]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.c
sel-sched.c: Use rtx_insn
[thirdparty/gcc.git] / gcc / sel-sched-ir.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
23a5b65a 2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
718f9c0f 24#include "diagnostic-core.h"
e855c69d
AB
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
e855c69d
AB
34#include "recog.h"
35#include "params.h"
36#include "target.h"
e855c69d
AB
37#include "sched-int.h"
38#include "ggc.h"
39#include "tree.h"
40#include "vec.h"
41#include "langhooks.h"
42#include "rtlhooks-def.h"
5936d944 43#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
e855c69d
AB
44
45#ifdef INSN_SCHEDULING
46#include "sel-sched-ir.h"
47/* We don't have to use it except for sel_print_insn. */
48#include "sel-sched-dump.h"
49
50/* A vector holding bb info for whole scheduling pass. */
9771b263 51vec<sel_global_bb_info_def>
6e1aa848 52 sel_global_bb_info = vNULL;
e855c69d
AB
53
54/* A vector holding bb info. */
9771b263 55vec<sel_region_bb_info_def>
6e1aa848 56 sel_region_bb_info = vNULL;
e855c69d
AB
57
58/* A pool for allocating all lists. */
59alloc_pool sched_lists_pool;
60
61/* This contains information about successors for compute_av_set. */
62struct succs_info current_succs;
63
64/* Data structure to describe interaction with the generic scheduler utils. */
65static struct common_sched_info_def sel_common_sched_info;
66
67/* The loop nest being pipelined. */
68struct loop *current_loop_nest;
69
70/* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
6e1aa848 72static vec<loop_p> loop_nests = vNULL;
e855c69d
AB
73
74/* Saves blocks already in loop regions, indexed by bb->index. */
75static sbitmap bbs_in_loop_rgns = NULL;
76
77/* CFG hooks that are saved before changing create_basic_block hook. */
78static struct cfg_hooks orig_cfg_hooks;
79\f
80
81/* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83static int *rev_top_order_index = NULL;
84
85/* Length of the above array. */
86static int rev_top_order_index_len = -1;
87
88/* A regset pool structure. */
89static struct
90{
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115/* This represents the nop pool. */
116static struct
117{
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
b8698a0f 125 int s;
e855c69d
AB
126} nop_pool = { NULL, 0, 0 };
127
128/* The pool for basic block notes. */
66e8df53 129static vec<rtx_note *> bb_note_pool;
e855c69d
AB
130
131/* A NOP pattern used to emit placeholder insns. */
132rtx nop_pattern = NULL_RTX;
133/* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
c5db5458 135rtx_insn *exit_insn = NULL;
e855c69d 136
b8698a0f 137/* TRUE if while scheduling current region, which is loop, its preheader
e855c69d
AB
138 was removed. */
139bool preheader_removed = false;
140\f
141
142/* Forward static declarations. */
143static void fence_clear (fence_t);
144
145static void deps_init_id (idata_t, insn_t, bool);
146static void init_id_from_df (idata_t, insn_t, bool);
147static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149static void cfg_preds (basic_block, insn_t **, int *);
150static void prepare_insn_expr (insn_t, int);
9771b263 151static void free_history_vect (vec<expr_history_def> &);
e855c69d
AB
152
153static void move_bb_info (basic_block, basic_block);
154static void remove_empty_bb (basic_block, bool);
262d8232 155static void sel_merge_blocks (basic_block, basic_block);
e855c69d 156static void sel_remove_loop_preheader (void);
753de8cf 157static bool bb_has_removable_jump_to_p (basic_block, basic_block);
e855c69d
AB
158
159static bool insn_is_the_only_one_in_bb_p (insn_t);
160static void create_initial_data_sets (basic_block);
161
b5b8b0ac 162static void free_av_set (basic_block);
e855c69d
AB
163static void invalidate_av_set (basic_block);
164static void extend_insn_data (void);
92e265ac 165static void sel_init_new_insn (insn_t, int, int = -1);
e855c69d
AB
166static void finish_insns (void);
167\f
168/* Various list functions. */
169
170/* Copy an instruction list L. */
171ilist_t
172ilist_copy (ilist_t l)
173{
174 ilist_t head = NULL, *tailp = &head;
175
176 while (l)
177 {
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
181 }
182
183 return head;
184}
185
186/* Invert an instruction list L. */
187ilist_t
188ilist_invert (ilist_t l)
189{
190 ilist_t res = NULL;
191
192 while (l)
193 {
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
196 }
197
198 return res;
199}
200
201/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202void
203blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204{
205 bnd_t bnd;
206
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
209
c1286e0b 210 SET_BND_TO (bnd) = to;
e855c69d
AB
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
215}
216
217/* Remove the list note pointed to by LP. */
218void
219blist_remove (blist_t *lp)
220{
221 bnd_t b = BLIST_BND (*lp);
222
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
226
227 _list_remove (lp);
228}
229
230/* Init a fence tail L. */
231void
232flist_tail_init (flist_tail_t l)
233{
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236}
237
238/* Try to find fence corresponding to INSN in L. */
239fence_t
240flist_lookup (flist_t l, insn_t insn)
241{
242 while (l)
243 {
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
246
247 l = FLIST_NEXT (l);
248 }
249
250 return NULL;
251}
252
253/* Init the fields of F before running fill_insns. */
254static void
255init_fence_for_scheduling (fence_t f)
256{
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
260}
261
262/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263static void
b8698a0f 264flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
9771b263 265 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
b8698a0f 266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
136e01a3 267 int cycle, int cycle_issued_insns, int issue_more,
e855c69d
AB
268 bool starts_cycle_p, bool after_stall_p)
269{
270 fence_t f;
271
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
274
275 FENCE_INSN (f) = insn;
276
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
279
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
284
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
287
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
290
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 292 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
297
298 init_fence_for_scheduling (f);
299}
300
301/* Remove the head node of the list pointed to by LP. */
302static void
303flist_remove (flist_t *lp)
304{
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
308}
309
310/* Clear the fence list pointed to by LP. */
311void
312flist_clear (flist_t *lp)
313{
314 while (*lp)
315 flist_remove (lp);
316}
317
318/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319void
320def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321{
322 def_t d;
b8698a0f 323
e855c69d
AB
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
326
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
329}
330\f
331
332/* Functions to work with target contexts. */
333
b8698a0f 334/* Bulk target context. It is convenient for debugging purposes to ensure
e855c69d
AB
335 that there are no uninitialized (null) target contexts. */
336static tc_t bulk_tc = (tc_t) 1;
337
b8698a0f 338/* Target hooks wrappers. In the future we can provide some default
e855c69d
AB
339 implementations for them. */
340
341/* Allocate a store for the target context. */
342static tc_t
343alloc_target_context (void)
344{
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
347}
348
349/* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352static void
353init_target_context (tc_t tc, bool clean_p)
354{
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
357}
358
359/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361tc_t
362create_target_context (bool clean_p)
363{
364 tc_t tc = alloc_target_context ();
365
366 init_target_context (tc, clean_p);
367 return tc;
368}
369
370/* Copy TC to the current backend context. */
371void
372set_target_context (tc_t tc)
373{
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
376}
377
378/* TC is about to be destroyed. Free any internal data. */
379static void
380clear_target_context (tc_t tc)
381{
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
384}
385
386/* Clear and free it. */
387static void
388delete_target_context (tc_t tc)
389{
390 clear_target_context (tc);
391
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
394}
395
396/* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398static void
399copy_target_context (tc_t to, tc_t from)
400{
401 tc_t tmp = create_target_context (false);
402
403 set_target_context (from);
404 init_target_context (to, false);
405
406 set_target_context (tmp);
407 delete_target_context (tmp);
408}
409
410/* Create a copy of TC. */
411static tc_t
412create_copy_of_target_context (tc_t tc)
413{
414 tc_t copy = alloc_target_context ();
415
416 copy_target_context (copy, tc);
417
418 return copy;
419}
420
421/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423void
424reset_target_context (tc_t tc, bool clean_p)
425{
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
428}
429\f
b8698a0f 430/* Functions to work with dependence contexts.
88302d54 431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
e855c69d
AB
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
434
435/* Make a copy of FROM in TO. */
436static void
437copy_deps_context (deps_t to, deps_t from)
438{
bcf33775 439 init_deps (to, false);
e855c69d
AB
440 deps_join (to, from);
441}
442
443/* Allocate store for dep context. */
444static deps_t
445alloc_deps_context (void)
446{
88302d54 447 return XNEW (struct deps_desc);
e855c69d
AB
448}
449
450/* Allocate and initialize dep context. */
451static deps_t
452create_deps_context (void)
453{
454 deps_t dc = alloc_deps_context ();
455
bcf33775 456 init_deps (dc, false);
e855c69d
AB
457 return dc;
458}
459
460/* Create a copy of FROM. */
461static deps_t
462create_copy_of_deps_context (deps_t from)
463{
464 deps_t to = alloc_deps_context ();
465
466 copy_deps_context (to, from);
467 return to;
468}
469
470/* Clean up internal data of DC. */
471static void
472clear_deps_context (deps_t dc)
473{
474 free_deps (dc);
475}
476
477/* Clear and free DC. */
478static void
479delete_deps_context (deps_t dc)
480{
481 clear_deps_context (dc);
482 free (dc);
483}
484
485/* Clear and init DC. */
486static void
487reset_deps_context (deps_t dc)
488{
489 clear_deps_context (dc);
bcf33775 490 init_deps (dc, false);
e855c69d
AB
491}
492
b8698a0f 493/* This structure describes the dependence analysis hooks for advancing
e855c69d
AB
494 dependence context. */
495static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 {
497 NULL,
498
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
510
511 0, 0, 0
512 };
513
514/* Process INSN and add its impact on DC. */
515void
516advance_deps_context (deps_t dc, insn_t insn)
517{
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
520}
521\f
522
523/* Functions to work with DFA states. */
524
525/* Allocate store for a DFA state. */
526static state_t
527state_alloc (void)
528{
529 return xmalloc (dfa_state_size);
530}
531
532/* Allocate and initialize DFA state. */
533static state_t
534state_create (void)
535{
536 state_t state = state_alloc ();
537
538 state_reset (state);
539 advance_state (state);
540 return state;
541}
542
543/* Free DFA state. */
544static void
545state_free (state_t state)
546{
547 free (state);
548}
549
550/* Make a copy of FROM in TO. */
551static void
552state_copy (state_t to, state_t from)
553{
554 memcpy (to, from, dfa_state_size);
555}
556
557/* Create a copy of FROM. */
558static state_t
559state_create_copy (state_t from)
560{
561 state_t to = state_alloc ();
562
563 state_copy (to, from);
564 return to;
565}
566\f
567
568/* Functions to work with fences. */
569
570/* Clear the fence. */
571static void
572fence_clear (fence_t f)
573{
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
577
578 ilist_clear (&FENCE_BNDS (f));
579
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
582
04695783 583 free (s);
e855c69d
AB
584
585 if (dc != NULL)
586 delete_deps_context (dc);
587
588 if (tc != NULL)
589 delete_target_context (tc);
9771b263 590 vec_free (FENCE_EXECUTING_INSNS (f));
e855c69d
AB
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
593}
594
595/* Init a list of fences with successors of OLD_FENCE. */
596void
597init_fences (insn_t old_fence)
598{
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
b8698a0f
L
603
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
e855c69d
AB
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
606 {
b8698a0f 607
e855c69d
AB
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
612
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
b8698a0f 617 NULL_RTX /* last_scheduled_insn */,
e855c69d
AB
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL_RTX /* sched_next */,
b8698a0f 622 1 /* cycle */, 0 /* cycle_issued_insns */,
136e01a3 623 issue_rate, /* issue_more */
b8698a0f 624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
e855c69d
AB
625 }
626}
627
628/* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
b8698a0f 630 propagated from fallthrough edge if it is available;
e855c69d 631 2) deps context and cycle is propagated from more probable edge;
b8698a0f 632 3) all other fields are set to corresponding constant values.
e855c69d 633
b8698a0f 634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
136e01a3
AB
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
e855c69d
AB
637static void
638merge_fences (fence_t f, insn_t insn,
b8698a0f 639 state_t state, deps_t dc, void *tc,
9771b263 640 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
e855c69d 641 int *ready_ticks, int ready_ticks_size,
136e01a3 642 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
e855c69d
AB
643{
644 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
645
646 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
647 && !sched_next && !FENCE_SCHED_NEXT (f));
648
b8698a0f 649 /* Check if we can decide which path fences came.
e855c69d
AB
650 If we can't (or don't want to) - reset all. */
651 if (last_scheduled_insn == NULL
652 || last_scheduled_insn_old == NULL
b8698a0f
L
653 /* This is a case when INSN is reachable on several paths from
654 one insn (this can happen when pipelining of outer loops is on and
655 there are two edges: one going around of inner loop and the other -
e855c69d
AB
656 right through it; in such case just reset everything). */
657 || last_scheduled_insn == last_scheduled_insn_old)
658 {
659 state_reset (FENCE_STATE (f));
660 state_free (state);
b8698a0f 661
e855c69d
AB
662 reset_deps_context (FENCE_DC (f));
663 delete_deps_context (dc);
b8698a0f 664
e855c69d
AB
665 reset_target_context (FENCE_TC (f), true);
666 delete_target_context (tc);
667
668 if (cycle > FENCE_CYCLE (f))
669 FENCE_CYCLE (f) = cycle;
670
671 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 672 FENCE_ISSUE_MORE (f) = issue_rate;
9771b263 673 vec_free (executing_insns);
e855c69d
AB
674 free (ready_ticks);
675 if (FENCE_EXECUTING_INSNS (f))
9771b263
DN
676 FENCE_EXECUTING_INSNS (f)->block_remove (0,
677 FENCE_EXECUTING_INSNS (f)->length ());
e855c69d
AB
678 if (FENCE_READY_TICKS (f))
679 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
680 }
681 else
682 {
683 edge edge_old = NULL, edge_new = NULL;
684 edge candidate;
685 succ_iterator si;
686 insn_t succ;
b8698a0f 687
e855c69d
AB
688 /* Find fallthrough edge. */
689 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
0fd4b31d 690 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
e855c69d
AB
691
692 if (!candidate
693 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
694 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
695 {
696 /* No fallthrough edge leading to basic block of INSN. */
697 state_reset (FENCE_STATE (f));
698 state_free (state);
b8698a0f 699
e855c69d
AB
700 reset_target_context (FENCE_TC (f), true);
701 delete_target_context (tc);
b8698a0f 702
e855c69d 703 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
136e01a3 704 FENCE_ISSUE_MORE (f) = issue_rate;
e855c69d
AB
705 }
706 else
707 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
708 {
b8698a0f 709 /* Would be weird if same insn is successor of several fallthrough
e855c69d
AB
710 edges. */
711 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
712 != BLOCK_FOR_INSN (last_scheduled_insn_old));
713
714 state_free (FENCE_STATE (f));
715 FENCE_STATE (f) = state;
716
717 delete_target_context (FENCE_TC (f));
718 FENCE_TC (f) = tc;
719
720 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
136e01a3 721 FENCE_ISSUE_MORE (f) = issue_more;
e855c69d
AB
722 }
723 else
724 {
725 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
726 state_free (state);
727 delete_target_context (tc);
728
729 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
730 != BLOCK_FOR_INSN (last_scheduled_insn));
731 }
732
733 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
734 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
735 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
736 {
737 if (succ == insn)
738 {
739 /* No same successor allowed from several edges. */
740 gcc_assert (!edge_old);
741 edge_old = si.e1;
742 }
743 }
744 /* Find edge of second predecessor (last_scheduled_insn->insn). */
745 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
746 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
747 {
748 if (succ == insn)
749 {
750 /* No same successor allowed from several edges. */
751 gcc_assert (!edge_new);
752 edge_new = si.e1;
753 }
754 }
755
756 /* Check if we can choose most probable predecessor. */
757 if (edge_old == NULL || edge_new == NULL)
758 {
759 reset_deps_context (FENCE_DC (f));
760 delete_deps_context (dc);
9771b263 761 vec_free (executing_insns);
e855c69d 762 free (ready_ticks);
b8698a0f 763
e855c69d
AB
764 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
765 if (FENCE_EXECUTING_INSNS (f))
9771b263
DN
766 FENCE_EXECUTING_INSNS (f)->block_remove (0,
767 FENCE_EXECUTING_INSNS (f)->length ());
e855c69d
AB
768 if (FENCE_READY_TICKS (f))
769 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
770 }
771 else
772 if (edge_new->probability > edge_old->probability)
773 {
774 delete_deps_context (FENCE_DC (f));
775 FENCE_DC (f) = dc;
9771b263 776 vec_free (FENCE_EXECUTING_INSNS (f));
e855c69d
AB
777 FENCE_EXECUTING_INSNS (f) = executing_insns;
778 free (FENCE_READY_TICKS (f));
779 FENCE_READY_TICKS (f) = ready_ticks;
780 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
781 FENCE_CYCLE (f) = cycle;
782 }
783 else
784 {
785 /* Leave DC and CYCLE untouched. */
786 delete_deps_context (dc);
9771b263 787 vec_free (executing_insns);
e855c69d
AB
788 free (ready_ticks);
789 }
790 }
791
792 /* Fill remaining invariant fields. */
793 if (after_stall_p)
794 FENCE_AFTER_STALL_P (f) = 1;
795
796 FENCE_ISSUED_INSNS (f) = 0;
797 FENCE_STARTS_CYCLE_P (f) = 1;
798 FENCE_SCHED_NEXT (f) = NULL;
799}
800
b8698a0f 801/* Add a new fence to NEW_FENCES list, initializing it from all
e855c69d
AB
802 other parameters. */
803static void
804add_to_fences (flist_tail_t new_fences, insn_t insn,
b8698a0f 805 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
9771b263 806 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
b8698a0f 807 int ready_ticks_size, rtx sched_next, int cycle,
136e01a3
AB
808 int cycle_issued_insns, int issue_rate,
809 bool starts_cycle_p, bool after_stall_p)
e855c69d
AB
810{
811 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
812
813 if (! f)
814 {
815 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
b8698a0f 816 last_scheduled_insn, executing_insns, ready_ticks,
e855c69d 817 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
136e01a3 818 issue_rate, starts_cycle_p, after_stall_p);
e855c69d
AB
819
820 FLIST_TAIL_TAILP (new_fences)
821 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
822 }
823 else
824 {
b8698a0f
L
825 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
826 executing_insns, ready_ticks, ready_ticks_size,
136e01a3 827 sched_next, cycle, issue_rate, after_stall_p);
e855c69d
AB
828 }
829}
830
831/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
832void
833move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
834{
835 fence_t f, old;
836 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
837
838 old = FLIST_FENCE (old_fences);
b8698a0f 839 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
e855c69d
AB
840 FENCE_INSN (FLIST_FENCE (old_fences)));
841 if (f)
842 {
843 merge_fences (f, old->insn, old->state, old->dc, old->tc,
844 old->last_scheduled_insn, old->executing_insns,
845 old->ready_ticks, old->ready_ticks_size,
136e01a3 846 old->sched_next, old->cycle, old->issue_more,
e855c69d
AB
847 old->after_stall_p);
848 }
849 else
850 {
851 _list_add (tailp);
852 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
853 *FLIST_FENCE (*tailp) = *old;
854 init_fence_for_scheduling (FLIST_FENCE (*tailp));
855 }
856 FENCE_INSN (old) = NULL;
857}
858
b8698a0f 859/* Add a new fence to NEW_FENCES list and initialize most of its data
e855c69d
AB
860 as a clean one. */
861void
862add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
863{
864 int ready_ticks_size = get_max_uid () + 1;
b8698a0f 865
e855c69d
AB
866 add_to_fences (new_fences,
867 succ, state_create (), create_deps_context (),
868 create_target_context (true),
b8698a0f 869 NULL_RTX, NULL,
e855c69d
AB
870 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
871 NULL_RTX, FENCE_CYCLE (fence) + 1,
136e01a3 872 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
e855c69d
AB
873}
874
b8698a0f 875/* Add a new fence to NEW_FENCES list and initialize all of its data
e855c69d
AB
876 from FENCE and SUCC. */
877void
878add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
879{
b8698a0f 880 int * new_ready_ticks
e855c69d 881 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
b8698a0f 882
e855c69d
AB
883 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
884 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
885 add_to_fences (new_fences,
886 succ, state_create_copy (FENCE_STATE (fence)),
887 create_copy_of_deps_context (FENCE_DC (fence)),
888 create_copy_of_target_context (FENCE_TC (fence)),
b8698a0f 889 FENCE_LAST_SCHEDULED_INSN (fence),
9771b263 890 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
e855c69d
AB
891 new_ready_ticks,
892 FENCE_READY_TICKS_SIZE (fence),
893 FENCE_SCHED_NEXT (fence),
894 FENCE_CYCLE (fence),
895 FENCE_ISSUED_INSNS (fence),
136e01a3 896 FENCE_ISSUE_MORE (fence),
e855c69d
AB
897 FENCE_STARTS_CYCLE_P (fence),
898 FENCE_AFTER_STALL_P (fence));
899}
900\f
901
902/* Functions to work with regset and nop pools. */
903
904/* Returns the new regset from pool. It might have some of the bits set
905 from the previous usage. */
906regset
907get_regset_from_pool (void)
908{
909 regset rs;
910
911 if (regset_pool.n != 0)
912 rs = regset_pool.v[--regset_pool.n];
913 else
914 /* We need to create the regset. */
915 {
916 rs = ALLOC_REG_SET (&reg_obstack);
917
918 if (regset_pool.nn == regset_pool.ss)
919 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
920 (regset_pool.ss = 2 * regset_pool.ss + 1));
921 regset_pool.vv[regset_pool.nn++] = rs;
922 }
923
924 regset_pool.diff++;
925
926 return rs;
927}
928
929/* Same as above, but returns the empty regset. */
930regset
931get_clear_regset_from_pool (void)
932{
933 regset rs = get_regset_from_pool ();
934
935 CLEAR_REG_SET (rs);
936 return rs;
937}
938
939/* Return regset RS to the pool for future use. */
940void
941return_regset_to_pool (regset rs)
942{
9ef1bf71 943 gcc_assert (rs);
e855c69d
AB
944 regset_pool.diff--;
945
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
950}
951
68ad446f 952#ifdef ENABLE_CHECKING
e855c69d
AB
953/* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955static int
956cmp_v_in_regset_pool (const void *x, const void *xx)
957{
d38933a0
SB
958 uintptr_t r1 = (uintptr_t) *((const regset *) x);
959 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
960 if (r1 > r2)
961 return 1;
962 else if (r1 < r2)
963 return -1;
964 gcc_unreachable ();
e855c69d 965}
68ad446f 966#endif
e855c69d
AB
967
968/* Free the regset pool possibly checking for memory leaks. */
969void
970free_regset_pool (void)
971{
972#ifdef ENABLE_CHECKING
973 {
974 regset *v = regset_pool.v;
975 int i = 0;
976 int n = regset_pool.n;
b8698a0f 977
e855c69d
AB
978 regset *vv = regset_pool.vv;
979 int ii = 0;
980 int nn = regset_pool.nn;
b8698a0f 981
e855c69d 982 int diff = 0;
b8698a0f 983
e855c69d 984 gcc_assert (n <= nn);
b8698a0f 985
e855c69d
AB
986 /* Sort both vectors so it will be possible to compare them. */
987 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
988 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
b8698a0f 989
e855c69d
AB
990 while (ii < nn)
991 {
992 if (v[i] == vv[ii])
993 i++;
994 else
995 /* VV[II] was lost. */
996 diff++;
b8698a0f 997
e855c69d
AB
998 ii++;
999 }
b8698a0f 1000
e855c69d
AB
1001 gcc_assert (diff == regset_pool.diff);
1002 }
1003#endif
b8698a0f 1004
e855c69d
AB
1005 /* If not true - we have a memory leak. */
1006 gcc_assert (regset_pool.diff == 0);
b8698a0f 1007
e855c69d
AB
1008 while (regset_pool.n)
1009 {
1010 --regset_pool.n;
1011 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1012 }
1013
1014 free (regset_pool.v);
1015 regset_pool.v = NULL;
1016 regset_pool.s = 0;
b8698a0f 1017
e855c69d
AB
1018 free (regset_pool.vv);
1019 regset_pool.vv = NULL;
1020 regset_pool.nn = 0;
1021 regset_pool.ss = 0;
1022
1023 regset_pool.diff = 0;
1024}
1025\f
1026
b8698a0f
L
1027/* Functions to work with nop pools. NOP insns are used as temporary
1028 placeholders of the insns being scheduled to allow correct update of
e855c69d
AB
1029 the data sets. When update is finished, NOPs are deleted. */
1030
1031/* A vinsn that is used to represent a nop. This vinsn is shared among all
1032 nops sel-sched generates. */
1033static vinsn_t nop_vinsn = NULL;
1034
1035/* Emit a nop before INSN, taking it from pool. */
1036insn_t
1037get_nop_from_pool (insn_t insn)
1038{
1039 insn_t nop;
1040 bool old_p = nop_pool.n != 0;
1041 int flags;
1042
1043 if (old_p)
1044 nop = nop_pool.v[--nop_pool.n];
1045 else
1046 nop = nop_pattern;
1047
1048 nop = emit_insn_before (nop, insn);
1049
1050 if (old_p)
1051 flags = INSN_INIT_TODO_SSID;
1052 else
1053 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1054
1055 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1056 sel_init_new_insn (nop, flags);
1057
1058 return nop;
1059}
1060
1061/* Remove NOP from the instruction stream and return it to the pool. */
1062void
b5b8b0ac 1063return_nop_to_pool (insn_t nop, bool full_tidying)
e855c69d
AB
1064{
1065 gcc_assert (INSN_IN_STREAM_P (nop));
b5b8b0ac 1066 sel_remove_insn (nop, false, full_tidying);
e855c69d 1067
1f397f45
SB
1068 /* We'll recycle this nop. */
1069 INSN_DELETED_P (nop) = 0;
1070
e855c69d 1071 if (nop_pool.n == nop_pool.s)
b8698a0f 1072 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
e855c69d
AB
1073 (nop_pool.s = 2 * nop_pool.s + 1));
1074 nop_pool.v[nop_pool.n++] = nop;
1075}
1076
1077/* Free the nop pool. */
1078void
1079free_nop_pool (void)
1080{
1081 nop_pool.n = 0;
1082 nop_pool.s = 0;
1083 free (nop_pool.v);
1084 nop_pool.v = NULL;
1085}
1086\f
1087
b8698a0f 1088/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
e855c69d
AB
1089 The callback is given two rtxes XX and YY and writes the new rtxes
1090 to NX and NY in case some needs to be skipped. */
1091static int
1092skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1093{
1094 const_rtx x = *xx;
1095 const_rtx y = *yy;
b8698a0f 1096
e855c69d
AB
1097 if (GET_CODE (x) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (x)))
1100 {
1101 *nx = XVECEXP (x, 0, 0);
1102 *ny = CONST_CAST_RTX (y);
1103 return 1;
1104 }
b8698a0f 1105
e855c69d
AB
1106 if (GET_CODE (y) == UNSPEC
1107 && (targetm.sched.skip_rtx_p == NULL
1108 || targetm.sched.skip_rtx_p (y)))
1109 {
1110 *nx = CONST_CAST_RTX (x);
1111 *ny = XVECEXP (y, 0, 0);
1112 return 1;
1113 }
b8698a0f 1114
e855c69d
AB
1115 return 0;
1116}
1117
b8698a0f 1118/* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
e855c69d
AB
1119 to support ia64 speculation. When changes are needed, new rtx X and new mode
1120 NMODE are written, and the callback returns true. */
1121static int
1122hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1123 rtx *nx, enum machine_mode* nmode)
1124{
b8698a0f 1125 if (GET_CODE (x) == UNSPEC
e855c69d
AB
1126 && targetm.sched.skip_rtx_p
1127 && targetm.sched.skip_rtx_p (x))
1128 {
1129 *nx = XVECEXP (x, 0 ,0);
32e8bb8e 1130 *nmode = VOIDmode;
e855c69d
AB
1131 return 1;
1132 }
b8698a0f 1133
e855c69d
AB
1134 return 0;
1135}
1136
1137/* Returns LHS and RHS are ok to be scheduled separately. */
1138static bool
1139lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1140{
1141 if (lhs == NULL || rhs == NULL)
1142 return false;
1143
807e902e
KZ
1144 /* Do not schedule constants as rhs: no point to use reg, if const
1145 can be used. Moreover, scheduling const as rhs may lead to mode
1146 mismatch cause consts don't have modes but they could be merged
1147 from branches where the same const used in different modes. */
e855c69d
AB
1148 if (CONSTANT_P (rhs))
1149 return false;
1150
1151 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1152 if (COMPARISON_P (rhs))
1153 return false;
1154
1155 /* Do not allow single REG to be an rhs. */
1156 if (REG_P (rhs))
1157 return false;
1158
b8698a0f 1159 /* See comment at find_used_regs_1 (*1) for explanation of this
e855c69d
AB
1160 restriction. */
1161 /* FIXME: remove this later. */
1162 if (MEM_P (lhs))
1163 return false;
1164
1165 /* This will filter all tricky things like ZERO_EXTRACT etc.
1166 For now we don't handle it. */
1167 if (!REG_P (lhs) && !MEM_P (lhs))
1168 return false;
1169
1170 return true;
1171}
1172
b8698a0f
L
1173/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1174 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
e855c69d
AB
1175 used e.g. for insns from recovery blocks. */
1176static void
1177vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1178{
1179 hash_rtx_callback_function hrcf;
1180 int insn_class;
1181
68975683 1182 SET_VINSN_INSN_RTX (vi) = insn;
e855c69d
AB
1183 VINSN_COUNT (vi) = 0;
1184 vi->cost = -1;
b8698a0f 1185
9ef1bf71
AM
1186 if (INSN_NOP_P (insn))
1187 return;
1188
e855c69d
AB
1189 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1190 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1191 else
1192 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
b8698a0f 1193
e855c69d
AB
1194 /* Hash vinsn depending on whether it is separable or not. */
1195 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1196 if (VINSN_SEPARABLE_P (vi))
1197 {
1198 rtx rhs = VINSN_RHS (vi);
1199
1200 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1203 VOIDmode, NULL, NULL,
1204 false, hrcf);
1205 }
1206 else
1207 {
1208 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1209 NULL, NULL, false, hrcf);
1210 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1211 }
b8698a0f 1212
e855c69d
AB
1213 insn_class = haifa_classify_insn (insn);
1214 if (insn_class >= 2
1215 && (!targetm.sched.get_insn_spec_ds
1216 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1217 == 0)))
1218 VINSN_MAY_TRAP_P (vi) = true;
1219 else
1220 VINSN_MAY_TRAP_P (vi) = false;
1221}
1222
1223/* Indicate that VI has become the part of an rtx object. */
1224void
1225vinsn_attach (vinsn_t vi)
1226{
1227 /* Assert that VI is not pending for deletion. */
1228 gcc_assert (VINSN_INSN_RTX (vi));
1229
1230 VINSN_COUNT (vi)++;
1231}
1232
b8698a0f 1233/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
e855c69d
AB
1234 VINSN_TYPE (VI). */
1235static vinsn_t
1236vinsn_create (insn_t insn, bool force_unique_p)
1237{
1238 vinsn_t vi = XCNEW (struct vinsn_def);
1239
1240 vinsn_init (vi, insn, force_unique_p);
1241 return vi;
1242}
1243
1244/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1245 the copy. */
b8698a0f 1246vinsn_t
e855c69d
AB
1247vinsn_copy (vinsn_t vi, bool reattach_p)
1248{
1249 rtx copy;
1250 bool unique = VINSN_UNIQUE_P (vi);
1251 vinsn_t new_vi;
b8698a0f 1252
e855c69d
AB
1253 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1254 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1255 if (reattach_p)
1256 {
1257 vinsn_detach (vi);
1258 vinsn_attach (new_vi);
1259 }
1260
1261 return new_vi;
1262}
1263
1264/* Delete the VI vinsn and free its data. */
1265static void
1266vinsn_delete (vinsn_t vi)
1267{
1268 gcc_assert (VINSN_COUNT (vi) == 0);
1269
9ef1bf71
AM
1270 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1271 {
1272 return_regset_to_pool (VINSN_REG_SETS (vi));
1273 return_regset_to_pool (VINSN_REG_USES (vi));
1274 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1275 }
e855c69d
AB
1276
1277 free (vi);
1278}
1279
b8698a0f 1280/* Indicate that VI is no longer a part of some rtx object.
e855c69d
AB
1281 Remove VI if it is no longer needed. */
1282void
1283vinsn_detach (vinsn_t vi)
1284{
1285 gcc_assert (VINSN_COUNT (vi) > 0);
1286
1287 if (--VINSN_COUNT (vi) == 0)
1288 vinsn_delete (vi);
1289}
1290
1291/* Returns TRUE if VI is a branch. */
1292bool
1293vinsn_cond_branch_p (vinsn_t vi)
1294{
1295 insn_t insn;
1296
1297 if (!VINSN_UNIQUE_P (vi))
1298 return false;
1299
1300 insn = VINSN_INSN_RTX (vi);
1301 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1302 return false;
1303
1304 return control_flow_insn_p (insn);
1305}
1306
1307/* Return latency of INSN. */
1308static int
1309sel_insn_rtx_cost (rtx insn)
1310{
1311 int cost;
1312
1313 /* A USE insn, or something else we don't need to
1314 understand. We can't pass these directly to
1315 result_ready_cost or insn_default_latency because it will
1316 trigger a fatal error for unrecognizable insns. */
1317 if (recog_memoized (insn) < 0)
1318 cost = 0;
1319 else
1320 {
1321 cost = insn_default_latency (insn);
1322
1323 if (cost < 0)
1324 cost = 0;
1325 }
1326
1327 return cost;
1328}
1329
1330/* Return the cost of the VI.
1331 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1332int
1333sel_vinsn_cost (vinsn_t vi)
1334{
1335 int cost = vi->cost;
1336
1337 if (cost < 0)
1338 {
1339 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1340 vi->cost = cost;
1341 }
1342
1343 return cost;
1344}
1345\f
1346
1347/* Functions for insn emitting. */
1348
1349/* Emit new insn after AFTER based on PATTERN and initialize its data from
1350 EXPR and SEQNO. */
1351insn_t
1352sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1353{
1354 insn_t new_insn;
1355
1356 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1357
1358 new_insn = emit_insn_after (pattern, after);
1359 set_insn_init (expr, NULL, seqno);
1360 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1361
1362 return new_insn;
1363}
1364
1365/* Force newly generated vinsns to be unique. */
1366static bool init_insn_force_unique_p = false;
1367
1368/* Emit new speculation recovery insn after AFTER based on PATTERN and
1369 initialize its data from EXPR and SEQNO. */
1370insn_t
1371sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1372 insn_t after)
1373{
1374 insn_t insn;
1375
1376 gcc_assert (!init_insn_force_unique_p);
1377
1378 init_insn_force_unique_p = true;
1379 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1380 CANT_MOVE (insn) = 1;
1381 init_insn_force_unique_p = false;
1382
1383 return insn;
1384}
1385
1386/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
b8698a0f
L
1387 take it as a new vinsn instead of EXPR's vinsn.
1388 We simplify insns later, after scheduling region in
e855c69d
AB
1389 simplify_changed_insns. */
1390insn_t
b8698a0f 1391sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
1392 insn_t after)
1393{
1394 expr_t emit_expr;
1395 insn_t insn;
1396 int flags;
b8698a0f
L
1397
1398 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
e855c69d
AB
1399 seqno);
1400 insn = EXPR_INSN_RTX (emit_expr);
fe08255d
AB
1401
1402 /* The insn may come from the transformation cache, which may hold already
1403 deleted insns, so mark it as not deleted. */
1404 INSN_DELETED_P (insn) = 0;
1405
b8698a0f 1406 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
e855c69d
AB
1407
1408 flags = INSN_INIT_TODO_SSID;
1409 if (INSN_LUID (insn) == 0)
1410 flags |= INSN_INIT_TODO_LUID;
1411 sel_init_new_insn (insn, flags);
1412
1413 return insn;
1414}
1415
1416/* Move insn from EXPR after AFTER. */
1417insn_t
1418sel_move_insn (expr_t expr, int seqno, insn_t after)
1419{
1420 insn_t insn = EXPR_INSN_RTX (expr);
1421 basic_block bb = BLOCK_FOR_INSN (after);
1422 insn_t next = NEXT_INSN (after);
1423
1424 /* Assert that in move_op we disconnected this insn properly. */
1425 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
0f82e5c9
DM
1426 SET_PREV_INSN (insn) = after;
1427 SET_NEXT_INSN (insn) = next;
e855c69d 1428
0f82e5c9
DM
1429 SET_NEXT_INSN (after) = insn;
1430 SET_PREV_INSN (next) = insn;
e855c69d
AB
1431
1432 /* Update links from insn to bb and vice versa. */
1433 df_insn_change_bb (insn, bb);
1434 if (BB_END (bb) == after)
190bea87 1435 SET_BB_END (bb) = insn;
b8698a0f 1436
e855c69d
AB
1437 prepare_insn_expr (insn, seqno);
1438 return insn;
1439}
1440
1441\f
1442/* Functions to work with right-hand sides. */
1443
b8698a0f 1444/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
e855c69d 1445 VECT and return true when found. Use NEW_VINSN for comparison only when
b8698a0f
L
1446 COMPARE_VINSNS is true. Write to INDP the index on which
1447 the search has stopped, such that inserting the new element at INDP will
e855c69d
AB
1448 retain VECT's sort order. */
1449static bool
9771b263 1450find_in_history_vect_1 (vec<expr_history_def> vect,
b8698a0f 1451 unsigned uid, vinsn_t new_vinsn,
e855c69d
AB
1452 bool compare_vinsns, int *indp)
1453{
1454 expr_history_def *arr;
9771b263 1455 int i, j, len = vect.length ();
e855c69d
AB
1456
1457 if (len == 0)
1458 {
1459 *indp = 0;
1460 return false;
1461 }
1462
9771b263 1463 arr = vect.address ();
e855c69d
AB
1464 i = 0, j = len - 1;
1465
1466 while (i <= j)
1467 {
1468 unsigned auid = arr[i].uid;
b8698a0f 1469 vinsn_t avinsn = arr[i].new_expr_vinsn;
e855c69d
AB
1470
1471 if (auid == uid
b8698a0f
L
1472 /* When undoing transformation on a bookkeeping copy, the new vinsn
1473 may not be exactly equal to the one that is saved in the vector.
e855c69d
AB
1474 This is because the insn whose copy we're checking was possibly
1475 substituted itself. */
b8698a0f 1476 && (! compare_vinsns
e855c69d
AB
1477 || vinsn_equal_p (avinsn, new_vinsn)))
1478 {
1479 *indp = i;
1480 return true;
1481 }
1482 else if (auid > uid)
1483 break;
1484 i++;
1485 }
1486
1487 *indp = i;
1488 return false;
1489}
1490
b8698a0f
L
1491/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1492 the position found or -1, if no such value is in vector.
e855c69d
AB
1493 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1494int
9771b263 1495find_in_history_vect (vec<expr_history_def> vect, rtx insn,
e855c69d
AB
1496 vinsn_t new_vinsn, bool originators_p)
1497{
1498 int ind;
1499
b8698a0f 1500 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
e855c69d
AB
1501 false, &ind))
1502 return ind;
1503
1504 if (INSN_ORIGINATORS (insn) && originators_p)
1505 {
1506 unsigned uid;
1507 bitmap_iterator bi;
1508
1509 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1510 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1511 return ind;
1512 }
b8698a0f 1513
e855c69d
AB
1514 return -1;
1515}
1516
b8698a0f
L
1517/* Insert new element in a sorted history vector pointed to by PVECT,
1518 if it is not there already. The element is searched using
e855c69d
AB
1519 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1520 the history of a transformation. */
1521void
9771b263 1522insert_in_history_vect (vec<expr_history_def> *pvect,
e855c69d 1523 unsigned uid, enum local_trans_type type,
b8698a0f 1524 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
e855c69d
AB
1525 ds_t spec_ds)
1526{
9771b263 1527 vec<expr_history_def> vect = *pvect;
e855c69d
AB
1528 expr_history_def temp;
1529 bool res;
1530 int ind;
1531
1532 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1533
1534 if (res)
1535 {
9771b263 1536 expr_history_def *phist = &vect[ind];
e855c69d 1537
b8698a0f 1538 /* It is possible that speculation types of expressions that were
e855c69d
AB
1539 propagated through different paths will be different here. In this
1540 case, merge the status to get the correct check later. */
1541 if (phist->spec_ds != spec_ds)
1542 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1543 return;
1544 }
b8698a0f 1545
e855c69d
AB
1546 temp.uid = uid;
1547 temp.old_expr_vinsn = old_expr_vinsn;
b8698a0f 1548 temp.new_expr_vinsn = new_expr_vinsn;
e855c69d
AB
1549 temp.spec_ds = spec_ds;
1550 temp.type = type;
1551
1552 vinsn_attach (old_expr_vinsn);
1553 vinsn_attach (new_expr_vinsn);
9771b263 1554 vect.safe_insert (ind, temp);
e855c69d
AB
1555 *pvect = vect;
1556}
1557
1558/* Free history vector PVECT. */
1559static void
9771b263 1560free_history_vect (vec<expr_history_def> &pvect)
e855c69d
AB
1561{
1562 unsigned i;
1563 expr_history_def *phist;
1564
9771b263 1565 if (! pvect.exists ())
e855c69d 1566 return;
b8698a0f 1567
9771b263 1568 for (i = 0; pvect.iterate (i, &phist); i++)
e855c69d
AB
1569 {
1570 vinsn_detach (phist->old_expr_vinsn);
1571 vinsn_detach (phist->new_expr_vinsn);
1572 }
b8698a0f 1573
9771b263 1574 pvect.release ();
e855c69d
AB
1575}
1576
5d369d58
AB
1577/* Merge vector FROM to PVECT. */
1578static void
9771b263
DN
1579merge_history_vect (vec<expr_history_def> *pvect,
1580 vec<expr_history_def> from)
5d369d58
AB
1581{
1582 expr_history_def *phist;
1583 int i;
1584
1585 /* We keep this vector sorted. */
9771b263 1586 for (i = 0; from.iterate (i, &phist); i++)
5d369d58
AB
1587 insert_in_history_vect (pvect, phist->uid, phist->type,
1588 phist->old_expr_vinsn, phist->new_expr_vinsn,
1589 phist->spec_ds);
1590}
e855c69d
AB
1591
1592/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1593bool
1594vinsn_equal_p (vinsn_t x, vinsn_t y)
1595{
1596 rtx_equal_p_callback_function repcf;
1597
1598 if (x == y)
1599 return true;
1600
1601 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1602 return false;
1603
1604 if (VINSN_HASH (x) != VINSN_HASH (y))
1605 return false;
1606
1607 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
b8698a0f 1608 if (VINSN_SEPARABLE_P (x))
e855c69d
AB
1609 {
1610 /* Compare RHSes of VINSNs. */
1611 gcc_assert (VINSN_RHS (x));
1612 gcc_assert (VINSN_RHS (y));
1613
1614 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1615 }
1616
1617 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1618}
1619\f
1620
1621/* Functions for working with expressions. */
1622
1623/* Initialize EXPR. */
1624static void
1625init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1626 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1627 ds_t spec_to_check_ds, int orig_sched_cycle,
9771b263
DN
1628 vec<expr_history_def> history,
1629 signed char target_available,
e855c69d
AB
1630 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1631 bool cant_move)
1632{
1633 vinsn_attach (vi);
1634
1635 EXPR_VINSN (expr) = vi;
1636 EXPR_SPEC (expr) = spec;
1637 EXPR_USEFULNESS (expr) = use;
1638 EXPR_PRIORITY (expr) = priority;
1639 EXPR_PRIORITY_ADJ (expr) = 0;
1640 EXPR_SCHED_TIMES (expr) = sched_times;
1641 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1642 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1643 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1644 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1645
9771b263 1646 if (history.exists ())
e855c69d
AB
1647 EXPR_HISTORY_OF_CHANGES (expr) = history;
1648 else
9771b263 1649 EXPR_HISTORY_OF_CHANGES (expr).create (0);
e855c69d
AB
1650
1651 EXPR_TARGET_AVAILABLE (expr) = target_available;
1652 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1653 EXPR_WAS_RENAMED (expr) = was_renamed;
1654 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1655 EXPR_CANT_MOVE (expr) = cant_move;
1656}
1657
1658/* Make a copy of the expr FROM into the expr TO. */
1659void
1660copy_expr (expr_t to, expr_t from)
1661{
6e1aa848 1662 vec<expr_history_def> temp = vNULL;
e855c69d 1663
9771b263 1664 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
e855c69d
AB
1665 {
1666 unsigned i;
1667 expr_history_def *phist;
1668
9771b263 1669 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
b8698a0f 1670 for (i = 0;
9771b263 1671 temp.iterate (i, &phist);
e855c69d
AB
1672 i++)
1673 {
1674 vinsn_attach (phist->old_expr_vinsn);
1675 vinsn_attach (phist->new_expr_vinsn);
1676 }
1677 }
1678
b8698a0f 1679 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
e855c69d
AB
1680 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1681 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
b8698a0f 1682 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
e855c69d 1683 EXPR_ORIG_SCHED_CYCLE (from), temp,
b8698a0f 1684 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
e855c69d
AB
1685 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1686 EXPR_CANT_MOVE (from));
1687}
1688
b8698a0f 1689/* Same, but the final expr will not ever be in av sets, so don't copy
e855c69d
AB
1690 "uninteresting" data such as bitmap cache. */
1691void
1692copy_expr_onside (expr_t to, expr_t from)
1693{
1694 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1695 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
9771b263 1696 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
6e1aa848 1697 vNULL,
e855c69d
AB
1698 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1699 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1700 EXPR_CANT_MOVE (from));
1701}
1702
1703/* Prepare the expr of INSN for scheduling. Used when moving insn and when
1704 initializing new insns. */
1705static void
1706prepare_insn_expr (insn_t insn, int seqno)
1707{
1708 expr_t expr = INSN_EXPR (insn);
1709 ds_t ds;
b8698a0f 1710
e855c69d
AB
1711 INSN_SEQNO (insn) = seqno;
1712 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1713 EXPR_SPEC (expr) = 0;
1714 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1715 EXPR_WAS_SUBSTITUTED (expr) = 0;
1716 EXPR_WAS_RENAMED (expr) = 0;
1717 EXPR_TARGET_AVAILABLE (expr) = 1;
1718 INSN_LIVE_VALID_P (insn) = false;
1719
1720 /* ??? If this expression is speculative, make its dependence
1721 as weak as possible. We can filter this expression later
1722 in process_spec_exprs, because we do not distinguish
1723 between the status we got during compute_av_set and the
1724 existing status. To be fixed. */
1725 ds = EXPR_SPEC_DONE_DS (expr);
1726 if (ds)
1727 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1728
9771b263 1729 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
e855c69d
AB
1730}
1731
1732/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1733 is non-null when expressions are merged from different successors at
e855c69d
AB
1734 a split point. */
1735static void
1736update_target_availability (expr_t to, expr_t from, insn_t split_point)
1737{
b8698a0f 1738 if (EXPR_TARGET_AVAILABLE (to) < 0
e855c69d
AB
1739 || EXPR_TARGET_AVAILABLE (from) < 0)
1740 EXPR_TARGET_AVAILABLE (to) = -1;
1741 else
1742 {
1743 /* We try to detect the case when one of the expressions
1744 can only be reached through another one. In this case,
1745 we can do better. */
1746 if (split_point == NULL)
1747 {
1748 int toind, fromind;
1749
1750 toind = EXPR_ORIG_BB_INDEX (to);
1751 fromind = EXPR_ORIG_BB_INDEX (from);
b8698a0f 1752
e855c69d 1753 if (toind && toind == fromind)
b8698a0f 1754 /* Do nothing -- everything is done in
e855c69d
AB
1755 merge_with_other_exprs. */
1756 ;
1757 else
1758 EXPR_TARGET_AVAILABLE (to) = -1;
1759 }
854b5fd7
AM
1760 else if (EXPR_TARGET_AVAILABLE (from) == 0
1761 && EXPR_LHS (from)
1762 && REG_P (EXPR_LHS (from))
1763 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1764 EXPR_TARGET_AVAILABLE (to) = -1;
e855c69d
AB
1765 else
1766 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1767 }
1768}
1769
1770/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
b8698a0f 1771 is non-null when expressions are merged from different successors at
e855c69d
AB
1772 a split point. */
1773static void
1774update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1775{
1776 ds_t old_to_ds, old_from_ds;
1777
1778 old_to_ds = EXPR_SPEC_DONE_DS (to);
1779 old_from_ds = EXPR_SPEC_DONE_DS (from);
b8698a0f 1780
e855c69d
AB
1781 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1782 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1783 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1784
1785 /* When merging e.g. control & data speculative exprs, or a control
b8698a0f 1786 speculative with a control&data speculative one, we really have
e855c69d
AB
1787 to change vinsn too. Also, when speculative status is changed,
1788 we also need to record this as a transformation in expr's history. */
1789 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1790 {
1791 old_to_ds = ds_get_speculation_types (old_to_ds);
1792 old_from_ds = ds_get_speculation_types (old_from_ds);
b8698a0f 1793
e855c69d
AB
1794 if (old_to_ds != old_from_ds)
1795 {
1796 ds_t record_ds;
b8698a0f
L
1797
1798 /* When both expressions are speculative, we need to change
e855c69d
AB
1799 the vinsn first. */
1800 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1801 {
1802 int res;
b8698a0f 1803
e855c69d
AB
1804 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1805 gcc_assert (res >= 0);
1806 }
1807
1808 if (split_point != NULL)
1809 {
1810 /* Record the change with proper status. */
1811 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1812 record_ds &= ~(old_to_ds & SPECULATIVE);
1813 record_ds &= ~(old_from_ds & SPECULATIVE);
b8698a0f
L
1814
1815 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1816 INSN_UID (split_point), TRANS_SPECULATION,
e855c69d
AB
1817 EXPR_VINSN (from), EXPR_VINSN (to),
1818 record_ds);
1819 }
1820 }
1821 }
1822}
1823
1824
1825/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1826 this is done along different paths. */
1827void
1828merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1829{
bf3a40e9
DM
1830 /* Choose the maximum of the specs of merged exprs. This is required
1831 for correctness of bookkeeping. */
1832 if (EXPR_SPEC (to) < EXPR_SPEC (from))
e855c69d
AB
1833 EXPR_SPEC (to) = EXPR_SPEC (from);
1834
1835 if (split_point)
1836 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1837 else
b8698a0f 1838 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
e855c69d
AB
1839 EXPR_USEFULNESS (from));
1840
1841 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1842 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1843
1844 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1845 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1846
1847 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848 EXPR_ORIG_BB_INDEX (to) = 0;
1849
b8698a0f 1850 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
e855c69d
AB
1851 EXPR_ORIG_SCHED_CYCLE (from));
1852
e855c69d
AB
1853 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1856
5d369d58
AB
1857 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 EXPR_HISTORY_OF_CHANGES (from));
e855c69d
AB
1859 update_target_availability (to, from, split_point);
1860 update_speculative_bits (to, from, split_point);
1861}
1862
1863/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
b8698a0f 1864 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
e855c69d
AB
1865 are merged from different successors at a split point. */
1866void
1867merge_expr (expr_t to, expr_t from, insn_t split_point)
1868{
1869 vinsn_t to_vi = EXPR_VINSN (to);
1870 vinsn_t from_vi = EXPR_VINSN (from);
1871
1872 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1873
1874 /* Make sure that speculative pattern is propagated into exprs that
1875 have non-speculative one. This will provide us with consistent
1876 speculative bits and speculative patterns inside expr. */
436a956a
AB
1877 if ((EXPR_SPEC_DONE_DS (from) != 0
1878 && EXPR_SPEC_DONE_DS (to) == 0)
1879 /* Do likewise for volatile insns, so that we always retain
1880 the may_trap_p bit on the resulting expression. */
1881 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1882 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
e855c69d
AB
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1884
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1887}
1888
1889/* Clear the information of this EXPR. */
1890void
1891clear_expr (expr_t expr)
1892{
b8698a0f 1893
e855c69d
AB
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1896
9771b263 1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
e855c69d
AB
1898}
1899
1900/* For a given LV_SET, mark EXPR having unavailable target register. */
1901static void
1902set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1903{
1904 if (EXPR_SEPARABLE_P (expr))
1905 {
1906 if (REG_P (EXPR_LHS (expr))
cf3d5824 1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
e855c69d 1908 {
b8698a0f
L
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
e855c69d
AB
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
b8698a0f 1915 expression is available through it (but it can't be determined
e855c69d 1916 at computation stage because of transformations on one of the
b8698a0f
L
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
e855c69d
AB
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
cf3d5824
SG
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
e855c69d
AB
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 }
1934 }
1935 else
1936 {
1937 unsigned regno;
1938 reg_set_iterator rsi;
b8698a0f
L
1939
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
e855c69d
AB
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1943 {
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1946 }
1947
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1951 {
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1954 }
1955 }
1956}
1957
b8698a0f 1958/* Try to make EXPR speculative. Return 1 when EXPR's pattern
e855c69d
AB
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1961int
1962speculate_expr (expr_t expr, ds_t ds)
1963{
1964 int res;
1965 rtx orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1968
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1973
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1975
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1977
1978 switch (res)
1979 {
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
b8698a0f 1983
e855c69d
AB
1984 case 1:
1985 {
1986 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1988
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1992
b8698a0f 1993 /* Do not allow clobbering the address register of speculative
e855c69d 1994 insns. */
cf3d5824
SG
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
e855c69d
AB
1997 {
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2000 }
2001
2002 return 1;
2003 }
2004
2005 case -1:
2006 return -1;
2007
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2011 }
2012}
2013
2014/* Return a destination register, if any, of EXPR. */
2015rtx
2016expr_dest_reg (expr_t expr)
2017{
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2019
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2022
2023 return NULL_RTX;
2024}
2025
2026/* Returns the REGNO of the R's destination. */
2027unsigned
2028expr_dest_regno (expr_t expr)
2029{
2030 rtx dest = expr_dest_reg (expr);
2031
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2034}
2035
b8698a0f 2036/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
e855c69d
AB
2037 AV_SET having unavailable target register. */
2038void
2039mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2040{
2041 expr_t expr;
2042 av_set_iterator avi;
2043
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2047}
2048\f
2049
cf3d5824
SG
2050/* Returns true if REG (at least partially) is present in REGS. */
2051bool
2052register_unavailable_p (regset regs, rtx reg)
2053{
2054 unsigned regno, end_regno;
2055
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2059
2060 end_regno = END_REGNO (reg);
2061
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2065
2066 return false;
2067}
2068
e855c69d
AB
2069/* Av set functions. */
2070
2071/* Add a new element to av set SETP.
2072 Return the element added. */
2073static av_set_t
2074av_set_add_element (av_set_t *setp)
2075{
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2079}
2080
2081/* Add EXPR to SETP. */
2082void
2083av_set_add (av_set_t *setp, expr_t expr)
2084{
2085 av_set_t elem;
b8698a0f 2086
e855c69d
AB
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2090}
2091
2092/* Same, but do not copy EXPR. */
2093static void
2094av_set_add_nocopy (av_set_t *setp, expr_t expr)
2095{
2096 av_set_t elem;
2097
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2100}
2101
2102/* Remove expr pointed to by IP from the av_set. */
2103void
2104av_set_iter_remove (av_set_iterator *ip)
2105{
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2108}
2109
2110/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113expr_t
2114av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2115{
2116 expr_t expr;
2117 av_set_iterator i;
2118
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2123}
2124
2125/* Same, but also remove the EXPR found. */
2126static expr_t
2127av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2128{
2129 expr_t expr;
2130 av_set_iterator i;
2131
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2134 {
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2137 }
2138 return NULL;
2139}
2140
2141/* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144static expr_t
2145av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2146{
2147 expr_t cur_expr;
2148 av_set_iterator i;
2149
2150 FOR_EACH_EXPR (cur_expr, i, set)
2151 {
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2156 }
2157
2158 return NULL;
2159}
2160
2161/* If other expression is already in AVP, remove one of them. */
2162expr_t
2163merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2164{
2165 expr_t expr2;
2166
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2169 {
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2174
2175 merge_expr (expr2, expr, NULL);
b8698a0f 2176
e855c69d
AB
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
b8698a0f 2179
e855c69d
AB
2180 av_set_iter_remove (ip);
2181 return expr2;
2182 }
2183
2184 return expr;
2185}
2186
2187/* Return true if there is an expr that correlates to VI in SET. */
2188bool
2189av_set_is_in_p (av_set_t set, vinsn_t vi)
2190{
2191 return av_set_lookup (set, vi) != NULL;
2192}
2193
2194/* Return a copy of SET. */
2195av_set_t
2196av_set_copy (av_set_t set)
2197{
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2201
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2204
2205 return res;
2206}
2207
2208/* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211static void
2212join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2213{
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2217}
2218
2219/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221void
2222av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2223{
2224 expr_t expr1;
2225 av_set_iterator i;
2226
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2229 {
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2231
2232 if (expr2)
2233 {
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2236 }
2237 }
2238
2239 join_distinct_sets (i.lp, fromp);
2240}
2241
b8698a0f 2242/* Same as above, but also update availability of target register in
e855c69d
AB
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244void
2245av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2247{
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2251
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2254 {
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2256
2257 if (expr2)
2258 {
b8698a0f 2259 /* It may be that the expressions have different destination
e855c69d
AB
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2262 {
b8698a0f 2263 int regno1 = (REG_P (EXPR_LHS (expr1))
e855c69d 2264 ? (int) expr_dest_regno (expr1) : -1);
b8698a0f 2265 int regno2 = (REG_P (EXPR_LHS (expr2))
e855c69d 2266 ? (int) expr_dest_regno (expr2) : -1);
b8698a0f
L
2267
2268 /* ??? We don't have a way to check restrictions for
e855c69d
AB
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2273 }
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2276
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2280 }
2281 else
b8698a0f 2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
e855c69d
AB
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2285 }
2286 to_tailp = i.lp;
2287
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2292
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2295}
2296
2297/* Clear av_set pointed to by SETP. */
2298void
2299av_set_clear (av_set_t *setp)
2300{
2301 expr_t expr;
2302 av_set_iterator i;
2303
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2306
2307 gcc_assert (*setp == NULL);
2308}
2309
2310/* Leave only one non-speculative element in the SETP. */
2311void
2312av_set_leave_one_nonspec (av_set_t *setp)
2313{
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2317
b8698a0f 2318 /* Keep all speculative exprs, and leave one non-speculative
e855c69d
AB
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2321 {
2322 if (!EXPR_SPEC_DONE_DS (expr))
2323 {
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2328 }
2329 }
2330}
2331
2332/* Return the N'th element of the SET. */
2333expr_t
2334av_set_element (av_set_t set, int n)
2335{
2336 expr_t expr;
2337 av_set_iterator i;
2338
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2342
2343 gcc_unreachable ();
2344 return NULL;
2345}
2346
2347/* Deletes all expressions from AVP that are conditional branches (IFs). */
2348void
2349av_set_substract_cond_branches (av_set_t *avp)
2350{
2351 av_set_iterator i;
2352 expr_t expr;
2353
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2357}
2358
b8698a0f 2359/* Multiplies usefulness attribute of each member of av-set *AVP by
e855c69d
AB
2360 value PROB / ALL_PROB. */
2361void
2362av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2363{
2364 av_set_iterator i;
2365 expr_t expr;
2366
2367 FOR_EACH_EXPR (expr, i, av)
b8698a0f 2368 EXPR_USEFULNESS (expr) = (all_prob
e855c69d
AB
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2371}
2372
2373/* Leave in AVP only those expressions, which are present in AV,
5d369d58 2374 and return it, merging history expressions. */
e855c69d 2375void
5d369d58 2376av_set_code_motion_filter (av_set_t *avp, av_set_t av)
e855c69d
AB
2377{
2378 av_set_iterator i;
5d369d58 2379 expr_t expr, expr2;
e855c69d
AB
2380
2381 FOR_EACH_EXPR_1 (expr, i, avp)
5d369d58 2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
e855c69d 2383 av_set_iter_remove (&i);
5d369d58
AB
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
e855c69d
AB
2392}
2393
2394\f
2395
2396/* Dependence hooks to initialize insn data. */
2397
2398/* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400static struct
2401{
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2404
2405 /* The actual data object to initialize. */
2406 idata_t id;
2407
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2410
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413} deps_init_id_data;
2414
2415
b8698a0f 2416/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
e855c69d
AB
2417 clonable. */
2418static void
2419setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2420{
2421 int type;
b8698a0f 2422
e855c69d
AB
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2427
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
b5b8b0ac
AO
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
b8698a0f 2435
e855c69d
AB
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2440}
2441
2442/* Start initializing insn data. */
2443static void
2444deps_init_id_start_insn (insn_t insn)
2445{
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2447
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2451}
2452
2453/* Start initializing lhs data. */
2454static void
2455deps_init_id_start_lhs (rtx lhs)
2456{
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2459
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2461 {
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2464 }
2465}
2466
2467/* Finish initializing lhs data. */
2468static void
2469deps_init_id_finish_lhs (void)
2470{
2471 deps_init_id_data.where = DEPS_IN_INSN;
2472}
2473
2474/* Note a set of REGNO. */
2475static void
2476deps_init_id_note_reg_set (int regno)
2477{
2478 haifa_note_reg_set (regno);
2479
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2482
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2485
2486#ifdef STACK_REGS
b8698a0f 2487 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491#endif
2492}
2493
2494/* Note a clobber of REGNO. */
2495static void
2496deps_init_id_note_reg_clobber (int regno)
2497{
2498 haifa_note_reg_clobber (regno);
2499
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2502
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2505}
2506
2507/* Note a use of REGNO. */
2508static void
2509deps_init_id_note_reg_use (int regno)
2510{
2511 haifa_note_reg_use (regno);
2512
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2515}
2516
2517/* Start initializing rhs data. */
2518static void
2519deps_init_id_start_rhs (rtx rhs)
2520{
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2522
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2525 {
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2528 }
2529}
2530
2531/* Finish initializing rhs data. */
2532static void
2533deps_init_id_finish_rhs (void)
2534{
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2538}
2539
2540/* Finish initializing insn data. */
2541static void
2542deps_init_id_finish_insn (void)
2543{
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2545
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2547 {
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2550
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2553 {
b8698a0f 2554 /* This should be a USE, as we don't want to schedule its RHS
e855c69d 2555 separately. However, we still want to have them recorded
b8698a0f 2556 for the purposes of substitution. That's why we don't
e855c69d
AB
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2560
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2562 }
2563 }
2564
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2566}
2567
2568/* This is dependence info used for initializing insn's data. */
2569static struct sched_deps_info_def deps_init_id_sched_deps_info;
2570
2571/* This initializes most of the static part of the above structure. */
2572static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2573 {
2574 NULL,
2575
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2587
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2591 };
2592
2593/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595static void
2596setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2597{
2598 rtx pat = PATTERN (insn);
b8698a0f 2599
481683e1 2600 if (NONJUMP_INSN_P (insn)
b8698a0f 2601 && GET_CODE (pat) == SET
e855c69d
AB
2602 && !force_unique_p)
2603 {
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2606 }
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2609}
2610
2611/* Possibly downgrade INSN to USE. */
2612static void
2613maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2614{
2615 bool must_be_use = false;
bfac633a 2616 df_ref def;
e855c69d
AB
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
b8698a0f 2619
e855c69d
AB
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2623
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2625 {
2626 IDATA_TYPE (id) = USE;
2627 return;
2628 }
b8698a0f 2629
bfac633a 2630 FOR_EACH_INSN_DEF (def, insn)
e855c69d 2631 {
e855c69d
AB
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2635 {
2636 must_be_use = true;
2637 break;
2638 }
2639
2640#ifdef STACK_REGS
b8698a0f 2641 /* Make instructions that set stack registers to be ineligible for
e855c69d
AB
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2644 {
2645 must_be_use = true;
2646 break;
2647 }
2648#endif
b8698a0f
L
2649 }
2650
e855c69d
AB
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2653}
2654
2655/* Setup register sets describing INSN in ID. */
2656static void
2657setup_id_reg_sets (idata_t id, insn_t insn)
2658{
bfac633a
RS
2659 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2660 df_ref def, use;
e855c69d 2661 regset tmp = get_clear_regset_from_pool ();
b8698a0f 2662
bfac633a 2663 FOR_EACH_INSN_INFO_DEF (def, insn_info)
e855c69d 2664 {
e855c69d 2665 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 2666
e855c69d
AB
2667 /* Post modifies are treated like clobbers by sched-deps.c. */
2668 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2669 | DF_REF_PRE_POST_MODIFY)))
2670 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2671 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2672 {
2673 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2674
2675#ifdef STACK_REGS
b8698a0f 2676 /* For stack registers, treat writes to them as writes
e855c69d
AB
2677 to the first one to be consistent with sched-deps.c. */
2678 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2679 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2680#endif
2681 }
2682 /* Mark special refs that generate read/write def pair. */
2683 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2684 || regno == STACK_POINTER_REGNUM)
2685 bitmap_set_bit (tmp, regno);
2686 }
b8698a0f 2687
bfac633a 2688 FOR_EACH_INSN_INFO_USE (use, insn_info)
e855c69d 2689 {
e855c69d
AB
2690 unsigned int regno = DF_REF_REGNO (use);
2691
2692 /* When these refs are met for the first time, skip them, as
2693 these uses are just counterparts of some defs. */
2694 if (bitmap_bit_p (tmp, regno))
2695 bitmap_clear_bit (tmp, regno);
2696 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2697 {
2698 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2699
2700#ifdef STACK_REGS
b8698a0f 2701 /* For stack registers, treat reads from them as reads from
e855c69d
AB
2702 the first one to be consistent with sched-deps.c. */
2703 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2704 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2705#endif
2706 }
2707 }
2708
2709 return_regset_to_pool (tmp);
2710}
2711
2712/* Initialize instruction data for INSN in ID using DF's data. */
2713static void
2714init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2715{
2716 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2717
2718 setup_id_for_insn (id, insn, force_unique_p);
2719 setup_id_lhs_rhs (id, insn, force_unique_p);
2720
2721 if (INSN_NOP_P (insn))
2722 return;
2723
2724 maybe_downgrade_id_to_use (id, insn);
2725 setup_id_reg_sets (id, insn);
2726}
2727
2728/* Initialize instruction data for INSN in ID. */
2729static void
2730deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2731{
88302d54 2732 struct deps_desc _dc, *dc = &_dc;
e855c69d
AB
2733
2734 deps_init_id_data.where = DEPS_IN_NOWHERE;
2735 deps_init_id_data.id = id;
2736 deps_init_id_data.force_unique_p = force_unique_p;
2737 deps_init_id_data.force_use_p = false;
2738
bcf33775 2739 init_deps (dc, false);
e855c69d
AB
2740
2741 memcpy (&deps_init_id_sched_deps_info,
2742 &const_deps_init_id_sched_deps_info,
2743 sizeof (deps_init_id_sched_deps_info));
2744
2745 if (spec_info != NULL)
2746 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2747
2748 sched_deps_info = &deps_init_id_sched_deps_info;
2749
2750 deps_analyze_insn (dc, insn);
2751
2752 free_deps (dc);
2753
2754 deps_init_id_data.id = NULL;
2755}
2756
2757\f
a95b23b4
BS
2758struct sched_scan_info_def
2759{
2760 /* This hook notifies scheduler frontend to extend its internal per basic
2761 block data structures. This hook should be called once before a series of
2762 calls to bb_init (). */
2763 void (*extend_bb) (void);
2764
2765 /* This hook makes scheduler frontend to initialize its internal data
2766 structures for the passed basic block. */
2767 void (*init_bb) (basic_block);
2768
2769 /* This hook notifies scheduler frontend to extend its internal per insn data
2770 structures. This hook should be called once before a series of calls to
2771 insn_init (). */
2772 void (*extend_insn) (void);
2773
2774 /* This hook makes scheduler frontend to initialize its internal data
2775 structures for the passed insn. */
2776 void (*init_insn) (rtx);
2777};
2778
2779/* A driver function to add a set of basic blocks (BBS) to the
2780 scheduling region. */
2781static void
2782sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2783{
2784 unsigned i;
2785 basic_block bb;
2786
2787 if (ssi->extend_bb)
2788 ssi->extend_bb ();
2789
2790 if (ssi->init_bb)
9771b263 2791 FOR_EACH_VEC_ELT (bbs, i, bb)
a95b23b4
BS
2792 ssi->init_bb (bb);
2793
2794 if (ssi->extend_insn)
2795 ssi->extend_insn ();
2796
2797 if (ssi->init_insn)
9771b263 2798 FOR_EACH_VEC_ELT (bbs, i, bb)
a95b23b4
BS
2799 {
2800 rtx insn;
2801
2802 FOR_BB_INSNS (bb, insn)
2803 ssi->init_insn (insn);
2804 }
2805}
e855c69d
AB
2806
2807/* Implement hooks for collecting fundamental insn properties like if insn is
2808 an ASM or is within a SCHED_GROUP. */
2809
2810/* True when a "one-time init" data for INSN was already inited. */
2811static bool
2812first_time_insn_init (insn_t insn)
2813{
2814 return INSN_LIVE (insn) == NULL;
2815}
2816
2817/* Hash an entry in a transformed_insns hashtable. */
2818static hashval_t
2819hash_transformed_insns (const void *p)
2820{
2821 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2822}
2823
2824/* Compare the entries in a transformed_insns hashtable. */
2825static int
2826eq_transformed_insns (const void *p, const void *q)
2827{
2828 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2829 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2830
2831 if (INSN_UID (i1) == INSN_UID (i2))
2832 return 1;
2833 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2834}
2835
2836/* Free an entry in a transformed_insns hashtable. */
2837static void
2838free_transformed_insns (void *p)
2839{
2840 struct transformed_insns *pti = (struct transformed_insns *) p;
2841
2842 vinsn_detach (pti->vinsn_old);
2843 vinsn_detach (pti->vinsn_new);
2844 free (pti);
2845}
2846
b8698a0f 2847/* Init the s_i_d data for INSN which should be inited just once, when
e855c69d
AB
2848 we first see the insn. */
2849static void
2850init_first_time_insn_data (insn_t insn)
2851{
2852 /* This should not be set if this is the first time we init data for
2853 insn. */
2854 gcc_assert (first_time_insn_init (insn));
b8698a0f 2855
e855c69d
AB
2856 /* These are needed for nops too. */
2857 INSN_LIVE (insn) = get_regset_from_pool ();
2858 INSN_LIVE_VALID_P (insn) = false;
bcf33775 2859
e855c69d
AB
2860 if (!INSN_NOP_P (insn))
2861 {
2862 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2863 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
b8698a0f 2864 INSN_TRANSFORMED_INSNS (insn)
e855c69d
AB
2865 = htab_create (16, hash_transformed_insns,
2866 eq_transformed_insns, free_transformed_insns);
bcf33775 2867 init_deps (&INSN_DEPS_CONTEXT (insn), true);
e855c69d
AB
2868 }
2869}
2870
b8698a0f 2871/* Free almost all above data for INSN that is scheduled already.
bcf33775
AB
2872 Used for extra-large basic blocks. */
2873void
2874free_data_for_scheduled_insn (insn_t insn)
e855c69d
AB
2875{
2876 gcc_assert (! first_time_insn_init (insn));
b8698a0f 2877
bcf33775
AB
2878 if (! INSN_ANALYZED_DEPS (insn))
2879 return;
b8698a0f 2880
e855c69d
AB
2881 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2882 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2883 htab_delete (INSN_TRANSFORMED_INSNS (insn));
b8698a0f 2884
e855c69d
AB
2885 /* This is allocated only for bookkeeping insns. */
2886 if (INSN_ORIGINATORS (insn))
2887 BITMAP_FREE (INSN_ORIGINATORS (insn));
2888 free_deps (&INSN_DEPS_CONTEXT (insn));
bcf33775
AB
2889
2890 INSN_ANALYZED_DEPS (insn) = NULL;
2891
b8698a0f 2892 /* Clear the readonly flag so we would ICE when trying to recalculate
bcf33775
AB
2893 the deps context (as we believe that it should not happen). */
2894 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2895}
2896
2897/* Free the same data as above for INSN. */
2898static void
2899free_first_time_insn_data (insn_t insn)
2900{
2901 gcc_assert (! first_time_insn_init (insn));
2902
2903 free_data_for_scheduled_insn (insn);
2904 return_regset_to_pool (INSN_LIVE (insn));
2905 INSN_LIVE (insn) = NULL;
2906 INSN_LIVE_VALID_P (insn) = false;
e855c69d
AB
2907}
2908
2909/* Initialize region-scope data structures for basic blocks. */
2910static void
2911init_global_and_expr_for_bb (basic_block bb)
2912{
2913 if (sel_bb_empty_p (bb))
2914 return;
2915
2916 invalidate_av_set (bb);
2917}
2918
2919/* Data for global dependency analysis (to initialize CANT_MOVE and
2920 SCHED_GROUP_P). */
2921static struct
2922{
2923 /* Previous insn. */
2924 insn_t prev_insn;
2925} init_global_data;
2926
2927/* Determine if INSN is in the sched_group, is an asm or should not be
2928 cloned. After that initialize its expr. */
2929static void
2930init_global_and_expr_for_insn (insn_t insn)
2931{
2932 if (LABEL_P (insn))
2933 return;
2934
2935 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2936 {
2937 init_global_data.prev_insn = NULL_RTX;
2938 return;
2939 }
2940
2941 gcc_assert (INSN_P (insn));
2942
2943 if (SCHED_GROUP_P (insn))
2944 /* Setup a sched_group. */
2945 {
2946 insn_t prev_insn = init_global_data.prev_insn;
2947
2948 if (prev_insn)
2949 INSN_SCHED_NEXT (prev_insn) = insn;
2950
2951 init_global_data.prev_insn = insn;
2952 }
2953 else
2954 init_global_data.prev_insn = NULL_RTX;
2955
2956 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2957 || asm_noperands (PATTERN (insn)) >= 0)
2958 /* Mark INSN as an asm. */
2959 INSN_ASM_P (insn) = true;
2960
2961 {
2962 bool force_unique_p;
2963 ds_t spec_done_ds;
2964
cfeb0fa8
AB
2965 /* Certain instructions cannot be cloned, and frame related insns and
2966 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2967 their block. */
2968 if (prologue_epilogue_contains (insn))
2969 {
2970 if (RTX_FRAME_RELATED_P (insn))
2971 CANT_MOVE (insn) = 1;
2972 else
2973 {
2974 rtx note;
2975 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2976 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2977 && ((enum insn_note) INTVAL (XEXP (note, 0))
2978 == NOTE_INSN_EPILOGUE_BEG))
2979 {
2980 CANT_MOVE (insn) = 1;
2981 break;
2982 }
2983 }
2984 force_unique_p = true;
2985 }
e855c69d 2986 else
cfeb0fa8
AB
2987 if (CANT_MOVE (insn)
2988 || INSN_ASM_P (insn)
2989 || SCHED_GROUP_P (insn)
07643d76 2990 || CALL_P (insn)
cfeb0fa8
AB
2991 /* Exception handling insns are always unique. */
2992 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2993 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
6bf2d156
DM
2994 || control_flow_insn_p (insn)
2995 || volatile_insn_p (PATTERN (insn))
2996 || (targetm.cannot_copy_insn_p
2997 && targetm.cannot_copy_insn_p (insn)))
cfeb0fa8
AB
2998 force_unique_p = true;
2999 else
3000 force_unique_p = false;
e855c69d
AB
3001
3002 if (targetm.sched.get_insn_spec_ds)
3003 {
3004 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3005 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3006 }
3007 else
3008 spec_done_ds = 0;
3009
3010 /* Initialize INSN's expr. */
3011 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3012 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
6e1aa848 3013 spec_done_ds, 0, 0, vNULL, true,
9771b263 3014 false, false, false, CANT_MOVE (insn));
e855c69d
AB
3015 }
3016
3017 init_first_time_insn_data (insn);
3018}
3019
3020/* Scan the region and initialize instruction data for basic blocks BBS. */
3021void
3022sel_init_global_and_expr (bb_vec_t bbs)
3023{
3024 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3025 const struct sched_scan_info_def ssi =
3026 {
3027 NULL, /* extend_bb */
3028 init_global_and_expr_for_bb, /* init_bb */
3029 extend_insn_data, /* extend_insn */
3030 init_global_and_expr_for_insn /* init_insn */
3031 };
b8698a0f 3032
a95b23b4 3033 sched_scan (&ssi, bbs);
e855c69d
AB
3034}
3035
3036/* Finalize region-scope data structures for basic blocks. */
3037static void
3038finish_global_and_expr_for_bb (basic_block bb)
3039{
3040 av_set_clear (&BB_AV_SET (bb));
3041 BB_AV_LEVEL (bb) = 0;
3042}
3043
3044/* Finalize INSN's data. */
3045static void
3046finish_global_and_expr_insn (insn_t insn)
3047{
3048 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3049 return;
3050
3051 gcc_assert (INSN_P (insn));
3052
3053 if (INSN_LUID (insn) > 0)
3054 {
3055 free_first_time_insn_data (insn);
3056 INSN_WS_LEVEL (insn) = 0;
3057 CANT_MOVE (insn) = 0;
b8698a0f
L
3058
3059 /* We can no longer assert this, as vinsns of this insn could be
3060 easily live in other insn's caches. This should be changed to
e855c69d
AB
3061 a counter-like approach among all vinsns. */
3062 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3063 clear_expr (INSN_EXPR (insn));
3064 }
3065}
3066
3067/* Finalize per instruction data for the whole region. */
3068void
3069sel_finish_global_and_expr (void)
3070{
3071 {
3072 bb_vec_t bbs;
3073 int i;
3074
9771b263 3075 bbs.create (current_nr_blocks);
e855c69d
AB
3076
3077 for (i = 0; i < current_nr_blocks; i++)
06e28de2 3078 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e855c69d
AB
3079
3080 /* Clear AV_SETs and INSN_EXPRs. */
3081 {
3082 const struct sched_scan_info_def ssi =
3083 {
3084 NULL, /* extend_bb */
3085 finish_global_and_expr_for_bb, /* init_bb */
3086 NULL, /* extend_insn */
3087 finish_global_and_expr_insn /* init_insn */
3088 };
3089
a95b23b4 3090 sched_scan (&ssi, bbs);
e855c69d
AB
3091 }
3092
9771b263 3093 bbs.release ();
e855c69d
AB
3094 }
3095
3096 finish_insns ();
3097}
3098\f
3099
b8698a0f
L
3100/* In the below hooks, we merely calculate whether or not a dependence
3101 exists, and in what part of insn. However, we will need more data
e855c69d
AB
3102 when we'll start caching dependence requests. */
3103
3104/* Container to hold information for dependency analysis. */
3105static struct
3106{
3107 deps_t dc;
3108
3109 /* A variable to track which part of rtx we are scanning in
3110 sched-deps.c: sched_analyze_insn (). */
3111 deps_where_t where;
3112
3113 /* Current producer. */
3114 insn_t pro;
3115
3116 /* Current consumer. */
3117 vinsn_t con;
3118
3119 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3120 X is from { INSN, LHS, RHS }. */
3121 ds_t has_dep_p[DEPS_IN_NOWHERE];
3122} has_dependence_data;
3123
3124/* Start analyzing dependencies of INSN. */
3125static void
3126has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3127{
3128 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3129
3130 has_dependence_data.where = DEPS_IN_INSN;
3131}
3132
3133/* Finish analyzing dependencies of an insn. */
3134static void
3135has_dependence_finish_insn (void)
3136{
3137 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3138
3139 has_dependence_data.where = DEPS_IN_NOWHERE;
3140}
3141
3142/* Start analyzing dependencies of LHS. */
3143static void
3144has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3145{
3146 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3147
3148 if (VINSN_LHS (has_dependence_data.con) != NULL)
3149 has_dependence_data.where = DEPS_IN_LHS;
3150}
3151
3152/* Finish analyzing dependencies of an lhs. */
3153static void
3154has_dependence_finish_lhs (void)
3155{
3156 has_dependence_data.where = DEPS_IN_INSN;
3157}
3158
3159/* Start analyzing dependencies of RHS. */
3160static void
3161has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3162{
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3164
3165 if (VINSN_RHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_RHS;
3167}
3168
3169/* Start analyzing dependencies of an rhs. */
3170static void
3171has_dependence_finish_rhs (void)
3172{
3173 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3174 || has_dependence_data.where == DEPS_IN_INSN);
3175
3176 has_dependence_data.where = DEPS_IN_INSN;
3177}
3178
3179/* Note a set of REGNO. */
3180static void
3181has_dependence_note_reg_set (int regno)
3182{
3183 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3184
3185 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3186 VINSN_INSN_RTX
3187 (has_dependence_data.con)))
3188 {
3189 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3190
3191 if (reg_last->sets != NULL
3192 || reg_last->clobbers != NULL)
3193 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3194
50919d13 3195 if (reg_last->uses || reg_last->implicit_sets)
e855c69d
AB
3196 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3197 }
3198}
3199
3200/* Note a clobber of REGNO. */
3201static void
3202has_dependence_note_reg_clobber (int regno)
3203{
3204 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3205
3206 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3207 VINSN_INSN_RTX
3208 (has_dependence_data.con)))
3209 {
3210 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3211
3212 if (reg_last->sets)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
b8698a0f 3214
50919d13 3215 if (reg_last->uses || reg_last->implicit_sets)
e855c69d
AB
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3217 }
3218}
3219
3220/* Note a use of REGNO. */
3221static void
3222has_dependence_note_reg_use (int regno)
3223{
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3225
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3229 {
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3231
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3234
50919d13 3235 if (reg_last->clobbers || reg_last->implicit_sets)
e855c69d
AB
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3237
0d4acd90
AB
3238 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3239 is actually a check insn. We need to do this for any register
3240 read-read dependency with the check unless we track properly
3241 all registers written by BE_IN_SPEC-speculated insns, as
3242 we don't have explicit dependence lists. See PR 53975. */
e855c69d
AB
3243 if (reg_last->uses)
3244 {
3245 ds_t pro_spec_checked_ds;
3246
3247 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3248 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3249
0d4acd90 3250 if (pro_spec_checked_ds != 0)
e855c69d
AB
3251 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3252 NULL_RTX, NULL_RTX);
3253 }
3254 }
3255}
3256
3257/* Note a memory dependence. */
3258static void
3259has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3260 rtx pending_mem ATTRIBUTE_UNUSED,
3261 insn_t pending_insn ATTRIBUTE_UNUSED,
3262 ds_t ds ATTRIBUTE_UNUSED)
3263{
3264 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3265 VINSN_INSN_RTX (has_dependence_data.con)))
3266 {
3267 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3268
3269 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3270 }
3271}
3272
3273/* Note a dependence. */
3274static void
3275has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3276 ds_t ds ATTRIBUTE_UNUSED)
3277{
3278 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3279 VINSN_INSN_RTX (has_dependence_data.con)))
3280 {
3281 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3282
3283 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3284 }
3285}
3286
3287/* Mark the insn as having a hard dependence that prevents speculation. */
3288void
3289sel_mark_hard_insn (rtx insn)
3290{
3291 int i;
3292
3293 /* Only work when we're in has_dependence_p mode.
3294 ??? This is a hack, this should actually be a hook. */
3295 if (!has_dependence_data.dc || !has_dependence_data.pro)
3296 return;
3297
3298 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3299 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3300
3301 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3302 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3303}
3304
3305/* This structure holds the hooks for the dependency analysis used when
3306 actually processing dependencies in the scheduler. */
3307static struct sched_deps_info_def has_dependence_sched_deps_info;
3308
3309/* This initializes most of the fields of the above structure. */
3310static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3311 {
3312 NULL,
3313
3314 has_dependence_start_insn,
3315 has_dependence_finish_insn,
3316 has_dependence_start_lhs,
3317 has_dependence_finish_lhs,
3318 has_dependence_start_rhs,
3319 has_dependence_finish_rhs,
3320 has_dependence_note_reg_set,
3321 has_dependence_note_reg_clobber,
3322 has_dependence_note_reg_use,
3323 has_dependence_note_mem_dep,
3324 has_dependence_note_dep,
3325
3326 0, /* use_cselib */
3327 0, /* use_deps_list */
3328 0 /* generate_spec_deps */
3329 };
3330
3331/* Initialize has_dependence_sched_deps_info with extra spec field. */
3332static void
3333setup_has_dependence_sched_deps_info (void)
3334{
3335 memcpy (&has_dependence_sched_deps_info,
3336 &const_has_dependence_sched_deps_info,
3337 sizeof (has_dependence_sched_deps_info));
3338
3339 if (spec_info != NULL)
3340 has_dependence_sched_deps_info.generate_spec_deps = 1;
3341
3342 sched_deps_info = &has_dependence_sched_deps_info;
3343}
3344
3345/* Remove all dependences found and recorded in has_dependence_data array. */
3346void
3347sel_clear_has_dependence (void)
3348{
3349 int i;
3350
3351 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3352 has_dependence_data.has_dep_p[i] = 0;
3353}
3354
3355/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3356 to the dependence information array in HAS_DEP_PP. */
3357ds_t
3358has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3359{
3360 int i;
3361 ds_t ds;
88302d54 3362 struct deps_desc *dc;
e855c69d
AB
3363
3364 if (INSN_SIMPLEJUMP_P (pred))
3365 /* Unconditional jump is just a transfer of control flow.
3366 Ignore it. */
3367 return false;
3368
3369 dc = &INSN_DEPS_CONTEXT (pred);
bcf33775
AB
3370
3371 /* We init this field lazily. */
3372 if (dc->reg_last == NULL)
3373 init_deps_reg_last (dc);
b8698a0f 3374
e855c69d
AB
3375 if (!dc->readonly)
3376 {
3377 has_dependence_data.pro = NULL;
3378 /* Initialize empty dep context with information about PRED. */
3379 advance_deps_context (dc, pred);
3380 dc->readonly = 1;
3381 }
3382
3383 has_dependence_data.where = DEPS_IN_NOWHERE;
3384 has_dependence_data.pro = pred;
3385 has_dependence_data.con = EXPR_VINSN (expr);
3386 has_dependence_data.dc = dc;
3387
3388 sel_clear_has_dependence ();
3389
3390 /* Now catch all dependencies that would be generated between PRED and
3391 INSN. */
3392 setup_has_dependence_sched_deps_info ();
3393 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3394 has_dependence_data.dc = NULL;
3395
3396 /* When a barrier was found, set DEPS_IN_INSN bits. */
3397 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3398 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3399 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3400 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3401
3402 /* Do not allow stores to memory to move through checks. Currently
3403 we don't move this to sched-deps.c as the check doesn't have
b8698a0f 3404 obvious places to which this dependence can be attached.
e855c69d
AB
3405 FIMXE: this should go to a hook. */
3406 if (EXPR_LHS (expr)
3407 && MEM_P (EXPR_LHS (expr))
3408 && sel_insn_is_speculation_check (pred))
3409 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
b8698a0f 3410
e855c69d
AB
3411 *has_dep_pp = has_dependence_data.has_dep_p;
3412 ds = 0;
3413 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3414 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3415 NULL_RTX, NULL_RTX);
3416
3417 return ds;
3418}
3419\f
3420
b8698a0f
L
3421/* Dependence hooks implementation that checks dependence latency constraints
3422 on the insns being scheduled. The entry point for these routines is
3423 tick_check_p predicate. */
e855c69d
AB
3424
3425static struct
3426{
3427 /* An expr we are currently checking. */
3428 expr_t expr;
3429
3430 /* A minimal cycle for its scheduling. */
3431 int cycle;
3432
3433 /* Whether we have seen a true dependence while checking. */
3434 bool seen_true_dep_p;
3435} tick_check_data;
3436
3437/* Update minimal scheduling cycle for tick_check_insn given that it depends
3438 on PRO with status DS and weight DW. */
3439static void
3440tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3441{
3442 expr_t con_expr = tick_check_data.expr;
3443 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3444
3445 if (con_insn != pro_insn)
3446 {
3447 enum reg_note dt;
3448 int tick;
3449
3450 if (/* PROducer was removed from above due to pipelining. */
3451 !INSN_IN_STREAM_P (pro_insn)
3452 /* Or PROducer was originally on the next iteration regarding the
3453 CONsumer. */
3454 || (INSN_SCHED_TIMES (pro_insn)
3455 - EXPR_SCHED_TIMES (con_expr)) > 1)
3456 /* Don't count this dependence. */
3457 return;
3458
3459 dt = ds_to_dt (ds);
3460 if (dt == REG_DEP_TRUE)
3461 tick_check_data.seen_true_dep_p = true;
3462
3463 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3464
3465 {
3466 dep_def _dep, *dep = &_dep;
3467
3468 init_dep (dep, pro_insn, con_insn, dt);
3469
3470 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3471 }
3472
3473 /* When there are several kinds of dependencies between pro and con,
3474 only REG_DEP_TRUE should be taken into account. */
3475 if (tick > tick_check_data.cycle
3476 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3477 tick_check_data.cycle = tick;
3478 }
3479}
3480
3481/* An implementation of note_dep hook. */
3482static void
3483tick_check_note_dep (insn_t pro, ds_t ds)
3484{
3485 tick_check_dep_with_dw (pro, ds, 0);
3486}
3487
3488/* An implementation of note_mem_dep hook. */
3489static void
3490tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3491{
3492 dw_t dw;
3493
3494 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3495 ? estimate_dep_weak (mem1, mem2)
3496 : 0);
3497
3498 tick_check_dep_with_dw (pro, ds, dw);
3499}
3500
3501/* This structure contains hooks for dependence analysis used when determining
3502 whether an insn is ready for scheduling. */
3503static struct sched_deps_info_def tick_check_sched_deps_info =
3504 {
3505 NULL,
3506
3507 NULL,
3508 NULL,
3509 NULL,
3510 NULL,
3511 NULL,
3512 NULL,
3513 haifa_note_reg_set,
3514 haifa_note_reg_clobber,
3515 haifa_note_reg_use,
3516 tick_check_note_mem_dep,
3517 tick_check_note_dep,
3518
3519 0, 0, 0
3520 };
3521
3522/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3523 scheduled. Return 0 if all data from producers in DC is ready. */
3524int
3525tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3526{
3527 int cycles_left;
3528 /* Initialize variables. */
3529 tick_check_data.expr = expr;
3530 tick_check_data.cycle = 0;
3531 tick_check_data.seen_true_dep_p = false;
3532 sched_deps_info = &tick_check_sched_deps_info;
b8698a0f 3533
e855c69d
AB
3534 gcc_assert (!dc->readonly);
3535 dc->readonly = 1;
3536 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3537 dc->readonly = 0;
3538
3539 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3540
3541 return cycles_left >= 0 ? cycles_left : 0;
3542}
3543\f
3544
3545/* Functions to work with insns. */
3546
3547/* Returns true if LHS of INSN is the same as DEST of an insn
3548 being moved. */
3549bool
3550lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3551{
3552 rtx lhs = INSN_LHS (insn);
3553
3554 if (lhs == NULL || dest == NULL)
3555 return false;
b8698a0f 3556
e855c69d
AB
3557 return rtx_equal_p (lhs, dest);
3558}
3559
3560/* Return s_i_d entry of INSN. Callable from debugger. */
3561sel_insn_data_def
3562insn_sid (insn_t insn)
3563{
3564 return *SID (insn);
3565}
3566
3567/* True when INSN is a speculative check. We can tell this by looking
3568 at the data structures of the selective scheduler, not by examining
3569 the pattern. */
3570bool
3571sel_insn_is_speculation_check (rtx insn)
3572{
9771b263 3573 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
e855c69d
AB
3574}
3575
b8698a0f 3576/* Extracts machine mode MODE and destination location DST_LOC
e855c69d
AB
3577 for given INSN. */
3578void
3579get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3580{
3581 rtx pat = PATTERN (insn);
3582
3583 gcc_assert (dst_loc);
3584 gcc_assert (GET_CODE (pat) == SET);
3585
3586 *dst_loc = SET_DEST (pat);
3587
3588 gcc_assert (*dst_loc);
3589 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3590
3591 if (mode)
3592 *mode = GET_MODE (*dst_loc);
3593}
3594
b8698a0f 3595/* Returns true when moving through JUMP will result in bookkeeping
e855c69d
AB
3596 creation. */
3597bool
3598bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3599{
3600 insn_t succ;
3601 succ_iterator si;
3602
3603 FOR_EACH_SUCC (succ, si, jump)
3604 if (sel_num_cfg_preds_gt_1 (succ))
3605 return true;
3606
3607 return false;
3608}
3609
3610/* Return 'true' if INSN is the only one in its basic block. */
3611static bool
3612insn_is_the_only_one_in_bb_p (insn_t insn)
3613{
3614 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3615}
3616
3617#ifdef ENABLE_CHECKING
b8698a0f 3618/* Check that the region we're scheduling still has at most one
e855c69d
AB
3619 backedge. */
3620static void
3621verify_backedges (void)
3622{
3623 if (pipelining_p)
3624 {
3625 int i, n = 0;
3626 edge e;
3627 edge_iterator ei;
b8698a0f 3628
e855c69d 3629 for (i = 0; i < current_nr_blocks; i++)
06e28de2 3630 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
e855c69d
AB
3631 if (in_current_region_p (e->dest)
3632 && BLOCK_TO_BB (e->dest->index) < i)
3633 n++;
b8698a0f 3634
e855c69d
AB
3635 gcc_assert (n <= 1);
3636 }
3637}
3638#endif
3639\f
3640
3641/* Functions to work with control flow. */
3642
b59ab570
AM
3643/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3644 are sorted in topological order (it might have been invalidated by
3645 redirecting an edge). */
3646static void
3647sel_recompute_toporder (void)
3648{
3649 int i, n, rgn;
3650 int *postorder, n_blocks;
3651
0cae8d31 3652 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
b59ab570
AM
3653 n_blocks = post_order_compute (postorder, false, false);
3654
3655 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3656 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3657 if (CONTAINING_RGN (postorder[i]) == rgn)
3658 {
3659 BLOCK_TO_BB (postorder[i]) = n;
3660 BB_TO_BLOCK (n) = postorder[i];
3661 n++;
3662 }
3663
3664 /* Assert that we updated info for all blocks. We may miss some blocks if
3665 this function is called when redirecting an edge made a block
3666 unreachable, but that block is not deleted yet. */
3667 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3668}
3669
e855c69d 3670/* Tidy the possibly empty block BB. */
65592aad 3671static bool
5f33b972 3672maybe_tidy_empty_bb (basic_block bb)
e855c69d 3673{
b7b5540a 3674 basic_block succ_bb, pred_bb, note_bb;
9771b263 3675 vec<basic_block> dom_bbs;
f2c45f08
AM
3676 edge e;
3677 edge_iterator ei;
e855c69d
AB
3678 bool rescan_p;
3679
3680 /* Keep empty bb only if this block immediately precedes EXIT and
762bffba
AB
3681 has incoming non-fallthrough edge, or it has no predecessors or
3682 successors. Otherwise remove it. */
b5b8b0ac 3683 if (!sel_bb_empty_p (bb)
b8698a0f 3684 || (single_succ_p (bb)
fefa31b5 3685 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
b8698a0f 3686 && (!single_pred_p (bb)
762bffba
AB
3687 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3688 || EDGE_COUNT (bb->preds) == 0
3689 || EDGE_COUNT (bb->succs) == 0)
e855c69d
AB
3690 return false;
3691
f2c45f08
AM
3692 /* Do not attempt to redirect complex edges. */
3693 FOR_EACH_EDGE (e, ei, bb->preds)
3694 if (e->flags & EDGE_COMPLEX)
3695 return false;
5ef5a3b7
JJ
3696 else if (e->flags & EDGE_FALLTHRU)
3697 {
3698 rtx note;
3699 /* If prev bb ends with asm goto, see if any of the
3700 ASM_OPERANDS_LABELs don't point to the fallthru
3701 label. Do not attempt to redirect it in that case. */
3702 if (JUMP_P (BB_END (e->src))
3703 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3704 {
3705 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3706
3707 for (i = 0; i < n; ++i)
3708 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3709 return false;
3710 }
3711 }
f2c45f08 3712
e855c69d
AB
3713 free_data_sets (bb);
3714
3715 /* Do not delete BB if it has more than one successor.
3716 That can occur when we moving a jump. */
3717 if (!single_succ_p (bb))
3718 {
3719 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3720 sel_merge_blocks (bb->prev_bb, bb);
3721 return true;
3722 }
3723
3724 succ_bb = single_succ (bb);
3725 rescan_p = true;
3726 pred_bb = NULL;
9771b263 3727 dom_bbs.create (0);
e855c69d 3728
b7b5540a
AB
3729 /* Save a pred/succ from the current region to attach the notes to. */
3730 note_bb = NULL;
3731 FOR_EACH_EDGE (e, ei, bb->preds)
3732 if (in_current_region_p (e->src))
3733 {
3734 note_bb = e->src;
3735 break;
3736 }
3737 if (note_bb == NULL)
3738 note_bb = succ_bb;
3739
e855c69d
AB
3740 /* Redirect all non-fallthru edges to the next bb. */
3741 while (rescan_p)
3742 {
e855c69d
AB
3743 rescan_p = false;
3744
3745 FOR_EACH_EDGE (e, ei, bb->preds)
3746 {
3747 pred_bb = e->src;
3748
3749 if (!(e->flags & EDGE_FALLTHRU))
3750 {
5f33b972 3751 /* We can not invalidate computed topological order by moving
00c4e97c
AB
3752 the edge destination block (E->SUCC) along a fallthru edge.
3753
3754 We will update dominators here only when we'll get
3755 an unreachable block when redirecting, otherwise
3756 sel_redirect_edge_and_branch will take care of it. */
3757 if (e->dest != bb
3758 && single_pred_p (e->dest))
9771b263 3759 dom_bbs.safe_push (e->dest);
5f33b972 3760 sel_redirect_edge_and_branch (e, succ_bb);
e855c69d
AB
3761 rescan_p = true;
3762 break;
3763 }
5f33b972
AM
3764 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3765 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3766 still have to adjust it. */
3767 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3768 {
3769 /* If possible, try to remove the unneeded conditional jump. */
3770 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3771 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3772 {
3773 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3774 tidy_fallthru_edge (e);
3775 }
3776 else
3777 sel_redirect_edge_and_branch (e, succ_bb);
3778 rescan_p = true;
3779 break;
3780 }
e855c69d
AB
3781 }
3782 }
3783
e855c69d
AB
3784 if (can_merge_blocks_p (bb->prev_bb, bb))
3785 sel_merge_blocks (bb->prev_bb, bb);
3786 else
e855c69d 3787 {
262d8232 3788 /* This is a block without fallthru predecessor. Just delete it. */
b7b5540a
AB
3789 gcc_assert (note_bb);
3790 move_bb_info (note_bb, bb);
e855c69d
AB
3791 remove_empty_bb (bb, true);
3792 }
3793
9771b263 3794 if (!dom_bbs.is_empty ())
00c4e97c 3795 {
9771b263 3796 dom_bbs.safe_push (succ_bb);
00c4e97c 3797 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
9771b263 3798 dom_bbs.release ();
00c4e97c
AB
3799 }
3800
e855c69d
AB
3801 return true;
3802}
3803
b8698a0f 3804/* Tidy the control flow after we have removed original insn from
e855c69d
AB
3805 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3806 is true, also try to optimize control flow on non-empty blocks. */
3807bool
3808tidy_control_flow (basic_block xbb, bool full_tidying)
3809{
3810 bool changed = true;
b5b8b0ac 3811 insn_t first, last;
b8698a0f 3812
e855c69d 3813 /* First check whether XBB is empty. */
5f33b972 3814 changed = maybe_tidy_empty_bb (xbb);
e855c69d
AB
3815 if (changed || !full_tidying)
3816 return changed;
b8698a0f 3817
e855c69d 3818 /* Check if there is a unnecessary jump after insn left. */
753de8cf 3819 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
e855c69d
AB
3820 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3821 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3822 {
3823 if (sel_remove_insn (BB_END (xbb), false, false))
3824 return true;
3825 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3826 }
3827
b5b8b0ac
AO
3828 first = sel_bb_head (xbb);
3829 last = sel_bb_end (xbb);
3830 if (MAY_HAVE_DEBUG_INSNS)
3831 {
3832 if (first != last && DEBUG_INSN_P (first))
3833 do
3834 first = NEXT_INSN (first);
3835 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3836
3837 if (first != last && DEBUG_INSN_P (last))
3838 do
3839 last = PREV_INSN (last);
3840 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3841 }
e855c69d 3842 /* Check if there is an unnecessary jump in previous basic block leading
b8698a0f
L
3843 to next basic block left after removing INSN from stream.
3844 If it is so, remove that jump and redirect edge to current
3845 basic block (where there was INSN before deletion). This way
3846 when NOP will be deleted several instructions later with its
3847 basic block we will not get a jump to next instruction, which
e855c69d 3848 can be harmful. */
b5b8b0ac 3849 if (first == last
e855c69d 3850 && !sel_bb_empty_p (xbb)
b5b8b0ac 3851 && INSN_NOP_P (last)
e855c69d
AB
3852 /* Flow goes fallthru from current block to the next. */
3853 && EDGE_COUNT (xbb->succs) == 1
3854 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3855 /* When successor is an EXIT block, it may not be the next block. */
fefa31b5 3856 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
3857 /* And unconditional jump in previous basic block leads to
3858 next basic block of XBB and this jump can be safely removed. */
3859 && in_current_region_p (xbb->prev_bb)
753de8cf 3860 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
e855c69d
AB
3861 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3862 /* Also this jump is not at the scheduling boundary. */
3863 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3864 {
b59ab570 3865 bool recompute_toporder_p;
e855c69d
AB
3866 /* Clear data structures of jump - jump itself will be removed
3867 by sel_redirect_edge_and_branch. */
3868 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
b59ab570
AM
3869 recompute_toporder_p
3870 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3871
e855c69d
AB
3872 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3873
3874 /* It can turn out that after removing unused jump, basic block
3875 that contained that jump, becomes empty too. In such case
3876 remove it too. */
3877 if (sel_bb_empty_p (xbb->prev_bb))
5f33b972
AM
3878 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3879 if (recompute_toporder_p)
b59ab570 3880 sel_recompute_toporder ();
e855c69d 3881 }
d787f788
AM
3882
3883#ifdef ENABLE_CHECKING
3884 verify_backedges ();
00c4e97c 3885 verify_dominators (CDI_DOMINATORS);
d787f788
AM
3886#endif
3887
e855c69d
AB
3888 return changed;
3889}
3890
b59ab570
AM
3891/* Purge meaningless empty blocks in the middle of a region. */
3892void
3893purge_empty_blocks (void)
3894{
9d0dcda1 3895 int i;
b59ab570 3896
9d0dcda1
AM
3897 /* Do not attempt to delete the first basic block in the region. */
3898 for (i = 1; i < current_nr_blocks; )
b59ab570 3899 {
06e28de2 3900 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
b59ab570 3901
5f33b972 3902 if (maybe_tidy_empty_bb (b))
b59ab570
AM
3903 continue;
3904
3905 i++;
3906 }
3907}
3908
b8698a0f
L
3909/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3910 do not delete insn's data, because it will be later re-emitted.
e855c69d
AB
3911 Return true if we have removed some blocks afterwards. */
3912bool
3913sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3914{
3915 basic_block bb = BLOCK_FOR_INSN (insn);
3916
3917 gcc_assert (INSN_IN_STREAM_P (insn));
3918
b5b8b0ac
AO
3919 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3920 {
3921 expr_t expr;
3922 av_set_iterator i;
3923
3924 /* When we remove a debug insn that is head of a BB, it remains
3925 in the AV_SET of the block, but it shouldn't. */
3926 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3927 if (EXPR_INSN_RTX (expr) == insn)
3928 {
3929 av_set_iter_remove (&i);
3930 break;
3931 }
3932 }
3933
e855c69d 3934 if (only_disconnect)
1f397f45 3935 remove_insn (insn);
e855c69d
AB
3936 else
3937 {
1f397f45 3938 delete_insn (insn);
e855c69d
AB
3939 clear_expr (INSN_EXPR (insn));
3940 }
3941
1f397f45
SB
3942 /* It is necessary to NULL these fields in case we are going to re-insert
3943 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3944 case, but also for NOPs that we will return to the nop pool. */
0f82e5c9
DM
3945 SET_PREV_INSN (insn) = NULL_RTX;
3946 SET_NEXT_INSN (insn) = NULL_RTX;
1f397f45 3947 set_block_for_insn (insn, NULL);
e855c69d
AB
3948
3949 return tidy_control_flow (bb, full_tidying);
3950}
3951
3952/* Estimate number of the insns in BB. */
3953static int
3954sel_estimate_number_of_insns (basic_block bb)
3955{
3956 int res = 0;
3957 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3958
3959 for (; insn != next_tail; insn = NEXT_INSN (insn))
b5b8b0ac 3960 if (NONDEBUG_INSN_P (insn))
e855c69d
AB
3961 res++;
3962
3963 return res;
3964}
3965
3966/* We don't need separate luids for notes or labels. */
3967static int
3968sel_luid_for_non_insn (rtx x)
3969{
3970 gcc_assert (NOTE_P (x) || LABEL_P (x));
3971
3972 return -1;
3973}
3974
0d9439b0
SG
3975/* Find the proper seqno for inserting at INSN by successors.
3976 Return -1 if no successors with positive seqno exist. */
e855c69d 3977static int
0d9439b0
SG
3978get_seqno_by_succs (rtx insn)
3979{
3980 basic_block bb = BLOCK_FOR_INSN (insn);
3981 rtx tmp = insn, end = BB_END (bb);
3982 int seqno;
3983 insn_t succ = NULL;
3984 succ_iterator si;
3985
3986 while (tmp != end)
3987 {
3988 tmp = NEXT_INSN (tmp);
3989 if (INSN_P (tmp))
3990 return INSN_SEQNO (tmp);
3991 }
3992
3993 seqno = INT_MAX;
3994
3995 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3996 if (INSN_SEQNO (succ) > 0)
3997 seqno = MIN (seqno, INSN_SEQNO (succ));
3998
3999 if (seqno == INT_MAX)
4000 return -1;
4001
4002 return seqno;
4003}
4004
92e265ac
AB
4005/* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4006 seqno in corner cases. */
0d9439b0 4007static int
92e265ac 4008get_seqno_for_a_jump (insn_t insn, int old_seqno)
e855c69d
AB
4009{
4010 int seqno;
4011
4012 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4013
4014 if (!sel_bb_head_p (insn))
4015 seqno = INSN_SEQNO (PREV_INSN (insn));
4016 else
4017 {
4018 basic_block bb = BLOCK_FOR_INSN (insn);
4019
4020 if (single_pred_p (bb)
4021 && !in_current_region_p (single_pred (bb)))
4022 {
4023 /* We can have preds outside a region when splitting edges
b8698a0f 4024 for pipelining of an outer loop. Use succ instead.
e855c69d
AB
4025 There should be only one of them. */
4026 insn_t succ = NULL;
4027 succ_iterator si;
4028 bool first = true;
b8698a0f 4029
e855c69d
AB
4030 gcc_assert (flag_sel_sched_pipelining_outer_loops
4031 && current_loop_nest);
b8698a0f 4032 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
4033 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4034 {
4035 gcc_assert (first);
4036 first = false;
4037 }
4038
4039 gcc_assert (succ != NULL);
4040 seqno = INSN_SEQNO (succ);
4041 }
4042 else
4043 {
4044 insn_t *preds;
4045 int n;
4046
4047 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
e855c69d 4048
0d9439b0
SG
4049 gcc_assert (n > 0);
4050 /* For one predecessor, use simple method. */
4051 if (n == 1)
4052 seqno = INSN_SEQNO (preds[0]);
4053 else
4054 seqno = get_seqno_by_preds (insn);
b8698a0f 4055
e855c69d
AB
4056 free (preds);
4057 }
4058 }
4059
0d9439b0
SG
4060 /* We were unable to find a good seqno among preds. */
4061 if (seqno < 0)
4062 seqno = get_seqno_by_succs (insn);
4063
92e265ac
AB
4064 if (seqno < 0)
4065 {
4066 /* The only case where this could be here legally is that the only
4067 unscheduled insn was a conditional jump that got removed and turned
4068 into this unconditional one. Initialize from the old seqno
4069 of that jump passed down to here. */
4070 seqno = old_seqno;
4071 }
0d9439b0 4072
92e265ac 4073 gcc_assert (seqno >= 0);
e855c69d
AB
4074 return seqno;
4075}
4076
da7ba240
AB
4077/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4078 with positive seqno exist. */
e855c69d
AB
4079int
4080get_seqno_by_preds (rtx insn)
4081{
4082 basic_block bb = BLOCK_FOR_INSN (insn);
4083 rtx tmp = insn, head = BB_HEAD (bb);
4084 insn_t *preds;
4085 int n, i, seqno;
4086
4087 while (tmp != head)
0d9439b0 4088 {
e855c69d 4089 tmp = PREV_INSN (tmp);
0d9439b0
SG
4090 if (INSN_P (tmp))
4091 return INSN_SEQNO (tmp);
4092 }
b8698a0f 4093
e855c69d
AB
4094 cfg_preds (bb, &preds, &n);
4095 for (i = 0, seqno = -1; i < n; i++)
4096 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4097
e855c69d
AB
4098 return seqno;
4099}
4100
4101\f
4102
4103/* Extend pass-scope data structures for basic blocks. */
4104void
4105sel_extend_global_bb_info (void)
4106{
8b1c6fd7 4107 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
e855c69d
AB
4108}
4109
4110/* Extend region-scope data structures for basic blocks. */
4111static void
4112extend_region_bb_info (void)
4113{
8b1c6fd7 4114 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
e855c69d
AB
4115}
4116
4117/* Extend all data structures to fit for all basic blocks. */
4118static void
4119extend_bb_info (void)
4120{
4121 sel_extend_global_bb_info ();
4122 extend_region_bb_info ();
4123}
4124
4125/* Finalize pass-scope data structures for basic blocks. */
4126void
4127sel_finish_global_bb_info (void)
4128{
9771b263 4129 sel_global_bb_info.release ();
e855c69d
AB
4130}
4131
4132/* Finalize region-scope data structures for basic blocks. */
4133static void
4134finish_region_bb_info (void)
4135{
9771b263 4136 sel_region_bb_info.release ();
e855c69d
AB
4137}
4138\f
4139
4140/* Data for each insn in current region. */
6e1aa848 4141vec<sel_insn_data_def> s_i_d = vNULL;
e855c69d 4142
e855c69d
AB
4143/* Extend data structures for insns from current region. */
4144static void
4145extend_insn_data (void)
4146{
4147 int reserve;
b8698a0f 4148
e855c69d
AB
4149 sched_extend_target ();
4150 sched_deps_init (false);
4151
4152 /* Extend data structures for insns from current region. */
9771b263
DN
4153 reserve = (sched_max_luid + 1 - s_i_d.length ());
4154 if (reserve > 0 && ! s_i_d.space (reserve))
bcf33775
AB
4155 {
4156 int size;
4157
4158 if (sched_max_luid / 2 > 1024)
4159 size = sched_max_luid + 1024;
4160 else
4161 size = 3 * sched_max_luid / 2;
b8698a0f 4162
bcf33775 4163
9771b263 4164 s_i_d.safe_grow_cleared (size);
bcf33775 4165 }
e855c69d
AB
4166}
4167
4168/* Finalize data structures for insns from current region. */
4169static void
4170finish_insns (void)
4171{
4172 unsigned i;
4173
4174 /* Clear here all dependence contexts that may have left from insns that were
4175 removed during the scheduling. */
9771b263 4176 for (i = 0; i < s_i_d.length (); i++)
e855c69d 4177 {
9771b263 4178 sel_insn_data_def *sid_entry = &s_i_d[i];
b8698a0f 4179
e855c69d
AB
4180 if (sid_entry->live)
4181 return_regset_to_pool (sid_entry->live);
4182 if (sid_entry->analyzed_deps)
4183 {
4184 BITMAP_FREE (sid_entry->analyzed_deps);
4185 BITMAP_FREE (sid_entry->found_deps);
4186 htab_delete (sid_entry->transformed_insns);
4187 free_deps (&sid_entry->deps_context);
4188 }
4189 if (EXPR_VINSN (&sid_entry->expr))
4190 {
4191 clear_expr (&sid_entry->expr);
b8698a0f 4192
e855c69d
AB
4193 /* Also, clear CANT_MOVE bit here, because we really don't want it
4194 to be passed to the next region. */
4195 CANT_MOVE_BY_LUID (i) = 0;
4196 }
4197 }
b8698a0f 4198
9771b263 4199 s_i_d.release ();
e855c69d
AB
4200}
4201
4202/* A proxy to pass initialization data to init_insn (). */
4203static sel_insn_data_def _insn_init_ssid;
4204static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4205
4206/* If true create a new vinsn. Otherwise use the one from EXPR. */
4207static bool insn_init_create_new_vinsn_p;
4208
4209/* Set all necessary data for initialization of the new insn[s]. */
4210static expr_t
4211set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4212{
4213 expr_t x = &insn_init_ssid->expr;
4214
4215 copy_expr_onside (x, expr);
4216 if (vi != NULL)
4217 {
4218 insn_init_create_new_vinsn_p = false;
4219 change_vinsn_in_expr (x, vi);
4220 }
4221 else
4222 insn_init_create_new_vinsn_p = true;
4223
4224 insn_init_ssid->seqno = seqno;
4225 return x;
4226}
4227
4228/* Init data for INSN. */
4229static void
4230init_insn_data (insn_t insn)
4231{
4232 expr_t expr;
4233 sel_insn_data_t ssid = insn_init_ssid;
4234
4235 /* The fields mentioned below are special and hence are not being
4236 propagated to the new insns. */
4237 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4238 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4239 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4240
4241 expr = INSN_EXPR (insn);
4242 copy_expr (expr, &ssid->expr);
4243 prepare_insn_expr (insn, ssid->seqno);
4244
4245 if (insn_init_create_new_vinsn_p)
4246 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
b8698a0f 4247
e855c69d
AB
4248 if (first_time_insn_init (insn))
4249 init_first_time_insn_data (insn);
4250}
4251
4252/* This is used to initialize spurious jumps generated by
92e265ac
AB
4253 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4254 in corner cases within get_seqno_for_a_jump. */
e855c69d 4255static void
92e265ac 4256init_simplejump_data (insn_t insn, int old_seqno)
e855c69d
AB
4257{
4258 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
9771b263 4259 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
6e1aa848 4260 vNULL, true, false, false,
e855c69d 4261 false, true);
92e265ac 4262 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
e855c69d
AB
4263 init_first_time_insn_data (insn);
4264}
4265
b8698a0f 4266/* Perform deferred initialization of insns. This is used to process
92e265ac
AB
4267 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4268 for initializing simplejumps in init_simplejump_data. */
4269static void
4270sel_init_new_insn (insn_t insn, int flags, int old_seqno)
e855c69d
AB
4271{
4272 /* We create data structures for bb when the first insn is emitted in it. */
4273 if (INSN_P (insn)
4274 && INSN_IN_STREAM_P (insn)
4275 && insn_is_the_only_one_in_bb_p (insn))
4276 {
4277 extend_bb_info ();
4278 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4279 }
b8698a0f 4280
e855c69d 4281 if (flags & INSN_INIT_TODO_LUID)
a95b23b4
BS
4282 {
4283 sched_extend_luids ();
4284 sched_init_insn_luid (insn);
4285 }
e855c69d
AB
4286
4287 if (flags & INSN_INIT_TODO_SSID)
4288 {
4289 extend_insn_data ();
4290 init_insn_data (insn);
4291 clear_expr (&insn_init_ssid->expr);
4292 }
4293
4294 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4295 {
4296 extend_insn_data ();
92e265ac 4297 init_simplejump_data (insn, old_seqno);
e855c69d 4298 }
b8698a0f 4299
e855c69d
AB
4300 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4301 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4302}
4303\f
4304
4305/* Functions to init/finish work with lv sets. */
4306
4307/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4308static void
4309init_lv_set (basic_block bb)
4310{
4311 gcc_assert (!BB_LV_SET_VALID_P (bb));
4312
4313 BB_LV_SET (bb) = get_regset_from_pool ();
b8698a0f 4314 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
e855c69d
AB
4315 BB_LV_SET_VALID_P (bb) = true;
4316}
4317
4318/* Copy liveness information to BB from FROM_BB. */
4319static void
4320copy_lv_set_from (basic_block bb, basic_block from_bb)
4321{
4322 gcc_assert (!BB_LV_SET_VALID_P (bb));
b8698a0f 4323
e855c69d
AB
4324 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4325 BB_LV_SET_VALID_P (bb) = true;
b8698a0f 4326}
e855c69d
AB
4327
4328/* Initialize lv set of all bb headers. */
4329void
4330init_lv_sets (void)
4331{
4332 basic_block bb;
4333
4334 /* Initialize of LV sets. */
11cd3bed 4335 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
4336 init_lv_set (bb);
4337
4338 /* Don't forget EXIT_BLOCK. */
fefa31b5 4339 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4340}
4341
4342/* Release lv set of HEAD. */
4343static void
4344free_lv_set (basic_block bb)
4345{
4346 gcc_assert (BB_LV_SET (bb) != NULL);
4347
4348 return_regset_to_pool (BB_LV_SET (bb));
4349 BB_LV_SET (bb) = NULL;
4350 BB_LV_SET_VALID_P (bb) = false;
4351}
4352
4353/* Finalize lv sets of all bb headers. */
4354void
4355free_lv_sets (void)
4356{
4357 basic_block bb;
4358
4359 /* Don't forget EXIT_BLOCK. */
fefa31b5 4360 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4361
4362 /* Free LV sets. */
11cd3bed 4363 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
4364 if (BB_LV_SET (bb))
4365 free_lv_set (bb);
4366}
4367
5c416724
DM
4368/* Mark AV_SET for BB as invalid, so this set will be updated the next time
4369 compute_av() processes BB. This function is called when creating new basic
4370 blocks, as well as for blocks (either new or existing) where new jumps are
4371 created when the control flow is being updated. */
e855c69d
AB
4372static void
4373invalidate_av_set (basic_block bb)
4374{
e855c69d
AB
4375 BB_AV_LEVEL (bb) = -1;
4376}
4377
4378/* Create initial data sets for BB (they will be invalid). */
4379static void
4380create_initial_data_sets (basic_block bb)
4381{
4382 if (BB_LV_SET (bb))
4383 BB_LV_SET_VALID_P (bb) = false;
4384 else
4385 BB_LV_SET (bb) = get_regset_from_pool ();
4386 invalidate_av_set (bb);
4387}
4388
4389/* Free av set of BB. */
4390static void
4391free_av_set (basic_block bb)
4392{
4393 av_set_clear (&BB_AV_SET (bb));
4394 BB_AV_LEVEL (bb) = 0;
4395}
4396
4397/* Free data sets of BB. */
4398void
4399free_data_sets (basic_block bb)
4400{
4401 free_lv_set (bb);
4402 free_av_set (bb);
4403}
4404
4405/* Exchange lv sets of TO and FROM. */
4406static void
4407exchange_lv_sets (basic_block to, basic_block from)
4408{
4409 {
4410 regset to_lv_set = BB_LV_SET (to);
4411
4412 BB_LV_SET (to) = BB_LV_SET (from);
4413 BB_LV_SET (from) = to_lv_set;
4414 }
4415
4416 {
4417 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4418
4419 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4420 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4421 }
4422}
4423
4424
4425/* Exchange av sets of TO and FROM. */
4426static void
4427exchange_av_sets (basic_block to, basic_block from)
4428{
4429 {
4430 av_set_t to_av_set = BB_AV_SET (to);
4431
4432 BB_AV_SET (to) = BB_AV_SET (from);
4433 BB_AV_SET (from) = to_av_set;
4434 }
4435
4436 {
4437 int to_av_level = BB_AV_LEVEL (to);
4438
4439 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4440 BB_AV_LEVEL (from) = to_av_level;
4441 }
4442}
4443
4444/* Exchange data sets of TO and FROM. */
4445void
4446exchange_data_sets (basic_block to, basic_block from)
4447{
4448 exchange_lv_sets (to, from);
4449 exchange_av_sets (to, from);
4450}
4451
4452/* Copy data sets of FROM to TO. */
4453void
4454copy_data_sets (basic_block to, basic_block from)
4455{
4456 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4457 gcc_assert (BB_AV_SET (to) == NULL);
4458
4459 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4460 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4461
4462 if (BB_AV_SET_VALID_P (from))
4463 {
4464 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4465 }
4466 if (BB_LV_SET_VALID_P (from))
4467 {
4468 gcc_assert (BB_LV_SET (to) != NULL);
4469 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4470 }
4471}
4472
4473/* Return an av set for INSN, if any. */
4474av_set_t
4475get_av_set (insn_t insn)
4476{
4477 av_set_t av_set;
4478
4479 gcc_assert (AV_SET_VALID_P (insn));
4480
4481 if (sel_bb_head_p (insn))
4482 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4483 else
4484 av_set = NULL;
4485
4486 return av_set;
4487}
4488
4489/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4490int
4491get_av_level (insn_t insn)
4492{
4493 int av_level;
4494
4495 gcc_assert (INSN_P (insn));
4496
4497 if (sel_bb_head_p (insn))
4498 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4499 else
4500 av_level = INSN_WS_LEVEL (insn);
4501
4502 return av_level;
4503}
4504
4505\f
4506
4507/* Variables to work with control-flow graph. */
4508
4509/* The basic block that already has been processed by the sched_data_update (),
4510 but hasn't been in sel_add_bb () yet. */
9771b263 4511static vec<basic_block>
6e1aa848 4512 last_added_blocks = vNULL;
e855c69d
AB
4513
4514/* A pool for allocating successor infos. */
4515static struct
4516{
4517 /* A stack for saving succs_info structures. */
4518 struct succs_info *stack;
4519
4520 /* Its size. */
4521 int size;
4522
4523 /* Top of the stack. */
4524 int top;
4525
4526 /* Maximal value of the top. */
4527 int max_top;
4528} succs_info_pool;
4529
4530/* Functions to work with control-flow graph. */
4531
4532/* Return basic block note of BB. */
c5db5458 4533rtx_insn *
e855c69d
AB
4534sel_bb_head (basic_block bb)
4535{
c5db5458 4536 rtx_insn *head;
e855c69d 4537
fefa31b5 4538 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
e855c69d
AB
4539 {
4540 gcc_assert (exit_insn != NULL_RTX);
4541 head = exit_insn;
4542 }
4543 else
4544 {
4545 insn_t note;
4546
4547 note = bb_note (bb);
4548 head = next_nonnote_insn (note);
4549
89ad0f25 4550 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
c5db5458 4551 head = NULL;
e855c69d
AB
4552 }
4553
4554 return head;
4555}
4556
4557/* Return true if INSN is a basic block header. */
4558bool
4559sel_bb_head_p (insn_t insn)
4560{
4561 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4562}
4563
4564/* Return last insn of BB. */
c5db5458 4565rtx_insn *
e855c69d
AB
4566sel_bb_end (basic_block bb)
4567{
4568 if (sel_bb_empty_p (bb))
c5db5458 4569 return NULL;
e855c69d 4570
fefa31b5 4571 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
4572
4573 return BB_END (bb);
4574}
4575
4576/* Return true if INSN is the last insn in its basic block. */
4577bool
4578sel_bb_end_p (insn_t insn)
4579{
4580 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4581}
4582
4583/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4584bool
4585sel_bb_empty_p (basic_block bb)
4586{
4587 return sel_bb_head (bb) == NULL;
4588}
4589
4590/* True when BB belongs to the current scheduling region. */
4591bool
4592in_current_region_p (basic_block bb)
4593{
4594 if (bb->index < NUM_FIXED_BLOCKS)
4595 return false;
4596
4597 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4598}
4599
4600/* Return the block which is a fallthru bb of a conditional jump JUMP. */
4601basic_block
4602fallthru_bb_of_jump (rtx jump)
4603{
4604 if (!JUMP_P (jump))
4605 return NULL;
4606
e855c69d
AB
4607 if (!any_condjump_p (jump))
4608 return NULL;
4609
268bab85
AB
4610 /* A basic block that ends with a conditional jump may still have one successor
4611 (and be followed by a barrier), we are not interested. */
4612 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4613 return NULL;
4614
e855c69d
AB
4615 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4616}
4617
4618/* Remove all notes from BB. */
4619static void
4620init_bb (basic_block bb)
4621{
4622 remove_notes (bb_note (bb), BB_END (bb));
c2fc1aee 4623 SET_BB_NOTE_LIST (bb) = note_list;
e855c69d
AB
4624}
4625
4626void
a95b23b4 4627sel_init_bbs (bb_vec_t bbs)
e855c69d
AB
4628{
4629 const struct sched_scan_info_def ssi =
4630 {
4631 extend_bb_info, /* extend_bb */
4632 init_bb, /* init_bb */
4633 NULL, /* extend_insn */
4634 NULL /* init_insn */
4635 };
4636
a95b23b4 4637 sched_scan (&ssi, bbs);
e855c69d
AB
4638}
4639
7898b93b 4640/* Restore notes for the whole region. */
e855c69d 4641static void
7898b93b 4642sel_restore_notes (void)
e855c69d
AB
4643{
4644 int bb;
7898b93b 4645 insn_t insn;
e855c69d
AB
4646
4647 for (bb = 0; bb < current_nr_blocks; bb++)
4648 {
4649 basic_block first, last;
4650
4651 first = EBB_FIRST_BB (bb);
4652 last = EBB_LAST_BB (bb)->next_bb;
4653
4654 do
4655 {
4656 note_list = BB_NOTE_LIST (first);
4657 restore_other_notes (NULL, first);
c2fc1aee 4658 SET_BB_NOTE_LIST (first) = NULL_RTX;
e855c69d 4659
7898b93b
AM
4660 FOR_BB_INSNS (first, insn)
4661 if (NONDEBUG_INSN_P (insn))
4662 reemit_notes (insn);
4663
e855c69d
AB
4664 first = first->next_bb;
4665 }
4666 while (first != last);
4667 }
4668}
4669
4670/* Free per-bb data structures. */
4671void
4672sel_finish_bbs (void)
4673{
7898b93b 4674 sel_restore_notes ();
e855c69d
AB
4675
4676 /* Remove current loop preheader from this loop. */
4677 if (current_loop_nest)
4678 sel_remove_loop_preheader ();
4679
4680 finish_region_bb_info ();
4681}
4682
4683/* Return true if INSN has a single successor of type FLAGS. */
4684bool
4685sel_insn_has_single_succ_p (insn_t insn, int flags)
4686{
4687 insn_t succ;
4688 succ_iterator si;
4689 bool first_p = true;
4690
4691 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4692 {
4693 if (first_p)
4694 first_p = false;
4695 else
4696 return false;
4697 }
4698
4699 return true;
4700}
4701
4702/* Allocate successor's info. */
4703static struct succs_info *
4704alloc_succs_info (void)
4705{
4706 if (succs_info_pool.top == succs_info_pool.max_top)
4707 {
4708 int i;
b8698a0f 4709
e855c69d
AB
4710 if (++succs_info_pool.max_top >= succs_info_pool.size)
4711 gcc_unreachable ();
4712
4713 i = ++succs_info_pool.top;
9771b263
DN
4714 succs_info_pool.stack[i].succs_ok.create (10);
4715 succs_info_pool.stack[i].succs_other.create (10);
4716 succs_info_pool.stack[i].probs_ok.create (10);
e855c69d
AB
4717 }
4718 else
4719 succs_info_pool.top++;
4720
4721 return &succs_info_pool.stack[succs_info_pool.top];
4722}
4723
4724/* Free successor's info. */
4725void
4726free_succs_info (struct succs_info * sinfo)
4727{
b8698a0f 4728 gcc_assert (succs_info_pool.top >= 0
e855c69d
AB
4729 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4730 succs_info_pool.top--;
4731
4732 /* Clear stale info. */
9771b263
DN
4733 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4734 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4735 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
e855c69d
AB
4736 sinfo->all_prob = 0;
4737 sinfo->succs_ok_n = 0;
4738 sinfo->all_succs_n = 0;
4739}
4740
b8698a0f 4741/* Compute successor info for INSN. FLAGS are the flags passed
e855c69d
AB
4742 to the FOR_EACH_SUCC_1 iterator. */
4743struct succs_info *
4744compute_succs_info (insn_t insn, short flags)
4745{
4746 succ_iterator si;
4747 insn_t succ;
4748 struct succs_info *sinfo = alloc_succs_info ();
4749
4750 /* Traverse *all* successors and decide what to do with each. */
4751 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4752 {
4753 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4754 perform code motion through inner loops. */
4755 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4756
4757 if (current_flags & flags)
4758 {
9771b263
DN
4759 sinfo->succs_ok.safe_push (succ);
4760 sinfo->probs_ok.safe_push (
4761 /* FIXME: Improve calculation when skipping
4762 inner loop to exits. */
4763 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
e855c69d
AB
4764 sinfo->succs_ok_n++;
4765 }
4766 else
9771b263 4767 sinfo->succs_other.safe_push (succ);
e855c69d
AB
4768
4769 /* Compute all_prob. */
4770 if (!si.bb_end)
4771 sinfo->all_prob = REG_BR_PROB_BASE;
4772 else
4773 sinfo->all_prob += si.e1->probability;
4774
4775 sinfo->all_succs_n++;
4776 }
4777
4778 return sinfo;
4779}
4780
b8698a0f 4781/* Return the predecessors of BB in PREDS and their number in N.
e855c69d
AB
4782 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4783static void
4784cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4785{
4786 edge e;
4787 edge_iterator ei;
4788
4789 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4790
4791 FOR_EACH_EDGE (e, ei, bb->preds)
4792 {
4793 basic_block pred_bb = e->src;
4794 insn_t bb_end = BB_END (pred_bb);
4795
3e6a3f6f
AB
4796 if (!in_current_region_p (pred_bb))
4797 {
4798 gcc_assert (flag_sel_sched_pipelining_outer_loops
4799 && current_loop_nest);
4800 continue;
4801 }
e855c69d
AB
4802
4803 if (sel_bb_empty_p (pred_bb))
4804 cfg_preds_1 (pred_bb, preds, n, size);
4805 else
4806 {
4807 if (*n == *size)
b8698a0f 4808 *preds = XRESIZEVEC (insn_t, *preds,
e855c69d
AB
4809 (*size = 2 * *size + 1));
4810 (*preds)[(*n)++] = bb_end;
4811 }
4812 }
4813
3e6a3f6f
AB
4814 gcc_assert (*n != 0
4815 || (flag_sel_sched_pipelining_outer_loops
4816 && current_loop_nest));
e855c69d
AB
4817}
4818
b8698a0f
L
4819/* Find all predecessors of BB and record them in PREDS and their number
4820 in N. Empty blocks are skipped, and only normal (forward in-region)
e855c69d
AB
4821 edges are processed. */
4822static void
4823cfg_preds (basic_block bb, insn_t **preds, int *n)
4824{
4825 int size = 0;
4826
4827 *preds = NULL;
4828 *n = 0;
4829 cfg_preds_1 (bb, preds, n, &size);
4830}
4831
4832/* Returns true if we are moving INSN through join point. */
4833bool
4834sel_num_cfg_preds_gt_1 (insn_t insn)
4835{
4836 basic_block bb;
4837
4838 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4839 return false;
4840
4841 bb = BLOCK_FOR_INSN (insn);
4842
4843 while (1)
4844 {
4845 if (EDGE_COUNT (bb->preds) > 1)
4846 return true;
4847
4848 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4849 bb = EDGE_PRED (bb, 0)->src;
4850
4851 if (!sel_bb_empty_p (bb))
4852 break;
4853 }
4854
4855 return false;
4856}
4857
b8698a0f 4858/* Returns true when BB should be the end of an ebb. Adapted from the
e855c69d
AB
4859 code in sched-ebb.c. */
4860bool
4861bb_ends_ebb_p (basic_block bb)
4862{
4863 basic_block next_bb = bb_next_bb (bb);
4864 edge e;
b8698a0f 4865
fefa31b5 4866 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
e855c69d
AB
4867 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4868 || (LABEL_P (BB_HEAD (next_bb))
4869 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4870 Work around that. */
4871 && !single_pred_p (next_bb)))
4872 return true;
4873
4874 if (!in_current_region_p (next_bb))
4875 return true;
4876
0fd4b31d
NF
4877 e = find_fallthru_edge (bb->succs);
4878 if (e)
4879 {
4880 gcc_assert (e->dest == next_bb);
4881
4882 return false;
4883 }
e855c69d
AB
4884
4885 return true;
4886}
4887
4888/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4889 successor of INSN. */
4890bool
4891in_same_ebb_p (insn_t insn, insn_t succ)
4892{
4893 basic_block ptr = BLOCK_FOR_INSN (insn);
4894
c3284718 4895 for (;;)
e855c69d
AB
4896 {
4897 if (ptr == BLOCK_FOR_INSN (succ))
4898 return true;
b8698a0f 4899
e855c69d
AB
4900 if (bb_ends_ebb_p (ptr))
4901 return false;
4902
4903 ptr = bb_next_bb (ptr);
4904 }
4905
4906 gcc_unreachable ();
4907 return false;
4908}
4909
4910/* Recomputes the reverse topological order for the function and
4911 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4912 modified appropriately. */
4913static void
4914recompute_rev_top_order (void)
4915{
4916 int *postorder;
4917 int n_blocks, i;
4918
8b1c6fd7
DM
4919 if (!rev_top_order_index
4920 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
e855c69d 4921 {
8b1c6fd7 4922 rev_top_order_index_len = last_basic_block_for_fn (cfun);
e855c69d
AB
4923 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4924 rev_top_order_index_len);
4925 }
4926
0cae8d31 4927 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
e855c69d
AB
4928
4929 n_blocks = post_order_compute (postorder, true, false);
0cae8d31 4930 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
e855c69d
AB
4931
4932 /* Build reverse function: for each basic block with BB->INDEX == K
4933 rev_top_order_index[K] is it's reverse topological sort number. */
4934 for (i = 0; i < n_blocks; i++)
4935 {
4936 gcc_assert (postorder[i] < rev_top_order_index_len);
4937 rev_top_order_index[postorder[i]] = i;
4938 }
4939
4940 free (postorder);
4941}
4942
4943/* Clear all flags from insns in BB that could spoil its rescheduling. */
4944void
4945clear_outdated_rtx_info (basic_block bb)
4946{
4947 rtx insn;
4948
4949 FOR_BB_INSNS (bb, insn)
4950 if (INSN_P (insn))
4951 {
4952 SCHED_GROUP_P (insn) = 0;
4953 INSN_AFTER_STALL_P (insn) = 0;
4954 INSN_SCHED_TIMES (insn) = 0;
4955 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4956
4957 /* We cannot use the changed caches, as previously we could ignore
b8698a0f 4958 the LHS dependence due to enabled renaming and transform
e855c69d
AB
4959 the expression, and currently we'll be unable to do this. */
4960 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4961 }
4962}
4963
4964/* Add BB_NOTE to the pool of available basic block notes. */
4965static void
4966return_bb_to_pool (basic_block bb)
4967{
4968 rtx note = bb_note (bb);
4969
4970 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4971 && bb->aux == NULL);
4972
4973 /* It turns out that current cfg infrastructure does not support
4974 reuse of basic blocks. Don't bother for now. */
9771b263 4975 /*bb_note_pool.safe_push (note);*/
e855c69d
AB
4976}
4977
4978/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
66e8df53 4979static rtx_note *
e855c69d
AB
4980get_bb_note_from_pool (void)
4981{
9771b263 4982 if (bb_note_pool.is_empty ())
66e8df53 4983 return NULL;
e855c69d
AB
4984 else
4985 {
66e8df53 4986 rtx_note *note = bb_note_pool.pop ();
e855c69d 4987
0f82e5c9
DM
4988 SET_PREV_INSN (note) = NULL_RTX;
4989 SET_NEXT_INSN (note) = NULL_RTX;
e855c69d
AB
4990
4991 return note;
4992 }
4993}
4994
4995/* Free bb_note_pool. */
4996void
4997free_bb_note_pool (void)
4998{
9771b263 4999 bb_note_pool.release ();
e855c69d
AB
5000}
5001
5002/* Setup scheduler pool and successor structure. */
5003void
5004alloc_sched_pools (void)
5005{
5006 int succs_size;
5007
5008 succs_size = MAX_WS + 1;
b8698a0f 5009 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
e855c69d
AB
5010 succs_info_pool.size = succs_size;
5011 succs_info_pool.top = -1;
5012 succs_info_pool.max_top = -1;
5013
b8698a0f 5014 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
e855c69d
AB
5015 sizeof (struct _list_node), 500);
5016}
5017
5018/* Free the pools. */
5019void
5020free_sched_pools (void)
5021{
5022 int i;
b8698a0f 5023
e855c69d
AB
5024 free_alloc_pool (sched_lists_pool);
5025 gcc_assert (succs_info_pool.top == -1);
85f5dbea 5026 for (i = 0; i <= succs_info_pool.max_top; i++)
e855c69d 5027 {
9771b263
DN
5028 succs_info_pool.stack[i].succs_ok.release ();
5029 succs_info_pool.stack[i].succs_other.release ();
5030 succs_info_pool.stack[i].probs_ok.release ();
e855c69d
AB
5031 }
5032 free (succs_info_pool.stack);
5033}
5034\f
5035
b8698a0f 5036/* Returns a position in RGN where BB can be inserted retaining
e855c69d
AB
5037 topological order. */
5038static int
5039find_place_to_insert_bb (basic_block bb, int rgn)
5040{
5041 bool has_preds_outside_rgn = false;
5042 edge e;
5043 edge_iterator ei;
b8698a0f 5044
e855c69d
AB
5045 /* Find whether we have preds outside the region. */
5046 FOR_EACH_EDGE (e, ei, bb->preds)
5047 if (!in_current_region_p (e->src))
5048 {
5049 has_preds_outside_rgn = true;
5050 break;
5051 }
b8698a0f 5052
e855c69d
AB
5053 /* Recompute the top order -- needed when we have > 1 pred
5054 and in case we don't have preds outside. */
5055 if (flag_sel_sched_pipelining_outer_loops
5056 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5057 {
5058 int i, bbi = bb->index, cur_bbi;
5059
5060 recompute_rev_top_order ();
5061 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5062 {
5063 cur_bbi = BB_TO_BLOCK (i);
b8698a0f 5064 if (rev_top_order_index[bbi]
e855c69d
AB
5065 < rev_top_order_index[cur_bbi])
5066 break;
5067 }
b8698a0f 5068
073a8998 5069 /* We skipped the right block, so we increase i. We accommodate
e855c69d
AB
5070 it for increasing by step later, so we decrease i. */
5071 return (i + 1) - 1;
5072 }
5073 else if (has_preds_outside_rgn)
5074 {
5075 /* This is the case when we generate an extra empty block
5076 to serve as region head during pipelining. */
5077 e = EDGE_SUCC (bb, 0);
5078 gcc_assert (EDGE_COUNT (bb->succs) == 1
5079 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5080 && (BLOCK_TO_BB (e->dest->index) == 0));
5081 return -1;
5082 }
5083
5084 /* We don't have preds outside the region. We should have
5085 the only pred, because the multiple preds case comes from
5086 the pipelining of outer loops, and that is handled above.
5087 Just take the bbi of this single pred. */
5088 if (EDGE_COUNT (bb->succs) > 0)
5089 {
5090 int pred_bbi;
b8698a0f 5091
e855c69d 5092 gcc_assert (EDGE_COUNT (bb->preds) == 1);
b8698a0f 5093
e855c69d
AB
5094 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5095 return BLOCK_TO_BB (pred_bbi);
5096 }
5097 else
5098 /* BB has no successors. It is safe to put it in the end. */
5099 return current_nr_blocks - 1;
5100}
5101
5102/* Deletes an empty basic block freeing its data. */
5103static void
5104delete_and_free_basic_block (basic_block bb)
5105{
5106 gcc_assert (sel_bb_empty_p (bb));
5107
5108 if (BB_LV_SET (bb))
5109 free_lv_set (bb);
5110
5111 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5112
b8698a0f
L
5113 /* Can't assert av_set properties because we use sel_aremove_bb
5114 when removing loop preheader from the region. At the point of
e855c69d
AB
5115 removing the preheader we already have deallocated sel_region_bb_info. */
5116 gcc_assert (BB_LV_SET (bb) == NULL
5117 && !BB_LV_SET_VALID_P (bb)
5118 && BB_AV_LEVEL (bb) == 0
5119 && BB_AV_SET (bb) == NULL);
b8698a0f 5120
e855c69d
AB
5121 delete_basic_block (bb);
5122}
5123
5124/* Add BB to the current region and update the region data. */
5125static void
5126add_block_to_current_region (basic_block bb)
5127{
5128 int i, pos, bbi = -2, rgn;
5129
5130 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5131 bbi = find_place_to_insert_bb (bb, rgn);
5132 bbi += 1;
5133 pos = RGN_BLOCKS (rgn) + bbi;
5134
5135 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5136 && ebb_head[bbi] == pos);
b8698a0f 5137
e855c69d
AB
5138 /* Make a place for the new block. */
5139 extend_regions ();
5140
5141 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5142 BLOCK_TO_BB (rgn_bb_table[i])++;
b8698a0f 5143
e855c69d
AB
5144 memmove (rgn_bb_table + pos + 1,
5145 rgn_bb_table + pos,
5146 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5147
5148 /* Initialize data for BB. */
5149 rgn_bb_table[pos] = bb->index;
5150 BLOCK_TO_BB (bb->index) = bbi;
5151 CONTAINING_RGN (bb->index) = rgn;
5152
5153 RGN_NR_BLOCKS (rgn)++;
b8698a0f 5154
e855c69d
AB
5155 for (i = rgn + 1; i <= nr_regions; i++)
5156 RGN_BLOCKS (i)++;
5157}
5158
5159/* Remove BB from the current region and update the region data. */
5160static void
5161remove_bb_from_region (basic_block bb)
5162{
5163 int i, pos, bbi = -2, rgn;
5164
5165 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5166 bbi = BLOCK_TO_BB (bb->index);
5167 pos = RGN_BLOCKS (rgn) + bbi;
5168
5169 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5170 && ebb_head[bbi] == pos);
5171
5172 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5173 BLOCK_TO_BB (rgn_bb_table[i])--;
5174
5175 memmove (rgn_bb_table + pos,
5176 rgn_bb_table + pos + 1,
5177 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5178
5179 RGN_NR_BLOCKS (rgn)--;
5180 for (i = rgn + 1; i <= nr_regions; i++)
5181 RGN_BLOCKS (i)--;
5182}
5183
b8698a0f 5184/* Add BB to the current region and update all data. If BB is NULL, add all
e855c69d
AB
5185 blocks from last_added_blocks vector. */
5186static void
5187sel_add_bb (basic_block bb)
5188{
5189 /* Extend luids so that new notes will receive zero luids. */
a95b23b4 5190 sched_extend_luids ();
e855c69d 5191 sched_init_bbs ();
a95b23b4 5192 sel_init_bbs (last_added_blocks);
e855c69d 5193
b8698a0f 5194 /* When bb is passed explicitly, the vector should contain
e855c69d
AB
5195 the only element that equals to bb; otherwise, the vector
5196 should not be NULL. */
9771b263 5197 gcc_assert (last_added_blocks.exists ());
b8698a0f 5198
e855c69d
AB
5199 if (bb != NULL)
5200 {
9771b263
DN
5201 gcc_assert (last_added_blocks.length () == 1
5202 && last_added_blocks[0] == bb);
e855c69d
AB
5203 add_block_to_current_region (bb);
5204
5205 /* We associate creating/deleting data sets with the first insn
5206 appearing / disappearing in the bb. */
5207 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5208 create_initial_data_sets (bb);
b8698a0f 5209
9771b263 5210 last_added_blocks.release ();
e855c69d
AB
5211 }
5212 else
5213 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5214 {
5215 int i;
5216 basic_block temp_bb = NULL;
5217
b8698a0f 5218 for (i = 0;
9771b263 5219 last_added_blocks.iterate (i, &bb); i++)
e855c69d
AB
5220 {
5221 add_block_to_current_region (bb);
5222 temp_bb = bb;
5223 }
5224
b8698a0f 5225 /* We need to fetch at least one bb so we know the region
e855c69d
AB
5226 to update. */
5227 gcc_assert (temp_bb != NULL);
5228 bb = temp_bb;
5229
9771b263 5230 last_added_blocks.release ();
e855c69d
AB
5231 }
5232
5233 rgn_setup_region (CONTAINING_RGN (bb->index));
5234}
5235
b8698a0f 5236/* Remove BB from the current region and update all data.
e855c69d
AB
5237 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5238static void
5239sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5240{
262d8232
AB
5241 unsigned idx = bb->index;
5242
e855c69d 5243 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
b8698a0f 5244
e855c69d
AB
5245 remove_bb_from_region (bb);
5246 return_bb_to_pool (bb);
262d8232 5247 bitmap_clear_bit (blocks_to_reschedule, idx);
b8698a0f 5248
e855c69d 5249 if (remove_from_cfg_p)
00c4e97c
AB
5250 {
5251 basic_block succ = single_succ (bb);
5252 delete_and_free_basic_block (bb);
5253 set_immediate_dominator (CDI_DOMINATORS, succ,
5254 recompute_dominator (CDI_DOMINATORS, succ));
5255 }
e855c69d 5256
262d8232 5257 rgn_setup_region (CONTAINING_RGN (idx));
e855c69d
AB
5258}
5259
5260/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5261static void
5262move_bb_info (basic_block merge_bb, basic_block empty_bb)
5263{
b7b5540a
AB
5264 if (in_current_region_p (merge_bb))
5265 concat_note_lists (BB_NOTE_LIST (empty_bb),
c2fc1aee
DM
5266 &SET_BB_NOTE_LIST (merge_bb));
5267 SET_BB_NOTE_LIST (empty_bb) = NULL_RTX;
e855c69d
AB
5268
5269}
5270
e855c69d
AB
5271/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5272 region, but keep it in CFG. */
5273static void
5274remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5275{
5276 /* The block should contain just a note or a label.
5277 We try to check whether it is unused below. */
5278 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5279 || LABEL_P (BB_HEAD (empty_bb)));
5280
5281 /* If basic block has predecessors or successors, redirect them. */
5282 if (remove_from_cfg_p
5283 && (EDGE_COUNT (empty_bb->preds) > 0
5284 || EDGE_COUNT (empty_bb->succs) > 0))
5285 {
5286 basic_block pred;
5287 basic_block succ;
5288
5289 /* We need to init PRED and SUCC before redirecting edges. */
5290 if (EDGE_COUNT (empty_bb->preds) > 0)
5291 {
5292 edge e;
5293
5294 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5295
5296 e = EDGE_PRED (empty_bb, 0);
5297 gcc_assert (e->src == empty_bb->prev_bb
5298 && (e->flags & EDGE_FALLTHRU));
5299
5300 pred = empty_bb->prev_bb;
5301 }
5302 else
5303 pred = NULL;
5304
5305 if (EDGE_COUNT (empty_bb->succs) > 0)
5306 {
5307 /* We do not check fallthruness here as above, because
5308 after removing a jump the edge may actually be not fallthru. */
5309 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5310 succ = EDGE_SUCC (empty_bb, 0)->dest;
5311 }
5312 else
5313 succ = NULL;
5314
5315 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5316 {
5317 edge e = EDGE_PRED (empty_bb, 0);
5318
5319 if (e->flags & EDGE_FALLTHRU)
5320 redirect_edge_succ_nodup (e, succ);
5321 else
5322 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5323 }
5324
5325 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5326 {
5327 edge e = EDGE_SUCC (empty_bb, 0);
5328
5329 if (find_edge (pred, e->dest) == NULL)
5330 redirect_edge_pred (e, pred);
5331 }
5332 }
5333
5334 /* Finish removing. */
5335 sel_remove_bb (empty_bb, remove_from_cfg_p);
5336}
5337
b8698a0f 5338/* An implementation of create_basic_block hook, which additionally updates
e855c69d
AB
5339 per-bb data structures. */
5340static basic_block
5341sel_create_basic_block (void *headp, void *endp, basic_block after)
5342{
5343 basic_block new_bb;
66e8df53 5344 rtx_note *new_bb_note;
b8698a0f
L
5345
5346 gcc_assert (flag_sel_sched_pipelining_outer_loops
9771b263 5347 || !last_added_blocks.exists ());
e855c69d
AB
5348
5349 new_bb_note = get_bb_note_from_pool ();
5350
5351 if (new_bb_note == NULL_RTX)
5352 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5353 else
5354 {
5355 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5356 new_bb_note, after);
5357 new_bb->aux = NULL;
5358 }
5359
9771b263 5360 last_added_blocks.safe_push (new_bb);
e855c69d
AB
5361
5362 return new_bb;
5363}
5364
5365/* Implement sched_init_only_bb (). */
5366static void
5367sel_init_only_bb (basic_block bb, basic_block after)
5368{
5369 gcc_assert (after == NULL);
5370
5371 extend_regions ();
5372 rgn_make_new_region_out_of_new_block (bb);
5373}
5374
5375/* Update the latch when we've splitted or merged it from FROM block to TO.
5376 This should be checked for all outer loops, too. */
5377static void
5378change_loops_latches (basic_block from, basic_block to)
5379{
5380 gcc_assert (from != to);
5381
5382 if (current_loop_nest)
5383 {
5384 struct loop *loop;
5385
5386 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5387 if (considered_for_pipelining_p (loop) && loop->latch == from)
5388 {
5389 gcc_assert (loop == current_loop_nest);
5390 loop->latch = to;
5391 gcc_assert (loop_latch_edge (loop));
5392 }
5393 }
5394}
5395
b8698a0f 5396/* Splits BB on two basic blocks, adding it to the region and extending
e855c69d
AB
5397 per-bb data structures. Returns the newly created bb. */
5398static basic_block
5399sel_split_block (basic_block bb, rtx after)
5400{
5401 basic_block new_bb;
5402 insn_t insn;
5403
5404 new_bb = sched_split_block_1 (bb, after);
5405 sel_add_bb (new_bb);
5406
5407 /* This should be called after sel_add_bb, because this uses
b8698a0f 5408 CONTAINING_RGN for the new block, which is not yet initialized.
e855c69d
AB
5409 FIXME: this function may be a no-op now. */
5410 change_loops_latches (bb, new_bb);
5411
5412 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5413 FOR_BB_INSNS (new_bb, insn)
5414 if (INSN_P (insn))
5415 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5416
5417 if (sel_bb_empty_p (bb))
5418 {
5419 gcc_assert (!sel_bb_empty_p (new_bb));
5420
5421 /* NEW_BB has data sets that need to be updated and BB holds
5422 data sets that should be removed. Exchange these data sets
5423 so that we won't lose BB's valid data sets. */
5424 exchange_data_sets (new_bb, bb);
5425 free_data_sets (bb);
5426 }
5427
5428 if (!sel_bb_empty_p (new_bb)
5429 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5430 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5431
5432 return new_bb;
5433}
5434
5435/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5436 Otherwise returns NULL. */
5437static rtx
5438check_for_new_jump (basic_block bb, int prev_max_uid)
5439{
5440 rtx end;
5441
5442 end = sel_bb_end (bb);
5443 if (end && INSN_UID (end) >= prev_max_uid)
5444 return end;
5445 return NULL;
5446}
5447
b8698a0f 5448/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
e855c69d
AB
5449 New means having UID at least equal to PREV_MAX_UID. */
5450static rtx
5451find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5452{
5453 rtx jump;
5454
5455 /* Return immediately if no new insns were emitted. */
5456 if (get_max_uid () == prev_max_uid)
5457 return NULL;
b8698a0f 5458
e855c69d
AB
5459 /* Now check both blocks for new jumps. It will ever be only one. */
5460 if ((jump = check_for_new_jump (from, prev_max_uid)))
5461 return jump;
5462
5463 if (jump_bb != NULL
5464 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5465 return jump;
5466 return NULL;
5467}
5468
5469/* Splits E and adds the newly created basic block to the current region.
5470 Returns this basic block. */
5471basic_block
5472sel_split_edge (edge e)
5473{
5474 basic_block new_bb, src, other_bb = NULL;
5475 int prev_max_uid;
5476 rtx jump;
5477
5478 src = e->src;
5479 prev_max_uid = get_max_uid ();
5480 new_bb = split_edge (e);
5481
b8698a0f 5482 if (flag_sel_sched_pipelining_outer_loops
e855c69d
AB
5483 && current_loop_nest)
5484 {
5485 int i;
5486 basic_block bb;
5487
b8698a0f 5488 /* Some of the basic blocks might not have been added to the loop.
e855c69d 5489 Add them here, until this is fixed in force_fallthru. */
b8698a0f 5490 for (i = 0;
9771b263 5491 last_added_blocks.iterate (i, &bb); i++)
e855c69d
AB
5492 if (!bb->loop_father)
5493 {
5494 add_bb_to_loop (bb, e->dest->loop_father);
5495
5496 gcc_assert (!other_bb && (new_bb->index != bb->index));
5497 other_bb = bb;
5498 }
5499 }
5500
5501 /* Add all last_added_blocks to the region. */
5502 sel_add_bb (NULL);
5503
5504 jump = find_new_jump (src, new_bb, prev_max_uid);
5505 if (jump)
5506 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5507
5508 /* Put the correct lv set on this block. */
5509 if (other_bb && !sel_bb_empty_p (other_bb))
5510 compute_live (sel_bb_head (other_bb));
5511
5512 return new_bb;
5513}
5514
5515/* Implement sched_create_empty_bb (). */
5516static basic_block
5517sel_create_empty_bb (basic_block after)
5518{
5519 basic_block new_bb;
5520
5521 new_bb = sched_create_empty_bb_1 (after);
5522
5523 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5524 later. */
9771b263
DN
5525 gcc_assert (last_added_blocks.length () == 1
5526 && last_added_blocks[0] == new_bb);
e855c69d 5527
9771b263 5528 last_added_blocks.release ();
e855c69d
AB
5529 return new_bb;
5530}
5531
5532/* Implement sched_create_recovery_block. ORIG_INSN is where block
5533 will be splitted to insert a check. */
5534basic_block
5535sel_create_recovery_block (insn_t orig_insn)
5536{
5537 basic_block first_bb, second_bb, recovery_block;
5538 basic_block before_recovery = NULL;
5539 rtx jump;
5540
5541 first_bb = BLOCK_FOR_INSN (orig_insn);
5542 if (sel_bb_end_p (orig_insn))
5543 {
5544 /* Avoid introducing an empty block while splitting. */
5545 gcc_assert (single_succ_p (first_bb));
5546 second_bb = single_succ (first_bb);
5547 }
5548 else
5549 second_bb = sched_split_block (first_bb, orig_insn);
5550
5551 recovery_block = sched_create_recovery_block (&before_recovery);
5552 if (before_recovery)
fefa31b5 5553 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
5554
5555 gcc_assert (sel_bb_empty_p (recovery_block));
5556 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5557 if (current_loops != NULL)
5558 add_bb_to_loop (recovery_block, first_bb->loop_father);
b8698a0f 5559
e855c69d 5560 sel_add_bb (recovery_block);
b8698a0f 5561
e855c69d
AB
5562 jump = BB_END (recovery_block);
5563 gcc_assert (sel_bb_head (recovery_block) == jump);
5564 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5565
5566 return recovery_block;
5567}
5568
5569/* Merge basic block B into basic block A. */
262d8232 5570static void
e855c69d
AB
5571sel_merge_blocks (basic_block a, basic_block b)
5572{
262d8232
AB
5573 gcc_assert (sel_bb_empty_p (b)
5574 && EDGE_COUNT (b->preds) == 1
5575 && EDGE_PRED (b, 0)->src == b->prev_bb);
e855c69d 5576
262d8232
AB
5577 move_bb_info (b->prev_bb, b);
5578 remove_empty_bb (b, false);
5579 merge_blocks (a, b);
e855c69d
AB
5580 change_loops_latches (b, a);
5581}
5582
5583/* A wrapper for redirect_edge_and_branch_force, which also initializes
92e265ac 5584 data structures for possibly created bb and insns. */
e855c69d
AB
5585void
5586sel_redirect_edge_and_branch_force (edge e, basic_block to)
5587{
00c4e97c 5588 basic_block jump_bb, src, orig_dest = e->dest;
e855c69d
AB
5589 int prev_max_uid;
5590 rtx jump;
92e265ac 5591 int old_seqno = -1;
b8698a0f 5592
00c4e97c
AB
5593 /* This function is now used only for bookkeeping code creation, where
5594 we'll never get the single pred of orig_dest block and thus will not
5595 hit unreachable blocks when updating dominator info. */
5596 gcc_assert (!sel_bb_empty_p (e->src)
5597 && !single_pred_p (orig_dest));
e855c69d
AB
5598 src = e->src;
5599 prev_max_uid = get_max_uid ();
92e265ac
AB
5600 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5601 when the conditional jump being redirected may become unconditional. */
5602 if (any_condjump_p (BB_END (src))
5603 && INSN_SEQNO (BB_END (src)) >= 0)
5604 old_seqno = INSN_SEQNO (BB_END (src));
e855c69d 5605
92e265ac 5606 jump_bb = redirect_edge_and_branch_force (e, to);
e855c69d
AB
5607 if (jump_bb != NULL)
5608 sel_add_bb (jump_bb);
5609
5610 /* This function could not be used to spoil the loop structure by now,
5611 thus we don't care to update anything. But check it to be sure. */
5612 if (current_loop_nest
5613 && pipelining_p)
5614 gcc_assert (loop_latch_edge (current_loop_nest));
b8698a0f 5615
e855c69d
AB
5616 jump = find_new_jump (src, jump_bb, prev_max_uid);
5617 if (jump)
92e265ac
AB
5618 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5619 old_seqno);
00c4e97c
AB
5620 set_immediate_dominator (CDI_DOMINATORS, to,
5621 recompute_dominator (CDI_DOMINATORS, to));
5622 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5623 recompute_dominator (CDI_DOMINATORS, orig_dest));
e855c69d
AB
5624}
5625
b59ab570
AM
5626/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5627 redirected edge are in reverse topological order. */
5628bool
e855c69d
AB
5629sel_redirect_edge_and_branch (edge e, basic_block to)
5630{
5631 bool latch_edge_p;
00c4e97c 5632 basic_block src, orig_dest = e->dest;
e855c69d
AB
5633 int prev_max_uid;
5634 rtx jump;
f2c45f08 5635 edge redirected;
b59ab570 5636 bool recompute_toporder_p = false;
00c4e97c 5637 bool maybe_unreachable = single_pred_p (orig_dest);
92e265ac 5638 int old_seqno = -1;
e855c69d
AB
5639
5640 latch_edge_p = (pipelining_p
5641 && current_loop_nest
5642 && e == loop_latch_edge (current_loop_nest));
5643
5644 src = e->src;
5645 prev_max_uid = get_max_uid ();
f2c45f08 5646
92e265ac
AB
5647 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5648 when the conditional jump being redirected may become unconditional. */
5649 if (any_condjump_p (BB_END (src))
5650 && INSN_SEQNO (BB_END (src)) >= 0)
5651 old_seqno = INSN_SEQNO (BB_END (src));
5652
f2c45f08
AM
5653 redirected = redirect_edge_and_branch (e, to);
5654
9771b263 5655 gcc_assert (redirected && !last_added_blocks.exists ());
e855c69d
AB
5656
5657 /* When we've redirected a latch edge, update the header. */
5658 if (latch_edge_p)
5659 {
5660 current_loop_nest->header = to;
5661 gcc_assert (loop_latch_edge (current_loop_nest));
5662 }
5663
b59ab570
AM
5664 /* In rare situations, the topological relation between the blocks connected
5665 by the redirected edge can change (see PR42245 for an example). Update
5666 block_to_bb/bb_to_block. */
5667 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5668 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5669 recompute_toporder_p = true;
5670
e855c69d
AB
5671 jump = find_new_jump (src, NULL, prev_max_uid);
5672 if (jump)
92e265ac 5673 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
b59ab570 5674
00c4e97c
AB
5675 /* Only update dominator info when we don't have unreachable blocks.
5676 Otherwise we'll update in maybe_tidy_empty_bb. */
5677 if (!maybe_unreachable)
5678 {
5679 set_immediate_dominator (CDI_DOMINATORS, to,
5680 recompute_dominator (CDI_DOMINATORS, to));
5681 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5682 recompute_dominator (CDI_DOMINATORS, orig_dest));
5683 }
b59ab570 5684 return recompute_toporder_p;
e855c69d
AB
5685}
5686
5687/* This variable holds the cfg hooks used by the selective scheduler. */
5688static struct cfg_hooks sel_cfg_hooks;
5689
5690/* Register sel-sched cfg hooks. */
5691void
5692sel_register_cfg_hooks (void)
5693{
5694 sched_split_block = sel_split_block;
5695
5696 orig_cfg_hooks = get_cfg_hooks ();
5697 sel_cfg_hooks = orig_cfg_hooks;
5698
5699 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5700
5701 set_cfg_hooks (sel_cfg_hooks);
5702
5703 sched_init_only_bb = sel_init_only_bb;
5704 sched_split_block = sel_split_block;
5705 sched_create_empty_bb = sel_create_empty_bb;
5706}
5707
5708/* Unregister sel-sched cfg hooks. */
5709void
5710sel_unregister_cfg_hooks (void)
5711{
5712 sched_create_empty_bb = NULL;
5713 sched_split_block = NULL;
5714 sched_init_only_bb = NULL;
5715
5716 set_cfg_hooks (orig_cfg_hooks);
5717}
5718\f
5719
5720/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5721 LABEL is where this jump should be directed. */
9c068b73 5722rtx_insn *
e855c69d
AB
5723create_insn_rtx_from_pattern (rtx pattern, rtx label)
5724{
9c068b73 5725 rtx_insn *insn_rtx;
e855c69d
AB
5726
5727 gcc_assert (!INSN_P (pattern));
5728
5729 start_sequence ();
5730
5731 if (label == NULL_RTX)
5732 insn_rtx = emit_insn (pattern);
b5b8b0ac
AO
5733 else if (DEBUG_INSN_P (label))
5734 insn_rtx = emit_debug_insn (pattern);
e855c69d
AB
5735 else
5736 {
5737 insn_rtx = emit_jump_insn (pattern);
5738 JUMP_LABEL (insn_rtx) = label;
5739 ++LABEL_NUSES (label);
5740 }
5741
5742 end_sequence ();
5743
a95b23b4 5744 sched_extend_luids ();
e855c69d
AB
5745 sched_extend_target ();
5746 sched_deps_init (false);
5747
5748 /* Initialize INSN_CODE now. */
5749 recog_memoized (insn_rtx);
5750 return insn_rtx;
5751}
5752
5753/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5754 must not be clonable. */
5755vinsn_t
5756create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5757{
5758 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5759
5760 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5761 return vinsn_create (insn_rtx, force_unique_p);
5762}
5763
5764/* Create a copy of INSN_RTX. */
9c068b73 5765rtx_insn *
e855c69d
AB
5766create_copy_of_insn_rtx (rtx insn_rtx)
5767{
9c068b73
DM
5768 rtx_insn *res;
5769 rtx link;
e855c69d 5770
b5b8b0ac
AO
5771 if (DEBUG_INSN_P (insn_rtx))
5772 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5773 insn_rtx);
5774
e855c69d
AB
5775 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5776
5777 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5778 NULL_RTX);
d734e6c4
JJ
5779
5780 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5781 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5782 there too, but are supposed to be sticky, so we copy them. */
5783 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5784 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5785 && REG_NOTE_KIND (link) != REG_EQUAL
5786 && REG_NOTE_KIND (link) != REG_EQUIV)
5787 {
5788 if (GET_CODE (link) == EXPR_LIST)
5789 add_reg_note (res, REG_NOTE_KIND (link),
5790 copy_insn_1 (XEXP (link, 0)));
5791 else
5792 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5793 }
5794
e855c69d
AB
5795 return res;
5796}
5797
5798/* Change vinsn field of EXPR to hold NEW_VINSN. */
5799void
5800change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5801{
5802 vinsn_detach (EXPR_VINSN (expr));
5803
5804 EXPR_VINSN (expr) = new_vinsn;
5805 vinsn_attach (new_vinsn);
5806}
5807
5808/* Helpers for global init. */
5809/* This structure is used to be able to call existing bundling mechanism
5810 and calculate insn priorities. */
b8698a0f 5811static struct haifa_sched_info sched_sel_haifa_sched_info =
e855c69d
AB
5812{
5813 NULL, /* init_ready_list */
5814 NULL, /* can_schedule_ready_p */
5815 NULL, /* schedule_more_p */
5816 NULL, /* new_ready */
5817 NULL, /* rgn_rank */
5818 sel_print_insn, /* rgn_print_insn */
5819 contributes_to_priority,
356c23b3 5820 NULL, /* insn_finishes_block_p */
e855c69d
AB
5821
5822 NULL, NULL,
5823 NULL, NULL,
5824 0, 0,
5825
5826 NULL, /* add_remove_insn */
5827 NULL, /* begin_schedule_ready */
86014d07 5828 NULL, /* begin_move_insn */
e855c69d 5829 NULL, /* advance_target_bb */
26965010
BS
5830
5831 NULL,
5832 NULL,
5833
e855c69d
AB
5834 SEL_SCHED | NEW_BBS
5835};
5836
5837/* Setup special insns used in the scheduler. */
b8698a0f 5838void
e855c69d
AB
5839setup_nop_and_exit_insns (void)
5840{
5841 gcc_assert (nop_pattern == NULL_RTX
5842 && exit_insn == NULL_RTX);
5843
9ef1bf71 5844 nop_pattern = constm1_rtx;
e855c69d
AB
5845
5846 start_sequence ();
5847 emit_insn (nop_pattern);
5848 exit_insn = get_insns ();
5849 end_sequence ();
fefa31b5 5850 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
5851}
5852
5853/* Free special insns used in the scheduler. */
5854void
5855free_nop_and_exit_insns (void)
5856{
c5db5458 5857 exit_insn = NULL;
e855c69d
AB
5858 nop_pattern = NULL_RTX;
5859}
5860
5861/* Setup a special vinsn used in new insns initialization. */
5862void
5863setup_nop_vinsn (void)
5864{
5865 nop_vinsn = vinsn_create (exit_insn, false);
5866 vinsn_attach (nop_vinsn);
5867}
5868
5869/* Free a special vinsn used in new insns initialization. */
5870void
5871free_nop_vinsn (void)
5872{
5873 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5874 vinsn_detach (nop_vinsn);
5875 nop_vinsn = NULL;
5876}
5877
5878/* Call a set_sched_flags hook. */
5879void
5880sel_set_sched_flags (void)
5881{
b8698a0f 5882 /* ??? This means that set_sched_flags were called, and we decided to
e855c69d 5883 support speculation. However, set_sched_flags also modifies flags
b8698a0f 5884 on current_sched_info, doing this only at global init. And we
e855c69d
AB
5885 sometimes change c_s_i later. So put the correct flags again. */
5886 if (spec_info && targetm.sched.set_sched_flags)
5887 targetm.sched.set_sched_flags (spec_info);
5888}
5889
5890/* Setup pointers to global sched info structures. */
5891void
5892sel_setup_sched_infos (void)
5893{
5894 rgn_setup_common_sched_info ();
5895
5896 memcpy (&sel_common_sched_info, common_sched_info,
5897 sizeof (sel_common_sched_info));
5898
5899 sel_common_sched_info.fix_recovery_cfg = NULL;
5900 sel_common_sched_info.add_block = NULL;
5901 sel_common_sched_info.estimate_number_of_insns
5902 = sel_estimate_number_of_insns;
5903 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5904 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5905
5906 common_sched_info = &sel_common_sched_info;
5907
5908 current_sched_info = &sched_sel_haifa_sched_info;
b8698a0f 5909 current_sched_info->sched_max_insns_priority =
e855c69d 5910 get_rgn_sched_max_insns_priority ();
b8698a0f 5911
e855c69d
AB
5912 sel_set_sched_flags ();
5913}
5914\f
5915
5916/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5917 *BB_ORD_INDEX after that is increased. */
5918static void
5919sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5920{
5921 RGN_NR_BLOCKS (rgn) += 1;
5922 RGN_DONT_CALC_DEPS (rgn) = 0;
5923 RGN_HAS_REAL_EBB (rgn) = 0;
5924 CONTAINING_RGN (bb->index) = rgn;
5925 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5926 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5927 (*bb_ord_index)++;
5928
5929 /* FIXME: it is true only when not scheduling ebbs. */
5930 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5931}
5932
5933/* Functions to support pipelining of outer loops. */
5934
5935/* Creates a new empty region and returns it's number. */
5936static int
5937sel_create_new_region (void)
5938{
5939 int new_rgn_number = nr_regions;
5940
5941 RGN_NR_BLOCKS (new_rgn_number) = 0;
5942
5943 /* FIXME: This will work only when EBBs are not created. */
5944 if (new_rgn_number != 0)
b8698a0f 5945 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
e855c69d
AB
5946 RGN_NR_BLOCKS (new_rgn_number - 1);
5947 else
5948 RGN_BLOCKS (new_rgn_number) = 0;
5949
5950 /* Set the blocks of the next region so the other functions may
5951 calculate the number of blocks in the region. */
b8698a0f 5952 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
e855c69d
AB
5953 RGN_NR_BLOCKS (new_rgn_number);
5954
5955 nr_regions++;
5956
5957 return new_rgn_number;
5958}
5959
5960/* If X has a smaller topological sort number than Y, returns -1;
5961 if greater, returns 1. */
5962static int
5963bb_top_order_comparator (const void *x, const void *y)
5964{
5965 basic_block bb1 = *(const basic_block *) x;
5966 basic_block bb2 = *(const basic_block *) y;
5967
b8698a0f
L
5968 gcc_assert (bb1 == bb2
5969 || rev_top_order_index[bb1->index]
e855c69d
AB
5970 != rev_top_order_index[bb2->index]);
5971
5972 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5973 bbs with greater number should go earlier. */
5974 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5975 return -1;
5976 else
5977 return 1;
5978}
5979
b8698a0f 5980/* Create a region for LOOP and return its number. If we don't want
e855c69d
AB
5981 to pipeline LOOP, return -1. */
5982static int
5983make_region_from_loop (struct loop *loop)
5984{
5985 unsigned int i;
5986 int new_rgn_number = -1;
5987 struct loop *inner;
5988
5989 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5990 int bb_ord_index = 0;
5991 basic_block *loop_blocks;
5992 basic_block preheader_block;
5993
b8698a0f 5994 if (loop->num_nodes
e855c69d
AB
5995 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5996 return -1;
b8698a0f 5997
e855c69d
AB
5998 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5999 for (inner = loop->inner; inner; inner = inner->inner)
6000 if (flow_bb_inside_loop_p (inner, loop->latch))
6001 return -1;
6002
6003 loop->ninsns = num_loop_insns (loop);
6004 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6005 return -1;
6006
6007 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6008
6009 for (i = 0; i < loop->num_nodes; i++)
6010 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6011 {
6012 free (loop_blocks);
6013 return -1;
6014 }
6015
6016 preheader_block = loop_preheader_edge (loop)->src;
6017 gcc_assert (preheader_block);
6018 gcc_assert (loop_blocks[0] == loop->header);
6019
6020 new_rgn_number = sel_create_new_region ();
6021
6022 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
d7c028c0 6023 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
e855c69d
AB
6024
6025 for (i = 0; i < loop->num_nodes; i++)
6026 {
6027 /* Add only those blocks that haven't been scheduled in the inner loop.
6028 The exception is the basic blocks with bookkeeping code - they should
b8698a0f 6029 be added to the region (and they actually don't belong to the loop
e855c69d
AB
6030 body, but to the region containing that loop body). */
6031
6032 gcc_assert (new_rgn_number >= 0);
6033
d7c028c0 6034 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
e855c69d 6035 {
b8698a0f 6036 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
e855c69d 6037 new_rgn_number);
d7c028c0 6038 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
e855c69d
AB
6039 }
6040 }
6041
6042 free (loop_blocks);
6043 MARK_LOOP_FOR_PIPELINING (loop);
6044
6045 return new_rgn_number;
6046}
6047
6048/* Create a new region from preheader blocks LOOP_BLOCKS. */
6049void
9771b263 6050make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
e855c69d
AB
6051{
6052 unsigned int i;
6053 int new_rgn_number = -1;
6054 basic_block bb;
6055
6056 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6057 int bb_ord_index = 0;
6058
6059 new_rgn_number = sel_create_new_region ();
6060
9771b263 6061 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
e855c69d
AB
6062 {
6063 gcc_assert (new_rgn_number >= 0);
6064
6065 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6066 }
6067
9771b263 6068 vec_free (loop_blocks);
e855c69d
AB
6069}
6070
6071
6072/* Create region(s) from loop nest LOOP, such that inner loops will be
b8698a0f 6073 pipelined before outer loops. Returns true when a region for LOOP
e855c69d
AB
6074 is created. */
6075static bool
6076make_regions_from_loop_nest (struct loop *loop)
b8698a0f 6077{
e855c69d
AB
6078 struct loop *cur_loop;
6079 int rgn_number;
6080
6081 /* Traverse all inner nodes of the loop. */
6082 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
d7c028c0 6083 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
e855c69d
AB
6084 return false;
6085
6086 /* At this moment all regular inner loops should have been pipelined.
6087 Try to create a region from this loop. */
6088 rgn_number = make_region_from_loop (loop);
6089
6090 if (rgn_number < 0)
6091 return false;
6092
9771b263 6093 loop_nests.safe_push (loop);
e855c69d
AB
6094 return true;
6095}
6096
6097/* Initalize data structures needed. */
6098void
6099sel_init_pipelining (void)
6100{
6101 /* Collect loop information to be used in outer loops pipelining. */
6102 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6103 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6104 | LOOPS_HAVE_RECORDED_EXITS
6105 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6106 current_loop_nest = NULL;
6107
8b1c6fd7 6108 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 6109 bitmap_clear (bbs_in_loop_rgns);
e855c69d
AB
6110
6111 recompute_rev_top_order ();
6112}
6113
6114/* Returns a struct loop for region RGN. */
6115loop_p
6116get_loop_nest_for_rgn (unsigned int rgn)
6117{
6118 /* Regions created with extend_rgns don't have corresponding loop nests,
6119 because they don't represent loops. */
9771b263
DN
6120 if (rgn < loop_nests.length ())
6121 return loop_nests[rgn];
e855c69d
AB
6122 else
6123 return NULL;
6124}
6125
6126/* True when LOOP was included into pipelining regions. */
6127bool
6128considered_for_pipelining_p (struct loop *loop)
6129{
6130 if (loop_depth (loop) == 0)
6131 return false;
6132
b8698a0f
L
6133 /* Now, the loop could be too large or irreducible. Check whether its
6134 region is in LOOP_NESTS.
6135 We determine the region number of LOOP as the region number of its
6136 latch. We can't use header here, because this header could be
e855c69d
AB
6137 just removed preheader and it will give us the wrong region number.
6138 Latch can't be used because it could be in the inner loop too. */
8ec4d0ad 6139 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
e855c69d
AB
6140 {
6141 int rgn = CONTAINING_RGN (loop->latch->index);
6142
9771b263 6143 gcc_assert ((unsigned) rgn < loop_nests.length ());
e855c69d
AB
6144 return true;
6145 }
b8698a0f 6146
e855c69d
AB
6147 return false;
6148}
6149
b8698a0f 6150/* Makes regions from the rest of the blocks, after loops are chosen
e855c69d
AB
6151 for pipelining. */
6152static void
6153make_regions_from_the_rest (void)
6154{
6155 int cur_rgn_blocks;
6156 int *loop_hdr;
6157 int i;
6158
6159 basic_block bb;
6160 edge e;
6161 edge_iterator ei;
6162 int *degree;
e855c69d
AB
6163
6164 /* Index in rgn_bb_table where to start allocating new regions. */
6165 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
e855c69d 6166
b8698a0f 6167 /* Make regions from all the rest basic blocks - those that don't belong to
e855c69d
AB
6168 any loop or belong to irreducible loops. Prepare the data structures
6169 for extend_rgns. */
6170
6171 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6172 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6173 loop. */
8b1c6fd7
DM
6174 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6175 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
e855c69d
AB
6176
6177
6178 /* For each basic block that belongs to some loop assign the number
6179 of innermost loop it belongs to. */
8b1c6fd7 6180 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
e855c69d
AB
6181 loop_hdr[i] = -1;
6182
11cd3bed 6183 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6184 {
6185 if (bb->loop_father && !bb->loop_father->num == 0
6186 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6187 loop_hdr[bb->index] = bb->loop_father->num;
6188 }
6189
b8698a0f 6190 /* For each basic block degree is calculated as the number of incoming
e855c69d
AB
6191 edges, that are going out of bbs that are not yet scheduled.
6192 The basic blocks that are scheduled have degree value of zero. */
11cd3bed 6193 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6194 {
6195 degree[bb->index] = 0;
6196
d7c028c0 6197 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
e855c69d
AB
6198 {
6199 FOR_EACH_EDGE (e, ei, bb->preds)
d7c028c0 6200 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
e855c69d
AB
6201 degree[bb->index]++;
6202 }
6203 else
6204 degree[bb->index] = -1;
6205 }
6206
6207 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6208
6209 /* Any block that did not end up in a region is placed into a region
6210 by itself. */
11cd3bed 6211 FOR_EACH_BB_FN (bb, cfun)
e855c69d
AB
6212 if (degree[bb->index] >= 0)
6213 {
6214 rgn_bb_table[cur_rgn_blocks] = bb->index;
6215 RGN_NR_BLOCKS (nr_regions) = 1;
6216 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6217 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6218 RGN_HAS_REAL_EBB (nr_regions) = 0;
6219 CONTAINING_RGN (bb->index) = nr_regions++;
6220 BLOCK_TO_BB (bb->index) = 0;
6221 }
6222
6223 free (degree);
6224 free (loop_hdr);
6225}
6226
6227/* Free data structures used in pipelining of loops. */
6228void sel_finish_pipelining (void)
6229{
e855c69d
AB
6230 struct loop *loop;
6231
6232 /* Release aux fields so we don't free them later by mistake. */
f0bd40b1 6233 FOR_EACH_LOOP (loop, 0)
e855c69d
AB
6234 loop->aux = NULL;
6235
6236 loop_optimizer_finalize ();
6237
9771b263 6238 loop_nests.release ();
e855c69d
AB
6239
6240 free (rev_top_order_index);
6241 rev_top_order_index = NULL;
6242}
6243
b8698a0f 6244/* This function replaces the find_rgns when
e855c69d 6245 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
b8698a0f 6246void
e855c69d
AB
6247sel_find_rgns (void)
6248{
6249 sel_init_pipelining ();
6250 extend_regions ();
6251
6252 if (current_loops)
6253 {
6254 loop_p loop;
e855c69d 6255
f0bd40b1
RB
6256 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6257 ? LI_FROM_INNERMOST
6258 : LI_ONLY_INNERMOST))
e855c69d
AB
6259 make_regions_from_loop_nest (loop);
6260 }
6261
6262 /* Make regions from all the rest basic blocks and schedule them.
b8698a0f 6263 These blocks include blocks that don't belong to any loop or belong
e855c69d
AB
6264 to irreducible loops. */
6265 make_regions_from_the_rest ();
6266
6267 /* We don't need bbs_in_loop_rgns anymore. */
6268 sbitmap_free (bbs_in_loop_rgns);
6269 bbs_in_loop_rgns = NULL;
6270}
6271
ea4d630f
AM
6272/* Add the preheader blocks from previous loop to current region taking
6273 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
e855c69d
AB
6274 This function is only used with -fsel-sched-pipelining-outer-loops. */
6275void
ea4d630f 6276sel_add_loop_preheaders (bb_vec_t *bbs)
e855c69d
AB
6277{
6278 int i;
6279 basic_block bb;
9771b263 6280 vec<basic_block> *preheader_blocks
e855c69d
AB
6281 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6282
9771b263
DN
6283 if (!preheader_blocks)
6284 return;
6285
6286 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
8ec4d0ad 6287 {
9771b263
DN
6288 bbs->safe_push (bb);
6289 last_added_blocks.safe_push (bb);
e855c69d 6290 sel_add_bb (bb);
8ec4d0ad 6291 }
e855c69d 6292
9771b263 6293 vec_free (preheader_blocks);
e855c69d
AB
6294}
6295
b8698a0f
L
6296/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6297 Please note that the function should also work when pipelining_p is
6298 false, because it is used when deciding whether we should or should
e855c69d
AB
6299 not reschedule pipelined code. */
6300bool
6301sel_is_loop_preheader_p (basic_block bb)
6302{
6303 if (current_loop_nest)
6304 {
6305 struct loop *outer;
6306
6307 if (preheader_removed)
6308 return false;
6309
6310 /* Preheader is the first block in the region. */
6311 if (BLOCK_TO_BB (bb->index) == 0)
6312 return true;
6313
6314 /* We used to find a preheader with the topological information.
6315 Check that the above code is equivalent to what we did before. */
6316
6317 if (in_current_region_p (current_loop_nest->header))
b8698a0f 6318 gcc_assert (!(BLOCK_TO_BB (bb->index)
e855c69d
AB
6319 < BLOCK_TO_BB (current_loop_nest->header->index)));
6320
6321 /* Support the situation when the latch block of outer loop
6322 could be from here. */
6323 for (outer = loop_outer (current_loop_nest);
6324 outer;
6325 outer = loop_outer (outer))
6326 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6327 gcc_unreachable ();
6328 }
6329
6330 return false;
6331}
6332
753de8cf
AM
6333/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6334 can be removed, making the corresponding edge fallthrough (assuming that
6335 all basic blocks between JUMP_BB and DEST_BB are empty). */
6336static bool
6337bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
e855c69d 6338{
b4550bf7
AM
6339 if (!onlyjump_p (BB_END (jump_bb))
6340 || tablejump_p (BB_END (jump_bb), NULL, NULL))
e855c69d
AB
6341 return false;
6342
b8698a0f 6343 /* Several outgoing edges, abnormal edge or destination of jump is
e855c69d
AB
6344 not DEST_BB. */
6345 if (EDGE_COUNT (jump_bb->succs) != 1
753de8cf 6346 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
e855c69d
AB
6347 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6348 return false;
6349
6350 /* If not anything of the upper. */
6351 return true;
6352}
6353
6354/* Removes the loop preheader from the current region and saves it in
b8698a0f 6355 PREHEADER_BLOCKS of the father loop, so they will be added later to
e855c69d
AB
6356 region that represents an outer loop. */
6357static void
6358sel_remove_loop_preheader (void)
6359{
6360 int i, old_len;
6361 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6362 basic_block bb;
6363 bool all_empty_p = true;
9771b263 6364 vec<basic_block> *preheader_blocks
e855c69d
AB
6365 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6366
9771b263
DN
6367 vec_check_alloc (preheader_blocks, 0);
6368
e855c69d 6369 gcc_assert (current_loop_nest);
9771b263 6370 old_len = preheader_blocks->length ();
e855c69d
AB
6371
6372 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6373 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6374 {
06e28de2 6375 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
e855c69d 6376
b8698a0f 6377 /* If the basic block belongs to region, but doesn't belong to
e855c69d
AB
6378 corresponding loop, then it should be a preheader. */
6379 if (sel_is_loop_preheader_p (bb))
6380 {
9771b263 6381 preheader_blocks->safe_push (bb);
e855c69d
AB
6382 if (BB_END (bb) != bb_note (bb))
6383 all_empty_p = false;
6384 }
6385 }
b8698a0f 6386
e855c69d 6387 /* Remove these blocks only after iterating over the whole region. */
9771b263 6388 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
e855c69d 6389 {
9771b263 6390 bb = (*preheader_blocks)[i];
e855c69d
AB
6391 sel_remove_bb (bb, false);
6392 }
6393
6394 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6395 {
6396 if (!all_empty_p)
6397 /* Immediately create new region from preheader. */
9771b263 6398 make_region_from_loop_preheader (preheader_blocks);
e855c69d
AB
6399 else
6400 {
6401 /* If all preheader blocks are empty - dont create new empty region.
6402 Instead, remove them completely. */
9771b263 6403 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
e855c69d
AB
6404 {
6405 edge e;
6406 edge_iterator ei;
6407 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6408
6409 /* Redirect all incoming edges to next basic block. */
6410 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6411 {
6412 if (! (e->flags & EDGE_FALLTHRU))
6413 redirect_edge_and_branch (e, bb->next_bb);
6414 else
6415 redirect_edge_succ (e, bb->next_bb);
6416 }
6417 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6418 delete_and_free_basic_block (bb);
6419
b8698a0f
L
6420 /* Check if after deleting preheader there is a nonconditional
6421 jump in PREV_BB that leads to the next basic block NEXT_BB.
6422 If it is so - delete this jump and clear data sets of its
e855c69d
AB
6423 basic block if it becomes empty. */
6424 if (next_bb->prev_bb == prev_bb
fefa31b5 6425 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
753de8cf 6426 && bb_has_removable_jump_to_p (prev_bb, next_bb))
e855c69d
AB
6427 {
6428 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6429 if (BB_END (prev_bb) == bb_note (prev_bb))
6430 free_data_sets (prev_bb);
6431 }
00c4e97c
AB
6432
6433 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6434 recompute_dominator (CDI_DOMINATORS,
6435 next_bb));
e855c69d
AB
6436 }
6437 }
9771b263 6438 vec_free (preheader_blocks);
e855c69d
AB
6439 }
6440 else
6441 /* Store preheader within the father's loop structure. */
6442 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6443 preheader_blocks);
6444}
68975683
DM
6445
6446rtx_insn *VINSN_INSN_RTX (vinsn_t vi)
6447{
6448 return safe_as_a <rtx_insn *> (vi->insn_rtx);
6449}
6450
6451rtx& SET_VINSN_INSN_RTX (vinsn_t vi)
6452{
6453 return vi->insn_rtx;
6454}
6455
c2fc1aee
DM
6456rtx_insn *BB_NOTE_LIST (basic_block bb)
6457{
6458 rtx note_list = SEL_REGION_BB_INFO (bb)->note_list;
6459 return safe_as_a <rtx_insn *> (note_list);
6460}
6461
6462rtx& SET_BB_NOTE_LIST (basic_block bb)
6463{
6464 return SEL_REGION_BB_INFO (bb)->note_list;
6465}
6466
c1286e0b
DM
6467rtx_insn *BND_TO (bnd_t bnd)
6468{
6469 return safe_as_a <rtx_insn *> (bnd->to);
6470}
6471
6472insn_t& SET_BND_TO (bnd_t bnd)
6473{
6474 return bnd->to;
6475}
6476
e855c69d 6477#endif