]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
tree-vect-data-refs.c (vect_create_addr_base_for_vector_ref): Reset alignment informa...
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
c02e2d5c 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
718f9c0f 24#include "diagnostic-core.h"
e855c69d
AB
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
e855c69d
AB
34#include "recog.h"
35#include "params.h"
36#include "target.h"
37#include "timevar.h"
38#include "tree-pass.h"
39#include "sched-int.h"
40#include "ggc.h"
41#include "tree.h"
42#include "vec.h"
43#include "langhooks.h"
44#include "rtlhooks-def.h"
5936d944 45#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
46
47#ifdef INSN_SCHEDULING
48#include "sel-sched-ir.h"
49/* We don't have to use it except for sel_print_insn. */
50#include "sel-sched-dump.h"
51
52/* A vector holding bb info for whole scheduling pass. */
53VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55/* A vector holding bb info. */
56VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58/* A pool for allocating all lists. */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set. */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils. */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined. */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72static VEC(loop_p, heap) *loop_nests = NULL;
73
74/* Saves blocks already in loop regions, indexed by bb->index. */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook. */
78static struct cfg_hooks orig_cfg_hooks;
79\f
80
81/* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array. */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure. */
89static struct
90{
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool. */
116static struct
117{
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
b8698a0f 125 int s;
e855c69d
AB
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes. */
129static rtx_vec_t bb_note_pool;
130
131/* A NOP pattern used to emit placeholder insns. */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135rtx exit_insn = NULL_RTX;
136
b8698a0f 137/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
138 was removed. */
139bool preheader_removed = false;
140\f
141
142/* Forward static declarations. */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
151static void free_history_vect (VEC (expr_history_def, heap) **);
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
262d8232 155static void sel_merge_blocks (basic_block, basic_block);
e855c69d 156static void sel_remove_loop_preheader (void);
753de8cf 157static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
158
159static bool insn_is_the_only_one_in_bb_p (insn_t);
160static void create_initial_data_sets (basic_block);
161
b5b8b0ac 162static void free_av_set (basic_block);
e855c69d
AB
163static void invalidate_av_set (basic_block);
164static void extend_insn_data (void);
165static void sel_init_new_insn (insn_t, int);
166static void finish_insns (void);
167\f
168/* Various list functions. */
169
170/* Copy an instruction list L. */
171ilist_t
172ilist_copy (ilist_t l)
173{
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184}
185
186/* Invert an instruction list L. */
187ilist_t
188ilist_invert (ilist_t l)
189{
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199}
200
201/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202void
203blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204{
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215}
216
217/* Remove the list note pointed to by LP. */
218void
219blist_remove (blist_t *lp)
220{
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228}
229
230/* Init a fence tail L. */
231void
232flist_tail_init (flist_tail_t l)
233{
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236}
237
238/* Try to find fence corresponding to INSN in L. */
239fence_t
240flist_lookup (flist_t l, insn_t insn)
241{
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251}
252
253/* Init the fields of F before running fill_insns. */
254static void
255init_fence_for_scheduling (fence_t f)
256{
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260}
261
262/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263static void
b8698a0f
L
264flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 267 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
268 bool starts_cycle_p, bool after_stall_p)
269{
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 292 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299}
300
301/* Remove the head node of the list pointed to by LP. */
302static void
303flist_remove (flist_t *lp)
304{
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308}
309
310/* Clear the fence list pointed to by LP. */
311void
312flist_clear (flist_t *lp)
313{
314 while (*lp)
315 flist_remove (lp);
316}
317
318/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319void
320def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321{
322 def_t d;
b8698a0f 323
e855c69d
AB
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329}
330\f
331
332/* Functions to work with target contexts. */
333
b8698a0f 334/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
335 that there are no uninitialized (null) target contexts. */
336static tc_t bulk_tc = (tc_t) 1;
337
b8698a0f 338/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
339 implementations for them. */
340
341/* Allocate a store for the target context. */
342static tc_t
343alloc_target_context (void)
344{
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347}
348
349/* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352static void
353init_target_context (tc_t tc, bool clean_p)
354{
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357}
358
359/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361tc_t
362create_target_context (bool clean_p)
363{
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368}
369
370/* Copy TC to the current backend context. */
371void
372set_target_context (tc_t tc)
373{
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376}
377
378/* TC is about to be destroyed. Free any internal data. */
379static void
380clear_target_context (tc_t tc)
381{
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384}
385
386/* Clear and free it. */
387static void
388delete_target_context (tc_t tc)
389{
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394}
395
396/* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398static void
399copy_target_context (tc_t to, tc_t from)
400{
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408}
409
410/* Create a copy of TC. */
411static tc_t
412create_copy_of_target_context (tc_t tc)
413{
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419}
420
421/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423void
424reset_target_context (tc_t tc, bool clean_p)
425{
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428}
429\f
b8698a0f 430/* Functions to work with dependence contexts.
88302d54 431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435/* Make a copy of FROM in TO. */
436static void
437copy_deps_context (deps_t to, deps_t from)
438{
bcf33775 439 init_deps (to, false);
e855c69d
AB
440 deps_join (to, from);
441}
442
443/* Allocate store for dep context. */
444static deps_t
445alloc_deps_context (void)
446{
88302d54 447 return XNEW (struct deps_desc);
e855c69d
AB
448}
449
450/* Allocate and initialize dep context. */
451static deps_t
452create_deps_context (void)
453{
454 deps_t dc = alloc_deps_context ();
455
bcf33775 456 init_deps (dc, false);
e855c69d
AB
457 return dc;
458}
459
460/* Create a copy of FROM. */
461static deps_t
462create_copy_of_deps_context (deps_t from)
463{
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468}
469
470/* Clean up internal data of DC. */
471static void
472clear_deps_context (deps_t dc)
473{
474 free_deps (dc);
475}
476
477/* Clear and free DC. */
478static void
479delete_deps_context (deps_t dc)
480{
481 clear_deps_context (dc);
482 free (dc);
483}
484
485/* Clear and init DC. */
486static void
487reset_deps_context (deps_t dc)
488{
489 clear_deps_context (dc);
bcf33775 490 init_deps (dc, false);
e855c69d
AB
491}
492
b8698a0f 493/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
494 dependence context. */
495static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514/* Process INSN and add its impact on DC. */
515void
516advance_deps_context (deps_t dc, insn_t insn)
517{
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520}
521\f
522
523/* Functions to work with DFA states. */
524
525/* Allocate store for a DFA state. */
526static state_t
527state_alloc (void)
528{
529 return xmalloc (dfa_state_size);
530}
531
532/* Allocate and initialize DFA state. */
533static state_t
534state_create (void)
535{
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541}
542
543/* Free DFA state. */
544static void
545state_free (state_t state)
546{
547 free (state);
548}
549
550/* Make a copy of FROM in TO. */
551static void
552state_copy (state_t to, state_t from)
553{
554 memcpy (to, from, dfa_state_size);
555}
556
557/* Create a copy of FROM. */
558static state_t
559state_create_copy (state_t from)
560{
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565}
566\f
567
568/* Functions to work with fences. */
569
570/* Clear the fence. */
571static void
572fence_clear (fence_t f)
573{
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
583 if (s != NULL)
584 free (s);
585
586 if (dc != NULL)
587 delete_deps_context (dc);
588
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
594}
595
596/* Init a list of fences with successors of OLD_FENCE. */
597void
598init_fences (insn_t old_fence)
599{
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
604
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 {
b8698a0f 608
e855c69d
AB
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
b8698a0f 618 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
b8698a0f 623 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 624 issue_rate, /* issue_more */
b8698a0f 625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
626 }
627}
628
629/* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
b8698a0f 631 propagated from fallthrough edge if it is available;
e855c69d 632 2) deps context and cycle is propagated from more probable edge;
b8698a0f 633 3) all other fields are set to corresponding constant values.
e855c69d 634
b8698a0f 635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
638static void
639merge_fences (fence_t f, insn_t insn,
b8698a0f 640 state_t state, deps_t dc, void *tc,
e855c69d
AB
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
136e01a3 643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
644{
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
649
b8698a0f 650 /* Check if we can decide which path fences came.
e855c69d
AB
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
b8698a0f
L
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
e855c69d
AB
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
659 {
660 state_reset (FENCE_STATE (f));
661 state_free (state);
b8698a0f 662
e855c69d
AB
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
b8698a0f 665
e855c69d
AB
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
668
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
671
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 673 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 }
682 else
683 {
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
b8698a0f 688
e855c69d
AB
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
692
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 {
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
b8698a0f 700
e855c69d
AB
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
b8698a0f 703
e855c69d 704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 705 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
706 }
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 {
b8698a0f 710 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
717
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
720
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 722 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
723 }
724 else
725 {
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
729
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
732 }
733
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 {
738 if (succ == insn)
739 {
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
743 }
744 }
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 {
749 if (succ == insn)
750 {
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
754 }
755 }
756
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
759 {
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
b8698a0f 764
e855c69d
AB
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
b8698a0f 767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
e855c69d
AB
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 }
772 else
773 if (edge_new->probability > edge_old->probability)
774 {
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
783 }
784 else
785 {
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
790 }
791 }
792
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
796
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
800}
801
b8698a0f 802/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
803 other parameters. */
804static void
805add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f
L
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
811{
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
814 if (! f)
815 {
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 817 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 819 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
820
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 }
824 else
825 {
b8698a0f
L
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 828 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
829 }
830}
831
832/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833void
834move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835{
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
839 old = FLIST_FENCE (old_fences);
b8698a0f 840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
843 {
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
136e01a3 847 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
848 old->after_stall_p);
849 }
850 else
851 {
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 }
857 FENCE_INSN (old) = NULL;
858}
859
b8698a0f 860/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
861 as a clean one. */
862void
863add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864{
865 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 866
e855c69d
AB
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
b8698a0f 870 NULL_RTX, NULL,
e855c69d
AB
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
874}
875
b8698a0f 876/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
877 from FENCE and SUCC. */
878void
879add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880{
b8698a0f 881 int * new_ready_ticks
e855c69d 882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 883
e855c69d
AB
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 890 FENCE_LAST_SCHEDULED_INSN (fence),
e855c69d
AB
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
136e01a3 897 FENCE_ISSUE_MORE (fence),
e855c69d
AB
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
900}
901\f
902
903/* Functions to work with regset and nop pools. */
904
905/* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907regset
908get_regset_from_pool (void)
909{
910 regset rs;
911
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
916 {
917 rs = ALLOC_REG_SET (&reg_obstack);
918
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
923 }
924
925 regset_pool.diff++;
926
927 return rs;
928}
929
930/* Same as above, but returns the empty regset. */
931regset
932get_clear_regset_from_pool (void)
933{
934 regset rs = get_regset_from_pool ();
935
936 CLEAR_REG_SET (rs);
937 return rs;
938}
939
940/* Return regset RS to the pool for future use. */
941void
942return_regset_to_pool (regset rs)
943{
9ef1bf71 944 gcc_assert (rs);
e855c69d
AB
945 regset_pool.diff--;
946
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
951}
952
68ad446f 953#ifdef ENABLE_CHECKING
e855c69d
AB
954/* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956static int
957cmp_v_in_regset_pool (const void *x, const void *xx)
958{
959 return *((const regset *) x) - *((const regset *) xx);
960}
68ad446f 961#endif
e855c69d
AB
962
963/* Free the regset pool possibly checking for memory leaks. */
964void
965free_regset_pool (void)
966{
967#ifdef ENABLE_CHECKING
968 {
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
b8698a0f 972
e855c69d
AB
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
b8698a0f 976
e855c69d 977 int diff = 0;
b8698a0f 978
e855c69d 979 gcc_assert (n <= nn);
b8698a0f 980
e855c69d
AB
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 984
e855c69d
AB
985 while (ii < nn)
986 {
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
b8698a0f 992
e855c69d
AB
993 ii++;
994 }
b8698a0f 995
e855c69d
AB
996 gcc_assert (diff == regset_pool.diff);
997 }
998#endif
b8698a0f 999
e855c69d
AB
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
b8698a0f 1002
e855c69d
AB
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
b8698a0f 1012
e855c69d
AB
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019}
1020\f
1021
b8698a0f
L
1022/* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026/* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028static vinsn_t nop_vinsn = NULL;
1029
1030/* Emit a nop before INSN, taking it from pool. */
1031insn_t
1032get_nop_from_pool (insn_t insn)
1033{
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1037
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1042
1043 nop = emit_insn_before (nop, insn);
1044
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1052
1053 return nop;
1054}
1055
1056/* Remove NOP from the instruction stream and return it to the pool. */
1057void
b5b8b0ac 1058return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1059{
1060 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1061 sel_remove_insn (nop, false, full_tidying);
e855c69d
AB
1062
1063 if (nop_pool.n == nop_pool.s)
b8698a0f 1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1067}
1068
1069/* Free the nop pool. */
1070void
1071free_nop_pool (void)
1072{
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1077}
1078\f
1079
b8698a0f 1080/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083static int
1084skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085{
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
b8698a0f 1088
e855c69d
AB
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1092 {
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1096 }
b8698a0f 1097
e855c69d
AB
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1101 {
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1105 }
b8698a0f 1106
e855c69d
AB
1107 return 0;
1108}
1109
b8698a0f 1110/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113static int
1114hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1116{
b8698a0f 1117 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1120 {
1121 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1122 *nmode = VOIDmode;
e855c69d
AB
1123 return 1;
1124 }
b8698a0f 1125
e855c69d
AB
1126 return 0;
1127}
1128
1129/* Returns LHS and RHS are ok to be scheduled separately. */
1130static bool
1131lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132{
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1135
b8698a0f
L
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
e855c69d
AB
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1142
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1146
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1150
b8698a0f 1151 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1156
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1161
1162 return true;
1163}
1164
b8698a0f
L
1165/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1167 used e.g. for insns from recovery blocks. */
1168static void
1169vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170{
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1173
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
b8698a0f 1177
9ef1bf71
AM
1178 if (INSN_NOP_P (insn))
1179 return;
1180
e855c69d
AB
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1185
e855c69d
AB
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1189 {
1190 rtx rhs = VINSN_RHS (vi);
1191
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1197 }
1198 else
1199 {
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203 }
b8698a0f 1204
e855c69d
AB
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1213}
1214
1215/* Indicate that VI has become the part of an rtx object. */
1216void
1217vinsn_attach (vinsn_t vi)
1218{
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1221
1222 VINSN_COUNT (vi)++;
1223}
1224
b8698a0f 1225/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1226 VINSN_TYPE (VI). */
1227static vinsn_t
1228vinsn_create (insn_t insn, bool force_unique_p)
1229{
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1231
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1234}
1235
1236/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
b8698a0f 1238vinsn_t
e855c69d
AB
1239vinsn_copy (vinsn_t vi, bool reattach_p)
1240{
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
b8698a0f 1244
e855c69d
AB
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1248 {
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1251 }
1252
1253 return new_vi;
1254}
1255
1256/* Delete the VI vinsn and free its data. */
1257static void
1258vinsn_delete (vinsn_t vi)
1259{
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1261
9ef1bf71
AM
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263 {
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267 }
e855c69d
AB
1268
1269 free (vi);
1270}
1271
b8698a0f 1272/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1273 Remove VI if it is no longer needed. */
1274void
1275vinsn_detach (vinsn_t vi)
1276{
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1278
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1281}
1282
1283/* Returns TRUE if VI is a branch. */
1284bool
1285vinsn_cond_branch_p (vinsn_t vi)
1286{
1287 insn_t insn;
1288
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1291
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1295
1296 return control_flow_insn_p (insn);
1297}
1298
1299/* Return latency of INSN. */
1300static int
1301sel_insn_rtx_cost (rtx insn)
1302{
1303 int cost;
1304
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1312 {
1313 cost = insn_default_latency (insn);
1314
1315 if (cost < 0)
1316 cost = 0;
1317 }
1318
1319 return cost;
1320}
1321
1322/* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1324int
1325sel_vinsn_cost (vinsn_t vi)
1326{
1327 int cost = vi->cost;
1328
1329 if (cost < 0)
1330 {
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1333 }
1334
1335 return cost;
1336}
1337\f
1338
1339/* Functions for insn emitting. */
1340
1341/* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343insn_t
1344sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345{
1346 insn_t new_insn;
1347
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353
1354 return new_insn;
1355}
1356
1357/* Force newly generated vinsns to be unique. */
1358static bool init_insn_force_unique_p = false;
1359
1360/* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362insn_t
1363sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1365{
1366 insn_t insn;
1367
1368 gcc_assert (!init_insn_force_unique_p);
1369
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1374
1375 return insn;
1376}
1377
1378/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
e855c69d
AB
1381 simplify_changed_insns. */
1382insn_t
b8698a0f 1383sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1384 insn_t after)
1385{
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
b8698a0f
L
1389
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
b8698a0f 1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1394
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1399
1400 return insn;
1401}
1402
1403/* Move insn from EXPR after AFTER. */
1404insn_t
1405sel_move_insn (expr_t expr, int seqno, insn_t after)
1406{
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1410
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1415
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1418
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
b8698a0f 1423
e855c69d
AB
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1426}
1427
1428\f
1429/* Functions to work with right-hand sides. */
1430
b8698a0f 1431/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1432 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1435 retain VECT's sort order. */
1436static bool
b8698a0f
L
1437find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1439 bool compare_vinsns, int *indp)
1440{
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1443
1444 if (len == 0)
1445 {
1446 *indp = 0;
1447 return false;
1448 }
1449
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1452
1453 while (i <= j)
1454 {
1455 unsigned auid = arr[i].uid;
b8698a0f 1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1457
1458 if (auid == uid
b8698a0f
L
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
b8698a0f 1463 && (! compare_vinsns
e855c69d
AB
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1465 {
1466 *indp = i;
1467 return true;
1468 }
1469 else if (auid > uid)
1470 break;
1471 i++;
1472 }
1473
1474 *indp = i;
1475 return false;
1476}
1477
b8698a0f
L
1478/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
e855c69d
AB
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1481int
b8698a0f 1482find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
e855c69d
AB
1483 vinsn_t new_vinsn, bool originators_p)
1484{
1485 int ind;
1486
b8698a0f 1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1488 false, &ind))
1489 return ind;
1490
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1492 {
1493 unsigned uid;
1494 bitmap_iterator bi;
1495
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1499 }
b8698a0f 1500
e855c69d
AB
1501 return -1;
1502}
1503
b8698a0f
L
1504/* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
e855c69d
AB
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508void
1509insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
b8698a0f 1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1512 ds_t spec_ds)
1513{
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1518
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520
1521 if (res)
1522 {
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524
b8698a0f 1525 /* It is possible that speculation types of expressions that were
e855c69d
AB
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1531 }
b8698a0f 1532
e855c69d
AB
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1535 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1538
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1543}
1544
1545/* Free history vector PVECT. */
1546static void
1547free_history_vect (VEC (expr_history_def, heap) **pvect)
1548{
1549 unsigned i;
1550 expr_history_def *phist;
1551
1552 if (! *pvect)
1553 return;
b8698a0f
L
1554
1555 for (i = 0;
e855c69d
AB
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1558 {
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1561 }
b8698a0f 1562
e855c69d
AB
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1565}
1566
1567
1568/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1569bool
1570vinsn_equal_p (vinsn_t x, vinsn_t y)
1571{
1572 rtx_equal_p_callback_function repcf;
1573
1574 if (x == y)
1575 return true;
1576
1577 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1578 return false;
1579
1580 if (VINSN_HASH (x) != VINSN_HASH (y))
1581 return false;
1582
1583 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1584 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1585 {
1586 /* Compare RHSes of VINSNs. */
1587 gcc_assert (VINSN_RHS (x));
1588 gcc_assert (VINSN_RHS (y));
1589
1590 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1591 }
1592
1593 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1594}
1595\f
1596
1597/* Functions for working with expressions. */
1598
1599/* Initialize EXPR. */
1600static void
1601init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1602 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1603 ds_t spec_to_check_ds, int orig_sched_cycle,
f3764768 1604 VEC(expr_history_def, heap) *history, signed char target_available,
e855c69d
AB
1605 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1606 bool cant_move)
1607{
1608 vinsn_attach (vi);
1609
1610 EXPR_VINSN (expr) = vi;
1611 EXPR_SPEC (expr) = spec;
1612 EXPR_USEFULNESS (expr) = use;
1613 EXPR_PRIORITY (expr) = priority;
1614 EXPR_PRIORITY_ADJ (expr) = 0;
1615 EXPR_SCHED_TIMES (expr) = sched_times;
1616 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1617 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1618 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1619 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1620
1621 if (history)
1622 EXPR_HISTORY_OF_CHANGES (expr) = history;
1623 else
1624 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1625
1626 EXPR_TARGET_AVAILABLE (expr) = target_available;
1627 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1628 EXPR_WAS_RENAMED (expr) = was_renamed;
1629 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1630 EXPR_CANT_MOVE (expr) = cant_move;
1631}
1632
1633/* Make a copy of the expr FROM into the expr TO. */
1634void
1635copy_expr (expr_t to, expr_t from)
1636{
1637 VEC(expr_history_def, heap) *temp = NULL;
1638
1639 if (EXPR_HISTORY_OF_CHANGES (from))
1640 {
1641 unsigned i;
1642 expr_history_def *phist;
1643
1644 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
b8698a0f 1645 for (i = 0;
e855c69d
AB
1646 VEC_iterate (expr_history_def, temp, i, phist);
1647 i++)
1648 {
1649 vinsn_attach (phist->old_expr_vinsn);
1650 vinsn_attach (phist->new_expr_vinsn);
1651 }
1652 }
1653
b8698a0f 1654 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1655 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1656 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1657 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1658 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1659 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1660 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1661 EXPR_CANT_MOVE (from));
1662}
1663
b8698a0f 1664/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1665 "uninteresting" data such as bitmap cache. */
1666void
1667copy_expr_onside (expr_t to, expr_t from)
1668{
1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1670 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1672 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1673 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1674 EXPR_CANT_MOVE (from));
1675}
1676
1677/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1678 initializing new insns. */
1679static void
1680prepare_insn_expr (insn_t insn, int seqno)
1681{
1682 expr_t expr = INSN_EXPR (insn);
1683 ds_t ds;
b8698a0f 1684
e855c69d
AB
1685 INSN_SEQNO (insn) = seqno;
1686 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1687 EXPR_SPEC (expr) = 0;
1688 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1689 EXPR_WAS_SUBSTITUTED (expr) = 0;
1690 EXPR_WAS_RENAMED (expr) = 0;
1691 EXPR_TARGET_AVAILABLE (expr) = 1;
1692 INSN_LIVE_VALID_P (insn) = false;
1693
1694 /* ??? If this expression is speculative, make its dependence
1695 as weak as possible. We can filter this expression later
1696 in process_spec_exprs, because we do not distinguish
1697 between the status we got during compute_av_set and the
1698 existing status. To be fixed. */
1699 ds = EXPR_SPEC_DONE_DS (expr);
1700 if (ds)
1701 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1702
1703 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1704}
1705
1706/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1707 is non-null when expressions are merged from different successors at
e855c69d
AB
1708 a split point. */
1709static void
1710update_target_availability (expr_t to, expr_t from, insn_t split_point)
1711{
b8698a0f 1712 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1713 || EXPR_TARGET_AVAILABLE (from) < 0)
1714 EXPR_TARGET_AVAILABLE (to) = -1;
1715 else
1716 {
1717 /* We try to detect the case when one of the expressions
1718 can only be reached through another one. In this case,
1719 we can do better. */
1720 if (split_point == NULL)
1721 {
1722 int toind, fromind;
1723
1724 toind = EXPR_ORIG_BB_INDEX (to);
1725 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1726
e855c69d 1727 if (toind && toind == fromind)
b8698a0f 1728 /* Do nothing -- everything is done in
e855c69d
AB
1729 merge_with_other_exprs. */
1730 ;
1731 else
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1733 }
1734 else
1735 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1736 }
1737}
1738
1739/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1740 is non-null when expressions are merged from different successors at
e855c69d
AB
1741 a split point. */
1742static void
1743update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1744{
1745 ds_t old_to_ds, old_from_ds;
1746
1747 old_to_ds = EXPR_SPEC_DONE_DS (to);
1748 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1749
e855c69d
AB
1750 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1751 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1752 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1753
1754 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1755 speculative with a control&data speculative one, we really have
e855c69d
AB
1756 to change vinsn too. Also, when speculative status is changed,
1757 we also need to record this as a transformation in expr's history. */
1758 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1759 {
1760 old_to_ds = ds_get_speculation_types (old_to_ds);
1761 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1762
e855c69d
AB
1763 if (old_to_ds != old_from_ds)
1764 {
1765 ds_t record_ds;
b8698a0f
L
1766
1767 /* When both expressions are speculative, we need to change
e855c69d
AB
1768 the vinsn first. */
1769 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1770 {
1771 int res;
b8698a0f 1772
e855c69d
AB
1773 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1774 gcc_assert (res >= 0);
1775 }
1776
1777 if (split_point != NULL)
1778 {
1779 /* Record the change with proper status. */
1780 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1781 record_ds &= ~(old_to_ds & SPECULATIVE);
1782 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1783
1784 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1785 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1786 EXPR_VINSN (from), EXPR_VINSN (to),
1787 record_ds);
1788 }
1789 }
1790 }
1791}
1792
1793
1794/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1795 this is done along different paths. */
1796void
1797merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1798{
1799 int i;
1800 expr_history_def *phist;
b8698a0f 1801
e855c69d
AB
1802 /* For now, we just set the spec of resulting expr to be minimum of the specs
1803 of merged exprs. */
1804 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1805 EXPR_SPEC (to) = EXPR_SPEC (from);
1806
1807 if (split_point)
1808 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1809 else
b8698a0f 1810 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1811 EXPR_USEFULNESS (from));
1812
1813 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1814 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1815
1816 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1817 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1818
1819 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1820 EXPR_ORIG_BB_INDEX (to) = 0;
1821
b8698a0f 1822 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1823 EXPR_ORIG_SCHED_CYCLE (from));
1824
1825 /* We keep this vector sorted. */
b8698a0f
L
1826 for (i = 0;
1827 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
e855c69d
AB
1828 i, phist);
1829 i++)
b8698a0f
L
1830 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1831 phist->uid, phist->type,
1832 phist->old_expr_vinsn, phist->new_expr_vinsn,
e855c69d
AB
1833 phist->spec_ds);
1834
1835 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1836 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1837 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1838
1839 update_target_availability (to, from, split_point);
1840 update_speculative_bits (to, from, split_point);
1841}
1842
1843/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1844 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1845 are merged from different successors at a split point. */
1846void
1847merge_expr (expr_t to, expr_t from, insn_t split_point)
1848{
1849 vinsn_t to_vi = EXPR_VINSN (to);
1850 vinsn_t from_vi = EXPR_VINSN (from);
1851
1852 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1853
1854 /* Make sure that speculative pattern is propagated into exprs that
1855 have non-speculative one. This will provide us with consistent
1856 speculative bits and speculative patterns inside expr. */
1857 if (EXPR_SPEC_DONE_DS (to) == 0
1858 && EXPR_SPEC_DONE_DS (from) != 0)
1859 change_vinsn_in_expr (to, EXPR_VINSN (from));
1860
1861 merge_expr_data (to, from, split_point);
1862 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1863}
1864
1865/* Clear the information of this EXPR. */
1866void
1867clear_expr (expr_t expr)
1868{
b8698a0f 1869
e855c69d
AB
1870 vinsn_detach (EXPR_VINSN (expr));
1871 EXPR_VINSN (expr) = NULL;
1872
1873 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1874}
1875
1876/* For a given LV_SET, mark EXPR having unavailable target register. */
1877static void
1878set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1879{
1880 if (EXPR_SEPARABLE_P (expr))
1881 {
1882 if (REG_P (EXPR_LHS (expr))
1883 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1884 {
b8698a0f
L
1885 /* If it's an insn like r1 = use (r1, ...), and it exists in
1886 different forms in each of the av_sets being merged, we can't say
1887 whether original destination register is available or not.
1888 However, this still works if destination register is not used
e855c69d
AB
1889 in the original expression: if the branch at which LV_SET we're
1890 looking here is not actually 'other branch' in sense that same
b8698a0f 1891 expression is available through it (but it can't be determined
e855c69d 1892 at computation stage because of transformations on one of the
b8698a0f
L
1893 branches), it still won't affect the availability.
1894 Liveness of a register somewhere on a code motion path means
1895 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1896 'other' branch, live at the point immediately following
1897 the original operation, or is read by the original operation.
1898 The latter case is filtered out in the condition below.
1899 It still doesn't cover the case when register is defined and used
1900 somewhere within the code motion path, and in this case we could
1901 miss a unifying code motion along both branches using a renamed
1902 register, but it won't affect a code correctness since upon
1903 an actual code motion a bookkeeping code would be generated. */
b8698a0f 1904 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1905 REGNO (EXPR_LHS (expr))))
1906 EXPR_TARGET_AVAILABLE (expr) = -1;
1907 else
1908 EXPR_TARGET_AVAILABLE (expr) = false;
1909 }
1910 }
1911 else
1912 {
1913 unsigned regno;
1914 reg_set_iterator rsi;
b8698a0f
L
1915
1916 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1917 0, regno, rsi)
1918 if (bitmap_bit_p (lv_set, regno))
1919 {
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1921 break;
1922 }
1923
1924 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1925 0, regno, rsi)
1926 if (bitmap_bit_p (lv_set, regno))
1927 {
1928 EXPR_TARGET_AVAILABLE (expr) = false;
1929 break;
1930 }
1931 }
1932}
1933
b8698a0f 1934/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1935 or dependence status have changed, 2 when also the target register
1936 became unavailable, 0 if nothing had to be changed. */
1937int
1938speculate_expr (expr_t expr, ds_t ds)
1939{
1940 int res;
1941 rtx orig_insn_rtx;
1942 rtx spec_pat;
1943 ds_t target_ds, current_ds;
1944
1945 /* Obtain the status we need to put on EXPR. */
1946 target_ds = (ds & SPECULATIVE);
1947 current_ds = EXPR_SPEC_DONE_DS (expr);
1948 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1949
1950 orig_insn_rtx = EXPR_INSN_RTX (expr);
1951
1952 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1953
1954 switch (res)
1955 {
1956 case 0:
1957 EXPR_SPEC_DONE_DS (expr) = ds;
1958 return current_ds != ds ? 1 : 0;
b8698a0f 1959
e855c69d
AB
1960 case 1:
1961 {
1962 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1963 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1964
1965 change_vinsn_in_expr (expr, spec_vinsn);
1966 EXPR_SPEC_DONE_DS (expr) = ds;
1967 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1968
b8698a0f 1969 /* Do not allow clobbering the address register of speculative
e855c69d 1970 insns. */
b8698a0f 1971 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
1972 expr_dest_regno (expr)))
1973 {
1974 EXPR_TARGET_AVAILABLE (expr) = false;
1975 return 2;
1976 }
1977
1978 return 1;
1979 }
1980
1981 case -1:
1982 return -1;
1983
1984 default:
1985 gcc_unreachable ();
1986 return -1;
1987 }
1988}
1989
1990/* Return a destination register, if any, of EXPR. */
1991rtx
1992expr_dest_reg (expr_t expr)
1993{
1994 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1995
1996 if (dest != NULL_RTX && REG_P (dest))
1997 return dest;
1998
1999 return NULL_RTX;
2000}
2001
2002/* Returns the REGNO of the R's destination. */
2003unsigned
2004expr_dest_regno (expr_t expr)
2005{
2006 rtx dest = expr_dest_reg (expr);
2007
2008 gcc_assert (dest != NULL_RTX);
2009 return REGNO (dest);
2010}
2011
b8698a0f 2012/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2013 AV_SET having unavailable target register. */
2014void
2015mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2016{
2017 expr_t expr;
2018 av_set_iterator avi;
2019
2020 FOR_EACH_EXPR (expr, avi, join_set)
2021 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2022 set_unavailable_target_for_expr (expr, lv_set);
2023}
2024\f
2025
2026/* Av set functions. */
2027
2028/* Add a new element to av set SETP.
2029 Return the element added. */
2030static av_set_t
2031av_set_add_element (av_set_t *setp)
2032{
2033 /* Insert at the beginning of the list. */
2034 _list_add (setp);
2035 return *setp;
2036}
2037
2038/* Add EXPR to SETP. */
2039void
2040av_set_add (av_set_t *setp, expr_t expr)
2041{
2042 av_set_t elem;
b8698a0f 2043
e855c69d
AB
2044 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2045 elem = av_set_add_element (setp);
2046 copy_expr (_AV_SET_EXPR (elem), expr);
2047}
2048
2049/* Same, but do not copy EXPR. */
2050static void
2051av_set_add_nocopy (av_set_t *setp, expr_t expr)
2052{
2053 av_set_t elem;
2054
2055 elem = av_set_add_element (setp);
2056 *_AV_SET_EXPR (elem) = *expr;
2057}
2058
2059/* Remove expr pointed to by IP from the av_set. */
2060void
2061av_set_iter_remove (av_set_iterator *ip)
2062{
2063 clear_expr (_AV_SET_EXPR (*ip->lp));
2064 _list_iter_remove (ip);
2065}
2066
2067/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2068 sense of vinsn_equal_p function. Return NULL if no such expr is
2069 in SET was found. */
2070expr_t
2071av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2072{
2073 expr_t expr;
2074 av_set_iterator i;
2075
2076 FOR_EACH_EXPR (expr, i, set)
2077 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2078 return expr;
2079 return NULL;
2080}
2081
2082/* Same, but also remove the EXPR found. */
2083static expr_t
2084av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2085{
2086 expr_t expr;
2087 av_set_iterator i;
2088
2089 FOR_EACH_EXPR_1 (expr, i, setp)
2090 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2091 {
2092 _list_iter_remove_nofree (&i);
2093 return expr;
2094 }
2095 return NULL;
2096}
2097
2098/* Search for an expr in SET, such that it's equivalent to EXPR in the
2099 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2100 Returns NULL if no such expr is in SET was found. */
2101static expr_t
2102av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2103{
2104 expr_t cur_expr;
2105 av_set_iterator i;
2106
2107 FOR_EACH_EXPR (cur_expr, i, set)
2108 {
2109 if (cur_expr == expr)
2110 continue;
2111 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2112 return cur_expr;
2113 }
2114
2115 return NULL;
2116}
2117
2118/* If other expression is already in AVP, remove one of them. */
2119expr_t
2120merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2121{
2122 expr_t expr2;
2123
2124 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2125 if (expr2 != NULL)
2126 {
2127 /* Reset target availability on merge, since taking it only from one
2128 of the exprs would be controversial for different code. */
2129 EXPR_TARGET_AVAILABLE (expr2) = -1;
2130 EXPR_USEFULNESS (expr2) = 0;
2131
2132 merge_expr (expr2, expr, NULL);
b8698a0f 2133
e855c69d
AB
2134 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2135 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2136
e855c69d
AB
2137 av_set_iter_remove (ip);
2138 return expr2;
2139 }
2140
2141 return expr;
2142}
2143
2144/* Return true if there is an expr that correlates to VI in SET. */
2145bool
2146av_set_is_in_p (av_set_t set, vinsn_t vi)
2147{
2148 return av_set_lookup (set, vi) != NULL;
2149}
2150
2151/* Return a copy of SET. */
2152av_set_t
2153av_set_copy (av_set_t set)
2154{
2155 expr_t expr;
2156 av_set_iterator i;
2157 av_set_t res = NULL;
2158
2159 FOR_EACH_EXPR (expr, i, set)
2160 av_set_add (&res, expr);
2161
2162 return res;
2163}
2164
2165/* Join two av sets that do not have common elements by attaching second set
2166 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2167 _AV_SET_NEXT of first set's last element). */
2168static void
2169join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2170{
2171 gcc_assert (*to_tailp == NULL);
2172 *to_tailp = *fromp;
2173 *fromp = NULL;
2174}
2175
2176/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2177 pointed to by FROMP afterwards. */
2178void
2179av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2180{
2181 expr_t expr1;
2182 av_set_iterator i;
2183
2184 /* Delete from TOP all exprs, that present in FROMP. */
2185 FOR_EACH_EXPR_1 (expr1, i, top)
2186 {
2187 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2188
2189 if (expr2)
2190 {
2191 merge_expr (expr2, expr1, insn);
2192 av_set_iter_remove (&i);
2193 }
2194 }
2195
2196 join_distinct_sets (i.lp, fromp);
2197}
2198
b8698a0f 2199/* Same as above, but also update availability of target register in
e855c69d
AB
2200 TOP judging by TO_LV_SET and FROM_LV_SET. */
2201void
2202av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2203 regset from_lv_set, insn_t insn)
2204{
2205 expr_t expr1;
2206 av_set_iterator i;
2207 av_set_t *to_tailp, in_both_set = NULL;
2208
2209 /* Delete from TOP all expres, that present in FROMP. */
2210 FOR_EACH_EXPR_1 (expr1, i, top)
2211 {
2212 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2213
2214 if (expr2)
2215 {
b8698a0f 2216 /* It may be that the expressions have different destination
e855c69d
AB
2217 registers, in which case we need to check liveness here. */
2218 if (EXPR_SEPARABLE_P (expr1))
2219 {
b8698a0f 2220 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2221 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2222 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2223 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2224
2225 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2226 *other* register on the current path, we did it only
2227 for the current target register. Give up. */
2228 if (regno1 != regno2)
2229 EXPR_TARGET_AVAILABLE (expr2) = -1;
2230 }
2231 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2233
2234 merge_expr (expr2, expr1, insn);
2235 av_set_add_nocopy (&in_both_set, expr2);
2236 av_set_iter_remove (&i);
2237 }
2238 else
b8698a0f 2239 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2240 FROM_LV_SET. */
2241 set_unavailable_target_for_expr (expr1, from_lv_set);
2242 }
2243 to_tailp = i.lp;
2244
2245 /* These expressions are not present in TOP. Check liveness
2246 restrictions on TO_LV_SET. */
2247 FOR_EACH_EXPR (expr1, i, *fromp)
2248 set_unavailable_target_for_expr (expr1, to_lv_set);
2249
2250 join_distinct_sets (i.lp, &in_both_set);
2251 join_distinct_sets (to_tailp, fromp);
2252}
2253
2254/* Clear av_set pointed to by SETP. */
2255void
2256av_set_clear (av_set_t *setp)
2257{
2258 expr_t expr;
2259 av_set_iterator i;
2260
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 av_set_iter_remove (&i);
2263
2264 gcc_assert (*setp == NULL);
2265}
2266
2267/* Leave only one non-speculative element in the SETP. */
2268void
2269av_set_leave_one_nonspec (av_set_t *setp)
2270{
2271 expr_t expr;
2272 av_set_iterator i;
2273 bool has_one_nonspec = false;
2274
b8698a0f 2275 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2276 (the first one). */
2277 FOR_EACH_EXPR_1 (expr, i, setp)
2278 {
2279 if (!EXPR_SPEC_DONE_DS (expr))
2280 {
2281 if (has_one_nonspec)
2282 av_set_iter_remove (&i);
2283 else
2284 has_one_nonspec = true;
2285 }
2286 }
2287}
2288
2289/* Return the N'th element of the SET. */
2290expr_t
2291av_set_element (av_set_t set, int n)
2292{
2293 expr_t expr;
2294 av_set_iterator i;
2295
2296 FOR_EACH_EXPR (expr, i, set)
2297 if (n-- == 0)
2298 return expr;
2299
2300 gcc_unreachable ();
2301 return NULL;
2302}
2303
2304/* Deletes all expressions from AVP that are conditional branches (IFs). */
2305void
2306av_set_substract_cond_branches (av_set_t *avp)
2307{
2308 av_set_iterator i;
2309 expr_t expr;
2310
2311 FOR_EACH_EXPR_1 (expr, i, avp)
2312 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2313 av_set_iter_remove (&i);
2314}
2315
b8698a0f 2316/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2317 value PROB / ALL_PROB. */
2318void
2319av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2320{
2321 av_set_iterator i;
2322 expr_t expr;
2323
2324 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2325 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2326 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2327 : 0);
2328}
2329
2330/* Leave in AVP only those expressions, which are present in AV,
2331 and return it. */
2332void
2333av_set_intersect (av_set_t *avp, av_set_t av)
2334{
2335 av_set_iterator i;
2336 expr_t expr;
2337
2338 FOR_EACH_EXPR_1 (expr, i, avp)
2339 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2340 av_set_iter_remove (&i);
2341}
2342
2343\f
2344
2345/* Dependence hooks to initialize insn data. */
2346
2347/* This is used in hooks callable from dependence analysis when initializing
2348 instruction's data. */
2349static struct
2350{
2351 /* Where the dependence was found (lhs/rhs). */
2352 deps_where_t where;
2353
2354 /* The actual data object to initialize. */
2355 idata_t id;
2356
2357 /* True when the insn should not be made clonable. */
2358 bool force_unique_p;
2359
2360 /* True when insn should be treated as of type USE, i.e. never renamed. */
2361 bool force_use_p;
2362} deps_init_id_data;
2363
2364
b8698a0f 2365/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2366 clonable. */
2367static void
2368setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2369{
2370 int type;
b8698a0f 2371
e855c69d
AB
2372 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2373 That clonable insns which can be separated into lhs and rhs have type SET.
2374 Other clonable insns have type USE. */
2375 type = GET_CODE (insn);
2376
2377 /* Only regular insns could be cloned. */
2378 if (type == INSN && !force_unique_p)
2379 type = SET;
2380 else if (type == JUMP_INSN && simplejump_p (insn))
2381 type = PC;
b5b8b0ac
AO
2382 else if (type == DEBUG_INSN)
2383 type = !force_unique_p ? USE : INSN;
b8698a0f 2384
e855c69d
AB
2385 IDATA_TYPE (id) = type;
2386 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2387 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2388 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2389}
2390
2391/* Start initializing insn data. */
2392static void
2393deps_init_id_start_insn (insn_t insn)
2394{
2395 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2396
2397 setup_id_for_insn (deps_init_id_data.id, insn,
2398 deps_init_id_data.force_unique_p);
2399 deps_init_id_data.where = DEPS_IN_INSN;
2400}
2401
2402/* Start initializing lhs data. */
2403static void
2404deps_init_id_start_lhs (rtx lhs)
2405{
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2407 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2408
2409 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2410 {
2411 IDATA_LHS (deps_init_id_data.id) = lhs;
2412 deps_init_id_data.where = DEPS_IN_LHS;
2413 }
2414}
2415
2416/* Finish initializing lhs data. */
2417static void
2418deps_init_id_finish_lhs (void)
2419{
2420 deps_init_id_data.where = DEPS_IN_INSN;
2421}
2422
2423/* Note a set of REGNO. */
2424static void
2425deps_init_id_note_reg_set (int regno)
2426{
2427 haifa_note_reg_set (regno);
2428
2429 if (deps_init_id_data.where == DEPS_IN_RHS)
2430 deps_init_id_data.force_use_p = true;
2431
2432 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2433 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2434
2435#ifdef STACK_REGS
b8698a0f 2436 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2437 renaming to avoid issues with find_used_regs. */
2438 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2439 deps_init_id_data.force_use_p = true;
2440#endif
2441}
2442
2443/* Note a clobber of REGNO. */
2444static void
2445deps_init_id_note_reg_clobber (int regno)
2446{
2447 haifa_note_reg_clobber (regno);
2448
2449 if (deps_init_id_data.where == DEPS_IN_RHS)
2450 deps_init_id_data.force_use_p = true;
2451
2452 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2453 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2454}
2455
2456/* Note a use of REGNO. */
2457static void
2458deps_init_id_note_reg_use (int regno)
2459{
2460 haifa_note_reg_use (regno);
2461
2462 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2463 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2464}
2465
2466/* Start initializing rhs data. */
2467static void
2468deps_init_id_start_rhs (rtx rhs)
2469{
2470 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2471
2472 /* And there was no sel_deps_reset_to_insn (). */
2473 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2474 {
2475 IDATA_RHS (deps_init_id_data.id) = rhs;
2476 deps_init_id_data.where = DEPS_IN_RHS;
2477 }
2478}
2479
2480/* Finish initializing rhs data. */
2481static void
2482deps_init_id_finish_rhs (void)
2483{
2484 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2485 || deps_init_id_data.where == DEPS_IN_INSN);
2486 deps_init_id_data.where = DEPS_IN_INSN;
2487}
2488
2489/* Finish initializing insn data. */
2490static void
2491deps_init_id_finish_insn (void)
2492{
2493 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2494
2495 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2496 {
2497 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2498 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2499
2500 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2501 || deps_init_id_data.force_use_p)
2502 {
b8698a0f 2503 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2504 separately. However, we still want to have them recorded
b8698a0f 2505 for the purposes of substitution. That's why we don't
e855c69d
AB
2506 simply call downgrade_to_use () here. */
2507 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2508 gcc_assert (!lhs == !rhs);
2509
2510 IDATA_TYPE (deps_init_id_data.id) = USE;
2511 }
2512 }
2513
2514 deps_init_id_data.where = DEPS_IN_NOWHERE;
2515}
2516
2517/* This is dependence info used for initializing insn's data. */
2518static struct sched_deps_info_def deps_init_id_sched_deps_info;
2519
2520/* This initializes most of the static part of the above structure. */
2521static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2522 {
2523 NULL,
2524
2525 deps_init_id_start_insn,
2526 deps_init_id_finish_insn,
2527 deps_init_id_start_lhs,
2528 deps_init_id_finish_lhs,
2529 deps_init_id_start_rhs,
2530 deps_init_id_finish_rhs,
2531 deps_init_id_note_reg_set,
2532 deps_init_id_note_reg_clobber,
2533 deps_init_id_note_reg_use,
2534 NULL, /* note_mem_dep */
2535 NULL, /* note_dep */
2536
2537 0, /* use_cselib */
2538 0, /* use_deps_list */
2539 0 /* generate_spec_deps */
2540 };
2541
2542/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2543 we don't actually need information about lhs and rhs. */
2544static void
2545setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2546{
2547 rtx pat = PATTERN (insn);
b8698a0f 2548
481683e1 2549 if (NONJUMP_INSN_P (insn)
b8698a0f 2550 && GET_CODE (pat) == SET
e855c69d
AB
2551 && !force_unique_p)
2552 {
2553 IDATA_RHS (id) = SET_SRC (pat);
2554 IDATA_LHS (id) = SET_DEST (pat);
2555 }
2556 else
2557 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2558}
2559
2560/* Possibly downgrade INSN to USE. */
2561static void
2562maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2563{
2564 bool must_be_use = false;
2565 unsigned uid = INSN_UID (insn);
57512f53 2566 df_ref *rec;
e855c69d
AB
2567 rtx lhs = IDATA_LHS (id);
2568 rtx rhs = IDATA_RHS (id);
b8698a0f 2569
e855c69d
AB
2570 /* We downgrade only SETs. */
2571 if (IDATA_TYPE (id) != SET)
2572 return;
2573
2574 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2575 {
2576 IDATA_TYPE (id) = USE;
2577 return;
2578 }
b8698a0f 2579
e855c69d
AB
2580 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2581 {
57512f53 2582 df_ref def = *rec;
b8698a0f 2583
e855c69d
AB
2584 if (DF_REF_INSN (def)
2585 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2586 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2587 {
2588 must_be_use = true;
2589 break;
2590 }
2591
2592#ifdef STACK_REGS
b8698a0f 2593 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2594 renaming to avoid issues with find_used_regs. */
2595 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2596 {
2597 must_be_use = true;
2598 break;
2599 }
2600#endif
b8698a0f
L
2601 }
2602
e855c69d
AB
2603 if (must_be_use)
2604 IDATA_TYPE (id) = USE;
2605}
2606
2607/* Setup register sets describing INSN in ID. */
2608static void
2609setup_id_reg_sets (idata_t id, insn_t insn)
2610{
2611 unsigned uid = INSN_UID (insn);
57512f53 2612 df_ref *rec;
e855c69d 2613 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2614
e855c69d
AB
2615 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2616 {
57512f53 2617 df_ref def = *rec;
e855c69d 2618 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2619
e855c69d
AB
2620 /* Post modifies are treated like clobbers by sched-deps.c. */
2621 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2622 | DF_REF_PRE_POST_MODIFY)))
2623 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2624 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2625 {
2626 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2627
2628#ifdef STACK_REGS
b8698a0f 2629 /* For stack registers, treat writes to them as writes
e855c69d
AB
2630 to the first one to be consistent with sched-deps.c. */
2631 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2632 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2633#endif
2634 }
2635 /* Mark special refs that generate read/write def pair. */
2636 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2637 || regno == STACK_POINTER_REGNUM)
2638 bitmap_set_bit (tmp, regno);
2639 }
b8698a0f 2640
e855c69d
AB
2641 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2642 {
57512f53 2643 df_ref use = *rec;
e855c69d
AB
2644 unsigned int regno = DF_REF_REGNO (use);
2645
2646 /* When these refs are met for the first time, skip them, as
2647 these uses are just counterparts of some defs. */
2648 if (bitmap_bit_p (tmp, regno))
2649 bitmap_clear_bit (tmp, regno);
2650 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2651 {
2652 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2653
2654#ifdef STACK_REGS
b8698a0f 2655 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2656 the first one to be consistent with sched-deps.c. */
2657 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2658 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2659#endif
2660 }
2661 }
2662
2663 return_regset_to_pool (tmp);
2664}
2665
2666/* Initialize instruction data for INSN in ID using DF's data. */
2667static void
2668init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2669{
2670 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2671
2672 setup_id_for_insn (id, insn, force_unique_p);
2673 setup_id_lhs_rhs (id, insn, force_unique_p);
2674
2675 if (INSN_NOP_P (insn))
2676 return;
2677
2678 maybe_downgrade_id_to_use (id, insn);
2679 setup_id_reg_sets (id, insn);
2680}
2681
2682/* Initialize instruction data for INSN in ID. */
2683static void
2684deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2685{
88302d54 2686 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2687
2688 deps_init_id_data.where = DEPS_IN_NOWHERE;
2689 deps_init_id_data.id = id;
2690 deps_init_id_data.force_unique_p = force_unique_p;
2691 deps_init_id_data.force_use_p = false;
2692
bcf33775 2693 init_deps (dc, false);
e855c69d
AB
2694
2695 memcpy (&deps_init_id_sched_deps_info,
2696 &const_deps_init_id_sched_deps_info,
2697 sizeof (deps_init_id_sched_deps_info));
2698
2699 if (spec_info != NULL)
2700 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2701
2702 sched_deps_info = &deps_init_id_sched_deps_info;
2703
2704 deps_analyze_insn (dc, insn);
2705
2706 free_deps (dc);
2707
2708 deps_init_id_data.id = NULL;
2709}
2710
2711\f
2712
2713/* Implement hooks for collecting fundamental insn properties like if insn is
2714 an ASM or is within a SCHED_GROUP. */
2715
2716/* True when a "one-time init" data for INSN was already inited. */
2717static bool
2718first_time_insn_init (insn_t insn)
2719{
2720 return INSN_LIVE (insn) == NULL;
2721}
2722
2723/* Hash an entry in a transformed_insns hashtable. */
2724static hashval_t
2725hash_transformed_insns (const void *p)
2726{
2727 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2728}
2729
2730/* Compare the entries in a transformed_insns hashtable. */
2731static int
2732eq_transformed_insns (const void *p, const void *q)
2733{
2734 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2735 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2736
2737 if (INSN_UID (i1) == INSN_UID (i2))
2738 return 1;
2739 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2740}
2741
2742/* Free an entry in a transformed_insns hashtable. */
2743static void
2744free_transformed_insns (void *p)
2745{
2746 struct transformed_insns *pti = (struct transformed_insns *) p;
2747
2748 vinsn_detach (pti->vinsn_old);
2749 vinsn_detach (pti->vinsn_new);
2750 free (pti);
2751}
2752
b8698a0f 2753/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2754 we first see the insn. */
2755static void
2756init_first_time_insn_data (insn_t insn)
2757{
2758 /* This should not be set if this is the first time we init data for
2759 insn. */
2760 gcc_assert (first_time_insn_init (insn));
b8698a0f 2761
e855c69d
AB
2762 /* These are needed for nops too. */
2763 INSN_LIVE (insn) = get_regset_from_pool ();
2764 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2765
e855c69d
AB
2766 if (!INSN_NOP_P (insn))
2767 {
2768 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2769 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2770 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2771 = htab_create (16, hash_transformed_insns,
2772 eq_transformed_insns, free_transformed_insns);
bcf33775 2773 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2774 }
2775}
2776
b8698a0f 2777/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2778 Used for extra-large basic blocks. */
2779void
2780free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2781{
2782 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2783
bcf33775
AB
2784 if (! INSN_ANALYZED_DEPS (insn))
2785 return;
b8698a0f 2786
e855c69d
AB
2787 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2788 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2789 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2790
e855c69d
AB
2791 /* This is allocated only for bookkeeping insns. */
2792 if (INSN_ORIGINATORS (insn))
2793 BITMAP_FREE (INSN_ORIGINATORS (insn));
2794 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2795
2796 INSN_ANALYZED_DEPS (insn) = NULL;
2797
b8698a0f 2798 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2799 the deps context (as we believe that it should not happen). */
2800 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2801}
2802
2803/* Free the same data as above for INSN. */
2804static void
2805free_first_time_insn_data (insn_t insn)
2806{
2807 gcc_assert (! first_time_insn_init (insn));
2808
2809 free_data_for_scheduled_insn (insn);
2810 return_regset_to_pool (INSN_LIVE (insn));
2811 INSN_LIVE (insn) = NULL;
2812 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2813}
2814
2815/* Initialize region-scope data structures for basic blocks. */
2816static void
2817init_global_and_expr_for_bb (basic_block bb)
2818{
2819 if (sel_bb_empty_p (bb))
2820 return;
2821
2822 invalidate_av_set (bb);
2823}
2824
2825/* Data for global dependency analysis (to initialize CANT_MOVE and
2826 SCHED_GROUP_P). */
2827static struct
2828{
2829 /* Previous insn. */
2830 insn_t prev_insn;
2831} init_global_data;
2832
2833/* Determine if INSN is in the sched_group, is an asm or should not be
2834 cloned. After that initialize its expr. */
2835static void
2836init_global_and_expr_for_insn (insn_t insn)
2837{
2838 if (LABEL_P (insn))
2839 return;
2840
2841 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2842 {
2843 init_global_data.prev_insn = NULL_RTX;
2844 return;
2845 }
2846
2847 gcc_assert (INSN_P (insn));
2848
2849 if (SCHED_GROUP_P (insn))
2850 /* Setup a sched_group. */
2851 {
2852 insn_t prev_insn = init_global_data.prev_insn;
2853
2854 if (prev_insn)
2855 INSN_SCHED_NEXT (prev_insn) = insn;
2856
2857 init_global_data.prev_insn = insn;
2858 }
2859 else
2860 init_global_data.prev_insn = NULL_RTX;
2861
2862 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2863 || asm_noperands (PATTERN (insn)) >= 0)
2864 /* Mark INSN as an asm. */
2865 INSN_ASM_P (insn) = true;
2866
2867 {
2868 bool force_unique_p;
2869 ds_t spec_done_ds;
2870
cfeb0fa8
AB
2871 /* Certain instructions cannot be cloned, and frame related insns and
2872 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2873 their block. */
2874 if (prologue_epilogue_contains (insn))
2875 {
2876 if (RTX_FRAME_RELATED_P (insn))
2877 CANT_MOVE (insn) = 1;
2878 else
2879 {
2880 rtx note;
2881 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2882 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2883 && ((enum insn_note) INTVAL (XEXP (note, 0))
2884 == NOTE_INSN_EPILOGUE_BEG))
2885 {
2886 CANT_MOVE (insn) = 1;
2887 break;
2888 }
2889 }
2890 force_unique_p = true;
2891 }
e855c69d 2892 else
cfeb0fa8
AB
2893 if (CANT_MOVE (insn)
2894 || INSN_ASM_P (insn)
2895 || SCHED_GROUP_P (insn)
2896 /* Exception handling insns are always unique. */
2897 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2898 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2899 || control_flow_insn_p (insn))
2900 force_unique_p = true;
2901 else
2902 force_unique_p = false;
e855c69d
AB
2903
2904 if (targetm.sched.get_insn_spec_ds)
2905 {
2906 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2907 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2908 }
2909 else
2910 spec_done_ds = 0;
2911
2912 /* Initialize INSN's expr. */
2913 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2914 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
b8698a0f 2915 spec_done_ds, 0, 0, NULL, true, false, false, false,
e855c69d
AB
2916 CANT_MOVE (insn));
2917 }
2918
2919 init_first_time_insn_data (insn);
2920}
2921
2922/* Scan the region and initialize instruction data for basic blocks BBS. */
2923void
2924sel_init_global_and_expr (bb_vec_t bbs)
2925{
2926 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2927 const struct sched_scan_info_def ssi =
2928 {
2929 NULL, /* extend_bb */
2930 init_global_and_expr_for_bb, /* init_bb */
2931 extend_insn_data, /* extend_insn */
2932 init_global_and_expr_for_insn /* init_insn */
2933 };
b8698a0f 2934
e855c69d
AB
2935 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2936}
2937
2938/* Finalize region-scope data structures for basic blocks. */
2939static void
2940finish_global_and_expr_for_bb (basic_block bb)
2941{
2942 av_set_clear (&BB_AV_SET (bb));
2943 BB_AV_LEVEL (bb) = 0;
2944}
2945
2946/* Finalize INSN's data. */
2947static void
2948finish_global_and_expr_insn (insn_t insn)
2949{
2950 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2951 return;
2952
2953 gcc_assert (INSN_P (insn));
2954
2955 if (INSN_LUID (insn) > 0)
2956 {
2957 free_first_time_insn_data (insn);
2958 INSN_WS_LEVEL (insn) = 0;
2959 CANT_MOVE (insn) = 0;
b8698a0f
L
2960
2961 /* We can no longer assert this, as vinsns of this insn could be
2962 easily live in other insn's caches. This should be changed to
e855c69d
AB
2963 a counter-like approach among all vinsns. */
2964 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2965 clear_expr (INSN_EXPR (insn));
2966 }
2967}
2968
2969/* Finalize per instruction data for the whole region. */
2970void
2971sel_finish_global_and_expr (void)
2972{
2973 {
2974 bb_vec_t bbs;
2975 int i;
2976
2977 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2978
2979 for (i = 0; i < current_nr_blocks; i++)
2980 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2981
2982 /* Clear AV_SETs and INSN_EXPRs. */
2983 {
2984 const struct sched_scan_info_def ssi =
2985 {
2986 NULL, /* extend_bb */
2987 finish_global_and_expr_for_bb, /* init_bb */
2988 NULL, /* extend_insn */
2989 finish_global_and_expr_insn /* init_insn */
2990 };
2991
2992 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2993 }
2994
2995 VEC_free (basic_block, heap, bbs);
2996 }
2997
2998 finish_insns ();
2999}
3000\f
3001
b8698a0f
L
3002/* In the below hooks, we merely calculate whether or not a dependence
3003 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3004 when we'll start caching dependence requests. */
3005
3006/* Container to hold information for dependency analysis. */
3007static struct
3008{
3009 deps_t dc;
3010
3011 /* A variable to track which part of rtx we are scanning in
3012 sched-deps.c: sched_analyze_insn (). */
3013 deps_where_t where;
3014
3015 /* Current producer. */
3016 insn_t pro;
3017
3018 /* Current consumer. */
3019 vinsn_t con;
3020
3021 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3022 X is from { INSN, LHS, RHS }. */
3023 ds_t has_dep_p[DEPS_IN_NOWHERE];
3024} has_dependence_data;
3025
3026/* Start analyzing dependencies of INSN. */
3027static void
3028has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3029{
3030 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3031
3032 has_dependence_data.where = DEPS_IN_INSN;
3033}
3034
3035/* Finish analyzing dependencies of an insn. */
3036static void
3037has_dependence_finish_insn (void)
3038{
3039 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3040
3041 has_dependence_data.where = DEPS_IN_NOWHERE;
3042}
3043
3044/* Start analyzing dependencies of LHS. */
3045static void
3046has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3047{
3048 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3049
3050 if (VINSN_LHS (has_dependence_data.con) != NULL)
3051 has_dependence_data.where = DEPS_IN_LHS;
3052}
3053
3054/* Finish analyzing dependencies of an lhs. */
3055static void
3056has_dependence_finish_lhs (void)
3057{
3058 has_dependence_data.where = DEPS_IN_INSN;
3059}
3060
3061/* Start analyzing dependencies of RHS. */
3062static void
3063has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3064{
3065 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3066
3067 if (VINSN_RHS (has_dependence_data.con) != NULL)
3068 has_dependence_data.where = DEPS_IN_RHS;
3069}
3070
3071/* Start analyzing dependencies of an rhs. */
3072static void
3073has_dependence_finish_rhs (void)
3074{
3075 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3076 || has_dependence_data.where == DEPS_IN_INSN);
3077
3078 has_dependence_data.where = DEPS_IN_INSN;
3079}
3080
3081/* Note a set of REGNO. */
3082static void
3083has_dependence_note_reg_set (int regno)
3084{
3085 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3086
3087 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3088 VINSN_INSN_RTX
3089 (has_dependence_data.con)))
3090 {
3091 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3092
3093 if (reg_last->sets != NULL
3094 || reg_last->clobbers != NULL)
3095 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3096
3097 if (reg_last->uses)
3098 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3099 }
3100}
3101
3102/* Note a clobber of REGNO. */
3103static void
3104has_dependence_note_reg_clobber (int regno)
3105{
3106 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3107
3108 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3109 VINSN_INSN_RTX
3110 (has_dependence_data.con)))
3111 {
3112 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3113
3114 if (reg_last->sets)
3115 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3116
e855c69d
AB
3117 if (reg_last->uses)
3118 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3119 }
3120}
3121
3122/* Note a use of REGNO. */
3123static void
3124has_dependence_note_reg_use (int regno)
3125{
3126 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3127
3128 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3129 VINSN_INSN_RTX
3130 (has_dependence_data.con)))
3131 {
3132 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3133
3134 if (reg_last->sets)
3135 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3136
3137 if (reg_last->clobbers)
3138 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3139
3140 /* Handle BE_IN_SPEC. */
3141 if (reg_last->uses)
3142 {
3143 ds_t pro_spec_checked_ds;
3144
3145 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3146 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3147
3148 if (pro_spec_checked_ds != 0)
3149 /* Merge BE_IN_SPEC bits into *DSP. */
3150 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3151 NULL_RTX, NULL_RTX);
3152 }
3153 }
3154}
3155
3156/* Note a memory dependence. */
3157static void
3158has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3159 rtx pending_mem ATTRIBUTE_UNUSED,
3160 insn_t pending_insn ATTRIBUTE_UNUSED,
3161 ds_t ds ATTRIBUTE_UNUSED)
3162{
3163 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3164 VINSN_INSN_RTX (has_dependence_data.con)))
3165 {
3166 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3167
3168 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3169 }
3170}
3171
3172/* Note a dependence. */
3173static void
3174has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3175 ds_t ds ATTRIBUTE_UNUSED)
3176{
3177 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3178 VINSN_INSN_RTX (has_dependence_data.con)))
3179 {
3180 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3181
3182 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3183 }
3184}
3185
3186/* Mark the insn as having a hard dependence that prevents speculation. */
3187void
3188sel_mark_hard_insn (rtx insn)
3189{
3190 int i;
3191
3192 /* Only work when we're in has_dependence_p mode.
3193 ??? This is a hack, this should actually be a hook. */
3194 if (!has_dependence_data.dc || !has_dependence_data.pro)
3195 return;
3196
3197 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3198 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3199
3200 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3201 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3202}
3203
3204/* This structure holds the hooks for the dependency analysis used when
3205 actually processing dependencies in the scheduler. */
3206static struct sched_deps_info_def has_dependence_sched_deps_info;
3207
3208/* This initializes most of the fields of the above structure. */
3209static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3210 {
3211 NULL,
3212
3213 has_dependence_start_insn,
3214 has_dependence_finish_insn,
3215 has_dependence_start_lhs,
3216 has_dependence_finish_lhs,
3217 has_dependence_start_rhs,
3218 has_dependence_finish_rhs,
3219 has_dependence_note_reg_set,
3220 has_dependence_note_reg_clobber,
3221 has_dependence_note_reg_use,
3222 has_dependence_note_mem_dep,
3223 has_dependence_note_dep,
3224
3225 0, /* use_cselib */
3226 0, /* use_deps_list */
3227 0 /* generate_spec_deps */
3228 };
3229
3230/* Initialize has_dependence_sched_deps_info with extra spec field. */
3231static void
3232setup_has_dependence_sched_deps_info (void)
3233{
3234 memcpy (&has_dependence_sched_deps_info,
3235 &const_has_dependence_sched_deps_info,
3236 sizeof (has_dependence_sched_deps_info));
3237
3238 if (spec_info != NULL)
3239 has_dependence_sched_deps_info.generate_spec_deps = 1;
3240
3241 sched_deps_info = &has_dependence_sched_deps_info;
3242}
3243
3244/* Remove all dependences found and recorded in has_dependence_data array. */
3245void
3246sel_clear_has_dependence (void)
3247{
3248 int i;
3249
3250 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3251 has_dependence_data.has_dep_p[i] = 0;
3252}
3253
3254/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3255 to the dependence information array in HAS_DEP_PP. */
3256ds_t
3257has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3258{
3259 int i;
3260 ds_t ds;
88302d54 3261 struct deps_desc *dc;
e855c69d
AB
3262
3263 if (INSN_SIMPLEJUMP_P (pred))
3264 /* Unconditional jump is just a transfer of control flow.
3265 Ignore it. */
3266 return false;
3267
3268 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3269
3270 /* We init this field lazily. */
3271 if (dc->reg_last == NULL)
3272 init_deps_reg_last (dc);
b8698a0f 3273
e855c69d
AB
3274 if (!dc->readonly)
3275 {
3276 has_dependence_data.pro = NULL;
3277 /* Initialize empty dep context with information about PRED. */
3278 advance_deps_context (dc, pred);
3279 dc->readonly = 1;
3280 }
3281
3282 has_dependence_data.where = DEPS_IN_NOWHERE;
3283 has_dependence_data.pro = pred;
3284 has_dependence_data.con = EXPR_VINSN (expr);
3285 has_dependence_data.dc = dc;
3286
3287 sel_clear_has_dependence ();
3288
3289 /* Now catch all dependencies that would be generated between PRED and
3290 INSN. */
3291 setup_has_dependence_sched_deps_info ();
3292 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3293 has_dependence_data.dc = NULL;
3294
3295 /* When a barrier was found, set DEPS_IN_INSN bits. */
3296 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3297 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3298 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3299 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3300
3301 /* Do not allow stores to memory to move through checks. Currently
3302 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3303 obvious places to which this dependence can be attached.
e855c69d
AB
3304 FIMXE: this should go to a hook. */
3305 if (EXPR_LHS (expr)
3306 && MEM_P (EXPR_LHS (expr))
3307 && sel_insn_is_speculation_check (pred))
3308 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3309
e855c69d
AB
3310 *has_dep_pp = has_dependence_data.has_dep_p;
3311 ds = 0;
3312 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3313 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3314 NULL_RTX, NULL_RTX);
3315
3316 return ds;
3317}
3318\f
3319
b8698a0f
L
3320/* Dependence hooks implementation that checks dependence latency constraints
3321 on the insns being scheduled. The entry point for these routines is
3322 tick_check_p predicate. */
e855c69d
AB
3323
3324static struct
3325{
3326 /* An expr we are currently checking. */
3327 expr_t expr;
3328
3329 /* A minimal cycle for its scheduling. */
3330 int cycle;
3331
3332 /* Whether we have seen a true dependence while checking. */
3333 bool seen_true_dep_p;
3334} tick_check_data;
3335
3336/* Update minimal scheduling cycle for tick_check_insn given that it depends
3337 on PRO with status DS and weight DW. */
3338static void
3339tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3340{
3341 expr_t con_expr = tick_check_data.expr;
3342 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3343
3344 if (con_insn != pro_insn)
3345 {
3346 enum reg_note dt;
3347 int tick;
3348
3349 if (/* PROducer was removed from above due to pipelining. */
3350 !INSN_IN_STREAM_P (pro_insn)
3351 /* Or PROducer was originally on the next iteration regarding the
3352 CONsumer. */
3353 || (INSN_SCHED_TIMES (pro_insn)
3354 - EXPR_SCHED_TIMES (con_expr)) > 1)
3355 /* Don't count this dependence. */
3356 return;
3357
3358 dt = ds_to_dt (ds);
3359 if (dt == REG_DEP_TRUE)
3360 tick_check_data.seen_true_dep_p = true;
3361
3362 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3363
3364 {
3365 dep_def _dep, *dep = &_dep;
3366
3367 init_dep (dep, pro_insn, con_insn, dt);
3368
3369 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3370 }
3371
3372 /* When there are several kinds of dependencies between pro and con,
3373 only REG_DEP_TRUE should be taken into account. */
3374 if (tick > tick_check_data.cycle
3375 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3376 tick_check_data.cycle = tick;
3377 }
3378}
3379
3380/* An implementation of note_dep hook. */
3381static void
3382tick_check_note_dep (insn_t pro, ds_t ds)
3383{
3384 tick_check_dep_with_dw (pro, ds, 0);
3385}
3386
3387/* An implementation of note_mem_dep hook. */
3388static void
3389tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3390{
3391 dw_t dw;
3392
3393 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3394 ? estimate_dep_weak (mem1, mem2)
3395 : 0);
3396
3397 tick_check_dep_with_dw (pro, ds, dw);
3398}
3399
3400/* This structure contains hooks for dependence analysis used when determining
3401 whether an insn is ready for scheduling. */
3402static struct sched_deps_info_def tick_check_sched_deps_info =
3403 {
3404 NULL,
3405
3406 NULL,
3407 NULL,
3408 NULL,
3409 NULL,
3410 NULL,
3411 NULL,
3412 haifa_note_reg_set,
3413 haifa_note_reg_clobber,
3414 haifa_note_reg_use,
3415 tick_check_note_mem_dep,
3416 tick_check_note_dep,
3417
3418 0, 0, 0
3419 };
3420
3421/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3422 scheduled. Return 0 if all data from producers in DC is ready. */
3423int
3424tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3425{
3426 int cycles_left;
3427 /* Initialize variables. */
3428 tick_check_data.expr = expr;
3429 tick_check_data.cycle = 0;
3430 tick_check_data.seen_true_dep_p = false;
3431 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3432
e855c69d
AB
3433 gcc_assert (!dc->readonly);
3434 dc->readonly = 1;
3435 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3436 dc->readonly = 0;
3437
3438 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3439
3440 return cycles_left >= 0 ? cycles_left : 0;
3441}
3442\f
3443
3444/* Functions to work with insns. */
3445
3446/* Returns true if LHS of INSN is the same as DEST of an insn
3447 being moved. */
3448bool
3449lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3450{
3451 rtx lhs = INSN_LHS (insn);
3452
3453 if (lhs == NULL || dest == NULL)
3454 return false;
b8698a0f 3455
e855c69d
AB
3456 return rtx_equal_p (lhs, dest);
3457}
3458
3459/* Return s_i_d entry of INSN. Callable from debugger. */
3460sel_insn_data_def
3461insn_sid (insn_t insn)
3462{
3463 return *SID (insn);
3464}
3465
3466/* True when INSN is a speculative check. We can tell this by looking
3467 at the data structures of the selective scheduler, not by examining
3468 the pattern. */
3469bool
3470sel_insn_is_speculation_check (rtx insn)
3471{
3472 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3473}
3474
b8698a0f 3475/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3476 for given INSN. */
3477void
3478get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3479{
3480 rtx pat = PATTERN (insn);
3481
3482 gcc_assert (dst_loc);
3483 gcc_assert (GET_CODE (pat) == SET);
3484
3485 *dst_loc = SET_DEST (pat);
3486
3487 gcc_assert (*dst_loc);
3488 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3489
3490 if (mode)
3491 *mode = GET_MODE (*dst_loc);
3492}
3493
b8698a0f 3494/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3495 creation. */
3496bool
3497bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3498{
3499 insn_t succ;
3500 succ_iterator si;
3501
3502 FOR_EACH_SUCC (succ, si, jump)
3503 if (sel_num_cfg_preds_gt_1 (succ))
3504 return true;
3505
3506 return false;
3507}
3508
3509/* Return 'true' if INSN is the only one in its basic block. */
3510static bool
3511insn_is_the_only_one_in_bb_p (insn_t insn)
3512{
3513 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3514}
3515
3516#ifdef ENABLE_CHECKING
b8698a0f 3517/* Check that the region we're scheduling still has at most one
e855c69d
AB
3518 backedge. */
3519static void
3520verify_backedges (void)
3521{
3522 if (pipelining_p)
3523 {
3524 int i, n = 0;
3525 edge e;
3526 edge_iterator ei;
b8698a0f 3527
e855c69d
AB
3528 for (i = 0; i < current_nr_blocks; i++)
3529 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3530 if (in_current_region_p (e->dest)
3531 && BLOCK_TO_BB (e->dest->index) < i)
3532 n++;
b8698a0f 3533
e855c69d
AB
3534 gcc_assert (n <= 1);
3535 }
3536}
3537#endif
3538\f
3539
3540/* Functions to work with control flow. */
3541
b59ab570
AM
3542/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3543 are sorted in topological order (it might have been invalidated by
3544 redirecting an edge). */
3545static void
3546sel_recompute_toporder (void)
3547{
3548 int i, n, rgn;
3549 int *postorder, n_blocks;
3550
3551 postorder = XALLOCAVEC (int, n_basic_blocks);
3552 n_blocks = post_order_compute (postorder, false, false);
3553
3554 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3555 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3556 if (CONTAINING_RGN (postorder[i]) == rgn)
3557 {
3558 BLOCK_TO_BB (postorder[i]) = n;
3559 BB_TO_BLOCK (n) = postorder[i];
3560 n++;
3561 }
3562
3563 /* Assert that we updated info for all blocks. We may miss some blocks if
3564 this function is called when redirecting an edge made a block
3565 unreachable, but that block is not deleted yet. */
3566 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3567}
3568
e855c69d 3569/* Tidy the possibly empty block BB. */
65592aad 3570static bool
5f33b972 3571maybe_tidy_empty_bb (basic_block bb)
e855c69d
AB
3572{
3573 basic_block succ_bb, pred_bb;
f2c45f08
AM
3574 edge e;
3575 edge_iterator ei;
e855c69d
AB
3576 bool rescan_p;
3577
3578 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3579 has incoming non-fallthrough edge, or it has no predecessors or
3580 successors. Otherwise remove it. */
b5b8b0ac 3581 if (!sel_bb_empty_p (bb)
b8698a0f 3582 || (single_succ_p (bb)
e855c69d 3583 && single_succ (bb) == EXIT_BLOCK_PTR
b8698a0f 3584 && (!single_pred_p (bb)
762bffba
AB
3585 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3586 || EDGE_COUNT (bb->preds) == 0
3587 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3588 return false;
3589
f2c45f08
AM
3590 /* Do not attempt to redirect complex edges. */
3591 FOR_EACH_EDGE (e, ei, bb->preds)
3592 if (e->flags & EDGE_COMPLEX)
3593 return false;
3594
e855c69d
AB
3595 free_data_sets (bb);
3596
3597 /* Do not delete BB if it has more than one successor.
3598 That can occur when we moving a jump. */
3599 if (!single_succ_p (bb))
3600 {
3601 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3602 sel_merge_blocks (bb->prev_bb, bb);
3603 return true;
3604 }
3605
3606 succ_bb = single_succ (bb);
3607 rescan_p = true;
3608 pred_bb = NULL;
3609
3610 /* Redirect all non-fallthru edges to the next bb. */
3611 while (rescan_p)
3612 {
e855c69d
AB
3613 rescan_p = false;
3614
3615 FOR_EACH_EDGE (e, ei, bb->preds)
3616 {
3617 pred_bb = e->src;
3618
3619 if (!(e->flags & EDGE_FALLTHRU))
3620 {
5f33b972
AM
3621 /* We can not invalidate computed topological order by moving
3622 the edge destination block (E->SUCC) along a fallthru edge. */
3623 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3624 rescan_p = true;
3625 break;
3626 }
5f33b972
AM
3627 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3628 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3629 still have to adjust it. */
3630 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3631 {
3632 /* If possible, try to remove the unneeded conditional jump. */
3633 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3634 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3635 {
3636 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3637 tidy_fallthru_edge (e);
3638 }
3639 else
3640 sel_redirect_edge_and_branch (e, succ_bb);
3641 rescan_p = true;
3642 break;
3643 }
e855c69d
AB
3644 }
3645 }
3646
e855c69d
AB
3647 if (can_merge_blocks_p (bb->prev_bb, bb))
3648 sel_merge_blocks (bb->prev_bb, bb);
3649 else
e855c69d 3650 {
262d8232 3651 /* This is a block without fallthru predecessor. Just delete it. */
e855c69d
AB
3652 gcc_assert (pred_bb != NULL);
3653
762bffba
AB
3654 if (in_current_region_p (pred_bb))
3655 move_bb_info (pred_bb, bb);
e855c69d
AB
3656 remove_empty_bb (bb, true);
3657 }
3658
e855c69d
AB
3659 return true;
3660}
3661
b8698a0f 3662/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3663 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3664 is true, also try to optimize control flow on non-empty blocks. */
3665bool
3666tidy_control_flow (basic_block xbb, bool full_tidying)
3667{
3668 bool changed = true;
b5b8b0ac 3669 insn_t first, last;
b8698a0f 3670
e855c69d 3671 /* First check whether XBB is empty. */
5f33b972 3672 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3673 if (changed || !full_tidying)
3674 return changed;
b8698a0f 3675
e855c69d 3676 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3677 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3678 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3679 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3680 {
3681 if (sel_remove_insn (BB_END (xbb), false, false))
3682 return true;
3683 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3684 }
3685
b5b8b0ac
AO
3686 first = sel_bb_head (xbb);
3687 last = sel_bb_end (xbb);
3688 if (MAY_HAVE_DEBUG_INSNS)
3689 {
3690 if (first != last && DEBUG_INSN_P (first))
3691 do
3692 first = NEXT_INSN (first);
3693 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3694
3695 if (first != last && DEBUG_INSN_P (last))
3696 do
3697 last = PREV_INSN (last);
3698 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3699 }
e855c69d 3700 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3701 to next basic block left after removing INSN from stream.
3702 If it is so, remove that jump and redirect edge to current
3703 basic block (where there was INSN before deletion). This way
3704 when NOP will be deleted several instructions later with its
3705 basic block we will not get a jump to next instruction, which
e855c69d 3706 can be harmful. */
b5b8b0ac 3707 if (first == last
e855c69d 3708 && !sel_bb_empty_p (xbb)
b5b8b0ac 3709 && INSN_NOP_P (last)
e855c69d
AB
3710 /* Flow goes fallthru from current block to the next. */
3711 && EDGE_COUNT (xbb->succs) == 1
3712 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3713 /* When successor is an EXIT block, it may not be the next block. */
3714 && single_succ (xbb) != EXIT_BLOCK_PTR
3715 /* And unconditional jump in previous basic block leads to
3716 next basic block of XBB and this jump can be safely removed. */
3717 && in_current_region_p (xbb->prev_bb)
753de8cf 3718 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3719 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3720 /* Also this jump is not at the scheduling boundary. */
3721 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3722 {
b59ab570 3723 bool recompute_toporder_p;
e855c69d
AB
3724 /* Clear data structures of jump - jump itself will be removed
3725 by sel_redirect_edge_and_branch. */
3726 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3727 recompute_toporder_p
3728 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3729
e855c69d
AB
3730 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3731
3732 /* It can turn out that after removing unused jump, basic block
3733 that contained that jump, becomes empty too. In such case
3734 remove it too. */
3735 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3736 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3737 if (recompute_toporder_p)
b59ab570 3738 sel_recompute_toporder ();
e855c69d 3739 }
d787f788
AM
3740
3741#ifdef ENABLE_CHECKING
3742 verify_backedges ();
3743#endif
3744
e855c69d
AB
3745 return changed;
3746}
3747
b59ab570
AM
3748/* Purge meaningless empty blocks in the middle of a region. */
3749void
3750purge_empty_blocks (void)
3751{
3752 /* Do not attempt to delete preheader. */
3753 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
3754
3755 while (i < current_nr_blocks)
3756 {
3757 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3758
5f33b972 3759 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3760 continue;
3761
3762 i++;
3763 }
3764}
3765
b8698a0f
L
3766/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3767 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3768 Return true if we have removed some blocks afterwards. */
3769bool
3770sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3771{
3772 basic_block bb = BLOCK_FOR_INSN (insn);
3773
3774 gcc_assert (INSN_IN_STREAM_P (insn));
3775
b5b8b0ac
AO
3776 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3777 {
3778 expr_t expr;
3779 av_set_iterator i;
3780
3781 /* When we remove a debug insn that is head of a BB, it remains
3782 in the AV_SET of the block, but it shouldn't. */
3783 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3784 if (EXPR_INSN_RTX (expr) == insn)
3785 {
3786 av_set_iter_remove (&i);
3787 break;
3788 }
3789 }
3790
e855c69d
AB
3791 if (only_disconnect)
3792 {
3793 insn_t prev = PREV_INSN (insn);
3794 insn_t next = NEXT_INSN (insn);
3795 basic_block bb = BLOCK_FOR_INSN (insn);
3796
3797 NEXT_INSN (prev) = next;
3798 PREV_INSN (next) = prev;
3799
3800 if (BB_HEAD (bb) == insn)
3801 {
3802 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3803 BB_HEAD (bb) = prev;
3804 }
3805 if (BB_END (bb) == insn)
3806 BB_END (bb) = prev;
3807 }
3808 else
3809 {
3810 remove_insn (insn);
3811 clear_expr (INSN_EXPR (insn));
3812 }
3813
3814 /* It is necessary to null this fields before calling add_insn (). */
3815 PREV_INSN (insn) = NULL_RTX;
3816 NEXT_INSN (insn) = NULL_RTX;
3817
3818 return tidy_control_flow (bb, full_tidying);
3819}
3820
3821/* Estimate number of the insns in BB. */
3822static int
3823sel_estimate_number_of_insns (basic_block bb)
3824{
3825 int res = 0;
3826 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3827
3828 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3829 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3830 res++;
3831
3832 return res;
3833}
3834
3835/* We don't need separate luids for notes or labels. */
3836static int
3837sel_luid_for_non_insn (rtx x)
3838{
3839 gcc_assert (NOTE_P (x) || LABEL_P (x));
3840
3841 return -1;
3842}
3843
3844/* Return seqno of the only predecessor of INSN. */
3845static int
3846get_seqno_of_a_pred (insn_t insn)
3847{
3848 int seqno;
3849
3850 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3851
3852 if (!sel_bb_head_p (insn))
3853 seqno = INSN_SEQNO (PREV_INSN (insn));
3854 else
3855 {
3856 basic_block bb = BLOCK_FOR_INSN (insn);
3857
3858 if (single_pred_p (bb)
3859 && !in_current_region_p (single_pred (bb)))
3860 {
3861 /* We can have preds outside a region when splitting edges
b8698a0f 3862 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
3863 There should be only one of them. */
3864 insn_t succ = NULL;
3865 succ_iterator si;
3866 bool first = true;
b8698a0f 3867
e855c69d
AB
3868 gcc_assert (flag_sel_sched_pipelining_outer_loops
3869 && current_loop_nest);
b8698a0f 3870 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
3871 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3872 {
3873 gcc_assert (first);
3874 first = false;
3875 }
3876
3877 gcc_assert (succ != NULL);
3878 seqno = INSN_SEQNO (succ);
3879 }
3880 else
3881 {
3882 insn_t *preds;
3883 int n;
3884
3885 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3886 gcc_assert (n == 1);
3887
3888 seqno = INSN_SEQNO (preds[0]);
b8698a0f 3889
e855c69d
AB
3890 free (preds);
3891 }
3892 }
3893
3894 return seqno;
3895}
3896
da7ba240
AB
3897/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3898 with positive seqno exist. */
e855c69d
AB
3899int
3900get_seqno_by_preds (rtx insn)
3901{
3902 basic_block bb = BLOCK_FOR_INSN (insn);
3903 rtx tmp = insn, head = BB_HEAD (bb);
3904 insn_t *preds;
3905 int n, i, seqno;
3906
3907 while (tmp != head)
3908 if (INSN_P (tmp))
3909 return INSN_SEQNO (tmp);
3910 else
3911 tmp = PREV_INSN (tmp);
b8698a0f 3912
e855c69d
AB
3913 cfg_preds (bb, &preds, &n);
3914 for (i = 0, seqno = -1; i < n; i++)
3915 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3916
e855c69d
AB
3917 return seqno;
3918}
3919
3920\f
3921
3922/* Extend pass-scope data structures for basic blocks. */
3923void
3924sel_extend_global_bb_info (void)
3925{
3926 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3927 last_basic_block);
3928}
3929
3930/* Extend region-scope data structures for basic blocks. */
3931static void
3932extend_region_bb_info (void)
3933{
3934 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3935 last_basic_block);
3936}
3937
3938/* Extend all data structures to fit for all basic blocks. */
3939static void
3940extend_bb_info (void)
3941{
3942 sel_extend_global_bb_info ();
3943 extend_region_bb_info ();
3944}
3945
3946/* Finalize pass-scope data structures for basic blocks. */
3947void
3948sel_finish_global_bb_info (void)
3949{
3950 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3951}
3952
3953/* Finalize region-scope data structures for basic blocks. */
3954static void
3955finish_region_bb_info (void)
3956{
3957 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3958}
3959\f
3960
3961/* Data for each insn in current region. */
3962VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3963
3964/* A vector for the insns we've emitted. */
3965static insn_vec_t new_insns = NULL;
3966
3967/* Extend data structures for insns from current region. */
3968static void
3969extend_insn_data (void)
3970{
3971 int reserve;
b8698a0f 3972
e855c69d
AB
3973 sched_extend_target ();
3974 sched_deps_init (false);
3975
3976 /* Extend data structures for insns from current region. */
b8698a0f 3977 reserve = (sched_max_luid + 1
e855c69d 3978 - VEC_length (sel_insn_data_def, s_i_d));
b8698a0f 3979 if (reserve > 0
e855c69d 3980 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
bcf33775
AB
3981 {
3982 int size;
3983
3984 if (sched_max_luid / 2 > 1024)
3985 size = sched_max_luid + 1024;
3986 else
3987 size = 3 * sched_max_luid / 2;
b8698a0f 3988
bcf33775
AB
3989
3990 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3991 }
e855c69d
AB
3992}
3993
3994/* Finalize data structures for insns from current region. */
3995static void
3996finish_insns (void)
3997{
3998 unsigned i;
3999
4000 /* Clear here all dependence contexts that may have left from insns that were
4001 removed during the scheduling. */
4002 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4003 {
4004 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
b8698a0f 4005
e855c69d
AB
4006 if (sid_entry->live)
4007 return_regset_to_pool (sid_entry->live);
4008 if (sid_entry->analyzed_deps)
4009 {
4010 BITMAP_FREE (sid_entry->analyzed_deps);
4011 BITMAP_FREE (sid_entry->found_deps);
4012 htab_delete (sid_entry->transformed_insns);
4013 free_deps (&sid_entry->deps_context);
4014 }
4015 if (EXPR_VINSN (&sid_entry->expr))
4016 {
4017 clear_expr (&sid_entry->expr);
b8698a0f 4018
e855c69d
AB
4019 /* Also, clear CANT_MOVE bit here, because we really don't want it
4020 to be passed to the next region. */
4021 CANT_MOVE_BY_LUID (i) = 0;
4022 }
4023 }
b8698a0f 4024
e855c69d
AB
4025 VEC_free (sel_insn_data_def, heap, s_i_d);
4026}
4027
4028/* A proxy to pass initialization data to init_insn (). */
4029static sel_insn_data_def _insn_init_ssid;
4030static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4031
4032/* If true create a new vinsn. Otherwise use the one from EXPR. */
4033static bool insn_init_create_new_vinsn_p;
4034
4035/* Set all necessary data for initialization of the new insn[s]. */
4036static expr_t
4037set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4038{
4039 expr_t x = &insn_init_ssid->expr;
4040
4041 copy_expr_onside (x, expr);
4042 if (vi != NULL)
4043 {
4044 insn_init_create_new_vinsn_p = false;
4045 change_vinsn_in_expr (x, vi);
4046 }
4047 else
4048 insn_init_create_new_vinsn_p = true;
4049
4050 insn_init_ssid->seqno = seqno;
4051 return x;
4052}
4053
4054/* Init data for INSN. */
4055static void
4056init_insn_data (insn_t insn)
4057{
4058 expr_t expr;
4059 sel_insn_data_t ssid = insn_init_ssid;
4060
4061 /* The fields mentioned below are special and hence are not being
4062 propagated to the new insns. */
4063 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4064 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4065 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4066
4067 expr = INSN_EXPR (insn);
4068 copy_expr (expr, &ssid->expr);
4069 prepare_insn_expr (insn, ssid->seqno);
4070
4071 if (insn_init_create_new_vinsn_p)
4072 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4073
e855c69d
AB
4074 if (first_time_insn_init (insn))
4075 init_first_time_insn_data (insn);
4076}
4077
4078/* This is used to initialize spurious jumps generated by
4079 sel_redirect_edge (). */
4080static void
4081init_simplejump_data (insn_t insn)
4082{
4083 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
b8698a0f 4084 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
e855c69d
AB
4085 false, true);
4086 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4087 init_first_time_insn_data (insn);
4088}
4089
b8698a0f 4090/* Perform deferred initialization of insns. This is used to process
e855c69d
AB
4091 a new jump that may be created by redirect_edge. */
4092void
4093sel_init_new_insn (insn_t insn, int flags)
4094{
4095 /* We create data structures for bb when the first insn is emitted in it. */
4096 if (INSN_P (insn)
4097 && INSN_IN_STREAM_P (insn)
4098 && insn_is_the_only_one_in_bb_p (insn))
4099 {
4100 extend_bb_info ();
4101 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4102 }
b8698a0f 4103
e855c69d
AB
4104 if (flags & INSN_INIT_TODO_LUID)
4105 sched_init_luids (NULL, NULL, NULL, insn);
4106
4107 if (flags & INSN_INIT_TODO_SSID)
4108 {
4109 extend_insn_data ();
4110 init_insn_data (insn);
4111 clear_expr (&insn_init_ssid->expr);
4112 }
4113
4114 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4115 {
4116 extend_insn_data ();
4117 init_simplejump_data (insn);
4118 }
b8698a0f 4119
e855c69d
AB
4120 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4121 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4122}
4123\f
4124
4125/* Functions to init/finish work with lv sets. */
4126
4127/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4128static void
4129init_lv_set (basic_block bb)
4130{
4131 gcc_assert (!BB_LV_SET_VALID_P (bb));
4132
4133 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4134 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4135 BB_LV_SET_VALID_P (bb) = true;
4136}
4137
4138/* Copy liveness information to BB from FROM_BB. */
4139static void
4140copy_lv_set_from (basic_block bb, basic_block from_bb)
4141{
4142 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4143
e855c69d
AB
4144 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4145 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4146}
e855c69d
AB
4147
4148/* Initialize lv set of all bb headers. */
4149void
4150init_lv_sets (void)
4151{
4152 basic_block bb;
4153
4154 /* Initialize of LV sets. */
4155 FOR_EACH_BB (bb)
4156 init_lv_set (bb);
4157
4158 /* Don't forget EXIT_BLOCK. */
4159 init_lv_set (EXIT_BLOCK_PTR);
4160}
4161
4162/* Release lv set of HEAD. */
4163static void
4164free_lv_set (basic_block bb)
4165{
4166 gcc_assert (BB_LV_SET (bb) != NULL);
4167
4168 return_regset_to_pool (BB_LV_SET (bb));
4169 BB_LV_SET (bb) = NULL;
4170 BB_LV_SET_VALID_P (bb) = false;
4171}
4172
4173/* Finalize lv sets of all bb headers. */
4174void
4175free_lv_sets (void)
4176{
4177 basic_block bb;
4178
4179 /* Don't forget EXIT_BLOCK. */
4180 free_lv_set (EXIT_BLOCK_PTR);
4181
4182 /* Free LV sets. */
4183 FOR_EACH_BB (bb)
4184 if (BB_LV_SET (bb))
4185 free_lv_set (bb);
4186}
4187
4188/* Initialize an invalid AV_SET for BB.
4189 This set will be updated next time compute_av () process BB. */
4190static void
4191invalidate_av_set (basic_block bb)
4192{
4193 gcc_assert (BB_AV_LEVEL (bb) <= 0
4194 && BB_AV_SET (bb) == NULL);
4195
4196 BB_AV_LEVEL (bb) = -1;
4197}
4198
4199/* Create initial data sets for BB (they will be invalid). */
4200static void
4201create_initial_data_sets (basic_block bb)
4202{
4203 if (BB_LV_SET (bb))
4204 BB_LV_SET_VALID_P (bb) = false;
4205 else
4206 BB_LV_SET (bb) = get_regset_from_pool ();
4207 invalidate_av_set (bb);
4208}
4209
4210/* Free av set of BB. */
4211static void
4212free_av_set (basic_block bb)
4213{
4214 av_set_clear (&BB_AV_SET (bb));
4215 BB_AV_LEVEL (bb) = 0;
4216}
4217
4218/* Free data sets of BB. */
4219void
4220free_data_sets (basic_block bb)
4221{
4222 free_lv_set (bb);
4223 free_av_set (bb);
4224}
4225
4226/* Exchange lv sets of TO and FROM. */
4227static void
4228exchange_lv_sets (basic_block to, basic_block from)
4229{
4230 {
4231 regset to_lv_set = BB_LV_SET (to);
4232
4233 BB_LV_SET (to) = BB_LV_SET (from);
4234 BB_LV_SET (from) = to_lv_set;
4235 }
4236
4237 {
4238 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4239
4240 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4241 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4242 }
4243}
4244
4245
4246/* Exchange av sets of TO and FROM. */
4247static void
4248exchange_av_sets (basic_block to, basic_block from)
4249{
4250 {
4251 av_set_t to_av_set = BB_AV_SET (to);
4252
4253 BB_AV_SET (to) = BB_AV_SET (from);
4254 BB_AV_SET (from) = to_av_set;
4255 }
4256
4257 {
4258 int to_av_level = BB_AV_LEVEL (to);
4259
4260 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4261 BB_AV_LEVEL (from) = to_av_level;
4262 }
4263}
4264
4265/* Exchange data sets of TO and FROM. */
4266void
4267exchange_data_sets (basic_block to, basic_block from)
4268{
4269 exchange_lv_sets (to, from);
4270 exchange_av_sets (to, from);
4271}
4272
4273/* Copy data sets of FROM to TO. */
4274void
4275copy_data_sets (basic_block to, basic_block from)
4276{
4277 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4278 gcc_assert (BB_AV_SET (to) == NULL);
4279
4280 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4281 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4282
4283 if (BB_AV_SET_VALID_P (from))
4284 {
4285 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4286 }
4287 if (BB_LV_SET_VALID_P (from))
4288 {
4289 gcc_assert (BB_LV_SET (to) != NULL);
4290 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4291 }
4292}
4293
4294/* Return an av set for INSN, if any. */
4295av_set_t
4296get_av_set (insn_t insn)
4297{
4298 av_set_t av_set;
4299
4300 gcc_assert (AV_SET_VALID_P (insn));
4301
4302 if (sel_bb_head_p (insn))
4303 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4304 else
4305 av_set = NULL;
4306
4307 return av_set;
4308}
4309
4310/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4311int
4312get_av_level (insn_t insn)
4313{
4314 int av_level;
4315
4316 gcc_assert (INSN_P (insn));
4317
4318 if (sel_bb_head_p (insn))
4319 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4320 else
4321 av_level = INSN_WS_LEVEL (insn);
4322
4323 return av_level;
4324}
4325
4326\f
4327
4328/* Variables to work with control-flow graph. */
4329
4330/* The basic block that already has been processed by the sched_data_update (),
4331 but hasn't been in sel_add_bb () yet. */
4332static VEC (basic_block, heap) *last_added_blocks = NULL;
4333
4334/* A pool for allocating successor infos. */
4335static struct
4336{
4337 /* A stack for saving succs_info structures. */
4338 struct succs_info *stack;
4339
4340 /* Its size. */
4341 int size;
4342
4343 /* Top of the stack. */
4344 int top;
4345
4346 /* Maximal value of the top. */
4347 int max_top;
4348} succs_info_pool;
4349
4350/* Functions to work with control-flow graph. */
4351
4352/* Return basic block note of BB. */
4353insn_t
4354sel_bb_head (basic_block bb)
4355{
4356 insn_t head;
4357
4358 if (bb == EXIT_BLOCK_PTR)
4359 {
4360 gcc_assert (exit_insn != NULL_RTX);
4361 head = exit_insn;
4362 }
4363 else
4364 {
4365 insn_t note;
4366
4367 note = bb_note (bb);
4368 head = next_nonnote_insn (note);
4369
89ad0f25 4370 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
e855c69d
AB
4371 head = NULL_RTX;
4372 }
4373
4374 return head;
4375}
4376
4377/* Return true if INSN is a basic block header. */
4378bool
4379sel_bb_head_p (insn_t insn)
4380{
4381 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4382}
4383
4384/* Return last insn of BB. */
4385insn_t
4386sel_bb_end (basic_block bb)
4387{
4388 if (sel_bb_empty_p (bb))
4389 return NULL_RTX;
4390
4391 gcc_assert (bb != EXIT_BLOCK_PTR);
4392
4393 return BB_END (bb);
4394}
4395
4396/* Return true if INSN is the last insn in its basic block. */
4397bool
4398sel_bb_end_p (insn_t insn)
4399{
4400 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4401}
4402
4403/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4404bool
4405sel_bb_empty_p (basic_block bb)
4406{
4407 return sel_bb_head (bb) == NULL;
4408}
4409
4410/* True when BB belongs to the current scheduling region. */
4411bool
4412in_current_region_p (basic_block bb)
4413{
4414 if (bb->index < NUM_FIXED_BLOCKS)
4415 return false;
4416
4417 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4418}
4419
4420/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4421basic_block
4422fallthru_bb_of_jump (rtx jump)
4423{
4424 if (!JUMP_P (jump))
4425 return NULL;
4426
4427 if (any_uncondjump_p (jump))
4428 return single_succ (BLOCK_FOR_INSN (jump));
4429
4430 if (!any_condjump_p (jump))
4431 return NULL;
4432
268bab85
AB
4433 /* A basic block that ends with a conditional jump may still have one successor
4434 (and be followed by a barrier), we are not interested. */
4435 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4436 return NULL;
4437
e855c69d
AB
4438 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4439}
4440
4441/* Remove all notes from BB. */
4442static void
4443init_bb (basic_block bb)
4444{
4445 remove_notes (bb_note (bb), BB_END (bb));
4446 BB_NOTE_LIST (bb) = note_list;
4447}
4448
4449void
4450sel_init_bbs (bb_vec_t bbs, basic_block bb)
4451{
4452 const struct sched_scan_info_def ssi =
4453 {
4454 extend_bb_info, /* extend_bb */
4455 init_bb, /* init_bb */
4456 NULL, /* extend_insn */
4457 NULL /* init_insn */
4458 };
4459
4460 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4461}
4462
7898b93b 4463/* Restore notes for the whole region. */
e855c69d 4464static void
7898b93b 4465sel_restore_notes (void)
e855c69d
AB
4466{
4467 int bb;
7898b93b 4468 insn_t insn;
e855c69d
AB
4469
4470 for (bb = 0; bb < current_nr_blocks; bb++)
4471 {
4472 basic_block first, last;
4473
4474 first = EBB_FIRST_BB (bb);
4475 last = EBB_LAST_BB (bb)->next_bb;
4476
4477 do
4478 {
4479 note_list = BB_NOTE_LIST (first);
4480 restore_other_notes (NULL, first);
4481 BB_NOTE_LIST (first) = NULL_RTX;
4482
7898b93b
AM
4483 FOR_BB_INSNS (first, insn)
4484 if (NONDEBUG_INSN_P (insn))
4485 reemit_notes (insn);
4486
e855c69d
AB
4487 first = first->next_bb;
4488 }
4489 while (first != last);
4490 }
4491}
4492
4493/* Free per-bb data structures. */
4494void
4495sel_finish_bbs (void)
4496{
7898b93b 4497 sel_restore_notes ();
e855c69d
AB
4498
4499 /* Remove current loop preheader from this loop. */
4500 if (current_loop_nest)
4501 sel_remove_loop_preheader ();
4502
4503 finish_region_bb_info ();
4504}
4505
4506/* Return true if INSN has a single successor of type FLAGS. */
4507bool
4508sel_insn_has_single_succ_p (insn_t insn, int flags)
4509{
4510 insn_t succ;
4511 succ_iterator si;
4512 bool first_p = true;
4513
4514 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4515 {
4516 if (first_p)
4517 first_p = false;
4518 else
4519 return false;
4520 }
4521
4522 return true;
4523}
4524
4525/* Allocate successor's info. */
4526static struct succs_info *
4527alloc_succs_info (void)
4528{
4529 if (succs_info_pool.top == succs_info_pool.max_top)
4530 {
4531 int i;
b8698a0f 4532
e855c69d
AB
4533 if (++succs_info_pool.max_top >= succs_info_pool.size)
4534 gcc_unreachable ();
4535
4536 i = ++succs_info_pool.top;
4537 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4538 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4539 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4540 }
4541 else
4542 succs_info_pool.top++;
4543
4544 return &succs_info_pool.stack[succs_info_pool.top];
4545}
4546
4547/* Free successor's info. */
4548void
4549free_succs_info (struct succs_info * sinfo)
4550{
b8698a0f 4551 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4552 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4553 succs_info_pool.top--;
4554
4555 /* Clear stale info. */
b8698a0f 4556 VEC_block_remove (rtx, sinfo->succs_ok,
e855c69d 4557 0, VEC_length (rtx, sinfo->succs_ok));
b8698a0f 4558 VEC_block_remove (rtx, sinfo->succs_other,
e855c69d 4559 0, VEC_length (rtx, sinfo->succs_other));
b8698a0f 4560 VEC_block_remove (int, sinfo->probs_ok,
e855c69d
AB
4561 0, VEC_length (int, sinfo->probs_ok));
4562 sinfo->all_prob = 0;
4563 sinfo->succs_ok_n = 0;
4564 sinfo->all_succs_n = 0;
4565}
4566
b8698a0f 4567/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4568 to the FOR_EACH_SUCC_1 iterator. */
4569struct succs_info *
4570compute_succs_info (insn_t insn, short flags)
4571{
4572 succ_iterator si;
4573 insn_t succ;
4574 struct succs_info *sinfo = alloc_succs_info ();
4575
4576 /* Traverse *all* successors and decide what to do with each. */
4577 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4578 {
4579 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4580 perform code motion through inner loops. */
4581 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4582
4583 if (current_flags & flags)
4584 {
4585 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4586 VEC_safe_push (int, heap, sinfo->probs_ok,
b8698a0f 4587 /* FIXME: Improve calculation when skipping
e855c69d 4588 inner loop to exits. */
b8698a0f
L
4589 (si.bb_end
4590 ? si.e1->probability
e855c69d
AB
4591 : REG_BR_PROB_BASE));
4592 sinfo->succs_ok_n++;
4593 }
4594 else
4595 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4596
4597 /* Compute all_prob. */
4598 if (!si.bb_end)
4599 sinfo->all_prob = REG_BR_PROB_BASE;
4600 else
4601 sinfo->all_prob += si.e1->probability;
4602
4603 sinfo->all_succs_n++;
4604 }
4605
4606 return sinfo;
4607}
4608
b8698a0f 4609/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4610 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4611static void
4612cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4613{
4614 edge e;
4615 edge_iterator ei;
4616
4617 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4618
4619 FOR_EACH_EDGE (e, ei, bb->preds)
4620 {
4621 basic_block pred_bb = e->src;
4622 insn_t bb_end = BB_END (pred_bb);
4623
3e6a3f6f
AB
4624 if (!in_current_region_p (pred_bb))
4625 {
4626 gcc_assert (flag_sel_sched_pipelining_outer_loops
4627 && current_loop_nest);
4628 continue;
4629 }
e855c69d
AB
4630
4631 if (sel_bb_empty_p (pred_bb))
4632 cfg_preds_1 (pred_bb, preds, n, size);
4633 else
4634 {
4635 if (*n == *size)
b8698a0f 4636 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4637 (*size = 2 * *size + 1));
4638 (*preds)[(*n)++] = bb_end;
4639 }
4640 }
4641
3e6a3f6f
AB
4642 gcc_assert (*n != 0
4643 || (flag_sel_sched_pipelining_outer_loops
4644 && current_loop_nest));
e855c69d
AB
4645}
4646
b8698a0f
L
4647/* Find all predecessors of BB and record them in PREDS and their number
4648 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4649 edges are processed. */
4650static void
4651cfg_preds (basic_block bb, insn_t **preds, int *n)
4652{
4653 int size = 0;
4654
4655 *preds = NULL;
4656 *n = 0;
4657 cfg_preds_1 (bb, preds, n, &size);
4658}
4659
4660/* Returns true if we are moving INSN through join point. */
4661bool
4662sel_num_cfg_preds_gt_1 (insn_t insn)
4663{
4664 basic_block bb;
4665
4666 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4667 return false;
4668
4669 bb = BLOCK_FOR_INSN (insn);
4670
4671 while (1)
4672 {
4673 if (EDGE_COUNT (bb->preds) > 1)
4674 return true;
4675
4676 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4677 bb = EDGE_PRED (bb, 0)->src;
4678
4679 if (!sel_bb_empty_p (bb))
4680 break;
4681 }
4682
4683 return false;
4684}
4685
b8698a0f 4686/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4687 code in sched-ebb.c. */
4688bool
4689bb_ends_ebb_p (basic_block bb)
4690{
4691 basic_block next_bb = bb_next_bb (bb);
4692 edge e;
b8698a0f 4693
e855c69d
AB
4694 if (next_bb == EXIT_BLOCK_PTR
4695 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4696 || (LABEL_P (BB_HEAD (next_bb))
4697 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4698 Work around that. */
4699 && !single_pred_p (next_bb)))
4700 return true;
4701
4702 if (!in_current_region_p (next_bb))
4703 return true;
4704
0fd4b31d
NF
4705 e = find_fallthru_edge (bb->succs);
4706 if (e)
4707 {
4708 gcc_assert (e->dest == next_bb);
4709
4710 return false;
4711 }
e855c69d
AB
4712
4713 return true;
4714}
4715
4716/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4717 successor of INSN. */
4718bool
4719in_same_ebb_p (insn_t insn, insn_t succ)
4720{
4721 basic_block ptr = BLOCK_FOR_INSN (insn);
4722
4723 for(;;)
4724 {
4725 if (ptr == BLOCK_FOR_INSN (succ))
4726 return true;
b8698a0f 4727
e855c69d
AB
4728 if (bb_ends_ebb_p (ptr))
4729 return false;
4730
4731 ptr = bb_next_bb (ptr);
4732 }
4733
4734 gcc_unreachable ();
4735 return false;
4736}
4737
4738/* Recomputes the reverse topological order for the function and
4739 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4740 modified appropriately. */
4741static void
4742recompute_rev_top_order (void)
4743{
4744 int *postorder;
4745 int n_blocks, i;
4746
4747 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4748 {
b8698a0f 4749 rev_top_order_index_len = last_basic_block;
e855c69d
AB
4750 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4751 rev_top_order_index_len);
4752 }
4753
4754 postorder = XNEWVEC (int, n_basic_blocks);
4755
4756 n_blocks = post_order_compute (postorder, true, false);
4757 gcc_assert (n_basic_blocks == n_blocks);
4758
4759 /* Build reverse function: for each basic block with BB->INDEX == K
4760 rev_top_order_index[K] is it's reverse topological sort number. */
4761 for (i = 0; i < n_blocks; i++)
4762 {
4763 gcc_assert (postorder[i] < rev_top_order_index_len);
4764 rev_top_order_index[postorder[i]] = i;
4765 }
4766
4767 free (postorder);
4768}
4769
4770/* Clear all flags from insns in BB that could spoil its rescheduling. */
4771void
4772clear_outdated_rtx_info (basic_block bb)
4773{
4774 rtx insn;
4775
4776 FOR_BB_INSNS (bb, insn)
4777 if (INSN_P (insn))
4778 {
4779 SCHED_GROUP_P (insn) = 0;
4780 INSN_AFTER_STALL_P (insn) = 0;
4781 INSN_SCHED_TIMES (insn) = 0;
4782 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4783
4784 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4785 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4786 the expression, and currently we'll be unable to do this. */
4787 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4788 }
4789}
4790
4791/* Add BB_NOTE to the pool of available basic block notes. */
4792static void
4793return_bb_to_pool (basic_block bb)
4794{
4795 rtx note = bb_note (bb);
4796
4797 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4798 && bb->aux == NULL);
4799
4800 /* It turns out that current cfg infrastructure does not support
4801 reuse of basic blocks. Don't bother for now. */
4802 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4803}
4804
4805/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4806static rtx
4807get_bb_note_from_pool (void)
4808{
4809 if (VEC_empty (rtx, bb_note_pool))
4810 return NULL_RTX;
4811 else
4812 {
4813 rtx note = VEC_pop (rtx, bb_note_pool);
4814
4815 PREV_INSN (note) = NULL_RTX;
4816 NEXT_INSN (note) = NULL_RTX;
4817
4818 return note;
4819 }
4820}
4821
4822/* Free bb_note_pool. */
4823void
4824free_bb_note_pool (void)
4825{
4826 VEC_free (rtx, heap, bb_note_pool);
4827}
4828
4829/* Setup scheduler pool and successor structure. */
4830void
4831alloc_sched_pools (void)
4832{
4833 int succs_size;
4834
4835 succs_size = MAX_WS + 1;
b8698a0f 4836 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
4837 succs_info_pool.size = succs_size;
4838 succs_info_pool.top = -1;
4839 succs_info_pool.max_top = -1;
4840
b8698a0f 4841 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
4842 sizeof (struct _list_node), 500);
4843}
4844
4845/* Free the pools. */
4846void
4847free_sched_pools (void)
4848{
4849 int i;
b8698a0f 4850
e855c69d
AB
4851 free_alloc_pool (sched_lists_pool);
4852 gcc_assert (succs_info_pool.top == -1);
4853 for (i = 0; i < succs_info_pool.max_top; i++)
4854 {
4855 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4856 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4857 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4858 }
4859 free (succs_info_pool.stack);
4860}
4861\f
4862
b8698a0f 4863/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
4864 topological order. */
4865static int
4866find_place_to_insert_bb (basic_block bb, int rgn)
4867{
4868 bool has_preds_outside_rgn = false;
4869 edge e;
4870 edge_iterator ei;
b8698a0f 4871
e855c69d
AB
4872 /* Find whether we have preds outside the region. */
4873 FOR_EACH_EDGE (e, ei, bb->preds)
4874 if (!in_current_region_p (e->src))
4875 {
4876 has_preds_outside_rgn = true;
4877 break;
4878 }
b8698a0f 4879
e855c69d
AB
4880 /* Recompute the top order -- needed when we have > 1 pred
4881 and in case we don't have preds outside. */
4882 if (flag_sel_sched_pipelining_outer_loops
4883 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4884 {
4885 int i, bbi = bb->index, cur_bbi;
4886
4887 recompute_rev_top_order ();
4888 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4889 {
4890 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 4891 if (rev_top_order_index[bbi]
e855c69d
AB
4892 < rev_top_order_index[cur_bbi])
4893 break;
4894 }
b8698a0f 4895
e855c69d
AB
4896 /* We skipped the right block, so we increase i. We accomodate
4897 it for increasing by step later, so we decrease i. */
4898 return (i + 1) - 1;
4899 }
4900 else if (has_preds_outside_rgn)
4901 {
4902 /* This is the case when we generate an extra empty block
4903 to serve as region head during pipelining. */
4904 e = EDGE_SUCC (bb, 0);
4905 gcc_assert (EDGE_COUNT (bb->succs) == 1
4906 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4907 && (BLOCK_TO_BB (e->dest->index) == 0));
4908 return -1;
4909 }
4910
4911 /* We don't have preds outside the region. We should have
4912 the only pred, because the multiple preds case comes from
4913 the pipelining of outer loops, and that is handled above.
4914 Just take the bbi of this single pred. */
4915 if (EDGE_COUNT (bb->succs) > 0)
4916 {
4917 int pred_bbi;
b8698a0f 4918
e855c69d 4919 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 4920
e855c69d
AB
4921 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4922 return BLOCK_TO_BB (pred_bbi);
4923 }
4924 else
4925 /* BB has no successors. It is safe to put it in the end. */
4926 return current_nr_blocks - 1;
4927}
4928
4929/* Deletes an empty basic block freeing its data. */
4930static void
4931delete_and_free_basic_block (basic_block bb)
4932{
4933 gcc_assert (sel_bb_empty_p (bb));
4934
4935 if (BB_LV_SET (bb))
4936 free_lv_set (bb);
4937
4938 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4939
b8698a0f
L
4940 /* Can't assert av_set properties because we use sel_aremove_bb
4941 when removing loop preheader from the region. At the point of
e855c69d
AB
4942 removing the preheader we already have deallocated sel_region_bb_info. */
4943 gcc_assert (BB_LV_SET (bb) == NULL
4944 && !BB_LV_SET_VALID_P (bb)
4945 && BB_AV_LEVEL (bb) == 0
4946 && BB_AV_SET (bb) == NULL);
b8698a0f 4947
e855c69d
AB
4948 delete_basic_block (bb);
4949}
4950
4951/* Add BB to the current region and update the region data. */
4952static void
4953add_block_to_current_region (basic_block bb)
4954{
4955 int i, pos, bbi = -2, rgn;
4956
4957 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4958 bbi = find_place_to_insert_bb (bb, rgn);
4959 bbi += 1;
4960 pos = RGN_BLOCKS (rgn) + bbi;
4961
4962 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4963 && ebb_head[bbi] == pos);
b8698a0f 4964
e855c69d
AB
4965 /* Make a place for the new block. */
4966 extend_regions ();
4967
4968 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4969 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 4970
e855c69d
AB
4971 memmove (rgn_bb_table + pos + 1,
4972 rgn_bb_table + pos,
4973 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4974
4975 /* Initialize data for BB. */
4976 rgn_bb_table[pos] = bb->index;
4977 BLOCK_TO_BB (bb->index) = bbi;
4978 CONTAINING_RGN (bb->index) = rgn;
4979
4980 RGN_NR_BLOCKS (rgn)++;
b8698a0f 4981
e855c69d
AB
4982 for (i = rgn + 1; i <= nr_regions; i++)
4983 RGN_BLOCKS (i)++;
4984}
4985
4986/* Remove BB from the current region and update the region data. */
4987static void
4988remove_bb_from_region (basic_block bb)
4989{
4990 int i, pos, bbi = -2, rgn;
4991
4992 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4993 bbi = BLOCK_TO_BB (bb->index);
4994 pos = RGN_BLOCKS (rgn) + bbi;
4995
4996 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4997 && ebb_head[bbi] == pos);
4998
4999 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5000 BLOCK_TO_BB (rgn_bb_table[i])--;
5001
5002 memmove (rgn_bb_table + pos,
5003 rgn_bb_table + pos + 1,
5004 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5005
5006 RGN_NR_BLOCKS (rgn)--;
5007 for (i = rgn + 1; i <= nr_regions; i++)
5008 RGN_BLOCKS (i)--;
5009}
5010
b8698a0f 5011/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5012 blocks from last_added_blocks vector. */
5013static void
5014sel_add_bb (basic_block bb)
5015{
5016 /* Extend luids so that new notes will receive zero luids. */
5017 sched_init_luids (NULL, NULL, NULL, NULL);
5018 sched_init_bbs ();
5019 sel_init_bbs (last_added_blocks, NULL);
5020
b8698a0f 5021 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5022 the only element that equals to bb; otherwise, the vector
5023 should not be NULL. */
5024 gcc_assert (last_added_blocks != NULL);
b8698a0f 5025
e855c69d
AB
5026 if (bb != NULL)
5027 {
5028 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
b8698a0f
L
5029 && VEC_index (basic_block,
5030 last_added_blocks, 0) == bb);
e855c69d
AB
5031 add_block_to_current_region (bb);
5032
5033 /* We associate creating/deleting data sets with the first insn
5034 appearing / disappearing in the bb. */
5035 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5036 create_initial_data_sets (bb);
b8698a0f 5037
e855c69d
AB
5038 VEC_free (basic_block, heap, last_added_blocks);
5039 }
5040 else
5041 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5042 {
5043 int i;
5044 basic_block temp_bb = NULL;
5045
b8698a0f 5046 for (i = 0;
e855c69d
AB
5047 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5048 {
5049 add_block_to_current_region (bb);
5050 temp_bb = bb;
5051 }
5052
b8698a0f 5053 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5054 to update. */
5055 gcc_assert (temp_bb != NULL);
5056 bb = temp_bb;
5057
5058 VEC_free (basic_block, heap, last_added_blocks);
5059 }
5060
5061 rgn_setup_region (CONTAINING_RGN (bb->index));
5062}
5063
b8698a0f 5064/* Remove BB from the current region and update all data.
e855c69d
AB
5065 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5066static void
5067sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5068{
262d8232
AB
5069 unsigned idx = bb->index;
5070
e855c69d 5071 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5072
e855c69d
AB
5073 remove_bb_from_region (bb);
5074 return_bb_to_pool (bb);
262d8232 5075 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5076
e855c69d
AB
5077 if (remove_from_cfg_p)
5078 delete_and_free_basic_block (bb);
5079
262d8232 5080 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5081}
5082
5083/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5084static void
5085move_bb_info (basic_block merge_bb, basic_block empty_bb)
5086{
5087 gcc_assert (in_current_region_p (merge_bb));
5088
b8698a0f 5089 concat_note_lists (BB_NOTE_LIST (empty_bb),
e855c69d
AB
5090 &BB_NOTE_LIST (merge_bb));
5091 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5092
5093}
5094
e855c69d
AB
5095/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5096 region, but keep it in CFG. */
5097static void
5098remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5099{
5100 /* The block should contain just a note or a label.
5101 We try to check whether it is unused below. */
5102 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5103 || LABEL_P (BB_HEAD (empty_bb)));
5104
5105 /* If basic block has predecessors or successors, redirect them. */
5106 if (remove_from_cfg_p
5107 && (EDGE_COUNT (empty_bb->preds) > 0
5108 || EDGE_COUNT (empty_bb->succs) > 0))
5109 {
5110 basic_block pred;
5111 basic_block succ;
5112
5113 /* We need to init PRED and SUCC before redirecting edges. */
5114 if (EDGE_COUNT (empty_bb->preds) > 0)
5115 {
5116 edge e;
5117
5118 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5119
5120 e = EDGE_PRED (empty_bb, 0);
5121 gcc_assert (e->src == empty_bb->prev_bb
5122 && (e->flags & EDGE_FALLTHRU));
5123
5124 pred = empty_bb->prev_bb;
5125 }
5126 else
5127 pred = NULL;
5128
5129 if (EDGE_COUNT (empty_bb->succs) > 0)
5130 {
5131 /* We do not check fallthruness here as above, because
5132 after removing a jump the edge may actually be not fallthru. */
5133 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5134 succ = EDGE_SUCC (empty_bb, 0)->dest;
5135 }
5136 else
5137 succ = NULL;
5138
5139 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5140 {
5141 edge e = EDGE_PRED (empty_bb, 0);
5142
5143 if (e->flags & EDGE_FALLTHRU)
5144 redirect_edge_succ_nodup (e, succ);
5145 else
5146 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5147 }
5148
5149 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5150 {
5151 edge e = EDGE_SUCC (empty_bb, 0);
5152
5153 if (find_edge (pred, e->dest) == NULL)
5154 redirect_edge_pred (e, pred);
5155 }
5156 }
5157
5158 /* Finish removing. */
5159 sel_remove_bb (empty_bb, remove_from_cfg_p);
5160}
5161
b8698a0f 5162/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5163 per-bb data structures. */
5164static basic_block
5165sel_create_basic_block (void *headp, void *endp, basic_block after)
5166{
5167 basic_block new_bb;
5168 insn_t new_bb_note;
b8698a0f
L
5169
5170 gcc_assert (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5171 || last_added_blocks == NULL);
5172
5173 new_bb_note = get_bb_note_from_pool ();
5174
5175 if (new_bb_note == NULL_RTX)
5176 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5177 else
5178 {
5179 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5180 new_bb_note, after);
5181 new_bb->aux = NULL;
5182 }
5183
5184 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5185
5186 return new_bb;
5187}
5188
5189/* Implement sched_init_only_bb (). */
5190static void
5191sel_init_only_bb (basic_block bb, basic_block after)
5192{
5193 gcc_assert (after == NULL);
5194
5195 extend_regions ();
5196 rgn_make_new_region_out_of_new_block (bb);
5197}
5198
5199/* Update the latch when we've splitted or merged it from FROM block to TO.
5200 This should be checked for all outer loops, too. */
5201static void
5202change_loops_latches (basic_block from, basic_block to)
5203{
5204 gcc_assert (from != to);
5205
5206 if (current_loop_nest)
5207 {
5208 struct loop *loop;
5209
5210 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5211 if (considered_for_pipelining_p (loop) && loop->latch == from)
5212 {
5213 gcc_assert (loop == current_loop_nest);
5214 loop->latch = to;
5215 gcc_assert (loop_latch_edge (loop));
5216 }
5217 }
5218}
5219
b8698a0f 5220/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5221 per-bb data structures. Returns the newly created bb. */
5222static basic_block
5223sel_split_block (basic_block bb, rtx after)
5224{
5225 basic_block new_bb;
5226 insn_t insn;
5227
5228 new_bb = sched_split_block_1 (bb, after);
5229 sel_add_bb (new_bb);
5230
5231 /* This should be called after sel_add_bb, because this uses
b8698a0f 5232 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5233 FIXME: this function may be a no-op now. */
5234 change_loops_latches (bb, new_bb);
5235
5236 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5237 FOR_BB_INSNS (new_bb, insn)
5238 if (INSN_P (insn))
5239 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5240
5241 if (sel_bb_empty_p (bb))
5242 {
5243 gcc_assert (!sel_bb_empty_p (new_bb));
5244
5245 /* NEW_BB has data sets that need to be updated and BB holds
5246 data sets that should be removed. Exchange these data sets
5247 so that we won't lose BB's valid data sets. */
5248 exchange_data_sets (new_bb, bb);
5249 free_data_sets (bb);
5250 }
5251
5252 if (!sel_bb_empty_p (new_bb)
5253 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5254 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5255
5256 return new_bb;
5257}
5258
5259/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5260 Otherwise returns NULL. */
5261static rtx
5262check_for_new_jump (basic_block bb, int prev_max_uid)
5263{
5264 rtx end;
5265
5266 end = sel_bb_end (bb);
5267 if (end && INSN_UID (end) >= prev_max_uid)
5268 return end;
5269 return NULL;
5270}
5271
b8698a0f 5272/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5273 New means having UID at least equal to PREV_MAX_UID. */
5274static rtx
5275find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5276{
5277 rtx jump;
5278
5279 /* Return immediately if no new insns were emitted. */
5280 if (get_max_uid () == prev_max_uid)
5281 return NULL;
b8698a0f 5282
e855c69d
AB
5283 /* Now check both blocks for new jumps. It will ever be only one. */
5284 if ((jump = check_for_new_jump (from, prev_max_uid)))
5285 return jump;
5286
5287 if (jump_bb != NULL
5288 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5289 return jump;
5290 return NULL;
5291}
5292
5293/* Splits E and adds the newly created basic block to the current region.
5294 Returns this basic block. */
5295basic_block
5296sel_split_edge (edge e)
5297{
5298 basic_block new_bb, src, other_bb = NULL;
5299 int prev_max_uid;
5300 rtx jump;
5301
5302 src = e->src;
5303 prev_max_uid = get_max_uid ();
5304 new_bb = split_edge (e);
5305
b8698a0f 5306 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5307 && current_loop_nest)
5308 {
5309 int i;
5310 basic_block bb;
5311
b8698a0f 5312 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5313 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5314 for (i = 0;
e855c69d
AB
5315 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5316 if (!bb->loop_father)
5317 {
5318 add_bb_to_loop (bb, e->dest->loop_father);
5319
5320 gcc_assert (!other_bb && (new_bb->index != bb->index));
5321 other_bb = bb;
5322 }
5323 }
5324
5325 /* Add all last_added_blocks to the region. */
5326 sel_add_bb (NULL);
5327
5328 jump = find_new_jump (src, new_bb, prev_max_uid);
5329 if (jump)
5330 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5331
5332 /* Put the correct lv set on this block. */
5333 if (other_bb && !sel_bb_empty_p (other_bb))
5334 compute_live (sel_bb_head (other_bb));
5335
5336 return new_bb;
5337}
5338
5339/* Implement sched_create_empty_bb (). */
5340static basic_block
5341sel_create_empty_bb (basic_block after)
5342{
5343 basic_block new_bb;
5344
5345 new_bb = sched_create_empty_bb_1 (after);
5346
5347 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5348 later. */
5349 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5350 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5351
5352 VEC_free (basic_block, heap, last_added_blocks);
5353 return new_bb;
5354}
5355
5356/* Implement sched_create_recovery_block. ORIG_INSN is where block
5357 will be splitted to insert a check. */
5358basic_block
5359sel_create_recovery_block (insn_t orig_insn)
5360{
5361 basic_block first_bb, second_bb, recovery_block;
5362 basic_block before_recovery = NULL;
5363 rtx jump;
5364
5365 first_bb = BLOCK_FOR_INSN (orig_insn);
5366 if (sel_bb_end_p (orig_insn))
5367 {
5368 /* Avoid introducing an empty block while splitting. */
5369 gcc_assert (single_succ_p (first_bb));
5370 second_bb = single_succ (first_bb);
5371 }
5372 else
5373 second_bb = sched_split_block (first_bb, orig_insn);
5374
5375 recovery_block = sched_create_recovery_block (&before_recovery);
5376 if (before_recovery)
5377 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5378
5379 gcc_assert (sel_bb_empty_p (recovery_block));
5380 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5381 if (current_loops != NULL)
5382 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5383
e855c69d 5384 sel_add_bb (recovery_block);
b8698a0f 5385
e855c69d
AB
5386 jump = BB_END (recovery_block);
5387 gcc_assert (sel_bb_head (recovery_block) == jump);
5388 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5389
5390 return recovery_block;
5391}
5392
5393/* Merge basic block B into basic block A. */
262d8232 5394static void
e855c69d
AB
5395sel_merge_blocks (basic_block a, basic_block b)
5396{
262d8232
AB
5397 gcc_assert (sel_bb_empty_p (b)
5398 && EDGE_COUNT (b->preds) == 1
5399 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5400
262d8232
AB
5401 move_bb_info (b->prev_bb, b);
5402 remove_empty_bb (b, false);
5403 merge_blocks (a, b);
e855c69d
AB
5404 change_loops_latches (b, a);
5405}
5406
5407/* A wrapper for redirect_edge_and_branch_force, which also initializes
5408 data structures for possibly created bb and insns. Returns the newly
5409 added bb or NULL, when a bb was not needed. */
5410void
5411sel_redirect_edge_and_branch_force (edge e, basic_block to)
5412{
5413 basic_block jump_bb, src;
5414 int prev_max_uid;
5415 rtx jump;
b8698a0f 5416
e855c69d 5417 gcc_assert (!sel_bb_empty_p (e->src));
b8698a0f 5418
e855c69d
AB
5419 src = e->src;
5420 prev_max_uid = get_max_uid ();
5421 jump_bb = redirect_edge_and_branch_force (e, to);
5422
5423 if (jump_bb != NULL)
5424 sel_add_bb (jump_bb);
5425
5426 /* This function could not be used to spoil the loop structure by now,
5427 thus we don't care to update anything. But check it to be sure. */
5428 if (current_loop_nest
5429 && pipelining_p)
5430 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5431
e855c69d
AB
5432 jump = find_new_jump (src, jump_bb, prev_max_uid);
5433 if (jump)
5434 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5435}
5436
b59ab570
AM
5437/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5438 redirected edge are in reverse topological order. */
5439bool
e855c69d
AB
5440sel_redirect_edge_and_branch (edge e, basic_block to)
5441{
5442 bool latch_edge_p;
5443 basic_block src;
5444 int prev_max_uid;
5445 rtx jump;
f2c45f08 5446 edge redirected;
b59ab570 5447 bool recompute_toporder_p = false;
e855c69d
AB
5448
5449 latch_edge_p = (pipelining_p
5450 && current_loop_nest
5451 && e == loop_latch_edge (current_loop_nest));
5452
5453 src = e->src;
5454 prev_max_uid = get_max_uid ();
f2c45f08
AM
5455
5456 redirected = redirect_edge_and_branch (e, to);
5457
5458 gcc_assert (redirected && last_added_blocks == NULL);
e855c69d
AB
5459
5460 /* When we've redirected a latch edge, update the header. */
5461 if (latch_edge_p)
5462 {
5463 current_loop_nest->header = to;
5464 gcc_assert (loop_latch_edge (current_loop_nest));
5465 }
5466
b59ab570
AM
5467 /* In rare situations, the topological relation between the blocks connected
5468 by the redirected edge can change (see PR42245 for an example). Update
5469 block_to_bb/bb_to_block. */
5470 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5471 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5472 recompute_toporder_p = true;
5473
e855c69d
AB
5474 jump = find_new_jump (src, NULL, prev_max_uid);
5475 if (jump)
5476 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
b59ab570
AM
5477
5478 return recompute_toporder_p;
e855c69d
AB
5479}
5480
5481/* This variable holds the cfg hooks used by the selective scheduler. */
5482static struct cfg_hooks sel_cfg_hooks;
5483
5484/* Register sel-sched cfg hooks. */
5485void
5486sel_register_cfg_hooks (void)
5487{
5488 sched_split_block = sel_split_block;
5489
5490 orig_cfg_hooks = get_cfg_hooks ();
5491 sel_cfg_hooks = orig_cfg_hooks;
5492
5493 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5494
5495 set_cfg_hooks (sel_cfg_hooks);
5496
5497 sched_init_only_bb = sel_init_only_bb;
5498 sched_split_block = sel_split_block;
5499 sched_create_empty_bb = sel_create_empty_bb;
5500}
5501
5502/* Unregister sel-sched cfg hooks. */
5503void
5504sel_unregister_cfg_hooks (void)
5505{
5506 sched_create_empty_bb = NULL;
5507 sched_split_block = NULL;
5508 sched_init_only_bb = NULL;
5509
5510 set_cfg_hooks (orig_cfg_hooks);
5511}
5512\f
5513
5514/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5515 LABEL is where this jump should be directed. */
5516rtx
5517create_insn_rtx_from_pattern (rtx pattern, rtx label)
5518{
5519 rtx insn_rtx;
5520
5521 gcc_assert (!INSN_P (pattern));
5522
5523 start_sequence ();
5524
5525 if (label == NULL_RTX)
5526 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5527 else if (DEBUG_INSN_P (label))
5528 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5529 else
5530 {
5531 insn_rtx = emit_jump_insn (pattern);
5532 JUMP_LABEL (insn_rtx) = label;
5533 ++LABEL_NUSES (label);
5534 }
5535
5536 end_sequence ();
5537
5538 sched_init_luids (NULL, NULL, NULL, NULL);
5539 sched_extend_target ();
5540 sched_deps_init (false);
5541
5542 /* Initialize INSN_CODE now. */
5543 recog_memoized (insn_rtx);
5544 return insn_rtx;
5545}
5546
5547/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5548 must not be clonable. */
5549vinsn_t
5550create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5551{
5552 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5553
5554 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5555 return vinsn_create (insn_rtx, force_unique_p);
5556}
5557
5558/* Create a copy of INSN_RTX. */
5559rtx
5560create_copy_of_insn_rtx (rtx insn_rtx)
5561{
5562 rtx res;
5563
b5b8b0ac
AO
5564 if (DEBUG_INSN_P (insn_rtx))
5565 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5566 insn_rtx);
5567
e855c69d
AB
5568 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5569
5570 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5571 NULL_RTX);
5572 return res;
5573}
5574
5575/* Change vinsn field of EXPR to hold NEW_VINSN. */
5576void
5577change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5578{
5579 vinsn_detach (EXPR_VINSN (expr));
5580
5581 EXPR_VINSN (expr) = new_vinsn;
5582 vinsn_attach (new_vinsn);
5583}
5584
5585/* Helpers for global init. */
5586/* This structure is used to be able to call existing bundling mechanism
5587 and calculate insn priorities. */
b8698a0f 5588static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5589{
5590 NULL, /* init_ready_list */
5591 NULL, /* can_schedule_ready_p */
5592 NULL, /* schedule_more_p */
5593 NULL, /* new_ready */
5594 NULL, /* rgn_rank */
5595 sel_print_insn, /* rgn_print_insn */
5596 contributes_to_priority,
356c23b3 5597 NULL, /* insn_finishes_block_p */
e855c69d
AB
5598
5599 NULL, NULL,
5600 NULL, NULL,
5601 0, 0,
5602
5603 NULL, /* add_remove_insn */
5604 NULL, /* begin_schedule_ready */
5605 NULL, /* advance_target_bb */
5606 SEL_SCHED | NEW_BBS
5607};
5608
5609/* Setup special insns used in the scheduler. */
b8698a0f 5610void
e855c69d
AB
5611setup_nop_and_exit_insns (void)
5612{
5613 gcc_assert (nop_pattern == NULL_RTX
5614 && exit_insn == NULL_RTX);
5615
9ef1bf71 5616 nop_pattern = constm1_rtx;
e855c69d
AB
5617
5618 start_sequence ();
5619 emit_insn (nop_pattern);
5620 exit_insn = get_insns ();
5621 end_sequence ();
5622 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5623}
5624
5625/* Free special insns used in the scheduler. */
5626void
5627free_nop_and_exit_insns (void)
5628{
5629 exit_insn = NULL_RTX;
5630 nop_pattern = NULL_RTX;
5631}
5632
5633/* Setup a special vinsn used in new insns initialization. */
5634void
5635setup_nop_vinsn (void)
5636{
5637 nop_vinsn = vinsn_create (exit_insn, false);
5638 vinsn_attach (nop_vinsn);
5639}
5640
5641/* Free a special vinsn used in new insns initialization. */
5642void
5643free_nop_vinsn (void)
5644{
5645 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5646 vinsn_detach (nop_vinsn);
5647 nop_vinsn = NULL;
5648}
5649
5650/* Call a set_sched_flags hook. */
5651void
5652sel_set_sched_flags (void)
5653{
b8698a0f 5654 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5655 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5656 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5657 sometimes change c_s_i later. So put the correct flags again. */
5658 if (spec_info && targetm.sched.set_sched_flags)
5659 targetm.sched.set_sched_flags (spec_info);
5660}
5661
5662/* Setup pointers to global sched info structures. */
5663void
5664sel_setup_sched_infos (void)
5665{
5666 rgn_setup_common_sched_info ();
5667
5668 memcpy (&sel_common_sched_info, common_sched_info,
5669 sizeof (sel_common_sched_info));
5670
5671 sel_common_sched_info.fix_recovery_cfg = NULL;
5672 sel_common_sched_info.add_block = NULL;
5673 sel_common_sched_info.estimate_number_of_insns
5674 = sel_estimate_number_of_insns;
5675 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5676 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5677
5678 common_sched_info = &sel_common_sched_info;
5679
5680 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5681 current_sched_info->sched_max_insns_priority =
e855c69d 5682 get_rgn_sched_max_insns_priority ();
b8698a0f 5683
e855c69d
AB
5684 sel_set_sched_flags ();
5685}
5686\f
5687
5688/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5689 *BB_ORD_INDEX after that is increased. */
5690static void
5691sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5692{
5693 RGN_NR_BLOCKS (rgn) += 1;
5694 RGN_DONT_CALC_DEPS (rgn) = 0;
5695 RGN_HAS_REAL_EBB (rgn) = 0;
5696 CONTAINING_RGN (bb->index) = rgn;
5697 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5698 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5699 (*bb_ord_index)++;
5700
5701 /* FIXME: it is true only when not scheduling ebbs. */
5702 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5703}
5704
5705/* Functions to support pipelining of outer loops. */
5706
5707/* Creates a new empty region and returns it's number. */
5708static int
5709sel_create_new_region (void)
5710{
5711 int new_rgn_number = nr_regions;
5712
5713 RGN_NR_BLOCKS (new_rgn_number) = 0;
5714
5715 /* FIXME: This will work only when EBBs are not created. */
5716 if (new_rgn_number != 0)
b8698a0f 5717 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5718 RGN_NR_BLOCKS (new_rgn_number - 1);
5719 else
5720 RGN_BLOCKS (new_rgn_number) = 0;
5721
5722 /* Set the blocks of the next region so the other functions may
5723 calculate the number of blocks in the region. */
b8698a0f 5724 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5725 RGN_NR_BLOCKS (new_rgn_number);
5726
5727 nr_regions++;
5728
5729 return new_rgn_number;
5730}
5731
5732/* If X has a smaller topological sort number than Y, returns -1;
5733 if greater, returns 1. */
5734static int
5735bb_top_order_comparator (const void *x, const void *y)
5736{
5737 basic_block bb1 = *(const basic_block *) x;
5738 basic_block bb2 = *(const basic_block *) y;
5739
b8698a0f
L
5740 gcc_assert (bb1 == bb2
5741 || rev_top_order_index[bb1->index]
e855c69d
AB
5742 != rev_top_order_index[bb2->index]);
5743
5744 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5745 bbs with greater number should go earlier. */
5746 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5747 return -1;
5748 else
5749 return 1;
5750}
5751
b8698a0f 5752/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5753 to pipeline LOOP, return -1. */
5754static int
5755make_region_from_loop (struct loop *loop)
5756{
5757 unsigned int i;
5758 int new_rgn_number = -1;
5759 struct loop *inner;
5760
5761 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5762 int bb_ord_index = 0;
5763 basic_block *loop_blocks;
5764 basic_block preheader_block;
5765
b8698a0f 5766 if (loop->num_nodes
e855c69d
AB
5767 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5768 return -1;
b8698a0f 5769
e855c69d
AB
5770 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5771 for (inner = loop->inner; inner; inner = inner->inner)
5772 if (flow_bb_inside_loop_p (inner, loop->latch))
5773 return -1;
5774
5775 loop->ninsns = num_loop_insns (loop);
5776 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5777 return -1;
5778
5779 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5780
5781 for (i = 0; i < loop->num_nodes; i++)
5782 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5783 {
5784 free (loop_blocks);
5785 return -1;
5786 }
5787
5788 preheader_block = loop_preheader_edge (loop)->src;
5789 gcc_assert (preheader_block);
5790 gcc_assert (loop_blocks[0] == loop->header);
5791
5792 new_rgn_number = sel_create_new_region ();
5793
5794 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5795 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5796
5797 for (i = 0; i < loop->num_nodes; i++)
5798 {
5799 /* Add only those blocks that haven't been scheduled in the inner loop.
5800 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 5801 be added to the region (and they actually don't belong to the loop
e855c69d
AB
5802 body, but to the region containing that loop body). */
5803
5804 gcc_assert (new_rgn_number >= 0);
5805
5806 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5807 {
b8698a0f 5808 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d
AB
5809 new_rgn_number);
5810 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5811 }
5812 }
5813
5814 free (loop_blocks);
5815 MARK_LOOP_FOR_PIPELINING (loop);
5816
5817 return new_rgn_number;
5818}
5819
5820/* Create a new region from preheader blocks LOOP_BLOCKS. */
5821void
5822make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5823{
5824 unsigned int i;
5825 int new_rgn_number = -1;
5826 basic_block bb;
5827
5828 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5829 int bb_ord_index = 0;
5830
5831 new_rgn_number = sel_create_new_region ();
5832
ac47786e 5833 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
e855c69d
AB
5834 {
5835 gcc_assert (new_rgn_number >= 0);
5836
5837 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5838 }
5839
5840 VEC_free (basic_block, heap, *loop_blocks);
5841 gcc_assert (*loop_blocks == NULL);
5842}
5843
5844
5845/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 5846 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
5847 is created. */
5848static bool
5849make_regions_from_loop_nest (struct loop *loop)
b8698a0f 5850{
e855c69d
AB
5851 struct loop *cur_loop;
5852 int rgn_number;
5853
5854 /* Traverse all inner nodes of the loop. */
5855 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5856 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5857 return false;
5858
5859 /* At this moment all regular inner loops should have been pipelined.
5860 Try to create a region from this loop. */
5861 rgn_number = make_region_from_loop (loop);
5862
5863 if (rgn_number < 0)
5864 return false;
5865
5866 VEC_safe_push (loop_p, heap, loop_nests, loop);
5867 return true;
5868}
5869
5870/* Initalize data structures needed. */
5871void
5872sel_init_pipelining (void)
5873{
5874 /* Collect loop information to be used in outer loops pipelining. */
5875 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5876 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5877 | LOOPS_HAVE_RECORDED_EXITS
5878 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5879 current_loop_nest = NULL;
5880
5881 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5882 sbitmap_zero (bbs_in_loop_rgns);
5883
5884 recompute_rev_top_order ();
5885}
5886
5887/* Returns a struct loop for region RGN. */
5888loop_p
5889get_loop_nest_for_rgn (unsigned int rgn)
5890{
5891 /* Regions created with extend_rgns don't have corresponding loop nests,
5892 because they don't represent loops. */
5893 if (rgn < VEC_length (loop_p, loop_nests))
5894 return VEC_index (loop_p, loop_nests, rgn);
5895 else
5896 return NULL;
5897}
5898
5899/* True when LOOP was included into pipelining regions. */
5900bool
5901considered_for_pipelining_p (struct loop *loop)
5902{
5903 if (loop_depth (loop) == 0)
5904 return false;
5905
b8698a0f
L
5906 /* Now, the loop could be too large or irreducible. Check whether its
5907 region is in LOOP_NESTS.
5908 We determine the region number of LOOP as the region number of its
5909 latch. We can't use header here, because this header could be
e855c69d
AB
5910 just removed preheader and it will give us the wrong region number.
5911 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 5912 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
5913 {
5914 int rgn = CONTAINING_RGN (loop->latch->index);
5915
5916 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5917 return true;
5918 }
b8698a0f 5919
e855c69d
AB
5920 return false;
5921}
5922
b8698a0f 5923/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
5924 for pipelining. */
5925static void
5926make_regions_from_the_rest (void)
5927{
5928 int cur_rgn_blocks;
5929 int *loop_hdr;
5930 int i;
5931
5932 basic_block bb;
5933 edge e;
5934 edge_iterator ei;
5935 int *degree;
e855c69d
AB
5936
5937 /* Index in rgn_bb_table where to start allocating new regions. */
5938 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 5939
b8698a0f 5940 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
5941 any loop or belong to irreducible loops. Prepare the data structures
5942 for extend_rgns. */
5943
5944 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5945 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5946 loop. */
5947 loop_hdr = XNEWVEC (int, last_basic_block);
5948 degree = XCNEWVEC (int, last_basic_block);
5949
5950
5951 /* For each basic block that belongs to some loop assign the number
5952 of innermost loop it belongs to. */
5953 for (i = 0; i < last_basic_block; i++)
5954 loop_hdr[i] = -1;
5955
5956 FOR_EACH_BB (bb)
5957 {
5958 if (bb->loop_father && !bb->loop_father->num == 0
5959 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5960 loop_hdr[bb->index] = bb->loop_father->num;
5961 }
5962
b8698a0f 5963 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
5964 edges, that are going out of bbs that are not yet scheduled.
5965 The basic blocks that are scheduled have degree value of zero. */
b8698a0f 5966 FOR_EACH_BB (bb)
e855c69d
AB
5967 {
5968 degree[bb->index] = 0;
5969
5970 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5971 {
5972 FOR_EACH_EDGE (e, ei, bb->preds)
5973 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5974 degree[bb->index]++;
5975 }
5976 else
5977 degree[bb->index] = -1;
5978 }
5979
5980 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5981
5982 /* Any block that did not end up in a region is placed into a region
5983 by itself. */
5984 FOR_EACH_BB (bb)
5985 if (degree[bb->index] >= 0)
5986 {
5987 rgn_bb_table[cur_rgn_blocks] = bb->index;
5988 RGN_NR_BLOCKS (nr_regions) = 1;
5989 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5990 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5991 RGN_HAS_REAL_EBB (nr_regions) = 0;
5992 CONTAINING_RGN (bb->index) = nr_regions++;
5993 BLOCK_TO_BB (bb->index) = 0;
5994 }
5995
5996 free (degree);
5997 free (loop_hdr);
5998}
5999
6000/* Free data structures used in pipelining of loops. */
6001void sel_finish_pipelining (void)
6002{
6003 loop_iterator li;
6004 struct loop *loop;
6005
6006 /* Release aux fields so we don't free them later by mistake. */
6007 FOR_EACH_LOOP (li, loop, 0)
6008 loop->aux = NULL;
6009
6010 loop_optimizer_finalize ();
6011
6012 VEC_free (loop_p, heap, loop_nests);
6013
6014 free (rev_top_order_index);
6015 rev_top_order_index = NULL;
6016}
6017
b8698a0f 6018/* This function replaces the find_rgns when
e855c69d 6019 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6020void
e855c69d
AB
6021sel_find_rgns (void)
6022{
6023 sel_init_pipelining ();
6024 extend_regions ();
6025
6026 if (current_loops)
6027 {
6028 loop_p loop;
6029 loop_iterator li;
6030
6031 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6032 ? LI_FROM_INNERMOST
6033 : LI_ONLY_INNERMOST))
6034 make_regions_from_loop_nest (loop);
6035 }
6036
6037 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6038 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6039 to irreducible loops. */
6040 make_regions_from_the_rest ();
6041
6042 /* We don't need bbs_in_loop_rgns anymore. */
6043 sbitmap_free (bbs_in_loop_rgns);
6044 bbs_in_loop_rgns = NULL;
6045}
6046
b8698a0f
L
6047/* Adds the preheader blocks from previous loop to current region taking
6048 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
e855c69d
AB
6049 This function is only used with -fsel-sched-pipelining-outer-loops. */
6050void
6051sel_add_loop_preheaders (void)
6052{
6053 int i;
6054 basic_block bb;
b8698a0f 6055 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6056 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6057
6058 for (i = 0;
6059 VEC_iterate (basic_block, preheader_blocks, i, bb);
6060 i++)
8ec4d0ad
AM
6061 {
6062 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
e855c69d 6063 sel_add_bb (bb);
8ec4d0ad 6064 }
e855c69d
AB
6065
6066 VEC_free (basic_block, heap, preheader_blocks);
6067}
6068
b8698a0f
L
6069/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6070 Please note that the function should also work when pipelining_p is
6071 false, because it is used when deciding whether we should or should
e855c69d
AB
6072 not reschedule pipelined code. */
6073bool
6074sel_is_loop_preheader_p (basic_block bb)
6075{
6076 if (current_loop_nest)
6077 {
6078 struct loop *outer;
6079
6080 if (preheader_removed)
6081 return false;
6082
6083 /* Preheader is the first block in the region. */
6084 if (BLOCK_TO_BB (bb->index) == 0)
6085 return true;
6086
6087 /* We used to find a preheader with the topological information.
6088 Check that the above code is equivalent to what we did before. */
6089
6090 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6091 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6092 < BLOCK_TO_BB (current_loop_nest->header->index)));
6093
6094 /* Support the situation when the latch block of outer loop
6095 could be from here. */
6096 for (outer = loop_outer (current_loop_nest);
6097 outer;
6098 outer = loop_outer (outer))
6099 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6100 gcc_unreachable ();
6101 }
6102
6103 return false;
6104}
6105
753de8cf
AM
6106/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6107 can be removed, making the corresponding edge fallthrough (assuming that
6108 all basic blocks between JUMP_BB and DEST_BB are empty). */
6109static bool
6110bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6111{
753de8cf 6112 if (!onlyjump_p (BB_END (jump_bb)))
e855c69d
AB
6113 return false;
6114
b8698a0f 6115 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6116 not DEST_BB. */
6117 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6118 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6119 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6120 return false;
6121
6122 /* If not anything of the upper. */
6123 return true;
6124}
6125
6126/* Removes the loop preheader from the current region and saves it in
b8698a0f 6127 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6128 region that represents an outer loop. */
6129static void
6130sel_remove_loop_preheader (void)
6131{
6132 int i, old_len;
6133 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6134 basic_block bb;
6135 bool all_empty_p = true;
b8698a0f 6136 VEC(basic_block, heap) *preheader_blocks
e855c69d
AB
6137 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6138
6139 gcc_assert (current_loop_nest);
6140 old_len = VEC_length (basic_block, preheader_blocks);
6141
6142 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6143 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6144 {
6145 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6146
b8698a0f 6147 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6148 corresponding loop, then it should be a preheader. */
6149 if (sel_is_loop_preheader_p (bb))
6150 {
6151 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6152 if (BB_END (bb) != bb_note (bb))
6153 all_empty_p = false;
6154 }
6155 }
b8698a0f 6156
e855c69d
AB
6157 /* Remove these blocks only after iterating over the whole region. */
6158 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6159 i >= old_len;
6160 i--)
6161 {
b8698a0f 6162 bb = VEC_index (basic_block, preheader_blocks, i);
e855c69d
AB
6163 sel_remove_bb (bb, false);
6164 }
6165
6166 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6167 {
6168 if (!all_empty_p)
6169 /* Immediately create new region from preheader. */
6170 make_region_from_loop_preheader (&preheader_blocks);
6171 else
6172 {
6173 /* If all preheader blocks are empty - dont create new empty region.
6174 Instead, remove them completely. */
ac47786e 6175 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
e855c69d
AB
6176 {
6177 edge e;
6178 edge_iterator ei;
6179 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6180
6181 /* Redirect all incoming edges to next basic block. */
6182 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6183 {
6184 if (! (e->flags & EDGE_FALLTHRU))
6185 redirect_edge_and_branch (e, bb->next_bb);
6186 else
6187 redirect_edge_succ (e, bb->next_bb);
6188 }
6189 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6190 delete_and_free_basic_block (bb);
6191
b8698a0f
L
6192 /* Check if after deleting preheader there is a nonconditional
6193 jump in PREV_BB that leads to the next basic block NEXT_BB.
6194 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6195 basic block if it becomes empty. */
6196 if (next_bb->prev_bb == prev_bb
6197 && prev_bb != ENTRY_BLOCK_PTR
753de8cf 6198 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6199 {
6200 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6201 if (BB_END (prev_bb) == bb_note (prev_bb))
6202 free_data_sets (prev_bb);
6203 }
6204 }
6205 }
6206 VEC_free (basic_block, heap, preheader_blocks);
6207 }
6208 else
6209 /* Store preheader within the father's loop structure. */
6210 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6211 preheader_blocks);
6212}
6213#endif