]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.h
2013-08-23 Kaz Kojima <kkojima@gcc.gnu.org>
[thirdparty/gcc.git] / gcc / sel-sched-ir.h
CommitLineData
e1ab7874 1/* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
711789cc 3 Copyright (C) 2006-2013 Free Software Foundation, Inc.
e1ab7874 4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_SEL_SCHED_IR_H
22#define GCC_SEL_SCHED_IR_H
23
24/* For state_t. */
25#include "insn-attr.h"
0f71a633 26#include "regset.h"
e1ab7874 27#include "basic-block.h"
28/* For reg_note. */
29#include "rtl.h"
30#include "ggc.h"
31#include "bitmap.h"
e1ab7874 32#include "sched-int.h"
33#include "cfgloop.h"
34
35/* tc_t is a short for target context. This is a state of the target
36 backend. */
37typedef void *tc_t;
38
39/* List data types used for av sets, fences, paths, and boundaries. */
40
41/* Forward declarations for types that are part of some list nodes. */
42struct _list_node;
43
44/* List backend. */
45typedef struct _list_node *_list_t;
46#define _LIST_NEXT(L) ((L)->next)
47
48/* Instruction data that is part of vinsn type. */
49struct idata_def;
50typedef struct idata_def *idata_t;
51
52/* A virtual instruction, i.e. an instruction as seen by the scheduler. */
53struct vinsn_def;
54typedef struct vinsn_def *vinsn_t;
55
56/* RTX list.
57 This type is the backend for ilist. */
58typedef _list_t _xlist_t;
59#define _XLIST_X(L) ((L)->u.x)
60#define _XLIST_NEXT(L) (_LIST_NEXT (L))
61
62/* Instruction. */
63typedef rtx insn_t;
64
65/* List of insns. */
66typedef _xlist_t ilist_t;
67#define ILIST_INSN(L) (_XLIST_X (L))
68#define ILIST_NEXT(L) (_XLIST_NEXT (L))
69
48e1416a 70/* This lists possible transformations that done locally, i.e. in
e1ab7874 71 moveup_expr. */
72enum local_trans_type
73 {
74 TRANS_SUBSTITUTION,
75 TRANS_SPECULATION
76 };
77
48e1416a 78/* This struct is used to record the history of expression's
e1ab7874 79 transformations. */
80struct expr_history_def_1
81{
82 /* UID of the insn. */
83 unsigned uid;
84
85 /* How the expression looked like. */
86 vinsn_t old_expr_vinsn;
87
88 /* How the expression looks after the transformation. */
89 vinsn_t new_expr_vinsn;
90
91 /* And its speculative status. */
92 ds_t spec_ds;
93
94 /* Type of the transformation. */
95 enum local_trans_type type;
96};
97
98typedef struct expr_history_def_1 expr_history_def;
99
e1ab7874 100
101/* Expression information. */
102struct _expr
103{
104 /* Insn description. */
105 vinsn_t vinsn;
106
107 /* SPEC is the degree of speculativeness.
108 FIXME: now spec is increased when an rhs is moved through a
109 conditional, thus showing only control speculativeness. In the
110 future we'd like to count data spec separately to allow a better
111 control on scheduling. */
112 int spec;
113
48e1416a 114 /* Degree of speculativeness measured as probability of executing
115 instruction's original basic block given relative to
e1ab7874 116 the current scheduling point. */
117 int usefulness;
118
119 /* A priority of this expression. */
120 int priority;
121
122 /* A priority adjustment of this expression. */
123 int priority_adj;
124
125 /* Number of times the insn was scheduled. */
126 int sched_times;
127
48e1416a 128 /* A basic block index this was originated from. Zero when there is
e1ab7874 129 more than one originator. */
130 int orig_bb_index;
131
132 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
133 point. */
134 ds_t spec_done_ds;
135
136 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
137 (used only during move_op ()). */
138 ds_t spec_to_check_ds;
139
48e1416a 140 /* Cycle on which original insn was scheduled. Zero when it has not yet
e1ab7874 141 been scheduled or more than one originator. */
142 int orig_sched_cycle;
143
144 /* This vector contains the history of insn's transformations. */
f1f41a6c 145 vec<expr_history_def> history_of_changes;
e1ab7874 146
48e1416a 147 /* True (1) when original target (register or memory) of this instruction
e1ab7874 148 is available for scheduling, false otherwise. -1 means we're not sure;
149 please run find_used_regs to clarify. */
150 signed char target_available;
151
48e1416a 152 /* True when this expression needs a speculation check to be scheduled.
e1ab7874 153 This is used during find_used_regs. */
154 BOOL_BITFIELD needs_spec_check_p : 1;
155
48e1416a 156 /* True when the expression was substituted. Used for statistical
e1ab7874 157 purposes. */
158 BOOL_BITFIELD was_substituted : 1;
159
160 /* True when the expression was renamed. */
161 BOOL_BITFIELD was_renamed : 1;
162
163 /* True when expression can't be moved. */
164 BOOL_BITFIELD cant_move : 1;
165};
166
167typedef struct _expr expr_def;
168typedef expr_def *expr_t;
169
170#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
171#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
172#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
173#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
174#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
175#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
176#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
177
178#define EXPR_SPEC(EXPR) ((EXPR)->spec)
179#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
180#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
181#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
182#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
183#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
184#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
185#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
186#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
187#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
188#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
189#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
190#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
191#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
192#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
193
e1ab7874 194/* Insn definition for list of original insns in find_used_regs. */
195struct _def
196{
197 insn_t orig_insn;
198
199 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
200 rhs from two different places, but only one of the code motion paths
48e1416a 201 crosses a call, we can't use any of the call_used_regs, no matter which
e1ab7874 202 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
203 to static params. */
204 bool crosses_call;
205};
206typedef struct _def *def_t;
207
208
209/* Availability sets are sets of expressions we're scheduling. */
210typedef _list_t av_set_t;
211#define _AV_SET_EXPR(L) (&(L)->u.expr)
212#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
213
214
215/* Boundary of the current fence group. */
216struct _bnd
217{
218 /* The actual boundary instruction. */
219 insn_t to;
220
221 /* Its path to the fence. */
222 ilist_t ptr;
223
224 /* Availability set at the boundary. */
225 av_set_t av;
226
227 /* This set moved to the fence. */
228 av_set_t av1;
48e1416a 229
e1ab7874 230 /* Deps context at this boundary. As long as we have one boundary per fence,
231 this is just a pointer to the same deps context as in the corresponding
232 fence. */
233 deps_t dc;
234};
235typedef struct _bnd *bnd_t;
236#define BND_TO(B) ((B)->to)
237
238/* PTR stands not for pointer as you might think, but as a Path To Root of the
239 current instruction group from boundary B. */
240#define BND_PTR(B) ((B)->ptr)
241#define BND_AV(B) ((B)->av)
242#define BND_AV1(B) ((B)->av1)
243#define BND_DC(B) ((B)->dc)
244
245/* List of boundaries. */
246typedef _list_t blist_t;
247#define BLIST_BND(L) (&(L)->u.bnd)
248#define BLIST_NEXT(L) (_LIST_NEXT (L))
249
250
251/* Fence information. A fence represents current scheduling point and also
252 blocks code motion through it when pipelining. */
253struct _fence
254{
255 /* Insn before which we gather an instruction group.*/
256 insn_t insn;
257
258 /* Modeled state of the processor pipeline. */
259 state_t state;
260
261 /* Current cycle that is being scheduled on this fence. */
262 int cycle;
263
264 /* Number of insns that were scheduled on the current cycle.
265 This information has to be local to a fence. */
266 int cycle_issued_insns;
267
268 /* At the end of fill_insns () this field holds the list of the instructions
269 that are inner boundaries of the scheduled parallel group. */
270 ilist_t bnds;
271
272 /* Deps context at this fence. It is used to model dependencies at the
273 fence so that insn ticks can be properly evaluated. */
274 deps_t dc;
275
276 /* Target context at this fence. Used to save and load any local target
277 scheduling information when changing fences. */
278 tc_t tc;
279
280 /* A vector of insns that are scheduled but not yet completed. */
f1f41a6c 281 vec<rtx, va_gc> *executing_insns;
e1ab7874 282
48e1416a 283 /* A vector indexed by UIDs that caches the earliest cycle on which
e1ab7874 284 an insn can be scheduled on this fence. */
285 int *ready_ticks;
286
287 /* Its size. */
288 int ready_ticks_size;
289
290 /* Insn, which has been scheduled last on this fence. */
291 rtx last_scheduled_insn;
292
abb9c563 293 /* The last value of can_issue_more variable on this fence. */
294 int issue_more;
295
e1ab7874 296 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
297 rtx sched_next;
298
299 /* True if fill_insns processed this fence. */
300 BOOL_BITFIELD processed_p : 1;
301
302 /* True if fill_insns actually scheduled something on this fence. */
303 BOOL_BITFIELD scheduled_p : 1;
304
305 /* True when the next insn scheduled here would start a cycle. */
306 BOOL_BITFIELD starts_cycle_p : 1;
307
308 /* True when the next insn scheduled here would be scheduled after a stall. */
309 BOOL_BITFIELD after_stall_p : 1;
310};
311typedef struct _fence *fence_t;
312
313#define FENCE_INSN(F) ((F)->insn)
314#define FENCE_STATE(F) ((F)->state)
315#define FENCE_BNDS(F) ((F)->bnds)
316#define FENCE_PROCESSED_P(F) ((F)->processed_p)
317#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
318#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
319#define FENCE_CYCLE(F) ((F)->cycle)
320#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
321#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
322#define FENCE_DC(F) ((F)->dc)
323#define FENCE_TC(F) ((F)->tc)
324#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
abb9c563 325#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
e1ab7874 326#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
327#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
328#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
329#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
330
331/* List of fences. */
332typedef _list_t flist_t;
333#define FLIST_FENCE(L) (&(L)->u.fence)
334#define FLIST_NEXT(L) (_LIST_NEXT (L))
335
336/* List of fences with pointer to the tail node. */
337struct flist_tail_def
338{
339 flist_t head;
340 flist_t *tailp;
341};
342
343typedef struct flist_tail_def *flist_tail_t;
344#define FLIST_TAIL_HEAD(L) ((L)->head)
345#define FLIST_TAIL_TAILP(L) ((L)->tailp)
346
347/* List node information. A list node can be any of the types above. */
348struct _list_node
349{
350 _list_t next;
351
352 union
353 {
354 rtx x;
355 struct _bnd bnd;
356 expr_def expr;
357 struct _fence fence;
358 struct _def def;
359 void *data;
360 } u;
361};
362\f
363
364/* _list_t functions.
365 All of _*list_* functions are used through accessor macros, thus
366 we can't move them in sel-sched-ir.c. */
367extern alloc_pool sched_lists_pool;
368
369static inline _list_t
370_list_alloc (void)
371{
372 return (_list_t) pool_alloc (sched_lists_pool);
373}
374
375static inline void
376_list_add (_list_t *lp)
377{
378 _list_t l = _list_alloc ();
379
380 _LIST_NEXT (l) = *lp;
381 *lp = l;
382}
383
384static inline void
385_list_remove_nofree (_list_t *lp)
386{
387 _list_t n = *lp;
388
389 *lp = _LIST_NEXT (n);
390}
391
392static inline void
393_list_remove (_list_t *lp)
394{
395 _list_t n = *lp;
396
397 *lp = _LIST_NEXT (n);
398 pool_free (sched_lists_pool, n);
399}
400
401static inline void
402_list_clear (_list_t *l)
403{
404 while (*l)
405 _list_remove (l);
406}
407\f
408
409/* List iterator backend. */
410typedef struct
411{
412 /* The list we're iterating. */
413 _list_t *lp;
414
415 /* True when this iterator supprts removing. */
416 bool can_remove_p;
417
418 /* True when we've actually removed something. */
419 bool removed_p;
420} _list_iterator;
421
422static inline void
423_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
424{
425 ip->lp = lp;
426 ip->can_remove_p = can_remove_p;
427 ip->removed_p = false;
428}
429
430static inline void
431_list_iter_next (_list_iterator *ip)
432{
433 if (!ip->removed_p)
434 ip->lp = &_LIST_NEXT (*ip->lp);
435 else
436 ip->removed_p = false;
437}
438
439static inline void
440_list_iter_remove (_list_iterator *ip)
441{
442 gcc_assert (!ip->removed_p && ip->can_remove_p);
443 _list_remove (ip->lp);
444 ip->removed_p = true;
445}
446
447static inline void
448_list_iter_remove_nofree (_list_iterator *ip)
449{
450 gcc_assert (!ip->removed_p && ip->can_remove_p);
451 _list_remove_nofree (ip->lp);
452 ip->removed_p = true;
453}
454
455/* General macros to traverse a list. FOR_EACH_* interfaces are
456 implemented using these. */
457#define _FOR_EACH(TYPE, ELEM, I, L) \
458 for (_list_iter_start (&(I), &(L), false); \
459 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
460 _list_iter_next (&(I)))
461
462#define _FOR_EACH_1(TYPE, ELEM, I, LP) \
463 for (_list_iter_start (&(I), (LP), true); \
464 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
48e1416a 465 _list_iter_next (&(I)))
e1ab7874 466\f
467
468/* _xlist_t functions. */
469
470static inline void
471_xlist_add (_xlist_t *lp, rtx x)
472{
473 _list_add (lp);
474 _XLIST_X (*lp) = x;
475}
476
477#define _xlist_remove(LP) (_list_remove (LP))
478#define _xlist_clear(LP) (_list_clear (LP))
479
480static inline bool
481_xlist_is_in_p (_xlist_t l, rtx x)
482{
483 while (l)
484 {
485 if (_XLIST_X (l) == x)
486 return true;
487 l = _XLIST_NEXT (l);
488 }
489
490 return false;
491}
492
493/* Used through _FOR_EACH. */
494static inline bool
495_list_iter_cond_x (_xlist_t l, rtx *xp)
496{
497 if (l)
498 {
499 *xp = _XLIST_X (l);
500 return true;
501 }
502
503 return false;
504}
505
506#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
507
508typedef _list_iterator _xlist_iterator;
509#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
510#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
511\f
512
513/* ilist_t functions. Instruction lists are simply RTX lists. */
514
515#define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
516#define ilist_remove(LP) (_xlist_remove (LP))
517#define ilist_clear(LP) (_xlist_clear (LP))
518#define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
519#define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
520
521typedef _xlist_iterator ilist_iterator;
522#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
523#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
524\f
525
526/* Av set iterators. */
527typedef _list_iterator av_set_iterator;
528#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
529#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
530
c7d89805 531inline bool
e1ab7874 532_list_iter_cond_expr (av_set_t av, expr_t *exprp)
533{
534 if (av)
535 {
536 *exprp = _AV_SET_EXPR (av);
537 return true;
538 }
539
540 return false;
541}
542\f
543
544/* Def list iterators. */
545typedef _list_t def_list_t;
546typedef _list_iterator def_list_iterator;
547
548#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
549#define DEF_LIST_DEF(L) (&(L)->u.def)
550
551#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
552
553static inline bool
554_list_iter_cond_def (def_list_t def_list, def_t *def)
555{
556 if (def_list)
557 {
558 *def = DEF_LIST_DEF (def_list);
559 return true;
560 }
561
562 return false;
563}
564\f
565
566/* InstructionData. Contains information about insn pattern. */
567struct idata_def
568{
569 /* Type of the insn.
570 o CALL_INSN - Call insn
571 o JUMP_INSN - Jump insn
572 o INSN - INSN that cannot be cloned
573 o USE - INSN that can be cloned
574 o SET - INSN that can be cloned and separable into lhs and rhs
575 o PC - simplejump. Insns that simply redirect control flow should not
576 have any dependencies. Sched-deps.c, though, might consider them as
577 producers or consumers of certain registers. To avoid that we handle
578 dependency for simple jumps ourselves. */
579 int type;
580
581 /* If insn is a SET, this is its left hand side. */
582 rtx lhs;
583
584 /* If insn is a SET, this is its right hand side. */
585 rtx rhs;
586
587 /* Registers that are set/used by this insn. This info is now gathered
588 via sched-deps.c. The downside of this is that we also use live info
589 from flow that is accumulated in the basic blocks. These two infos
590 can be slightly inconsistent, hence in the beginning we make a pass
591 through CFG and calculating the conservative solution for the info in
592 basic blocks. When this scheduler will be switched to use dataflow,
593 this can be unified as df gives us both per basic block and per
594 instruction info. Actually, we don't do that pass and just hope
595 for the best. */
596 regset reg_sets;
597
598 regset reg_clobbers;
599
600 regset reg_uses;
601};
602
603#define IDATA_TYPE(ID) ((ID)->type)
604#define IDATA_LHS(ID) ((ID)->lhs)
605#define IDATA_RHS(ID) ((ID)->rhs)
606#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
607#define IDATA_REG_USES(ID) ((ID)->reg_uses)
608#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
609
610/* Type to represent all needed info to emit an insn.
611 This is a virtual equivalent of the insn.
612 Every insn in the stream has an associated vinsn. This is used
613 to reduce memory consumption basing on the fact that many insns
614 don't change through the scheduler.
615
616 vinsn can be either normal or unique.
617 * Normal vinsn is the one, that can be cloned multiple times and typically
618 corresponds to normal instruction.
619
620 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
621 unusual stuff. Such a vinsn is described by its INSN field, which is a
622 reference to the original instruction. */
623struct vinsn_def
624{
625 /* Associated insn. */
626 rtx insn_rtx;
627
628 /* Its description. */
629 struct idata_def id;
630
631 /* Hash of vinsn. It is computed either from pattern or from rhs using
632 hash_rtx. It is not placed in ID for faster compares. */
633 unsigned hash;
634
635 /* Hash of the insn_rtx pattern. */
636 unsigned hash_rtx;
637
638 /* Smart pointer counter. */
639 int count;
640
641 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
642 int cost;
643
644 /* Mark insns that may trap so we don't move them through jumps. */
645 bool may_trap_p;
646};
647
648#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
649#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
650
651#define VINSN_ID(VI) (&((VI)->id))
652#define VINSN_HASH(VI) ((VI)->hash)
653#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
654#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
655#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
656#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
657#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
658#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
659#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
660#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
661#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
662#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
663#define VINSN_COUNT(VI) ((VI)->count)
664#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
665\f
666
48e1416a 667/* An entry of the hashtable describing transformations happened when
e1ab7874 668 moving up through an insn. */
669struct transformed_insns
670{
671 /* Previous vinsn. Used to find the proper element. */
672 vinsn_t vinsn_old;
673
674 /* A new vinsn. */
675 vinsn_t vinsn_new;
676
677 /* Speculative status. */
678 ds_t ds;
679
680 /* Type of transformation happened. */
681 enum local_trans_type type;
682
683 /* Whether a conflict on the target register happened. */
684 BOOL_BITFIELD was_target_conflict : 1;
685
686 /* Whether a check was needed. */
687 BOOL_BITFIELD needs_check : 1;
688};
689
690/* Indexed by INSN_LUID, the collection of all data associated with
691 a single instruction that is in the stream. */
692struct _sel_insn_data
693{
694 /* The expression that contains vinsn for this insn and some
695 flow-sensitive data like priority. */
696 expr_def expr;
697
698 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
699 int ws_level;
700
701 /* A number that helps in defining a traversing order for a region. */
702 int seqno;
703
704 /* A liveness data computed above this insn. */
705 regset live;
706
707 /* An INSN_UID bit is set when deps analysis result is already known. */
708 bitmap analyzed_deps;
709
48e1416a 710 /* An INSN_UID bit is set when a hard dep was found, not set when
e1ab7874 711 no dependence is found. This is meaningful only when the analyzed_deps
712 bitmap has its bit set. */
713 bitmap found_deps;
714
48e1416a 715 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
dca13bd7 716 a parent with this uid. If a parent is a bookkeeping copy, all its
717 originators are transitively included in this set. */
e1ab7874 718 bitmap originators;
719
720 /* A hashtable caching the result of insn transformations through this one. */
721 htab_t transformed_insns;
48e1416a 722
e1ab7874 723 /* A context incapsulating this insn. */
68e419a1 724 struct deps_desc deps_context;
e1ab7874 725
726 /* This field is initialized at the beginning of scheduling and is used
727 to handle sched group instructions. If it is non-null, then it points
728 to the instruction, which should be forced to schedule next. Such
729 instructions are unique. */
730 insn_t sched_next;
731
732 /* Cycle at which insn was scheduled. It is greater than zero if insn was
733 scheduled. This is used for bundling. */
734 int sched_cycle;
735
736 /* Cycle at which insn's data will be fully ready. */
737 int ready_cycle;
738
739 /* Speculations that are being checked by this insn. */
740 ds_t spec_checked_ds;
741
742 /* Whether the live set valid or not. */
743 BOOL_BITFIELD live_valid_p : 1;
744 /* Insn is an ASM. */
745 BOOL_BITFIELD asm_p : 1;
746
747 /* True when an insn is scheduled after we've determined that a stall is
748 required.
749 This is used when emulating the Haifa scheduler for bundling. */
750 BOOL_BITFIELD after_stall_p : 1;
751};
752
753typedef struct _sel_insn_data sel_insn_data_def;
754typedef sel_insn_data_def *sel_insn_data_t;
755
f1f41a6c 756extern vec<sel_insn_data_def> s_i_d;
e1ab7874 757
758/* Accessor macros for s_i_d. */
f1f41a6c 759#define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
760#define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
e1ab7874 761
762extern sel_insn_data_def insn_sid (insn_t);
763
764#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
765#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
766#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
48e1416a 767#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
768#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
e1ab7874 769#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
770#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
771#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
772
773#define INSN_EXPR(INSN) (&SID (INSN)->expr)
774#define INSN_LIVE(INSN) (SID (INSN)->live)
775#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
776#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
777#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
778#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
779#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
780#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
781#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
782#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
783#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
784#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
785#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
786#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
787#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
788#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
789#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
790
791/* A global level shows whether an insn is valid or not. */
792extern int global_level;
793
794#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
795
796extern av_set_t get_av_set (insn_t);
797extern int get_av_level (insn_t);
798
799#define AV_SET(INSN) (get_av_set (INSN))
800#define AV_LEVEL(INSN) (get_av_level (INSN))
801#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
802
803/* A list of fences currently in the works. */
804extern flist_t fences;
805
806/* A NOP pattern used as a placeholder for real insns. */
807extern rtx nop_pattern;
808
809/* An insn that 'contained' in EXIT block. */
810extern rtx exit_insn;
811
812/* Provide a separate luid for the insn. */
813#define INSN_INIT_TODO_LUID (1)
814
815/* Initialize s_s_i_d. */
816#define INSN_INIT_TODO_SSID (2)
817
818/* Initialize data for simplejump. */
819#define INSN_INIT_TODO_SIMPLEJUMP (4)
820
821/* Return true if INSN is a local NOP. The nop is local in the sense that
822 it was emitted by the scheduler as a temporary insn and will soon be
823 deleted. These nops are identified by their pattern. */
824#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
825
826/* Return true if INSN is linked into instruction stream.
827 NB: It is impossible for INSN to have one field null and the other not
828 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
829 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
830#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
831
832/* Return true if INSN is in current fence. */
833#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
834
835/* Marks loop as being considered for pipelining. */
836#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
837#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
838
839/* Saved loop preheader to transfer when scheduling the loop. */
840#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
841 ? NULL \
f1f41a6c 842 : ((vec<basic_block> *) (LOOP)->aux))
e1ab7874 843#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
844 = (BLOCKS != NULL \
845 ? BLOCKS \
846 : (LOOP)->aux))
847
848extern bitmap blocks_to_reschedule;
849\f
850
851/* A variable to track which part of rtx we are scanning in
852 sched-deps.c: sched_analyze_insn (). */
853enum deps_where_def
854 {
855 DEPS_IN_INSN,
856 DEPS_IN_LHS,
857 DEPS_IN_RHS,
858 DEPS_IN_NOWHERE
859 };
860typedef enum deps_where_def deps_where_t;
861\f
862
863/* Per basic block data for the whole CFG. */
864typedef struct
865{
866 /* For each bb header this field contains a set of live registers.
867 For all other insns this field has a NULL.
9d75589a 868 We also need to know LV sets for the instructions, that are immediately
e1ab7874 869 after the border of the region. */
870 regset lv_set;
871
872 /* Status of LV_SET.
873 true - block has usable LV_SET.
874 false - block's LV_SET should be recomputed. */
875 bool lv_set_valid_p;
876} sel_global_bb_info_def;
877
878typedef sel_global_bb_info_def *sel_global_bb_info_t;
879
e1ab7874 880
881/* Per basic block data. This array is indexed by basic block index. */
f1f41a6c 882extern vec<sel_global_bb_info_def> sel_global_bb_info;
e1ab7874 883
884extern void sel_extend_global_bb_info (void);
885extern void sel_finish_global_bb_info (void);
886
887/* Get data for BB. */
888#define SEL_GLOBAL_BB_INFO(BB) \
f1f41a6c 889 (&sel_global_bb_info[(BB)->index])
e1ab7874 890
891/* Access macros. */
892#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
893#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
894
895/* Per basic block data for the region. */
48e1416a 896typedef struct
e1ab7874 897{
898 /* This insn stream is constructed in such a way that it should be
899 traversed by PREV_INSN field - (*not* NEXT_INSN). */
900 rtx note_list;
901
902 /* Cached availability set at the beginning of a block.
903 See also AV_LEVEL () for conditions when this av_set can be used. */
904 av_set_t av_set;
905
906 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
907 int av_level;
908} sel_region_bb_info_def;
909
910typedef sel_region_bb_info_def *sel_region_bb_info_t;
911
e1ab7874 912
913/* Per basic block data. This array is indexed by basic block index. */
f1f41a6c 914extern vec<sel_region_bb_info_def> sel_region_bb_info;
e1ab7874 915
916/* Get data for BB. */
f1f41a6c 917#define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
e1ab7874 918
919/* Get BB's note_list.
920 A note_list is a list of various notes that was scattered across BB
921 before scheduling, and will be appended at the beginning of BB after
922 scheduling is finished. */
923#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
924
925#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
926#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
927#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
928
929/* Used in bb_in_ebb_p. */
930extern bitmap_head *forced_ebb_heads;
931
932/* The loop nest being pipelined. */
933extern struct loop *current_loop_nest;
934
935/* Saves pipelined blocks. Bitmap is indexed by bb->index. */
936extern sbitmap bbs_pipelined;
937
938/* Various flags. */
939extern bool enable_moveup_set_path_p;
940extern bool pipelining_p;
941extern bool bookkeeping_p;
48e1416a 942extern int max_insns_to_rename;
e1ab7874 943extern bool preheader_removed;
944
945/* Software lookahead window size.
48e1416a 946 According to the results in Nakatani and Ebcioglu [1993], window size of 16
e1ab7874 947 is enough to extract most ILP in integer code. */
948#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
949
950extern regset sel_all_regs;
951\f
952
953/* Successor iterator backend. */
954typedef struct
955{
956 /* True if we're at BB end. */
957 bool bb_end;
958
959 /* An edge on which we're iterating. */
960 edge e1;
961
962 /* The previous edge saved after skipping empty blocks. */
963 edge e2;
48e1416a 964
e1ab7874 965 /* Edge iterator used when there are successors in other basic blocks. */
966 edge_iterator ei;
967
968 /* Successor block we're traversing. */
969 basic_block bb;
970
971 /* Flags that are passed to the iterator. We return only successors
972 that comply to these flags. */
973 short flags;
48e1416a 974
975 /* When flags include SUCCS_ALL, this will be set to the exact type
9d75589a 976 of the successor we're traversing now. */
e1ab7874 977 short current_flags;
978
979 /* If skip to loop exits, save here information about loop exits. */
980 int current_exit;
f1f41a6c 981 vec<edge> loop_exits;
e1ab7874 982} succ_iterator;
983
984/* A structure returning all successor's information. */
985struct succs_info
986{
987 /* Flags that these succcessors were computed with. */
988 short flags;
989
990 /* Successors that correspond to the flags. */
991 insn_vec_t succs_ok;
992
48e1416a 993 /* Their probabilities. As of now, we don't need this for other
e1ab7874 994 successors. */
f1f41a6c 995 vec<int> probs_ok;
e1ab7874 996
997 /* Other successors. */
998 insn_vec_t succs_other;
999
1000 /* Probability of all successors. */
1001 int all_prob;
1002
1003 /* The number of all successors. */
1004 int all_succs_n;
1005
1006 /* The number of good successors. */
1007 int succs_ok_n;
1008};
1009
1010/* Some needed definitions. */
1011extern basic_block after_recovery;
1012
1013extern insn_t sel_bb_head (basic_block);
9845d120 1014extern insn_t sel_bb_end (basic_block);
e1ab7874 1015extern bool sel_bb_empty_p (basic_block);
1016extern bool in_current_region_p (basic_block);
1017
1018/* True when BB is a header of the inner loop. */
1019static inline bool
1020inner_loop_header_p (basic_block bb)
1021{
48e1416a 1022 struct loop *inner_loop;
e1ab7874 1023
1024 if (!current_loop_nest)
1025 return false;
1026
1027 if (bb == EXIT_BLOCK_PTR)
1028 return false;
1029
1030 inner_loop = bb->loop_father;
1031 if (inner_loop == current_loop_nest)
1032 return false;
1033
1034 /* If successor belongs to another loop. */
1035 if (bb == inner_loop->header
1036 && flow_bb_inside_loop_p (current_loop_nest, bb))
1037 {
1038 /* Could be '=' here because of wrong loop depths. */
1039 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1040 return true;
1041 }
1042
48e1416a 1043 return false;
e1ab7874 1044}
1045
1046/* Return exit edges of LOOP, filtering out edges with the same dest bb. */
f1f41a6c 1047static inline vec<edge>
e1ab7874 1048get_loop_exit_edges_unique_dests (const struct loop *loop)
1049{
1e094109 1050 vec<edge> edges = vNULL;
e1ab7874 1051 struct loop_exit *exit;
1052
1053 gcc_assert (loop->latch != EXIT_BLOCK_PTR
1054 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1055
1056 for (exit = loop->exits->next; exit->e; exit = exit->next)
1057 {
1058 int i;
1059 edge e;
1060 bool was_dest = false;
48e1416a 1061
f1f41a6c 1062 for (i = 0; edges.iterate (i, &e); i++)
e1ab7874 1063 if (e->dest == exit->e->dest)
1064 {
1065 was_dest = true;
1066 break;
1067 }
1068
1069 if (!was_dest)
f1f41a6c 1070 edges.safe_push (exit->e);
e1ab7874 1071 }
1072 return edges;
1073}
1074
9845d120 1075static bool
1076sel_bb_empty_or_nop_p (basic_block bb)
1077{
1078 insn_t first = sel_bb_head (bb), last;
1079
1080 if (first == NULL_RTX)
1081 return true;
1082
1083 if (!INSN_NOP_P (first))
1084 return false;
1085
1086 if (bb == EXIT_BLOCK_PTR)
1087 return false;
1088
1089 last = sel_bb_end (bb);
1090 if (first != last)
1091 return false;
1092
1093 return true;
1094}
1095
48e1416a 1096/* Collect all loop exits recursively, skipping empty BBs between them.
e1ab7874 1097 E.g. if BB is a loop header which has several loop exits,
1098 traverse all of them and if any of them turns out to be another loop header
48e1416a 1099 (after skipping empty BBs), add its loop exits to the resulting vector
e1ab7874 1100 as well. */
f1f41a6c 1101static inline vec<edge>
e1ab7874 1102get_all_loop_exits (basic_block bb)
1103{
1e094109 1104 vec<edge> exits = vNULL;
e1ab7874 1105
1106 /* If bb is empty, and we're skipping to loop exits, then
1107 consider bb as a possible gate to the inner loop now. */
9845d120 1108 while (sel_bb_empty_or_nop_p (bb)
2c622b2e 1109 && in_current_region_p (bb)
1110 && EDGE_COUNT (bb->succs) > 0)
e1ab7874 1111 {
1112 bb = single_succ (bb);
1113
1114 /* This empty block could only lead outside the region. */
1115 gcc_assert (! in_current_region_p (bb));
1116 }
1117
1118 /* And now check whether we should skip over inner loop. */
1119 if (inner_loop_header_p (bb))
1120 {
1121 struct loop *this_loop;
1122 struct loop *pred_loop = NULL;
1123 int i;
1124 edge e;
48e1416a 1125
e1ab7874 1126 for (this_loop = bb->loop_father;
1127 this_loop && this_loop != current_loop_nest;
1128 this_loop = loop_outer (this_loop))
1129 pred_loop = this_loop;
48e1416a 1130
e1ab7874 1131 this_loop = pred_loop;
1132 gcc_assert (this_loop != NULL);
1133
1134 exits = get_loop_exit_edges_unique_dests (this_loop);
1135
1136 /* Traverse all loop headers. */
f1f41a6c 1137 for (i = 0; exits.iterate (i, &e); i++)
6a6a03b4 1138 if (in_current_region_p (e->dest)
1139 || inner_loop_header_p (e->dest))
e1ab7874 1140 {
f1f41a6c 1141 vec<edge> next_exits = get_all_loop_exits (e->dest);
48e1416a 1142
f1f41a6c 1143 if (next_exits.exists ())
e1ab7874 1144 {
1145 int j;
1146 edge ne;
48e1416a 1147
e1ab7874 1148 /* Add all loop exits for the current edge into the
1149 resulting vector. */
f1f41a6c 1150 for (j = 0; next_exits.iterate (j, &ne); j++)
1151 exits.safe_push (ne);
48e1416a 1152
e1ab7874 1153 /* Remove the original edge. */
f1f41a6c 1154 exits.ordered_remove (i);
e1ab7874 1155
1156 /* Decrease the loop counter so we won't skip anything. */
1157 i--;
1158 continue;
1159 }
1160 }
1161 }
1162
1163 return exits;
1164}
1165
1166/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1167 Any successor will fall into exactly one category. */
1168
1169/* Include normal successors. */
1170#define SUCCS_NORMAL (1)
1171
1172/* Include back-edge successors. */
1173#define SUCCS_BACK (2)
1174
1175/* Include successors that are outside of the current region. */
1176#define SUCCS_OUT (4)
1177
48e1416a 1178/* When pipelining of the outer loops is enabled, skip innermost loops
e1ab7874 1179 to their exits. */
1180#define SUCCS_SKIP_TO_LOOP_EXITS (8)
1181
1182/* Include all successors. */
1183#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1184
1185/* We need to return a succ_iterator to avoid 'unitialized' warning
1186 during bootstrap. */
1187static inline succ_iterator
1188_succ_iter_start (insn_t *succp, insn_t insn, int flags)
1189{
1190 succ_iterator i;
1191
1192 basic_block bb = BLOCK_FOR_INSN (insn);
1193
1194 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1195
1196 i.flags = flags;
1197
1198 /* Avoid 'uninitialized' warning. */
1199 *succp = NULL;
1200 i.e1 = NULL;
1201 i.e2 = NULL;
1202 i.bb = bb;
1203 i.current_flags = 0;
1204 i.current_exit = -1;
f1f41a6c 1205 i.loop_exits.create (0);
e1ab7874 1206
1207 if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
1208 {
1209 i.bb_end = false;
1210
1211 /* Avoid 'uninitialized' warning. */
1212 i.ei.index = 0;
f1f41a6c 1213 i.ei.container = 0;
e1ab7874 1214 }
1215 else
1216 {
1217 i.ei = ei_start (bb->succs);
1218 i.bb_end = true;
1219 }
1220
1221 return i;
1222}
1223
1224static inline bool
1225_succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1226 bool check (edge, succ_iterator *))
1227{
1228 if (!ip->bb_end)
1229 {
1230 /* When we're in a middle of a basic block, return
1231 the next insn immediately, but only when SUCCS_NORMAL is set. */
1232 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1233 return false;
1234
1235 *succp = NEXT_INSN (insn);
1236 ip->current_flags = SUCCS_NORMAL;
1237 return true;
1238 }
1239 else
1240 {
48e1416a 1241 while (1)
e1ab7874 1242 {
1243 edge e_tmp = NULL;
1244
1245 /* First, try loop exits, if we have them. */
f1f41a6c 1246 if (ip->loop_exits.exists ())
e1ab7874 1247 {
1248 do
1249 {
f1f41a6c 1250 ip->loop_exits.iterate (ip->current_exit, &e_tmp);
e1ab7874 1251 ip->current_exit++;
1252 }
1253 while (e_tmp && !check (e_tmp, ip));
48e1416a 1254
e1ab7874 1255 if (!e_tmp)
f1f41a6c 1256 ip->loop_exits.release ();
e1ab7874 1257 }
1258
1259 /* If we have found a successor, then great. */
1260 if (e_tmp)
1261 {
1262 ip->e1 = e_tmp;
1263 break;
1264 }
1265
1266 /* If not, then try the next edge. */
1267 while (ei_cond (ip->ei, &(ip->e1)))
1268 {
1269 basic_block bb = ip->e1->dest;
1270
1271 /* Consider bb as a possible loop header. */
1272 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1273 && flag_sel_sched_pipelining_outer_loops
48e1416a 1274 && (!in_current_region_p (bb)
1275 || BLOCK_TO_BB (ip->bb->index)
e1ab7874 1276 < BLOCK_TO_BB (bb->index)))
1277 {
1278 /* Get all loop exits recursively. */
1279 ip->loop_exits = get_all_loop_exits (bb);
1280
f1f41a6c 1281 if (ip->loop_exits.exists ())
e1ab7874 1282 {
1283 ip->current_exit = 0;
48e1416a 1284 /* Move the iterator now, because we won't do
e1ab7874 1285 succ_iter_next until loop exits will end. */
1286 ei_next (&(ip->ei));
1287 break;
1288 }
1289 }
1290
1291 /* bb is not a loop header, check as usual. */
1292 if (check (ip->e1, ip))
1293 break;
1294
1295 ei_next (&(ip->ei));
1296 }
1297
1298 /* If loop_exits are non null, we have found an inner loop;
1299 do one more iteration to fetch an edge from these exits. */
f1f41a6c 1300 if (ip->loop_exits.exists ())
e1ab7874 1301 continue;
1302
1303 /* Otherwise, we've found an edge in a usual way. Break now. */
1304 break;
1305 }
1306
1307 if (ip->e1)
1308 {
1309 basic_block bb = ip->e2->dest;
1310
1311 if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
1312 *succp = exit_insn;
1313 else
1314 {
1315 *succp = sel_bb_head (bb);
1316
1317 gcc_assert (ip->flags != SUCCS_NORMAL
1318 || *succp == NEXT_INSN (bb_note (bb)));
1319 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1320 }
1321
1322 return true;
1323 }
1324 else
1325 return false;
1326 }
1327}
1328
1329static inline void
1330_succ_iter_next (succ_iterator *ip)
1331{
1332 gcc_assert (!ip->e2 || ip->e1);
1333
f1f41a6c 1334 if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
e1ab7874 1335 ei_next (&(ip->ei));
1336}
1337
1338/* Returns true when E1 is an eligible successor edge, possibly skipping
1339 empty blocks. When E2P is not null, the resulting edge is written there.
1340 FLAGS are used to specify whether back edges and out-of-region edges
1341 should be considered. */
1342static inline bool
1343_eligible_successor_edge_p (edge e1, succ_iterator *ip)
1344{
1345 edge e2 = e1;
1346 basic_block bb;
1347 int flags = ip->flags;
1348 bool src_outside_rgn = !in_current_region_p (e1->src);
1349
1350 gcc_assert (flags != 0);
1351
1352 if (src_outside_rgn)
1353 {
1354 /* Any successor of the block that is outside current region is
1355 ineligible, except when we're skipping to loop exits. */
1356 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1357
1358 if (flags & SUCCS_OUT)
1359 return false;
1360 }
1361
1362 bb = e2->dest;
1363
1364 /* Skip empty blocks, but be careful not to leave the region. */
1365 while (1)
1366 {
1367 if (!sel_bb_empty_p (bb))
9845d120 1368 {
1369 edge ne;
1370 basic_block nbb;
1371
1372 if (!sel_bb_empty_or_nop_p (bb))
1373 break;
1374
1375 ne = EDGE_SUCC (bb, 0);
1376 nbb = ne->dest;
1377
1378 if (!in_current_region_p (nbb)
1379 && !(flags & SUCCS_OUT))
1380 break;
1381
1382 e2 = ne;
1383 bb = nbb;
1384 continue;
1385 }
48e1416a 1386
1387 if (!in_current_region_p (bb)
e1ab7874 1388 && !(flags & SUCCS_OUT))
1389 return false;
1390
2fcf9403 1391 if (EDGE_COUNT (bb->succs) == 0)
1392 return false;
1393
e1ab7874 1394 e2 = EDGE_SUCC (bb, 0);
1395 bb = e2->dest;
e1ab7874 1396 }
48e1416a 1397
e1ab7874 1398 /* Save the second edge for later checks. */
1399 ip->e2 = e2;
1400
1401 if (in_current_region_p (bb))
1402 {
48e1416a 1403 /* BLOCK_TO_BB sets topological order of the region here.
1404 It is important to use real predecessor here, which is ip->bb,
1405 as we may well have e1->src outside current region,
e1ab7874 1406 when skipping to loop exits. */
1407 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1408 < BLOCK_TO_BB (bb->index));
1409
1410 /* This is true for the all cases except the last one. */
1411 ip->current_flags = SUCCS_NORMAL;
48e1416a 1412
e1ab7874 1413 /* We are advancing forward in the region, as usual. */
1414 if (succeeds_in_top_order)
1415 {
1416 /* We are skipping to loop exits here. */
1417 gcc_assert (!src_outside_rgn
1418 || flag_sel_sched_pipelining_outer_loops);
1419 return !!(flags & SUCCS_NORMAL);
1420 }
1421
48e1416a 1422 /* This is a back edge. During pipelining we ignore back edges,
e1ab7874 1423 but only when it leads to the same loop. It can lead to the header
48e1416a 1424 of the outer loop, which will also be the preheader of
e1ab7874 1425 the current loop. */
1426 if (pipelining_p
1427 && e1->src->loop_father == bb->loop_father)
1428 return !!(flags & SUCCS_NORMAL);
1429
1430 /* A back edge should be requested explicitly. */
1431 ip->current_flags = SUCCS_BACK;
1432 return !!(flags & SUCCS_BACK);
1433 }
1434
1435 ip->current_flags = SUCCS_OUT;
1436 return !!(flags & SUCCS_OUT);
1437}
1438
1439#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1440 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1441 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1442 _succ_iter_next (&(ITER)))
1443
1444#define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1445 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1446
1447/* Return the current edge along which a successor was built. */
1448#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1449
1450/* Return the next block of BB not running into inconsistencies. */
1451static inline basic_block
1452bb_next_bb (basic_block bb)
1453{
1454 switch (EDGE_COUNT (bb->succs))
1455 {
1456 case 0:
1457 return bb->next_bb;
1458
48e1416a 1459 case 1:
e1ab7874 1460 return single_succ (bb);
1461
1462 case 2:
1463 return FALLTHRU_EDGE (bb)->dest;
48e1416a 1464
e1ab7874 1465 default:
1466 return bb->next_bb;
1467 }
1468
1469 gcc_unreachable ();
1470}
1471
1472\f
1473
1474/* Functions that are used in sel-sched.c. */
1475
1476/* List functions. */
1477extern ilist_t ilist_copy (ilist_t);
1478extern ilist_t ilist_invert (ilist_t);
1479extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1480extern void blist_remove (blist_t *);
1481extern void flist_tail_init (flist_tail_t);
1482
1483extern fence_t flist_lookup (flist_t, insn_t);
1484extern void flist_clear (flist_t *);
1485extern void def_list_add (def_list_t *, insn_t, bool);
1486
1487/* Target context functions. */
1488extern tc_t create_target_context (bool);
1489extern void set_target_context (tc_t);
1490extern void reset_target_context (tc_t, bool);
1491
1492/* Deps context functions. */
1493extern void advance_deps_context (deps_t, insn_t);
1494
1495/* Fences functions. */
1496extern void init_fences (insn_t);
1497extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1498extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1499extern void move_fence_to_fences (flist_t, flist_tail_t);
1500
1501/* Pool functions. */
1502extern regset get_regset_from_pool (void);
1503extern regset get_clear_regset_from_pool (void);
1504extern void return_regset_to_pool (regset);
1505extern void free_regset_pool (void);
1506
1507extern insn_t get_nop_from_pool (insn_t);
9845d120 1508extern void return_nop_to_pool (insn_t, bool);
e1ab7874 1509extern void free_nop_pool (void);
1510
1511/* Vinsns functions. */
1512extern bool vinsn_separable_p (vinsn_t);
1513extern bool vinsn_cond_branch_p (vinsn_t);
1514extern void recompute_vinsn_lhs_rhs (vinsn_t);
1515extern int sel_vinsn_cost (vinsn_t);
1516extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1517extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1518extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1519extern insn_t sel_move_insn (expr_t, int, insn_t);
1520extern void vinsn_attach (vinsn_t);
1521extern void vinsn_detach (vinsn_t);
1522extern vinsn_t vinsn_copy (vinsn_t, bool);
1523extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1524
1525/* EXPR functions. */
1526extern void copy_expr (expr_t, expr_t);
1527extern void copy_expr_onside (expr_t, expr_t);
1528extern void merge_expr_data (expr_t, expr_t, insn_t);
1529extern void merge_expr (expr_t, expr_t, insn_t);
1530extern void clear_expr (expr_t);
1531extern unsigned expr_dest_regno (expr_t);
48e1416a 1532extern rtx expr_dest_reg (expr_t);
f1f41a6c 1533extern int find_in_history_vect (vec<expr_history_def> ,
e1ab7874 1534 rtx, vinsn_t, bool);
f1f41a6c 1535extern void insert_in_history_vect (vec<expr_history_def> *,
48e1416a 1536 unsigned, enum local_trans_type,
e1ab7874 1537 vinsn_t, vinsn_t, ds_t);
1538extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1539extern int speculate_expr (expr_t, ds_t);
1540
1541/* Av set functions. */
1542extern void av_set_add (av_set_t *, expr_t);
1543extern void av_set_iter_remove (av_set_iterator *);
1544extern expr_t av_set_lookup (av_set_t, vinsn_t);
1545extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1546extern bool av_set_is_in_p (av_set_t, vinsn_t);
1547extern av_set_t av_set_copy (av_set_t);
1548extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1549extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1550extern void av_set_clear (av_set_t *);
1551extern void av_set_leave_one_nonspec (av_set_t *);
1552extern expr_t av_set_element (av_set_t, int);
1553extern void av_set_substract_cond_branches (av_set_t *);
1554extern void av_set_split_usefulness (av_set_t, int, int);
c53624fb 1555extern void av_set_code_motion_filter (av_set_t *, av_set_t);
e1ab7874 1556
1557extern void sel_save_haifa_priorities (void);
1558
1559extern void sel_init_global_and_expr (bb_vec_t);
1560extern void sel_finish_global_and_expr (void);
1561
1562extern regset compute_live (insn_t);
1f53e226 1563extern bool register_unavailable_p (regset, rtx);
e1ab7874 1564
1565/* Dependence analysis functions. */
1566extern void sel_clear_has_dependence (void);
1567extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1568
1569extern int tick_check_p (expr_t, deps_t, fence_t);
1570
1571/* Functions to work with insns. */
1572extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1573extern bool insn_eligible_for_subst_p (insn_t);
1574extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1575
1576extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1577extern bool sel_remove_insn (insn_t, bool, bool);
1578extern bool bb_header_p (insn_t);
1579extern void sel_init_invalid_data_sets (insn_t);
1580extern bool insn_at_boundary_p (insn_t);
e1ab7874 1581
1582/* Basic block and CFG functions. */
1583
1584extern insn_t sel_bb_head (basic_block);
1585extern bool sel_bb_head_p (insn_t);
1586extern insn_t sel_bb_end (basic_block);
1587extern bool sel_bb_end_p (insn_t);
1588extern bool sel_bb_empty_p (basic_block);
1589
1590extern bool in_current_region_p (basic_block);
1591extern basic_block fallthru_bb_of_jump (rtx);
1592
52d7e28c 1593extern void sel_init_bbs (bb_vec_t);
e1ab7874 1594extern void sel_finish_bbs (void);
1595
1596extern struct succs_info * compute_succs_info (insn_t, short);
1597extern void free_succs_info (struct succs_info *);
1598extern bool sel_insn_has_single_succ_p (insn_t, int);
1599extern bool sel_num_cfg_preds_gt_1 (insn_t);
1600extern int get_seqno_by_preds (rtx);
1601
1602extern bool bb_ends_ebb_p (basic_block);
1603extern bool in_same_ebb_p (insn_t, insn_t);
1604
1605extern bool tidy_control_flow (basic_block, bool);
1606extern void free_bb_note_pool (void);
1607
93919afc 1608extern void purge_empty_blocks (void);
e1ab7874 1609extern basic_block sel_split_edge (edge);
1610extern basic_block sel_create_recovery_block (insn_t);
93919afc 1611extern bool sel_redirect_edge_and_branch (edge, basic_block);
e1ab7874 1612extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1613extern void sel_init_pipelining (void);
1614extern void sel_finish_pipelining (void);
1615extern void sel_sched_region (int);
e1ab7874 1616extern loop_p get_loop_nest_for_rgn (unsigned int);
1617extern bool considered_for_pipelining_p (struct loop *);
f1f41a6c 1618extern void make_region_from_loop_preheader (vec<basic_block> *&);
b73edd22 1619extern void sel_add_loop_preheaders (bb_vec_t *);
e1ab7874 1620extern bool sel_is_loop_preheader_p (basic_block);
1621extern void clear_outdated_rtx_info (basic_block);
1622extern void free_data_sets (basic_block);
1623extern void exchange_data_sets (basic_block, basic_block);
1624extern void copy_data_sets (basic_block, basic_block);
1625
1626extern void sel_register_cfg_hooks (void);
1627extern void sel_unregister_cfg_hooks (void);
1628
1629/* Expression transformation routines. */
1630extern rtx create_insn_rtx_from_pattern (rtx, rtx);
1631extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1632extern rtx create_copy_of_insn_rtx (rtx);
1633extern void change_vinsn_in_expr (expr_t, vinsn_t);
1634
1635/* Various initialization functions. */
1636extern void init_lv_sets (void);
1637extern void free_lv_sets (void);
1638extern void setup_nop_and_exit_insns (void);
1639extern void free_nop_and_exit_insns (void);
d9ab2038 1640extern void free_data_for_scheduled_insn (insn_t);
e1ab7874 1641extern void setup_nop_vinsn (void);
1642extern void free_nop_vinsn (void);
1643extern void sel_set_sched_flags (void);
1644extern void sel_setup_sched_infos (void);
1645extern void alloc_sched_pools (void);
1646extern void free_sched_pools (void);
1647
1648#endif /* GCC_SEL_SCHED_IR_H */
1649
1650
1651
1652
1653
1654
1655
1656