DEBUG_INSN_P (label))
5700 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5701 else
5702 {
5703 insn_rtx = emit_jump_insn (pattern);
5704 JUMP_LABEL (insn_rtx) = label;
5705 ++LABEL_NUSES (label);
5706 }
5707
5708 end_sequence ();
5709
a95b23b4 5710 sched_extend_luids ();
e855c69d
AB
5711 sched_extend_target ();
5712 sched_deps_init (false);
5713
5714 /* Initialize INSN_CODE now. */
5715 recog_memoized (insn_rtx);
5716 return insn_rtx;
5717}
5718
5719/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5720 must not be clonable. */
5721vinsn_t
5722create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5723{
5724 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5725
5726 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5727 return vinsn_create (insn_rtx, force_unique_p);
5728}
5729
5730/* Create a copy of INSN_RTX. */
5731rtx
5732create_copy_of_insn_rtx (rtx insn_rtx)
5733{
d734e6c4 5734 rtx res, link;
e855c69d 5735
b5b8b0ac
AO
5736 if (DEBUG_INSN_P (insn_rtx))
5737 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5738 insn_rtx);
5739
e855c69d
AB
5740 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5741
5742 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5743 NULL_RTX);
d734e6c4
JJ
5744
5745 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5746 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5747 there too, but are supposed to be sticky, so we copy them. */
5748 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5749 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5750 && REG_NOTE_KIND (link) != REG_EQUAL
5751 && REG_NOTE_KIND (link) != REG_EQUIV)
5752 {
5753 if (GET_CODE (link) == EXPR_LIST)
5754 add_reg_note (res, REG_NOTE_KIND (link),
5755 copy_insn_1 (XEXP (link, 0)));
5756 else
5757 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5758 }
5759
e855c69d
AB
5760 return res;
5761}
5762
5763/* Change vinsn field of EXPR to hold NEW_VINSN. */
5764void
5765change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5766{
5767 vinsn_detach (EXPR_VINSN (expr));
5768
5769 EXPR_VINSN (expr) = new_vinsn;
5770 vinsn_attach (new_vinsn);
5771}
5772
5773/* Helpers for global init. */
5774/* This structure is used to be able to call existing bundling mechanism
5775 and calculate insn priorities. */
b8698a0f 5776static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5777{
5778 NULL, /* init_ready_list */
5779 NULL, /* can_schedule_ready_p */
5780 NULL, /* schedule_more_p */
5781 NULL, /* new_ready */
5782 NULL, /* rgn_rank */
5783 sel_print_insn, /* rgn_print_insn */
5784 contributes_to_priority,
356c23b3 5785 NULL, /* insn_finishes_block_p */
e855c69d
AB
5786
5787 NULL, NULL,
5788 NULL, NULL,
5789 0, 0,
5790
5791 NULL, /* add_remove_insn */
5792 NULL, /* begin_schedule_ready */
86014d07 5793 NULL, /* begin_move_insn */
e855c69d 5794 NULL, /* advance_target_bb */
26965010
BS
5795
5796 NULL,
5797 NULL,
5798
e855c69d
AB
5799 SEL_SCHED | NEW_BBS
5800};
5801
5802/* Setup special insns used in the scheduler. */
b8698a0f 5803void
e855c69d
AB
5804setup_nop_and_exit_insns (void)
5805{
5806 gcc_assert (nop_pattern == NULL_RTX
5807 && exit_insn == NULL_RTX);
5808
9ef1bf71 5809 nop_pattern = constm1_rtx;
e855c69d
AB
5810
5811 start_sequence ();
5812 emit_insn (nop_pattern);
5813 exit_insn = get_insns ();
5814 end_sequence ();
5815 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5816}
5817
5818/* Free special insns used in the scheduler. */
5819void
5820free_nop_and_exit_insns (void)
5821{
5822 exit_insn = NULL_RTX;
5823 nop_pattern = NULL_RTX;
5824}
5825
5826/* Setup a special vinsn used in new insns initialization. */
5827void
5828setup_nop_vinsn (void)
5829{
5830 nop_vinsn = vinsn_create (exit_insn, false);
5831 vinsn_attach (nop_vinsn);
5832}
5833
5834/* Free a special vinsn used in new insns initialization. */
5835void
5836free_nop_vinsn (void)
5837{
5838 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5839 vinsn_detach (nop_vinsn);
5840 nop_vinsn = NULL;
5841}
5842
5843/* Call a set_sched_flags hook. */
5844void
5845sel_set_sched_flags (void)
5846{
b8698a0f 5847 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5848 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5849 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5850 sometimes change c_s_i later. So put the correct flags again. */
5851 if (spec_info && targetm.sched.set_sched_flags)
5852 targetm.sched.set_sched_flags (spec_info);
5853}
5854
5855/* Setup pointers to global sched info structures. */
5856void
5857sel_setup_sched_infos (void)
5858{
5859 rgn_setup_common_sched_info ();
5860
5861 memcpy (&sel_common_sched_info, common_sched_info,
5862 sizeof (sel_common_sched_info));
5863
5864 sel_common_sched_info.fix_recovery_cfg = NULL;
5865 sel_common_sched_info.add_block = NULL;
5866 sel_common_sched_info.estimate_number_of_insns
5867 = sel_estimate_number_of_insns;
5868 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5869 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5870
5871 common_sched_info = &sel_common_sched_info;
5872
5873 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5874 current_sched_info->sched_max_insns_priority =
e855c69d 5875 get_rgn_sched_max_insns_priority ();
b8698a0f 5876
e855c69d
AB
5877 sel_set_sched_flags ();
5878}
5879\f
5880
5881/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5882 *BB_ORD_INDEX after that is increased. */
5883static void
5884sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5885{
5886 RGN_NR_BLOCKS (rgn) += 1;
5887 RGN_DONT_CALC_DEPS (rgn) = 0;
5888 RGN_HAS_REAL_EBB (rgn) = 0;
5889 CONTAINING_RGN (bb->index) = rgn;
5890 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5891 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5892 (*bb_ord_index)++;
5893
5894 /* FIXME: it is true only when not scheduling ebbs. */
5895 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5896}
5897
5898/* Functions to support pipelining of outer loops. */
5899
5900/* Creates a new empty region and returns it's number. */
5901static int
5902sel_create_new_region (void)
5903{
5904 int new_rgn_number = nr_regions;
5905
5906 RGN_NR_BLOCKS (new_rgn_number) = 0;
5907
5908 /* FIXME: This will work only when EBBs are not created. */
5909 if (new_rgn_number != 0)
b8698a0f 5910 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5911 RGN_NR_BLOCKS (new_rgn_number - 1);
5912 else
5913 RGN_BLOCKS (new_rgn_number) = 0;
5914
5915 /* Set the blocks of the next region so the other functions may
5916 calculate the number of blocks in the region. */
b8698a0f 5917 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5918 RGN_NR_BLOCKS (new_rgn_number);
5919
5920 nr_regions++;
5921
5922 return new_rgn_number;
5923}
5924
5925/* If X has a smaller topological sort number than Y, returns -1;
5926 if greater, returns 1. */
5927static int
5928bb_top_order_comparator (const void *x, const void *y)
5929{
5930 basic_block bb1 = *(const basic_block *) x;
5931 basic_block bb2 = *(const basic_block *) y;
5932
b8698a0f
L
5933 gcc_assert (bb1 == bb2
5934 || rev_top_order_index[bb1->index]
e855c69d
AB
5935 != rev_top_order_index[bb2->index]);
5936
5937 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5938 bbs with greater number should go earlier. */
5939 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5940 return -1;
5941 else
5942 return 1;
5943}
5944
b8698a0f 5945/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5946 to pipeline LOOP, return -1. */
5947static int
5948make_region_from_loop (struct loop *loop)
5949{
5950 unsigned int i;
5951 int new_rgn_number = -1;
5952 struct loop *inner;
5953
5954 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5955 int bb_ord_index = 0;
5956 basic_block *loop_blocks;
5957 basic_block preheader_block;
5958
b8698a0f 5959 if (loop->num_nodes
e855c69d
AB
5960 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5961 return -1;
b8698a0f 5962
e855c69d
AB
5963 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5964 for (inner = loop->inner; inner; inner = inner->inner)
5965 if (flow_bb_inside_loop_p (inner, loop->latch))
5966 return -1;
5967
5968 loop->ninsns = num_loop_insns (loop);
5969 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5970 return -1;
5971
5972 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5973
5974 for (i = 0; i < loop->num_nodes; i++)
5975 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5976 {
5977 free (loop_blocks);
5978 return -1;
5979 }
5980
5981 preheader_block = loop_preheader_edge (loop)->src;
5982 gcc_assert (preheader_block);
5983 gcc_assert (loop_blocks[0] == loop->header);
5984
5985 new_rgn_number = sel_create_new_region ();
5986
5987 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5988 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5989
5990 for (i = 0; i < loop->num_nodes; i++)
5991 {
5992 /* Add only those blocks that haven't been scheduled in the inner loop.
5993 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5994 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5995 body, but to the region containing that loop body). */
5996
5997 gcc_assert (new_rgn_number >= 0);
5998
5999 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
6000 {
b8698a0f 6001 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
6002 new_rgn_number);
6003 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
6004 }
6005 }
6006
6007 free (loop_blocks);
6008 MARK_LOOP_FOR_PIPELINING (loop);
6009
6010 return new_rgn_number;
6011}
6012
6013/* Create a new region from preheader blocks LOOP_BLOCKS. */
6014void
6015make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
6016{
6017 unsigned int i;
6018 int new_rgn_number = -1;
6019 basic_block bb;
6020
6021 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6022 int bb_ord_index = 0;
6023
6024 new_rgn_number = sel_create_new_region ();
6025
ac47786e 6026 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
e855c69d
AB
6027 {
6028 gcc_assert (new_rgn_number >= 0);
6029
6030 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6031 }
6032
6033 VEC_free (basic_block, heap, *loop_blocks);
6034 gcc_assert (*loop_blocks == NULL);
6035}
6036
6037
6038/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 6039 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
6040 is created. */
6041static bool
6042make_regions_from_loop_nest (struct loop *loop)
b8698a0f 6043{
e855c69d
AB
6044 struct loop *cur_loop;
6045 int rgn_number;
6046
6047 /* Traverse all inner nodes of the loop. */
6048 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6049 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
6050 return false;
6051
6052 /* At this moment all regular inner loops should have been pipelined.
6053 Try to create a region from this loop. */
6054 rgn_number = make_region_from_loop (loop);
6055
6056 if (rgn_number < 0)
6057 return false;
6058
6059 VEC_safe_push (loop_p, heap, loop_nests, loop);
6060 return true;
6061}
6062
6063/* Initalize data structures needed. */
6064void
6065sel_init_pipelining (void)
6066{
6067 /* Collect loop information to be used in outer loops pipelining. */
6068 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6069 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6070 | LOOPS_HAVE_RECORDED_EXITS
6071 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6072 current_loop_nest = NULL;
6073
6074 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6075 sbitmap_zero (bbs_in_loop_rgns);
6076
6077 recompute_rev_top_order ();
6078}
6079
6080/* Returns a struct loop for region RGN. */
6081loop_p
6082get_loop_nest_for_rgn (unsigned int rgn)
6083{
6084 /* Regions created with extend_rgns don't have corresponding loop nests,
6085 because they don't represent loops. */
6086 if (rgn < VEC_length (loop_p, loop_nests))
6087 return VEC_index (loop_p, loop_nests, rgn);
6088 else
6089 return NULL;
6090}
6091
6092/* True when LOOP was included into pipelining regions. */
6093bool
6094considered_for_pipelining_p (struct loop *loop)
6095{
6096 if (loop_depth (loop) == 0)
6097 return false;
6098
b8698a0f
L
6099 /* Now, the loop could be too large or irreducible. Check whether its
6100 region is in LOOP_NESTS.
6101 We determine the region number of LOOP as the region number of its
6102 latch. We can't use header here, because this header could be
e855c69d
AB
6103 just removed preheader and it will give us the wrong region number.
6104 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 6105 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
6106 {
6107 int rgn = CONTAINING_RGN (loop->latch->index);
6108
6109 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6110 return true;
6111 }
b8698a0f 6112
e855c69d
AB
6113 return false;
6114}
6115
b8698a0f 6116/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
6117 for pipelining. */
6118static void
6119make_regions_from_the_rest (void)
6120{
6121 int cur_rgn_blocks;
6122 int *loop_hdr;
6123 int i;
6124
6125 basic_block bb;
6126 edge e;
6127 edge_iterator ei;
6128 int *degree;
e855c69d
AB
6129
6130 /* Index in rgn_bb_table where to start allocating new regions. */
6131 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 6132
b8698a0f 6133 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
6134 any loop or belong to irreducible loops. Prepare the data structures
6135 for extend_rgns. */
6136
6137 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6138 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6139 loop. */
6140 loop_hdr = XNEWVEC (int, last_basic_block);
6141 degree = XCNEWVEC (int, last_basic_block);
6142
6143
6144 /* For each basic block that belongs to some loop assign the number
6145 of innermost loop it belongs to. */
6146 for (i = 0; i < last_basic_block; i++)
6147 loop_hdr[i] = -1;
6148
6149 FOR_EACH_BB (bb)
6150 {
6151 if (bb->loop_father && !bb->loop_father->num == 0
6152 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6153 loop_hdr[bb->index] = bb->loop_father->num;
6154 }
6155
b8698a0f 6156 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6157 edges, that are going out of bbs that are not yet scheduled.
6158 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 6159 FOR_EACH_BB (bb)
e855c69d
AB
6160 {
6161 degree[bb->index] = 0;
6162
6163 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6164 {
6165 FOR_EACH_EDGE (e, ei, bb->preds)
6166 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6167 degree[bb->index]++;
6168 }
6169 else
6170 degree[bb->index] = -1;
6171 }
6172
6173 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6174
6175 /* Any block that did not end up in a region is placed into a region
6176 by itself. */
6177 FOR_EACH_BB (bb)
6178 if (degree[bb->index] >= 0)
6179 {
6180 rgn_bb_table[cur_rgn_blocks] = bb->index;
6181 RGN_NR_BLOCKS (nr_regions) = 1;
6182 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6183 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6184 RGN_HAS_REAL_EBB (nr_regions) = 0;
6185 CONTAINING_RGN (bb->index) = nr_regions++;
6186 BLOCK_TO_BB (bb->index) = 0;
6187 }
6188
6189 free (degree);
6190 free (loop_hdr);
6191}
6192
6193/* Free data structures used in pipelining of loops. */
6194void sel_finish_pipelining (void)
6195{
6196 loop_iterator li;
6197 struct loop *loop;
6198
6199 /* Release aux fields so we don't free them later by mistake. */
6200 FOR_EACH_LOOP (li, loop, 0)
6201 loop->aux = NULL;
6202
6203 loop_optimizer_finalize ();
6204
6205 VEC_free (loop_p, heap, loop_nests);
6206
6207 free (rev_top_order_index);
6208 rev_top_order_index = NULL;
6209}
6210
b8698a0f 6211/* This function replaces the find_rgns when
e855c69d 6212 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6213void
e855c69d
AB
6214sel_find_rgns (void)
6215{
6216 sel_init_pipelining ();
6217 extend_regions ();
6218
6219 if (current_loops)
6220 {
6221 loop_p loop;
6222 loop_iterator li;
6223
6224 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6225 ? LI_FROM_INNERMOST
6226 : LI_ONLY_INNERMOST))
6227 make_regions_from_loop_nest (loop);
6228 }
6229
6230 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6231 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6232 to irreducible loops. */
6233 make_regions_from_the_rest ();
6234
6235 /* We don't need bbs_in_loop_rgns anymore. */
6236 sbitmap_free (bbs_in_loop_rgns);
6237 bbs_in_loop_rgns = NULL;
6238}
6239
ea4d630f
AM
6240/* Add the preheader blocks from previous loop to current region taking
6241 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
e855c69d
AB
6242 This function is only used with -fsel-sched-pipelining-outer-loops. */
6243void
ea4d630f 6244sel_add_loop_preheaders (bb_vec_t *bbs)
e855c69d
AB
6245{
6246 int i;
6247 basic_block bb;
b8698a0f 6248 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6249 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6250
6251 for (i = 0;
6252 VEC_iterate (basic_block, preheader_blocks, i, bb);
6253 i++)
8ec4d0ad 6254 {
ea4d630f 6255 VEC_safe_push (basic_block, heap, *bbs, bb);
8ec4d0ad 6256 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6257 sel_add_bb (bb);
8ec4d0ad 6258 }
e855c69d
AB
6259
6260 VEC_free (basic_block, heap, preheader_blocks);
6261}
6262
b8698a0f
L
6263/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6264 Please note that the function should also work when pipelining_p is
6265 false, because it is used when deciding whether we should or should
e855c69d
AB
6266 not reschedule pipelined code. */
6267bool
6268sel_is_loop_preheader_p (basic_block bb)
6269{
6270 if (current_loop_nest)
6271 {
6272 struct loop *outer;
6273
6274 if (preheader_removed)
6275 return false;
6276
6277 /* Preheader is the first block in the region. */
6278 if (BLOCK_TO_BB (bb->index) == 0)
6279 return true;
6280
6281 /* We used to find a preheader with the topological information.
6282 Check that the above code is equivalent to what we did before. */
6283
6284 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6285 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6286 < BLOCK_TO_BB (current_loop_nest->header->index)));
6287
6288 /* Support the situation when the latch block of outer loop
6289 could be from here. */
6290 for (outer = loop_outer (current_loop_nest);
6291 outer;
6292 outer = loop_outer (outer))
6293 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6294 gcc_unreachable ();
6295 }
6296
6297 return false;
6298}
6299
753de8cf
AM
6300/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6301 can be removed, making the corresponding edge fallthrough (assuming that
6302 all basic blocks between JUMP_BB and DEST_BB are empty). */
6303static bool
6304bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6305{
b4550bf7
AM
6306 if (!onlyjump_p (BB_END (jump_bb))
6307 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6308 return false;
6309
b8698a0f 6310 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6311 not DEST_BB. */
6312 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6313 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6314 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6315 return false;
6316
6317 /* If not anything of the upper. */
6318 return true;
6319}
6320
6321/* Removes the loop preheader from the current region and saves it in
b8698a0f 6322 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6323 region that represents an outer loop. */
6324static void
6325sel_remove_loop_preheader (void)
6326{
6327 int i, old_len;
6328 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6329 basic_block bb;
6330 bool all_empty_p = true;
b8698a0f 6331 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6332 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6333
6334 gcc_assert (current_loop_nest);
6335 old_len = VEC_length (basic_block, preheader_blocks);
6336
6337 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6338 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6339 {
6340 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6341
b8698a0f 6342 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6343 corresponding loop, then it should be a preheader. */
6344 if (sel_is_loop_preheader_p (bb))
6345 {
6346 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6347 if (BB_END (bb) != bb_note (bb))
6348 all_empty_p = false;
6349 }
6350 }
b8698a0f 6351
e855c69d
AB
6352 /* Remove these blocks only after iterating over the whole region. */
6353 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6354 i >= old_len;
6355 i--)
6356 {
b8698a0f 6357 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6358 sel_remove_bb (bb, false);
6359 }
6360
6361 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6362 {
6363 if (!all_empty_p)
6364 /* Immediately create new region from preheader. */
6365 make_region_from_loop_preheader (&preheader_blocks);
6366 else
6367 {
6368 /* If all preheader blocks are empty - dont create new empty region.
6369 Instead, remove them completely. */
ac47786e 6370 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
e855c69d
AB
6371 {
6372 edge e;
6373 edge_iterator ei;
6374 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6375
6376 /* Redirect all incoming edges to next basic block. */
6377 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6378 {
6379 if (! (e->flags & EDGE_FALLTHRU))
6380 redirect_edge_and_branch (e, bb->next_bb);
6381 else
6382 redirect_edge_succ (e, bb->next_bb);
6383 }
6384 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6385 delete_and_free_basic_block (bb);
6386
b8698a0f
L
6387 /* Check if after deleting preheader there is a nonconditional
6388 jump in PREV_BB that leads to the next basic block NEXT_BB.
6389 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6390 basic block if it becomes empty. */
6391 if (next_bb->prev_bb == prev_bb
6392 && prev_bb != ENTRY_BLOCK_PTR
753de8cf 6393 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6394 {
6395 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6396 if (BB_END (prev_bb) == bb_note (prev_bb))
6397 free_data_sets (prev_bb);
6398 }
00c4e97c
AB
6399
6400 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6401 recompute_dominator (CDI_DOMINATORS,
6402 next_bb));
e855c69d
AB
6403 }
6404 }
6405 VEC_free (basic_block, heap, preheader_blocks);
6406 }
6407 else
6408 /* Store preheader within the father's loop structure. */
6409 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6410 preheader_blocks);
6411}
6412#endif