]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e1ab7874 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
fbd26352 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
e1ab7874 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
9ef16211 23#include "backend.h"
24#include "tree.h"
25#include "rtl.h"
26#include "df.h"
ad7b10a2 27#include "memmodel.h"
e1ab7874 28#include "tm_p.h"
e1ab7874 29#include "regs.h"
94ea8568 30#include "cfgbuild.h"
5a06e94f 31#include "cfgcleanup.h"
e1ab7874 32#include "insn-config.h"
33#include "insn-attr.h"
e1ab7874 34#include "params.h"
35#include "target.h"
e1ab7874 36#include "sched-int.h"
e1ab7874 37#include "rtlhooks-def.h"
3e1f1f1a 38#include "ira.h"
ca3be54b 39#include "ira-int.h"
6121af96 40#include "rtl-iter.h"
e1ab7874 41
42#ifdef INSN_SCHEDULING
9ef16211 43#include "regset.h"
44#include "cfgloop.h"
e1ab7874 45#include "sel-sched-ir.h"
46#include "sel-sched-dump.h"
47#include "sel-sched.h"
48#include "dbgcnt.h"
49
50/* Implementation of selective scheduling approach.
51 The below implementation follows the original approach with the following
52 changes:
53
48e1416a 54 o the scheduler works after register allocation (but can be also tuned
e1ab7874 55 to work before RA);
56 o some instructions are not copied or register renamed;
57 o conditional jumps are not moved with code duplication;
58 o several jumps in one parallel group are not supported;
59 o when pipelining outer loops, code motion through inner loops
60 is not supported;
61 o control and data speculation are supported;
62 o some improvements for better compile time/performance were made.
63
64 Terminology
65 ===========
66
48e1416a 67 A vinsn, or virtual insn, is an insn with additional data characterizing
68 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
69 Vinsns also act as smart pointers to save memory by reusing them in
e1ab7874 70 different expressions. A vinsn is described by vinsn_t type.
71
72 An expression is a vinsn with additional data characterizing its properties
48e1416a 73 at some point in the control flow graph. The data may be its usefulness,
e1ab7874 74 priority, speculative status, whether it was renamed/subsituted, etc.
75 An expression is described by expr_t type.
76
48e1416a 77 Availability set (av_set) is a set of expressions at a given control flow
e1ab7874 78 point. It is represented as av_set_t. The expressions in av sets are kept
48e1416a 79 sorted in the terms of expr_greater_p function. It allows to truncate
e1ab7874 80 the set while leaving the best expressions.
48e1416a 81
e1ab7874 82 A fence is a point through which code motion is prohibited. On each step,
83 we gather a parallel group of insns at a fence. It is possible to have
84 multiple fences. A fence is represented via fence_t.
85
86 A boundary is the border between the fence group and the rest of the code.
87 Currently, we never have more than one boundary per fence, as we finalize
48e1416a 88 the fence group when a jump is scheduled. A boundary is represented
e1ab7874 89 via bnd_t.
90
91 High-level overview
92 ===================
93
94 The scheduler finds regions to schedule, schedules each one, and finalizes.
48e1416a 95 The regions are formed starting from innermost loops, so that when the inner
e1ab7874 96 loop is pipelined, its prologue can be scheduled together with yet unprocessed
48e1416a 97 outer loop. The rest of acyclic regions are found using extend_rgns:
e1ab7874 98 the blocks that are not yet allocated to any regions are traversed in top-down
48e1416a 99 order, and a block is added to a region to which all its predecessors belong;
e1ab7874 100 otherwise, the block starts its own region.
101
102 The main scheduling loop (sel_sched_region_2) consists of just
103 scheduling on each fence and updating fences. For each fence,
104 we fill a parallel group of insns (fill_insns) until some insns can be added.
48e1416a 105 First, we compute available exprs (av-set) at the boundary of the current
106 group. Second, we choose the best expression from it. If the stall is
e1ab7874 107 required to schedule any of the expressions, we advance the current cycle
48e1416a 108 appropriately. So, the final group does not exactly correspond to a VLIW
e1ab7874 109 word. Third, we move the chosen expression to the boundary (move_op)
110 and update the intermediate av sets and liveness sets. We quit fill_insns
111 when either no insns left for scheduling or we have scheduled enough insns
48e1416a 112 so we feel like advancing a scheduling point.
e1ab7874 113
114 Computing available expressions
115 ===============================
116
117 The computation (compute_av_set) is a bottom-up traversal. At each insn,
48e1416a 118 we're moving the union of its successors' sets through it via
119 moveup_expr_set. The dependent expressions are removed. Local
120 transformations (substitution, speculation) are applied to move more
e1ab7874 121 exprs. Then the expr corresponding to the current insn is added.
122 The result is saved on each basic block header.
123
124 When traversing the CFG, we're moving down for no more than max_ws insns.
125 Also, we do not move down to ineligible successors (is_ineligible_successor),
126 which include moving along a back-edge, moving to already scheduled code,
48e1416a 127 and moving to another fence. The first two restrictions are lifted during
e1ab7874 128 pipelining, which allows us to move insns along a back-edge. We always have
129 an acyclic region for scheduling because we forbid motion through fences.
130
131 Choosing the best expression
132 ============================
133
134 We sort the final availability set via sel_rank_for_schedule, then we remove
135 expressions which are not yet ready (tick_check_p) or which dest registers
48e1416a 136 cannot be used. For some of them, we choose another register via
137 find_best_reg. To do this, we run find_used_regs to calculate the set of
e1ab7874 138 registers which cannot be used. The find_used_regs function performs
139 a traversal of code motion paths for an expr. We consider for renaming
48e1416a 140 only registers which are from the same regclass as the original one and
e1ab7874 141 using which does not interfere with any live ranges. Finally, we convert
142 the resulting set to the ready list format and use max_issue and reorder*
143 hooks similarly to the Haifa scheduler.
144
145 Scheduling the best expression
146 ==============================
147
48e1416a 148 We run the move_op routine to perform the same type of code motion paths
e1ab7874 149 traversal as in find_used_regs. (These are working via the same driver,
150 code_motion_path_driver.) When moving down the CFG, we look for original
48e1416a 151 instruction that gave birth to a chosen expression. We undo
e1ab7874 152 the transformations performed on an expression via the history saved in it.
48e1416a 153 When found, we remove the instruction or leave a reg-reg copy/speculation
154 check if needed. On a way up, we insert bookkeeping copies at each join
155 point. If a copy is not needed, it will be removed later during this
e1ab7874 156 traversal. We update the saved av sets and liveness sets on the way up, too.
157
158 Finalizing the schedule
159 =======================
160
48e1416a 161 When pipelining, we reschedule the blocks from which insns were pipelined
162 to get a tighter schedule. On Itanium, we also perform bundling via
163 the same routine from ia64.c.
e1ab7874 164
165 Dependence analysis changes
166 ===========================
167
168 We augmented the sched-deps.c with hooks that get called when a particular
169 dependence is found in a particular part of an insn. Using these hooks, we
170 can do several actions such as: determine whether an insn can be moved through
48e1416a 171 another (has_dependence_p, moveup_expr); find out whether an insn can be
172 scheduled on the current cycle (tick_check_p); find out registers that
173 are set/used/clobbered by an insn and find out all the strange stuff that
174 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e1ab7874 175 init_global_and_expr_for_insn).
176
177 Initialization changes
178 ======================
179
48e1416a 180 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e1ab7874 181 reused in all of the schedulers. We have split up the initialization of data
48e1416a 182 of such parts into different functions prefixed with scheduler type and
e1ab7874 183 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
184 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
48e1416a 185 The same splitting is done with current_sched_info structure:
186 dependence-related parts are in sched_deps_info, common part is in
e1ab7874 187 common_sched_info, and haifa/sel/etc part is in current_sched_info.
48e1416a 188
e1ab7874 189 Target contexts
190 ===============
191
192 As we now have multiple-point scheduling, this would not work with backends
48e1416a 193 which save some of the scheduler state to use it in the target hooks.
194 For this purpose, we introduce a concept of target contexts, which
e1ab7874 195 encapsulate such information. The backend should implement simple routines
196 of allocating/freeing/setting such a context. The scheduler calls these
197 as target hooks and handles the target context as an opaque pointer (similar
198 to the DFA state type, state_t).
199
200 Various speedups
201 ================
202
203 As the correct data dependence graph is not supported during scheduling (which
48e1416a 204 is to be changed in mid-term), we cache as much of the dependence analysis
205 results as possible to avoid reanalyzing. This includes: bitmap caches on
206 each insn in stream of the region saying yes/no for a query with a pair of
e1ab7874 207 UIDs; hashtables with the previously done transformations on each insn in
208 stream; a vector keeping a history of transformations on each expr.
209
210 Also, we try to minimize the dependence context used on each fence to check
211 whether the given expression is ready for scheduling by removing from it
48e1416a 212 insns that are definitely completed the execution. The results of
e1ab7874 213 tick_check_p checks are also cached in a vector on each fence.
214
48e1416a 215 We keep a valid liveness set on each insn in a region to avoid the high
e1ab7874 216 cost of recomputation on large basic blocks.
217
218 Finally, we try to minimize the number of needed updates to the availability
48e1416a 219 sets. The updates happen in two cases: when fill_insns terminates,
e1ab7874 220 we advance all fences and increase the stage number to show that the region
221 has changed and the sets are to be recomputed; and when the next iteration
222 of a loop in fill_insns happens (but this one reuses the saved av sets
223 on bb headers.) Thus, we try to break the fill_insns loop only when
224 "significant" number of insns from the current scheduling window was
225 scheduled. This should be made a target param.
48e1416a 226
e1ab7874 227
228 TODO: correctly support the data dependence graph at all stages and get rid
229 of all caches. This should speed up the scheduler.
230 TODO: implement moving cond jumps with bookkeeping copies on both targets.
231 TODO: tune the scheduler before RA so it does not create too much pseudos.
232
233
234 References:
235 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
48e1416a 236 selective scheduling and software pipelining.
237 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e1ab7874 238
48e1416a 239 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
240 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e1ab7874 241 for GCC. In Proceedings of GCC Developers' Summit 2006.
242
48e1416a 243 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e1ab7874 244 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
245 http://rogue.colorado.edu/EPIC7/.
48e1416a 246
e1ab7874 247*/
248
249/* True when pipelining is enabled. */
250bool pipelining_p;
251
252/* True if bookkeeping is enabled. */
253bool bookkeeping_p;
254
255/* Maximum number of insns that are eligible for renaming. */
256int max_insns_to_rename;
257\f
258
259/* Definitions of local types and macros. */
260
261/* Represents possible outcomes of moving an expression through an insn. */
48e1416a 262enum MOVEUP_EXPR_CODE
263 {
e1ab7874 264 /* The expression is not changed. */
48e1416a 265 MOVEUP_EXPR_SAME,
e1ab7874 266
267 /* Not changed, but requires a new destination register. */
48e1416a 268 MOVEUP_EXPR_AS_RHS,
e1ab7874 269
270 /* Cannot be moved. */
48e1416a 271 MOVEUP_EXPR_NULL,
e1ab7874 272
273 /* Changed (substituted or speculated). */
48e1416a 274 MOVEUP_EXPR_CHANGED
e1ab7874 275 };
276
277/* The container to be passed into rtx search & replace functions. */
278struct rtx_search_arg
279{
280 /* What we are searching for. */
281 rtx x;
282
9d75589a 283 /* The occurrence counter. */
e1ab7874 284 int n;
285};
286
287typedef struct rtx_search_arg *rtx_search_arg_p;
288
48e1416a 289/* This struct contains precomputed hard reg sets that are needed when
e1ab7874 290 computing registers available for renaming. */
48e1416a 291struct hard_regs_data
e1ab7874 292{
48e1416a 293 /* For every mode, this stores registers available for use with
e1ab7874 294 that mode. */
295 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296
297 /* True when regs_for_mode[mode] is initialized. */
298 bool regs_for_mode_ok[NUM_MACHINE_MODES];
299
300 /* For every register, it has regs that are ok to rename into it.
301 The register in question is always set. If not, this means
302 that the whole set is not computed yet. */
303 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304
48e1416a 305 /* For every mode, this stores registers not available due to
e1ab7874 306 call clobbering. */
307 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
308
309 /* All registers that are used or call used. */
310 HARD_REG_SET regs_ever_used;
311
312#ifdef STACK_REGS
313 /* Stack registers. */
314 HARD_REG_SET stack_regs;
315#endif
316};
317
318/* Holds the results of computation of available for renaming and
319 unavailable hard registers. */
320struct reg_rename
321{
322 /* These are unavailable due to calls crossing, globalness, etc. */
323 HARD_REG_SET unavailable_hard_regs;
324
325 /* These are *available* for renaming. */
326 HARD_REG_SET available_for_renaming;
327
328 /* Whether this code motion path crosses a call. */
329 bool crosses_call;
330};
331
48e1416a 332/* A global structure that contains the needed information about harg
e1ab7874 333 regs. */
334static struct hard_regs_data sel_hrd;
335\f
336
48e1416a 337/* This structure holds local data used in code_motion_path_driver hooks on
338 the same or adjacent levels of recursion. Here we keep those parameters
339 that are not used in code_motion_path_driver routine itself, but only in
340 its hooks. Moreover, all parameters that can be modified in hooks are
341 in this structure, so all other parameters passed explicitly to hooks are
e1ab7874 342 read-only. */
343struct cmpd_local_params
344{
345 /* Local params used in move_op_* functions. */
346
347 /* Edges for bookkeeping generation. */
348 edge e1, e2;
349
350 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
351 expr_t c_expr_merged, c_expr_local;
352
353 /* Local params used in fur_* functions. */
354 /* Copy of the ORIGINAL_INSN list, stores the original insns already
355 found before entering the current level of code_motion_path_driver. */
356 def_list_t old_original_insns;
357
358 /* Local params used in move_op_* functions. */
48e1416a 359 /* True when we have removed last insn in the block which was
e1ab7874 360 also a boundary. Do not update anything or create bookkeeping copies. */
361 BOOL_BITFIELD removed_last_insn : 1;
362};
363
364/* Stores the static parameters for move_op_* calls. */
365struct moveop_static_params
366{
367 /* Destination register. */
368 rtx dest;
369
370 /* Current C_EXPR. */
371 expr_t c_expr;
372
373 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
374 they are to be removed. */
375 int uid;
376
e1ab7874 377 /* This is initialized to the insn on which the driver stopped its traversal. */
378 insn_t failed_insn;
e1ab7874 379
380 /* True if we scheduled an insn with different register. */
381 bool was_renamed;
382};
383
384/* Stores the static parameters for fur_* calls. */
385struct fur_static_params
386{
387 /* Set of registers unavailable on the code motion path. */
388 regset used_regs;
389
390 /* Pointer to the list of original insns definitions. */
391 def_list_t *original_insns;
392
393 /* True if a code motion path contains a CALL insn. */
394 bool crosses_call;
395};
396
397typedef struct fur_static_params *fur_static_params_p;
398typedef struct cmpd_local_params *cmpd_local_params_p;
399typedef struct moveop_static_params *moveop_static_params_p;
400
67cf9b55 401/* Set of hooks and parameters that determine behavior specific to
e1ab7874 402 move_op or find_used_regs functions. */
403struct code_motion_path_driver_info_def
404{
405 /* Called on enter to the basic block. */
406 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
407
408 /* Called when original expr is found. */
409 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
410
411 /* Called while descending current basic block if current insn is not
412 the original EXPR we're searching for. */
413 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
414
415 /* Function to merge C_EXPRes from different successors. */
416 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
417
418 /* Function to finalize merge from different successors and possibly
419 deallocate temporary data structures used for merging. */
420 void (*after_merge_succs) (cmpd_local_params_p, void *);
421
422 /* Called on the backward stage of recursion to do moveup_expr.
423 Used only with move_op_*. */
424 void (*ascend) (insn_t, void *);
425
48e1416a 426 /* Called on the ascending pass, before returning from the current basic
e1ab7874 427 block or from the whole traversal. */
428 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
429
48e1416a 430 /* When processing successors in move_op we need only descend into
e1ab7874 431 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
432 int succ_flags;
433
434 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
435 const char *routine_name;
436};
437
438/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
439 FUR_HOOKS. */
440struct code_motion_path_driver_info_def *code_motion_path_driver_info;
441
442/* Set of hooks for performing move_op and find_used_regs routines with
443 code_motion_path_driver. */
40b15760 444extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e1ab7874 445
48e1416a 446/* True if/when we want to emulate Haifa scheduler in the common code.
447 This is used in sched_rgn_local_init and in various places in
e1ab7874 448 sched-deps.c. */
449int sched_emulate_haifa_p;
450
451/* GLOBAL_LEVEL is used to discard information stored in basic block headers
452 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
453 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
454 scheduling window. */
455int global_level;
456
457/* Current fences. */
458flist_t fences;
459
460/* True when separable insns should be scheduled as RHSes. */
461static bool enable_schedule_as_rhs_p;
462
463/* Used in verify_target_availability to assert that target reg is reported
464 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
48e1416a 465 we haven't scheduled anything on the previous fence.
e1ab7874 466 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
48e1416a 467 have more conservative value than the one returned by the
e1ab7874 468 find_used_regs, thus we shouldn't assert that these values are equal. */
469static bool scheduled_something_on_previous_fence;
470
471/* All newly emitted insns will have their uids greater than this value. */
472static int first_emitted_uid;
473
474/* Set of basic blocks that are forced to start new ebbs. This is a subset
475 of all the ebb heads. */
6e6e5c14 476bitmap forced_ebb_heads;
e1ab7874 477
478/* Blocks that need to be rescheduled after pipelining. */
479bitmap blocks_to_reschedule = NULL;
480
481/* True when the first lv set should be ignored when updating liveness. */
482static bool ignore_first = false;
483
484/* Number of insns max_issue has initialized data structures for. */
485static int max_issue_size = 0;
486
487/* Whether we can issue more instructions. */
488static int can_issue_more;
489
490/* Maximum software lookahead window size, reduced when rescheduling after
491 pipelining. */
492static int max_ws;
493
494/* Number of insns scheduled in current region. */
495static int num_insns_scheduled;
496
497/* A vector of expressions is used to be able to sort them. */
16fb756f 498static vec<expr_t> vec_av_set;
e1ab7874 499
500/* A vector of vinsns is used to hold temporary lists of vinsns. */
f1f41a6c 501typedef vec<vinsn_t> vinsn_vec_t;
e1ab7874 502
503/* This vector has the exprs which may still present in av_sets, but actually
504 can't be moved up due to bookkeeping created during code motion to another
505 fence. See comment near the call to update_and_record_unavailable_insns
506 for the detailed explanations. */
9af5ce0c 507static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
e1ab7874 508
48e1416a 509/* This vector has vinsns which are scheduled with renaming on the first fence
e1ab7874 510 and then seen on the second. For expressions with such vinsns, target
511 availability information may be wrong. */
9af5ce0c 512static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
e1ab7874 513
514/* Vector to store temporary nops inserted in move_op to prevent removal
515 of empty bbs. */
16fb756f 516static vec<insn_t> vec_temp_moveop_nops;
e1ab7874 517
48e1416a 518/* These bitmaps record original instructions scheduled on the current
519 iteration and bookkeeping copies created by them. */
e1ab7874 520static bitmap current_originators = NULL;
521static bitmap current_copies = NULL;
522
523/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
524 visit them afterwards. */
525static bitmap code_motion_visited_blocks = NULL;
526
527/* Variables to accumulate different statistics. */
528
529/* The number of bookkeeping copies created. */
530static int stat_bookkeeping_copies;
531
532/* The number of insns that required bookkeeiping for their scheduling. */
533static int stat_insns_needed_bookkeeping;
534
535/* The number of insns that got renamed. */
536static int stat_renamed_scheduled;
537
538/* The number of substitutions made during scheduling. */
539static int stat_substitutions_total;
540\f
541
542/* Forward declarations of static functions. */
543static bool rtx_ok_for_substitution_p (rtx, rtx);
544static int sel_rank_for_schedule (const void *, const void *);
545static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
9845d120 546static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e1ab7874 547
548static rtx get_dest_from_orig_ops (av_set_t);
549static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
48e1416a 550static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e1ab7874 551 def_list_t *);
de353418 552static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
553static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
554 cmpd_local_params_p, void *);
e1ab7874 555static void sel_sched_region_1 (void);
556static void sel_sched_region_2 (int);
557static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
558
559static void debug_state (state_t);
560\f
561
562/* Functions that work with fences. */
563
564/* Advance one cycle on FENCE. */
565static void
566advance_one_cycle (fence_t fence)
567{
568 unsigned i;
569 int cycle;
2f3c9801 570 rtx_insn *insn;
48e1416a 571
e1ab7874 572 advance_state (FENCE_STATE (fence));
573 cycle = ++FENCE_CYCLE (fence);
574 FENCE_ISSUED_INSNS (fence) = 0;
575 FENCE_STARTS_CYCLE_P (fence) = 1;
576 can_issue_more = issue_rate;
abb9c563 577 FENCE_ISSUE_MORE (fence) = can_issue_more;
e1ab7874 578
f1f41a6c 579 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
e1ab7874 580 {
581 if (INSN_READY_CYCLE (insn) < cycle)
582 {
583 remove_from_deps (FENCE_DC (fence), insn);
f1f41a6c 584 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
e1ab7874 585 continue;
586 }
587 i++;
588 }
589 if (sched_verbose >= 2)
590 {
591 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
592 debug_state (FENCE_STATE (fence));
593 }
594}
595
596/* Returns true when SUCC in a fallthru bb of INSN, possibly
597 skipping empty basic blocks. */
598static bool
71ce7f59 599in_fallthru_bb_p (rtx_insn *insn, rtx succ)
e1ab7874 600{
601 basic_block bb = BLOCK_FOR_INSN (insn);
7f58c05e 602 edge e;
e1ab7874 603
604 if (bb == BLOCK_FOR_INSN (succ))
605 return true;
606
7f58c05e 607 e = find_fallthru_edge_from (bb);
608 if (e)
609 bb = e->dest;
e1ab7874 610 else
611 return false;
612
613 while (sel_bb_empty_p (bb))
614 bb = bb->next_bb;
615
616 return bb == BLOCK_FOR_INSN (succ);
617}
618
48e1416a 619/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e1ab7874 620 When a successor will continue a ebb, transfer all parameters of a fence
621 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
622 of scheduling helping to distinguish between the old and the new code. */
623static void
624extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
625 int orig_max_seqno)
626{
627 bool was_here_p = false;
2f3c9801 628 insn_t insn = NULL;
e1ab7874 629 insn_t succ;
630 succ_iterator si;
631 ilist_iterator ii;
632 fence_t fence = FLIST_FENCE (old_fences);
633 basic_block bb;
634
635 /* Get the only element of FENCE_BNDS (fence). */
636 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
637 {
638 gcc_assert (!was_here_p);
639 was_here_p = true;
640 }
641 gcc_assert (was_here_p && insn != NULL_RTX);
642
48e1416a 643 /* When in the "middle" of the block, just move this fence
e1ab7874 644 to the new list. */
645 bb = BLOCK_FOR_INSN (insn);
646 if (! sel_bb_end_p (insn)
48e1416a 647 || (single_succ_p (bb)
e1ab7874 648 && single_pred_p (single_succ (bb))))
649 {
650 insn_t succ;
651
48e1416a 652 succ = (sel_bb_end_p (insn)
e1ab7874 653 ? sel_bb_head (single_succ (bb))
654 : NEXT_INSN (insn));
655
48e1416a 656 if (INSN_SEQNO (succ) > 0
e1ab7874 657 && INSN_SEQNO (succ) <= orig_max_seqno
658 && INSN_SCHED_TIMES (succ) <= 0)
659 {
660 FENCE_INSN (fence) = succ;
661 move_fence_to_fences (old_fences, new_fences);
662
663 if (sched_verbose >= 1)
48e1416a 664 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e1ab7874 665 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
666 }
667 return;
668 }
669
670 /* Otherwise copy fence's structures to (possibly) multiple successors. */
671 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
672 {
673 int seqno = INSN_SEQNO (succ);
674
c9281ef8 675 if (seqno > 0 && seqno <= orig_max_seqno
e1ab7874 676 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
677 {
678 bool b = (in_same_ebb_p (insn, succ)
48e1416a 679 || in_fallthru_bb_p (insn, succ));
e1ab7874 680
681 if (sched_verbose >= 1)
48e1416a 682 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
683 INSN_UID (insn), INSN_UID (succ),
e1ab7874 684 BLOCK_NUM (succ), b ? "continue" : "reset");
685
686 if (b)
687 add_dirty_fence_to_fences (new_fences, succ, fence);
688 else
689 {
690 /* Mark block of the SUCC as head of the new ebb. */
691 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
692 add_clean_fence_to_fences (new_fences, succ, fence);
693 }
694 }
695 }
696}
697\f
698
699/* Functions to support substitution. */
700
48e1416a 701/* Returns whether INSN with dependence status DS is eligible for
702 substitution, i.e. it's a copy operation x := y, and RHS that is
e1ab7874 703 moved up through this insn should be substituted. */
704static bool
705can_substitute_through_p (insn_t insn, ds_t ds)
706{
707 /* We can substitute only true dependencies. */
708 if ((ds & DEP_OUTPUT)
709 || (ds & DEP_ANTI)
710 || ! INSN_RHS (insn)
711 || ! INSN_LHS (insn))
712 return false;
713
48e1416a 714 /* Now we just need to make sure the INSN_RHS consists of only one
e1ab7874 715 simple REG rtx. */
48e1416a 716 if (REG_P (INSN_LHS (insn))
e1ab7874 717 && REG_P (INSN_RHS (insn)))
48e1416a 718 return true;
e1ab7874 719 return false;
720}
721
9d75589a 722/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
e1ab7874 723 source (if INSN is eligible for substitution). Returns TRUE if
724 substitution was actually performed, FALSE otherwise. Substitution might
725 be not performed because it's either EXPR' vinsn doesn't contain INSN's
48e1416a 726 destination or the resulting insn is invalid for the target machine.
e1ab7874 727 When UNDO is true, perform unsubstitution instead (the difference is in
728 the part of rtx on which validate_replace_rtx is called). */
729static bool
730substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
731{
732 rtx *where;
733 bool new_insn_valid;
734 vinsn_t *vi = &EXPR_VINSN (expr);
735 bool has_rhs = VINSN_RHS (*vi) != NULL;
736 rtx old, new_rtx;
737
738 /* Do not try to replace in SET_DEST. Although we'll choose new
48e1416a 739 register for the RHS, we don't want to change RHS' original reg.
e1ab7874 740 If the insn is not SET, we may still be able to substitute something
48e1416a 741 in it, and if we're here (don't have deps), it doesn't write INSN's
e1ab7874 742 dest. */
743 where = (has_rhs
744 ? &VINSN_RHS (*vi)
745 : &PATTERN (VINSN_INSN_RTX (*vi)));
746 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
747
748 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
749 if (rtx_ok_for_substitution_p (old, *where))
750 {
9c4c93d0 751 rtx_insn *new_insn;
e1ab7874 752 rtx *where_replace;
753
754 /* We should copy these rtxes before substitution. */
755 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
756 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
757
48e1416a 758 /* Where we'll replace.
e1ab7874 759 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
760 used instead of SET_SRC. */
761 where_replace = (has_rhs
762 ? &SET_SRC (PATTERN (new_insn))
763 : &PATTERN (new_insn));
764
48e1416a 765 new_insn_valid
766 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e1ab7874 767 new_insn);
768
769 /* ??? Actually, constrain_operands result depends upon choice of
770 destination register. E.g. if we allow single register to be an rhs,
48e1416a 771 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e1ab7874 772 in invalid insn dx=dx, so we'll loose this rhs here.
773 Just can't come up with significant testcase for this, so just
774 leaving it for now. */
775 if (new_insn_valid)
776 {
48e1416a 777 change_vinsn_in_expr (expr,
e1ab7874 778 create_vinsn_from_insn_rtx (new_insn, false));
779
48e1416a 780 /* Do not allow clobbering the address register of speculative
e1ab7874 781 insns. */
782 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
1f53e226 783 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
784 expr_dest_reg (expr)))
e1ab7874 785 EXPR_TARGET_AVAILABLE (expr) = false;
786
787 return true;
788 }
789 else
790 return false;
791 }
792 else
793 return false;
794}
795
48e1416a 796/* Return the number of places WHAT appears within WHERE.
e1ab7874 797 Bail out when we found a reference occupying several hard registers. */
48e1416a 798static int
6121af96 799count_occurrences_equiv (const_rtx what, const_rtx where)
e1ab7874 800{
6121af96 801 int count = 0;
802 subrtx_iterator::array_type array;
803 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
804 {
805 const_rtx x = *iter;
806 if (REG_P (x) && REGNO (x) == REGNO (what))
807 {
808 /* Bail out if mode is different or more than one register is
809 used. */
0933f1d9 810 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
6121af96 811 return 0;
812 count += 1;
813 }
814 else if (GET_CODE (x) == SUBREG
815 && (!REG_P (SUBREG_REG (x))
816 || REGNO (SUBREG_REG (x)) == REGNO (what)))
817 /* ??? Do not support substituting regs inside subregs. In that case,
818 simplify_subreg will be called by validate_replace_rtx, and
819 unsubstitution will fail later. */
820 return 0;
821 }
822 return count;
e1ab7874 823}
824
825/* Returns TRUE if WHAT is found in WHERE rtx tree. */
826static bool
827rtx_ok_for_substitution_p (rtx what, rtx where)
828{
829 return (count_occurrences_equiv (what, where) > 0);
830}
831\f
832
833/* Functions to support register renaming. */
834
835/* Substitute VI's set source with REGNO. Returns newly created pattern
836 that has REGNO as its source. */
9c4c93d0 837static rtx_insn *
e1ab7874 838create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
839{
840 rtx lhs_rtx;
841 rtx pattern;
9c4c93d0 842 rtx_insn *insn_rtx;
e1ab7874 843
844 lhs_rtx = copy_rtx (VINSN_LHS (vi));
845
d1f9b275 846 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e1ab7874 847 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
848
849 return insn_rtx;
850}
851
48e1416a 852/* Returns whether INSN's src can be replaced with register number
e1ab7874 853 NEW_SRC_REG. E.g. the following insn is valid for i386:
854
48e1416a 855 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e1ab7874 856 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
857 (reg:SI 0 ax [orig:770 c1 ] [770]))
858 (const_int 288 [0x120])) [0 str S1 A8])
859 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
860 (nil))
861
862 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
48e1416a 863 because of operand constraints:
e1ab7874 864
865 (define_insn "*movqi_1"
866 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
867 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
868 )]
48e1416a 869
870 So do constrain_operands here, before choosing NEW_SRC_REG as best
e1ab7874 871 reg for rhs. */
872
873static bool
874replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
875{
876 vinsn_t vi = INSN_VINSN (insn);
3754d046 877 machine_mode mode;
e1ab7874 878 rtx dst_loc;
879 bool res;
880
881 gcc_assert (VINSN_SEPARABLE_P (vi));
882
883 get_dest_and_mode (insn, &dst_loc, &mode);
884 gcc_assert (mode == GET_MODE (new_src_reg));
885
886 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
887 return true;
888
889 /* See whether SET_SRC can be replaced with this register. */
890 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
891 res = verify_changes (0);
892 cancel_changes (0);
893
894 return res;
895}
896
897/* Returns whether INSN still be valid after replacing it's DEST with
898 register NEW_REG. */
899static bool
900replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
901{
902 vinsn_t vi = INSN_VINSN (insn);
903 bool res;
904
905 /* We should deal here only with separable insns. */
906 gcc_assert (VINSN_SEPARABLE_P (vi));
907 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
908
909 /* See whether SET_DEST can be replaced with this register. */
910 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
913
914 return res;
915}
916
917/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
9c4c93d0 918static rtx_insn *
e1ab7874 919create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
920{
921 rtx rhs_rtx;
922 rtx pattern;
9c4c93d0 923 rtx_insn *insn_rtx;
e1ab7874 924
925 rhs_rtx = copy_rtx (VINSN_RHS (vi));
926
d1f9b275 927 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e1ab7874 928 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
929
930 return insn_rtx;
931}
932
48e1416a 933/* Substitute lhs in the given expression EXPR for the register with number
e1ab7874 934 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
935static void
936replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
937{
2f3c9801 938 rtx_insn *insn_rtx;
e1ab7874 939 vinsn_t vinsn;
940
941 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
942 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
943
944 change_vinsn_in_expr (expr, vinsn);
945 EXPR_WAS_RENAMED (expr) = 1;
946 EXPR_TARGET_AVAILABLE (expr) = 1;
947}
948
949/* Returns whether VI writes either one of the USED_REGS registers or,
950 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
951static bool
48e1416a 952vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e1ab7874 953 HARD_REG_SET unavailable_hard_regs)
954{
955 unsigned regno;
956 reg_set_iterator rsi;
957
958 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
959 {
960 if (REGNO_REG_SET_P (used_regs, regno))
961 return true;
962 if (HARD_REGISTER_NUM_P (regno)
963 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
964 return true;
965 }
966
967 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
968 {
969 if (REGNO_REG_SET_P (used_regs, regno))
970 return true;
971 if (HARD_REGISTER_NUM_P (regno)
972 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
973 return true;
974 }
975
976 return false;
977}
978
48e1416a 979/* Returns register class of the output register in INSN.
e1ab7874 980 Returns NO_REGS for call insns because some targets have constraints on
981 destination register of a call insn.
48e1416a 982
e1ab7874 983 Code adopted from regrename.c::build_def_use. */
984static enum reg_class
ed3e6e5d 985get_reg_class (rtx_insn *insn)
e1ab7874 986{
757fefec 987 int i, n_ops;
e1ab7874 988
835b8178 989 extract_constrain_insn (insn);
8eaaac4d 990 preprocess_constraints (insn);
e1ab7874 991 n_ops = recog_data.n_operands;
992
89a7a6a5 993 const operand_alternative *op_alt = which_op_alt ();
e1ab7874 994 if (asm_noperands (PATTERN (insn)) > 0)
995 {
996 for (i = 0; i < n_ops; i++)
997 if (recog_data.operand_type[i] == OP_OUT)
998 {
999 rtx *loc = recog_data.operand_loc[i];
1000 rtx op = *loc;
89a7a6a5 1001 enum reg_class cl = alternative_class (op_alt, i);
e1ab7874 1002
1003 if (REG_P (op)
1004 && REGNO (op) == ORIGINAL_REGNO (op))
1005 continue;
1006
1007 return cl;
1008 }
1009 }
1010 else if (!CALL_P (insn))
1011 {
1012 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1013 {
1014 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
89a7a6a5 1015 enum reg_class cl = alternative_class (op_alt, opn);
48e1416a 1016
e1ab7874 1017 if (recog_data.operand_type[opn] == OP_OUT ||
1018 recog_data.operand_type[opn] == OP_INOUT)
1019 return cl;
1020 }
1021 }
1022
1023/* Insns like
1024 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1025 may result in returning NO_REGS, cause flags is written implicitly through
1026 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1027 return NO_REGS;
1028}
1029
e1ab7874 1030/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1031static void
1032init_hard_regno_rename (int regno)
1033{
1034 int cur_reg;
1035
1036 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1037
1038 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1039 {
1040 /* We are not interested in renaming in other regs. */
1041 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1042 continue;
1043
1044 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1045 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1046 }
1047}
e1ab7874 1048
48e1416a 1049/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e1ab7874 1050 data first. */
1051static inline bool
34ff3f78 1052sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e1ab7874 1053{
e1ab7874 1054 /* Check whether this is all calculated. */
1055 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1056 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057
1058 init_hard_regno_rename (from);
1059
1060 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
e1ab7874 1061}
1062
1063/* Calculate set of registers that are capable of holding MODE. */
1064static void
3754d046 1065init_regs_for_mode (machine_mode mode)
e1ab7874 1066{
1067 int cur_reg;
48e1416a 1068
e1ab7874 1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1070 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1071
1072 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1073 {
ee331bc7 1074 int nregs;
e1ab7874 1075 int i;
48e1416a 1076
ee331bc7 1077 /* See whether it accepts all modes that occur in
1078 original insns. */
b395382f 1079 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
ee331bc7 1080 continue;
1081
92d2aec3 1082 nregs = hard_regno_nregs (cur_reg, mode);
ee331bc7 1083
e1ab7874 1084 for (i = nregs - 1; i >= 0; --i)
1085 if (fixed_regs[cur_reg + i]
1086 || global_regs[cur_reg + i]
48e1416a 1087 /* Can't use regs which aren't saved by
e1ab7874 1088 the prologue. */
1089 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
0cfef6c5 1090 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1091 it affects aliasing globally and invalidates all AV sets. */
1092 || get_reg_base_value (cur_reg + i)
e1ab7874 1093#ifdef LEAF_REGISTERS
1094 /* We can't use a non-leaf register if we're in a
1095 leaf function. */
d5bf7b64 1096 || (crtl->is_leaf
e1ab7874 1097 && !LEAF_REGISTERS[cur_reg + i])
1098#endif
1099 )
1100 break;
48e1416a 1101
1102 if (i >= 0)
e1ab7874 1103 continue;
48e1416a 1104
5c62f29a 1105 if (targetm.hard_regno_call_part_clobbered (NULL, cur_reg, mode))
48e1416a 1106 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e1ab7874 1107 cur_reg);
48e1416a 1108
1109 /* If the CUR_REG passed all the checks above,
e1ab7874 1110 then it's ok. */
1111 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1112 }
1113
1114 sel_hrd.regs_for_mode_ok[mode] = true;
1115}
1116
1117/* Init all register sets gathered in HRD. */
1118static void
1119init_hard_regs_data (void)
1120{
1121 int cur_reg = 0;
8458f4ca 1122 int cur_mode = 0;
e1ab7874 1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1127 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
48e1416a 1128
1129 /* Initialize registers that are valid based on mode when this is
e1ab7874 1130 really needed. */
1131 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1132 sel_hrd.regs_for_mode_ok[cur_mode] = false;
48e1416a 1133
e1ab7874 1134 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1137
1138#ifdef STACK_REGS
1139 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1140
1141 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1142 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1143#endif
48e1416a 1144}
e1ab7874 1145
48e1416a 1146/* Mark hardware regs in REG_RENAME_P that are not suitable
e1ab7874 1147 for renaming rhs in INSN due to hardware restrictions (register class,
1148 modes compatibility etc). This doesn't affect original insn's dest reg,
1149 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1150 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1151 Registers that are in used_regs are always marked in
1152 unavailable_hard_regs as well. */
1153
1154static void
1155mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1156 regset used_regs ATTRIBUTE_UNUSED)
1157{
3754d046 1158 machine_mode mode;
e1ab7874 1159 enum reg_class cl = NO_REGS;
1160 rtx orig_dest;
1161 unsigned cur_reg, regno;
1162 hard_reg_set_iterator hrsi;
1163
1164 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1165 gcc_assert (reg_rename_p);
1166
1167 orig_dest = SET_DEST (PATTERN (def->orig_insn));
48e1416a 1168
e1ab7874 1169 /* We have decided not to rename 'mem = something;' insns, as 'something'
1170 is usually a register. */
1171 if (!REG_P (orig_dest))
1172 return;
1173
1174 regno = REGNO (orig_dest);
1175
1176 /* If before reload, don't try to work with pseudos. */
1177 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1178 return;
1179
ba1fc759 1180 if (reload_completed)
1181 cl = get_reg_class (def->orig_insn);
e1ab7874 1182
ba1fc759 1183 /* Stop if the original register is one of the fixed_regs, global_regs or
1184 frame pointer, or we could not discover its class. */
48e1416a 1185 if (fixed_regs[regno]
e1ab7874 1186 || global_regs[regno]
3c05b49d 1187 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1188 && regno == HARD_FRAME_POINTER_REGNUM)
74163acd 1189 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
3c05b49d 1190 && regno == FRAME_POINTER_REGNUM)
ba1fc759 1191 || (reload_completed && cl == NO_REGS))
e1ab7874 1192 {
1193 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1194
1195 /* Give a chance for original register, if it isn't in used_regs. */
1196 if (!def->crosses_call)
1197 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1198
1199 return;
1200 }
1201
1202 /* If something allocated on stack in this function, mark frame pointer
48e1416a 1203 register unavailable, considering also modes.
e1ab7874 1204 FIXME: it is enough to do this once per all original defs. */
1205 if (frame_pointer_needed)
1206 {
d82cf2b2 1207 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1208 Pmode, FRAME_POINTER_REGNUM);
e1ab7874 1209
d82cf2b2 1210 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1211 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
f4ce3ea7 1212 Pmode, HARD_FRAME_POINTER_REGNUM);
e1ab7874 1213 }
1214
1215#ifdef STACK_REGS
1216 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1217 is equivalent to as if all stack regs were in this set.
1218 I.e. no stack register can be renamed, and even if it's an original
48e1416a 1219 register here we make sure it won't be lifted over it's previous def
1220 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e1ab7874 1221 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1222 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
48e1416a 1223 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1224 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e1ab7874 1225 sel_hrd.stack_regs);
48e1416a 1226#endif
e1ab7874 1227
48e1416a 1228 /* If there's a call on this path, make regs from call_used_reg_set
e1ab7874 1229 unavailable. */
1230 if (def->crosses_call)
48e1416a 1231 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e1ab7874 1232 call_used_reg_set);
1233
48e1416a 1234 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e1ab7874 1235 but not register classes. */
1236 if (!reload_completed)
1237 return;
1238
48e1416a 1239 /* Leave regs as 'available' only from the current
e1ab7874 1240 register class. */
e1ab7874 1241 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1242 reg_class_contents[cl]);
1243
ba1fc759 1244 mode = GET_MODE (orig_dest);
1245
e1ab7874 1246 /* Leave only registers available for this mode. */
1247 if (!sel_hrd.regs_for_mode_ok[mode])
1248 init_regs_for_mode (mode);
48e1416a 1249 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e1ab7874 1250 sel_hrd.regs_for_mode[mode]);
1251
1252 /* Exclude registers that are partially call clobbered. */
1253 if (def->crosses_call
5c62f29a 1254 && !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
48e1416a 1255 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e1ab7874 1256 sel_hrd.regs_for_call_clobbered[mode]);
1257
1258 /* Leave only those that are ok to rename. */
1259 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1260 0, cur_reg, hrsi)
1261 {
1262 int nregs;
1263 int i;
1264
92d2aec3 1265 nregs = hard_regno_nregs (cur_reg, mode);
e1ab7874 1266 gcc_assert (nregs > 0);
1267
1268 for (i = nregs - 1; i >= 0; --i)
1269 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1270 break;
1271
48e1416a 1272 if (i >= 0)
1273 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e1ab7874 1274 cur_reg);
1275 }
1276
48e1416a 1277 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e1ab7874 1278 reg_rename_p->unavailable_hard_regs);
1279
1280 /* Regno is always ok from the renaming part of view, but it really
1281 could be in *unavailable_hard_regs already, so set it here instead
1282 of there. */
1283 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1284}
1285
1286/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1287 best register more recently than REG2. */
1288static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1289
1290/* Indicates the number of times renaming happened before the current one. */
1291static int reg_rename_this_tick;
1292
48e1416a 1293/* Choose the register among free, that is suitable for storing
e1ab7874 1294 the rhs value.
1295
1296 ORIGINAL_INSNS is the list of insns where the operation (rhs)
48e1416a 1297 originally appears. There could be multiple original operations
1298 for single rhs since we moving it up and merging along different
e1ab7874 1299 paths.
1300
1301 Some code is adapted from regrename.c (regrename_optimize).
1302 If original register is available, function returns it.
1303 Otherwise it performs the checks, so the new register should
1304 comply with the following:
48e1416a 1305 - it should not violate any live ranges (such registers are in
e1ab7874 1306 REG_RENAME_P->available_for_renaming set);
1307 - it should not be in the HARD_REGS_USED regset;
1308 - it should be in the class compatible with original uses;
1309 - it should not be clobbered through reference with different mode;
48e1416a 1310 - if we're in the leaf function, then the new register should
e1ab7874 1311 not be in the LEAF_REGISTERS;
1312 - etc.
1313
1314 If several registers meet the conditions, the register with smallest
1315 tick is returned to achieve more even register allocation.
1316
1317 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1318
1319 If no register satisfies the above conditions, NULL_RTX is returned. */
1320static rtx
48e1416a 1321choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1322 struct reg_rename *reg_rename_p,
e1ab7874 1323 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1324{
1325 int best_new_reg;
1326 unsigned cur_reg;
3754d046 1327 machine_mode mode = VOIDmode;
e1ab7874 1328 unsigned regno, i, n;
1329 hard_reg_set_iterator hrsi;
1330 def_list_iterator di;
1331 def_t def;
1332
1333 /* If original register is available, return it. */
1334 *is_orig_reg_p_ptr = true;
1335
1336 FOR_EACH_DEF (def, di, original_insns)
1337 {
1338 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1339
1340 gcc_assert (REG_P (orig_dest));
1341
48e1416a 1342 /* Check that all original operations have the same mode.
e1ab7874 1343 This is done for the next loop; if we'd return from this
48e1416a 1344 loop, we'd check only part of them, but in this case
e1ab7874 1345 it doesn't matter. */
1346 if (mode == VOIDmode)
1347 mode = GET_MODE (orig_dest);
1348 gcc_assert (mode == GET_MODE (orig_dest));
1349
1350 regno = REGNO (orig_dest);
10fa8f76 1351 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
e1ab7874 1352 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1353 break;
1354
1355 /* All hard registers are available. */
1356 if (i == n)
1357 {
1358 gcc_assert (mode != VOIDmode);
48e1416a 1359
e1ab7874 1360 /* Hard registers should not be shared. */
1361 return gen_rtx_REG (mode, regno);
1362 }
1363 }
48e1416a 1364
e1ab7874 1365 *is_orig_reg_p_ptr = false;
1366 best_new_reg = -1;
48e1416a 1367
1368 /* Among all available regs choose the register that was
e1ab7874 1369 allocated earliest. */
1370 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1371 0, cur_reg, hrsi)
1372 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1373 {
936f065e 1374 /* Check that all hard regs for mode are available. */
92d2aec3 1375 for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
936f065e 1376 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1377 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1378 cur_reg + i))
1379 break;
1380
1381 if (i < n)
1382 continue;
1383
e1ab7874 1384 /* All hard registers are available. */
1385 if (best_new_reg < 0
1386 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1387 {
1388 best_new_reg = cur_reg;
48e1416a 1389
e1ab7874 1390 /* Return immediately when we know there's no better reg. */
1391 if (! reg_rename_tick[best_new_reg])
1392 break;
1393 }
1394 }
1395
1396 if (best_new_reg >= 0)
1397 {
1398 /* Use the check from the above loop. */
1399 gcc_assert (mode != VOIDmode);
1400 return gen_rtx_REG (mode, best_new_reg);
1401 }
1402
1403 return NULL_RTX;
1404}
1405
1406/* A wrapper around choose_best_reg_1 () to verify that we make correct
1407 assumptions about available registers in the function. */
1408static rtx
48e1416a 1409choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e1ab7874 1410 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1411{
48e1416a 1412 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e1ab7874 1413 original_insns, is_orig_reg_p_ptr);
1414
936f065e 1415 /* FIXME loop over hard_regno_nregs here. */
e1ab7874 1416 gcc_assert (best_reg == NULL_RTX
1417 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1418
1419 return best_reg;
1420}
1421
48e1416a 1422/* Choose the pseudo register for storing rhs value. As this is supposed
e1ab7874 1423 to work before reload, we return either the original register or make
48e1416a 1424 the new one. The parameters are the same that in choose_nest_reg_1
1425 functions, except that USED_REGS may contain pseudos.
e1ab7874 1426 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1427
48e1416a 1428 TODO: take into account register pressure while doing this. Up to this
1429 moment, this function would never return NULL for pseudos, but we should
e1ab7874 1430 not rely on this. */
1431static rtx
48e1416a 1432choose_best_pseudo_reg (regset used_regs,
1433 struct reg_rename *reg_rename_p,
e1ab7874 1434 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1435{
1436 def_list_iterator i;
1437 def_t def;
3754d046 1438 machine_mode mode = VOIDmode;
e1ab7874 1439 bool bad_hard_regs = false;
48e1416a 1440
e1ab7874 1441 /* We should not use this after reload. */
1442 gcc_assert (!reload_completed);
1443
1444 /* If original register is available, return it. */
1445 *is_orig_reg_p_ptr = true;
1446
1447 FOR_EACH_DEF (def, i, original_insns)
1448 {
1449 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1450 int orig_regno;
48e1416a 1451
e1ab7874 1452 gcc_assert (REG_P (dest));
48e1416a 1453
e1ab7874 1454 /* Check that all original operations have the same mode. */
1455 if (mode == VOIDmode)
1456 mode = GET_MODE (dest);
1457 else
1458 gcc_assert (mode == GET_MODE (dest));
1459 orig_regno = REGNO (dest);
48e1416a 1460
7d7218d3 1461 /* Check that nothing in used_regs intersects with orig_regno. When
1462 we have a hard reg here, still loop over hard_regno_nregs. */
1463 if (HARD_REGISTER_NUM_P (orig_regno))
1464 {
1465 int j, n;
10fa8f76 1466 for (j = 0, n = REG_NREGS (dest); j < n; j++)
7d7218d3 1467 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1468 break;
1469 if (j < n)
1470 continue;
1471 }
1472 else
1473 {
1474 if (REGNO_REG_SET_P (used_regs, orig_regno))
1475 continue;
1476 }
1477 if (HARD_REGISTER_NUM_P (orig_regno))
1478 {
1479 gcc_assert (df_regs_ever_live_p (orig_regno));
1480
1481 /* For hard registers, we have to check hardware imposed
1482 limitations (frame/stack registers, calls crossed). */
1483 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1484 orig_regno))
1485 {
1486 /* Don't let register cross a call if it doesn't already
1487 cross one. This condition is written in accordance with
1488 that in sched-deps.c sched_analyze_reg(). */
1489 if (!reg_rename_p->crosses_call
1490 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1491 return gen_rtx_REG (mode, orig_regno);
1492 }
1493
1494 bad_hard_regs = true;
1495 }
1496 else
1497 return dest;
1498 }
e1ab7874 1499
1500 *is_orig_reg_p_ptr = false;
48e1416a 1501
e1ab7874 1502 /* We had some original hard registers that couldn't be used.
1503 Those were likely special. Don't try to create a pseudo. */
1504 if (bad_hard_regs)
1505 return NULL_RTX;
48e1416a 1506
1507 /* We haven't found a register from original operations. Get a new one.
e1ab7874 1508 FIXME: control register pressure somehow. */
1509 {
1510 rtx new_reg = gen_reg_rtx (mode);
1511
1512 gcc_assert (mode != VOIDmode);
1513
1514 max_regno = max_reg_num ();
1515 maybe_extend_reg_info_p ();
1516 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1517
1518 return new_reg;
1519 }
1520}
1521
1522/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1523 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1524static void
48e1416a 1525verify_target_availability (expr_t expr, regset used_regs,
e1ab7874 1526 struct reg_rename *reg_rename_p)
1527{
1528 unsigned n, i, regno;
3754d046 1529 machine_mode mode;
e1ab7874 1530 bool target_available, live_available, hard_available;
1531
1532 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1533 return;
48e1416a 1534
e1ab7874 1535 regno = expr_dest_regno (expr);
1536 mode = GET_MODE (EXPR_LHS (expr));
1537 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
92d2aec3 1538 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
e1ab7874 1539
1540 live_available = hard_available = true;
1541 for (i = 0; i < n; i++)
1542 {
1543 if (bitmap_bit_p (used_regs, regno + i))
1544 live_available = false;
1545 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1546 hard_available = false;
1547 }
1548
48e1416a 1549 /* When target is not available, it may be due to hard register
e1ab7874 1550 restrictions, e.g. crosses calls, so we check hard_available too. */
1551 if (target_available)
1552 gcc_assert (live_available);
1553 else
48e1416a 1554 /* Check only if we haven't scheduled something on the previous fence,
e1ab7874 1555 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1556 and having more than one fence, we may end having targ_un in a block
48e1416a 1557 in which successors target register is actually available.
e1ab7874 1558
1559 The last condition handles the case when a dependence from a call insn
48e1416a 1560 was created in sched-deps.c for insns with destination registers that
1561 never crossed a call before, but do cross one after our code motion.
e1ab7874 1562
48e1416a 1563 FIXME: in the latter case, we just uselessly called find_used_regs,
1564 because we can't move this expression with any other register
e1ab7874 1565 as well. */
48e1416a 1566 gcc_assert (scheduled_something_on_previous_fence || !live_available
1567 || !hard_available
1568 || (!reload_completed && reg_rename_p->crosses_call
e1ab7874 1569 && REG_N_CALLS_CROSSED (regno) == 0));
1570}
1571
48e1416a 1572/* Collect unavailable registers due to liveness for EXPR from BNDS
1573 into USED_REGS. Save additional information about available
e1ab7874 1574 registers and unavailable due to hardware restriction registers
1575 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1576 list. */
1577static void
1578collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1579 struct reg_rename *reg_rename_p,
1580 def_list_t *original_insns)
1581{
1582 for (; bnds; bnds = BLIST_NEXT (bnds))
1583 {
1584 bool res;
1585 av_set_t orig_ops = NULL;
1586 bnd_t bnd = BLIST_BND (bnds);
1587
1588 /* If the chosen best expr doesn't belong to current boundary,
1589 skip it. */
1590 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1591 continue;
1592
1593 /* Put in ORIG_OPS all exprs from this boundary that became
1594 RES on top. */
1595 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1596
1597 /* Compute used regs and OR it into the USED_REGS. */
1598 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1599 reg_rename_p, original_insns);
1600
1601 /* FIXME: the assert is true until we'd have several boundaries. */
1602 gcc_assert (res);
1603 av_set_clear (&orig_ops);
1604 }
1605}
1606
1607/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1608 If BEST_REG is valid, replace LHS of EXPR with it. */
1609static bool
1610try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1611{
e1ab7874 1612 /* Try whether we'll be able to generate the insn
1613 'dest := best_reg' at the place of the original operation. */
1614 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1615 {
1616 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1617
1618 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1619
28abb7ee 1620 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1621 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1622 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e1ab7874 1623 return false;
1624 }
1625
1626 /* Make sure that EXPR has the right destination
1627 register. */
28abb7ee 1628 if (expr_dest_regno (expr) != REGNO (best_reg))
1629 replace_dest_with_reg_in_expr (expr, best_reg);
1630 else
1631 EXPR_TARGET_AVAILABLE (expr) = 1;
1632
e1ab7874 1633 return true;
1634}
1635
48e1416a 1636/* Select and assign best register to EXPR searching from BNDS.
1637 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e1ab7874 1638 Return FALSE if no register can be chosen, which could happen when:
1639 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1640 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1641 that are used on the moving path. */
1642static bool
1643find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1644{
1645 static struct reg_rename reg_rename_data;
1646
1647 regset used_regs;
1648 def_list_t original_insns = NULL;
1649 bool reg_ok;
1650
1651 *is_orig_reg_p = false;
1652
1653 /* Don't bother to do anything if this insn doesn't set any registers. */
1654 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1655 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1656 return true;
1657
1658 used_regs = get_clear_regset_from_pool ();
1659 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1660
1661 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1662 &original_insns);
1663
e1ab7874 1664 /* If after reload, make sure we're working with hard regs here. */
382ecba7 1665 if (flag_checking && reload_completed)
e1ab7874 1666 {
1667 reg_set_iterator rsi;
1668 unsigned i;
48e1416a 1669
e1ab7874 1670 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1671 gcc_unreachable ();
1672 }
e1ab7874 1673
1674 if (EXPR_SEPARABLE_P (expr))
1675 {
1676 rtx best_reg = NULL_RTX;
1677 /* Check that we have computed availability of a target register
1678 correctly. */
1679 verify_target_availability (expr, used_regs, &reg_rename_data);
1680
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed)
1683 {
1684 HARD_REG_SET hard_regs_used;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1686
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used,
1690 reg_rename_data.unavailable_hard_regs);
1691
1692 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1693 original_insns, is_orig_reg_p);
1694 }
1695 else
1696 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1697 original_insns, is_orig_reg_p);
1698
1699 if (!best_reg)
1700 reg_ok = false;
1701 else if (*is_orig_reg_p)
1702 {
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1705 ORIGINAL_INSNS. */
1706 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1707 }
1708 else
1709 {
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1712 reg_ok = false;
1713 else
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1715 }
1716 }
1717 else
1718 {
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1722 reg_rename_data.unavailable_hard_regs))
1723 {
1724 reg_ok = false;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1726 }
1727 else
1728 {
1729 reg_ok = true;
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1731 }
1732 }
1733
1734 ilist_clear (&original_insns);
1735 return_regset_to_pool (used_regs);
1736
1737 return reg_ok;
1738}
1739\f
1740
1741/* Return true if dependence described by DS can be overcomed. */
1742static bool
1743can_speculate_dep_p (ds_t ds)
1744{
1745 if (spec_info == NULL)
1746 return false;
1747
1748 /* Leave only speculative data. */
1749 ds &= SPECULATIVE;
1750
1751 if (ds == 0)
1752 return false;
1753
1754 {
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask = spec_info->mask;
1758
1759 if ((ds & spec_mask) != ds)
1760 return false;
1761 }
1762
1763 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1764 return false;
1765
1766 return true;
1767}
1768
1769/* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1773static insn_t
1774create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1775{
1776 rtx check_pattern;
9c4c93d0 1777 rtx_insn *insn_rtx;
e1ab7874 1778 insn_t insn;
1779 basic_block recovery_block;
18282db0 1780 rtx_insn *label;
e1ab7874 1781
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
cf7898a6 1784 if (targetm.sched.needs_block_p (check_ds)
e1ab7874 1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1786 {
1787 recovery_block = sel_create_recovery_block (orig_insn);
1788 label = BB_HEAD (recovery_block);
1789 }
1790 else
1791 {
1792 recovery_block = NULL;
18282db0 1793 label = NULL;
e1ab7874 1794 }
1795
1796 /* Get pattern of the check. */
1797 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1798 check_ds);
1799
1800 gcc_assert (check_pattern != NULL);
1801
1802 /* Emit check. */
1803 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1804
1805 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1806 INSN_SEQNO (orig_insn), orig_insn);
1807
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1811
1812 /* Decrease priority of check by difference of load/check instruction
1813 latencies. */
1814 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1815 - sel_vinsn_cost (INSN_VINSN (insn)));
1816
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block != NULL)
1820 {
1821 rtx twin_rtx;
e1ab7874 1822
1823 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1824 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
57ab8ec3 1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1826 INSN_EXPR (orig_insn),
1827 INSN_SEQNO (insn),
1828 bb_note (recovery_block));
e1ab7874 1829 }
1830
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1834 check won't fail.
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds = ds_get_max_dep_weak (check_ds);
1839 speculate_expr (c_expr, check_ds);
48e1416a 1840
e1ab7874 1841 return insn;
1842}
1843
1844/* True when INSN is a "regN = regN" copy. */
1845static bool
71ce7f59 1846identical_copy_p (rtx_insn *insn)
e1ab7874 1847{
1848 rtx lhs, rhs, pat;
1849
1850 pat = PATTERN (insn);
1851
1852 if (GET_CODE (pat) != SET)
1853 return false;
1854
1855 lhs = SET_DEST (pat);
1856 if (!REG_P (lhs))
1857 return false;
1858
1859 rhs = SET_SRC (pat);
1860 if (!REG_P (rhs))
1861 return false;
1862
1863 return REGNO (lhs) == REGNO (rhs);
1864}
1865
48e1416a 1866/* Undo all transformations on *AV_PTR that were done when
e1ab7874 1867 moving through INSN. */
1868static void
2f3c9801 1869undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
e1ab7874 1870{
1871 av_set_iterator av_iter;
1872 expr_t expr;
1873 av_set_t new_set = NULL;
1874
48e1416a 1875 /* First, kill any EXPR that uses registers set by an insn. This is
e1ab7874 1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1878 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
48e1416a 1879 && bitmap_intersect_p (INSN_REG_SETS (insn),
e1ab7874 1880 VINSN_REG_USES (EXPR_VINSN (expr)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
48e1416a 1883 gcc.c-torture/execute/961125-1.c. */
e1ab7874 1884 && !identical_copy_p (insn))
1885 {
1886 if (sched_verbose >= 6)
48e1416a 1887 sel_print ("Expr %d removed due to use/set conflict\n",
e1ab7874 1888 INSN_UID (EXPR_INSN_RTX (expr)));
1889 av_set_iter_remove (&av_iter);
1890 }
1891
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1894 {
1895 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1896 insn, EXPR_VINSN (expr), true);
1897
1898 if (index >= 0)
1899 {
1900 expr_history_def *phist;
1901
f1f41a6c 1902 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
e1ab7874 1903
48e1416a 1904 switch (phist->type)
e1ab7874 1905 {
1906 case TRANS_SPECULATION:
1907 {
1908 ds_t old_ds, new_ds;
48e1416a 1909
e1ab7874 1910 /* Compute the difference between old and new speculative
48e1416a 1911 statuses: that's what we need to check.
e1ab7874 1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
48e1416a 1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
e1ab7874 1917 record this in the history vector. */
1918 old_ds = phist->spec_ds;
1919 new_ds = EXPR_SPEC_DONE_DS (expr);
1920
1921 old_ds &= SPECULATIVE;
1922 new_ds &= SPECULATIVE;
1923 new_ds &= ~old_ds;
48e1416a 1924
e1ab7874 1925 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1926 break;
1927 }
1928 case TRANS_SUBSTITUTION:
1929 {
1930 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1931 vinsn_t new_vi;
1932 bool add = true;
48e1416a 1933
e1ab7874 1934 new_vi = phist->old_expr_vinsn;
48e1416a 1935
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e1ab7874 1937 == EXPR_SEPARABLE_P (expr));
1938 copy_expr (tmp_expr, expr);
1939
48e1416a 1940 if (vinsn_equal_p (phist->new_expr_vinsn,
e1ab7874 1941 EXPR_VINSN (tmp_expr)))
1942 change_vinsn_in_expr (tmp_expr, new_vi);
1943 else
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add = substitute_reg_in_expr (tmp_expr, insn, true);
1948 if (add)
1949 av_set_add (&new_set, tmp_expr);
1950 clear_expr (tmp_expr);
1951 break;
1952 }
1953 default:
1954 gcc_unreachable ();
1955 }
1956 }
48e1416a 1957
e1ab7874 1958 }
1959
1960 av_set_union_and_clear (av_ptr, &new_set, NULL);
1961}
1962\f
1963
1964/* Moveup_* helpers for code motion and computing av sets. */
1965
1966/* Propagates EXPR inside an insn group through THROUGH_INSN.
48e1416a 1967 The difference from the below function is that only substitution is
e1ab7874 1968 performed. */
1969static enum MOVEUP_EXPR_CODE
1970moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1971{
1972 vinsn_t vi = EXPR_VINSN (expr);
1973 ds_t *has_dep_p;
1974 ds_t full_ds;
1975
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1978
1979 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1980 if (full_ds == 0)
1981 return MOVEUP_EXPR_SAME;
1982
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p[DEPS_IN_RHS])
1985 {
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi));
48e1416a 1988
1989 if (can_substitute_through_p (through_insn,
e1ab7874 1990 has_dep_p[DEPS_IN_RHS])
1991 && substitute_reg_in_expr (expr, through_insn, false))
1992 {
1993 EXPR_WAS_SUBSTITUTED (expr) = true;
1994 return MOVEUP_EXPR_CHANGED;
1995 }
1996
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME;
2000 }
2001
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p[DEPS_IN_INSN])
2004 return MOVEUP_EXPR_NULL;
48e1416a 2005
e1ab7874 2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2008 will fix this. */
2009 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2010 return MOVEUP_EXPR_AS_RHS;
2011}
2012
2013/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014#define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2018
2019/* True when a conflict on a target register was found during moveup_expr. */
2020static bool was_target_conflict = false;
2021
9845d120 2022/* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2026
2027static bool
2028moving_insn_creates_bookkeeping_block_p (insn_t insn,
2029 insn_t through_insn)
2030{
2031 basic_block bbi, bbt;
2032 edge e1, e2;
2033 edge_iterator ei1, ei2;
2034
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2036 {
2037 if (sched_verbose >= 9)
2038 sel_print ("no bookkeeping required: ");
2039 return FALSE;
2040 }
2041
2042 bbi = BLOCK_FOR_INSN (insn);
2043
2044 if (EDGE_COUNT (bbi->preds) == 1)
2045 {
2046 if (sched_verbose >= 9)
2047 sel_print ("only one pred edge: ");
2048 return TRUE;
2049 }
2050
2051 bbt = BLOCK_FOR_INSN (through_insn);
2052
2053 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2054 {
2055 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2056 {
2057 if (find_block_for_bookkeeping (e1, e2, TRUE))
2058 {
2059 if (sched_verbose >= 9)
2060 sel_print ("found existing block: ");
2061 return FALSE;
2062 }
2063 }
2064 }
2065
2066 if (sched_verbose >= 9)
2067 sel_print ("would create bookkeeping block: ");
2068
2069 return TRUE;
2070}
2071
3e1f1f1a 2072/* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2074static bool
2075implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2076{
2077 HARD_REG_SET temp;
9c4c93d0 2078 rtx_insn *insn;
2079 rtx reg, rhs, pat;
3e1f1f1a 2080 hard_reg_set_iterator hrsi;
2081 unsigned regno;
2082 bool valid;
2083
2084 /* Make a new pseudo register. */
2085 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2086 max_regno = max_reg_num ();
2087 maybe_extend_reg_info_p ();
2088
2089 /* Validate a change and bail out early. */
2090 insn = EXPR_INSN_RTX (expr);
2091 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2092 valid = verify_changes (0);
2093 cancel_changes (0);
2094 if (!valid)
2095 {
2096 if (sched_verbose >= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2098 return true;
2099 }
2100
2101 /* Make a new insn with it. */
2102 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
d1f9b275 2103 pat = gen_rtx_SET (reg, rhs);
3e1f1f1a 2104 start_sequence ();
2105 insn = emit_insn (pat);
2106 end_sequence ();
2107
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn);
8eaaac4d 2110 preprocess_constraints (insn);
ca3be54b 2111 alternative_mask prefrred = get_preferred_alternatives (insn);
2112 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
3e1f1f1a 2113 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2114
2115 /* If any implicit clobber registers intersect with regular ones in
2116 through_insn, we have a dependency and thus bail out. */
2117 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2118 {
2119 vinsn_t vi = INSN_VINSN (through_insn);
2120 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2122 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2123 return true;
2124 }
2125
2126 return false;
2127}
2128
e1ab7874 2129/* Modifies EXPR so it can be moved through the THROUGH_INSN,
48e1416a 2130 performing necessary transformations. Record the type of transformation
2131 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e1ab7874 2132 permit all dependencies except true ones, and try to remove those
48e1416a 2133 too via forward substitution. All cases when a non-eliminable
2134 non-zero cost dependency exists inside an insn group will be fixed
e1ab7874 2135 in tick_check_p instead. */
2136static enum MOVEUP_EXPR_CODE
2137moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2138 enum local_trans_type *ptrans_type)
2139{
2140 vinsn_t vi = EXPR_VINSN (expr);
2141 insn_t insn = VINSN_INSN_RTX (vi);
2142 bool was_changed = false;
2143 bool as_rhs = false;
2144 ds_t *has_dep_p;
2145 ds_t full_ds;
2146
995ca335 2147 /* ??? We use dependencies of non-debug insns on debug insns to
2148 indicate that the debug insns need to be reset if the non-debug
2149 insn is pulled ahead of it. It's hard to figure out how to
2150 introduce such a notion in sel-sched, but it already fails to
2151 support debug insns in other ways, so we just go ahead and
2152 let the deug insns go corrupt for now. */
2153 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2154 return MOVEUP_EXPR_SAME;
2155
e1ab7874 2156 /* When inside_insn_group, delegate to the helper. */
2157 if (inside_insn_group)
2158 return moveup_expr_inside_insn_group (expr, through_insn);
2159
2160 /* Deal with unique insns and control dependencies. */
2161 if (VINSN_UNIQUE_P (vi))
2162 {
2163 /* We can move jumps without side-effects or jumps that are
2164 mutually exclusive with instruction THROUGH_INSN (all in cases
2165 dependencies allow to do so and jump is not speculative). */
2166 if (control_flow_insn_p (insn))
2167 {
2168 basic_block fallthru_bb;
2169
48e1416a 2170 /* Do not move checks and do not move jumps through other
e1ab7874 2171 jumps. */
2172 if (control_flow_insn_p (through_insn)
2173 || sel_insn_is_speculation_check (insn))
2174 return MOVEUP_EXPR_NULL;
2175
2176 /* Don't move jumps through CFG joins. */
2177 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2178 return MOVEUP_EXPR_NULL;
2179
48e1416a 2180 /* The jump should have a clear fallthru block, and
e1ab7874 2181 this block should be in the current region. */
2182 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2183 || ! in_current_region_p (fallthru_bb))
2184 return MOVEUP_EXPR_NULL;
48e1416a 2185
afd14b63 2186 /* And it should be mutually exclusive with through_insn. */
2187 if (! sched_insns_conditions_mutex_p (insn, through_insn)
9845d120 2188 && ! DEBUG_INSN_P (through_insn))
e1ab7874 2189 return MOVEUP_EXPR_NULL;
2190 }
2191
2192 /* Don't move what we can't move. */
2193 if (EXPR_CANT_MOVE (expr)
2194 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2195 return MOVEUP_EXPR_NULL;
2196
2197 /* Don't move SCHED_GROUP instruction through anything.
2198 If we don't force this, then it will be possible to start
2199 scheduling a sched_group before all its dependencies are
2200 resolved.
2201 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2202 as late as possible through rank_for_schedule. */
2203 if (SCHED_GROUP_P (insn))
2204 return MOVEUP_EXPR_NULL;
2205 }
2206 else
2207 gcc_assert (!control_flow_insn_p (insn));
2208
9845d120 2209 /* Don't move debug insns if this would require bookkeeping. */
2210 if (DEBUG_INSN_P (insn)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2212 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2213 return MOVEUP_EXPR_NULL;
2214
e1ab7874 2215 /* Deal with data dependencies. */
2216 was_target_conflict = false;
2217 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2218 if (full_ds == 0)
2219 {
2220 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2221 return MOVEUP_EXPR_SAME;
2222 }
2223 else
2224 {
48e1416a 2225 /* We can move UNIQUE insn up only as a whole and unchanged,
e1ab7874 2226 so it shouldn't have any dependencies. */
2227 if (VINSN_UNIQUE_P (vi))
2228 return MOVEUP_EXPR_NULL;
2229 }
2230
2231 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2232 {
2233 int res;
2234
2235 res = speculate_expr (expr, full_ds);
2236 if (res >= 0)
2237 {
2238 /* Speculation was successful. */
2239 full_ds = 0;
2240 was_changed = (res > 0);
2241 if (res == 2)
2242 was_target_conflict = true;
2243 if (ptrans_type)
2244 *ptrans_type = TRANS_SPECULATION;
2245 sel_clear_has_dependence ();
2246 }
2247 }
2248
2249 if (has_dep_p[DEPS_IN_INSN])
2250 /* We have some dependency that cannot be discarded. */
2251 return MOVEUP_EXPR_NULL;
2252
2253 if (has_dep_p[DEPS_IN_LHS])
48e1416a 2254 {
e1ab7874 2255 /* Only separable insns can be moved up with the new register.
48e1416a 2256 Anyways, we should mark that the original register is
e1ab7874 2257 unavailable. */
2258 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2259 return MOVEUP_EXPR_NULL;
2260
3e1f1f1a 2261 /* When renaming a hard register to a pseudo before reload, extra
2262 dependencies can occur from the implicit clobbers of the insn.
2263 Filter out such cases here. */
2264 if (!reload_completed && REG_P (EXPR_LHS (expr))
2265 && HARD_REGISTER_P (EXPR_LHS (expr))
2266 && implicit_clobber_conflict_p (through_insn, expr))
2267 {
2268 if (sched_verbose >= 6)
2269 sel_print ("implicit clobbers conflict detected, ");
2270 return MOVEUP_EXPR_NULL;
2271 }
e1ab7874 2272 EXPR_TARGET_AVAILABLE (expr) = false;
2273 was_target_conflict = true;
2274 as_rhs = true;
2275 }
2276
2277 /* At this point we have either separable insns, that will be lifted
2278 up only as RHSes, or non-separable insns with no dependency in lhs.
2279 If dependency is in RHS, then try to perform substitution and move up
2280 substituted RHS:
2281
2282 Ex. 1: Ex.2
2283 y = x; y = x;
2284 z = y*2; y = y*2;
2285
48e1416a 2286 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e1ab7874 2287 moved above y=x assignment as z=x*2.
2288
48e1416a 2289 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e1ab7874 2290 side can be moved because of the output dependency. The operation was
2291 cropped to its rhs above. */
2292 if (has_dep_p[DEPS_IN_RHS])
2293 {
2294 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2295
2296 /* Can't substitute UNIQUE VINSNs. */
2297 gcc_assert (!VINSN_UNIQUE_P (vi));
2298
2299 if (can_speculate_dep_p (*rhs_dsp))
2300 {
2301 int res;
48e1416a 2302
e1ab7874 2303 res = speculate_expr (expr, *rhs_dsp);
2304 if (res >= 0)
2305 {
2306 /* Speculation was successful. */
2307 *rhs_dsp = 0;
2308 was_changed = (res > 0);
2309 if (res == 2)
2310 was_target_conflict = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SPECULATION;
2313 }
2314 else
2315 return MOVEUP_EXPR_NULL;
2316 }
2317 else if (can_substitute_through_p (through_insn,
2318 *rhs_dsp)
2319 && substitute_reg_in_expr (expr, through_insn, false))
2320 {
2321 /* ??? We cannot perform substitution AND speculation on the same
2322 insn. */
2323 gcc_assert (!was_changed);
2324 was_changed = true;
2325 if (ptrans_type)
2326 *ptrans_type = TRANS_SUBSTITUTION;
2327 EXPR_WAS_SUBSTITUTED (expr) = true;
2328 }
2329 else
2330 return MOVEUP_EXPR_NULL;
2331 }
2332
2333 /* Don't move trapping insns through jumps.
2334 This check should be at the end to give a chance to control speculation
2335 to perform its duties. */
2336 if (CANT_MOVE_TRAPPING (expr, through_insn))
2337 return MOVEUP_EXPR_NULL;
2338
48e1416a 2339 return (was_changed
2340 ? MOVEUP_EXPR_CHANGED
2341 : (as_rhs
e1ab7874 2342 ? MOVEUP_EXPR_AS_RHS
2343 : MOVEUP_EXPR_SAME));
2344}
2345
48e1416a 2346/* Try to look at bitmap caches for EXPR and INSN pair, return true
e1ab7874 2347 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2348 that can exist within a parallel group. Write to RES the resulting
2349 code for moveup_expr. */
48e1416a 2350static bool
e1ab7874 2351try_bitmap_cache (expr_t expr, insn_t insn,
2352 bool inside_insn_group,
2353 enum MOVEUP_EXPR_CODE *res)
2354{
2355 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
48e1416a 2356
e1ab7874 2357 /* First check whether we've analyzed this situation already. */
2358 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2359 {
2360 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2361 {
2362 if (sched_verbose >= 6)
2363 sel_print ("removed (cached)\n");
2364 *res = MOVEUP_EXPR_NULL;
2365 return true;
2366 }
2367 else
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (cached)\n");
2371 *res = MOVEUP_EXPR_SAME;
2372 return true;
2373 }
2374 }
2375 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2376 {
2377 if (inside_insn_group)
2378 {
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2381 *res = MOVEUP_EXPR_SAME;
2382 return true;
48e1416a 2383
e1ab7874 2384 }
2385 else
2386 EXPR_TARGET_AVAILABLE (expr) = false;
2387
48e1416a 2388 /* This is the only case when propagation result can change over time,
2389 as we can dynamically switch off scheduling as RHS. In this case,
e1ab7874 2390 just check the flag to reach the correct decision. */
2391 if (enable_schedule_as_rhs_p)
2392 {
2393 if (sched_verbose >= 6)
2394 sel_print ("unchanged (as RHS, cached)\n");
2395 *res = MOVEUP_EXPR_AS_RHS;
2396 return true;
2397 }
2398 else
2399 {
2400 if (sched_verbose >= 6)
2401 sel_print ("removed (cached as RHS, but renaming"
2402 " is now disabled)\n");
2403 *res = MOVEUP_EXPR_NULL;
2404 return true;
2405 }
2406 }
2407
2408 return false;
2409}
2410
48e1416a 2411/* Try to look at bitmap caches for EXPR and INSN pair, return true
e1ab7874 2412 if successful. Write to RES the resulting code for moveup_expr. */
48e1416a 2413static bool
e1ab7874 2414try_transformation_cache (expr_t expr, insn_t insn,
2415 enum MOVEUP_EXPR_CODE *res)
2416{
48e1416a 2417 struct transformed_insns *pti
e1ab7874 2418 = (struct transformed_insns *)
2419 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
48e1416a 2420 &EXPR_VINSN (expr),
e1ab7874 2421 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2422 if (pti)
2423 {
48e1416a 2424 /* This EXPR was already moved through this insn and was
2425 changed as a result. Fetch the proper data from
e1ab7874 2426 the hashtable. */
48e1416a 2427 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2428 INSN_UID (insn), pti->type,
2429 pti->vinsn_old, pti->vinsn_new,
e1ab7874 2430 EXPR_SPEC_DONE_DS (expr));
48e1416a 2431
e1ab7874 2432 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2433 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2434 change_vinsn_in_expr (expr, pti->vinsn_new);
2435 if (pti->was_target_conflict)
2436 EXPR_TARGET_AVAILABLE (expr) = false;
2437 if (pti->type == TRANS_SPECULATION)
2438 {
e1ab7874 2439 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2440 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2441 }
2442
2443 if (sched_verbose >= 6)
2444 {
2445 sel_print ("changed (cached): ");
2446 dump_expr (expr);
2447 sel_print ("\n");
2448 }
2449
2450 *res = MOVEUP_EXPR_CHANGED;
2451 return true;
2452 }
2453
2454 return false;
2455}
2456
2457/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458static void
48e1416a 2459update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e1ab7874 2460 enum MOVEUP_EXPR_CODE res)
2461{
2462 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2463
48e1416a 2464 /* Do not cache result of propagating jumps through an insn group,
e1ab7874 2465 as it is always true, which is not useful outside the group. */
2466 if (inside_insn_group)
2467 return;
48e1416a 2468
e1ab7874 2469 if (res == MOVEUP_EXPR_NULL)
2470 {
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2473 }
2474 else if (res == MOVEUP_EXPR_SAME)
2475 {
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2478 }
2479 else if (res == MOVEUP_EXPR_AS_RHS)
2480 {
2481 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2483 }
2484 else
2485 gcc_unreachable ();
2486}
2487
2488/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2489 and transformation type TRANS_TYPE. */
2490static void
48e1416a 2491update_transformation_cache (expr_t expr, insn_t insn,
e1ab7874 2492 bool inside_insn_group,
48e1416a 2493 enum local_trans_type trans_type,
e1ab7874 2494 vinsn_t expr_old_vinsn)
2495{
2496 struct transformed_insns *pti;
2497
2498 if (inside_insn_group)
2499 return;
48e1416a 2500
e1ab7874 2501 pti = XNEW (struct transformed_insns);
2502 pti->vinsn_old = expr_old_vinsn;
2503 pti->vinsn_new = EXPR_VINSN (expr);
2504 pti->type = trans_type;
2505 pti->was_target_conflict = was_target_conflict;
2506 pti->ds = EXPR_SPEC_DONE_DS (expr);
2507 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2508 vinsn_attach (pti->vinsn_old);
2509 vinsn_attach (pti->vinsn_new);
48e1416a 2510 *((struct transformed_insns **)
e1ab7874 2511 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2512 pti, VINSN_HASH_RTX (expr_old_vinsn),
2513 INSERT)) = pti;
2514}
2515
48e1416a 2516/* Same as moveup_expr, but first looks up the result of
e1ab7874 2517 transformation in caches. */
2518static enum MOVEUP_EXPR_CODE
2519moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2520{
2521 enum MOVEUP_EXPR_CODE res;
2522 bool got_answer = false;
2523
2524 if (sched_verbose >= 6)
2525 {
48e1416a 2526 sel_print ("Moving ");
e1ab7874 2527 dump_expr (expr);
2528 sel_print (" through %d: ", INSN_UID (insn));
2529 }
2530
9845d120 2531 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
f0f38209 2532 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
9845d120 2533 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2534 == EXPR_INSN_RTX (expr)))
2535 /* Don't use cached information for debug insns that are heads of
2536 basic blocks. */;
2537 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e1ab7874 2538 /* When inside insn group, we do not want remove stores conflicting
2539 with previosly issued loads. */
2540 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2541 else if (try_transformation_cache (expr, insn, &res))
2542 got_answer = true;
2543
2544 if (! got_answer)
2545 {
2546 /* Invoke moveup_expr and record the results. */
2547 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2548 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2549 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2550 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2551 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2552
48e1416a 2553 /* ??? Invent something better than this. We can't allow old_vinsn
e1ab7874 2554 to go, we need it for the history vector. */
2555 vinsn_attach (expr_old_vinsn);
2556
2557 res = moveup_expr (expr, insn, inside_insn_group,
2558 &trans_type);
2559 switch (res)
2560 {
2561 case MOVEUP_EXPR_NULL:
2562 update_bitmap_cache (expr, insn, inside_insn_group, res);
2563 if (sched_verbose >= 6)
2564 sel_print ("removed\n");
2565 break;
2566
2567 case MOVEUP_EXPR_SAME:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("unchanged\n");
2571 break;
2572
2573 case MOVEUP_EXPR_AS_RHS:
2574 gcc_assert (!unique_p || inside_insn_group);
2575 update_bitmap_cache (expr, insn, inside_insn_group, res);
2576 if (sched_verbose >= 6)
2577 sel_print ("unchanged (as RHS)\n");
2578 break;
2579
2580 case MOVEUP_EXPR_CHANGED:
2581 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2582 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
48e1416a 2583 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2584 INSN_UID (insn), trans_type,
2585 expr_old_vinsn, EXPR_VINSN (expr),
e1ab7874 2586 expr_old_spec_ds);
2587 update_transformation_cache (expr, insn, inside_insn_group,
2588 trans_type, expr_old_vinsn);
2589 if (sched_verbose >= 6)
2590 {
2591 sel_print ("changed: ");
2592 dump_expr (expr);
2593 sel_print ("\n");
2594 }
2595 break;
2596 default:
2597 gcc_unreachable ();
2598 }
2599
2600 vinsn_detach (expr_old_vinsn);
2601 }
2602
2603 return res;
2604}
2605
48e1416a 2606/* Moves an av set AVP up through INSN, performing necessary
e1ab7874 2607 transformations. */
2608static void
2609moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2610{
2611 av_set_iterator i;
2612 expr_t expr;
2613
48e1416a 2614 FOR_EACH_EXPR_1 (expr, i, avp)
2615 {
2616
e1ab7874 2617 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2618 {
2619 case MOVEUP_EXPR_SAME:
2620 case MOVEUP_EXPR_AS_RHS:
2621 break;
2622
2623 case MOVEUP_EXPR_NULL:
2624 av_set_iter_remove (&i);
2625 break;
2626
2627 case MOVEUP_EXPR_CHANGED:
2628 expr = merge_with_other_exprs (avp, &i, expr);
2629 break;
48e1416a 2630
e1ab7874 2631 default:
2632 gcc_unreachable ();
2633 }
2634 }
2635}
2636
2637/* Moves AVP set along PATH. */
2638static void
2639moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2640{
2641 int last_cycle;
48e1416a 2642
e1ab7874 2643 if (sched_verbose >= 6)
2644 sel_print ("Moving expressions up in the insn group...\n");
2645 if (! path)
2646 return;
2647 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
48e1416a 2648 while (path
e1ab7874 2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2650 {
2651 moveup_set_expr (avp, ILIST_INSN (path), true);
2652 path = ILIST_NEXT (path);
2653 }
2654}
2655
2656/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2657static bool
2658equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2659{
2660 expr_def _tmp, *tmp = &_tmp;
2661 int last_cycle;
2662 bool res = true;
2663
2664 copy_expr_onside (tmp, expr);
2665 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
48e1416a 2666 while (path
e1ab7874 2667 && res
2668 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2669 {
48e1416a 2670 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e1ab7874 2671 != MOVEUP_EXPR_NULL);
2672 path = ILIST_NEXT (path);
2673 }
2674
2675 if (res)
2676 {
2677 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2678 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2679
2680 if (tmp_vinsn != expr_vliw_vinsn)
2681 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2682 }
2683
2684 clear_expr (tmp);
2685 return res;
2686}
2687\f
2688
2689/* Functions that compute av and lv sets. */
2690
48e1416a 2691/* Returns true if INSN is not a downward continuation of the given path P in
e1ab7874 2692 the current stage. */
2693static bool
2694is_ineligible_successor (insn_t insn, ilist_t p)
2695{
2696 insn_t prev_insn;
2697
2698 /* Check if insn is not deleted. */
2699 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2702 gcc_unreachable ();
2703
2704 /* If it's the first insn visited, then the successor is ok. */
2705 if (!p)
2706 return false;
2707
2708 prev_insn = ILIST_INSN (p);
2709
2710 if (/* a backward edge. */
2711 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2712 /* is already visited. */
2713 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2714 && (ilist_is_in_p (p, insn)
48e1416a 2715 /* We can reach another fence here and still seqno of insn
2716 would be equal to seqno of prev_insn. This is possible
e1ab7874 2717 when prev_insn is a previously created bookkeeping copy.
2718 In that case it'd get a seqno of insn. Thus, check here
2719 whether insn is in current fence too. */
2720 || IN_CURRENT_FENCE_P (insn)))
2721 /* Was already scheduled on this round. */
2722 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2723 && IN_CURRENT_FENCE_P (insn))
48e1416a 2724 /* An insn from another fence could also be
2725 scheduled earlier even if this insn is not in
e1ab7874 2726 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2727 || (!pipelining_p
2728 && INSN_SCHED_TIMES (insn) > 0))
2729 return true;
2730 else
2731 return false;
2732}
2733
48e1416a 2734/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2735 of handling multiple successors and properly merging its av_sets. P is
2736 the current path traversed. WS is the size of lookahead window.
e1ab7874 2737 Return the av set computed. */
2738static av_set_t
2739compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2740{
2741 struct succs_info *sinfo;
2742 av_set_t expr_in_all_succ_branches = NULL;
2743 int is;
2744 insn_t succ, zero_succ = NULL;
2745 av_set_t av1 = NULL;
2746
2747 gcc_assert (sel_bb_end_p (insn));
2748
48e1416a 2749 /* Find different kind of successors needed for correct computing of
e1ab7874 2750 SPEC and TARGET_AVAILABLE attributes. */
2751 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2752
2753 /* Debug output. */
2754 if (sched_verbose >= 6)
2755 {
2756 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2757 dump_insn_vector (sinfo->succs_ok);
2758 sel_print ("\n");
2759 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2760 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2761 }
2762
851d9296 2763 /* Add insn to the tail of current path. */
e1ab7874 2764 ilist_add (&p, insn);
2765
f1f41a6c 2766 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e1ab7874 2767 {
2768 av_set_t succ_set;
2769
2770 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2771 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2772
48e1416a 2773 av_set_split_usefulness (succ_set,
f1f41a6c 2774 sinfo->probs_ok[is],
e1ab7874 2775 sinfo->all_prob);
2776
fd23e508 2777 if (sinfo->all_succs_n > 1)
e1ab7874 2778 {
48e1416a 2779 /* Find EXPR'es that came from *all* successors and save them
e1ab7874 2780 into expr_in_all_succ_branches. This set will be used later
2781 for calculating speculation attributes of EXPR'es. */
2782 if (is == 0)
2783 {
2784 expr_in_all_succ_branches = av_set_copy (succ_set);
2785
2786 /* Remember the first successor for later. */
2787 zero_succ = succ;
2788 }
2789 else
2790 {
2791 av_set_iterator i;
2792 expr_t expr;
48e1416a 2793
e1ab7874 2794 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2795 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2796 av_set_iter_remove (&i);
2797 }
2798 }
2799
2800 /* Union the av_sets. Check liveness restrictions on target registers
2801 in special case of two successors. */
2802 if (sinfo->succs_ok_n == 2 && is == 1)
2803 {
2804 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2805 basic_block bb1 = BLOCK_FOR_INSN (succ);
2806
2807 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
48e1416a 2808 av_set_union_and_live (&av1, &succ_set,
e1ab7874 2809 BB_LV_SET (bb0),
2810 BB_LV_SET (bb1),
2811 insn);
2812 }
2813 else
2814 av_set_union_and_clear (&av1, &succ_set, insn);
2815 }
2816
48e1416a 2817 /* Check liveness restrictions via hard way when there are more than
e1ab7874 2818 two successors. */
2819 if (sinfo->succs_ok_n > 2)
f1f41a6c 2820 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e1ab7874 2821 {
2822 basic_block succ_bb = BLOCK_FOR_INSN (succ);
205d41d2 2823 av_set_t av_succ = (is_ineligible_successor (succ, p)
2824 ? NULL
2825 : BB_AV_SET (succ_bb));
48e1416a 2826
e1ab7874 2827 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
205d41d2 2828 mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
e1ab7874 2829 }
48e1416a 2830
2831 /* Finally, check liveness restrictions on paths leaving the region. */
e1ab7874 2832 if (sinfo->all_succs_n > sinfo->succs_ok_n)
f1f41a6c 2833 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
48e1416a 2834 mark_unavailable_targets
e1ab7874 2835 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2836
2837 if (sinfo->all_succs_n > 1)
2838 {
2839 av_set_iterator i;
2840 expr_t expr;
2841
48e1416a 2842 /* Increase the spec attribute of all EXPR'es that didn't come
e1ab7874 2843 from all successors. */
2844 FOR_EACH_EXPR (expr, i, av1)
2845 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2846 EXPR_SPEC (expr)++;
2847
2848 av_set_clear (&expr_in_all_succ_branches);
48e1416a 2849
2850 /* Do not move conditional branches through other
2851 conditional branches. So, remove all conditional
e1ab7874 2852 branches from av_set if current operator is a conditional
2853 branch. */
2854 av_set_substract_cond_branches (&av1);
2855 }
48e1416a 2856
e1ab7874 2857 ilist_remove (&p);
2858 free_succs_info (sinfo);
2859
2860 if (sched_verbose >= 6)
2861 {
2862 sel_print ("av_succs (%d): ", INSN_UID (insn));
2863 dump_av_set (av1);
2864 sel_print ("\n");
2865 }
2866
2867 return av1;
2868}
2869
48e1416a 2870/* This function computes av_set for the FIRST_INSN by dragging valid
2871 av_set through all basic block insns either from the end of basic block
2872 (computed using compute_av_set_at_bb_end) or from the insn on which
e1ab7874 2873 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2874 below the basic block and handling conditional branches.
2875 FIRST_INSN - the basic block head, P - path consisting of the insns
2876 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2877 and bb ends are added to the path), WS - current window size,
2878 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2879static av_set_t
48e1416a 2880compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e1ab7874 2881 bool need_copy_p)
2882{
2883 insn_t cur_insn;
2884 int end_ws = ws;
2885 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2886 insn_t after_bb_end = NEXT_INSN (bb_end);
2887 insn_t last_insn;
2888 av_set_t av = NULL;
2889 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2890
2891 /* Return NULL if insn is not on the legitimate downward path. */
2892 if (is_ineligible_successor (first_insn, p))
2893 {
2894 if (sched_verbose >= 6)
2895 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2896
2897 return NULL;
2898 }
2899
48e1416a 2900 /* If insn already has valid av(insn) computed, just return it. */
e1ab7874 2901 if (AV_SET_VALID_P (first_insn))
2902 {
2903 av_set_t av_set;
2904
2905 if (sel_bb_head_p (first_insn))
2906 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2907 else
2908 av_set = NULL;
2909
2910 if (sched_verbose >= 6)
2911 {
2912 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2913 dump_av_set (av_set);
2914 sel_print ("\n");
2915 }
2916
2917 return need_copy_p ? av_set_copy (av_set) : av_set;
2918 }
2919
2920 ilist_add (&p, first_insn);
2921
2922 /* As the result after this loop have completed, in LAST_INSN we'll
48e1416a 2923 have the insn which has valid av_set to start backward computation
2924 from: it either will be NULL because on it the window size was exceeded
2925 or other valid av_set as returned by compute_av_set for the last insn
e1ab7874 2926 of the basic block. */
2927 for (last_insn = first_insn; last_insn != after_bb_end;
2928 last_insn = NEXT_INSN (last_insn))
2929 {
2930 /* We may encounter valid av_set not only on bb_head, but also on
2931 those insns on which previously MAX_WS was exceeded. */
2932 if (AV_SET_VALID_P (last_insn))
2933 {
2934 if (sched_verbose >= 6)
2935 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2936 break;
2937 }
2938
2939 /* The special case: the last insn of the BB may be an
2940 ineligible_successor due to its SEQ_NO that was set on
2941 it as a bookkeeping. */
48e1416a 2942 if (last_insn != first_insn
e1ab7874 2943 && is_ineligible_successor (last_insn, p))
2944 {
2945 if (sched_verbose >= 6)
2946 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
48e1416a 2947 break;
e1ab7874 2948 }
2949
9845d120 2950 if (DEBUG_INSN_P (last_insn))
2951 continue;
2952
e1ab7874 2953 if (end_ws > max_ws)
2954 {
48e1416a 2955 /* We can reach max lookahead size at bb_header, so clean av_set
e1ab7874 2956 first. */
2957 INSN_WS_LEVEL (last_insn) = global_level;
2958
2959 if (sched_verbose >= 6)
2960 sel_print ("Insn %d is beyond the software lookahead window size\n",
2961 INSN_UID (last_insn));
2962 break;
2963 }
2964
2965 end_ws++;
2966 }
2967
2968 /* Get the valid av_set into AV above the LAST_INSN to start backward
2969 computation from. It either will be empty av_set or av_set computed from
2970 the successors on the last insn of the current bb. */
2971 if (last_insn != after_bb_end)
2972 {
2973 av = NULL;
2974
48e1416a 2975 /* This is needed only to obtain av_sets that are identical to
e1ab7874 2976 those computed by the old compute_av_set version. */
2977 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2978 av_set_add (&av, INSN_EXPR (last_insn));
2979 }
2980 else
2981 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2982 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2983
2984 /* Compute av_set in AV starting from below the LAST_INSN up to
2985 location above the FIRST_INSN. */
2986 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
48e1416a 2987 cur_insn = PREV_INSN (cur_insn))
e1ab7874 2988 if (!INSN_NOP_P (cur_insn))
2989 {
2990 expr_t expr;
48e1416a 2991
e1ab7874 2992 moveup_set_expr (&av, cur_insn, false);
48e1416a 2993
2994 /* If the expression for CUR_INSN is already in the set,
e1ab7874 2995 replace it by the new one. */
48e1416a 2996 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e1ab7874 2997 if (expr != NULL)
2998 {
2999 clear_expr (expr);
3000 copy_expr (expr, INSN_EXPR (cur_insn));
3001 }
3002 else
3003 av_set_add (&av, INSN_EXPR (cur_insn));
3004 }
3005
3006 /* Clear stale bb_av_set. */
3007 if (sel_bb_head_p (first_insn))
3008 {
3009 av_set_clear (&BB_AV_SET (cur_bb));
3010 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3011 BB_AV_LEVEL (cur_bb) = global_level;
3012 }
3013
3014 if (sched_verbose >= 6)
3015 {
3016 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3017 dump_av_set (av);
3018 sel_print ("\n");
3019 }
3020
3021 ilist_remove (&p);
3022 return av;
3023}
3024
3025/* Compute av set before INSN.
3026 INSN - the current operation (actual rtx INSN)
3027 P - the current path, which is list of insns visited so far
3028 WS - software lookahead window size.
3029 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3030 if we want to save computed av_set in s_i_d, we should make a copy of it.
3031
3032 In the resulting set we will have only expressions that don't have delay
3033 stalls and nonsubstitutable dependences. */
3034static av_set_t
3035compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3036{
3037 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3038}
3039
3040/* Propagate a liveness set LV through INSN. */
3041static void
3042propagate_lv_set (regset lv, insn_t insn)
3043{
3044 gcc_assert (INSN_P (insn));
3045
3046 if (INSN_NOP_P (insn))
3047 return;
3048
a1b0a968 3049 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e1ab7874 3050}
3051
3052/* Return livness set at the end of BB. */
3053static regset
3054compute_live_after_bb (basic_block bb)
3055{
3056 edge e;
3057 edge_iterator ei;
3058 regset lv = get_clear_regset_from_pool ();
3059
3060 gcc_assert (!ignore_first);
3061
3062 FOR_EACH_EDGE (e, ei, bb->succs)
3063 if (sel_bb_empty_p (e->dest))
3064 {
3065 if (! BB_LV_SET_VALID_P (e->dest))
3066 {
3067 gcc_unreachable ();
3068 gcc_assert (BB_LV_SET (e->dest) == NULL);
3069 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3070 BB_LV_SET_VALID_P (e->dest) = true;
3071 }
3072 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3073 }
3074 else
3075 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3076
3077 return lv;
3078}
3079
3080/* Compute the set of all live registers at the point before INSN and save
3081 it at INSN if INSN is bb header. */
3082regset
3083compute_live (insn_t insn)
3084{
3085 basic_block bb = BLOCK_FOR_INSN (insn);
3086 insn_t final, temp;
3087 regset lv;
3088
3089 /* Return the valid set if we're already on it. */
3090 if (!ignore_first)
3091 {
3092 regset src = NULL;
48e1416a 3093
e1ab7874 3094 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3095 src = BB_LV_SET (bb);
48e1416a 3096 else
e1ab7874 3097 {
3098 gcc_assert (in_current_region_p (bb));
3099 if (INSN_LIVE_VALID_P (insn))
3100 src = INSN_LIVE (insn);
3101 }
48e1416a 3102
e1ab7874 3103 if (src)
3104 {
3105 lv = get_regset_from_pool ();
3106 COPY_REG_SET (lv, src);
3107
3108 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3109 {
3110 COPY_REG_SET (BB_LV_SET (bb), lv);
3111 BB_LV_SET_VALID_P (bb) = true;
3112 }
48e1416a 3113
e1ab7874 3114 return_regset_to_pool (lv);
3115 return lv;
3116 }
3117 }
3118
3119 /* We've skipped the wrong lv_set. Don't skip the right one. */
3120 ignore_first = false;
3121 gcc_assert (in_current_region_p (bb));
3122
48e1416a 3123 /* Find a valid LV set in this block or below, if needed.
3124 Start searching from the next insn: either ignore_first is true, or
e1ab7874 3125 INSN doesn't have a correct live set. */
3126 temp = NEXT_INSN (insn);
3127 final = NEXT_INSN (BB_END (bb));
3128 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3129 temp = NEXT_INSN (temp);
3130 if (temp == final)
3131 {
3132 lv = compute_live_after_bb (bb);
3133 temp = PREV_INSN (temp);
3134 }
3135 else
3136 {
3137 lv = get_regset_from_pool ();
3138 COPY_REG_SET (lv, INSN_LIVE (temp));
3139 }
3140
3141 /* Put correct lv sets on the insns which have bad sets. */
3142 final = PREV_INSN (insn);
3143 while (temp != final)
3144 {
3145 propagate_lv_set (lv, temp);
3146 COPY_REG_SET (INSN_LIVE (temp), lv);
3147 INSN_LIVE_VALID_P (temp) = true;
3148 temp = PREV_INSN (temp);
3149 }
3150
3151 /* Also put it in a BB. */
3152 if (sel_bb_head_p (insn))
3153 {
3154 basic_block bb = BLOCK_FOR_INSN (insn);
48e1416a 3155
e1ab7874 3156 COPY_REG_SET (BB_LV_SET (bb), lv);
3157 BB_LV_SET_VALID_P (bb) = true;
3158 }
48e1416a 3159
e1ab7874 3160 /* We return LV to the pool, but will not clear it there. Thus we can
3161 legimatelly use LV till the next use of regset_pool_get (). */
3162 return_regset_to_pool (lv);
3163 return lv;
3164}
3165
3166/* Update liveness sets for INSN. */
3167static inline void
2f3c9801 3168update_liveness_on_insn (rtx_insn *insn)
e1ab7874 3169{
3170 ignore_first = true;
3171 compute_live (insn);
3172}
3173
3174/* Compute liveness below INSN and write it into REGS. */
3175static inline void
2f3c9801 3176compute_live_below_insn (rtx_insn *insn, regset regs)
e1ab7874 3177{
2f3c9801 3178 rtx_insn *succ;
e1ab7874 3179 succ_iterator si;
48e1416a 3180
3181 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e1ab7874 3182 IOR_REG_SET (regs, compute_live (succ));
3183}
3184
3185/* Update the data gathered in av and lv sets starting from INSN. */
3186static void
2f3c9801 3187update_data_sets (rtx_insn *insn)
e1ab7874 3188{
3189 update_liveness_on_insn (insn);
3190 if (sel_bb_head_p (insn))
3191 {
3192 gcc_assert (AV_LEVEL (insn) != 0);
3193 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3194 compute_av_set (insn, NULL, 0, 0);
3195 }
3196}
3197\f
3198
3199/* Helper for move_op () and find_used_regs ().
3200 Return speculation type for which a check should be created on the place
3201 of INSN. EXPR is one of the original ops we are searching for. */
3202static ds_t
3203get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3204{
3205 ds_t to_check_ds;
3206 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3207
3208 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3209
3210 if (targetm.sched.get_insn_checked_ds)
3211 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3212
3213 if (spec_info != NULL
3214 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3215 already_checked_ds |= BEGIN_CONTROL;
3216
3217 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3218
3219 to_check_ds &= ~already_checked_ds;
3220
3221 return to_check_ds;
3222}
3223
48e1416a 3224/* Find the set of registers that are unavailable for storing expres
e1ab7874 3225 while moving ORIG_OPS up on the path starting from INSN due to
3226 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3227
3228 All the original operations found during the traversal are saved in the
3229 ORIGINAL_INSNS list.
3230
3231 REG_RENAME_P denotes the set of hardware registers that
f4d3c071 3232 cannot be used with renaming due to the register class restrictions,
48e1416a 3233 mode restrictions and other (the register we'll choose should be
e1ab7874 3234 compatible class with the original uses, shouldn't be in call_used_regs,
3235 should be HARD_REGNO_RENAME_OK etc).
3236
3237 Returns TRUE if we've found all original insns, FALSE otherwise.
3238
3239 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
48e1416a 3240 to traverse the code motion paths. This helper function finds registers
3241 that are not available for storing expres while moving ORIG_OPS up on the
e1ab7874 3242 path starting from INSN. A register considered as used on the moving path,
3243 if one of the following conditions is not satisfied:
3244
48e1416a 3245 (1) a register not set or read on any path from xi to an instance of
3246 the original operation,
3247 (2) not among the live registers of the point immediately following the
e1ab7874 3248 first original operation on a given downward path, except for the
3249 original target register of the operation,
48e1416a 3250 (3) not live on the other path of any conditional branch that is passed
e1ab7874 3251 by the operation, in case original operations are not present on
3252 both paths of the conditional branch.
3253
3254 All the original operations found during the traversal are saved in the
3255 ORIGINAL_INSNS list.
3256
48e1416a 3257 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3258 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e1ab7874 3259 to unavailable hard regs at the point original operation is found. */
3260
3261static bool
3262find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3263 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3264{
3265 def_list_iterator i;
3266 def_t def;
3267 int res;
3268 bool needs_spec_check_p = false;
3269 expr_t expr;
3270 av_set_iterator expr_iter;
3271 struct fur_static_params sparams;
3272 struct cmpd_local_params lparams;
3273
3274 /* We haven't visited any blocks yet. */
3275 bitmap_clear (code_motion_visited_blocks);
3276
3277 /* Init parameters for code_motion_path_driver. */
3278 sparams.crosses_call = false;
3279 sparams.original_insns = original_insns;
3280 sparams.used_regs = used_regs;
48e1416a 3281
e1ab7874 3282 /* Set the appropriate hooks and data. */
3283 code_motion_path_driver_info = &fur_hooks;
48e1416a 3284
e1ab7874 3285 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3286
3287 reg_rename_p->crosses_call |= sparams.crosses_call;
3288
3289 gcc_assert (res == 1);
3290 gcc_assert (original_insns && *original_insns);
3291
3292 /* ??? We calculate whether an expression needs a check when computing
3293 av sets. This information is not as precise as it could be due to
3294 merging this bit in merge_expr. We can do better in find_used_regs,
48e1416a 3295 but we want to avoid multiple traversals of the same code motion
e1ab7874 3296 paths. */
3297 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3298 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3299
48e1416a 3300 /* Mark hardware regs in REG_RENAME_P that are not suitable
e1ab7874 3301 for renaming expr in INSN due to hardware restrictions (register class,
3302 modes compatibility etc). */
3303 FOR_EACH_DEF (def, i, *original_insns)
3304 {
3305 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3306
3307 if (VINSN_SEPARABLE_P (vinsn))
3308 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3309
48e1416a 3310 /* Do not allow clobbering of ld.[sa] address in case some of the
e1ab7874 3311 original operations need a check. */
3312 if (needs_spec_check_p)
3313 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3314 }
3315
3316 return true;
3317}
3318\f
3319
3320/* Functions to choose the best insn from available ones. */
3321
3322/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3323static int
3324sel_target_adjust_priority (expr_t expr)
3325{
3326 int priority = EXPR_PRIORITY (expr);
3327 int new_priority;
3328
3329 if (targetm.sched.adjust_priority)
3330 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3331 else
3332 new_priority = priority;
3333
3334 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3335 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3336
abb9c563 3337 if (sched_verbose >= 4)
3338 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
48e1416a 3339 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e1ab7874 3340 EXPR_PRIORITY_ADJ (expr), new_priority);
3341
3342 return new_priority;
3343}
3344
3345/* Rank two available exprs for schedule. Never return 0 here. */
48e1416a 3346static int
e1ab7874 3347sel_rank_for_schedule (const void *x, const void *y)
3348{
3349 expr_t tmp = *(const expr_t *) y;
3350 expr_t tmp2 = *(const expr_t *) x;
3351 insn_t tmp_insn, tmp2_insn;
3352 vinsn_t tmp_vinsn, tmp2_vinsn;
3353 int val;
3354
3355 tmp_vinsn = EXPR_VINSN (tmp);
3356 tmp2_vinsn = EXPR_VINSN (tmp2);
3357 tmp_insn = EXPR_INSN_RTX (tmp);
3358 tmp2_insn = EXPR_INSN_RTX (tmp2);
48e1416a 3359
9845d120 3360 /* Schedule debug insns as early as possible. */
3361 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3362 return -1;
3363 else if (DEBUG_INSN_P (tmp2_insn))
3364 return 1;
3365
e1ab7874 3366 /* Prefer SCHED_GROUP_P insns to any others. */
3367 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3368 {
48e1416a 3369 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e1ab7874 3370 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3371
3372 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3373 cannot be cloned. */
3374 if (VINSN_UNIQUE_P (tmp2_vinsn))
3375 return 1;
3376 return -1;
3377 }
3378
3379 /* Discourage scheduling of speculative checks. */
3380 val = (sel_insn_is_speculation_check (tmp_insn)
3381 - sel_insn_is_speculation_check (tmp2_insn));
3382 if (val)
3383 return val;
3384
3385 /* Prefer not scheduled insn over scheduled one. */
3386 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3387 {
3388 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3389 if (val)
3390 return val;
3391 }
3392
3393 /* Prefer jump over non-jump instruction. */
3394 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3395 return -1;
3396 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3397 return 1;
3398
ae913d52 3399 /* Prefer an expr with non-zero usefulness. */
3400 int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
e1ab7874 3401
ae913d52 3402 if (u1 == 0)
3403 {
3404 if (u2 == 0)
3405 u1 = u2 = 1;
3406 else
3407 return 1;
e1ab7874 3408 }
ae913d52 3409 else if (u2 == 0)
3410 return -1;
3411
3412 /* Prefer an expr with greater priority. */
3413 val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3414 - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
e1ab7874 3415 if (val)
3416 return val;
3417
3418 if (spec_info != NULL && spec_info->mask != 0)
3419 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3420 {
3421 ds_t ds1, ds2;
3422 dw_t dw1, dw2;
3423 int dw;
3424
3425 ds1 = EXPR_SPEC_DONE_DS (tmp);
3426 if (ds1)
3427 dw1 = ds_weak (ds1);
3428 else
3429 dw1 = NO_DEP_WEAK;
3430
3431 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3432 if (ds2)
3433 dw2 = ds_weak (ds2);
3434 else
3435 dw2 = NO_DEP_WEAK;
3436
3437 dw = dw2 - dw1;
3438 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3439 return dw;
3440 }
3441
e1ab7874 3442 /* Prefer an old insn to a bookkeeping insn. */
48e1416a 3443 if (INSN_UID (tmp_insn) < first_emitted_uid
e1ab7874 3444 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3445 return -1;
48e1416a 3446 if (INSN_UID (tmp_insn) >= first_emitted_uid
e1ab7874 3447 && INSN_UID (tmp2_insn) < first_emitted_uid)
3448 return 1;
3449
48e1416a 3450 /* Prefer an insn with smaller UID, as a last resort.
e1ab7874 3451 We can't safely use INSN_LUID as it is defined only for those insns
3452 that are in the stream. */
3453 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3454}
3455
48e1416a 3456/* Filter out expressions from av set pointed to by AV_PTR
e1ab7874 3457 that are pipelined too many times. */
3458static void
3459process_pipelined_exprs (av_set_t *av_ptr)
3460{
3461 expr_t expr;
3462 av_set_iterator si;
3463
3464 /* Don't pipeline already pipelined code as that would increase
48e1416a 3465 number of unnecessary register moves. */
e1ab7874 3466 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3467 {
3468 if (EXPR_SCHED_TIMES (expr)
3469 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3470 av_set_iter_remove (&si);
3471 }
3472}
3473
3474/* Filter speculative insns from AV_PTR if we don't want them. */
3475static void
3476process_spec_exprs (av_set_t *av_ptr)
3477{
e1ab7874 3478 expr_t expr;
3479 av_set_iterator si;
3480
3481 if (spec_info == NULL)
3482 return;
3483
3484 /* Scan *AV_PTR to find out if we want to consider speculative
3485 instructions for scheduling. */
3486 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3487 {
3488 ds_t ds;
3489
3490 ds = EXPR_SPEC_DONE_DS (expr);
3491
3492 /* The probability of a success is too low - don't speculate. */
3493 if ((ds & SPECULATIVE)
3494 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3495 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3496 || (pipelining_p && false
3497 && (ds & DATA_SPEC)
3498 && (ds & CONTROL_SPEC))))
3499 {
3500 av_set_iter_remove (&si);
3501 continue;
3502 }
e1ab7874 3503 }
3504}
3505
48e1416a 3506/* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
e1ab7874 3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510static expr_t
3511process_use_exprs (av_set_t *av_ptr)
3512{
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3517
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 {
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 {
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 {
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3529
3530 av_set_iter_remove (&si);
3531 }
3532 else
3533 {
3534 gcc_assert (pipelining_p);
3535
3536 uses_present_p = true;
3537 }
3538 }
3539 else
3540 try_uses_p = false;
3541 }
3542
3543 if (uses_present_p)
3544 {
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3548 {
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3552 }
3553 else
3554 {
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 {
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3561
3562 av_set_iter_remove (&si);
3563 }
3564 }
3565 }
3566
3567 return NULL;
3568}
3569
846800d7 3570/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3571 EXPR's history of changes. */
e1ab7874 3572static bool
3573vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3574{
846800d7 3575 vinsn_t vinsn, expr_vinsn;
e1ab7874 3576 int n;
846800d7 3577 unsigned i;
e1ab7874 3578
846800d7 3579 /* Start with checking expr itself and then proceed with all the old forms
3580 of expr taken from its history vector. */
3581 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3582 expr_vinsn;
f1f41a6c 3583 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3584 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
846800d7 3585 : NULL))
f1f41a6c 3586 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
846800d7 3587 if (VINSN_SEPARABLE_P (vinsn))
3588 {
3589 if (vinsn_equal_p (vinsn, expr_vinsn))
3590 return true;
3591 }
3592 else
3593 {
3594 /* For non-separable instructions, the blocking insn can have
3595 another pattern due to substitution, and we can't choose
3596 different register as in the above case. Check all registers
3597 being written instead. */
3598 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3599 VINSN_REG_SETS (expr_vinsn)))
3600 return true;
3601 }
e1ab7874 3602
3603 return false;
3604}
3605
e1ab7874 3606/* Return true if either of expressions from ORIG_OPS can be blocked
3607 by previously created bookkeeping code. STATIC_PARAMS points to static
3608 parameters of move_op. */
3609static bool
3610av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3611{
3612 expr_t expr;
3613 av_set_iterator iter;
3614 moveop_static_params_p sparams;
3615
3616 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3617 created while scheduling on another fence. */
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3620 return true;
3621
3622 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3623 sparams = (moveop_static_params_p) static_params;
3624
3625 /* Expressions can be also blocked by bookkeeping created during current
3626 move_op. */
3627 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3628 FOR_EACH_EXPR (expr, iter, orig_ops)
3629 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3630 return true;
3631
3632 /* Expressions in ORIG_OPS may have wrong destination register due to
3633 renaming. Check with the right register instead. */
3634 if (sparams->dest && REG_P (sparams->dest))
3635 {
1f53e226 3636 rtx reg = sparams->dest;
e1ab7874 3637 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3638
1f53e226 3639 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3640 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3641 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
e1ab7874 3642 return true;
3643 }
3644
3645 return false;
3646}
e1ab7874 3647
3648/* Clear VINSN_VEC and detach vinsns. */
3649static void
3650vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3651{
f1f41a6c 3652 unsigned len = vinsn_vec->length ();
e1ab7874 3653 if (len > 0)
3654 {
3655 vinsn_t vinsn;
3656 int n;
48e1416a 3657
f1f41a6c 3658 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
e1ab7874 3659 vinsn_detach (vinsn);
f1f41a6c 3660 vinsn_vec->block_remove (0, len);
e1ab7874 3661 }
3662}
3663
3664/* Add the vinsn of EXPR to the VINSN_VEC. */
3665static void
3666vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3667{
3668 vinsn_attach (EXPR_VINSN (expr));
f1f41a6c 3669 vinsn_vec->safe_push (EXPR_VINSN (expr));
e1ab7874 3670}
3671
48e1416a 3672/* Free the vector representing blocked expressions. */
e1ab7874 3673static void
f1f41a6c 3674vinsn_vec_free (vinsn_vec_t &vinsn_vec)
e1ab7874 3675{
f1f41a6c 3676 vinsn_vec.release ();
e1ab7874 3677}
3678
3679/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3680
3681void sel_add_to_insn_priority (rtx insn, int amount)
3682{
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3684
3685 if (sched_verbose >= 2)
48e1416a 3686 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e1ab7874 3687 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3688 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3689}
3690
48e1416a 3691/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e1ab7874 3692 true if there is something to schedule. BNDS and FENCE are current
3693 boundaries and fence, respectively. If we need to stall for some cycles
48e1416a 3694 before an expr from AV would become available, write this number to
e1ab7874 3695 *PNEED_STALL. */
3696static bool
3697fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3698 int *pneed_stall)
3699{
3700 av_set_iterator si;
3701 expr_t expr;
3702 int sched_next_worked = 0, stalled, n;
3703 static int av_max_prio, est_ticks_till_branch;
3704 int min_need_stall = -1;
3705 deps_t dc = BND_DC (BLIST_BND (bnds));
3706
3707 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3708 already scheduled. */
3709 if (av == NULL)
3710 return false;
3711
3712 /* Empty vector from the previous stuff. */
f1f41a6c 3713 if (vec_av_set.length () > 0)
3714 vec_av_set.block_remove (0, vec_av_set.length ());
e1ab7874 3715
3716 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3717 for each insn. */
f1f41a6c 3718 gcc_assert (vec_av_set.is_empty ());
e1ab7874 3719 FOR_EACH_EXPR (expr, si, av)
48e1416a 3720 {
f1f41a6c 3721 vec_av_set.safe_push (expr);
e1ab7874 3722
3723 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3724
3725 /* Adjust priority using target backend hook. */
3726 sel_target_adjust_priority (expr);
3727 }
3728
3729 /* Sort the vector. */
f1f41a6c 3730 vec_av_set.qsort (sel_rank_for_schedule);
e1ab7874 3731
3732 /* We record maximal priority of insns in av set for current instruction
3733 group. */
3734 if (FENCE_STARTS_CYCLE_P (fence))
3735 av_max_prio = est_ticks_till_branch = INT_MIN;
3736
3737 /* Filter out inappropriate expressions. Loop's direction is reversed to
f1f41a6c 3738 visit "best" instructions first. We assume that vec::unordered_remove
e1ab7874 3739 moves last element in place of one being deleted. */
f1f41a6c 3740 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
e1ab7874 3741 {
f1f41a6c 3742 expr_t expr = vec_av_set[n];
e1ab7874 3743 insn_t insn = EXPR_INSN_RTX (expr);
17435f96 3744 signed char target_available;
e1ab7874 3745 bool is_orig_reg_p = true;
3746 int need_cycles, new_prio;
c4326fd2 3747 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
e1ab7874 3748
3749 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3750 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3751 {
f1f41a6c 3752 vec_av_set.unordered_remove (n);
e1ab7874 3753 continue;
3754 }
3755
48e1416a 3756 /* Set number of sched_next insns (just in case there
e1ab7874 3757 could be several). */
3758 if (FENCE_SCHED_NEXT (fence))
3759 sched_next_worked++;
48e1416a 3760
3761 /* Check all liveness requirements and try renaming.
e1ab7874 3762 FIXME: try to minimize calls to this. */
3763 target_available = EXPR_TARGET_AVAILABLE (expr);
3764
3765 /* If insn was already scheduled on the current fence,
3766 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
a0d15f90 3767 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3768 && !fence_insn_p)
e1ab7874 3769 target_available = -1;
3770
3771 /* If the availability of the EXPR is invalidated by the insertion of
3772 bookkeeping earlier, make sure that we won't choose this expr for
3773 scheduling if it's not separable, and if it is separable, then
3774 we have to recompute the set of available registers for it. */
3775 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3776 {
f1f41a6c 3777 vec_av_set.unordered_remove (n);
e1ab7874 3778 if (sched_verbose >= 4)
3779 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3780 INSN_UID (insn));
3781 continue;
3782 }
48e1416a 3783
e1ab7874 3784 if (target_available == true)
3785 {
3786 /* Do nothing -- we can use an existing register. */
3787 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3788 }
48e1416a 3789 else if (/* Non-separable instruction will never
e1ab7874 3790 get another register. */
3791 (target_available == false
3792 && !EXPR_SEPARABLE_P (expr))
3793 /* Don't try to find a register for low-priority expression. */
f1f41a6c 3794 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
e1ab7874 3795 /* ??? FIXME: Don't try to rename data speculation. */
3796 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3797 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3798 {
f1f41a6c 3799 vec_av_set.unordered_remove (n);
e1ab7874 3800 if (sched_verbose >= 4)
48e1416a 3801 sel_print ("Expr %d has no suitable target register\n",
e1ab7874 3802 INSN_UID (insn));
c4326fd2 3803
3804 /* A fence insn should not get here. */
3805 gcc_assert (!fence_insn_p);
3806 continue;
e1ab7874 3807 }
3808
c4326fd2 3809 /* At this point a fence insn should always be available. */
3810 gcc_assert (!fence_insn_p
3811 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3812
e1ab7874 3813 /* Filter expressions that need to be renamed or speculated when
3814 pipelining, because compensating register copies or speculation
3815 checks are likely to be placed near the beginning of the loop,
3816 causing a stall. */
3817 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3818 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3819 {
3820 /* Estimation of number of cycles until loop branch for
3821 renaming/speculation to be successful. */
3822 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3823
3824 if ((int) current_loop_nest->ninsns < 9)
3825 {
f1f41a6c 3826 vec_av_set.unordered_remove (n);
e1ab7874 3827 if (sched_verbose >= 4)
3828 sel_print ("Pipelining expr %d will likely cause stall\n",
3829 INSN_UID (insn));
3830 continue;
3831 }
3832
3833 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3834 < need_n_ticks_till_branch * issue_rate / 2
3835 && est_ticks_till_branch < need_n_ticks_till_branch)
3836 {
f1f41a6c 3837 vec_av_set.unordered_remove (n);
e1ab7874 3838 if (sched_verbose >= 4)
3839 sel_print ("Pipelining expr %d will likely cause stall\n",
3840 INSN_UID (insn));
3841 continue;
3842 }
3843 }
3844
3845 /* We want to schedule speculation checks as late as possible. Discard
3846 them from av set if there are instructions with higher priority. */
3847 if (sel_insn_is_speculation_check (insn)
3848 && EXPR_PRIORITY (expr) < av_max_prio)
3849 {
3850 stalled++;
3851 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
f1f41a6c 3852 vec_av_set.unordered_remove (n);
e1ab7874 3853 if (sched_verbose >= 4)
3854 sel_print ("Delaying speculation check %d until its first use\n",
3855 INSN_UID (insn));
3856 continue;
3857 }
3858
3859 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3860 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3861 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3862
3863 /* Don't allow any insns whose data is not yet ready.
3864 Check first whether we've already tried them and failed. */
3865 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3866 {
3867 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3868 - FENCE_CYCLE (fence));
3869 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3870 est_ticks_till_branch = MAX (est_ticks_till_branch,
3871 EXPR_PRIORITY (expr) + need_cycles);
3872
3873 if (need_cycles > 0)
3874 {
3875 stalled++;
48e1416a 3876 min_need_stall = (min_need_stall < 0
e1ab7874 3877 ? need_cycles
3878 : MIN (min_need_stall, need_cycles));
f1f41a6c 3879 vec_av_set.unordered_remove (n);
e1ab7874 3880
3881 if (sched_verbose >= 4)
48e1416a 3882 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e1ab7874 3883 INSN_UID (insn),
3884 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3885 continue;
3886 }
3887 }
3888
48e1416a 3889 /* Now resort to dependence analysis to find whether EXPR might be
e1ab7874 3890 stalled due to dependencies from FENCE's context. */
3891 need_cycles = tick_check_p (expr, dc, fence);
3892 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3893
3894 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3895 est_ticks_till_branch = MAX (est_ticks_till_branch,
3896 new_prio);
3897
3898 if (need_cycles > 0)
3899 {
3900 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3901 {
3902 int new_size = INSN_UID (insn) * 3 / 2;
48e1416a 3903
3904 FENCE_READY_TICKS (fence)
e1ab7874 3905 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3906 new_size, FENCE_READY_TICKS_SIZE (fence),
3907 sizeof (int));
3908 }
48e1416a 3909 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3910 = FENCE_CYCLE (fence) + need_cycles;
3911
e1ab7874 3912 stalled++;
48e1416a 3913 min_need_stall = (min_need_stall < 0
e1ab7874 3914 ? need_cycles
3915 : MIN (min_need_stall, need_cycles));
3916
f1f41a6c 3917 vec_av_set.unordered_remove (n);
48e1416a 3918
e1ab7874 3919 if (sched_verbose >= 4)
48e1416a 3920 sel_print ("Expr %d is not ready yet until cycle %d\n",
e1ab7874 3921 INSN_UID (insn),
3922 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3923 continue;
3924 }
3925
3926 if (sched_verbose >= 4)
3927 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3928 min_need_stall = 0;
3929 }
3930
3931 /* Clear SCHED_NEXT. */
3932 if (FENCE_SCHED_NEXT (fence))
3933 {
3934 gcc_assert (sched_next_worked == 1);
2f3c9801 3935 FENCE_SCHED_NEXT (fence) = NULL;
e1ab7874 3936 }
3937
3938 /* No need to stall if this variable was not initialized. */
3939 if (min_need_stall < 0)
3940 min_need_stall = 0;
3941
f1f41a6c 3942 if (vec_av_set.is_empty ())
e1ab7874 3943 {
3944 /* We need to set *pneed_stall here, because later we skip this code
3945 when ready list is empty. */
3946 *pneed_stall = min_need_stall;
3947 return false;
3948 }
3949 else
3950 gcc_assert (min_need_stall == 0);
3951
3952 /* Sort the vector. */
f1f41a6c 3953 vec_av_set.qsort (sel_rank_for_schedule);
48e1416a 3954
e1ab7874 3955 if (sched_verbose >= 4)
3956 {
48e1416a 3957 sel_print ("Total ready exprs: %d, stalled: %d\n",
f1f41a6c 3958 vec_av_set.length (), stalled);
3959 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3960 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e1ab7874 3961 dump_expr (expr);
3962 sel_print ("\n");
3963 }
3964
3965 *pneed_stall = 0;
3966 return true;
3967}
3968
3969/* Convert a vectored and sorted av set to the ready list that
3970 the rest of the backend wants to see. */
3971static void
3972convert_vec_av_set_to_ready (void)
3973{
3974 int n;
3975 expr_t expr;
3976
3977 /* Allocate and fill the ready list from the sorted vector. */
f1f41a6c 3978 ready.n_ready = vec_av_set.length ();
e1ab7874 3979 ready.first = ready.n_ready - 1;
48e1416a 3980
e1ab7874 3981 gcc_assert (ready.n_ready > 0);
3982
3983 if (ready.n_ready > max_issue_size)
3984 {
3985 max_issue_size = ready.n_ready;
3986 sched_extend_ready_list (ready.n_ready);
3987 }
48e1416a 3988
f1f41a6c 3989 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e1ab7874 3990 {
3991 vinsn_t vi = EXPR_VINSN (expr);
3992 insn_t insn = VINSN_INSN_RTX (vi);
3993
3994 ready_try[n] = 0;
2f3c9801 3995 ready.vec[n] = insn;
e1ab7874 3996 }
3997}
3998
3999/* Initialize ready list from *AV_PTR for the max_issue () call.
4000 If any unrecognizable insn found in *AV_PTR, return it (and skip
48e1416a 4001 max_issue). BND and FENCE are current boundary and fence,
4002 respectively. If we need to stall for some cycles before an expr
e1ab7874 4003 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4004static expr_t
4005fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4006 int *pneed_stall)
4007{
4008 expr_t expr;
4009
4010 /* We do not support multiple boundaries per fence. */
4011 gcc_assert (BLIST_NEXT (bnds) == NULL);
4012
48e1416a 4013 /* Process expressions required special handling, i.e. pipelined,
e1ab7874 4014 speculative and recog() < 0 expressions first. */
4015 process_pipelined_exprs (av_ptr);
4016 process_spec_exprs (av_ptr);
4017
4018 /* A USE could be scheduled immediately. */
4019 expr = process_use_exprs (av_ptr);
4020 if (expr)
4021 {
4022 *pneed_stall = 0;
4023 return expr;
4024 }
4025
4026 /* Turn the av set to a vector for sorting. */
4027 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4028 {
4029 ready.n_ready = 0;
4030 return NULL;
4031 }
4032
4033 /* Build the final ready list. */
4034 convert_vec_av_set_to_ready ();
4035 return NULL;
4036}
4037
4038/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4039static bool
4040sel_dfa_new_cycle (insn_t insn, fence_t fence)
4041{
48e1416a 4042 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4043 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e1ab7874 4044 : FENCE_CYCLE (fence) - 1;
4045 bool res = false;
4046 int sort_p = 0;
4047
4048 if (!targetm.sched.dfa_new_cycle)
4049 return false;
4050
4051 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4052
4053 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4054 insn, last_scheduled_cycle,
4055 FENCE_CYCLE (fence), &sort_p))
4056 {
4057 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4058 advance_one_cycle (fence);
4059 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4060 res = true;
4061 }
4062
4063 return res;
4064}
4065
4066/* Invoke reorder* target hooks on the ready list. Return the number of insns
4067 we can issue. FENCE is the current fence. */
4068static int
4069invoke_reorder_hooks (fence_t fence)
4070{
4071 int issue_more;
4072 bool ran_hook = false;
4073
4074 /* Call the reorder hook at the beginning of the cycle, and call
4075 the reorder2 hook in the middle of the cycle. */
4076 if (FENCE_ISSUED_INSNS (fence) == 0)
4077 {
4078 if (targetm.sched.reorder
4079 && !SCHED_GROUP_P (ready_element (&ready, 0))
4080 && ready.n_ready > 1)
4081 {
4082 /* Don't give reorder the most prioritized insn as it can break
4083 pipelining. */
4084 if (pipelining_p)
4085 --ready.n_ready;
4086
4087 issue_more
4088 = targetm.sched.reorder (sched_dump, sched_verbose,
4089 ready_lastpos (&ready),
4090 &ready.n_ready, FENCE_CYCLE (fence));
4091
4092 if (pipelining_p)
4093 ++ready.n_ready;
4094
4095 ran_hook = true;
4096 }
4097 else
4098 /* Initialize can_issue_more for variable_issue. */
4099 issue_more = issue_rate;
4100 }
4101 else if (targetm.sched.reorder2
4102 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4103 {
4104 if (ready.n_ready == 1)
48e1416a 4105 issue_more =
e1ab7874 4106 targetm.sched.reorder2 (sched_dump, sched_verbose,
4107 ready_lastpos (&ready),
4108 &ready.n_ready, FENCE_CYCLE (fence));
4109 else
4110 {
4111 if (pipelining_p)
4112 --ready.n_ready;
4113
4114 issue_more =
4115 targetm.sched.reorder2 (sched_dump, sched_verbose,
4116 ready.n_ready
4117 ? ready_lastpos (&ready) : NULL,
4118 &ready.n_ready, FENCE_CYCLE (fence));
4119
4120 if (pipelining_p)
4121 ++ready.n_ready;
4122 }
4123
4124 ran_hook = true;
4125 }
48e1416a 4126 else
abb9c563 4127 issue_more = FENCE_ISSUE_MORE (fence);
e1ab7874 4128
4129 /* Ensure that ready list and vec_av_set are in line with each other,
4130 i.e. vec_av_set[i] == ready_element (&ready, i). */
4131 if (issue_more && ran_hook)
4132 {
4133 int i, j, n;
b24ef467 4134 rtx_insn **arr = ready.vec;
f1f41a6c 4135 expr_t *vec = vec_av_set.address ();
e1ab7874 4136
4137 for (i = 0, n = ready.n_ready; i < n; i++)
4138 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4139 {
e1ab7874 4140 for (j = i; j < n; j++)
4141 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4142 break;
4143 gcc_assert (j < n);
4144
dfcf26a5 4145 std::swap (vec[i], vec[j]);
e1ab7874 4146 }
4147 }
4148
4149 return issue_more;
4150}
4151
9d75589a 4152/* Return an EXPR corresponding to INDEX element of ready list, if
48e1416a 4153 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4154 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e1ab7874 4155 ready.vec otherwise. */
4156static inline expr_t
4157find_expr_for_ready (int index, bool follow_ready_element)
4158{
4159 expr_t expr;
4160 int real_index;
4161
4162 real_index = follow_ready_element ? ready.first - index : index;
4163
f1f41a6c 4164 expr = vec_av_set[real_index];
e1ab7874 4165 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4166
4167 return expr;
4168}
4169
4170/* Calculate insns worth trying via lookahead_guard hook. Return a number
4171 of such insns found. */
4172static int
4173invoke_dfa_lookahead_guard (void)
4174{
4175 int i, n;
48e1416a 4176 bool have_hook
e1ab7874 4177 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4178
4179 if (sched_verbose >= 2)
4180 sel_print ("ready after reorder: ");
4181
4182 for (i = 0, n = 0; i < ready.n_ready; i++)
4183 {
4184 expr_t expr;
4185 insn_t insn;
4186 int r;
4187
48e1416a 4188 /* In this loop insn is Ith element of the ready list given by
e1ab7874 4189 ready_element, not Ith element of ready.vec. */
4190 insn = ready_element (&ready, i);
48e1416a 4191
e1ab7874 4192 if (! have_hook || i == 0)
4193 r = 0;
4194 else
d9d89d92 4195 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
48e1416a 4196
e1ab7874 4197 gcc_assert (INSN_CODE (insn) >= 0);
48e1416a 4198
4199 /* Only insns with ready_try = 0 can get here
e1ab7874 4200 from fill_ready_list. */
4201 gcc_assert (ready_try [i] == 0);
4202 ready_try[i] = r;
4203 if (!r)
4204 n++;
4205
4206 expr = find_expr_for_ready (i, true);
48e1416a 4207
e1ab7874 4208 if (sched_verbose >= 2)
4209 {
4210 dump_vinsn (EXPR_VINSN (expr));
4211 sel_print (":%d; ", ready_try[i]);
4212 }
4213 }
4214
4215 if (sched_verbose >= 2)
4216 sel_print ("\n");
4217 return n;
4218}
4219
4220/* Calculate the number of privileged insns and return it. */
4221static int
4222calculate_privileged_insns (void)
4223{
4224 expr_t cur_expr, min_spec_expr = NULL;
e1ab7874 4225 int privileged_n = 0, i;
4226
4227 for (i = 0; i < ready.n_ready; i++)
4228 {
4229 if (ready_try[i])
4230 continue;
4231
4232 if (! min_spec_expr)
57ab8ec3 4233 min_spec_expr = find_expr_for_ready (i, true);
48e1416a 4234
e1ab7874 4235 cur_expr = find_expr_for_ready (i, true);
4236
4237 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4238 break;
4239
4240 ++privileged_n;
4241 }
4242
4243 if (i == ready.n_ready)
4244 privileged_n = 0;
4245
4246 if (sched_verbose >= 2)
4247 sel_print ("privileged_n: %d insns with SPEC %d\n",
4248 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4249 return privileged_n;
4250}
4251
48e1416a 4252/* Call the rest of the hooks after the choice was made. Return
e1ab7874 4253 the number of insns that still can be issued given that the current
4254 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4255 and the insn chosen for scheduling, respectively. */
4256static int
2f3c9801 4257invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
e1ab7874 4258{
4259 gcc_assert (INSN_P (best_insn));
4260
4261 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4262 sel_dfa_new_cycle (best_insn, fence);
48e1416a 4263
e1ab7874 4264 if (targetm.sched.variable_issue)
4265 {
4266 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
48e1416a 4267 issue_more =
e1ab7874 4268 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4269 issue_more);
4270 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4271 }
dd148b3a 4272 else if (!DEBUG_INSN_P (best_insn)
4273 && GET_CODE (PATTERN (best_insn)) != USE
4274 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
e1ab7874 4275 issue_more--;
4276
4277 return issue_more;
4278}
4279
30474b14 4280/* Estimate the cost of issuing INSN on DFA state STATE. */
e1ab7874 4281static int
d3ffa7b4 4282estimate_insn_cost (rtx_insn *insn, state_t state)
e1ab7874 4283{
4284 static state_t temp = NULL;
4285 int cost;
4286
4287 if (!temp)
4288 temp = xmalloc (dfa_state_size);
4289
4290 memcpy (temp, state, dfa_state_size);
4291 cost = state_transition (temp, insn);
4292
4293 if (cost < 0)
4294 return 0;
4295 else if (cost == 0)
4296 return 1;
4297 return cost;
4298}
4299
48e1416a 4300/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e1ab7874 4301 This function properly handles ASMs, USEs etc. */
4302static int
4303get_expr_cost (expr_t expr, fence_t fence)
4304{
9c4c93d0 4305 rtx_insn *insn = EXPR_INSN_RTX (expr);
e1ab7874 4306
4307 if (recog_memoized (insn) < 0)
4308 {
48e1416a 4309 if (!FENCE_STARTS_CYCLE_P (fence)
e1ab7874 4310 && INSN_ASM_P (insn))
4311 /* This is asm insn which is tryed to be issued on the
4312 cycle not first. Issue it on the next cycle. */
4313 return 1;
4314 else
4315 /* A USE insn, or something else we don't need to
4316 understand. We can't pass these directly to
4317 state_transition because it will trigger a
4318 fatal error for unrecognizable insns. */
4319 return 0;
4320 }
4321 else
30474b14 4322 return estimate_insn_cost (insn, FENCE_STATE (fence));
e1ab7874 4323}
4324
48e1416a 4325/* Find the best insn for scheduling, either via max_issue or just take
e1ab7874 4326 the most prioritized available. */
4327static int
4328choose_best_insn (fence_t fence, int privileged_n, int *index)
4329{
4330 int can_issue = 0;
4331
4332 if (dfa_lookahead > 0)
4333 {
4334 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
44ad1e56 4335 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
e1ab7874 4336 can_issue = max_issue (&ready, privileged_n,
44ad1e56 4337 FENCE_STATE (fence), true, index);
e1ab7874 4338 if (sched_verbose >= 2)
4339 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4340 can_issue, FENCE_ISSUED_INSNS (fence));
4341 }
4342 else
4343 {
4344 /* We can't use max_issue; just return the first available element. */
4345 int i;
4346
4347 for (i = 0; i < ready.n_ready; i++)
4348 {
4349 expr_t expr = find_expr_for_ready (i, true);
4350
4351 if (get_expr_cost (expr, fence) < 1)
4352 {
4353 can_issue = can_issue_more;
4354 *index = i;
4355
4356 if (sched_verbose >= 2)
4357 sel_print ("using %dth insn from the ready list\n", i + 1);
4358
4359 break;
4360 }
4361 }
4362
4363 if (i == ready.n_ready)
4364 {
4365 can_issue = 0;
4366 *index = -1;
4367 }
4368 }
4369
4370 return can_issue;
4371}
4372
48e1416a 4373/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4374 BNDS and FENCE are current boundaries and scheduling fence respectively.
4375 Return the expr found and NULL if nothing can be issued atm.
4376 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e1ab7874 4377static expr_t
4378find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4379 int *pneed_stall)
4380{
4381 expr_t best;
48e1416a 4382
e1ab7874 4383 /* Choose the best insn for scheduling via:
4384 1) sorting the ready list based on priority;
4385 2) calling the reorder hook;
4386 3) calling max_issue. */
4387 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4388 if (best == NULL && ready.n_ready > 0)
4389 {
57ab8ec3 4390 int privileged_n, index;
e1ab7874 4391
4392 can_issue_more = invoke_reorder_hooks (fence);
4393 if (can_issue_more > 0)
4394 {
48e1416a 4395 /* Try choosing the best insn until we find one that is could be
e1ab7874 4396 scheduled due to liveness restrictions on its destination register.
4397 In the future, we'd like to choose once and then just probe insns
4398 in the order of their priority. */
57ab8ec3 4399 invoke_dfa_lookahead_guard ();
e1ab7874 4400 privileged_n = calculate_privileged_insns ();
4401 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4402 if (can_issue_more)
4403 best = find_expr_for_ready (index, true);
4404 }
48e1416a 4405 /* We had some available insns, so if we can't issue them,
e1ab7874 4406 we have a stall. */
4407 if (can_issue_more == 0)
4408 {
4409 best = NULL;
4410 *pneed_stall = 1;
4411 }
4412 }
4413
4414 if (best != NULL)
4415 {
4416 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4417 can_issue_more);
08b41748 4418 if (targetm.sched.variable_issue
4419 && can_issue_more == 0)
e1ab7874 4420 *pneed_stall = 1;
4421 }
48e1416a 4422
e1ab7874 4423 if (sched_verbose >= 2)
4424 {
4425 if (best != NULL)
4426 {
4427 sel_print ("Best expression (vliw form): ");
4428 dump_expr (best);
4429 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4430 }
4431 else
4432 sel_print ("No best expr found!\n");
4433 }
4434
4435 return best;
4436}
4437\f
4438
4439/* Functions that implement the core of the scheduler. */
4440
4441
48e1416a 4442/* Emit an instruction from EXPR with SEQNO and VINSN after
e1ab7874 4443 PLACE_TO_INSERT. */
4444static insn_t
48e1416a 4445emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e1ab7874 4446 insn_t place_to_insert)
4447{
4448 /* This assert fails when we have identical instructions
4449 one of which dominates the other. In this case move_op ()
4450 finds the first instruction and doesn't search for second one.
4451 The solution would be to compute av_set after the first found
4452 insn and, if insn present in that set, continue searching.
4453 For now we workaround this issue in move_op. */
4454 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4455
4456 if (EXPR_WAS_RENAMED (expr))
4457 {
4458 unsigned regno = expr_dest_regno (expr);
48e1416a 4459
e1ab7874 4460 if (HARD_REGISTER_NUM_P (regno))
4461 {
4462 df_set_regs_ever_live (regno, true);
4463 reg_rename_tick[regno] = ++reg_rename_this_tick;
4464 }
4465 }
48e1416a 4466
4467 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e1ab7874 4468 place_to_insert);
4469}
4470
4471/* Return TRUE if BB can hold bookkeeping code. */
4472static bool
4473block_valid_for_bookkeeping_p (basic_block bb)
4474{
4475 insn_t bb_end = BB_END (bb);
4476
4477 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4478 return false;
4479
4480 if (INSN_P (bb_end))
4481 {
4482 if (INSN_SCHED_TIMES (bb_end) > 0)
4483 return false;
4484 }
4485 else
4486 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4487
4488 return true;
4489}
4490
4491/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4492 into E2->dest, except from E1->src (there may be a sequence of empty basic
4493 blocks between E1->src and E2->dest). Return found block, or NULL if new
9845d120 4494 one must be created. If LAX holds, don't assume there is a simple path
4495 from E1->src to E2->dest. */
e1ab7874 4496static basic_block
9845d120 4497find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e1ab7874 4498{
4499 basic_block candidate_block = NULL;
4500 edge e;
4501
4502 /* Loop over edges from E1 to E2, inclusive. */
34154e27 4503 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4504 EDGE_SUCC (e->dest, 0))
e1ab7874 4505 {
4506 if (EDGE_COUNT (e->dest->preds) == 2)
4507 {
4508 if (candidate_block == NULL)
4509 candidate_block = (EDGE_PRED (e->dest, 0) == e
4510 ? EDGE_PRED (e->dest, 1)->src
4511 : EDGE_PRED (e->dest, 0)->src);
4512 else
4513 /* Found additional edge leading to path from e1 to e2
4514 from aside. */
4515 return NULL;
4516 }
4517 else if (EDGE_COUNT (e->dest->preds) > 2)
4518 /* Several edges leading to path from e1 to e2 from aside. */
4519 return NULL;
4520
4521 if (e == e2)
9845d120 4522 return ((!lax || candidate_block)
4523 && block_valid_for_bookkeeping_p (candidate_block)
e1ab7874 4524 ? candidate_block
4525 : NULL);
9845d120 4526
4527 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4528 return NULL;
e1ab7874 4529 }
9845d120 4530
4531 if (lax)
4532 return NULL;
4533
e1ab7874 4534 gcc_unreachable ();
4535}
4536
4537/* Create new basic block for bookkeeping code for path(s) incoming into
4538 E2->dest, except from E1->src. Return created block. */
4539static basic_block
4540create_block_for_bookkeeping (edge e1, edge e2)
4541{
4542 basic_block new_bb, bb = e2->dest;
4543
4544 /* Check that we don't spoil the loop structure. */
4545 if (current_loop_nest)
4546 {
4547 basic_block latch = current_loop_nest->latch;
4548
4549 /* We do not split header. */
4550 gcc_assert (e2->dest != current_loop_nest->header);
4551
4552 /* We do not redirect the only edge to the latch block. */
4553 gcc_assert (e1->dest != latch
4554 || !single_pred_p (latch)
4555 || e1 != single_pred_edge (latch));
4556 }
4557
4558 /* Split BB to insert BOOK_INSN there. */
4559 new_bb = sched_split_block (bb, NULL);
4560
4561 /* Move note_list from the upper bb. */
4562 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
e97a173d 4563 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4564 BB_NOTE_LIST (bb) = NULL;
e1ab7874 4565
4566 gcc_assert (e2->dest == bb);
4567
4568 /* Skip block for bookkeeping copy when leaving E1->src. */
4569 if (e1->flags & EDGE_FALLTHRU)
4570 sel_redirect_edge_and_branch_force (e1, new_bb);
4571 else
4572 sel_redirect_edge_and_branch (e1, new_bb);
4573
4574 gcc_assert (e1->dest == new_bb);
4575 gcc_assert (sel_bb_empty_p (bb));
4576
9845d120 4577 /* To keep basic block numbers in sync between debug and non-debug
4578 compilations, we have to rotate blocks here. Consider that we
4579 started from (a,b)->d, (c,d)->e, and d contained only debug
4580 insns. It would have been removed before if the debug insns
4581 weren't there, so we'd have split e rather than d. So what we do
4582 now is to swap the block numbers of new_bb and
4583 single_succ(new_bb) == e, so that the insns that were in e before
4584 get the new block number. */
4585
4586 if (MAY_HAVE_DEBUG_INSNS)
4587 {
4588 basic_block succ;
4589 insn_t insn = sel_bb_head (new_bb);
4590 insn_t last;
4591
4592 if (DEBUG_INSN_P (insn)
4593 && single_succ_p (new_bb)
4594 && (succ = single_succ (new_bb))
34154e27 4595 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
9845d120 4596 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4597 {
4598 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4599 insn = NEXT_INSN (insn);
4600
4601 if (insn == last)
4602 {
4603 sel_global_bb_info_def gbi;
4604 sel_region_bb_info_def rbi;
9845d120 4605
4606 if (sched_verbose >= 2)
4607 sel_print ("Swapping block ids %i and %i\n",
4608 new_bb->index, succ->index);
4609
dfcf26a5 4610 std::swap (new_bb->index, succ->index);
9845d120 4611
f64d2ca4 4612 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4613 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
9845d120 4614
4615 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4616 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4617 sizeof (gbi));
4618 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4619
4620 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4621 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4622 sizeof (rbi));
4623 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4624
dfcf26a5 4625 std::swap (BLOCK_TO_BB (new_bb->index),
4626 BLOCK_TO_BB (succ->index));
9845d120 4627
dfcf26a5 4628 std::swap (CONTAINING_RGN (new_bb->index),
4629 CONTAINING_RGN (succ->index));
9845d120 4630
dfcf26a5 4631 for (int i = 0; i < current_nr_blocks; i++)
9845d120 4632 if (BB_TO_BLOCK (i) == succ->index)
4633 BB_TO_BLOCK (i) = new_bb->index;
4634 else if (BB_TO_BLOCK (i) == new_bb->index)
4635 BB_TO_BLOCK (i) = succ->index;
4636
4637 FOR_BB_INSNS (new_bb, insn)
4638 if (INSN_P (insn))
4639 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4640
4641 FOR_BB_INSNS (succ, insn)
4642 if (INSN_P (insn))
4643 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4644
6ef9bbe0 4645 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4646 bitmap_set_bit (code_motion_visited_blocks, succ->index);
9845d120 4647
4648 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4649 && LABEL_P (BB_HEAD (succ)));
4650
4651 if (sched_verbose >= 4)
4652 sel_print ("Swapping code labels %i and %i\n",
4653 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4654 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4655
dfcf26a5 4656 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4657 CODE_LABEL_NUMBER (BB_HEAD (succ)));
9845d120 4658 }
4659 }
4660 }
4661
e1ab7874 4662 return bb;
4663}
4664
4665/* Return insn after which we must insert bookkeeping code for path(s) incoming
f550c9b3 4666 into E2->dest, except from E1->src. If the returned insn immediately
4667 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
e1ab7874 4668static insn_t
f550c9b3 4669find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
e1ab7874 4670{
4671 insn_t place_to_insert;
4672 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4673 create new basic block, but insert bookkeeping there. */
9845d120 4674 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e1ab7874 4675
9845d120 4676 if (book_block)
4677 {
4678 place_to_insert = BB_END (book_block);
4679
4680 /* Don't use a block containing only debug insns for
4681 bookkeeping, this causes scheduling differences between debug
4682 and non-debug compilations, for the block would have been
4683 removed already. */
4684 if (DEBUG_INSN_P (place_to_insert))
4685 {
ff88d074 4686 rtx_insn *insn = sel_bb_head (book_block);
e1ab7874 4687
9845d120 4688 while (insn != place_to_insert &&
4689 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4690 insn = NEXT_INSN (insn);
4691
4692 if (insn == place_to_insert)
4693 book_block = NULL;
4694 }
4695 }
4696
4697 if (!book_block)
4698 {
4699 book_block = create_block_for_bookkeeping (e1, e2);
4700 place_to_insert = BB_END (book_block);
4701 if (sched_verbose >= 9)
4702 sel_print ("New block is %i, split from bookkeeping block %i\n",
4703 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4704 }
4705 else
4706 {
4707 if (sched_verbose >= 9)
4708 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4709 }
e1ab7874 4710
f550c9b3 4711 *fence_to_rewind = NULL;
4712 /* If basic block ends with a jump, insert bookkeeping code right before it.
4713 Notice if we are crossing a fence when taking PREV_INSN. */
e1ab7874 4714 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
f550c9b3 4715 {
4716 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4717 place_to_insert = PREV_INSN (place_to_insert);
4718 }
e1ab7874 4719
4720 return place_to_insert;
4721}
4722
4723/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4724 for JOIN_POINT. */
4725static int
4726find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4727{
4728 int seqno;
e1ab7874 4729
4730 /* Check if we are about to insert bookkeeping copy before a jump, and use
4731 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
9ed997be 4732 rtx_insn *next = NEXT_INSN (place_to_insert);
48e1416a 4733 if (INSN_P (next)
e1ab7874 4734 && JUMP_P (next)
4735 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
961d3eb8 4736 {
4737 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4738 seqno = INSN_SEQNO (next);
4739 }
e1ab7874 4740 else if (INSN_SEQNO (join_point) > 0)
4741 seqno = INSN_SEQNO (join_point);
4742 else
961d3eb8 4743 {
4744 seqno = get_seqno_by_preds (place_to_insert);
4745
48e1416a 4746 /* Sometimes the fences can move in such a way that there will be
4747 no instructions with positive seqno around this bookkeeping.
961d3eb8 4748 This means that there will be no way to get to it by a regular
4749 fence movement. Never mind because we pick up such pieces for
4750 rescheduling anyways, so any positive value will do for now. */
4751 if (seqno < 0)
4752 {
4753 gcc_assert (pipelining_p);
4754 seqno = 1;
4755 }
4756 }
48e1416a 4757
e1ab7874 4758 gcc_assert (seqno > 0);
4759 return seqno;
4760}
4761
4762/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4763 NEW_SEQNO to it. Return created insn. */
4764static insn_t
4765emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4766{
9c4c93d0 4767 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
e1ab7874 4768
4769 vinsn_t new_vinsn
4770 = create_vinsn_from_insn_rtx (new_insn_rtx,
4771 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4772
4773 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4774 place_to_insert);
4775
4776 INSN_SCHED_TIMES (new_insn) = 0;
4777 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4778
4779 return new_insn;
4780}
4781
4782/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4783 E2->dest, except from E1->src (there may be a sequence of empty blocks
4784 between E1->src and E2->dest). Return block containing the copy.
4785 All scheduler data is initialized for the newly created insn. */
4786static basic_block
4787generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4788{
4789 insn_t join_point, place_to_insert, new_insn;
4790 int new_seqno;
4791 bool need_to_exchange_data_sets;
f550c9b3 4792 fence_t fence_to_rewind;
e1ab7874 4793
4794 if (sched_verbose >= 4)
4795 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4796 e2->dest->index);
4797
4798 join_point = sel_bb_head (e2->dest);
f550c9b3 4799 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
e1ab7874 4800 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4801 need_to_exchange_data_sets
4802 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4803
4804 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4805
f550c9b3 4806 if (fence_to_rewind)
4807 FENCE_INSN (fence_to_rewind) = new_insn;
4808
e1ab7874 4809 /* When inserting bookkeeping insn in new block, av sets should be
4810 following: old basic block (that now holds bookkeeping) data sets are
4811 the same as was before generation of bookkeeping, and new basic block
4812 (that now hold all other insns of old basic block) data sets are
4813 invalid. So exchange data sets for these basic blocks as sel_split_block
4814 mistakenly exchanges them in this case. Cannot do it earlier because
4815 when single instruction is added to new basic block it should hold NULL
4816 lv_set. */
4817 if (need_to_exchange_data_sets)
4818 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4819 BLOCK_FOR_INSN (join_point));
4820
4821 stat_bookkeeping_copies++;
4822 return BLOCK_FOR_INSN (new_insn);
4823}
4824
48e1416a 4825/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e1ab7874 4826 on FENCE, but we are unable to copy them. */
4827static void
4828remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4829{
4830 expr_t expr;
4831 av_set_iterator i;
4832
48e1416a 4833 /* An expression does not need bookkeeping if it is available on all paths
4834 from current block to original block and current block dominates
4835 original block. We check availability on all paths by examining
4836 EXPR_SPEC; this is not equivalent, because it may be positive even
4837 if expr is available on all paths (but if expr is not available on
e1ab7874 4838 any path, EXPR_SPEC will be positive). */
4839
4840 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4841 {
4842 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4843 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4844 && (EXPR_SPEC (expr)
4845 || !EXPR_ORIG_BB_INDEX (expr)
4846 || !dominated_by_p (CDI_DOMINATORS,
f5a6b05f 4847 BASIC_BLOCK_FOR_FN (cfun,
4848 EXPR_ORIG_BB_INDEX (expr)),
e1ab7874 4849 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4850 {
4851 if (sched_verbose >= 4)
4852 sel_print ("Expr %d removed because it would need bookkeeping, which "
4853 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4854 av_set_iter_remove (&i);
4855 }
4856 }
4857}
4858
4859/* Moving conditional jump through some instructions.
4860
4861 Consider example:
4862
4863 ... <- current scheduling point
4864 NOTE BASIC BLOCK: <- bb header
4865 (p8) add r14=r14+0x9;;
4866 (p8) mov [r14]=r23
4867 (!p8) jump L1;;
4868 NOTE BASIC BLOCK:
4869 ...
4870
48e1416a 4871 We can schedule jump one cycle earlier, than mov, because they cannot be
e1ab7874 4872 executed together as their predicates are mutually exclusive.
4873
48e1416a 4874 This is done in this way: first, new fallthrough basic block is created
4875 after jump (it is always can be done, because there already should be a
e1ab7874 4876 fallthrough block, where control flow goes in case of predicate being true -
48e1416a 4877 in our example; otherwise there should be a dependence between those
4878 instructions and jump and we cannot schedule jump right now);
4879 next, all instructions between jump and current scheduling point are moved
e1ab7874 4880 to this new block. And the result is this:
4881
4882 NOTE BASIC BLOCK:
4883 (!p8) jump L1 <- current scheduling point
4884 NOTE BASIC BLOCK: <- bb header
4885 (p8) add r14=r14+0x9;;
4886 (p8) mov [r14]=r23
4887 NOTE BASIC BLOCK:
4888 ...
4889*/
4890static void
2f3c9801 4891move_cond_jump (rtx_insn *insn, bnd_t bnd)
e1ab7874 4892{
4893 edge ft_edge;
c6cff213 4894 basic_block block_from, block_next, block_new, block_bnd, bb;
9c4c93d0 4895 rtx_insn *next, *prev, *link, *head;
e1ab7874 4896
e1ab7874 4897 block_from = BLOCK_FOR_INSN (insn);
c6cff213 4898 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4899 prev = BND_TO (bnd);
e1ab7874 4900
c6cff213 4901 /* Moving of jump should not cross any other jumps or beginnings of new
4902 basic blocks. The only exception is when we move a jump through
4903 mutually exclusive insns along fallthru edges. */
382ecba7 4904 if (flag_checking && block_from != block_bnd)
c6cff213 4905 {
4906 bb = block_from;
4907 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4908 link = PREV_INSN (link))
4909 {
4910 if (INSN_P (link))
4911 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4912 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4913 {
4914 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4915 bb = BLOCK_FOR_INSN (link);
4916 }
4917 }
4918 }
e1ab7874 4919
4920 /* Jump is moved to the boundary. */
e1ab7874 4921 next = PREV_INSN (insn);
2f3c9801 4922 BND_TO (bnd) = insn;
e1ab7874 4923
7f58c05e 4924 ft_edge = find_fallthru_edge_from (block_from);
e1ab7874 4925 block_next = ft_edge->dest;
4926 /* There must be a fallthrough block (or where should go
4927 control flow in case of false jump predicate otherwise?). */
4928 gcc_assert (block_next);
4929
4930 /* Create new empty basic block after source block. */
4931 block_new = sel_split_edge (ft_edge);
4932 gcc_assert (block_new->next_bb == block_next
4933 && block_from->next_bb == block_new);
4934
c6cff213 4935 /* Move all instructions except INSN to BLOCK_NEW. */
4936 bb = block_bnd;
4937 head = BB_HEAD (block_new);
4938 while (bb != block_from->next_bb)
e1ab7874 4939 {
9c4c93d0 4940 rtx_insn *from, *to;
c6cff213 4941 from = bb == block_bnd ? prev : sel_bb_head (bb);
4942 to = bb == block_from ? next : sel_bb_end (bb);
e1ab7874 4943
c6cff213 4944 /* The jump being moved can be the first insn in the block.
4945 In this case we don't have to move anything in this block. */
4946 if (NEXT_INSN (to) != from)
4947 {
4948 reorder_insns (from, to, head);
4949
4950 for (link = to; link != head; link = PREV_INSN (link))
4951 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4952 head = to;
4953 }
e1ab7874 4954
c6cff213 4955 /* Cleanup possibly empty blocks left. */
4956 block_next = bb->next_bb;
4957 if (bb != block_from)
81d1ad0f 4958 tidy_control_flow (bb, false);
c6cff213 4959 bb = block_next;
4960 }
e1ab7874 4961
4962 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4963 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e1ab7874 4964
4965 gcc_assert (!sel_bb_empty_p (block_from)
4966 && !sel_bb_empty_p (block_new));
4967
4968 /* Update data sets for BLOCK_NEW to represent that INSN and
4969 instructions from the other branch of INSN is no longer
4970 available at BLOCK_NEW. */
4971 BB_AV_LEVEL (block_new) = global_level;
4972 gcc_assert (BB_LV_SET (block_new) == NULL);
4973 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4974 update_data_sets (sel_bb_head (block_new));
4975
4976 /* INSN is a new basic block header - so prepare its data
4977 structures and update availability and liveness sets. */
4978 update_data_sets (insn);
4979
4980 if (sched_verbose >= 4)
4981 sel_print ("Moving jump %d\n", INSN_UID (insn));
4982}
4983
4984/* Remove nops generated during move_op for preventing removal of empty
4985 basic blocks. */
4986static void
9845d120 4987remove_temp_moveop_nops (bool full_tidying)
e1ab7874 4988{
4989 int i;
4990 insn_t insn;
48e1416a 4991
f1f41a6c 4992 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
e1ab7874 4993 {
4994 gcc_assert (INSN_NOP_P (insn));
9845d120 4995 return_nop_to_pool (insn, full_tidying);
e1ab7874 4996 }
4997
4998 /* Empty the vector. */
f1f41a6c 4999 if (vec_temp_moveop_nops.length () > 0)
5000 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
e1ab7874 5001}
5002
5003/* Records the maximal UID before moving up an instruction. Used for
5004 distinguishing between bookkeeping copies and original insns. */
5005static int max_uid_before_move_op = 0;
5006
91d7a2f9 5007/* When true, we're always scheduling next insn on the already scheduled code
5008 to get the right insn data for the following bundling or other passes. */
5009static int force_next_insn = 0;
5010
e1ab7874 5011/* Remove from AV_VLIW_P all instructions but next when debug counter
5012 tells us so. Next instruction is fetched from BNDS. */
5013static void
5014remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5015{
91d7a2f9 5016 if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
e1ab7874 5017 /* Leave only the next insn in av_vliw. */
5018 {
5019 av_set_iterator av_it;
5020 expr_t expr;
5021 bnd_t bnd = BLIST_BND (bnds);
5022 insn_t next = BND_TO (bnd);
5023
5024 gcc_assert (BLIST_NEXT (bnds) == NULL);
5025
5026 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5027 if (EXPR_INSN_RTX (expr) != next)
5028 av_set_iter_remove (&av_it);
5029 }
5030}
5031
48e1416a 5032/* Compute available instructions on BNDS. FENCE is the current fence. Write
e1ab7874 5033 the computed set to *AV_VLIW_P. */
5034static void
5035compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5036{
5037 if (sched_verbose >= 2)
5038 {
5039 sel_print ("Boundaries: ");
5040 dump_blist (bnds);
5041 sel_print ("\n");
5042 }
5043
5044 for (; bnds; bnds = BLIST_NEXT (bnds))
5045 {
5046 bnd_t bnd = BLIST_BND (bnds);
5047 av_set_t av1_copy;
5048 insn_t bnd_to = BND_TO (bnd);
5049
5050 /* Rewind BND->TO to the basic block header in case some bookkeeping
5051 instructions were inserted before BND->TO and it needs to be
5052 adjusted. */
5053 if (sel_bb_head_p (bnd_to))
5054 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5055 else
5056 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5057 {
5058 bnd_to = PREV_INSN (bnd_to);
5059 if (sel_bb_head_p (bnd_to))
5060 break;
5061 }
5062
5063 if (BND_TO (bnd) != bnd_to)
5064 {
5065 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5066 FENCE_INSN (fence) = bnd_to;
2f3c9801 5067 BND_TO (bnd) = bnd_to;
e1ab7874 5068 }
5069
5070 av_set_clear (&BND_AV (bnd));
5071 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5072
5073 av_set_clear (&BND_AV1 (bnd));
5074 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5075
5076 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
48e1416a 5077
e1ab7874 5078 av1_copy = av_set_copy (BND_AV1 (bnd));
5079 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5080 }
5081
5082 if (sched_verbose >= 2)
5083 {
5084 sel_print ("Available exprs (vliw form): ");
5085 dump_av_set (*av_vliw_p);
5086 sel_print ("\n");
5087 }
5088}
5089
48e1416a 5090/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5091 expression. When FOR_MOVEOP is true, also replace the register of
e1ab7874 5092 expressions found with the register from EXPR_VLIW. */
5093static av_set_t
5094find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5095{
5096 av_set_t expr_seq = NULL;
5097 expr_t expr;
5098 av_set_iterator i;
48e1416a 5099
e1ab7874 5100 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5101 {
5102 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5103 {
5104 if (for_moveop)
5105 {
48e1416a 5106 /* The sequential expression has the right form to pass
5107 to move_op except when renaming happened. Put the
e1ab7874 5108 correct register in EXPR then. */
5109 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5110 {
5111 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5112 {
5113 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5114 stat_renamed_scheduled++;
5115 }
48e1416a 5116 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5117 This is needed when renaming came up with original
e1ab7874 5118 register. */
48e1416a 5119 else if (EXPR_TARGET_AVAILABLE (expr)
e1ab7874 5120 != EXPR_TARGET_AVAILABLE (expr_vliw))
5121 {
5122 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5123 EXPR_TARGET_AVAILABLE (expr) = 1;
5124 }
5125 }
5126 if (EXPR_WAS_SUBSTITUTED (expr))
5127 stat_substitutions_total++;
5128 }
5129
5130 av_set_add (&expr_seq, expr);
48e1416a 5131
5132 /* With substitution inside insn group, it is possible
5133 that more than one expression in expr_seq will correspond
5134 to expr_vliw. In this case, choose one as the attempt to
e1ab7874 5135 move both leads to miscompiles. */
5136 break;
5137 }
5138 }
5139
5140 if (for_moveop && sched_verbose >= 2)
5141 {
5142 sel_print ("Best expression(s) (sequential form): ");
5143 dump_av_set (expr_seq);
5144 sel_print ("\n");
5145 }
48e1416a 5146
e1ab7874 5147 return expr_seq;
5148}
5149
5150
5151/* Move nop to previous block. */
5152static void ATTRIBUTE_UNUSED
5153move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5154{
9ed997be 5155 insn_t prev_insn, next_insn;
e1ab7874 5156
48e1416a 5157 gcc_assert (sel_bb_head_p (nop)
e1ab7874 5158 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
9ed997be 5159 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
e1ab7874 5160 prev_insn = sel_bb_end (prev_bb);
5161 next_insn = NEXT_INSN (nop);
5162 gcc_assert (prev_insn != NULL_RTX
5163 && PREV_INSN (note) == prev_insn);
5164
4a57a2e8 5165 SET_NEXT_INSN (prev_insn) = nop;
5166 SET_PREV_INSN (nop) = prev_insn;
e1ab7874 5167
4a57a2e8 5168 SET_PREV_INSN (note) = nop;
5169 SET_NEXT_INSN (note) = next_insn;
e1ab7874 5170
4a57a2e8 5171 SET_NEXT_INSN (nop) = note;
5172 SET_PREV_INSN (next_insn) = note;
e1ab7874 5173
26bb3cb2 5174 BB_END (prev_bb) = nop;
e1ab7874 5175 BLOCK_FOR_INSN (nop) = prev_bb;
5176}
5177
5178/* Prepare a place to insert the chosen expression on BND. */
5179static insn_t
5180prepare_place_to_insert (bnd_t bnd)
5181{
5182 insn_t place_to_insert;
5183
5184 /* Init place_to_insert before calling move_op, as the later
5185 can possibly remove BND_TO (bnd). */
5186 if (/* If this is not the first insn scheduled. */
5187 BND_PTR (bnd))
5188 {
5189 /* Add it after last scheduled. */
5190 place_to_insert = ILIST_INSN (BND_PTR (bnd));
9845d120 5191 if (DEBUG_INSN_P (place_to_insert))
5192 {
5193 ilist_t l = BND_PTR (bnd);
5194 while ((l = ILIST_NEXT (l)) &&
5195 DEBUG_INSN_P (ILIST_INSN (l)))
5196 ;
5197 if (!l)
5198 place_to_insert = NULL;
5199 }
e1ab7874 5200 }
5201 else
9845d120 5202 place_to_insert = NULL;
5203
5204 if (!place_to_insert)
e1ab7874 5205 {
5206 /* Add it before BND_TO. The difference is in the
5207 basic block, where INSN will be added. */
5208 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5209 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5210 == BLOCK_FOR_INSN (BND_TO (bnd)));
5211 }
5212
5213 return place_to_insert;
5214}
5215
48e1416a 5216/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e1ab7874 5217 Return the expression to emit in C_EXPR. */
de353418 5218static bool
48e1416a 5219move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e1ab7874 5220 av_set_t expr_seq, expr_t c_expr)
5221{
de353418 5222 bool b, should_move;
e1ab7874 5223 unsigned book_uid;
5224 bitmap_iterator bi;
5225 int n_bookkeeping_copies_before_moveop;
5226
5227 /* Make a move. This call will remove the original operation,
5228 insert all necessary bookkeeping instructions and update the
5229 data sets. After that all we have to do is add the operation
5230 at before BND_TO (BND). */
5231 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5232 max_uid_before_move_op = get_max_uid ();
5233 bitmap_clear (current_copies);
5234 bitmap_clear (current_originators);
5235
48e1416a 5236 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
de353418 5237 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e1ab7874 5238
48e1416a 5239 /* We should be able to find the expression we've chosen for
e1ab7874 5240 scheduling. */
de353418 5241 gcc_assert (b);
48e1416a 5242
e1ab7874 5243 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5244 stat_insns_needed_bookkeeping++;
48e1416a 5245
e1ab7874 5246 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5247 {
dca13bd7 5248 unsigned uid;
5249 bitmap_iterator bi;
5250
e1ab7874 5251 /* We allocate these bitmaps lazily. */
5252 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5253 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
48e1416a 5254
5255 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e1ab7874 5256 current_originators);
dca13bd7 5257
5258 /* Transitively add all originators' originators. */
5259 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5260 if (INSN_ORIGINATORS_BY_UID (uid))
5261 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5262 INSN_ORIGINATORS_BY_UID (uid));
e1ab7874 5263 }
de353418 5264
5265 return should_move;
e1ab7874 5266}
5267
5268
5269/* Debug a DFA state as an array of bytes. */
5270static void
5271debug_state (state_t state)
5272{
5273 unsigned char *p;
5274 unsigned int i, size = dfa_state_size;
5275
5276 sel_print ("state (%u):", size);
5277 for (i = 0, p = (unsigned char *) state; i < size; i++)
5278 sel_print (" %d", p[i]);
5279 sel_print ("\n");
5280}
5281
48e1416a 5282/* Advance state on FENCE with INSN. Return true if INSN is
e1ab7874 5283 an ASM, and we should advance state once more. */
5284static bool
5285advance_state_on_fence (fence_t fence, insn_t insn)
5286{
5287 bool asm_p;
5288
5289 if (recog_memoized (insn) >= 0)
5290 {
5291 int res;
5292 state_t temp_state = alloca (dfa_state_size);
48e1416a 5293
e1ab7874 5294 gcc_assert (!INSN_ASM_P (insn));
5295 asm_p = false;
5296
5297 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5298 res = state_transition (FENCE_STATE (fence), insn);
5299 gcc_assert (res < 0);
5300
5301 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5302 {
5303 FENCE_ISSUED_INSNS (fence)++;
5304
5305 /* We should never issue more than issue_rate insns. */
5306 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5307 gcc_unreachable ();
5308 }
48e1416a 5309 }
e1ab7874 5310 else
5311 {
48e1416a 5312 /* This could be an ASM insn which we'd like to schedule
e1ab7874 5313 on the next cycle. */
5314 asm_p = INSN_ASM_P (insn);
5315 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5316 advance_one_cycle (fence);
5317 }
5318
5319 if (sched_verbose >= 2)
5320 debug_state (FENCE_STATE (fence));
9845d120 5321 if (!DEBUG_INSN_P (insn))
5322 FENCE_STARTS_CYCLE_P (fence) = 0;
abb9c563 5323 FENCE_ISSUE_MORE (fence) = can_issue_more;
e1ab7874 5324 return asm_p;
5325}
5326
5327/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5328 is nonzero if we need to stall after issuing INSN. */
5329static void
5330update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5331{
5332 bool asm_p;
48e1416a 5333
e1ab7874 5334 /* First, reflect that something is scheduled on this fence. */
5335 asm_p = advance_state_on_fence (fence, insn);
5336 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
f1f41a6c 5337 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
e1ab7874 5338 if (SCHED_GROUP_P (insn))
5339 {
5340 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5341 SCHED_GROUP_P (insn) = 0;
5342 }
5343 else
2f3c9801 5344 FENCE_SCHED_NEXT (fence) = NULL;
e1ab7874 5345 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5346 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5347
5348 /* Set instruction scheduling info. This will be used in bundling,
5349 pipelining, tick computations etc. */
5350 ++INSN_SCHED_TIMES (insn);
5351 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5352 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5353 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5354 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5355
5356 /* This does not account for adjust_cost hooks, just add the biggest
48e1416a 5357 constant the hook may add to the latency. TODO: make this
e1ab7874 5358 a target dependent constant. */
48e1416a 5359 INSN_READY_CYCLE (insn)
5360 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e1ab7874 5361 ? 1
5362 : maximal_insn_latency (insn) + 1);
5363
5364 /* Change these fields last, as they're used above. */
5365 FENCE_AFTER_STALL_P (fence) = 0;
5366 if (asm_p || need_stall)
5367 advance_one_cycle (fence);
48e1416a 5368
e1ab7874 5369 /* Indicate that we've scheduled something on this fence. */
5370 FENCE_SCHEDULED_P (fence) = true;
5371 scheduled_something_on_previous_fence = true;
5372
5373 /* Print debug information when insn's fields are updated. */
5374 if (sched_verbose >= 2)
5375 {
5376 sel_print ("Scheduling insn: ");
5377 dump_insn_1 (insn, 1);
5378 sel_print ("\n");
5379 }
5380}
5381
9845d120 5382/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5383 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5384 return it. */
e1ab7874 5385static blist_t *
9845d120 5386update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e1ab7874 5387 blist_t *bnds_tailp)
5388{
5389 succ_iterator si;
5390 insn_t succ;
5391
5392 advance_deps_context (BND_DC (bnd), insn);
48e1416a 5393 FOR_EACH_SUCC_1 (succ, si, insn,
e1ab7874 5394 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5395 {
5396 ilist_t ptr = ilist_copy (BND_PTR (bnd));
48e1416a 5397
e1ab7874 5398 ilist_add (&ptr, insn);
9845d120 5399
5400 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5401 && is_ineligible_successor (succ, ptr))
5402 {
5403 ilist_clear (&ptr);
5404 continue;
5405 }
5406
5407 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5408 {
5409 if (sched_verbose >= 9)
5410 sel_print ("Updating fence insn from %i to %i\n",
5411 INSN_UID (insn), INSN_UID (succ));
5412 FENCE_INSN (fence) = succ;
5413 }
e1ab7874 5414 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5415 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5416 }
48e1416a 5417
e1ab7874 5418 blist_remove (bndsp);
5419 return bnds_tailp;
5420}
5421
5422/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5423static insn_t
5424schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5425{
5426 av_set_t expr_seq;
5427 expr_t c_expr = XALLOCA (expr_def);
5428 insn_t place_to_insert;
5429 insn_t insn;
de353418 5430 bool should_move;
e1ab7874 5431
5432 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5433
5434 /* In case of scheduling a jump skipping some other instructions,
48e1416a 5435 prepare CFG. After this, jump is at the boundary and can be
e1ab7874 5436 scheduled as usual insn by MOVE_OP. */
5437 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5438 {
5439 insn = EXPR_INSN_RTX (expr_vliw);
48e1416a 5440
e1ab7874 5441 /* Speculative jumps are not handled. */
48e1416a 5442 if (insn != BND_TO (bnd)
e1ab7874 5443 && !sel_insn_is_speculation_check (insn))
5444 move_cond_jump (insn, bnd);
5445 }
5446
e1ab7874 5447 /* Find a place for C_EXPR to schedule. */
5448 place_to_insert = prepare_place_to_insert (bnd);
de353418 5449 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e1ab7874 5450 clear_expr (c_expr);
48e1416a 5451
5452 /* Add the instruction. The corner case to care about is when
5453 the expr_seq set has more than one expr, and we chose the one that
5454 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e1ab7874 5455 we can't use it. Generate the new vinsn. */
5456 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5457 {
5458 vinsn_t vinsn_new;
48e1416a 5459
e1ab7874 5460 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5461 change_vinsn_in_expr (expr_vliw, vinsn_new);
de353418 5462 should_move = false;
e1ab7874 5463 }
de353418 5464 if (should_move)
5465 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5466 else
48e1416a 5467 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e1ab7874 5468 place_to_insert);
e1ab7874 5469
5470 /* Return the nops generated for preserving of data sets back
5471 into pool. */
5472 if (INSN_NOP_P (place_to_insert))
9845d120 5473 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5474 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e1ab7874 5475
5476 av_set_clear (&expr_seq);
48e1416a 5477
5478 /* Save the expression scheduled so to reset target availability if we'll
e1ab7874 5479 meet it later on the same fence. */
5480 if (EXPR_WAS_RENAMED (expr_vliw))
5481 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5482
5483 /* Check that the recent movement didn't destroyed loop
5484 structure. */
5485 gcc_assert (!pipelining_p
5486 || current_loop_nest == NULL
5487 || loop_latch_edge (current_loop_nest));
5488 return insn;
5489}
5490
5491/* Stall for N cycles on FENCE. */
5492static void
5493stall_for_cycles (fence_t fence, int n)
5494{
5495 int could_more;
48e1416a 5496
e1ab7874 5497 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5498 while (n--)
5499 advance_one_cycle (fence);
5500 if (could_more)
5501 FENCE_AFTER_STALL_P (fence) = 1;
5502}
5503
48e1416a 5504/* Gather a parallel group of insns at FENCE and assign their seqno
5505 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e1ab7874 5506 list for later recalculation of seqnos. */
5507static void
5508fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5509{
5510 blist_t bnds = NULL, *bnds_tailp;
5511 av_set_t av_vliw = NULL;
5512 insn_t insn = FENCE_INSN (fence);
5513
5514 if (sched_verbose >= 2)
48e1416a 5515 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e1ab7874 5516 INSN_UID (insn), FENCE_CYCLE (fence));
5517
5518 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5519 bnds_tailp = &BLIST_NEXT (bnds);
5520 set_target_context (FENCE_TC (fence));
abb9c563 5521 can_issue_more = FENCE_ISSUE_MORE (fence);
e1ab7874 5522 target_bb = INSN_BB (insn);
5523
5524 /* Do while we can add any operation to the current group. */
5525 do
5526 {
5527 blist_t *bnds_tailp1, *bndsp;
5528 expr_t expr_vliw;
4055a556 5529 int need_stall = false;
08b41748 5530 int was_stall = 0, scheduled_insns = 0;
e1ab7874 5531 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5532 int max_stall = pipelining_p ? 1 : 3;
9845d120 5533 bool last_insn_was_debug = false;
5534 bool was_debug_bb_end_p = false;
5535
e1ab7874 5536 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5537 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5538 remove_insns_for_debug (bnds, &av_vliw);
5539
5540 /* Return early if we have nothing to schedule. */
5541 if (av_vliw == NULL)
5542 break;
5543
5544 /* Choose the best expression and, if needed, destination register
5545 for it. */
5546 do
5547 {
5548 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
08b41748 5549 if (! expr_vliw && need_stall)
e1ab7874 5550 {
5551 /* All expressions required a stall. Do not recompute av sets
5552 as we'll get the same answer (modulo the insns between
5553 the fence and its boundary, which will not be available for
08b41748 5554 pipelining).
5555 If we are going to stall for too long, break to recompute av
e1ab7874 5556 sets and bring more insns for pipelining. */
08b41748 5557 was_stall++;
e1ab7874 5558 if (need_stall <= 3)
5559 stall_for_cycles (fence, need_stall);
5560 else
5561 {
5562 stall_for_cycles (fence, 1);
5563 break;
5564 }
5565 }
5566 }
5567 while (! expr_vliw && need_stall);
48e1416a 5568
e1ab7874 5569 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5570 if (!expr_vliw)
5571 {
5572 av_set_clear (&av_vliw);
5573 break;
5574 }
5575
5576 bndsp = &bnds;
5577 bnds_tailp1 = bnds_tailp;
5578
5579 do
48e1416a 5580 /* This code will be executed only once until we'd have several
e1ab7874 5581 boundaries per fence. */
5582 {
5583 bnd_t bnd = BLIST_BND (*bndsp);
5584
5585 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5586 {
5587 bndsp = &BLIST_NEXT (*bndsp);
5588 continue;
5589 }
48e1416a 5590
e1ab7874 5591 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
9845d120 5592 last_insn_was_debug = DEBUG_INSN_P (insn);
5593 if (last_insn_was_debug)
5594 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e1ab7874 5595 update_fence_and_insn (fence, insn, need_stall);
9845d120 5596 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e1ab7874 5597
5598 /* Add insn to the list of scheduled on this cycle instructions. */
5599 ilist_add (*scheduled_insns_tailpp, insn);
5600 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5601 }
5602 while (*bndsp != *bnds_tailp1);
5603
5604 av_set_clear (&av_vliw);
9845d120 5605 if (!last_insn_was_debug)
5606 scheduled_insns++;
e1ab7874 5607
5608 /* We currently support information about candidate blocks only for
5609 one 'target_bb' block. Hence we can't schedule after jump insn,
5610 as this will bring two boundaries and, hence, necessity to handle
5611 information for two or more blocks concurrently. */
9845d120 5612 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
48e1416a 5613 || (was_stall
5614 && (was_stall >= max_stall
e1ab7874 5615 || scheduled_insns >= max_insns)))
5616 break;
5617 }
5618 while (bnds);
5619
5620 gcc_assert (!FENCE_BNDS (fence));
48e1416a 5621
e1ab7874 5622 /* Update boundaries of the FENCE. */
5623 while (bnds)
5624 {
5625 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5626
5627 if (ptr)
5628 {
5629 insn = ILIST_INSN (ptr);
5630
5631 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5632 ilist_add (&FENCE_BNDS (fence), insn);
5633 }
48e1416a 5634
e1ab7874 5635 blist_remove (&bnds);
5636 }
5637
5638 /* Update target context on the fence. */
5639 reset_target_context (FENCE_TC (fence), false);
5640}
5641
5642/* All exprs in ORIG_OPS must have the same destination register or memory.
5643 Return that destination. */
5644static rtx
5645get_dest_from_orig_ops (av_set_t orig_ops)
5646{
5647 rtx dest = NULL_RTX;
5648 av_set_iterator av_it;
5649 expr_t expr;
5650 bool first_p = true;
5651
5652 FOR_EACH_EXPR (expr, av_it, orig_ops)
5653 {
5654 rtx x = EXPR_LHS (expr);
5655
5656 if (first_p)
5657 {
5658 first_p = false;
5659 dest = x;
5660 }
5661 else
5662 gcc_assert (dest == x
5663 || (dest != NULL_RTX && x != NULL_RTX
5664 && rtx_equal_p (dest, x)));
5665 }
5666
5667 return dest;
5668}
5669
5670/* Update data sets for the bookkeeping block and record those expressions
5671 which become no longer available after inserting this bookkeeping. */
5672static void
5673update_and_record_unavailable_insns (basic_block book_block)
5674{
5675 av_set_iterator i;
5676 av_set_t old_av_set = NULL;
5677 expr_t cur_expr;
2f3c9801 5678 rtx_insn *bb_end = sel_bb_end (book_block);
e1ab7874 5679
48e1416a 5680 /* First, get correct liveness in the bookkeeping block. The problem is
e1ab7874 5681 the range between the bookeeping insn and the end of block. */
5682 update_liveness_on_insn (bb_end);
5683 if (control_flow_insn_p (bb_end))
5684 update_liveness_on_insn (PREV_INSN (bb_end));
5685
5686 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5687 fence above, where we may choose to schedule an insn which is
5688 actually blocked from moving up with the bookkeeping we create here. */
5689 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5690 {
5691 old_av_set = av_set_copy (BB_AV_SET (book_block));
5692 update_data_sets (sel_bb_head (book_block));
48e1416a 5693
e1ab7874 5694 /* Traverse all the expressions in the old av_set and check whether
5695 CUR_EXPR is in new AV_SET. */
5696 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5697 {
48e1416a 5698 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e1ab7874 5699 EXPR_VINSN (cur_expr));
5700
48e1416a 5701 if (! new_expr
5702 /* In this case, we can just turn off the E_T_A bit, but we can't
e1ab7874 5703 represent this information with the current vector. */
48e1416a 5704 || EXPR_TARGET_AVAILABLE (new_expr)
e1ab7874 5705 != EXPR_TARGET_AVAILABLE (cur_expr))
5706 /* Unfortunately, the below code could be also fired up on
846800d7 5707 separable insns, e.g. when moving insns through the new
5708 speculation check as in PR 53701. */
e1ab7874 5709 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5710 }
5711
5712 av_set_clear (&old_av_set);
5713 }
5714}
5715
48e1416a 5716/* The main effect of this function is that sparams->c_expr is merged
e1ab7874 5717 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5718 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
48e1416a 5719 lparams->c_expr_merged is copied back to sparams->c_expr after all
5720 successors has been traversed. lparams->c_expr_local is an expr allocated
5721 on stack in the caller function, and is used if there is more than one
5722 successor.
e1ab7874 5723
5724 SUCC is one of the SUCCS_NORMAL successors of INSN,
5725 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5726 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5727static void
48e1416a 5728move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5729 insn_t succ ATTRIBUTE_UNUSED,
5730 int moveop_drv_call_res,
e1ab7874 5731 cmpd_local_params_p lparams, void *static_params)
5732{
5733 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5734
5735 /* Nothing to do, if original expr wasn't found below. */
5736 if (moveop_drv_call_res != 1)
5737 return;
5738
5739 /* If this is a first successor. */
5740 if (!lparams->c_expr_merged)
5741 {
5742 lparams->c_expr_merged = sparams->c_expr;
5743 sparams->c_expr = lparams->c_expr_local;
5744 }
5745 else
5746 {
5747 /* We must merge all found expressions to get reasonable
5748 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5749 do so then we can first find the expr with epsilon
5750 speculation success probability and only then with the
5751 good probability. As a result the insn will get epsilon
5752 probability and will never be scheduled because of
5753 weakness_cutoff in find_best_expr.
5754
48e1416a 5755 We call merge_expr_data here instead of merge_expr
e1ab7874 5756 because due to speculation C_EXPR and X may have the
5757 same insns with different speculation types. And as of
48e1416a 5758 now such insns are considered non-equal.
e1ab7874 5759
48e1416a 5760 However, EXPR_SCHED_TIMES is different -- we must get
5761 SCHED_TIMES from a real insn, not a bookkeeping copy.
e1ab7874 5762 We force this here. Instead, we may consider merging
48e1416a 5763 SCHED_TIMES to the maximum instead of minimum in the
e1ab7874 5764 below function. */
5765 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5766
5767 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5768 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5769 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5770
5771 clear_expr (sparams->c_expr);
5772 }
5773}
5774
5775/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5776
5777 SUCC is one of the SUCCS_NORMAL successors of INSN,
5778 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5779 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5780 STATIC_PARAMS contain USED_REGS set. */
5781static void
48e1416a 5782fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5783 int moveop_drv_call_res,
5784 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e1ab7874 5785 void *static_params)
5786{
5787 regset succ_live;
5788 fur_static_params_p sparams = (fur_static_params_p) static_params;
5789
5790 /* Here we compute live regsets only for branches that do not lie
48e1416a 5791 on the code motion paths. These branches correspond to value
e1ab7874 5792 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5793 for such branches code_motion_path_driver is not called. */
5794 if (moveop_drv_call_res != 0)
5795 return;
5796
5797 /* Mark all registers that do not meet the following condition:
5798 (3) not live on the other path of any conditional branch
5799 that is passed by the operation, in case original
5800 operations are not present on both paths of the
5801 conditional branch. */
5802 succ_live = compute_live (succ);
5803 IOR_REG_SET (sparams->used_regs, succ_live);
5804}
5805
5806/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5807 into SP->CEXPR. */
5808static void
5809move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
48e1416a 5810{
e1ab7874 5811 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5812
5813 sp->c_expr = lp->c_expr_merged;
5814}
5815
5816/* Track bookkeeping copies created, insns scheduled, and blocks for
5817 rescheduling when INSN is found by move_op. */
5818static void
71ce7f59 5819track_scheduled_insns_and_blocks (rtx_insn *insn)
e1ab7874 5820{
5821 /* Even if this insn can be a copy that will be removed during current move_op,
5822 we still need to count it as an originator. */
5823 bitmap_set_bit (current_originators, INSN_UID (insn));
5824
6ef9bbe0 5825 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e1ab7874 5826 {
5827 /* Note that original block needs to be rescheduled, as we pulled an
5828 instruction out of it. */
5829 if (INSN_SCHED_TIMES (insn) > 0)
5830 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
9845d120 5831 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e1ab7874 5832 num_insns_scheduled++;
5833 }
e1ab7874 5834
5835 /* For instructions we must immediately remove insn from the
5836 stream, so subsequent update_data_sets () won't include this
5837 insn into av_set.
5838 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5839 if (INSN_UID (insn) > max_uid_before_move_op)
5840 stat_bookkeeping_copies--;
5841}
5842
48e1416a 5843/* Emit a register-register copy for INSN if needed. Return true if
e1ab7874 5844 emitted one. PARAMS is the move_op static parameters. */
5845static bool
2f3c9801 5846maybe_emit_renaming_copy (rtx_insn *insn,
e1ab7874 5847 moveop_static_params_p params)
5848{
5849 bool insn_emitted = false;
f7d03b30 5850 rtx cur_reg;
e1ab7874 5851
f4d3c071 5852 /* Bail out early when expression cannot be renamed at all. */
f7d03b30 5853 if (!EXPR_SEPARABLE_P (params->c_expr))
5854 return false;
5855
5856 cur_reg = expr_dest_reg (params->c_expr);
5857 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e1ab7874 5858
5859 /* If original operation has expr and the register chosen for
5860 that expr is not original operation's dest reg, substitute
5861 operation's right hand side with the register chosen. */
f7d03b30 5862 if (REGNO (params->dest) != REGNO (cur_reg))
e1ab7874 5863 {
5864 insn_t reg_move_insn, reg_move_insn_rtx;
48e1416a 5865
5866 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e1ab7874 5867 params->dest);
48e1416a 5868 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5869 INSN_EXPR (insn),
5870 INSN_SEQNO (insn),
e1ab7874 5871 insn);
5872 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5873 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
48e1416a 5874
e1ab7874 5875 insn_emitted = true;
5876 params->was_renamed = true;
5877 }
48e1416a 5878
e1ab7874 5879 return insn_emitted;
5880}
5881
48e1416a 5882/* Emit a speculative check for INSN speculated as EXPR if needed.
5883 Return true if we've emitted one. PARAMS is the move_op static
e1ab7874 5884 parameters. */
5885static bool
2f3c9801 5886maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
e1ab7874 5887 moveop_static_params_p params)
5888{
5889 bool insn_emitted = false;
5890 insn_t x;
5891 ds_t check_ds;
5892
5893 check_ds = get_spec_check_type_for_insn (insn, expr);
5894 if (check_ds != 0)
5895 {
5896 /* A speculation check should be inserted. */
5897 x = create_speculation_check (params->c_expr, check_ds, insn);
5898 insn_emitted = true;
5899 }
5900 else
5901 {
5902 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5903 x = insn;
5904 }
48e1416a 5905
e1ab7874 5906 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5907 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5908 return insn_emitted;
5909}
5910
48e1416a 5911/* Handle transformations that leave an insn in place of original
5912 insn such as renaming/speculation. Return true if one of such
e1ab7874 5913 transformations actually happened, and we have emitted this insn. */
5914static bool
2f3c9801 5915handle_emitting_transformations (rtx_insn *insn, expr_t expr,
e1ab7874 5916 moveop_static_params_p params)
5917{
5918 bool insn_emitted = false;
5919
5920 insn_emitted = maybe_emit_renaming_copy (insn, params);
5921 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5922
5923 return insn_emitted;
48e1416a 5924}
e1ab7874 5925
9845d120 5926/* If INSN is the only insn in the basic block (not counting JUMP,
5927 which may be a jump to next insn, and DEBUG_INSNs), we want to
5928 leave a NOP there till the return to fill_insns. */
5929
5930static bool
ff88d074 5931need_nop_to_preserve_insn_bb (rtx_insn *insn)
e1ab7874 5932{
9845d120 5933 insn_t bb_head, bb_end, bb_next, in_next;
e1ab7874 5934 basic_block bb = BLOCK_FOR_INSN (insn);
5935
e1ab7874 5936 bb_head = sel_bb_head (bb);
5937 bb_end = sel_bb_end (bb);
e1ab7874 5938
9845d120 5939 if (bb_head == bb_end)
5940 return true;
5941
5942 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5943 bb_head = NEXT_INSN (bb_head);
5944
5945 if (bb_head == bb_end)
5946 return true;
5947
5948 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5949 bb_end = PREV_INSN (bb_end);
5950
5951 if (bb_head == bb_end)
5952 return true;
5953
5954 bb_next = NEXT_INSN (bb_head);
5955 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5956 bb_next = NEXT_INSN (bb_next);
5957
5958 if (bb_next == bb_end && JUMP_P (bb_end))
5959 return true;
5960
5961 in_next = NEXT_INSN (insn);
5962 while (DEBUG_INSN_P (in_next))
5963 in_next = NEXT_INSN (in_next);
5964
5965 if (IN_CURRENT_FENCE_P (in_next))
5966 return true;
5967
5968 return false;
5969}
5970
5971/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5972 is not removed but reused when INSN is re-emitted. */
5973static void
2f3c9801 5974remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
9845d120 5975{
e1ab7874 5976 /* If there's only one insn in the BB, make sure that a nop is
5977 inserted into it, so the basic block won't disappear when we'll
5978 delete INSN below with sel_remove_insn. It should also survive
48e1416a 5979 till the return to fill_insns. */
9845d120 5980 if (need_nop_to_preserve_insn_bb (insn))
e1ab7874 5981 {
9845d120 5982 insn_t nop = get_nop_from_pool (insn);
e1ab7874 5983 gcc_assert (INSN_NOP_P (nop));
f1f41a6c 5984 vec_temp_moveop_nops.safe_push (nop);
e1ab7874 5985 }
5986
5987 sel_remove_insn (insn, only_disconnect, false);
5988}
5989
5990/* This function is called when original expr is found.
48e1416a 5991 INSN - current insn traversed, EXPR - the corresponding expr found.
e1ab7874 5992 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5993 is static parameters of move_op. */
5994static void
48e1416a 5995move_op_orig_expr_found (insn_t insn, expr_t expr,
5996 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e1ab7874 5997 void *static_params)
5998{
d5897457 5999 bool only_disconnect;
e1ab7874 6000 moveop_static_params_p params = (moveop_static_params_p) static_params;
48e1416a 6001
e1ab7874 6002 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6003 track_scheduled_insns_and_blocks (insn);
d5897457 6004 handle_emitting_transformations (insn, expr, params);
6005 only_disconnect = params->uid == INSN_UID (insn);
de353418 6006
6007 /* Mark that we've disconnected an insn. */
6008 if (only_disconnect)
6009 params->uid = -1;
e1ab7874 6010 remove_insn_from_stream (insn, only_disconnect);
6011}
6012
6013/* The function is called when original expr is found.
6014 INSN - current insn traversed, EXPR - the corresponding expr found,
6015 crosses_call and original_insns in STATIC_PARAMS are updated. */
6016static void
6017fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6018 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6019 void *static_params)
6020{
6021 fur_static_params_p params = (fur_static_params_p) static_params;
6022 regset tmp;
6023
6024 if (CALL_P (insn))
6025 params->crosses_call = true;
6026
6027 def_list_add (params->original_insns, insn, params->crosses_call);
6028
6029 /* Mark the registers that do not meet the following condition:
48e1416a 6030 (2) not among the live registers of the point
6031 immediately following the first original operation on
e1ab7874 6032 a given downward path, except for the original target
6033 register of the operation. */
6034 tmp = get_clear_regset_from_pool ();
6035 compute_live_below_insn (insn, tmp);
6036 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6037 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6038 IOR_REG_SET (params->used_regs, tmp);
6039 return_regset_to_pool (tmp);
6040
6041 /* (*1) We need to add to USED_REGS registers that are read by
6042 INSN's lhs. This may lead to choosing wrong src register.
6043 E.g. (scheduling const expr enabled):
6044
6045 429: ax=0x0 <- Can't use AX for this expr (0x0)
6046 433: dx=[bp-0x18]
6047 427: [ax+dx+0x1]=ax
6048 REG_DEAD: ax
6049 168: di=dx
6050 REG_DEAD: dx
6051 */
48e1416a 6052 /* FIXME: see comment above and enable MEM_P
e1ab7874 6053 in vinsn_separable_p. */
6054 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6055 || !MEM_P (INSN_LHS (insn)));
6056}
6057
6058/* This function is called on the ascending pass, before returning from
6059 current basic block. */
6060static void
48e1416a 6061move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e1ab7874 6062 void *static_params)
6063{
6064 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6065 basic_block book_block = NULL;
6066
48e1416a 6067 /* When we have removed the boundary insn for scheduling, which also
e1ab7874 6068 happened to be the end insn in its bb, we don't need to update sets. */
48e1416a 6069 if (!lparams->removed_last_insn
e1ab7874 6070 && lparams->e1
6071 && sel_bb_head_p (insn))
6072 {
6073 /* We should generate bookkeeping code only if we are not at the
6074 top level of the move_op. */
6075 if (sel_num_cfg_preds_gt_1 (insn))
6076 book_block = generate_bookkeeping_insn (sparams->c_expr,
6077 lparams->e1, lparams->e2);
6078 /* Update data sets for the current insn. */
6079 update_data_sets (insn);
6080 }
48e1416a 6081
e1ab7874 6082 /* If bookkeeping code was inserted, we need to update av sets of basic
48e1416a 6083 block that received bookkeeping. After generation of bookkeeping insn,
e1ab7874 6084 bookkeeping block does not contain valid av set because we are not following
48e1416a 6085 the original algorithm in every detail with regards to e.g. renaming
e1ab7874 6086 simple reg-reg copies. Consider example:
48e1416a 6087
e1ab7874 6088 bookkeeping block scheduling fence
6089 \ /
6090 \ join /
6091 ----------
6092 | |
6093 ----------
6094 / \
6095 / \
6096 r1 := r2 r1 := r3
6097
48e1416a 6098 We try to schedule insn "r1 := r3" on the current
e1ab7874 6099 scheduling fence. Also, note that av set of bookkeeping block
6100 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6101 been scheduled, the CFG is as follows:
6102
6103 r1 := r3 r1 := r3
6104 bookkeeping block scheduling fence
6105 \ /
6106 \ join /
6107 ----------
6108 | |
6109 ----------
6110 / \
6111 / \
6112 r1 := r2
6113
6114 Here, insn "r1 := r3" was scheduled at the current scheduling point
6115 and bookkeeping code was generated at the bookeeping block. This
6116 way insn "r1 := r2" is no longer available as a whole instruction
6117 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
48e1416a 6118 This situation is handled by calling update_data_sets.
e1ab7874 6119
6120 Since update_data_sets is called only on the bookkeeping block, and
48e1416a 6121 it also may have predecessors with av_sets, containing instructions that
e1ab7874 6122 are no longer available, we save all such expressions that become
6123 unavailable during data sets update on the bookkeeping block in
48e1416a 6124 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6125 expressions for scheduling. This allows us to avoid recomputation of
e1ab7874 6126 av_sets outside the code motion path. */
48e1416a 6127
e1ab7874 6128 if (book_block)
6129 update_and_record_unavailable_insns (book_block);
6130
6131 /* If INSN was previously marked for deletion, it's time to do it. */
6132 if (lparams->removed_last_insn)
6133 insn = PREV_INSN (insn);
48e1416a 6134
e1ab7874 6135 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6136 kill a block with a single nop in which the insn should be emitted. */
6137 if (lparams->e1)
6138 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6139}
6140
6141/* This function is called on the ascending pass, before returning from the
6142 current basic block. */
6143static void
48e1416a 6144fur_at_first_insn (insn_t insn,
6145 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e1ab7874 6146 void *static_params ATTRIBUTE_UNUSED)
6147{
6148 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6149 || AV_LEVEL (insn) == -1);
6150}
6151
6152/* Called on the backward stage of recursion to call moveup_expr for insn
6153 and sparams->c_expr. */
6154static void
6155move_op_ascend (insn_t insn, void *static_params)
6156{
6157 enum MOVEUP_EXPR_CODE res;
6158 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6159
6160 if (! INSN_NOP_P (insn))
6161 {
6162 res = moveup_expr_cached (sparams->c_expr, insn, false);
6163 gcc_assert (res != MOVEUP_EXPR_NULL);
6164 }
6165
6166 /* Update liveness for this insn as it was invalidated. */
6167 update_liveness_on_insn (insn);
6168}
6169
48e1416a 6170/* This function is called on enter to the basic block.
6171 Returns TRUE if this block already have been visited and
e1ab7874 6172 code_motion_path_driver should return 1, FALSE otherwise. */
6173static int
48e1416a 6174fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e1ab7874 6175 void *static_params, bool visited_p)
6176{
6177 fur_static_params_p sparams = (fur_static_params_p) static_params;
6178
6179 if (visited_p)
6180 {
6181 /* If we have found something below this block, there should be at
6182 least one insn in ORIGINAL_INSNS. */
6183 gcc_assert (*sparams->original_insns);
6184
6185 /* Adjust CROSSES_CALL, since we may have come to this block along
6186 different path. */
6187 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6188 |= sparams->crosses_call;
6189 }
6190 else
6191 local_params->old_original_insns = *sparams->original_insns;
6192
6193 return 1;
6194}
6195
6196/* Same as above but for move_op. */
6197static int
48e1416a 6198move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6199 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e1ab7874 6200 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6201{
6202 if (visited_p)
6203 return -1;
6204 return 1;
6205}
6206
48e1416a 6207/* This function is called while descending current basic block if current
e1ab7874 6208 insn is not the original EXPR we're searching for.
6209
48e1416a 6210 Return value: FALSE, if code_motion_path_driver should perform a local
e1ab7874 6211 cleanup and return 0 itself;
6212 TRUE, if code_motion_path_driver should continue. */
6213static bool
6214move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6215 void *static_params)
6216{
6217 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6218
e1ab7874 6219 sparams->failed_insn = insn;
e1ab7874 6220
6221 /* If we're scheduling separate expr, in order to generate correct code
48e1416a 6222 we need to stop the search at bookkeeping code generated with the
e1ab7874 6223 same destination register or memory. */
6224 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6225 return false;
6226 return true;
6227}
6228
48e1416a 6229/* This function is called while descending current basic block if current
e1ab7874 6230 insn is not the original EXPR we're searching for.
6231
6232 Return value: TRUE (code_motion_path_driver should continue). */
6233static bool
6234fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6235{
6236 bool mutexed;
6237 expr_t r;
6238 av_set_iterator avi;
6239 fur_static_params_p sparams = (fur_static_params_p) static_params;
6240
6241 if (CALL_P (insn))
6242 sparams->crosses_call = true;
9845d120 6243 else if (DEBUG_INSN_P (insn))
6244 return true;
e1ab7874 6245
6246 /* If current insn we are looking at cannot be executed together
6247 with original insn, then we can skip it safely.
6248
6249 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6250 INSN = (!p6) r14 = r14 + 1;
6251
6252 Here we can schedule ORIG_OP with lhs = r14, though only
6253 looking at the set of used and set registers of INSN we must
6254 forbid it. So, add set/used in INSN registers to the
6255 untouchable set only if there is an insn in ORIG_OPS that can
6256 affect INSN. */
6257 mutexed = true;
6258 FOR_EACH_EXPR (r, avi, orig_ops)
6259 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6260 {
6261 mutexed = false;
6262 break;
6263 }
6264
6265 /* Mark all registers that do not meet the following condition:
6266 (1) Not set or read on any path from xi to an instance of the
6267 original operation. */
6268 if (!mutexed)
6269 {
6270 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6271 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6272 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6273 }
6274
6275 return true;
6276}
6277
6278/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6279struct code_motion_path_driver_info_def move_op_hooks = {
6280 move_op_on_enter,
6281 move_op_orig_expr_found,
6282 move_op_orig_expr_not_found,
6283 move_op_merge_succs,
6284 move_op_after_merge_succs,
6285 move_op_ascend,
6286 move_op_at_first_insn,
6287 SUCCS_NORMAL,
6288 "move_op"
6289};
6290
48e1416a 6291/* Hooks and data to perform find_used_regs operations
e1ab7874 6292 with code_motion_path_driver. */
6293struct code_motion_path_driver_info_def fur_hooks = {
6294 fur_on_enter,
6295 fur_orig_expr_found,
6296 fur_orig_expr_not_found,
6297 fur_merge_succs,
6298 NULL, /* fur_after_merge_succs */
6299 NULL, /* fur_ascend */
6300 fur_at_first_insn,
6301 SUCCS_ALL,
6302 "find_used_regs"
6303};
6304
6305/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
48e1416a 6306 code_motion_path_driver is called recursively. Original operation
6307 was found at least on one path that is starting with one of INSN's
e1ab7874 6308 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6309 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
48e1416a 6310 of either move_op or find_used_regs depending on the caller.
e1ab7874 6311
6312 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6313 know for sure at this point. */
6314static int
48e1416a 6315code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e1ab7874 6316 ilist_t path, void *static_params)
6317{
6318 int res = 0;
6319 succ_iterator succ_i;
2f3c9801 6320 insn_t succ;
e1ab7874 6321 basic_block bb;
6322 int old_index;
6323 unsigned old_succs;
6324
6325 struct cmpd_local_params lparams;
6326 expr_def _x;
6327
6328 lparams.c_expr_local = &_x;
6329 lparams.c_expr_merged = NULL;
6330
6331 /* We need to process only NORMAL succs for move_op, and collect live
48e1416a 6332 registers from ALL branches (including those leading out of the
6333 region) for find_used_regs.
e1ab7874 6334
6335 In move_op, there can be a case when insn's bb number has changed
48e1416a 6336 due to created bookkeeping. This happens very rare, as we need to
6337 move expression from the beginning to the end of the same block.
6338 Rescan successors in this case. */
e1ab7874 6339
6340 rescan:
6341 bb = BLOCK_FOR_INSN (insn);
48e1416a 6342 old_index = bb->index;
e1ab7874 6343 old_succs = EDGE_COUNT (bb->succs);
48e1416a 6344
e1ab7874 6345 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6346 {
6347 int b;
6348
6349 lparams.e1 = succ_i.e1;
6350 lparams.e2 = succ_i.e2;
6351
6352 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6353 current region). */
6354 if (succ_i.current_flags == SUCCS_NORMAL)
48e1416a 6355 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e1ab7874 6356 static_params);
6357 else
6358 b = 0;
6359
6360 /* Merge c_expres found or unify live register sets from different
6361 successors. */
6362 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6363 static_params);
6364 if (b == 1)
6365 res = b;
6366 else if (b == -1 && res != 1)
6367 res = b;
6368
6369 /* We have simplified the control flow below this point. In this case,
91b338ea 6370 the iterator becomes invalid. We need to try again.
6371 If we have removed the insn itself, it could be only an
6372 unconditional jump. Thus, do not rescan but break immediately --
6373 we have already visited the only successor block. */
6374 if (!BLOCK_FOR_INSN (insn))
6375 {
6376 if (sched_verbose >= 6)
6377 sel_print ("Not doing rescan: already visited the only successor"
6378 " of block %d\n", old_index);
6379 break;
6380 }
e1ab7874 6381 if (BLOCK_FOR_INSN (insn)->index != old_index
6382 || EDGE_COUNT (bb->succs) != old_succs)
8ff642e9 6383 {
91b338ea 6384 if (sched_verbose >= 6)
6385 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6386 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
8ff642e9 6387 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6388 goto rescan;
6389 }
e1ab7874 6390 }
6391
48e1416a 6392 /* Here, RES==1 if original expr was found at least for one of the
e1ab7874 6393 successors. After the loop, RES may happen to have zero value
48e1416a 6394 only if at some point the expr searched is present in av_set, but is
6395 not found below. In most cases, this situation is an error.
e1ab7874 6396 The exception is when the original operation is blocked by
6397 bookkeeping generated for another fence or for another path in current
6398 move_op. */
382ecba7 6399 gcc_checking_assert (res == 1
6400 || (res == 0
6401 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6402 || res == -1);
48e1416a 6403
e1ab7874 6404 /* Merge data, clean up, etc. */
de353418 6405 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e1ab7874 6406 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6407
6408 return res;
6409}
6410
6411
48e1416a 6412/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6413 is the pointer to the av set with expressions we were looking for,
e1ab7874 6414 PATH_P is the pointer to the traversed path. */
6415static inline void
6416code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6417{
6418 ilist_remove (path_p);
6419 av_set_clear (orig_ops_p);
6420}
6421
48e1416a 6422/* The driver function that implements move_op or find_used_regs
6423 functionality dependent whether code_motion_path_driver_INFO is set to
6424 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e1ab7874 6425 of code (CFG traversal etc) that are shared among both functions. INSN
6426 is the insn we're starting the search from, ORIG_OPS are the expressions
6427 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6428 parameters of the driver, and STATIC_PARAMS are static parameters of
48e1416a 6429 the caller.
e1ab7874 6430
6431 Returns whether original instructions were found. Note that top-level
6432 code_motion_path_driver always returns true. */
de353418 6433static int
48e1416a 6434code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6435 cmpd_local_params_p local_params_in,
e1ab7874 6436 void *static_params)
6437{
6438 expr_t expr = NULL;
6439 basic_block bb = BLOCK_FOR_INSN (insn);
8da4fe0d 6440 insn_t first_insn, original_insn, bb_tail, before_first;
e1ab7874 6441 bool removed_last_insn = false;
6442
6443 if (sched_verbose >= 6)
6444 {
6445 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6446 dump_insn (insn);
6447 sel_print (",");
6448 dump_av_set (orig_ops);
6449 sel_print (")\n");
6450 }
6451
6452 gcc_assert (orig_ops);
6453
6454 /* If no original operations exist below this insn, return immediately. */
6455 if (is_ineligible_successor (insn, path))
6456 {
6457 if (sched_verbose >= 6)
6458 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6459 return false;
6460 }
48e1416a 6461
e1ab7874 6462 /* The block can have invalid av set, in which case it was created earlier
6463 during move_op. Return immediately. */
6464 if (sel_bb_head_p (insn))
6465 {
6466 if (! AV_SET_VALID_P (insn))
6467 {
6468 if (sched_verbose >= 6)
6469 sel_print ("Returned from block %d as it had invalid av set\n",
6470 bb->index);
6471 return false;
6472 }
6473
6474 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6475 {
6476 /* We have already found an original operation on this branch, do not
6477 go any further and just return TRUE here. If we don't stop here,
67cf9b55 6478 function can have exponential behavior even on the small code
e1ab7874 6479 with many different paths (e.g. with data speculation and
6480 recovery blocks). */
6481 if (sched_verbose >= 6)
6482 sel_print ("Block %d already visited in this traversal\n", bb->index);
6483 if (code_motion_path_driver_info->on_enter)
48e1416a 6484 return code_motion_path_driver_info->on_enter (insn,
e1ab7874 6485 local_params_in,
48e1416a 6486 static_params,
e1ab7874 6487 true);
6488 }
6489 }
48e1416a 6490
e1ab7874 6491 if (code_motion_path_driver_info->on_enter)
6492 code_motion_path_driver_info->on_enter (insn, local_params_in,
6493 static_params, false);
6494 orig_ops = av_set_copy (orig_ops);
6495
6496 /* Filter the orig_ops set. */
6497 if (AV_SET_VALID_P (insn))
c53624fb 6498 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
e1ab7874 6499
6500 /* If no more original ops, return immediately. */
6501 if (!orig_ops)
6502 {
6503 if (sched_verbose >= 6)
6504 sel_print ("No intersection with av set of block %d\n", bb->index);
6505 return false;
6506 }
6507
6508 /* For non-speculative insns we have to leave only one form of the
48e1416a 6509 original operation, because if we don't, we may end up with
e1ab7874 6510 different C_EXPRes and, consequently, with bookkeepings for different
6511 expression forms along the same code motion path. That may lead to
48e1416a 6512 generation of incorrect code. So for each code motion we stick to
6513 the single form of the instruction, except for speculative insns
6514 which we need to keep in different forms with all speculation
e1ab7874 6515 types. */
6516 av_set_leave_one_nonspec (&orig_ops);
6517
6518 /* It is not possible that all ORIG_OPS are filtered out. */
6519 gcc_assert (orig_ops);
6520
6521 /* It is enough to place only heads and tails of visited basic blocks into
6522 the PATH. */
6523 ilist_add (&path, insn);
8da4fe0d 6524 first_insn = original_insn = insn;
e1ab7874 6525 bb_tail = sel_bb_end (bb);
6526
6527 /* Descend the basic block in search of the original expr; this part
48e1416a 6528 corresponds to the part of the original move_op procedure executed
e1ab7874 6529 before the recursive call. */
6530 for (;;)
6531 {
6532 /* Look at the insn and decide if it could be an ancestor of currently
6533 scheduling operation. If it is so, then the insn "dest = op" could
6534 either be replaced with "dest = reg", because REG now holds the result
6535 of OP, or just removed, if we've scheduled the insn as a whole.
6536
6537 If this insn doesn't contain currently scheduling OP, then proceed
6538 with searching and look at its successors. Operations we're searching
48e1416a 6539 for could have changed when moving up through this insn via
e1ab7874 6540 substituting. In this case, perform unsubstitution on them first.
6541
6542 When traversing the DAG below this insn is finished, insert
6543 bookkeeping code, if the insn is a joint point, and remove
6544 leftovers. */
6545
6546 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6547 if (expr)
6548 {
6549 insn_t last_insn = PREV_INSN (insn);
6550
6551 /* We have found the original operation. */
6552 if (sched_verbose >= 6)
6553 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6554
48e1416a 6555 code_motion_path_driver_info->orig_expr_found
e1ab7874 6556 (insn, expr, local_params_in, static_params);
6557
6558 /* Step back, so on the way back we'll start traversing from the
48e1416a 6559 previous insn (or we'll see that it's bb_note and skip that
e1ab7874 6560 loop). */
6561 if (insn == first_insn)
6562 {
6563 first_insn = NEXT_INSN (last_insn);
6564 removed_last_insn = sel_bb_end_p (last_insn);
6565 }
6566 insn = last_insn;
6567 break;
6568 }
6569 else
6570 {
6571 /* We haven't found the original expr, continue descending the basic
6572 block. */
48e1416a 6573 if (code_motion_path_driver_info->orig_expr_not_found
e1ab7874 6574 (insn, orig_ops, static_params))
6575 {
48e1416a 6576 /* Av set ops could have been changed when moving through this
e1ab7874 6577 insn. To find them below it, we have to un-substitute them. */
6578 undo_transformations (&orig_ops, insn);
6579 }
6580 else
6581 {
6582 /* Clean up and return, if the hook tells us to do so. It may
48e1416a 6583 happen if we've encountered the previously created
e1ab7874 6584 bookkeeping. */
6585 code_motion_path_driver_cleanup (&orig_ops, &path);
6586 return -1;
6587 }
6588
6589 gcc_assert (orig_ops);
6590 }
6591
6592 /* Stop at insn if we got to the end of BB. */
6593 if (insn == bb_tail)
6594 break;
6595
6596 insn = NEXT_INSN (insn);
6597 }
6598
48e1416a 6599 /* Here INSN either points to the insn before the original insn (may be
e1ab7874 6600 bb_note, if original insn was a bb_head) or to the bb_end. */
6601 if (!expr)
6602 {
6603 int res;
ff88d074 6604 rtx_insn *last_insn = PREV_INSN (insn);
8ff642e9 6605 bool added_to_path;
e1ab7874 6606
6607 gcc_assert (insn == sel_bb_end (bb));
6608
6609 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6610 it's already in PATH then). */
6611 if (insn != first_insn)
8ff642e9 6612 {
6613 ilist_add (&path, insn);
6614 added_to_path = true;
6615 }
6616 else
6617 added_to_path = false;
e1ab7874 6618
48e1416a 6619 /* Process_successors should be able to find at least one
6620 successor for which code_motion_path_driver returns TRUE. */
6621 res = code_motion_process_successors (insn, orig_ops,
e1ab7874 6622 path, static_params);
6623
8ff642e9 6624 /* Jump in the end of basic block could have been removed or replaced
6625 during code_motion_process_successors, so recompute insn as the
6626 last insn in bb. */
6627 if (NEXT_INSN (last_insn) != insn)
6628 {
6629 insn = sel_bb_end (bb);
6630 first_insn = sel_bb_head (bb);
8da4fe0d 6631 if (first_insn != original_insn)
6632 first_insn = original_insn;
8ff642e9 6633 }
6634
e1ab7874 6635 /* Remove bb tail from path. */
8ff642e9 6636 if (added_to_path)
e1ab7874 6637 ilist_remove (&path);
6638
6639 if (res != 1)
6640 {
6641 /* This is the case when one of the original expr is no longer available
48e1416a 6642 due to bookkeeping created on this branch with the same register.
e1ab7874 6643 In the original algorithm, which doesn't have update_data_sets call
48e1416a 6644 on a bookkeeping block, it would simply result in returning
6645 FALSE when we've encountered a previously generated bookkeeping
e1ab7874 6646 insn in moveop_orig_expr_not_found. */
6647 code_motion_path_driver_cleanup (&orig_ops, &path);
6648 return res;
6649 }
6650 }
6651
6652 /* Don't need it any more. */
6653 av_set_clear (&orig_ops);
6654
48e1416a 6655 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e1ab7874 6656 the beginning of the basic block. */
6657 before_first = PREV_INSN (first_insn);
6658 while (insn != before_first)
48e1416a 6659 {
e1ab7874 6660 if (code_motion_path_driver_info->ascend)
6661 code_motion_path_driver_info->ascend (insn, static_params);
6662
6663 insn = PREV_INSN (insn);
6664 }
48e1416a 6665
e1ab7874 6666 /* Now we're at the bb head. */
6667 insn = first_insn;
6668 ilist_remove (&path);
6669 local_params_in->removed_last_insn = removed_last_insn;
6670 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
48e1416a 6671
e1ab7874 6672 /* This should be the very last operation as at bb head we could change
6673 the numbering by creating bookkeeping blocks. */
6674 if (removed_last_insn)
6675 insn = PREV_INSN (insn);
f18c3345 6676
6677 /* If we have simplified the control flow and removed the first jump insn,
6678 there's no point in marking this block in the visited blocks bitmap. */
6679 if (BLOCK_FOR_INSN (insn))
6680 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
e1ab7874 6681 return true;
6682}
6683
48e1416a 6684/* Move up the operations from ORIG_OPS set traversing the dag starting
e1ab7874 6685 from INSN. PATH represents the edges traversed so far.
6686 DEST is the register chosen for scheduling the current expr. Insert
6687 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
48e1416a 6688 C_EXPR is how it looks like at the given cfg point.
de353418 6689 Set *SHOULD_MOVE to indicate whether we have only disconnected
6690 one of the insns found.
e1ab7874 6691
48e1416a 6692 Returns whether original instructions were found, which is asserted
e1ab7874 6693 to be true in the caller. */
6694static bool
6695move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
de353418 6696 rtx dest, expr_t c_expr, bool *should_move)
e1ab7874 6697{
6698 struct moveop_static_params sparams;
6699 struct cmpd_local_params lparams;
93457441 6700 int res;
e1ab7874 6701
48e1416a 6702 /* Init params for code_motion_path_driver. */
e1ab7874 6703 sparams.dest = dest;
6704 sparams.c_expr = c_expr;
6705 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
e1ab7874 6706 sparams.failed_insn = NULL;
e1ab7874 6707 sparams.was_renamed = false;
6708 lparams.e1 = NULL;
6709
6710 /* We haven't visited any blocks yet. */
6711 bitmap_clear (code_motion_visited_blocks);
48e1416a 6712
e1ab7874 6713 /* Set appropriate hooks and data. */
6714 code_motion_path_driver_info = &move_op_hooks;
6715 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6716
93457441 6717 gcc_assert (res != -1);
6718
e1ab7874 6719 if (sparams.was_renamed)
6720 EXPR_WAS_RENAMED (expr_vliw) = true;
6721
de353418 6722 *should_move = (sparams.uid == -1);
6723
e1ab7874 6724 return res;
6725}
6726\f
6727
6728/* Functions that work with regions. */
6729
6730/* Current number of seqno used in init_seqno and init_seqno_1. */
6731static int cur_seqno;
6732
48e1416a 6733/* A helper for init_seqno. Traverse the region starting from BB and
6734 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e1ab7874 6735 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6736static void
6737init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6738{
6739 int bbi = BLOCK_TO_BB (bb->index);
9ed997be 6740 insn_t insn;
e1ab7874 6741 insn_t succ_insn;
6742 succ_iterator si;
6743
9ed997be 6744 rtx_note *note = bb_note (bb);
08b7917c 6745 bitmap_set_bit (visited_bbs, bbi);
e1ab7874 6746 if (blocks_to_reschedule)
6747 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6748
48e1416a 6749 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e1ab7874 6750 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6751 {
6752 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6753 int succ_bbi = BLOCK_TO_BB (succ->index);
6754
6755 gcc_assert (in_current_region_p (succ));
6756
08b7917c 6757 if (!bitmap_bit_p (visited_bbs, succ_bbi))
e1ab7874 6758 {
6759 gcc_assert (succ_bbi > bbi);
6760
6761 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6762 }
08b41748 6763 else if (blocks_to_reschedule)
6764 bitmap_set_bit (forced_ebb_heads, succ->index);
e1ab7874 6765 }
6766
6767 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6768 INSN_SEQNO (insn) = cur_seqno--;
6769}
6770
def66588 6771/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6772 blocks on which we're rescheduling when pipelining, FROM is the block where
e1ab7874 6773 traversing region begins (it may not be the head of the region when
48e1416a 6774 pipelining, but the head of the loop instead).
e1ab7874 6775
6776 Returns the maximal seqno found. */
6777static int
def66588 6778init_seqno (bitmap blocks_to_reschedule, basic_block from)
e1ab7874 6779{
e1ab7874 6780 bitmap_iterator bi;
6781 unsigned bbi;
6782
3c6549f8 6783 auto_sbitmap visited_bbs (current_nr_blocks);
e1ab7874 6784
6785 if (blocks_to_reschedule)
6786 {
53c5d9d4 6787 bitmap_ones (visited_bbs);
e1ab7874 6788 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6789 {
6790 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
08b7917c 6791 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
e1ab7874 6792 }
6793 }
6794 else
6795 {
53c5d9d4 6796 bitmap_clear (visited_bbs);
e1ab7874 6797 from = EBB_FIRST_BB (0);
6798 }
6799
def66588 6800 cur_seqno = sched_max_luid - 1;
e1ab7874 6801 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
def66588 6802
6803 /* cur_seqno may be positive if the number of instructions is less than
6804 sched_max_luid - 1 (when rescheduling or if some instructions have been
6805 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6806 gcc_assert (cur_seqno >= 0);
e1ab7874 6807
e1ab7874 6808 return sched_max_luid - 1;
6809}
6810
6811/* Initialize scheduling parameters for current region. */
6812static void
6813sel_setup_region_sched_flags (void)
6814{
6815 enable_schedule_as_rhs_p = 1;
6816 bookkeeping_p = 1;
48e1416a 6817 pipelining_p = (bookkeeping_p
e1ab7874 6818 && (flag_sel_sched_pipelining != 0)
a8d6ade3 6819 && current_loop_nest != NULL
6820 && loop_has_exit_edges (current_loop_nest));
e1ab7874 6821 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6822 max_ws = MAX_WS;
6823}
6824
6825/* Return true if all basic blocks of current region are empty. */
6826static bool
6827current_region_empty_p (void)
6828{
6829 int i;
6830 for (i = 0; i < current_nr_blocks; i++)
f5a6b05f 6831 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
e1ab7874 6832 return false;
6833
6834 return true;
6835}
6836
6837/* Prepare and verify loop nest for pipelining. */
6838static void
b73edd22 6839setup_current_loop_nest (int rgn, bb_vec_t *bbs)
e1ab7874 6840{
6841 current_loop_nest = get_loop_nest_for_rgn (rgn);
6842
6843 if (!current_loop_nest)
6844 return;
6845
6846 /* If this loop has any saved loop preheaders from nested loops,
6847 add these basic blocks to the current region. */
b73edd22 6848 sel_add_loop_preheaders (bbs);
e1ab7874 6849
6850 /* Check that we're starting with a valid information. */
6851 gcc_assert (loop_latch_edge (current_loop_nest));
6852 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6853}
6854
e1ab7874 6855/* Compute instruction priorities for current region. */
6856static void
6857sel_compute_priorities (int rgn)
6858{
6859 sched_rgn_compute_dependencies (rgn);
6860
6861 /* Compute insn priorities in haifa style. Then free haifa style
6862 dependencies that we've calculated for this. */
6863 compute_priorities ();
6864
6865 if (sched_verbose >= 5)
6866 debug_rgn_dependencies (0);
6867
6868 free_rgn_deps ();
6869}
6870
6871/* Init scheduling data for RGN. Returns true when this region should not
6872 be scheduled. */
6873static bool
6874sel_region_init (int rgn)
6875{
6876 int i;
6877 bb_vec_t bbs;
6878
6879 rgn_setup_region (rgn);
6880
48e1416a 6881 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e1ab7874 6882 do region initialization here so the region can be bundled correctly,
6883 but we'll skip the scheduling in sel_sched_region (). */
6884 if (current_region_empty_p ())
6885 return true;
6886
f1f41a6c 6887 bbs.create (current_nr_blocks);
e1ab7874 6888
6889 for (i = 0; i < current_nr_blocks; i++)
f5a6b05f 6890 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e1ab7874 6891
52d7e28c 6892 sel_init_bbs (bbs);
e1ab7874 6893
b73edd22 6894 if (flag_sel_sched_pipelining)
6895 setup_current_loop_nest (rgn, &bbs);
6896
a060ed03 6897 sel_setup_region_sched_flags ();
6898
e1ab7874 6899 /* Initialize luids and dependence analysis which both sel-sched and haifa
6900 need. */
52d7e28c 6901 sched_init_luids (bbs);
e1ab7874 6902 sched_deps_init (false);
6903
6904 /* Initialize haifa data. */
6905 rgn_setup_sched_infos ();
6906 sel_set_sched_flags ();
52d7e28c 6907 haifa_init_h_i_d (bbs);
e1ab7874 6908
6909 sel_compute_priorities (rgn);
6910 init_deps_global ();
6911
6912 /* Main initialization. */
6913 sel_setup_sched_infos ();
6914 sel_init_global_and_expr (bbs);
6915
f1f41a6c 6916 bbs.release ();
e1ab7874 6917
6918 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6919
6920 /* Init correct liveness sets on each instruction of a single-block loop.
6921 This is the only situation when we can't update liveness when calling
6922 compute_live for the first insn of the loop. */
6923 if (current_loop_nest)
6924 {
f5a6b05f 6925 int header =
6926 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6927 ? 1
6928 : 0);
e1ab7874 6929
6930 if (current_nr_blocks == header + 1)
48e1416a 6931 update_liveness_on_insn
f5a6b05f 6932 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
e1ab7874 6933 }
48e1416a 6934
e1ab7874 6935 /* Set hooks so that no newly generated insn will go out unnoticed. */
6936 sel_register_cfg_hooks ();
6937
202d6e5f 6938 /* !!! We call target.sched.init () for the whole region, but we invoke
6939 targetm.sched.finish () for every ebb. */
6940 if (targetm.sched.init)
e1ab7874 6941 /* None of the arguments are actually used in any target. */
202d6e5f 6942 targetm.sched.init (sched_dump, sched_verbose, -1);
e1ab7874 6943
6944 first_emitted_uid = get_max_uid () + 1;
6945 preheader_removed = false;
6946
6947 /* Reset register allocation ticks array. */
6948 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6949 reg_rename_this_tick = 0;
6950
6e6e5c14 6951 forced_ebb_heads = BITMAP_ALLOC (NULL);
e1ab7874 6952
6953 setup_nop_vinsn ();
6954 current_copies = BITMAP_ALLOC (NULL);
6955 current_originators = BITMAP_ALLOC (NULL);
6956 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6957
6958 return false;
6959}
6960
6961/* Simplify insns after the scheduling. */
6962static void
6963simplify_changed_insns (void)
6964{
6965 int i;
6966
6967 for (i = 0; i < current_nr_blocks; i++)
6968 {
f5a6b05f 6969 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
ff88d074 6970 rtx_insn *insn;
e1ab7874 6971
6972 FOR_BB_INSNS (bb, insn)
6973 if (INSN_P (insn))
6974 {
6975 expr_t expr = INSN_EXPR (insn);
6976
48e1416a 6977 if (EXPR_WAS_SUBSTITUTED (expr))
e1ab7874 6978 validate_simplify_insn (insn);
6979 }
6980 }
6981}
6982
6983/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6984 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6985 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6986static void
6987find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6988{
6fe7b8c2 6989 rtx_insn *head, *tail;
e1ab7874 6990 basic_block bb1 = bb;
6991 if (sched_verbose >= 2)
6992 sel_print ("Finishing schedule in bbs: ");
6993
6994 do
6995 {
6996 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6997
6998 if (sched_verbose >= 2)
6999 sel_print ("%d; ", bb1->index);
7000 }
7001 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7002
7003 if (sched_verbose >= 2)
7004 sel_print ("\n");
7005
7006 get_ebb_head_tail (bb, bb1, &head, &tail);
7007
7008 current_sched_info->head = head;
7009 current_sched_info->tail = tail;
7010 current_sched_info->prev_head = PREV_INSN (head);
7011 current_sched_info->next_tail = NEXT_INSN (tail);
7012}
7013
7014/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7015static void
7016reset_sched_cycles_in_current_ebb (void)
7017{
7018 int last_clock = 0;
7019 int haifa_last_clock = -1;
7020 int haifa_clock = 0;
08b41748 7021 int issued_insns = 0;
e1ab7874 7022 insn_t insn;
7023
202d6e5f 7024 if (targetm.sched.init)
e1ab7874 7025 {
7026 /* None of the arguments are actually used in any target.
7027 NB: We should have md_reset () hook for cases like this. */
202d6e5f 7028 targetm.sched.init (sched_dump, sched_verbose, -1);
e1ab7874 7029 }
7030
7031 state_reset (curr_state);
7032 advance_state (curr_state);
48e1416a 7033
e1ab7874 7034 for (insn = current_sched_info->head;
7035 insn != current_sched_info->next_tail;
7036 insn = NEXT_INSN (insn))
7037 {
7038 int cost, haifa_cost;
7039 int sort_p;
30474b14 7040 bool asm_p, real_insn, after_stall, all_issued;
e1ab7874 7041 int clock;
7042
7043 if (!INSN_P (insn))
7044 continue;
7045
7046 asm_p = false;
7047 real_insn = recog_memoized (insn) >= 0;
7048 clock = INSN_SCHED_CYCLE (insn);
7049
7050 cost = clock - last_clock;
7051
7052 /* Initialize HAIFA_COST. */
7053 if (! real_insn)
7054 {
7055 asm_p = INSN_ASM_P (insn);
7056
7057 if (asm_p)
7058 /* This is asm insn which *had* to be scheduled first
7059 on the cycle. */
7060 haifa_cost = 1;
7061 else
48e1416a 7062 /* This is a use/clobber insn. It should not change
e1ab7874 7063 cost. */
7064 haifa_cost = 0;
7065 }
7066 else
30474b14 7067 haifa_cost = estimate_insn_cost (insn, curr_state);
e1ab7874 7068
7069 /* Stall for whatever cycles we've stalled before. */
7070 after_stall = 0;
7071 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7072 {
7073 haifa_cost = cost;
7074 after_stall = 1;
7075 }
946d6c2b 7076 all_issued = issued_insns == issue_rate;
7077 if (haifa_cost == 0 && all_issued)
08b41748 7078 haifa_cost = 1;
e1ab7874 7079 if (haifa_cost > 0)
7080 {
7081 int i = 0;
7082
7083 while (haifa_cost--)
7084 {
7085 advance_state (curr_state);
08b41748 7086 issued_insns = 0;
e1ab7874 7087 i++;
7088
7089 if (sched_verbose >= 2)
7090 {
7091 sel_print ("advance_state (state_transition)\n");
7092 debug_state (curr_state);
7093 }
7094
48e1416a 7095 /* The DFA may report that e.g. insn requires 2 cycles to be
7096 issued, but on the next cycle it says that insn is ready
e1ab7874 7097 to go. Check this here. */
7098 if (!after_stall
48e1416a 7099 && real_insn
e1ab7874 7100 && haifa_cost > 0
30474b14 7101 && estimate_insn_cost (insn, curr_state) == 0)
e1ab7874 7102 break;
e7ea26b5 7103
7104 /* When the data dependency stall is longer than the DFA stall,
946d6c2b 7105 and when we have issued exactly issue_rate insns and stalled,
7106 it could be that after this longer stall the insn will again
e7ea26b5 7107 become unavailable to the DFA restrictions. Looks strange
7108 but happens e.g. on x86-64. So recheck DFA on the last
7109 iteration. */
946d6c2b 7110 if ((after_stall || all_issued)
e7ea26b5 7111 && real_insn
7112 && haifa_cost == 0)
30474b14 7113 haifa_cost = estimate_insn_cost (insn, curr_state);
e7ea26b5 7114 }
e1ab7874 7115
7116 haifa_clock += i;
08b41748 7117 if (sched_verbose >= 2)
7118 sel_print ("haifa clock: %d\n", haifa_clock);
e1ab7874 7119 }
7120 else
7121 gcc_assert (haifa_cost == 0);
7122
7123 if (sched_verbose >= 2)
7124 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7125
7126 if (targetm.sched.dfa_new_cycle)
7127 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7128 haifa_last_clock, haifa_clock,
7129 &sort_p))
7130 {
7131 advance_state (curr_state);
08b41748 7132 issued_insns = 0;
e1ab7874 7133 haifa_clock++;
7134 if (sched_verbose >= 2)
7135 {
7136 sel_print ("advance_state (dfa_new_cycle)\n");
7137 debug_state (curr_state);
08b41748 7138 sel_print ("haifa clock: %d\n", haifa_clock + 1);
e1ab7874 7139 }
7140 }
7141
7142 if (real_insn)
7143 {
30474b14 7144 static state_t temp = NULL;
7145
7146 if (!temp)
7147 temp = xmalloc (dfa_state_size);
7148 memcpy (temp, curr_state, dfa_state_size);
7149
e1ab7874 7150 cost = state_transition (curr_state, insn);
30474b14 7151 if (memcmp (temp, curr_state, dfa_state_size))
ed726cbf 7152 issued_insns++;
e1ab7874 7153
7154 if (sched_verbose >= 2)
08b41748 7155 {
7156 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7157 haifa_clock + 1);
7158 debug_state (curr_state);
7159 }
e1ab7874 7160 gcc_assert (cost < 0);
7161 }
7162
7163 if (targetm.sched.variable_issue)
7164 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7165
7166 INSN_SCHED_CYCLE (insn) = haifa_clock;
7167
7168 last_clock = clock;
7169 haifa_last_clock = haifa_clock;
7170 }
7171}
7172
7173/* Put TImode markers on insns starting a new issue group. */
7174static void
7175put_TImodes (void)
7176{
7177 int last_clock = -1;
7178 insn_t insn;
7179
7180 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7181 insn = NEXT_INSN (insn))
7182 {
7183 int cost, clock;
7184
7185 if (!INSN_P (insn))
7186 continue;
7187
7188 clock = INSN_SCHED_CYCLE (insn);
7189 cost = (last_clock == -1) ? 1 : clock - last_clock;
7190
7191 gcc_assert (cost >= 0);
7192
7193 if (issue_rate > 1
7194 && GET_CODE (PATTERN (insn)) != USE
7195 && GET_CODE (PATTERN (insn)) != CLOBBER)
7196 {
7197 if (reload_completed && cost > 0)
7198 PUT_MODE (insn, TImode);
7199
7200 last_clock = clock;
7201 }
7202
7203 if (sched_verbose >= 2)
7204 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7205 }
7206}
7207
48e1416a 7208/* Perform MD_FINISH on EBBs comprising current region. When
e1ab7874 7209 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7210 to produce correct sched cycles on insns. */
7211static void
7212sel_region_target_finish (bool reset_sched_cycles_p)
7213{
7214 int i;
7215 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7216
7217 for (i = 0; i < current_nr_blocks; i++)
7218 {
7219 if (bitmap_bit_p (scheduled_blocks, i))
7220 continue;
7221
7222 /* While pipelining outer loops, skip bundling for loop
7223 preheaders. Those will be rescheduled in the outer loop. */
7224 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7225 continue;
7226
7227 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7228
7229 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7230 continue;
7231
7232 if (reset_sched_cycles_p)
7233 reset_sched_cycles_in_current_ebb ();
7234
202d6e5f 7235 if (targetm.sched.init)
7236 targetm.sched.init (sched_dump, sched_verbose, -1);
e1ab7874 7237
7238 put_TImodes ();
7239
202d6e5f 7240 if (targetm.sched.finish)
e1ab7874 7241 {
202d6e5f 7242 targetm.sched.finish (sched_dump, sched_verbose);
e1ab7874 7243
7244 /* Extend luids so that insns generated by the target will
7245 get zero luid. */
52d7e28c 7246 sched_extend_luids ();
e1ab7874 7247 }
7248 }
7249
7250 BITMAP_FREE (scheduled_blocks);
7251}
7252
7253/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
48e1416a 7254 is true, make an additional pass emulating scheduler to get correct insn
e1ab7874 7255 cycles for md_finish calls. */
7256static void
7257sel_region_finish (bool reset_sched_cycles_p)
7258{
7259 simplify_changed_insns ();
7260 sched_finish_ready_list ();
7261 free_nop_pool ();
7262
7263 /* Free the vectors. */
f1f41a6c 7264 vec_av_set.release ();
e1ab7874 7265 BITMAP_FREE (current_copies);
7266 BITMAP_FREE (current_originators);
7267 BITMAP_FREE (code_motion_visited_blocks);
f1f41a6c 7268 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7269 vinsn_vec_free (vec_target_unavailable_vinsns);
e1ab7874 7270
7271 /* If LV_SET of the region head should be updated, do it now because
7272 there will be no other chance. */
7273 {
7274 succ_iterator si;
7275 insn_t insn;
7276
7277 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7278 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7279 {
7280 basic_block bb = BLOCK_FOR_INSN (insn);
7281
7282 if (!BB_LV_SET_VALID_P (bb))
7283 compute_live (insn);
7284 }
7285 }
7286
7287 /* Emulate the Haifa scheduler for bundling. */
7288 if (reload_completed)
7289 sel_region_target_finish (reset_sched_cycles_p);
7290
7291 sel_finish_global_and_expr ();
7292
6e6e5c14 7293 BITMAP_FREE (forced_ebb_heads);
e1ab7874 7294
7295 free_nop_vinsn ();
7296
7297 finish_deps_global ();
7298 sched_finish_luids ();
f1f41a6c 7299 h_d_i_d.release ();
e1ab7874 7300
7301 sel_finish_bbs ();
7302 BITMAP_FREE (blocks_to_reschedule);
7303
7304 sel_unregister_cfg_hooks ();
7305
7306 max_issue_size = 0;
7307}
7308\f
7309
7310/* Functions that implement the scheduler driver. */
7311
7312/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7313 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7314 of insns scheduled -- these would be postprocessed later. */
7315static void
7316schedule_on_fences (flist_t fences, int max_seqno,
7317 ilist_t **scheduled_insns_tailpp)
7318{
7319 flist_t old_fences = fences;
7320
7321 if (sched_verbose >= 1)
7322 {
7323 sel_print ("\nScheduling on fences: ");
7324 dump_flist (fences);
7325 sel_print ("\n");
7326 }
7327
7328 scheduled_something_on_previous_fence = false;
7329 for (; fences; fences = FLIST_NEXT (fences))
7330 {
7331 fence_t fence = NULL;
7332 int seqno = 0;
7333 flist_t fences2;
7334 bool first_p = true;
48e1416a 7335
e1ab7874 7336 /* Choose the next fence group to schedule.
7337 The fact that insn can be scheduled only once
7338 on the cycle is guaranteed by two properties:
7339 1. seqnos of parallel groups decrease with each iteration.
7340 2. If is_ineligible_successor () sees the larger seqno, it
7341 checks if candidate insn is_in_current_fence_p (). */
7342 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7343 {
7344 fence_t f = FLIST_FENCE (fences2);
7345
7346 if (!FENCE_PROCESSED_P (f))
7347 {
7348 int i = INSN_SEQNO (FENCE_INSN (f));
7349
7350 if (first_p || i > seqno)
7351 {
7352 seqno = i;
7353 fence = f;
7354 first_p = false;
7355 }
7356 else
7357 /* ??? Seqnos of different groups should be different. */
7358 gcc_assert (1 || i != seqno);
7359 }
7360 }
7361
7362 gcc_assert (fence);
7363
7364 /* As FENCE is nonnull, SEQNO is initialized. */
7365 seqno -= max_seqno + 1;
7366 fill_insns (fence, seqno, scheduled_insns_tailpp);
7367 FENCE_PROCESSED_P (fence) = true;
7368 }
7369
7370 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
48e1416a 7371 don't need to keep bookkeeping-invalidated and target-unavailable
e1ab7874 7372 vinsns any more. */
7373 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7374 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7375}
7376
7377/* Calculate MIN_SEQNO and MAX_SEQNO. */
7378static void
7379find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7380{
7381 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7382
7383 /* The first element is already processed. */
7384 while ((fences = FLIST_NEXT (fences)))
7385 {
7386 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
48e1416a 7387
e1ab7874 7388 if (*min_seqno > seqno)
7389 *min_seqno = seqno;
7390 else if (*max_seqno < seqno)
7391 *max_seqno = seqno;
7392 }
7393}
7394
dce9387e 7395/* Calculate new fences from FENCES. Write the current time to PTIME. */
48e1416a 7396static flist_t
dce9387e 7397calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
e1ab7874 7398{
7399 flist_t old_fences = fences;
7400 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
dce9387e 7401 int max_time = 0;
e1ab7874 7402
7403 flist_tail_init (new_fences);
7404 for (; fences; fences = FLIST_NEXT (fences))
7405 {
7406 fence_t fence = FLIST_FENCE (fences);
7407 insn_t insn;
48e1416a 7408
e1ab7874 7409 if (!FENCE_BNDS (fence))
7410 {
7411 /* This fence doesn't have any successors. */
7412 if (!FENCE_SCHEDULED_P (fence))
7413 {
7414 /* Nothing was scheduled on this fence. */
7415 int seqno;
7416
7417 insn = FENCE_INSN (fence);
7418 seqno = INSN_SEQNO (insn);
7419 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7420
7421 if (sched_verbose >= 1)
48e1416a 7422 sel_print ("Fence %d[%d] has not changed\n",
e1ab7874 7423 INSN_UID (insn),
7424 BLOCK_NUM (insn));
7425 move_fence_to_fences (fences, new_fences);
7426 }
7427 }
7428 else
7429 extract_new_fences_from (fences, new_fences, orig_max_seqno);
dce9387e 7430 max_time = MAX (max_time, FENCE_CYCLE (fence));
e1ab7874 7431 }
7432
7433 flist_clear (&old_fences);
dce9387e 7434 *ptime = max_time;
e1ab7874 7435 return FLIST_TAIL_HEAD (new_fences);
7436}
7437
7438/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7439 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7440 the highest seqno used in a region. Return the updated highest seqno. */
7441static int
48e1416a 7442update_seqnos_and_stage (int min_seqno, int max_seqno,
7443 int highest_seqno_in_use,
e1ab7874 7444 ilist_t *pscheduled_insns)
7445{
7446 int new_hs;
7447 ilist_iterator ii;
7448 insn_t insn;
48e1416a 7449
e1ab7874 7450 /* Actually, new_hs is the seqno of the instruction, that was
7451 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7452 if (*pscheduled_insns)
7453 {
7454 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7455 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7456 gcc_assert (new_hs > highest_seqno_in_use);
7457 }
7458 else
7459 new_hs = highest_seqno_in_use;
7460
7461 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7462 {
7463 gcc_assert (INSN_SEQNO (insn) < 0);
7464 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7465 gcc_assert (INSN_SEQNO (insn) <= new_hs);
d9ab2038 7466
7467 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7468 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7469 require > 1GB of memory e.g. on limit-fnargs.c. */
7470 if (! pipelining_p)
7471 free_data_for_scheduled_insn (insn);
e1ab7874 7472 }
7473
7474 ilist_clear (pscheduled_insns);
7475 global_level++;
7476
7477 return new_hs;
7478}
7479
48e1416a 7480/* The main driver for scheduling a region. This function is responsible
7481 for correct propagation of fences (i.e. scheduling points) and creating
7482 a group of parallel insns at each of them. It also supports
e1ab7874 7483 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7484 of scheduling. */
7485static void
7486sel_sched_region_2 (int orig_max_seqno)
7487{
7488 int highest_seqno_in_use = orig_max_seqno;
dce9387e 7489 int max_time = 0;
e1ab7874 7490
7491 stat_bookkeeping_copies = 0;
7492 stat_insns_needed_bookkeeping = 0;
7493 stat_renamed_scheduled = 0;
7494 stat_substitutions_total = 0;
7495 num_insns_scheduled = 0;
7496
7497 while (fences)
7498 {
7499 int min_seqno, max_seqno;
7500 ilist_t scheduled_insns = NULL;
7501 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7502
7503 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7504 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
dce9387e 7505 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
e1ab7874 7506 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7507 highest_seqno_in_use,
7508 &scheduled_insns);
7509 }
7510
7511 if (sched_verbose >= 1)
dce9387e 7512 {
7513 sel_print ("Total scheduling time: %d cycles\n", max_time);
7514 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7515 "bookkeeping, %d insns renamed, %d insns substituted\n",
7516 stat_bookkeeping_copies,
7517 stat_insns_needed_bookkeeping,
7518 stat_renamed_scheduled,
7519 stat_substitutions_total);
7520 }
e1ab7874 7521}
7522
48e1416a 7523/* Schedule a region. When pipelining, search for possibly never scheduled
7524 bookkeeping code and schedule it. Reschedule pipelined code without
e1ab7874 7525 pipelining after. */
7526static void
7527sel_sched_region_1 (void)
7528{
e1ab7874 7529 int orig_max_seqno;
7530
def66588 7531 /* Remove empty blocks that might be in the region from the beginning. */
e1ab7874 7532 purge_empty_blocks ();
7533
def66588 7534 orig_max_seqno = init_seqno (NULL, NULL);
e1ab7874 7535 gcc_assert (orig_max_seqno >= 1);
7536
7537 /* When pipelining outer loops, create fences on the loop header,
7538 not preheader. */
7539 fences = NULL;
7540 if (current_loop_nest)
7541 init_fences (BB_END (EBB_FIRST_BB (0)));
7542 else
7543 init_fences (bb_note (EBB_FIRST_BB (0)));
7544 global_level = 1;
7545
7546 sel_sched_region_2 (orig_max_seqno);
7547
7548 gcc_assert (fences == NULL);
7549
7550 if (pipelining_p)
7551 {
7552 int i;
7553 basic_block bb;
7554 struct flist_tail_def _new_fences;
7555 flist_tail_t new_fences = &_new_fences;
7556 bool do_p = true;
7557
7558 pipelining_p = false;
7559 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7560 bookkeeping_p = false;
7561 enable_schedule_as_rhs_p = false;
7562
7563 /* Schedule newly created code, that has not been scheduled yet. */
7564 do_p = true;
7565
7566 while (do_p)
7567 {
7568 do_p = false;
7569
7570 for (i = 0; i < current_nr_blocks; i++)
7571 {
7572 basic_block bb = EBB_FIRST_BB (i);
7573
e1ab7874 7574 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7575 {
e7ea26b5 7576 if (! bb_ends_ebb_p (bb))
7577 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7578 if (sel_bb_empty_p (bb))
7579 {
7580 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7581 continue;
7582 }
e1ab7874 7583 clear_outdated_rtx_info (bb);
7584 if (sel_insn_is_speculation_check (BB_END (bb))
7585 && JUMP_P (BB_END (bb)))
7586 bitmap_set_bit (blocks_to_reschedule,
7587 BRANCH_EDGE (bb)->dest->index);
7588 }
e7ea26b5 7589 else if (! sel_bb_empty_p (bb)
7590 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
e1ab7874 7591 bitmap_set_bit (blocks_to_reschedule, bb->index);
7592 }
7593
7594 for (i = 0; i < current_nr_blocks; i++)
7595 {
7596 bb = EBB_FIRST_BB (i);
7597
48e1416a 7598 /* While pipelining outer loops, skip bundling for loop
e1ab7874 7599 preheaders. Those will be rescheduled in the outer
7600 loop. */
7601 if (sel_is_loop_preheader_p (bb))
7602 {
7603 clear_outdated_rtx_info (bb);
7604 continue;
7605 }
48e1416a 7606
08b41748 7607 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
e1ab7874 7608 {
7609 flist_tail_init (new_fences);
7610
def66588 7611 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
e1ab7874 7612
7613 /* Mark BB as head of the new ebb. */
7614 bitmap_set_bit (forced_ebb_heads, bb->index);
7615
e1ab7874 7616 gcc_assert (fences == NULL);
7617
7618 init_fences (bb_note (bb));
48e1416a 7619
e1ab7874 7620 sel_sched_region_2 (orig_max_seqno);
48e1416a 7621
e1ab7874 7622 do_p = true;
7623 break;
7624 }
7625 }
7626 }
7627 }
7628}
7629
7630/* Schedule the RGN region. */
7631void
7632sel_sched_region (int rgn)
7633{
7634 bool schedule_p;
7635 bool reset_sched_cycles_p;
7636
7637 if (sel_region_init (rgn))
7638 return;
7639
7640 if (sched_verbose >= 1)
7641 sel_print ("Scheduling region %d\n", rgn);
7642
7643 schedule_p = (!sched_is_disabled_for_current_region_p ()
7644 && dbg_cnt (sel_sched_region_cnt));
7645 reset_sched_cycles_p = pipelining_p;
7646 if (schedule_p)
7647 sel_sched_region_1 ();
7648 else
91d7a2f9 7649 {
7650 /* Schedule always selecting the next insn to make the correct data
7651 for bundling or other later passes. */
7652 pipelining_p = false;
a78ef9b4 7653 reset_sched_cycles_p = false;
91d7a2f9 7654 force_next_insn = 1;
7655 sel_sched_region_1 ();
7656 force_next_insn = 0;
7657 }
e1ab7874 7658 sel_region_finish (reset_sched_cycles_p);
7659}
7660
7661/* Perform global init for the scheduler. */
7662static void
7663sel_global_init (void)
7664{
5a06e94f 7665 /* Remove empty blocks: their presence can break assumptions elsewhere,
7666 e.g. the logic to invoke update_liveness_on_insn in sel_region_init. */
7667 cleanup_cfg (0);
7668
e1ab7874 7669 calculate_dominance_info (CDI_DOMINATORS);
7670 alloc_sched_pools ();
7671
7672 /* Setup the infos for sched_init. */
7673 sel_setup_sched_infos ();
7674 setup_sched_dump ();
7675
c486a06e 7676 sched_rgn_init (false);
2bc1ac5a 7677 sched_init ();
e1ab7874 7678
7679 sched_init_bbs ();
7680 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7681 after_recovery = 0;
48e1416a 7682 can_issue_more = issue_rate;
e1ab7874 7683
7684 sched_extend_target ();
7685 sched_deps_init (true);
7686 setup_nop_and_exit_insns ();
7687 sel_extend_global_bb_info ();
7688 init_lv_sets ();
7689 init_hard_regs_data ();
7690}
7691
7692/* Free the global data of the scheduler. */
7693static void
7694sel_global_finish (void)
7695{
7696 free_bb_note_pool ();
7697 free_lv_sets ();
7698 sel_finish_global_bb_info ();
7699
7700 free_regset_pool ();
7701 free_nop_and_exit_insns ();
7702
7703 sched_rgn_finish ();
7704 sched_deps_finish ();
7705 sched_finish ();
7706
7707 if (current_loops)
7708 sel_finish_pipelining ();
7709
7710 free_sched_pools ();
7711 free_dominance_info (CDI_DOMINATORS);
7712}
7713
7714/* Return true when we need to skip selective scheduling. Used for debugging. */
7715bool
7716maybe_skip_selective_scheduling (void)
7717{
7718 return ! dbg_cnt (sel_sched_cnt);
7719}
7720
7721/* The entry point. */
7722void
7723run_selective_scheduling (void)
7724{
7725 int rgn;
7726
a28770e1 7727 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
e1ab7874 7728 return;
7729
7730 sel_global_init ();
7731
7732 for (rgn = 0; rgn < nr_regions; rgn++)
7733 sel_sched_region (rgn);
7734
7735 sel_global_finish ();
7736}
7737
7738#endif