]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched-ir.h
re PR fortran/44212 ([OOP] ICE when defining a pointer component before defining...
[thirdparty/gcc.git] / gcc / sel-sched-ir.h
CommitLineData
e855c69d
AB
1/* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
c02e2d5c 3 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
e855c69d
AB
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_SEL_SCHED_IR_H
22#define GCC_SEL_SCHED_IR_H
23
24/* For state_t. */
25#include "insn-attr.h"
26/* For regset_head. */
27#include "basic-block.h"
28/* For reg_note. */
29#include "rtl.h"
30#include "ggc.h"
31#include "bitmap.h"
32#include "vecprim.h"
33#include "sched-int.h"
34#include "cfgloop.h"
35
36/* tc_t is a short for target context. This is a state of the target
37 backend. */
38typedef void *tc_t;
39
40/* List data types used for av sets, fences, paths, and boundaries. */
41
42/* Forward declarations for types that are part of some list nodes. */
43struct _list_node;
44
45/* List backend. */
46typedef struct _list_node *_list_t;
47#define _LIST_NEXT(L) ((L)->next)
48
49/* Instruction data that is part of vinsn type. */
50struct idata_def;
51typedef struct idata_def *idata_t;
52
53/* A virtual instruction, i.e. an instruction as seen by the scheduler. */
54struct vinsn_def;
55typedef struct vinsn_def *vinsn_t;
56
57/* RTX list.
58 This type is the backend for ilist. */
59typedef _list_t _xlist_t;
60#define _XLIST_X(L) ((L)->u.x)
61#define _XLIST_NEXT(L) (_LIST_NEXT (L))
62
63/* Instruction. */
64typedef rtx insn_t;
65
66/* List of insns. */
67typedef _xlist_t ilist_t;
68#define ILIST_INSN(L) (_XLIST_X (L))
69#define ILIST_NEXT(L) (_XLIST_NEXT (L))
70
b8698a0f 71/* This lists possible transformations that done locally, i.e. in
e855c69d
AB
72 moveup_expr. */
73enum local_trans_type
74 {
75 TRANS_SUBSTITUTION,
76 TRANS_SPECULATION
77 };
78
b8698a0f 79/* This struct is used to record the history of expression's
e855c69d
AB
80 transformations. */
81struct expr_history_def_1
82{
83 /* UID of the insn. */
84 unsigned uid;
85
86 /* How the expression looked like. */
87 vinsn_t old_expr_vinsn;
88
89 /* How the expression looks after the transformation. */
90 vinsn_t new_expr_vinsn;
91
92 /* And its speculative status. */
93 ds_t spec_ds;
94
95 /* Type of the transformation. */
96 enum local_trans_type type;
97};
98
99typedef struct expr_history_def_1 expr_history_def;
100
101DEF_VEC_O (expr_history_def);
102DEF_VEC_ALLOC_O (expr_history_def, heap);
103
104/* Expression information. */
105struct _expr
106{
107 /* Insn description. */
108 vinsn_t vinsn;
109
110 /* SPEC is the degree of speculativeness.
111 FIXME: now spec is increased when an rhs is moved through a
112 conditional, thus showing only control speculativeness. In the
113 future we'd like to count data spec separately to allow a better
114 control on scheduling. */
115 int spec;
116
b8698a0f
L
117 /* Degree of speculativeness measured as probability of executing
118 instruction's original basic block given relative to
e855c69d
AB
119 the current scheduling point. */
120 int usefulness;
121
122 /* A priority of this expression. */
123 int priority;
124
125 /* A priority adjustment of this expression. */
126 int priority_adj;
127
128 /* Number of times the insn was scheduled. */
129 int sched_times;
130
b8698a0f 131 /* A basic block index this was originated from. Zero when there is
e855c69d
AB
132 more than one originator. */
133 int orig_bb_index;
134
135 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
136 point. */
137 ds_t spec_done_ds;
138
139 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
140 (used only during move_op ()). */
141 ds_t spec_to_check_ds;
142
b8698a0f 143 /* Cycle on which original insn was scheduled. Zero when it has not yet
e855c69d
AB
144 been scheduled or more than one originator. */
145 int orig_sched_cycle;
146
147 /* This vector contains the history of insn's transformations. */
148 VEC(expr_history_def, heap) *history_of_changes;
149
b8698a0f 150 /* True (1) when original target (register or memory) of this instruction
e855c69d
AB
151 is available for scheduling, false otherwise. -1 means we're not sure;
152 please run find_used_regs to clarify. */
153 signed char target_available;
154
b8698a0f 155 /* True when this expression needs a speculation check to be scheduled.
e855c69d
AB
156 This is used during find_used_regs. */
157 BOOL_BITFIELD needs_spec_check_p : 1;
158
b8698a0f 159 /* True when the expression was substituted. Used for statistical
e855c69d
AB
160 purposes. */
161 BOOL_BITFIELD was_substituted : 1;
162
163 /* True when the expression was renamed. */
164 BOOL_BITFIELD was_renamed : 1;
165
166 /* True when expression can't be moved. */
167 BOOL_BITFIELD cant_move : 1;
168};
169
170typedef struct _expr expr_def;
171typedef expr_def *expr_t;
172
173#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
174#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
175#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
176#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
177#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
178#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
179#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
180
181#define EXPR_SPEC(EXPR) ((EXPR)->spec)
182#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
183#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
184#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
185#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
186#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
187#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
188#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
189#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
190#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
191#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
192#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
193#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
194#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
195#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
196
197#define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \
b8698a0f 198 EXPR_HISTORY_OF_CHANGES (EXPR)) > 0)
e855c69d
AB
199
200/* Insn definition for list of original insns in find_used_regs. */
201struct _def
202{
203 insn_t orig_insn;
204
205 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
206 rhs from two different places, but only one of the code motion paths
b8698a0f 207 crosses a call, we can't use any of the call_used_regs, no matter which
e855c69d
AB
208 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
209 to static params. */
210 bool crosses_call;
211};
212typedef struct _def *def_t;
213
214
215/* Availability sets are sets of expressions we're scheduling. */
216typedef _list_t av_set_t;
217#define _AV_SET_EXPR(L) (&(L)->u.expr)
218#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
219
220
221/* Boundary of the current fence group. */
222struct _bnd
223{
224 /* The actual boundary instruction. */
225 insn_t to;
226
227 /* Its path to the fence. */
228 ilist_t ptr;
229
230 /* Availability set at the boundary. */
231 av_set_t av;
232
233 /* This set moved to the fence. */
234 av_set_t av1;
b8698a0f 235
e855c69d
AB
236 /* Deps context at this boundary. As long as we have one boundary per fence,
237 this is just a pointer to the same deps context as in the corresponding
238 fence. */
239 deps_t dc;
240};
241typedef struct _bnd *bnd_t;
242#define BND_TO(B) ((B)->to)
243
244/* PTR stands not for pointer as you might think, but as a Path To Root of the
245 current instruction group from boundary B. */
246#define BND_PTR(B) ((B)->ptr)
247#define BND_AV(B) ((B)->av)
248#define BND_AV1(B) ((B)->av1)
249#define BND_DC(B) ((B)->dc)
250
251/* List of boundaries. */
252typedef _list_t blist_t;
253#define BLIST_BND(L) (&(L)->u.bnd)
254#define BLIST_NEXT(L) (_LIST_NEXT (L))
255
256
257/* Fence information. A fence represents current scheduling point and also
258 blocks code motion through it when pipelining. */
259struct _fence
260{
261 /* Insn before which we gather an instruction group.*/
262 insn_t insn;
263
264 /* Modeled state of the processor pipeline. */
265 state_t state;
266
267 /* Current cycle that is being scheduled on this fence. */
268 int cycle;
269
270 /* Number of insns that were scheduled on the current cycle.
271 This information has to be local to a fence. */
272 int cycle_issued_insns;
273
274 /* At the end of fill_insns () this field holds the list of the instructions
275 that are inner boundaries of the scheduled parallel group. */
276 ilist_t bnds;
277
278 /* Deps context at this fence. It is used to model dependencies at the
279 fence so that insn ticks can be properly evaluated. */
280 deps_t dc;
281
282 /* Target context at this fence. Used to save and load any local target
283 scheduling information when changing fences. */
284 tc_t tc;
285
286 /* A vector of insns that are scheduled but not yet completed. */
287 VEC (rtx,gc) *executing_insns;
288
b8698a0f 289 /* A vector indexed by UIDs that caches the earliest cycle on which
e855c69d
AB
290 an insn can be scheduled on this fence. */
291 int *ready_ticks;
292
293 /* Its size. */
294 int ready_ticks_size;
295
296 /* Insn, which has been scheduled last on this fence. */
297 rtx last_scheduled_insn;
298
136e01a3
AB
299 /* The last value of can_issue_more variable on this fence. */
300 int issue_more;
301
e855c69d
AB
302 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
303 rtx sched_next;
304
305 /* True if fill_insns processed this fence. */
306 BOOL_BITFIELD processed_p : 1;
307
308 /* True if fill_insns actually scheduled something on this fence. */
309 BOOL_BITFIELD scheduled_p : 1;
310
311 /* True when the next insn scheduled here would start a cycle. */
312 BOOL_BITFIELD starts_cycle_p : 1;
313
314 /* True when the next insn scheduled here would be scheduled after a stall. */
315 BOOL_BITFIELD after_stall_p : 1;
316};
317typedef struct _fence *fence_t;
318
319#define FENCE_INSN(F) ((F)->insn)
320#define FENCE_STATE(F) ((F)->state)
321#define FENCE_BNDS(F) ((F)->bnds)
322#define FENCE_PROCESSED_P(F) ((F)->processed_p)
323#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
324#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
325#define FENCE_CYCLE(F) ((F)->cycle)
326#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
327#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
328#define FENCE_DC(F) ((F)->dc)
329#define FENCE_TC(F) ((F)->tc)
330#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
136e01a3 331#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
e855c69d
AB
332#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
333#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
334#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
335#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
336
337/* List of fences. */
338typedef _list_t flist_t;
339#define FLIST_FENCE(L) (&(L)->u.fence)
340#define FLIST_NEXT(L) (_LIST_NEXT (L))
341
342/* List of fences with pointer to the tail node. */
343struct flist_tail_def
344{
345 flist_t head;
346 flist_t *tailp;
347};
348
349typedef struct flist_tail_def *flist_tail_t;
350#define FLIST_TAIL_HEAD(L) ((L)->head)
351#define FLIST_TAIL_TAILP(L) ((L)->tailp)
352
353/* List node information. A list node can be any of the types above. */
354struct _list_node
355{
356 _list_t next;
357
358 union
359 {
360 rtx x;
361 struct _bnd bnd;
362 expr_def expr;
363 struct _fence fence;
364 struct _def def;
365 void *data;
366 } u;
367};
368\f
369
370/* _list_t functions.
371 All of _*list_* functions are used through accessor macros, thus
372 we can't move them in sel-sched-ir.c. */
373extern alloc_pool sched_lists_pool;
374
375static inline _list_t
376_list_alloc (void)
377{
378 return (_list_t) pool_alloc (sched_lists_pool);
379}
380
381static inline void
382_list_add (_list_t *lp)
383{
384 _list_t l = _list_alloc ();
385
386 _LIST_NEXT (l) = *lp;
387 *lp = l;
388}
389
390static inline void
391_list_remove_nofree (_list_t *lp)
392{
393 _list_t n = *lp;
394
395 *lp = _LIST_NEXT (n);
396}
397
398static inline void
399_list_remove (_list_t *lp)
400{
401 _list_t n = *lp;
402
403 *lp = _LIST_NEXT (n);
404 pool_free (sched_lists_pool, n);
405}
406
407static inline void
408_list_clear (_list_t *l)
409{
410 while (*l)
411 _list_remove (l);
412}
413\f
414
415/* List iterator backend. */
416typedef struct
417{
418 /* The list we're iterating. */
419 _list_t *lp;
420
421 /* True when this iterator supprts removing. */
422 bool can_remove_p;
423
424 /* True when we've actually removed something. */
425 bool removed_p;
426} _list_iterator;
427
428static inline void
429_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
430{
431 ip->lp = lp;
432 ip->can_remove_p = can_remove_p;
433 ip->removed_p = false;
434}
435
436static inline void
437_list_iter_next (_list_iterator *ip)
438{
439 if (!ip->removed_p)
440 ip->lp = &_LIST_NEXT (*ip->lp);
441 else
442 ip->removed_p = false;
443}
444
445static inline void
446_list_iter_remove (_list_iterator *ip)
447{
448 gcc_assert (!ip->removed_p && ip->can_remove_p);
449 _list_remove (ip->lp);
450 ip->removed_p = true;
451}
452
453static inline void
454_list_iter_remove_nofree (_list_iterator *ip)
455{
456 gcc_assert (!ip->removed_p && ip->can_remove_p);
457 _list_remove_nofree (ip->lp);
458 ip->removed_p = true;
459}
460
461/* General macros to traverse a list. FOR_EACH_* interfaces are
462 implemented using these. */
463#define _FOR_EACH(TYPE, ELEM, I, L) \
464 for (_list_iter_start (&(I), &(L), false); \
465 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
466 _list_iter_next (&(I)))
467
468#define _FOR_EACH_1(TYPE, ELEM, I, LP) \
469 for (_list_iter_start (&(I), (LP), true); \
470 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
b8698a0f 471 _list_iter_next (&(I)))
e855c69d
AB
472\f
473
474/* _xlist_t functions. */
475
476static inline void
477_xlist_add (_xlist_t *lp, rtx x)
478{
479 _list_add (lp);
480 _XLIST_X (*lp) = x;
481}
482
483#define _xlist_remove(LP) (_list_remove (LP))
484#define _xlist_clear(LP) (_list_clear (LP))
485
486static inline bool
487_xlist_is_in_p (_xlist_t l, rtx x)
488{
489 while (l)
490 {
491 if (_XLIST_X (l) == x)
492 return true;
493 l = _XLIST_NEXT (l);
494 }
495
496 return false;
497}
498
499/* Used through _FOR_EACH. */
500static inline bool
501_list_iter_cond_x (_xlist_t l, rtx *xp)
502{
503 if (l)
504 {
505 *xp = _XLIST_X (l);
506 return true;
507 }
508
509 return false;
510}
511
512#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
513
514typedef _list_iterator _xlist_iterator;
515#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
516#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
517\f
518
519/* ilist_t functions. Instruction lists are simply RTX lists. */
520
521#define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
522#define ilist_remove(LP) (_xlist_remove (LP))
523#define ilist_clear(LP) (_xlist_clear (LP))
524#define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
525#define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
526
527typedef _xlist_iterator ilist_iterator;
528#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
529#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
530\f
531
532/* Av set iterators. */
533typedef _list_iterator av_set_iterator;
534#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
535#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
536
537static bool
538_list_iter_cond_expr (av_set_t av, expr_t *exprp)
539{
540 if (av)
541 {
542 *exprp = _AV_SET_EXPR (av);
543 return true;
544 }
545
546 return false;
547}
548\f
549
550/* Def list iterators. */
551typedef _list_t def_list_t;
552typedef _list_iterator def_list_iterator;
553
554#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
555#define DEF_LIST_DEF(L) (&(L)->u.def)
556
557#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
558
559static inline bool
560_list_iter_cond_def (def_list_t def_list, def_t *def)
561{
562 if (def_list)
563 {
564 *def = DEF_LIST_DEF (def_list);
565 return true;
566 }
567
568 return false;
569}
570\f
571
572/* InstructionData. Contains information about insn pattern. */
573struct idata_def
574{
575 /* Type of the insn.
576 o CALL_INSN - Call insn
577 o JUMP_INSN - Jump insn
578 o INSN - INSN that cannot be cloned
579 o USE - INSN that can be cloned
580 o SET - INSN that can be cloned and separable into lhs and rhs
581 o PC - simplejump. Insns that simply redirect control flow should not
582 have any dependencies. Sched-deps.c, though, might consider them as
583 producers or consumers of certain registers. To avoid that we handle
584 dependency for simple jumps ourselves. */
585 int type;
586
587 /* If insn is a SET, this is its left hand side. */
588 rtx lhs;
589
590 /* If insn is a SET, this is its right hand side. */
591 rtx rhs;
592
593 /* Registers that are set/used by this insn. This info is now gathered
594 via sched-deps.c. The downside of this is that we also use live info
595 from flow that is accumulated in the basic blocks. These two infos
596 can be slightly inconsistent, hence in the beginning we make a pass
597 through CFG and calculating the conservative solution for the info in
598 basic blocks. When this scheduler will be switched to use dataflow,
599 this can be unified as df gives us both per basic block and per
600 instruction info. Actually, we don't do that pass and just hope
601 for the best. */
602 regset reg_sets;
603
604 regset reg_clobbers;
605
606 regset reg_uses;
607};
608
609#define IDATA_TYPE(ID) ((ID)->type)
610#define IDATA_LHS(ID) ((ID)->lhs)
611#define IDATA_RHS(ID) ((ID)->rhs)
612#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
613#define IDATA_REG_USES(ID) ((ID)->reg_uses)
614#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
615
616/* Type to represent all needed info to emit an insn.
617 This is a virtual equivalent of the insn.
618 Every insn in the stream has an associated vinsn. This is used
619 to reduce memory consumption basing on the fact that many insns
620 don't change through the scheduler.
621
622 vinsn can be either normal or unique.
623 * Normal vinsn is the one, that can be cloned multiple times and typically
624 corresponds to normal instruction.
625
626 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
627 unusual stuff. Such a vinsn is described by its INSN field, which is a
628 reference to the original instruction. */
629struct vinsn_def
630{
631 /* Associated insn. */
632 rtx insn_rtx;
633
634 /* Its description. */
635 struct idata_def id;
636
637 /* Hash of vinsn. It is computed either from pattern or from rhs using
638 hash_rtx. It is not placed in ID for faster compares. */
639 unsigned hash;
640
641 /* Hash of the insn_rtx pattern. */
642 unsigned hash_rtx;
643
644 /* Smart pointer counter. */
645 int count;
646
647 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
648 int cost;
649
650 /* Mark insns that may trap so we don't move them through jumps. */
651 bool may_trap_p;
652};
653
654#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
655#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
656
657#define VINSN_ID(VI) (&((VI)->id))
658#define VINSN_HASH(VI) ((VI)->hash)
659#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
660#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
661#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
662#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
663#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
664#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
665#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
666#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
667#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
668#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
669#define VINSN_COUNT(VI) ((VI)->count)
670#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
671\f
672
b8698a0f 673/* An entry of the hashtable describing transformations happened when
e855c69d
AB
674 moving up through an insn. */
675struct transformed_insns
676{
677 /* Previous vinsn. Used to find the proper element. */
678 vinsn_t vinsn_old;
679
680 /* A new vinsn. */
681 vinsn_t vinsn_new;
682
683 /* Speculative status. */
684 ds_t ds;
685
686 /* Type of transformation happened. */
687 enum local_trans_type type;
688
689 /* Whether a conflict on the target register happened. */
690 BOOL_BITFIELD was_target_conflict : 1;
691
692 /* Whether a check was needed. */
693 BOOL_BITFIELD needs_check : 1;
694};
695
696/* Indexed by INSN_LUID, the collection of all data associated with
697 a single instruction that is in the stream. */
698struct _sel_insn_data
699{
700 /* The expression that contains vinsn for this insn and some
701 flow-sensitive data like priority. */
702 expr_def expr;
703
704 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
705 int ws_level;
706
707 /* A number that helps in defining a traversing order for a region. */
708 int seqno;
709
710 /* A liveness data computed above this insn. */
711 regset live;
712
713 /* An INSN_UID bit is set when deps analysis result is already known. */
714 bitmap analyzed_deps;
715
b8698a0f 716 /* An INSN_UID bit is set when a hard dep was found, not set when
e855c69d
AB
717 no dependence is found. This is meaningful only when the analyzed_deps
718 bitmap has its bit set. */
719 bitmap found_deps;
720
b8698a0f 721 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
14f30b87
AM
722 a parent with this uid. If a parent is a bookkeeping copy, all its
723 originators are transitively included in this set. */
e855c69d
AB
724 bitmap originators;
725
726 /* A hashtable caching the result of insn transformations through this one. */
727 htab_t transformed_insns;
b8698a0f 728
e855c69d
AB
729 /* A context incapsulating this insn. */
730 struct deps deps_context;
731
732 /* This field is initialized at the beginning of scheduling and is used
733 to handle sched group instructions. If it is non-null, then it points
734 to the instruction, which should be forced to schedule next. Such
735 instructions are unique. */
736 insn_t sched_next;
737
738 /* Cycle at which insn was scheduled. It is greater than zero if insn was
739 scheduled. This is used for bundling. */
740 int sched_cycle;
741
742 /* Cycle at which insn's data will be fully ready. */
743 int ready_cycle;
744
745 /* Speculations that are being checked by this insn. */
746 ds_t spec_checked_ds;
747
748 /* Whether the live set valid or not. */
749 BOOL_BITFIELD live_valid_p : 1;
750 /* Insn is an ASM. */
751 BOOL_BITFIELD asm_p : 1;
752
753 /* True when an insn is scheduled after we've determined that a stall is
754 required.
755 This is used when emulating the Haifa scheduler for bundling. */
756 BOOL_BITFIELD after_stall_p : 1;
757};
758
759typedef struct _sel_insn_data sel_insn_data_def;
760typedef sel_insn_data_def *sel_insn_data_t;
761
762DEF_VEC_O (sel_insn_data_def);
763DEF_VEC_ALLOC_O (sel_insn_data_def, heap);
764extern VEC (sel_insn_data_def, heap) *s_i_d;
765
766/* Accessor macros for s_i_d. */
767#define SID(INSN) (VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN)))
768#define SID_BY_UID(UID) (VEC_index (sel_insn_data_def, s_i_d, LUID_BY_UID (UID)))
769
770extern sel_insn_data_def insn_sid (insn_t);
771
772#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
773#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
774#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
b8698a0f
L
775#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
776#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
e855c69d
AB
777#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
778#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
779#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
780
781#define INSN_EXPR(INSN) (&SID (INSN)->expr)
782#define INSN_LIVE(INSN) (SID (INSN)->live)
783#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
784#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
785#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
786#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
787#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
788#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
789#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
790#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
791#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
792#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
793#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
794#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
795#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
796#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
797#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
798
799/* A global level shows whether an insn is valid or not. */
800extern int global_level;
801
802#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
803
804extern av_set_t get_av_set (insn_t);
805extern int get_av_level (insn_t);
806
807#define AV_SET(INSN) (get_av_set (INSN))
808#define AV_LEVEL(INSN) (get_av_level (INSN))
809#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
810
811/* A list of fences currently in the works. */
812extern flist_t fences;
813
814/* A NOP pattern used as a placeholder for real insns. */
815extern rtx nop_pattern;
816
817/* An insn that 'contained' in EXIT block. */
818extern rtx exit_insn;
819
820/* Provide a separate luid for the insn. */
821#define INSN_INIT_TODO_LUID (1)
822
823/* Initialize s_s_i_d. */
824#define INSN_INIT_TODO_SSID (2)
825
826/* Initialize data for simplejump. */
827#define INSN_INIT_TODO_SIMPLEJUMP (4)
828
829/* Return true if INSN is a local NOP. The nop is local in the sense that
830 it was emitted by the scheduler as a temporary insn and will soon be
831 deleted. These nops are identified by their pattern. */
832#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
833
834/* Return true if INSN is linked into instruction stream.
835 NB: It is impossible for INSN to have one field null and the other not
836 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
837 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
838#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
839
840/* Return true if INSN is in current fence. */
841#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
842
843/* Marks loop as being considered for pipelining. */
844#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
845#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
846
847/* Saved loop preheader to transfer when scheduling the loop. */
848#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
849 ? NULL \
850 : ((VEC(basic_block, heap) *) (LOOP)->aux))
851#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
852 = (BLOCKS != NULL \
853 ? BLOCKS \
854 : (LOOP)->aux))
855
856extern bitmap blocks_to_reschedule;
857\f
858
859/* A variable to track which part of rtx we are scanning in
860 sched-deps.c: sched_analyze_insn (). */
861enum deps_where_def
862 {
863 DEPS_IN_INSN,
864 DEPS_IN_LHS,
865 DEPS_IN_RHS,
866 DEPS_IN_NOWHERE
867 };
868typedef enum deps_where_def deps_where_t;
869\f
870
871/* Per basic block data for the whole CFG. */
872typedef struct
873{
874 /* For each bb header this field contains a set of live registers.
875 For all other insns this field has a NULL.
876 We also need to know LV sets for the instructions, that are immediatly
877 after the border of the region. */
878 regset lv_set;
879
880 /* Status of LV_SET.
881 true - block has usable LV_SET.
882 false - block's LV_SET should be recomputed. */
883 bool lv_set_valid_p;
884} sel_global_bb_info_def;
885
886typedef sel_global_bb_info_def *sel_global_bb_info_t;
887
888DEF_VEC_O (sel_global_bb_info_def);
889DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap);
890
891/* Per basic block data. This array is indexed by basic block index. */
892extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info;
893
894extern void sel_extend_global_bb_info (void);
895extern void sel_finish_global_bb_info (void);
896
897/* Get data for BB. */
898#define SEL_GLOBAL_BB_INFO(BB) \
899 (VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index))
900
901/* Access macros. */
902#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
903#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
904
905/* Per basic block data for the region. */
b8698a0f 906typedef struct
e855c69d
AB
907{
908 /* This insn stream is constructed in such a way that it should be
909 traversed by PREV_INSN field - (*not* NEXT_INSN). */
910 rtx note_list;
911
912 /* Cached availability set at the beginning of a block.
913 See also AV_LEVEL () for conditions when this av_set can be used. */
914 av_set_t av_set;
915
916 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
917 int av_level;
918} sel_region_bb_info_def;
919
920typedef sel_region_bb_info_def *sel_region_bb_info_t;
921
922DEF_VEC_O (sel_region_bb_info_def);
923DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap);
924
925/* Per basic block data. This array is indexed by basic block index. */
926extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info;
927
928/* Get data for BB. */
929#define SEL_REGION_BB_INFO(BB) (VEC_index (sel_region_bb_info_def, \
930 sel_region_bb_info, (BB)->index))
931
932/* Get BB's note_list.
933 A note_list is a list of various notes that was scattered across BB
934 before scheduling, and will be appended at the beginning of BB after
935 scheduling is finished. */
936#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
937
938#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
939#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
940#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
941
942/* Used in bb_in_ebb_p. */
943extern bitmap_head *forced_ebb_heads;
944
945/* The loop nest being pipelined. */
946extern struct loop *current_loop_nest;
947
948/* Saves pipelined blocks. Bitmap is indexed by bb->index. */
949extern sbitmap bbs_pipelined;
950
951/* Various flags. */
952extern bool enable_moveup_set_path_p;
953extern bool pipelining_p;
954extern bool bookkeeping_p;
b8698a0f 955extern int max_insns_to_rename;
e855c69d
AB
956extern bool preheader_removed;
957
958/* Software lookahead window size.
b8698a0f 959 According to the results in Nakatani and Ebcioglu [1993], window size of 16
e855c69d
AB
960 is enough to extract most ILP in integer code. */
961#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
962
963extern regset sel_all_regs;
964\f
965
966/* Successor iterator backend. */
967typedef struct
968{
969 /* True if we're at BB end. */
970 bool bb_end;
971
972 /* An edge on which we're iterating. */
973 edge e1;
974
975 /* The previous edge saved after skipping empty blocks. */
976 edge e2;
b8698a0f 977
e855c69d
AB
978 /* Edge iterator used when there are successors in other basic blocks. */
979 edge_iterator ei;
980
981 /* Successor block we're traversing. */
982 basic_block bb;
983
984 /* Flags that are passed to the iterator. We return only successors
985 that comply to these flags. */
986 short flags;
b8698a0f
L
987
988 /* When flags include SUCCS_ALL, this will be set to the exact type
e855c69d
AB
989 of the sucessor we're traversing now. */
990 short current_flags;
991
992 /* If skip to loop exits, save here information about loop exits. */
993 int current_exit;
994 VEC (edge, heap) *loop_exits;
995} succ_iterator;
996
997/* A structure returning all successor's information. */
998struct succs_info
999{
1000 /* Flags that these succcessors were computed with. */
1001 short flags;
1002
1003 /* Successors that correspond to the flags. */
1004 insn_vec_t succs_ok;
1005
b8698a0f 1006 /* Their probabilities. As of now, we don't need this for other
e855c69d
AB
1007 successors. */
1008 VEC(int,heap) *probs_ok;
1009
1010 /* Other successors. */
1011 insn_vec_t succs_other;
1012
1013 /* Probability of all successors. */
1014 int all_prob;
1015
1016 /* The number of all successors. */
1017 int all_succs_n;
1018
1019 /* The number of good successors. */
1020 int succs_ok_n;
1021};
1022
1023/* Some needed definitions. */
1024extern basic_block after_recovery;
1025
1026extern insn_t sel_bb_head (basic_block);
b5b8b0ac 1027extern insn_t sel_bb_end (basic_block);
e855c69d
AB
1028extern bool sel_bb_empty_p (basic_block);
1029extern bool in_current_region_p (basic_block);
1030
1031/* True when BB is a header of the inner loop. */
1032static inline bool
1033inner_loop_header_p (basic_block bb)
1034{
b8698a0f 1035 struct loop *inner_loop;
e855c69d
AB
1036
1037 if (!current_loop_nest)
1038 return false;
1039
1040 if (bb == EXIT_BLOCK_PTR)
1041 return false;
1042
1043 inner_loop = bb->loop_father;
1044 if (inner_loop == current_loop_nest)
1045 return false;
1046
1047 /* If successor belongs to another loop. */
1048 if (bb == inner_loop->header
1049 && flow_bb_inside_loop_p (current_loop_nest, bb))
1050 {
1051 /* Could be '=' here because of wrong loop depths. */
1052 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1053 return true;
1054 }
1055
b8698a0f 1056 return false;
e855c69d
AB
1057}
1058
1059/* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1060static inline VEC (edge, heap) *
1061get_loop_exit_edges_unique_dests (const struct loop *loop)
1062{
1063 VEC (edge, heap) *edges = NULL;
1064 struct loop_exit *exit;
1065
1066 gcc_assert (loop->latch != EXIT_BLOCK_PTR
1067 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1068
1069 for (exit = loop->exits->next; exit->e; exit = exit->next)
1070 {
1071 int i;
1072 edge e;
1073 bool was_dest = false;
b8698a0f 1074
e855c69d
AB
1075 for (i = 0; VEC_iterate (edge, edges, i, e); i++)
1076 if (e->dest == exit->e->dest)
1077 {
1078 was_dest = true;
1079 break;
1080 }
1081
1082 if (!was_dest)
1083 VEC_safe_push (edge, heap, edges, exit->e);
1084 }
1085 return edges;
1086}
1087
b5b8b0ac
AO
1088static bool
1089sel_bb_empty_or_nop_p (basic_block bb)
1090{
1091 insn_t first = sel_bb_head (bb), last;
1092
1093 if (first == NULL_RTX)
1094 return true;
1095
1096 if (!INSN_NOP_P (first))
1097 return false;
1098
1099 if (bb == EXIT_BLOCK_PTR)
1100 return false;
1101
1102 last = sel_bb_end (bb);
1103 if (first != last)
1104 return false;
1105
1106 return true;
1107}
1108
b8698a0f 1109/* Collect all loop exits recursively, skipping empty BBs between them.
e855c69d
AB
1110 E.g. if BB is a loop header which has several loop exits,
1111 traverse all of them and if any of them turns out to be another loop header
b8698a0f 1112 (after skipping empty BBs), add its loop exits to the resulting vector
e855c69d
AB
1113 as well. */
1114static inline VEC(edge, heap) *
1115get_all_loop_exits (basic_block bb)
1116{
1117 VEC(edge, heap) *exits = NULL;
1118
1119 /* If bb is empty, and we're skipping to loop exits, then
1120 consider bb as a possible gate to the inner loop now. */
b5b8b0ac 1121 while (sel_bb_empty_or_nop_p (bb)
e855c69d
AB
1122 && in_current_region_p (bb))
1123 {
1124 bb = single_succ (bb);
1125
1126 /* This empty block could only lead outside the region. */
1127 gcc_assert (! in_current_region_p (bb));
1128 }
1129
1130 /* And now check whether we should skip over inner loop. */
1131 if (inner_loop_header_p (bb))
1132 {
1133 struct loop *this_loop;
1134 struct loop *pred_loop = NULL;
1135 int i;
1136 edge e;
b8698a0f 1137
e855c69d
AB
1138 for (this_loop = bb->loop_father;
1139 this_loop && this_loop != current_loop_nest;
1140 this_loop = loop_outer (this_loop))
1141 pred_loop = this_loop;
b8698a0f 1142
e855c69d
AB
1143 this_loop = pred_loop;
1144 gcc_assert (this_loop != NULL);
1145
1146 exits = get_loop_exit_edges_unique_dests (this_loop);
1147
1148 /* Traverse all loop headers. */
1149 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
65b659ff
AB
1150 if (in_current_region_p (e->dest)
1151 || inner_loop_header_p (e->dest))
e855c69d
AB
1152 {
1153 VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest);
b8698a0f 1154
e855c69d
AB
1155 if (next_exits)
1156 {
1157 int j;
1158 edge ne;
b8698a0f 1159
e855c69d
AB
1160 /* Add all loop exits for the current edge into the
1161 resulting vector. */
1162 for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++)
1163 VEC_safe_push (edge, heap, exits, ne);
b8698a0f 1164
e855c69d
AB
1165 /* Remove the original edge. */
1166 VEC_ordered_remove (edge, exits, i);
1167
1168 /* Decrease the loop counter so we won't skip anything. */
1169 i--;
1170 continue;
1171 }
1172 }
1173 }
1174
1175 return exits;
1176}
1177
1178/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1179 Any successor will fall into exactly one category. */
1180
1181/* Include normal successors. */
1182#define SUCCS_NORMAL (1)
1183
1184/* Include back-edge successors. */
1185#define SUCCS_BACK (2)
1186
1187/* Include successors that are outside of the current region. */
1188#define SUCCS_OUT (4)
1189
b8698a0f 1190/* When pipelining of the outer loops is enabled, skip innermost loops
e855c69d
AB
1191 to their exits. */
1192#define SUCCS_SKIP_TO_LOOP_EXITS (8)
1193
1194/* Include all successors. */
1195#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1196
1197/* We need to return a succ_iterator to avoid 'unitialized' warning
1198 during bootstrap. */
1199static inline succ_iterator
1200_succ_iter_start (insn_t *succp, insn_t insn, int flags)
1201{
1202 succ_iterator i;
1203
1204 basic_block bb = BLOCK_FOR_INSN (insn);
1205
1206 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1207
1208 i.flags = flags;
1209
1210 /* Avoid 'uninitialized' warning. */
1211 *succp = NULL;
1212 i.e1 = NULL;
1213 i.e2 = NULL;
1214 i.bb = bb;
1215 i.current_flags = 0;
1216 i.current_exit = -1;
1217 i.loop_exits = NULL;
1218
1219 if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
1220 {
1221 i.bb_end = false;
1222
1223 /* Avoid 'uninitialized' warning. */
1224 i.ei.index = 0;
1225 i.ei.container = NULL;
1226 }
1227 else
1228 {
1229 i.ei = ei_start (bb->succs);
1230 i.bb_end = true;
1231 }
1232
1233 return i;
1234}
1235
1236static inline bool
1237_succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1238 bool check (edge, succ_iterator *))
1239{
1240 if (!ip->bb_end)
1241 {
1242 /* When we're in a middle of a basic block, return
1243 the next insn immediately, but only when SUCCS_NORMAL is set. */
1244 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1245 return false;
1246
1247 *succp = NEXT_INSN (insn);
1248 ip->current_flags = SUCCS_NORMAL;
1249 return true;
1250 }
1251 else
1252 {
b8698a0f 1253 while (1)
e855c69d
AB
1254 {
1255 edge e_tmp = NULL;
1256
1257 /* First, try loop exits, if we have them. */
1258 if (ip->loop_exits)
1259 {
1260 do
1261 {
b8698a0f 1262 VEC_iterate (edge, ip->loop_exits,
e855c69d
AB
1263 ip->current_exit, e_tmp);
1264 ip->current_exit++;
1265 }
1266 while (e_tmp && !check (e_tmp, ip));
b8698a0f 1267
e855c69d
AB
1268 if (!e_tmp)
1269 VEC_free (edge, heap, ip->loop_exits);
1270 }
1271
1272 /* If we have found a successor, then great. */
1273 if (e_tmp)
1274 {
1275 ip->e1 = e_tmp;
1276 break;
1277 }
1278
1279 /* If not, then try the next edge. */
1280 while (ei_cond (ip->ei, &(ip->e1)))
1281 {
1282 basic_block bb = ip->e1->dest;
1283
1284 /* Consider bb as a possible loop header. */
1285 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1286 && flag_sel_sched_pipelining_outer_loops
b8698a0f
L
1287 && (!in_current_region_p (bb)
1288 || BLOCK_TO_BB (ip->bb->index)
e855c69d
AB
1289 < BLOCK_TO_BB (bb->index)))
1290 {
1291 /* Get all loop exits recursively. */
1292 ip->loop_exits = get_all_loop_exits (bb);
1293
1294 if (ip->loop_exits)
1295 {
1296 ip->current_exit = 0;
b8698a0f 1297 /* Move the iterator now, because we won't do
e855c69d
AB
1298 succ_iter_next until loop exits will end. */
1299 ei_next (&(ip->ei));
1300 break;
1301 }
1302 }
1303
1304 /* bb is not a loop header, check as usual. */
1305 if (check (ip->e1, ip))
1306 break;
1307
1308 ei_next (&(ip->ei));
1309 }
1310
1311 /* If loop_exits are non null, we have found an inner loop;
1312 do one more iteration to fetch an edge from these exits. */
1313 if (ip->loop_exits)
1314 continue;
1315
1316 /* Otherwise, we've found an edge in a usual way. Break now. */
1317 break;
1318 }
1319
1320 if (ip->e1)
1321 {
1322 basic_block bb = ip->e2->dest;
1323
1324 if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
1325 *succp = exit_insn;
1326 else
1327 {
1328 *succp = sel_bb_head (bb);
1329
1330 gcc_assert (ip->flags != SUCCS_NORMAL
1331 || *succp == NEXT_INSN (bb_note (bb)));
1332 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1333 }
1334
1335 return true;
1336 }
1337 else
1338 return false;
1339 }
1340}
1341
1342static inline void
1343_succ_iter_next (succ_iterator *ip)
1344{
1345 gcc_assert (!ip->e2 || ip->e1);
1346
1347 if (ip->bb_end && ip->e1 && !ip->loop_exits)
1348 ei_next (&(ip->ei));
1349}
1350
1351/* Returns true when E1 is an eligible successor edge, possibly skipping
1352 empty blocks. When E2P is not null, the resulting edge is written there.
1353 FLAGS are used to specify whether back edges and out-of-region edges
1354 should be considered. */
1355static inline bool
1356_eligible_successor_edge_p (edge e1, succ_iterator *ip)
1357{
1358 edge e2 = e1;
1359 basic_block bb;
1360 int flags = ip->flags;
1361 bool src_outside_rgn = !in_current_region_p (e1->src);
1362
1363 gcc_assert (flags != 0);
1364
1365 if (src_outside_rgn)
1366 {
1367 /* Any successor of the block that is outside current region is
1368 ineligible, except when we're skipping to loop exits. */
1369 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1370
1371 if (flags & SUCCS_OUT)
1372 return false;
1373 }
1374
1375 bb = e2->dest;
1376
1377 /* Skip empty blocks, but be careful not to leave the region. */
1378 while (1)
1379 {
1380 if (!sel_bb_empty_p (bb))
b5b8b0ac
AO
1381 {
1382 edge ne;
1383 basic_block nbb;
1384
1385 if (!sel_bb_empty_or_nop_p (bb))
1386 break;
1387
1388 ne = EDGE_SUCC (bb, 0);
1389 nbb = ne->dest;
1390
1391 if (!in_current_region_p (nbb)
1392 && !(flags & SUCCS_OUT))
1393 break;
1394
1395 e2 = ne;
1396 bb = nbb;
1397 continue;
1398 }
b8698a0f
L
1399
1400 if (!in_current_region_p (bb)
e855c69d
AB
1401 && !(flags & SUCCS_OUT))
1402 return false;
1403
4b2e464e
SE
1404 if (EDGE_COUNT (bb->succs) == 0)
1405 return false;
1406
e855c69d
AB
1407 e2 = EDGE_SUCC (bb, 0);
1408 bb = e2->dest;
e855c69d 1409 }
b8698a0f 1410
e855c69d
AB
1411 /* Save the second edge for later checks. */
1412 ip->e2 = e2;
1413
1414 if (in_current_region_p (bb))
1415 {
b8698a0f
L
1416 /* BLOCK_TO_BB sets topological order of the region here.
1417 It is important to use real predecessor here, which is ip->bb,
1418 as we may well have e1->src outside current region,
e855c69d
AB
1419 when skipping to loop exits. */
1420 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1421 < BLOCK_TO_BB (bb->index));
1422
1423 /* This is true for the all cases except the last one. */
1424 ip->current_flags = SUCCS_NORMAL;
b8698a0f 1425
e855c69d
AB
1426 /* We are advancing forward in the region, as usual. */
1427 if (succeeds_in_top_order)
1428 {
1429 /* We are skipping to loop exits here. */
1430 gcc_assert (!src_outside_rgn
1431 || flag_sel_sched_pipelining_outer_loops);
1432 return !!(flags & SUCCS_NORMAL);
1433 }
1434
b8698a0f 1435 /* This is a back edge. During pipelining we ignore back edges,
e855c69d 1436 but only when it leads to the same loop. It can lead to the header
b8698a0f 1437 of the outer loop, which will also be the preheader of
e855c69d
AB
1438 the current loop. */
1439 if (pipelining_p
1440 && e1->src->loop_father == bb->loop_father)
1441 return !!(flags & SUCCS_NORMAL);
1442
1443 /* A back edge should be requested explicitly. */
1444 ip->current_flags = SUCCS_BACK;
1445 return !!(flags & SUCCS_BACK);
1446 }
1447
1448 ip->current_flags = SUCCS_OUT;
1449 return !!(flags & SUCCS_OUT);
1450}
1451
1452#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1453 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1454 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1455 _succ_iter_next (&(ITER)))
1456
1457#define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1458 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1459
1460/* Return the current edge along which a successor was built. */
1461#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1462
1463/* Return the next block of BB not running into inconsistencies. */
1464static inline basic_block
1465bb_next_bb (basic_block bb)
1466{
1467 switch (EDGE_COUNT (bb->succs))
1468 {
1469 case 0:
1470 return bb->next_bb;
1471
b8698a0f 1472 case 1:
e855c69d
AB
1473 return single_succ (bb);
1474
1475 case 2:
1476 return FALLTHRU_EDGE (bb)->dest;
b8698a0f 1477
e855c69d
AB
1478 default:
1479 return bb->next_bb;
1480 }
1481
1482 gcc_unreachable ();
1483}
1484
1485\f
1486
1487/* Functions that are used in sel-sched.c. */
1488
1489/* List functions. */
1490extern ilist_t ilist_copy (ilist_t);
1491extern ilist_t ilist_invert (ilist_t);
1492extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1493extern void blist_remove (blist_t *);
1494extern void flist_tail_init (flist_tail_t);
1495
1496extern fence_t flist_lookup (flist_t, insn_t);
1497extern void flist_clear (flist_t *);
1498extern void def_list_add (def_list_t *, insn_t, bool);
1499
1500/* Target context functions. */
1501extern tc_t create_target_context (bool);
1502extern void set_target_context (tc_t);
1503extern void reset_target_context (tc_t, bool);
1504
1505/* Deps context functions. */
1506extern void advance_deps_context (deps_t, insn_t);
1507
1508/* Fences functions. */
1509extern void init_fences (insn_t);
1510extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1511extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1512extern void move_fence_to_fences (flist_t, flist_tail_t);
1513
1514/* Pool functions. */
1515extern regset get_regset_from_pool (void);
1516extern regset get_clear_regset_from_pool (void);
1517extern void return_regset_to_pool (regset);
1518extern void free_regset_pool (void);
1519
1520extern insn_t get_nop_from_pool (insn_t);
b5b8b0ac 1521extern void return_nop_to_pool (insn_t, bool);
e855c69d
AB
1522extern void free_nop_pool (void);
1523
1524/* Vinsns functions. */
1525extern bool vinsn_separable_p (vinsn_t);
1526extern bool vinsn_cond_branch_p (vinsn_t);
1527extern void recompute_vinsn_lhs_rhs (vinsn_t);
1528extern int sel_vinsn_cost (vinsn_t);
1529extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1530extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1531extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1532extern insn_t sel_move_insn (expr_t, int, insn_t);
1533extern void vinsn_attach (vinsn_t);
1534extern void vinsn_detach (vinsn_t);
1535extern vinsn_t vinsn_copy (vinsn_t, bool);
1536extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1537
1538/* EXPR functions. */
1539extern void copy_expr (expr_t, expr_t);
1540extern void copy_expr_onside (expr_t, expr_t);
1541extern void merge_expr_data (expr_t, expr_t, insn_t);
1542extern void merge_expr (expr_t, expr_t, insn_t);
1543extern void clear_expr (expr_t);
1544extern unsigned expr_dest_regno (expr_t);
b8698a0f
L
1545extern rtx expr_dest_reg (expr_t);
1546extern int find_in_history_vect (VEC(expr_history_def, heap) *,
e855c69d 1547 rtx, vinsn_t, bool);
b8698a0f
L
1548extern void insert_in_history_vect (VEC(expr_history_def, heap) **,
1549 unsigned, enum local_trans_type,
e855c69d
AB
1550 vinsn_t, vinsn_t, ds_t);
1551extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1552extern int speculate_expr (expr_t, ds_t);
1553
1554/* Av set functions. */
1555extern void av_set_add (av_set_t *, expr_t);
1556extern void av_set_iter_remove (av_set_iterator *);
1557extern expr_t av_set_lookup (av_set_t, vinsn_t);
1558extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1559extern bool av_set_is_in_p (av_set_t, vinsn_t);
1560extern av_set_t av_set_copy (av_set_t);
1561extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1562extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1563extern void av_set_clear (av_set_t *);
1564extern void av_set_leave_one_nonspec (av_set_t *);
1565extern expr_t av_set_element (av_set_t, int);
1566extern void av_set_substract_cond_branches (av_set_t *);
1567extern void av_set_split_usefulness (av_set_t, int, int);
1568extern void av_set_intersect (av_set_t *, av_set_t);
1569
1570extern void sel_save_haifa_priorities (void);
1571
1572extern void sel_init_global_and_expr (bb_vec_t);
1573extern void sel_finish_global_and_expr (void);
1574
1575extern regset compute_live (insn_t);
1576
1577/* Dependence analysis functions. */
1578extern void sel_clear_has_dependence (void);
1579extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1580
1581extern int tick_check_p (expr_t, deps_t, fence_t);
1582
1583/* Functions to work with insns. */
1584extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1585extern bool insn_eligible_for_subst_p (insn_t);
1586extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1587
1588extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1589extern bool sel_remove_insn (insn_t, bool, bool);
1590extern bool bb_header_p (insn_t);
1591extern void sel_init_invalid_data_sets (insn_t);
1592extern bool insn_at_boundary_p (insn_t);
1593extern bool jump_leads_only_to_bb_p (insn_t, basic_block);
1594
1595/* Basic block and CFG functions. */
1596
1597extern insn_t sel_bb_head (basic_block);
1598extern bool sel_bb_head_p (insn_t);
1599extern insn_t sel_bb_end (basic_block);
1600extern bool sel_bb_end_p (insn_t);
1601extern bool sel_bb_empty_p (basic_block);
1602
1603extern bool in_current_region_p (basic_block);
1604extern basic_block fallthru_bb_of_jump (rtx);
1605
1606extern void sel_init_bbs (bb_vec_t, basic_block);
1607extern void sel_finish_bbs (void);
1608
1609extern struct succs_info * compute_succs_info (insn_t, short);
1610extern void free_succs_info (struct succs_info *);
1611extern bool sel_insn_has_single_succ_p (insn_t, int);
1612extern bool sel_num_cfg_preds_gt_1 (insn_t);
1613extern int get_seqno_by_preds (rtx);
1614
1615extern bool bb_ends_ebb_p (basic_block);
1616extern bool in_same_ebb_p (insn_t, insn_t);
1617
1618extern bool tidy_control_flow (basic_block, bool);
1619extern void free_bb_note_pool (void);
1620
1621extern void sel_remove_empty_bb (basic_block, bool, bool);
b59ab570 1622extern void purge_empty_blocks (void);
e855c69d
AB
1623extern basic_block sel_split_edge (edge);
1624extern basic_block sel_create_recovery_block (insn_t);
1625extern void sel_merge_blocks (basic_block, basic_block);
b59ab570 1626extern bool sel_redirect_edge_and_branch (edge, basic_block);
e855c69d
AB
1627extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1628extern void sel_init_pipelining (void);
1629extern void sel_finish_pipelining (void);
1630extern void sel_sched_region (int);
e855c69d
AB
1631extern loop_p get_loop_nest_for_rgn (unsigned int);
1632extern bool considered_for_pipelining_p (struct loop *);
1633extern void make_region_from_loop_preheader (VEC(basic_block, heap) **);
1634extern void sel_add_loop_preheaders (void);
1635extern bool sel_is_loop_preheader_p (basic_block);
1636extern void clear_outdated_rtx_info (basic_block);
1637extern void free_data_sets (basic_block);
1638extern void exchange_data_sets (basic_block, basic_block);
1639extern void copy_data_sets (basic_block, basic_block);
1640
1641extern void sel_register_cfg_hooks (void);
1642extern void sel_unregister_cfg_hooks (void);
1643
1644/* Expression transformation routines. */
1645extern rtx create_insn_rtx_from_pattern (rtx, rtx);
1646extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1647extern rtx create_copy_of_insn_rtx (rtx);
1648extern void change_vinsn_in_expr (expr_t, vinsn_t);
1649
1650/* Various initialization functions. */
1651extern void init_lv_sets (void);
1652extern void free_lv_sets (void);
1653extern void setup_nop_and_exit_insns (void);
1654extern void free_nop_and_exit_insns (void);
bcf33775 1655extern void free_data_for_scheduled_insn (insn_t);
e855c69d
AB
1656extern void setup_nop_vinsn (void);
1657extern void free_nop_vinsn (void);
1658extern void sel_set_sched_flags (void);
1659extern void sel_setup_sched_infos (void);
1660extern void alloc_sched_pools (void);
1661extern void free_sched_pools (void);
1662
1663#endif /* GCC_SEL_SCHED_IR_H */
1664
1665
1666
1667
1668
1669
1670
1671