]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
2019-04-15 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e1ab7874 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
fbd26352 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
e1ab7874 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
9ef16211 23#include "backend.h"
24#include "tree.h"
25#include "rtl.h"
26#include "df.h"
ad7b10a2 27#include "memmodel.h"
e1ab7874 28#include "tm_p.h"
e1ab7874 29#include "regs.h"
94ea8568 30#include "cfgbuild.h"
5a06e94f 31#include "cfgcleanup.h"
e1ab7874 32#include "insn-config.h"
33#include "insn-attr.h"
e1ab7874 34#include "params.h"
35#include "target.h"
e1ab7874 36#include "sched-int.h"
e1ab7874 37#include "rtlhooks-def.h"
3e1f1f1a 38#include "ira.h"
ca3be54b 39#include "ira-int.h"
6121af96 40#include "rtl-iter.h"
e1ab7874 41
42#ifdef INSN_SCHEDULING
9ef16211 43#include "regset.h"
44#include "cfgloop.h"
e1ab7874 45#include "sel-sched-ir.h"
46#include "sel-sched-dump.h"
47#include "sel-sched.h"
48#include "dbgcnt.h"
49
50/* Implementation of selective scheduling approach.
51 The below implementation follows the original approach with the following
52 changes:
53
48e1416a 54 o the scheduler works after register allocation (but can be also tuned
e1ab7874 55 to work before RA);
56 o some instructions are not copied or register renamed;
57 o conditional jumps are not moved with code duplication;
58 o several jumps in one parallel group are not supported;
59 o when pipelining outer loops, code motion through inner loops
60 is not supported;
61 o control and data speculation are supported;
62 o some improvements for better compile time/performance were made.
63
64 Terminology
65 ===========
66
48e1416a 67 A vinsn, or virtual insn, is an insn with additional data characterizing
68 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
69 Vinsns also act as smart pointers to save memory by reusing them in
e1ab7874 70 different expressions. A vinsn is described by vinsn_t type.
71
72 An expression is a vinsn with additional data characterizing its properties
48e1416a 73 at some point in the control flow graph. The data may be its usefulness,
e1ab7874 74 priority, speculative status, whether it was renamed/subsituted, etc.
75 An expression is described by expr_t type.
76
48e1416a 77 Availability set (av_set) is a set of expressions at a given control flow
e1ab7874 78 point. It is represented as av_set_t. The expressions in av sets are kept
48e1416a 79 sorted in the terms of expr_greater_p function. It allows to truncate
e1ab7874 80 the set while leaving the best expressions.
48e1416a 81
e1ab7874 82 A fence is a point through which code motion is prohibited. On each step,
83 we gather a parallel group of insns at a fence. It is possible to have
84 multiple fences. A fence is represented via fence_t.
85
86 A boundary is the border between the fence group and the rest of the code.
87 Currently, we never have more than one boundary per fence, as we finalize
48e1416a 88 the fence group when a jump is scheduled. A boundary is represented
e1ab7874 89 via bnd_t.
90
91 High-level overview
92 ===================
93
94 The scheduler finds regions to schedule, schedules each one, and finalizes.
48e1416a 95 The regions are formed starting from innermost loops, so that when the inner
e1ab7874 96 loop is pipelined, its prologue can be scheduled together with yet unprocessed
48e1416a 97 outer loop. The rest of acyclic regions are found using extend_rgns:
e1ab7874 98 the blocks that are not yet allocated to any regions are traversed in top-down
48e1416a 99 order, and a block is added to a region to which all its predecessors belong;
e1ab7874 100 otherwise, the block starts its own region.
101
102 The main scheduling loop (sel_sched_region_2) consists of just
103 scheduling on each fence and updating fences. For each fence,
104 we fill a parallel group of insns (fill_insns) until some insns can be added.
48e1416a 105 First, we compute available exprs (av-set) at the boundary of the current
106 group. Second, we choose the best expression from it. If the stall is
e1ab7874 107 required to schedule any of the expressions, we advance the current cycle
48e1416a 108 appropriately. So, the final group does not exactly correspond to a VLIW
e1ab7874 109 word. Third, we move the chosen expression to the boundary (move_op)
110 and update the intermediate av sets and liveness sets. We quit fill_insns
111 when either no insns left for scheduling or we have scheduled enough insns
48e1416a 112 so we feel like advancing a scheduling point.
e1ab7874 113
114 Computing available expressions
115 ===============================
116
117 The computation (compute_av_set) is a bottom-up traversal. At each insn,
48e1416a 118 we're moving the union of its successors' sets through it via
119 moveup_expr_set. The dependent expressions are removed. Local
120 transformations (substitution, speculation) are applied to move more
e1ab7874 121 exprs. Then the expr corresponding to the current insn is added.
122 The result is saved on each basic block header.
123
124 When traversing the CFG, we're moving down for no more than max_ws insns.
125 Also, we do not move down to ineligible successors (is_ineligible_successor),
126 which include moving along a back-edge, moving to already scheduled code,
48e1416a 127 and moving to another fence. The first two restrictions are lifted during
e1ab7874 128 pipelining, which allows us to move insns along a back-edge. We always have
129 an acyclic region for scheduling because we forbid motion through fences.
130
131 Choosing the best expression
132 ============================
133
134 We sort the final availability set via sel_rank_for_schedule, then we remove
135 expressions which are not yet ready (tick_check_p) or which dest registers
48e1416a 136 cannot be used. For some of them, we choose another register via
137 find_best_reg. To do this, we run find_used_regs to calculate the set of
e1ab7874 138 registers which cannot be used. The find_used_regs function performs
139 a traversal of code motion paths for an expr. We consider for renaming
48e1416a 140 only registers which are from the same regclass as the original one and
e1ab7874 141 using which does not interfere with any live ranges. Finally, we convert
142 the resulting set to the ready list format and use max_issue and reorder*
143 hooks similarly to the Haifa scheduler.
144
145 Scheduling the best expression
146 ==============================
147
48e1416a 148 We run the move_op routine to perform the same type of code motion paths
e1ab7874 149 traversal as in find_used_regs. (These are working via the same driver,
150 code_motion_path_driver.) When moving down the CFG, we look for original
48e1416a 151 instruction that gave birth to a chosen expression. We undo
e1ab7874 152 the transformations performed on an expression via the history saved in it.
48e1416a 153 When found, we remove the instruction or leave a reg-reg copy/speculation
154 check if needed. On a way up, we insert bookkeeping copies at each join
155 point. If a copy is not needed, it will be removed later during this
e1ab7874 156 traversal. We update the saved av sets and liveness sets on the way up, too.
157
158 Finalizing the schedule
159 =======================
160
48e1416a 161 When pipelining, we reschedule the blocks from which insns were pipelined
162 to get a tighter schedule. On Itanium, we also perform bundling via
163 the same routine from ia64.c.
e1ab7874 164
165 Dependence analysis changes
166 ===========================
167
168 We augmented the sched-deps.c with hooks that get called when a particular
169 dependence is found in a particular part of an insn. Using these hooks, we
170 can do several actions such as: determine whether an insn can be moved through
48e1416a 171 another (has_dependence_p, moveup_expr); find out whether an insn can be
172 scheduled on the current cycle (tick_check_p); find out registers that
173 are set/used/clobbered by an insn and find out all the strange stuff that
174 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e1ab7874 175 init_global_and_expr_for_insn).
176
177 Initialization changes
178 ======================
179
48e1416a 180 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e1ab7874 181 reused in all of the schedulers. We have split up the initialization of data
48e1416a 182 of such parts into different functions prefixed with scheduler type and
e1ab7874 183 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
184 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
48e1416a 185 The same splitting is done with current_sched_info structure:
186 dependence-related parts are in sched_deps_info, common part is in
e1ab7874 187 common_sched_info, and haifa/sel/etc part is in current_sched_info.
48e1416a 188
e1ab7874 189 Target contexts
190 ===============
191
192 As we now have multiple-point scheduling, this would not work with backends
48e1416a 193 which save some of the scheduler state to use it in the target hooks.
194 For this purpose, we introduce a concept of target contexts, which
e1ab7874 195 encapsulate such information. The backend should implement simple routines
196 of allocating/freeing/setting such a context. The scheduler calls these
197 as target hooks and handles the target context as an opaque pointer (similar
198 to the DFA state type, state_t).
199
200 Various speedups
201 ================
202
203 As the correct data dependence graph is not supported during scheduling (which
48e1416a 204 is to be changed in mid-term), we cache as much of the dependence analysis
205 results as possible to avoid reanalyzing. This includes: bitmap caches on
206 each insn in stream of the region saying yes/no for a query with a pair of
e1ab7874 207 UIDs; hashtables with the previously done transformations on each insn in
208 stream; a vector keeping a history of transformations on each expr.
209
210 Also, we try to minimize the dependence context used on each fence to check
211 whether the given expression is ready for scheduling by removing from it
48e1416a 212 insns that are definitely completed the execution. The results of
e1ab7874 213 tick_check_p checks are also cached in a vector on each fence.
214
48e1416a 215 We keep a valid liveness set on each insn in a region to avoid the high
e1ab7874 216 cost of recomputation on large basic blocks.
217
218 Finally, we try to minimize the number of needed updates to the availability
48e1416a 219 sets. The updates happen in two cases: when fill_insns terminates,
e1ab7874 220 we advance all fences and increase the stage number to show that the region
221 has changed and the sets are to be recomputed; and when the next iteration
222 of a loop in fill_insns happens (but this one reuses the saved av sets
223 on bb headers.) Thus, we try to break the fill_insns loop only when
224 "significant" number of insns from the current scheduling window was
225 scheduled. This should be made a target param.
48e1416a 226
e1ab7874 227
228 TODO: correctly support the data dependence graph at all stages and get rid
229 of all caches. This should speed up the scheduler.
230 TODO: implement moving cond jumps with bookkeeping copies on both targets.
231 TODO: tune the scheduler before RA so it does not create too much pseudos.
232
233
234 References:
235 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
48e1416a 236 selective scheduling and software pipelining.
237 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e1ab7874 238
48e1416a 239 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
240 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e1ab7874 241 for GCC. In Proceedings of GCC Developers' Summit 2006.
242
48e1416a 243 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e1ab7874 244 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
245 http://rogue.colorado.edu/EPIC7/.
48e1416a 246
e1ab7874 247*/
248
249/* True when pipelining is enabled. */
250bool pipelining_p;
251
252/* True if bookkeeping is enabled. */
253bool bookkeeping_p;
254
255/* Maximum number of insns that are eligible for renaming. */
256int max_insns_to_rename;
257\f
258
259/* Definitions of local types and macros. */
260
261/* Represents possible outcomes of moving an expression through an insn. */
48e1416a 262enum MOVEUP_EXPR_CODE
263 {
e1ab7874 264 /* The expression is not changed. */
48e1416a 265 MOVEUP_EXPR_SAME,
e1ab7874 266
267 /* Not changed, but requires a new destination register. */
48e1416a 268 MOVEUP_EXPR_AS_RHS,
e1ab7874 269
270 /* Cannot be moved. */
48e1416a 271 MOVEUP_EXPR_NULL,
e1ab7874 272
273 /* Changed (substituted or speculated). */
48e1416a 274 MOVEUP_EXPR_CHANGED
e1ab7874 275 };
276
277/* The container to be passed into rtx search & replace functions. */
278struct rtx_search_arg
279{
280 /* What we are searching for. */
281 rtx x;
282
9d75589a 283 /* The occurrence counter. */
e1ab7874 284 int n;
285};
286
287typedef struct rtx_search_arg *rtx_search_arg_p;
288
48e1416a 289/* This struct contains precomputed hard reg sets that are needed when
e1ab7874 290 computing registers available for renaming. */
48e1416a 291struct hard_regs_data
e1ab7874 292{
48e1416a 293 /* For every mode, this stores registers available for use with
e1ab7874 294 that mode. */
295 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296
297 /* True when regs_for_mode[mode] is initialized. */
298 bool regs_for_mode_ok[NUM_MACHINE_MODES];
299
300 /* For every register, it has regs that are ok to rename into it.
301 The register in question is always set. If not, this means
302 that the whole set is not computed yet. */
303 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304
48e1416a 305 /* For every mode, this stores registers not available due to
e1ab7874 306 call clobbering. */
307 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
308
309 /* All registers that are used or call used. */
310 HARD_REG_SET regs_ever_used;
311
312#ifdef STACK_REGS
313 /* Stack registers. */
314 HARD_REG_SET stack_regs;
315#endif
316};
317
318/* Holds the results of computation of available for renaming and
319 unavailable hard registers. */
320struct reg_rename
321{
322 /* These are unavailable due to calls crossing, globalness, etc. */
323 HARD_REG_SET unavailable_hard_regs;
324
325 /* These are *available* for renaming. */
326 HARD_REG_SET available_for_renaming;
327
328 /* Whether this code motion path crosses a call. */
329 bool crosses_call;
330};
331
48e1416a 332/* A global structure that contains the needed information about harg
e1ab7874 333 regs. */
334static struct hard_regs_data sel_hrd;
335\f
336
48e1416a 337/* This structure holds local data used in code_motion_path_driver hooks on
338 the same or adjacent levels of recursion. Here we keep those parameters
339 that are not used in code_motion_path_driver routine itself, but only in
340 its hooks. Moreover, all parameters that can be modified in hooks are
341 in this structure, so all other parameters passed explicitly to hooks are
e1ab7874 342 read-only. */
343struct cmpd_local_params
344{
345 /* Local params used in move_op_* functions. */
346
347 /* Edges for bookkeeping generation. */
348 edge e1, e2;
349
350 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
351 expr_t c_expr_merged, c_expr_local;
352
353 /* Local params used in fur_* functions. */
354 /* Copy of the ORIGINAL_INSN list, stores the original insns already
355 found before entering the current level of code_motion_path_driver. */
356 def_list_t old_original_insns;
357
358 /* Local params used in move_op_* functions. */
48e1416a 359 /* True when we have removed last insn in the block which was
e1ab7874 360 also a boundary. Do not update anything or create bookkeeping copies. */
361 BOOL_BITFIELD removed_last_insn : 1;
362};
363
364/* Stores the static parameters for move_op_* calls. */
365struct moveop_static_params
366{
367 /* Destination register. */
368 rtx dest;
369
370 /* Current C_EXPR. */
371 expr_t c_expr;
372
373 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
374 they are to be removed. */
375 int uid;
376
e1ab7874 377 /* This is initialized to the insn on which the driver stopped its traversal. */
378 insn_t failed_insn;
e1ab7874 379
380 /* True if we scheduled an insn with different register. */
381 bool was_renamed;
382};
383
384/* Stores the static parameters for fur_* calls. */
385struct fur_static_params
386{
387 /* Set of registers unavailable on the code motion path. */
388 regset used_regs;
389
390 /* Pointer to the list of original insns definitions. */
391 def_list_t *original_insns;
392
393 /* True if a code motion path contains a CALL insn. */
394 bool crosses_call;
395};
396
397typedef struct fur_static_params *fur_static_params_p;
398typedef struct cmpd_local_params *cmpd_local_params_p;
399typedef struct moveop_static_params *moveop_static_params_p;
400
67cf9b55 401/* Set of hooks and parameters that determine behavior specific to
e1ab7874 402 move_op or find_used_regs functions. */
403struct code_motion_path_driver_info_def
404{
405 /* Called on enter to the basic block. */
406 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
407
408 /* Called when original expr is found. */
409 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
410
411 /* Called while descending current basic block if current insn is not
412 the original EXPR we're searching for. */
413 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
414
415 /* Function to merge C_EXPRes from different successors. */
416 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
417
418 /* Function to finalize merge from different successors and possibly
419 deallocate temporary data structures used for merging. */
420 void (*after_merge_succs) (cmpd_local_params_p, void *);
421
422 /* Called on the backward stage of recursion to do moveup_expr.
423 Used only with move_op_*. */
424 void (*ascend) (insn_t, void *);
425
48e1416a 426 /* Called on the ascending pass, before returning from the current basic
e1ab7874 427 block or from the whole traversal. */
428 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
429
48e1416a 430 /* When processing successors in move_op we need only descend into
e1ab7874 431 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
432 int succ_flags;
433
434 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
435 const char *routine_name;
436};
437
438/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
439 FUR_HOOKS. */
440struct code_motion_path_driver_info_def *code_motion_path_driver_info;
441
442/* Set of hooks for performing move_op and find_used_regs routines with
443 code_motion_path_driver. */
40b15760 444extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e1ab7874 445
48e1416a 446/* True if/when we want to emulate Haifa scheduler in the common code.
447 This is used in sched_rgn_local_init and in various places in
e1ab7874 448 sched-deps.c. */
449int sched_emulate_haifa_p;
450
451/* GLOBAL_LEVEL is used to discard information stored in basic block headers
452 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
453 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
454 scheduling window. */
455int global_level;
456
457/* Current fences. */
458flist_t fences;
459
460/* True when separable insns should be scheduled as RHSes. */
461static bool enable_schedule_as_rhs_p;
462
463/* Used in verify_target_availability to assert that target reg is reported
464 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
48e1416a 465 we haven't scheduled anything on the previous fence.
e1ab7874 466 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
48e1416a 467 have more conservative value than the one returned by the
e1ab7874 468 find_used_regs, thus we shouldn't assert that these values are equal. */
469static bool scheduled_something_on_previous_fence;
470
471/* All newly emitted insns will have their uids greater than this value. */
472static int first_emitted_uid;
473
474/* Set of basic blocks that are forced to start new ebbs. This is a subset
475 of all the ebb heads. */
6e6e5c14 476bitmap forced_ebb_heads;
e1ab7874 477
478/* Blocks that need to be rescheduled after pipelining. */
479bitmap blocks_to_reschedule = NULL;
480
481/* True when the first lv set should be ignored when updating liveness. */
482static bool ignore_first = false;
483
484/* Number of insns max_issue has initialized data structures for. */
485static int max_issue_size = 0;
486
487/* Whether we can issue more instructions. */
488static int can_issue_more;
489
490/* Maximum software lookahead window size, reduced when rescheduling after
491 pipelining. */
492static int max_ws;
493
494/* Number of insns scheduled in current region. */
495static int num_insns_scheduled;
496
497/* A vector of expressions is used to be able to sort them. */
16fb756f 498static vec<expr_t> vec_av_set;
e1ab7874 499
500/* A vector of vinsns is used to hold temporary lists of vinsns. */
f1f41a6c 501typedef vec<vinsn_t> vinsn_vec_t;
e1ab7874 502
503/* This vector has the exprs which may still present in av_sets, but actually
504 can't be moved up due to bookkeeping created during code motion to another
505 fence. See comment near the call to update_and_record_unavailable_insns
506 for the detailed explanations. */
9af5ce0c 507static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
e1ab7874 508
48e1416a 509/* This vector has vinsns which are scheduled with renaming on the first fence
e1ab7874 510 and then seen on the second. For expressions with such vinsns, target
511 availability information may be wrong. */
9af5ce0c 512static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
e1ab7874 513
514/* Vector to store temporary nops inserted in move_op to prevent removal
515 of empty bbs. */
16fb756f 516static vec<insn_t> vec_temp_moveop_nops;
e1ab7874 517
48e1416a 518/* These bitmaps record original instructions scheduled on the current
519 iteration and bookkeeping copies created by them. */
e1ab7874 520static bitmap current_originators = NULL;
521static bitmap current_copies = NULL;
522
523/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
524 visit them afterwards. */
525static bitmap code_motion_visited_blocks = NULL;
526
527/* Variables to accumulate different statistics. */
528
529/* The number of bookkeeping copies created. */
530static int stat_bookkeeping_copies;
531
532/* The number of insns that required bookkeeiping for their scheduling. */
533static int stat_insns_needed_bookkeeping;
534
535/* The number of insns that got renamed. */
536static int stat_renamed_scheduled;
537
538/* The number of substitutions made during scheduling. */
539static int stat_substitutions_total;
540\f
541
542/* Forward declarations of static functions. */
543static bool rtx_ok_for_substitution_p (rtx, rtx);
544static int sel_rank_for_schedule (const void *, const void *);
545static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
9845d120 546static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e1ab7874 547
548static rtx get_dest_from_orig_ops (av_set_t);
549static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
48e1416a 550static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e1ab7874 551 def_list_t *);
de353418 552static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
553static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
554 cmpd_local_params_p, void *);
e1ab7874 555static void sel_sched_region_1 (void);
556static void sel_sched_region_2 (int);
557static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
558
559static void debug_state (state_t);
560\f
561
562/* Functions that work with fences. */
563
564/* Advance one cycle on FENCE. */
565static void
566advance_one_cycle (fence_t fence)
567{
568 unsigned i;
569 int cycle;
2f3c9801 570 rtx_insn *insn;
48e1416a 571
e1ab7874 572 advance_state (FENCE_STATE (fence));
573 cycle = ++FENCE_CYCLE (fence);
574 FENCE_ISSUED_INSNS (fence) = 0;
575 FENCE_STARTS_CYCLE_P (fence) = 1;
576 can_issue_more = issue_rate;
abb9c563 577 FENCE_ISSUE_MORE (fence) = can_issue_more;
e1ab7874 578
f1f41a6c 579 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
e1ab7874 580 {
581 if (INSN_READY_CYCLE (insn) < cycle)
582 {
583 remove_from_deps (FENCE_DC (fence), insn);
f1f41a6c 584 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
e1ab7874 585 continue;
586 }
587 i++;
588 }
589 if (sched_verbose >= 2)
590 {
591 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
592 debug_state (FENCE_STATE (fence));
593 }
594}
595
596/* Returns true when SUCC in a fallthru bb of INSN, possibly
597 skipping empty basic blocks. */
598static bool
71ce7f59 599in_fallthru_bb_p (rtx_insn *insn, rtx succ)
e1ab7874 600{
601 basic_block bb = BLOCK_FOR_INSN (insn);
7f58c05e 602 edge e;
e1ab7874 603
604 if (bb == BLOCK_FOR_INSN (succ))
605 return true;
606
7f58c05e 607 e = find_fallthru_edge_from (bb);
608 if (e)
609 bb = e->dest;
e1ab7874 610 else
611 return false;
612
613 while (sel_bb_empty_p (bb))
614 bb = bb->next_bb;
615
616 return bb == BLOCK_FOR_INSN (succ);
617}
618
48e1416a 619/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e1ab7874 620 When a successor will continue a ebb, transfer all parameters of a fence
621 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
622 of scheduling helping to distinguish between the old and the new code. */
623static void
624extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
625 int orig_max_seqno)
626{
627 bool was_here_p = false;
2f3c9801 628 insn_t insn = NULL;
e1ab7874 629 insn_t succ;
630 succ_iterator si;
631 ilist_iterator ii;
632 fence_t fence = FLIST_FENCE (old_fences);
633 basic_block bb;
634
635 /* Get the only element of FENCE_BNDS (fence). */
636 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
637 {
638 gcc_assert (!was_here_p);
639 was_here_p = true;
640 }
641 gcc_assert (was_here_p && insn != NULL_RTX);
642
48e1416a 643 /* When in the "middle" of the block, just move this fence
e1ab7874 644 to the new list. */
645 bb = BLOCK_FOR_INSN (insn);
646 if (! sel_bb_end_p (insn)
48e1416a 647 || (single_succ_p (bb)
e1ab7874 648 && single_pred_p (single_succ (bb))))
649 {
650 insn_t succ;
651
48e1416a 652 succ = (sel_bb_end_p (insn)
e1ab7874 653 ? sel_bb_head (single_succ (bb))
654 : NEXT_INSN (insn));
655
48e1416a 656 if (INSN_SEQNO (succ) > 0
e1ab7874 657 && INSN_SEQNO (succ) <= orig_max_seqno
658 && INSN_SCHED_TIMES (succ) <= 0)
659 {
660 FENCE_INSN (fence) = succ;
661 move_fence_to_fences (old_fences, new_fences);
662
663 if (sched_verbose >= 1)
48e1416a 664 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e1ab7874 665 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
666 }
667 return;
668 }
669
670 /* Otherwise copy fence's structures to (possibly) multiple successors. */
671 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
672 {
673 int seqno = INSN_SEQNO (succ);
674
c9281ef8 675 if (seqno > 0 && seqno <= orig_max_seqno
e1ab7874 676 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
677 {
678 bool b = (in_same_ebb_p (insn, succ)
48e1416a 679 || in_fallthru_bb_p (insn, succ));
e1ab7874 680
681 if (sched_verbose >= 1)
48e1416a 682 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
683 INSN_UID (insn), INSN_UID (succ),
e1ab7874 684 BLOCK_NUM (succ), b ? "continue" : "reset");
685
686 if (b)
687 add_dirty_fence_to_fences (new_fences, succ, fence);
688 else
689 {
690 /* Mark block of the SUCC as head of the new ebb. */
691 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
692 add_clean_fence_to_fences (new_fences, succ, fence);
693 }
694 }
695 }
696}
697\f
698
699/* Functions to support substitution. */
700
48e1416a 701/* Returns whether INSN with dependence status DS is eligible for
702 substitution, i.e. it's a copy operation x := y, and RHS that is
e1ab7874 703 moved up through this insn should be substituted. */
704static bool
705can_substitute_through_p (insn_t insn, ds_t ds)
706{
707 /* We can substitute only true dependencies. */
708 if ((ds & DEP_OUTPUT)
709 || (ds & DEP_ANTI)
710 || ! INSN_RHS (insn)
711 || ! INSN_LHS (insn))
712 return false;
713
48e1416a 714 /* Now we just need to make sure the INSN_RHS consists of only one
e1ab7874 715 simple REG rtx. */
48e1416a 716 if (REG_P (INSN_LHS (insn))
e1ab7874 717 && REG_P (INSN_RHS (insn)))
48e1416a 718 return true;
e1ab7874 719 return false;
720}
721
9d75589a 722/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
e1ab7874 723 source (if INSN is eligible for substitution). Returns TRUE if
724 substitution was actually performed, FALSE otherwise. Substitution might
725 be not performed because it's either EXPR' vinsn doesn't contain INSN's
48e1416a 726 destination or the resulting insn is invalid for the target machine.
e1ab7874 727 When UNDO is true, perform unsubstitution instead (the difference is in
728 the part of rtx on which validate_replace_rtx is called). */
729static bool
730substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
731{
732 rtx *where;
733 bool new_insn_valid;
734 vinsn_t *vi = &EXPR_VINSN (expr);
735 bool has_rhs = VINSN_RHS (*vi) != NULL;
736 rtx old, new_rtx;
737
738 /* Do not try to replace in SET_DEST. Although we'll choose new
48e1416a 739 register for the RHS, we don't want to change RHS' original reg.
e1ab7874 740 If the insn is not SET, we may still be able to substitute something
48e1416a 741 in it, and if we're here (don't have deps), it doesn't write INSN's
e1ab7874 742 dest. */
743 where = (has_rhs
744 ? &VINSN_RHS (*vi)
745 : &PATTERN (VINSN_INSN_RTX (*vi)));
746 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
747
748 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
749 if (rtx_ok_for_substitution_p (old, *where))
750 {
9c4c93d0 751 rtx_insn *new_insn;
e1ab7874 752 rtx *where_replace;
753
754 /* We should copy these rtxes before substitution. */
755 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
756 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
757
48e1416a 758 /* Where we'll replace.
e1ab7874 759 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
760 used instead of SET_SRC. */
761 where_replace = (has_rhs
762 ? &SET_SRC (PATTERN (new_insn))
763 : &PATTERN (new_insn));
764
48e1416a 765 new_insn_valid
766 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e1ab7874 767 new_insn);
768
769 /* ??? Actually, constrain_operands result depends upon choice of
770 destination register. E.g. if we allow single register to be an rhs,
48e1416a 771 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e1ab7874 772 in invalid insn dx=dx, so we'll loose this rhs here.
773 Just can't come up with significant testcase for this, so just
774 leaving it for now. */
775 if (new_insn_valid)
776 {
48e1416a 777 change_vinsn_in_expr (expr,
e1ab7874 778 create_vinsn_from_insn_rtx (new_insn, false));
779
48e1416a 780 /* Do not allow clobbering the address register of speculative
e1ab7874 781 insns. */
782 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
1f53e226 783 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
784 expr_dest_reg (expr)))
e1ab7874 785 EXPR_TARGET_AVAILABLE (expr) = false;
786
787 return true;
788 }
789 else
790 return false;
791 }
792 else
793 return false;
794}
795
48e1416a 796/* Return the number of places WHAT appears within WHERE.
e1ab7874 797 Bail out when we found a reference occupying several hard registers. */
48e1416a 798static int
6121af96 799count_occurrences_equiv (const_rtx what, const_rtx where)
e1ab7874 800{
6121af96 801 int count = 0;
802 subrtx_iterator::array_type array;
803 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
804 {
805 const_rtx x = *iter;
806 if (REG_P (x) && REGNO (x) == REGNO (what))
807 {
808 /* Bail out if mode is different or more than one register is
809 used. */
0933f1d9 810 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
6121af96 811 return 0;
812 count += 1;
813 }
814 else if (GET_CODE (x) == SUBREG
815 && (!REG_P (SUBREG_REG (x))
816 || REGNO (SUBREG_REG (x)) == REGNO (what)))
817 /* ??? Do not support substituting regs inside subregs. In that case,
818 simplify_subreg will be called by validate_replace_rtx, and
819 unsubstitution will fail later. */
820 return 0;
821 }
822 return count;
e1ab7874 823}
824
825/* Returns TRUE if WHAT is found in WHERE rtx tree. */
826static bool
827rtx_ok_for_substitution_p (rtx what, rtx where)
828{
829 return (count_occurrences_equiv (what, where) > 0);
830}
831\f
832
833/* Functions to support register renaming. */
834
835/* Substitute VI's set source with REGNO. Returns newly created pattern
836 that has REGNO as its source. */
9c4c93d0 837static rtx_insn *
e1ab7874 838create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
839{
840 rtx lhs_rtx;
841 rtx pattern;
9c4c93d0 842 rtx_insn *insn_rtx;
e1ab7874 843
844 lhs_rtx = copy_rtx (VINSN_LHS (vi));
845
d1f9b275 846 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e1ab7874 847 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
848
849 return insn_rtx;
850}
851
48e1416a 852/* Returns whether INSN's src can be replaced with register number
e1ab7874 853 NEW_SRC_REG. E.g. the following insn is valid for i386:
854
48e1416a 855 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e1ab7874 856 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
857 (reg:SI 0 ax [orig:770 c1 ] [770]))
858 (const_int 288 [0x120])) [0 str S1 A8])
859 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
860 (nil))
861
862 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
48e1416a 863 because of operand constraints:
e1ab7874 864
865 (define_insn "*movqi_1"
866 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
867 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
868 )]
48e1416a 869
870 So do constrain_operands here, before choosing NEW_SRC_REG as best
e1ab7874 871 reg for rhs. */
872
873static bool
874replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
875{
876 vinsn_t vi = INSN_VINSN (insn);
3754d046 877 machine_mode mode;
e1ab7874 878 rtx dst_loc;
879 bool res;
880
881 gcc_assert (VINSN_SEPARABLE_P (vi));
882
883 get_dest_and_mode (insn, &dst_loc, &mode);
884 gcc_assert (mode == GET_MODE (new_src_reg));
885
886 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
887 return true;
888
889 /* See whether SET_SRC can be replaced with this register. */
890 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
891 res = verify_changes (0);
892 cancel_changes (0);
893
894 return res;
895}
896
897/* Returns whether INSN still be valid after replacing it's DEST with
898 register NEW_REG. */
899static bool
900replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
901{
902 vinsn_t vi = INSN_VINSN (insn);
903 bool res;
904
905 /* We should deal here only with separable insns. */
906 gcc_assert (VINSN_SEPARABLE_P (vi));
907 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
908
909 /* See whether SET_DEST can be replaced with this register. */
910 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
913
914 return res;
915}
916
917/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
9c4c93d0 918static rtx_insn *
e1ab7874 919create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
920{
921 rtx rhs_rtx;
922 rtx pattern;
9c4c93d0 923 rtx_insn *insn_rtx;
e1ab7874 924
925 rhs_rtx = copy_rtx (VINSN_RHS (vi));
926
d1f9b275 927 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e1ab7874 928 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
929
930 return insn_rtx;
931}
932
48e1416a 933/* Substitute lhs in the given expression EXPR for the register with number
e1ab7874 934 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
935static void
936replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
937{
2f3c9801 938 rtx_insn *insn_rtx;
e1ab7874 939 vinsn_t vinsn;
940
941 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
942 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
943
944 change_vinsn_in_expr (expr, vinsn);
945 EXPR_WAS_RENAMED (expr) = 1;
946 EXPR_TARGET_AVAILABLE (expr) = 1;
947}
948
949/* Returns whether VI writes either one of the USED_REGS registers or,
950 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
951static bool
48e1416a 952vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e1ab7874 953 HARD_REG_SET unavailable_hard_regs)
954{
955 unsigned regno;
956 reg_set_iterator rsi;
957
958 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
959 {
960 if (REGNO_REG_SET_P (used_regs, regno))
961 return true;
962 if (HARD_REGISTER_NUM_P (regno)
963 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
964 return true;
965 }
966
967 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
968 {
969 if (REGNO_REG_SET_P (used_regs, regno))
970 return true;
971 if (HARD_REGISTER_NUM_P (regno)
972 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
973 return true;
974 }
975
976 return false;
977}
978
48e1416a 979/* Returns register class of the output register in INSN.
e1ab7874 980 Returns NO_REGS for call insns because some targets have constraints on
981 destination register of a call insn.
48e1416a 982
e1ab7874 983 Code adopted from regrename.c::build_def_use. */
984static enum reg_class
ed3e6e5d 985get_reg_class (rtx_insn *insn)
e1ab7874 986{
757fefec 987 int i, n_ops;
e1ab7874 988
835b8178 989 extract_constrain_insn (insn);
8eaaac4d 990 preprocess_constraints (insn);
e1ab7874 991 n_ops = recog_data.n_operands;
992
89a7a6a5 993 const operand_alternative *op_alt = which_op_alt ();
e1ab7874 994 if (asm_noperands (PATTERN (insn)) > 0)
995 {
996 for (i = 0; i < n_ops; i++)
997 if (recog_data.operand_type[i] == OP_OUT)
998 {
999 rtx *loc = recog_data.operand_loc[i];
1000 rtx op = *loc;
89a7a6a5 1001 enum reg_class cl = alternative_class (op_alt, i);
e1ab7874 1002
1003 if (REG_P (op)
1004 && REGNO (op) == ORIGINAL_REGNO (op))
1005 continue;
1006
1007 return cl;
1008 }
1009 }
1010 else if (!CALL_P (insn))
1011 {
1012 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1013 {
1014 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
89a7a6a5 1015 enum reg_class cl = alternative_class (op_alt, opn);
48e1416a 1016
e1ab7874 1017 if (recog_data.operand_type[opn] == OP_OUT ||
1018 recog_data.operand_type[opn] == OP_INOUT)
1019 return cl;
1020 }
1021 }
1022
1023/* Insns like
1024 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1025 may result in returning NO_REGS, cause flags is written implicitly through
1026 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1027 return NO_REGS;
1028}
1029
e1ab7874 1030/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1031static void
1032init_hard_regno_rename (int regno)
1033{
1034 int cur_reg;
1035
1036 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1037
1038 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1039 {
1040 /* We are not interested in renaming in other regs. */
1041 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1042 continue;
1043
1044 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1045 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1046 }
1047}
e1ab7874 1048
48e1416a 1049/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e1ab7874 1050 data first. */
1051static inline bool
34ff3f78 1052sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e1ab7874 1053{
e1ab7874 1054 /* Check whether this is all calculated. */
1055 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1056 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057
1058 init_hard_regno_rename (from);
1059
1060 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
e1ab7874 1061}
1062
1063/* Calculate set of registers that are capable of holding MODE. */
1064static void
3754d046 1065init_regs_for_mode (machine_mode mode)
e1ab7874 1066{
1067 int cur_reg;
48e1416a 1068
e1ab7874 1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1070 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1071
1072 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1073 {
ee331bc7 1074 int nregs;
e1ab7874 1075 int i;
48e1416a 1076
ee331bc7 1077 /* See whether it accepts all modes that occur in
1078 original insns. */
b395382f 1079 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
ee331bc7 1080 continue;
1081
92d2aec3 1082 nregs = hard_regno_nregs (cur_reg, mode);
ee331bc7 1083
e1ab7874 1084 for (i = nregs - 1; i >= 0; --i)
1085 if (fixed_regs[cur_reg + i]
1086 || global_regs[cur_reg + i]
48e1416a 1087 /* Can't use regs which aren't saved by
e1ab7874 1088 the prologue. */
1089 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
0cfef6c5 1090 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1091 it affects aliasing globally and invalidates all AV sets. */
1092 || get_reg_base_value (cur_reg + i)
e1ab7874 1093#ifdef LEAF_REGISTERS
1094 /* We can't use a non-leaf register if we're in a
1095 leaf function. */
d5bf7b64 1096 || (crtl->is_leaf
e1ab7874 1097 && !LEAF_REGISTERS[cur_reg + i])
1098#endif
1099 )
1100 break;
48e1416a 1101
1102 if (i >= 0)
e1ab7874 1103 continue;
48e1416a 1104
5c62f29a 1105 if (targetm.hard_regno_call_part_clobbered (NULL, cur_reg, mode))
48e1416a 1106 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e1ab7874 1107 cur_reg);
48e1416a 1108
1109 /* If the CUR_REG passed all the checks above,
e1ab7874 1110 then it's ok. */
1111 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1112 }
1113
1114 sel_hrd.regs_for_mode_ok[mode] = true;
1115}
1116
1117/* Init all register sets gathered in HRD. */
1118static void
1119init_hard_regs_data (void)
1120{
1121 int cur_reg = 0;
8458f4ca 1122 int cur_mode = 0;
e1ab7874 1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1127 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
48e1416a 1128
1129 /* Initialize registers that are valid based on mode when this is
e1ab7874 1130 really needed. */
1131 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1132 sel_hrd.regs_for_mode_ok[cur_mode] = false;
48e1416a 1133
e1ab7874 1134 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1137
1138#ifdef STACK_REGS
1139 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1140
1141 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1142 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1143#endif
48e1416a 1144}
e1ab7874 1145
48e1416a 1146/* Mark hardware regs in REG_RENAME_P that are not suitable
e1ab7874 1147 for renaming rhs in INSN due to hardware restrictions (register class,
1148 modes compatibility etc). This doesn't affect original insn's dest reg,
1149 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1150 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1151 Registers that are in used_regs are always marked in
1152 unavailable_hard_regs as well. */
1153
1154static void
1155mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1156 regset used_regs ATTRIBUTE_UNUSED)
1157{
3754d046 1158 machine_mode mode;
e1ab7874 1159 enum reg_class cl = NO_REGS;
1160 rtx orig_dest;
1161 unsigned cur_reg, regno;
1162 hard_reg_set_iterator hrsi;
1163
1164 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1165 gcc_assert (reg_rename_p);
1166
1167 orig_dest = SET_DEST (PATTERN (def->orig_insn));
48e1416a 1168
e1ab7874 1169 /* We have decided not to rename 'mem = something;' insns, as 'something'
1170 is usually a register. */
1171 if (!REG_P (orig_dest))
1172 return;
1173
1174 regno = REGNO (orig_dest);
1175
1176 /* If before reload, don't try to work with pseudos. */
1177 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1178 return;
1179
ba1fc759 1180 if (reload_completed)
1181 cl = get_reg_class (def->orig_insn);
e1ab7874 1182
ba1fc759 1183 /* Stop if the original register is one of the fixed_regs, global_regs or
1184 frame pointer, or we could not discover its class. */
48e1416a 1185 if (fixed_regs[regno]
e1ab7874 1186 || global_regs[regno]
3c05b49d 1187 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1188 && regno == HARD_FRAME_POINTER_REGNUM)
74163acd 1189 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
3c05b49d 1190 && regno == FRAME_POINTER_REGNUM)
ba1fc759 1191 || (reload_completed && cl == NO_REGS))
e1ab7874 1192 {
1193 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1194
1195 /* Give a chance for original register, if it isn't in used_regs. */
1196 if (!def->crosses_call)
1197 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1198
1199 return;
1200 }
1201
1202 /* If something allocated on stack in this function, mark frame pointer
48e1416a 1203 register unavailable, considering also modes.
e1ab7874 1204 FIXME: it is enough to do this once per all original defs. */
1205 if (frame_pointer_needed)
1206 {
d82cf2b2 1207 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1208 Pmode, FRAME_POINTER_REGNUM);
e1ab7874 1209
d82cf2b2 1210 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1211 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
f4ce3ea7 1212 Pmode, HARD_FRAME_POINTER_REGNUM);
e1ab7874 1213 }
1214
1215#ifdef STACK_REGS
1216 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1217 is equivalent to as if all stack regs were in this set.
1218 I.e. no stack register can be renamed, and even if it's an original
48e1416a 1219 register here we make sure it won't be lifted over it's previous def
1220 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e1ab7874 1221 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1222 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
48e1416a 1223 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1224 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e1ab7874 1225 sel_hrd.stack_regs);
48e1416a 1226#endif
e1ab7874 1227
48e1416a 1228 /* If there's a call on this path, make regs from call_used_reg_set
e1ab7874 1229 unavailable. */
1230 if (def->crosses_call)
48e1416a 1231 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e1ab7874 1232 call_used_reg_set);
1233
48e1416a 1234 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e1ab7874 1235 but not register classes. */
1236 if (!reload_completed)
1237 return;
1238
48e1416a 1239 /* Leave regs as 'available' only from the current
e1ab7874 1240 register class. */
e1ab7874 1241 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1242 reg_class_contents[cl]);
1243
ba1fc759 1244 mode = GET_MODE (orig_dest);
1245
e1ab7874 1246 /* Leave only registers available for this mode. */
1247 if (!sel_hrd.regs_for_mode_ok[mode])
1248 init_regs_for_mode (mode);
48e1416a 1249 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e1ab7874 1250 sel_hrd.regs_for_mode[mode]);
1251
1252 /* Exclude registers that are partially call clobbered. */
1253 if (def->crosses_call
5c62f29a 1254 && !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
48e1416a 1255 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e1ab7874 1256 sel_hrd.regs_for_call_clobbered[mode]);
1257
1258 /* Leave only those that are ok to rename. */
1259 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1260 0, cur_reg, hrsi)
1261 {
1262 int nregs;
1263 int i;
1264
92d2aec3 1265 nregs = hard_regno_nregs (cur_reg, mode);
e1ab7874 1266 gcc_assert (nregs > 0);
1267
1268 for (i = nregs - 1; i >= 0; --i)
1269 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1270 break;
1271
48e1416a 1272 if (i >= 0)
1273 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e1ab7874 1274 cur_reg);
1275 }
1276
48e1416a 1277 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e1ab7874 1278 reg_rename_p->unavailable_hard_regs);
1279
1280 /* Regno is always ok from the renaming part of view, but it really
1281 could be in *unavailable_hard_regs already, so set it here instead
1282 of there. */
1283 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1284}
1285
1286/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1287 best register more recently than REG2. */
1288static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1289
1290/* Indicates the number of times renaming happened before the current one. */
1291static int reg_rename_this_tick;
1292
48e1416a 1293/* Choose the register among free, that is suitable for storing
e1ab7874 1294 the rhs value.
1295
1296 ORIGINAL_INSNS is the list of insns where the operation (rhs)
48e1416a 1297 originally appears. There could be multiple original operations
1298 for single rhs since we moving it up and merging along different
e1ab7874 1299 paths.
1300
1301 Some code is adapted from regrename.c (regrename_optimize).
1302 If original register is available, function returns it.
1303 Otherwise it performs the checks, so the new register should
1304 comply with the following:
48e1416a 1305 - it should not violate any live ranges (such registers are in
e1ab7874 1306 REG_RENAME_P->available_for_renaming set);
1307 - it should not be in the HARD_REGS_USED regset;
1308 - it should be in the class compatible with original uses;
1309 - it should not be clobbered through reference with different mode;
48e1416a 1310 - if we're in the leaf function, then the new register should
e1ab7874 1311 not be in the LEAF_REGISTERS;
1312 - etc.
1313
1314 If several registers meet the conditions, the register with smallest
1315 tick is returned to achieve more even register allocation.
1316
1317 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1318
1319 If no register satisfies the above conditions, NULL_RTX is returned. */
1320static rtx
48e1416a 1321choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1322 struct reg_rename *reg_rename_p,
e1ab7874 1323 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1324{
1325 int best_new_reg;
1326 unsigned cur_reg;
3754d046 1327 machine_mode mode = VOIDmode;
e1ab7874 1328 unsigned regno, i, n;
1329 hard_reg_set_iterator hrsi;
1330 def_list_iterator di;
1331 def_t def;
1332
1333 /* If original register is available, return it. */
1334 *is_orig_reg_p_ptr = true;
1335
1336 FOR_EACH_DEF (def, di, original_insns)
1337 {
1338 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1339
1340 gcc_assert (REG_P (orig_dest));
1341
48e1416a 1342 /* Check that all original operations have the same mode.
e1ab7874 1343 This is done for the next loop; if we'd return from this
48e1416a 1344 loop, we'd check only part of them, but in this case
e1ab7874 1345 it doesn't matter. */
1346 if (mode == VOIDmode)
1347 mode = GET_MODE (orig_dest);
1348 gcc_assert (mode == GET_MODE (orig_dest));
1349
1350 regno = REGNO (orig_dest);
10fa8f76 1351 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
e1ab7874 1352 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1353 break;
1354
1355 /* All hard registers are available. */
1356 if (i == n)
1357 {
1358 gcc_assert (mode != VOIDmode);
48e1416a 1359
e1ab7874 1360 /* Hard registers should not be shared. */
1361 return gen_rtx_REG (mode, regno);
1362 }
1363 }
48e1416a 1364
e1ab7874 1365 *is_orig_reg_p_ptr = false;
1366 best_new_reg = -1;
48e1416a 1367
1368 /* Among all available regs choose the register that was
e1ab7874 1369 allocated earliest. */
1370 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1371 0, cur_reg, hrsi)
1372 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1373 {
936f065e 1374 /* Check that all hard regs for mode are available. */
92d2aec3 1375 for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
936f065e 1376 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1377 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1378 cur_reg + i))
1379 break;
1380
1381 if (i < n)
1382 continue;
1383
e1ab7874 1384 /* All hard registers are available. */
1385 if (best_new_reg < 0
1386 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1387 {
1388 best_new_reg = cur_reg;
48e1416a 1389
e1ab7874 1390 /* Return immediately when we know there's no better reg. */
1391 if (! reg_rename_tick[best_new_reg])
1392 break;
1393 }
1394 }
1395
1396 if (best_new_reg >= 0)
1397 {
1398 /* Use the check from the above loop. */
1399 gcc_assert (mode != VOIDmode);
1400 return gen_rtx_REG (mode, best_new_reg);
1401 }
1402
1403 return NULL_RTX;
1404}
1405
1406/* A wrapper around choose_best_reg_1 () to verify that we make correct
1407 assumptions about available registers in the function. */
1408static rtx
48e1416a 1409choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e1ab7874 1410 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1411{
48e1416a 1412 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e1ab7874 1413 original_insns, is_orig_reg_p_ptr);
1414
936f065e 1415 /* FIXME loop over hard_regno_nregs here. */
e1ab7874 1416 gcc_assert (best_reg == NULL_RTX
1417 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1418
1419 return best_reg;
1420}
1421
48e1416a 1422/* Choose the pseudo register for storing rhs value. As this is supposed
e1ab7874 1423 to work before reload, we return either the original register or make
48e1416a 1424 the new one. The parameters are the same that in choose_nest_reg_1
1425 functions, except that USED_REGS may contain pseudos.
e1ab7874 1426 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1427
48e1416a 1428 TODO: take into account register pressure while doing this. Up to this
1429 moment, this function would never return NULL for pseudos, but we should
e1ab7874 1430 not rely on this. */
1431static rtx
48e1416a 1432choose_best_pseudo_reg (regset used_regs,
1433 struct reg_rename *reg_rename_p,
e1ab7874 1434 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1435{
1436 def_list_iterator i;
1437 def_t def;
3754d046 1438 machine_mode mode = VOIDmode;
e1ab7874 1439 bool bad_hard_regs = false;
48e1416a 1440
e1ab7874 1441 /* We should not use this after reload. */
1442 gcc_assert (!reload_completed);
1443
1444 /* If original register is available, return it. */
1445 *is_orig_reg_p_ptr = true;
1446
1447 FOR_EACH_DEF (def, i, original_insns)
1448 {
1449 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1450 int orig_regno;
48e1416a 1451
e1ab7874 1452 gcc_assert (REG_P (dest));
48e1416a 1453
e1ab7874 1454 /* Check that all original operations have the same mode. */
1455 if (mode == VOIDmode)
1456 mode = GET_MODE (dest);
1457 else
1458 gcc_assert (mode == GET_MODE (dest));
1459 orig_regno = REGNO (dest);
48e1416a 1460
7d7218d3 1461 /* Check that nothing in used_regs intersects with orig_regno. When
1462 we have a hard reg here, still loop over hard_regno_nregs. */
1463 if (HARD_REGISTER_NUM_P (orig_regno))
1464 {
1465 int j, n;
10fa8f76 1466 for (j = 0, n = REG_NREGS (dest); j < n; j++)
7d7218d3 1467 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1468 break;
1469 if (j < n)
1470 continue;
1471 }
1472 else
1473 {
1474 if (REGNO_REG_SET_P (used_regs, orig_regno))
1475 continue;
1476 }
1477 if (HARD_REGISTER_NUM_P (orig_regno))
1478 {
1479 gcc_assert (df_regs_ever_live_p (orig_regno));
1480
1481 /* For hard registers, we have to check hardware imposed
1482 limitations (frame/stack registers, calls crossed). */
1483 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1484 orig_regno))
1485 {
1486 /* Don't let register cross a call if it doesn't already
1487 cross one. This condition is written in accordance with
1488 that in sched-deps.c sched_analyze_reg(). */
1489 if (!reg_rename_p->crosses_call
1490 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1491 return gen_rtx_REG (mode, orig_regno);
1492 }
1493
1494 bad_hard_regs = true;
1495 }
1496 else
1497 return dest;
1498 }
e1ab7874 1499
1500 *is_orig_reg_p_ptr = false;
48e1416a 1501
e1ab7874 1502 /* We had some original hard registers that couldn't be used.
1503 Those were likely special. Don't try to create a pseudo. */
1504 if (bad_hard_regs)
1505 return NULL_RTX;
48e1416a 1506
1507 /* We haven't found a register from original operations. Get a new one.
e1ab7874 1508 FIXME: control register pressure somehow. */
1509 {
1510 rtx new_reg = gen_reg_rtx (mode);
1511
1512 gcc_assert (mode != VOIDmode);
1513
1514 max_regno = max_reg_num ();
1515 maybe_extend_reg_info_p ();
1516 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1517
1518 return new_reg;
1519 }
1520}
1521
1522/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1523 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1524static void
48e1416a 1525verify_target_availability (expr_t expr, regset used_regs,
e1ab7874 1526 struct reg_rename *reg_rename_p)
1527{
1528 unsigned n, i, regno;
3754d046 1529 machine_mode mode;
e1ab7874 1530 bool target_available, live_available, hard_available;
1531
1532 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1533 return;
48e1416a 1534
e1ab7874 1535 regno = expr_dest_regno (expr);
1536 mode = GET_MODE (EXPR_LHS (expr));
1537 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
92d2aec3 1538 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
e1ab7874 1539
1540 live_available = hard_available = true;
1541 for (i = 0; i < n; i++)
1542 {
1543 if (bitmap_bit_p (used_regs, regno + i))
1544 live_available = false;
1545 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1546 hard_available = false;
1547 }
1548
48e1416a 1549 /* When target is not available, it may be due to hard register
e1ab7874 1550 restrictions, e.g. crosses calls, so we check hard_available too. */
1551 if (target_available)
1552 gcc_assert (live_available);
1553 else
48e1416a 1554 /* Check only if we haven't scheduled something on the previous fence,
e1ab7874 1555 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1556 and having more than one fence, we may end having targ_un in a block
48e1416a 1557 in which successors target register is actually available.
e1ab7874 1558
1559 The last condition handles the case when a dependence from a call insn
48e1416a 1560 was created in sched-deps.c for insns with destination registers that
1561 never crossed a call before, but do cross one after our code motion.
e1ab7874 1562
48e1416a 1563 FIXME: in the latter case, we just uselessly called find_used_regs,
1564 because we can't move this expression with any other register
e1ab7874 1565 as well. */
48e1416a 1566 gcc_assert (scheduled_something_on_previous_fence || !live_available
1567 || !hard_available
1568 || (!reload_completed && reg_rename_p->crosses_call
e1ab7874 1569 && REG_N_CALLS_CROSSED (regno) == 0));
1570}
1571
48e1416a 1572/* Collect unavailable registers due to liveness for EXPR from BNDS
1573 into USED_REGS. Save additional information about available
e1ab7874 1574 registers and unavailable due to hardware restriction registers
1575 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1576 list. */
1577static void
1578collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1579 struct reg_rename *reg_rename_p,
1580 def_list_t *original_insns)
1581{
1582 for (; bnds; bnds = BLIST_NEXT (bnds))
1583 {
1584 bool res;
1585 av_set_t orig_ops = NULL;
1586 bnd_t bnd = BLIST_BND (bnds);
1587
1588 /* If the chosen best expr doesn't belong to current boundary,
1589 skip it. */
1590 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1591 continue;
1592
1593 /* Put in ORIG_OPS all exprs from this boundary that became
1594 RES on top. */
1595 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1596
1597 /* Compute used regs and OR it into the USED_REGS. */
1598 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1599 reg_rename_p, original_insns);
1600
1601 /* FIXME: the assert is true until we'd have several boundaries. */
1602 gcc_assert (res);
1603 av_set_clear (&orig_ops);
1604 }
1605}
1606
1607/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1608 If BEST_REG is valid, replace LHS of EXPR with it. */
1609static bool
1610try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1611{
e1ab7874 1612 /* Try whether we'll be able to generate the insn
1613 'dest := best_reg' at the place of the original operation. */
1614 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1615 {
1616 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1617
1618 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1619
28abb7ee 1620 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1621 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1622 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e1ab7874 1623 return false;
1624 }
1625
1626 /* Make sure that EXPR has the right destination
1627 register. */
28abb7ee 1628 if (expr_dest_regno (expr) != REGNO (best_reg))
1629 replace_dest_with_reg_in_expr (expr, best_reg);
1630 else
1631 EXPR_TARGET_AVAILABLE (expr) = 1;
1632
e1ab7874 1633 return true;
1634}
1635
48e1416a 1636/* Select and assign best register to EXPR searching from BNDS.
1637 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e1ab7874 1638 Return FALSE if no register can be chosen, which could happen when:
1639 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1640 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1641 that are used on the moving path. */
1642static bool
1643find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1644{
1645 static struct reg_rename reg_rename_data;
1646
1647 regset used_regs;
1648 def_list_t original_insns = NULL;
1649 bool reg_ok;
1650
1651 *is_orig_reg_p = false;
1652
1653 /* Don't bother to do anything if this insn doesn't set any registers. */
1654 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1655 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1656 return true;
1657
1658 used_regs = get_clear_regset_from_pool ();
1659 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1660
1661 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1662 &original_insns);
1663
e1ab7874 1664 /* If after reload, make sure we're working with hard regs here. */
382ecba7 1665 if (flag_checking && reload_completed)
e1ab7874 1666 {
1667 reg_set_iterator rsi;
1668 unsigned i;
48e1416a 1669
e1ab7874 1670 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1671 gcc_unreachable ();
1672 }
e1ab7874 1673
1674 if (EXPR_SEPARABLE_P (expr))
1675 {
1676 rtx best_reg = NULL_RTX;
1677 /* Check that we have computed availability of a target register
1678 correctly. */
1679 verify_target_availability (expr, used_regs, &reg_rename_data);
1680
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed)
1683 {
1684 HARD_REG_SET hard_regs_used;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1686
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used,
1690 reg_rename_data.unavailable_hard_regs);
1691
1692 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1693 original_insns, is_orig_reg_p);
1694 }
1695 else
1696 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1697 original_insns, is_orig_reg_p);
1698
1699 if (!best_reg)
1700 reg_ok = false;
1701 else if (*is_orig_reg_p)
1702 {
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1705 ORIGINAL_INSNS. */
1706 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1707 }
1708 else
1709 {
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1712 reg_ok = false;
1713 else
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1715 }
1716 }
1717 else
1718 {
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1722 reg_rename_data.unavailable_hard_regs))
1723 {
1724 reg_ok = false;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1726 }
1727 else
1728 {
1729 reg_ok = true;
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1731 }
1732 }
1733
1734 ilist_clear (&original_insns);
1735 return_regset_to_pool (used_regs);
1736
1737 return reg_ok;
1738}
1739\f
1740
1741/* Return true if dependence described by DS can be overcomed. */
1742static bool
1743can_speculate_dep_p (ds_t ds)
1744{
1745 if (spec_info == NULL)
1746 return false;
1747
1748 /* Leave only speculative data. */
1749 ds &= SPECULATIVE;
1750
1751 if (ds == 0)
1752 return false;
1753
1754 {
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask = spec_info->mask;
1758
1759 if ((ds & spec_mask) != ds)
1760 return false;
1761 }
1762
1763 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1764 return false;
1765
1766 return true;
1767}
1768
1769/* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1773static insn_t
1774create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1775{
1776 rtx check_pattern;
9c4c93d0 1777 rtx_insn *insn_rtx;
e1ab7874 1778 insn_t insn;
1779 basic_block recovery_block;
18282db0 1780 rtx_insn *label;
e1ab7874 1781
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
cf7898a6 1784 if (targetm.sched.needs_block_p (check_ds)
e1ab7874 1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1786 {
1787 recovery_block = sel_create_recovery_block (orig_insn);
1788 label = BB_HEAD (recovery_block);
1789 }
1790 else
1791 {
1792 recovery_block = NULL;
18282db0 1793 label = NULL;
e1ab7874 1794 }
1795
1796 /* Get pattern of the check. */
1797 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1798 check_ds);
1799
1800 gcc_assert (check_pattern != NULL);
1801
1802 /* Emit check. */
1803 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1804
1805 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1806 INSN_SEQNO (orig_insn), orig_insn);
1807
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1811
1812 /* Decrease priority of check by difference of load/check instruction
1813 latencies. */
1814 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1815 - sel_vinsn_cost (INSN_VINSN (insn)));
1816
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block != NULL)
1820 {
1821 rtx twin_rtx;
e1ab7874 1822
1823 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1824 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
57ab8ec3 1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1826 INSN_EXPR (orig_insn),
1827 INSN_SEQNO (insn),
1828 bb_note (recovery_block));
e1ab7874 1829 }
1830
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1834 check won't fail.
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds = ds_get_max_dep_weak (check_ds);
1839 speculate_expr (c_expr, check_ds);
48e1416a 1840
e1ab7874 1841 return insn;
1842}
1843
1844/* True when INSN is a "regN = regN" copy. */
1845static bool
71ce7f59 1846identical_copy_p (rtx_insn *insn)
e1ab7874 1847{
1848 rtx lhs, rhs, pat;
1849
1850 pat = PATTERN (insn);
1851
1852 if (GET_CODE (pat) != SET)
1853 return false;
1854
1855 lhs = SET_DEST (pat);
1856 if (!REG_P (lhs))
1857 return false;
1858
1859 rhs = SET_SRC (pat);
1860 if (!REG_P (rhs))
1861 return false;
1862
1863 return REGNO (lhs) == REGNO (rhs);
1864}
1865
48e1416a 1866/* Undo all transformations on *AV_PTR that were done when
e1ab7874 1867 moving through INSN. */
1868static void
2f3c9801 1869undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
e1ab7874 1870{
1871 av_set_iterator av_iter;
1872 expr_t expr;
1873 av_set_t new_set = NULL;
1874
48e1416a 1875 /* First, kill any EXPR that uses registers set by an insn. This is
e1ab7874 1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1878 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
48e1416a 1879 && bitmap_intersect_p (INSN_REG_SETS (insn),
e1ab7874 1880 VINSN_REG_USES (EXPR_VINSN (expr)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
48e1416a 1883 gcc.c-torture/execute/961125-1.c. */
e1ab7874 1884 && !identical_copy_p (insn))
1885 {
1886 if (sched_verbose >= 6)
48e1416a 1887 sel_print ("Expr %d removed due to use/set conflict\n",
e1ab7874 1888 INSN_UID (EXPR_INSN_RTX (expr)));
1889 av_set_iter_remove (&av_iter);
1890 }
1891
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1894 {
1895 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1896 insn, EXPR_VINSN (expr), true);
1897
1898 if (index >= 0)
1899 {
1900 expr_history_def *phist;
1901
f1f41a6c 1902 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
e1ab7874 1903
48e1416a 1904 switch (phist->type)
e1ab7874 1905 {
1906 case TRANS_SPECULATION:
1907 {
1908 ds_t old_ds, new_ds;
48e1416a 1909
e1ab7874 1910 /* Compute the difference between old and new speculative
48e1416a 1911 statuses: that's what we need to check.
e1ab7874 1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
48e1416a 1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
e1ab7874 1917 record this in the history vector. */
1918 old_ds = phist->spec_ds;
1919 new_ds = EXPR_SPEC_DONE_DS (expr);
1920
1921 old_ds &= SPECULATIVE;
1922 new_ds &= SPECULATIVE;
1923 new_ds &= ~old_ds;
48e1416a 1924
e1ab7874 1925 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1926 break;
1927 }
1928 case TRANS_SUBSTITUTION:
1929 {
1930 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1931 vinsn_t new_vi;
1932 bool add = true;
48e1416a 1933
e1ab7874 1934 new_vi = phist->old_expr_vinsn;
48e1416a 1935
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e1ab7874 1937 == EXPR_SEPARABLE_P (expr));
1938 copy_expr (tmp_expr, expr);
1939
48e1416a 1940 if (vinsn_equal_p (phist->new_expr_vinsn,
e1ab7874 1941 EXPR_VINSN (tmp_expr)))
1942 change_vinsn_in_expr (tmp_expr, new_vi);
1943 else
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add = substitute_reg_in_expr (tmp_expr, insn, true);
1948 if (add)
1949 av_set_add (&new_set, tmp_expr);
1950 clear_expr (tmp_expr);
1951 break;
1952 }
1953 default:
1954 gcc_unreachable ();
1955 }
1956 }
48e1416a 1957
e1ab7874 1958 }
1959
1960 av_set_union_and_clear (av_ptr, &new_set, NULL);
1961}
1962\f
1963
1964/* Moveup_* helpers for code motion and computing av sets. */
1965
1966/* Propagates EXPR inside an insn group through THROUGH_INSN.
48e1416a 1967 The difference from the below function is that only substitution is
e1ab7874 1968 performed. */
1969static enum MOVEUP_EXPR_CODE
1970moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1971{
1972 vinsn_t vi = EXPR_VINSN (expr);
1973 ds_t *has_dep_p;
1974 ds_t full_ds;
1975
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1978
1979 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1980 if (full_ds == 0)
1981 return MOVEUP_EXPR_SAME;
1982
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p[DEPS_IN_RHS])
1985 {
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi));
48e1416a 1988
1989 if (can_substitute_through_p (through_insn,
e1ab7874 1990 has_dep_p[DEPS_IN_RHS])
1991 && substitute_reg_in_expr (expr, through_insn, false))
1992 {
1993 EXPR_WAS_SUBSTITUTED (expr) = true;
1994 return MOVEUP_EXPR_CHANGED;
1995 }
1996
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME;
2000 }
2001
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p[DEPS_IN_INSN])
2004 return MOVEUP_EXPR_NULL;
48e1416a 2005
e1ab7874 2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2008 will fix this. */
2009 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2010 return MOVEUP_EXPR_AS_RHS;
2011}
2012
2013/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014#define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2018
2019/* True when a conflict on a target register was found during moveup_expr. */
2020static bool was_target_conflict = false;
2021
9845d120 2022/* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2026
2027static bool
2028moving_insn_creates_bookkeeping_block_p (insn_t insn,
2029 insn_t through_insn)
2030{
2031 basic_block bbi, bbt;
2032 edge e1, e2;
2033 edge_iterator ei1, ei2;
2034
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2036 {
2037 if (sched_verbose >= 9)
2038 sel_print ("no bookkeeping required: ");
2039 return FALSE;
2040 }
2041
2042 bbi = BLOCK_FOR_INSN (insn);
2043
2044 if (EDGE_COUNT (bbi->preds) == 1)
2045 {
2046 if (sched_verbose >= 9)
2047 sel_print ("only one pred edge: ");
2048 return TRUE;
2049 }
2050
2051 bbt = BLOCK_FOR_INSN (through_insn);
2052
2053 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2054 {
2055 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2056 {
2057 if (find_block_for_bookkeeping (e1, e2, TRUE))
2058 {
2059 if (sched_verbose >= 9)
2060 sel_print ("found existing block: ");
2061 return FALSE;
2062 }
2063 }
2064 }
2065
2066 if (sched_verbose >= 9)
2067 sel_print ("would create bookkeeping block: ");
2068
2069 return TRUE;
2070}
2071
3e1f1f1a 2072/* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2074static bool
2075implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2076{
2077 HARD_REG_SET temp;
9c4c93d0 2078 rtx_insn *insn;
2079 rtx reg, rhs, pat;
3e1f1f1a 2080 hard_reg_set_iterator hrsi;
2081 unsigned regno;
2082 bool valid;
2083
2084 /* Make a new pseudo register. */
2085 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2086 max_regno = max_reg_num ();
2087 maybe_extend_reg_info_p ();
2088
2089 /* Validate a change and bail out early. */
2090 insn = EXPR_INSN_RTX (expr);
2091 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2092 valid = verify_changes (0);
2093 cancel_changes (0);
2094 if (!valid)
2095 {
2096 if (sched_verbose >= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2098 return true;
2099 }
2100
2101 /* Make a new insn with it. */
2102 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
d1f9b275 2103 pat = gen_rtx_SET (reg, rhs);
3e1f1f1a 2104 start_sequence ();
2105 insn = emit_insn (pat);
2106 end_sequence ();
2107
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn);
8eaaac4d 2110 preprocess_constraints (insn);
ca3be54b 2111 alternative_mask prefrred = get_preferred_alternatives (insn);
2112 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
3e1f1f1a 2113 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2114
2115 /* If any implicit clobber registers intersect with regular ones in
2116 through_insn, we have a dependency and thus bail out. */
2117 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2118 {
2119 vinsn_t vi = INSN_VINSN (through_insn);
2120 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2122 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2123 return true;
2124 }
2125
2126 return false;
2127}
2128
e1ab7874 2129/* Modifies EXPR so it can be moved through the THROUGH_INSN,
48e1416a 2130 performing necessary transformations. Record the type of transformation
2131 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e1ab7874 2132 permit all dependencies except true ones, and try to remove those
48e1416a 2133 too via forward substitution. All cases when a non-eliminable
2134 non-zero cost dependency exists inside an insn group will be fixed
e1ab7874 2135 in tick_check_p instead. */
2136static enum MOVEUP_EXPR_CODE
2137moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2138 enum local_trans_type *ptrans_type)
2139{
2140 vinsn_t vi = EXPR_VINSN (expr);
2141 insn_t insn = VINSN_INSN_RTX (vi);
2142 bool was_changed = false;
2143 bool as_rhs = false;
2144 ds_t *has_dep_p;
2145 ds_t full_ds;
2146
995ca335 2147 /* ??? We use dependencies of non-debug insns on debug insns to
2148 indicate that the debug insns need to be reset if the non-debug
2149 insn is pulled ahead of it. It's hard to figure out how to
2150 introduce such a notion in sel-sched, but it already fails to
2151 support debug insns in other ways, so we just go ahead and
2152 let the deug insns go corrupt for now. */
2153 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2154 return MOVEUP_EXPR_SAME;
2155
e1ab7874 2156 /* When inside_insn_group, delegate to the helper. */
2157 if (inside_insn_group)
2158 return moveup_expr_inside_insn_group (expr, through_insn);
2159
2160 /* Deal with unique insns and control dependencies. */
2161 if (VINSN_UNIQUE_P (vi))
2162 {
2163 /* We can move jumps without side-effects or jumps that are
2164 mutually exclusive with instruction THROUGH_INSN (all in cases
2165 dependencies allow to do so and jump is not speculative). */
2166 if (control_flow_insn_p (insn))
2167 {
2168 basic_block fallthru_bb;
2169
48e1416a 2170 /* Do not move checks and do not move jumps through other
e1ab7874 2171 jumps. */
2172 if (control_flow_insn_p (through_insn)
2173 || sel_insn_is_speculation_check (insn))
2174 return MOVEUP_EXPR_NULL;
2175
2176 /* Don't move jumps through CFG joins. */
2177 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2178 return MOVEUP_EXPR_NULL;
2179
48e1416a 2180 /* The jump should have a clear fallthru block, and
e1ab7874 2181 this block should be in the current region. */
2182 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2183 || ! in_current_region_p (fallthru_bb))
2184 return MOVEUP_EXPR_NULL;
48e1416a 2185
afd14b63 2186 /* And it should be mutually exclusive with through_insn. */
2187 if (! sched_insns_conditions_mutex_p (insn, through_insn)
9845d120 2188 && ! DEBUG_INSN_P (through_insn))
e1ab7874 2189 return MOVEUP_EXPR_NULL;
2190 }
2191
2192 /* Don't move what we can't move. */
2193 if (EXPR_CANT_MOVE (expr)
2194 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2195 return MOVEUP_EXPR_NULL;
2196
2197 /* Don't move SCHED_GROUP instruction through anything.
2198 If we don't force this, then it will be possible to start
2199 scheduling a sched_group before all its dependencies are
2200 resolved.
2201 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2202 as late as possible through rank_for_schedule. */
2203 if (SCHED_GROUP_P (insn))
2204 return MOVEUP_EXPR_NULL;
2205 }
2206 else
2207 gcc_assert (!control_flow_insn_p (insn));
2208
9845d120 2209 /* Don't move debug insns if this would require bookkeeping. */
2210 if (DEBUG_INSN_P (insn)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2212 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2213 return MOVEUP_EXPR_NULL;
2214
e1ab7874 2215 /* Deal with data dependencies. */
2216 was_target_conflict = false;
2217 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2218 if (full_ds == 0)
2219 {
2220 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2221 return MOVEUP_EXPR_SAME;
2222 }
2223 else
2224 {
48e1416a 2225 /* We can move UNIQUE insn up only as a whole and unchanged,
e1ab7874 2226 so it shouldn't have any dependencies. */
2227 if (VINSN_UNIQUE_P (vi))
2228 return MOVEUP_EXPR_NULL;
2229 }
2230
2231 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2232 {
2233 int res;
2234
2235 res = speculate_expr (expr, full_ds);
2236 if (res >= 0)
2237 {
2238 /* Speculation was successful. */
2239 full_ds = 0;
2240 was_changed = (res > 0);
2241 if (res == 2)
2242 was_target_conflict = true;
2243 if (ptrans_type)
2244 *ptrans_type = TRANS_SPECULATION;
2245 sel_clear_has_dependence ();
2246 }
2247 }
2248
2249 if (has_dep_p[DEPS_IN_INSN])
2250 /* We have some dependency that cannot be discarded. */
2251 return MOVEUP_EXPR_NULL;
2252
2253 if (has_dep_p[DEPS_IN_LHS])
48e1416a 2254 {
e1ab7874 2255 /* Only separable insns can be moved up with the new register.
48e1416a 2256 Anyways, we should mark that the original register is
e1ab7874 2257 unavailable. */
2258 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2259 return MOVEUP_EXPR_NULL;
2260
3e1f1f1a 2261 /* When renaming a hard register to a pseudo before reload, extra
2262 dependencies can occur from the implicit clobbers of the insn.
2263 Filter out such cases here. */
2264 if (!reload_completed && REG_P (EXPR_LHS (expr))
2265 && HARD_REGISTER_P (EXPR_LHS (expr))
2266 && implicit_clobber_conflict_p (through_insn, expr))
2267 {
2268 if (sched_verbose >= 6)
2269 sel_print ("implicit clobbers conflict detected, ");
2270 return MOVEUP_EXPR_NULL;
2271 }
e1ab7874 2272 EXPR_TARGET_AVAILABLE (expr) = false;
2273 was_target_conflict = true;
2274 as_rhs = true;
2275 }
2276
2277 /* At this point we have either separable insns, that will be lifted
2278 up only as RHSes, or non-separable insns with no dependency in lhs.
2279 If dependency is in RHS, then try to perform substitution and move up
2280 substituted RHS:
2281
2282 Ex. 1: Ex.2
2283 y = x; y = x;
2284 z = y*2; y = y*2;
2285
48e1416a 2286 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e1ab7874 2287 moved above y=x assignment as z=x*2.
2288
48e1416a 2289 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e1ab7874 2290 side can be moved because of the output dependency. The operation was
2291 cropped to its rhs above. */
2292 if (has_dep_p[DEPS_IN_RHS])
2293 {
2294 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2295
2296 /* Can't substitute UNIQUE VINSNs. */
2297 gcc_assert (!VINSN_UNIQUE_P (vi));
2298
2299 if (can_speculate_dep_p (*rhs_dsp))
2300 {
2301 int res;
48e1416a 2302
e1ab7874 2303 res = speculate_expr (expr, *rhs_dsp);
2304 if (res >= 0)
2305 {
2306 /* Speculation was successful. */
2307 *rhs_dsp = 0;
2308 was_changed = (res > 0);
2309 if (res == 2)
2310 was_target_conflict = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SPECULATION;
2313 }
2314 else
2315 return MOVEUP_EXPR_NULL;
2316 }
2317 else if (can_substitute_through_p (through_insn,
2318 *rhs_dsp)
2319 && substitute_reg_in_expr (expr, through_insn, false))
2320 {
2321 /* ??? We cannot perform substitution AND speculation on the same
2322 insn. */
2323 gcc_assert (!was_changed);
2324 was_changed = true;
2325 if (ptrans_type)
2326 *ptrans_type = TRANS_SUBSTITUTION;
2327 EXPR_WAS_SUBSTITUTED (expr) = true;
2328 }
2329 else
2330 return MOVEUP_EXPR_NULL;
2331 }
2332
2333 /* Don't move trapping insns through jumps.
2334 This check should be at the end to give a chance to control speculation
2335 to perform its duties. */
2336 if (CANT_MOVE_TRAPPING (expr, through_insn))
2337 return MOVEUP_EXPR_NULL;
2338
48e1416a 2339 return (was_changed
2340 ? MOVEUP_EXPR_CHANGED
2341 : (as_rhs
e1ab7874 2342 ? MOVEUP_EXPR_AS_RHS
2343 : MOVEUP_EXPR_SAME));
2344}
2345
48e1416a 2346/* Try to look at bitmap caches for EXPR and INSN pair, return true
e1ab7874 2347 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2348 that can exist within a parallel group. Write to RES the resulting
2349 code for moveup_expr. */
48e1416a 2350static bool
e1ab7874 2351try_bitmap_cache (expr_t expr, insn_t insn,
2352 bool inside_insn_group,
2353 enum MOVEUP_EXPR_CODE *res)
2354{
2355 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
48e1416a 2356
e1ab7874 2357 /* First check whether we've analyzed this situation already. */
2358 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2359 {
2360 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2361 {
2362 if (sched_verbose >= 6)
2363 sel_print ("removed (cached)\n");
2364 *res = MOVEUP_EXPR_NULL;
2365 return true;
2366 }
2367 else
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (cached)\n");
2371 *res = MOVEUP_EXPR_SAME;
2372 return true;
2373 }
2374 }
2375 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2376 {
2377 if (inside_insn_group)
2378 {
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2381 *res = MOVEUP_EXPR_SAME;
2382 return true;
48e1416a 2383
e1ab7874 2384 }
2385 else
2386 EXPR_TARGET_AVAILABLE (expr) = false;
2387
48e1416a 2388 /* This is the only case when propagation result can change over time,
2389 as we can dynamically switch off scheduling as RHS. In this case,
e1ab7874 2390 just check the flag to reach the correct decision. */
2391 if (enable_schedule_as_rhs_p)
2392 {
2393 if (sched_verbose >= 6)
2394 sel_print ("unchanged (as RHS, cached)\n");
2395 *res = MOVEUP_EXPR_AS_RHS;
2396 return true;
2397 }
2398 else
2399 {
2400 if (sched_verbose >= 6)
2401 sel_print ("removed (cached as RHS, but renaming"
2402 " is now disabled)\n");
2403 *res = MOVEUP_EXPR_NULL;
2404 return true;
2405 }
2406 }
2407
2408 return false;
2409}
2410
48e1416a 2411/* Try to look at bitmap caches for EXPR and INSN pair, return true
e1ab7874 2412 if successful. Write to RES the resulting code for moveup_expr. */
48e1416a 2413static bool
e1ab7874 2414try_transformation_cache (expr_t expr, insn_t insn,
2415 enum MOVEUP_EXPR_CODE *res)
2416{
48e1416a 2417 struct transformed_insns *pti
e1ab7874 2418 = (struct transformed_insns *)
2419 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
48e1416a 2420 &EXPR_VINSN (expr),
e1ab7874 2421 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2422 if (pti)
2423 {
48e1416a 2424 /* This EXPR was already moved through this insn and was
2425 changed as a result. Fetch the proper data from
e1ab7874 2426 the hashtable. */
48e1416a 2427 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2428 INSN_UID (insn), pti->type,
2429 pti->vinsn_old, pti->vinsn_new,
e1ab7874 2430 EXPR_SPEC_DONE_DS (expr));
48e1416a 2431
e1ab7874 2432 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2433 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2434 change_vinsn_in_expr (expr, pti->vinsn_new);
2435 if (pti->was_target_conflict)
2436 EXPR_TARGET_AVAILABLE (expr) = false;
2437 if (pti->type == TRANS_SPECULATION)
2438 {
e1ab7874 2439 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2440 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2441 }
2442
2443 if (sched_verbose >= 6)
2444 {
2445 sel_print ("changed (cached): ");
2446 dump_expr (expr);
2447 sel_print ("\n");
2448 }
2449
2450 *res = MOVEUP_EXPR_CHANGED;
2451 return true;
2452 }
2453
2454 return false;
2455}
2456
2457/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458static void
48e1416a 2459update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e1ab7874 2460 enum MOVEUP_EXPR_CODE res)
2461{
2462 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2463
48e1416a 2464 /* Do not cache result of propagating jumps through an insn group,
e1ab7874 2465 as it is always true, which is not useful outside the group. */
2466 if (inside_insn_group)
2467 return;
48e1416a 2468
e1ab7874 2469 if (res == MOVEUP_EXPR_NULL)
2470 {
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2473 }
2474 else if (res == MOVEUP_EXPR_SAME)
2475 {
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2478 }
2479 else if (res == MOVEUP_EXPR_AS_RHS)
2480 {
2481 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2483 }
2484 else
2485 gcc_unreachable ();
2486}
2487
2488/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2489 and transformation type TRANS_TYPE. */
2490static void
48e1416a 2491update_transformation_cache (expr_t expr, insn_t insn,
e1ab7874 2492 bool inside_insn_group,
48e1416a 2493 enum local_trans_type trans_type,
e1ab7874 2494 vinsn_t expr_old_vinsn)
2495{
2496 struct transformed_insns *pti;
2497
2498 if (inside_insn_group)
2499 return;
48e1416a 2500
e1ab7874 2501 pti = XNEW (struct transformed_insns);
2502 pti->vinsn_old = expr_old_vinsn;
2503 pti->vinsn_new = EXPR_VINSN (expr);
2504 pti->type = trans_type;
2505 pti->was_target_conflict = was_target_conflict;
2506 pti->ds = EXPR_SPEC_DONE_DS (expr);
2507 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2508 vinsn_attach (pti->vinsn_old);
2509 vinsn_attach (pti->vinsn_new);
48e1416a 2510 *((struct transformed_insns **)
e1ab7874 2511 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2512 pti, VINSN_HASH_RTX (expr_old_vinsn),
2513 INSERT)) = pti;
2514}
2515
48e1416a 2516/* Same as moveup_expr, but first looks up the result of
e1ab7874 2517 transformation in caches. */
2518static enum MOVEUP_EXPR_CODE
2519moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2520{
2521 enum MOVEUP_EXPR_CODE res;
2522 bool got_answer = false;
2523
2524 if (sched_verbose >= 6)
2525 {
48e1416a 2526 sel_print ("Moving ");
e1ab7874 2527 dump_expr (expr);
2528 sel_print (" through %d: ", INSN_UID (insn));
2529 }
2530
9845d120 2531 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
f0f38209 2532 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
9845d120 2533 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2534 == EXPR_INSN_RTX (expr)))
2535 /* Don't use cached information for debug insns that are heads of
2536 basic blocks. */;
2537 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e1ab7874 2538 /* When inside insn group, we do not want remove stores conflicting
2539 with previosly issued loads. */
2540 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2541 else if (try_transformation_cache (expr, insn, &res))
2542 got_answer = true;
2543
2544 if (! got_answer)
2545 {
2546 /* Invoke moveup_expr and record the results. */
2547 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2548 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2549 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2550 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2551 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2552
48e1416a 2553 /* ??? Invent something better than this. We can't allow old_vinsn
e1ab7874 2554 to go, we need it for the history vector. */
2555 vinsn_attach (expr_old_vinsn);
2556
2557 res = moveup_expr (expr, insn, inside_insn_group,
2558 &trans_type);
2559 switch (res)
2560 {
2561 case MOVEUP_EXPR_NULL:
2562 update_bitmap_cache (expr, insn, inside_insn_group, res);
2563 if (sched_verbose >= 6)
2564 sel_print ("removed\n");
2565 break;
2566
2567 case MOVEUP_EXPR_SAME:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("unchanged\n");
2571 break;
2572
2573 case MOVEUP_EXPR_AS_RHS:
2574 gcc_assert (!unique_p || inside_insn_group);
2575 update_bitmap_cache (expr, insn, inside_insn_group, res);
2576 if (sched_verbose >= 6)
2577 sel_print ("unchanged (as RHS)\n");
2578 break;
2579
2580 case MOVEUP_EXPR_CHANGED:
2581 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2582 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
48e1416a 2583 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2584 INSN_UID (insn), trans_type,
2585 expr_old_vinsn, EXPR_VINSN (expr),
e1ab7874 2586 expr_old_spec_ds);
2587 update_transformation_cache (expr, insn, inside_insn_group,
2588 trans_type, expr_old_vinsn);
2589 if (sched_verbose >= 6)
2590 {
2591 sel_print ("changed: ");
2592 dump_expr (expr);
2593 sel_print ("\n");
2594 }
2595 break;
2596 default:
2597 gcc_unreachable ();
2598 }
2599
2600 vinsn_detach (expr_old_vinsn);
2601 }
2602
2603 return res;
2604}
2605
48e1416a 2606/* Moves an av set AVP up through INSN, performing necessary
e1ab7874 2607 transformations. */
2608static void
2609moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2610{
2611 av_set_iterator i;
2612 expr_t expr;
2613
48e1416a 2614 FOR_EACH_EXPR_1 (expr, i, avp)
2615 {
2616
e1ab7874 2617 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2618 {
2619 case MOVEUP_EXPR_SAME:
2620 case MOVEUP_EXPR_AS_RHS:
2621 break;
2622
2623 case MOVEUP_EXPR_NULL:
2624 av_set_iter_remove (&i);
2625 break;
2626
2627 case MOVEUP_EXPR_CHANGED:
2628 expr = merge_with_other_exprs (avp, &i, expr);
2629 break;
48e1416a 2630
e1ab7874 2631 default:
2632 gcc_unreachable ();
2633 }
2634 }
2635}
2636
2637/* Moves AVP set along PATH. */
2638static void
2639moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2640{
2641 int last_cycle;
48e1416a 2642
e1ab7874 2643 if (sched_verbose >= 6)
2644 sel_print ("Moving expressions up in the insn group...\n");
2645 if (! path)
2646 return;
2647 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
48e1416a 2648 while (path
e1ab7874 2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2650 {
2651 moveup_set_expr (avp, ILIST_INSN (path), true);
2652 path = ILIST_NEXT (path);
2653 }
2654}
2655
2656/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2657static bool
2658equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2659{
2660 expr_def _tmp, *tmp = &_tmp;
2661 int last_cycle;
2662 bool res = true;
2663
2664 copy_expr_onside (tmp, expr);
2665 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
48e1416a 2666 while (path
e1ab7874 2667 && res
2668 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2669 {
48e1416a 2670 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e1ab7874 2671 != MOVEUP_EXPR_NULL);
2672 path = ILIST_NEXT (path);
2673 }
2674
2675 if (res)
2676 {
2677 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2678 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2679
2680 if (tmp_vinsn != expr_vliw_vinsn)
2681 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2682 }
2683
2684 clear_expr (tmp);
2685 return res;
2686}
2687\f
2688
2689/* Functions that compute av and lv sets. */
2690
48e1416a 2691/* Returns true if INSN is not a downward continuation of the given path P in
e1ab7874 2692 the current stage. */
2693static bool
2694is_ineligible_successor (insn_t insn, ilist_t p)
2695{
2696 insn_t prev_insn;
2697
2698 /* Check if insn is not deleted. */
2699 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2702 gcc_unreachable ();
2703
2704 /* If it's the first insn visited, then the successor is ok. */
2705 if (!p)
2706 return false;
2707
2708 prev_insn = ILIST_INSN (p);
2709
2710 if (/* a backward edge. */
2711 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2712 /* is already visited. */
2713 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2714 && (ilist_is_in_p (p, insn)
48e1416a 2715 /* We can reach another fence here and still seqno of insn
2716 would be equal to seqno of prev_insn. This is possible
e1ab7874 2717 when prev_insn is a previously created bookkeeping copy.
2718 In that case it'd get a seqno of insn. Thus, check here
2719 whether insn is in current fence too. */
2720 || IN_CURRENT_FENCE_P (insn)))
2721 /* Was already scheduled on this round. */
2722 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2723 && IN_CURRENT_FENCE_P (insn))
48e1416a 2724 /* An insn from another fence could also be
2725 scheduled earlier even if this insn is not in
e1ab7874 2726 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2727 || (!pipelining_p
2728 && INSN_SCHED_TIMES (insn) > 0))
2729 return true;
2730 else
2731 return false;
2732}
2733
48e1416a 2734/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2735 of handling multiple successors and properly merging its av_sets. P is
2736 the current path traversed. WS is the size of lookahead window.
e1ab7874 2737 Return the av set computed. */
2738static av_set_t
2739compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2740{
2741 struct succs_info *sinfo;
2742 av_set_t expr_in_all_succ_branches = NULL;
2743 int is;
2744 insn_t succ, zero_succ = NULL;
2745 av_set_t av1 = NULL;
2746
2747 gcc_assert (sel_bb_end_p (insn));
2748
48e1416a 2749 /* Find different kind of successors needed for correct computing of
e1ab7874 2750 SPEC and TARGET_AVAILABLE attributes. */
2751 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2752
2753 /* Debug output. */
2754 if (sched_verbose >= 6)
2755 {
2756 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2757 dump_insn_vector (sinfo->succs_ok);
2758 sel_print ("\n");
2759 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2760 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2761 }
2762
851d9296 2763 /* Add insn to the tail of current path. */
e1ab7874 2764 ilist_add (&p, insn);
2765
f1f41a6c 2766 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e1ab7874 2767 {
2768 av_set_t succ_set;
2769
2770 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2771 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2772
48e1416a 2773 av_set_split_usefulness (succ_set,
f1f41a6c 2774 sinfo->probs_ok[is],
e1ab7874 2775 sinfo->all_prob);
2776
fd23e508 2777 if (sinfo->all_succs_n > 1)
e1ab7874 2778 {
48e1416a 2779 /* Find EXPR'es that came from *all* successors and save them
e1ab7874 2780 into expr_in_all_succ_branches. This set will be used later
2781 for calculating speculation attributes of EXPR'es. */
2782 if (is == 0)
2783 {
2784 expr_in_all_succ_branches = av_set_copy (succ_set);
2785
2786 /* Remember the first successor for later. */
2787 zero_succ = succ;
2788 }
2789 else
2790 {
2791 av_set_iterator i;
2792 expr_t expr;
48e1416a 2793
e1ab7874 2794 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2795 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2796 av_set_iter_remove (&i);
2797 }
2798 }
2799
2800 /* Union the av_sets. Check liveness restrictions on target registers
2801 in special case of two successors. */
2802 if (sinfo->succs_ok_n == 2 && is == 1)
2803 {
2804 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2805 basic_block bb1 = BLOCK_FOR_INSN (succ);
2806
2807 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
48e1416a 2808 av_set_union_and_live (&av1, &succ_set,
e1ab7874 2809 BB_LV_SET (bb0),
2810 BB_LV_SET (bb1),
2811 insn);
2812 }
2813 else
2814 av_set_union_and_clear (&av1, &succ_set, insn);
2815 }
2816
48e1416a 2817 /* Check liveness restrictions via hard way when there are more than
e1ab7874 2818 two successors. */
2819 if (sinfo->succs_ok_n > 2)
f1f41a6c 2820 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e1ab7874 2821 {
2822 basic_block succ_bb = BLOCK_FOR_INSN (succ);
205d41d2 2823 av_set_t av_succ = (is_ineligible_successor (succ, p)
2824 ? NULL
2825 : BB_AV_SET (succ_bb));
48e1416a 2826
e1ab7874 2827 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
205d41d2 2828 mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
e1ab7874 2829 }
48e1416a 2830
2831 /* Finally, check liveness restrictions on paths leaving the region. */
e1ab7874 2832 if (sinfo->all_succs_n > sinfo->succs_ok_n)
f1f41a6c 2833 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
48e1416a 2834 mark_unavailable_targets
e1ab7874 2835 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2836
2837 if (sinfo->all_succs_n > 1)
2838 {
2839 av_set_iterator i;
2840 expr_t expr;
2841
48e1416a 2842 /* Increase the spec attribute of all EXPR'es that didn't come
e1ab7874 2843 from all successors. */
2844 FOR_EACH_EXPR (expr, i, av1)
2845 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2846 EXPR_SPEC (expr)++;
2847
2848 av_set_clear (&expr_in_all_succ_branches);
48e1416a 2849
2850 /* Do not move conditional branches through other
2851 conditional branches. So, remove all conditional
e1ab7874 2852 branches from av_set if current operator is a conditional
2853 branch. */
2854 av_set_substract_cond_branches (&av1);
2855 }
48e1416a 2856
e1ab7874 2857 ilist_remove (&p);
2858 free_succs_info (sinfo);
2859
2860 if (sched_verbose >= 6)
2861 {
2862 sel_print ("av_succs (%d): ", INSN_UID (insn));
2863 dump_av_set (av1);
2864 sel_print ("\n");
2865 }
2866
2867 return av1;
2868}
2869
48e1416a 2870/* This function computes av_set for the FIRST_INSN by dragging valid
2871 av_set through all basic block insns either from the end of basic block
2872 (computed using compute_av_set_at_bb_end) or from the insn on which
e1ab7874 2873 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2874 below the basic block and handling conditional branches.
2875 FIRST_INSN - the basic block head, P - path consisting of the insns
2876 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2877 and bb ends are added to the path), WS - current window size,
2878 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2879static av_set_t
48e1416a 2880compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e1ab7874 2881 bool need_copy_p)
2882{
2883 insn_t cur_insn;
2884 int end_ws = ws;
2885 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2886 insn_t after_bb_end = NEXT_INSN (bb_end);
2887 insn_t last_insn;
2888 av_set_t av = NULL;
2889 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2890
2891 /* Return NULL if insn is not on the legitimate downward path. */
2892 if (is_ineligible_successor (first_insn, p))
2893 {
2894 if (sched_verbose >= 6)
2895 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2896
2897 return NULL;
2898 }
2899
48e1416a 2900 /* If insn already has valid av(insn) computed, just return it. */
e1ab7874 2901 if (AV_SET_VALID_P (first_insn))
2902 {
2903 av_set_t av_set;
2904
2905 if (sel_bb_head_p (first_insn))
2906 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2907 else
2908 av_set = NULL;
2909
2910 if (sched_verbose >= 6)
2911 {
2912 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2913 dump_av_set (av_set);
2914 sel_print ("\n");
2915 }
2916
2917 return need_copy_p ? av_set_copy (av_set) : av_set;
2918 }
2919
2920 ilist_add (&p, first_insn);
2921
2922 /* As the result after this loop have completed, in LAST_INSN we'll
48e1416a 2923 have the insn which has valid av_set to start backward computation
2924 from: it either will be NULL because on it the window size was exceeded
2925 or other valid av_set as returned by compute_av_set for the last insn
e1ab7874 2926 of the basic block. */
2927 for (last_insn = first_insn; last_insn != after_bb_end;
2928 last_insn = NEXT_INSN (last_insn))
2929 {
2930 /* We may encounter valid av_set not only on bb_head, but also on
2931 those insns on which previously MAX_WS was exceeded. */
2932 if (AV_SET_VALID_P (last_insn))
2933 {
2934 if (sched_verbose >= 6)
2935 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2936 break;
2937 }
2938
2939 /* The special case: the last insn of the BB may be an
2940 ineligible_successor due to its SEQ_NO that was set on
2941 it as a bookkeeping. */
48e1416a 2942 if (last_insn != first_insn
e1ab7874 2943 && is_ineligible_successor (last_insn, p))
2944 {
2945 if (sched_verbose >= 6)
2946 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
48e1416a 2947 break;
e1ab7874 2948 }
2949
9845d120 2950 if (DEBUG_INSN_P (last_insn))
2951 continue;
2952
e1ab7874 2953 if (end_ws > max_ws)
2954 {
48e1416a 2955 /* We can reach max lookahead size at bb_header, so clean av_set
e1ab7874 2956 first. */
2957 INSN_WS_LEVEL (last_insn) = global_level;
2958
2959 if (sched_verbose >= 6)
2960 sel_print ("Insn %d is beyond the software lookahead window size\n",
2961 INSN_UID (last_insn));
2962 break;
2963 }
2964
2965 end_ws++;
2966 }
2967
2968 /* Get the valid av_set into AV above the LAST_INSN to start backward
2969 computation from. It either will be empty av_set or av_set computed from
2970 the successors on the last insn of the current bb. */
2971 if (last_insn != after_bb_end)
2972 {
2973 av = NULL;
2974
48e1416a 2975 /* This is needed only to obtain av_sets that are identical to
e1ab7874 2976 those computed by the old compute_av_set version. */
2977 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2978 av_set_add (&av, INSN_EXPR (last_insn));
2979 }
2980 else
2981 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2982 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2983
2984 /* Compute av_set in AV starting from below the LAST_INSN up to
2985 location above the FIRST_INSN. */
2986 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
48e1416a 2987 cur_insn = PREV_INSN (cur_insn))
e1ab7874 2988 if (!INSN_NOP_P (cur_insn))
2989 {
2990 expr_t expr;
48e1416a 2991
e1ab7874 2992 moveup_set_expr (&av, cur_insn, false);
48e1416a 2993
2994 /* If the expression for CUR_INSN is already in the set,
e1ab7874 2995 replace it by the new one. */
48e1416a 2996 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e1ab7874 2997 if (expr != NULL)
2998 {
2999 clear_expr (expr);
3000 copy_expr (expr, INSN_EXPR (cur_insn));
3001 }
3002 else
3003 av_set_add (&av, INSN_EXPR (cur_insn));
3004 }
3005
3006 /* Clear stale bb_av_set. */
3007 if (sel_bb_head_p (first_insn))
3008 {
3009 av_set_clear (&BB_AV_SET (cur_bb));
3010 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3011 BB_AV_LEVEL (cur_bb) = global_level;
3012 }
3013
3014 if (sched_verbose >= 6)
3015 {
3016 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3017 dump_av_set (av);
3018 sel_print ("\n");
3019 }
3020
3021 ilist_remove (&p);
3022 return av;
3023}
3024
3025/* Compute av set before INSN.
3026 INSN - the current operation (actual rtx INSN)
3027 P - the current path, which is list of insns visited so far
3028 WS - software lookahead window size.
3029 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3030 if we want to save computed av_set in s_i_d, we should make a copy of it.
3031
3032 In the resulting set we will have only expressions that don't have delay
3033 stalls and nonsubstitutable dependences. */
3034static av_set_t
3035compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3036{
3037 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3038}
3039
3040/* Propagate a liveness set LV through INSN. */
3041static void
3042propagate_lv_set (regset lv, insn_t insn)
3043{
3044 gcc_assert (INSN_P (insn));
3045
3046 if (INSN_NOP_P (insn))
3047 return;
3048
a1b0a968 3049 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e1ab7874 3050}
3051
3052/* Return livness set at the end of BB. */
3053static regset
3054compute_live_after_bb (basic_block bb)
3055{
3056 edge e;
3057 edge_iterator ei;
3058 regset lv = get_clear_regset_from_pool ();
3059
3060 gcc_assert (!ignore_first);
3061
3062 FOR_EACH_EDGE (e, ei, bb->succs)
3063 if (sel_bb_empty_p (e->dest))
3064 {
3065 if (! BB_LV_SET_VALID_P (e->dest))
3066 {
3067 gcc_unreachable ();
3068 gcc_assert (BB_LV_SET (e->dest) == NULL);
3069 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3070 BB_LV_SET_VALID_P (e->dest) = true;
3071 }
3072 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3073 }
3074 else
3075 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3076
3077 return lv;
3078}
3079
3080/* Compute the set of all live registers at the point before INSN and save
3081 it at INSN if INSN is bb header. */
3082regset
3083compute_live (insn_t insn)
3084{
3085 basic_block bb = BLOCK_FOR_INSN (insn);
3086 insn_t final, temp;
3087 regset lv;
3088
3089 /* Return the valid set if we're already on it. */
3090 if (!ignore_first)
3091 {
3092 regset src = NULL;
48e1416a 3093
e1ab7874 3094 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3095 src = BB_LV_SET (bb);
48e1416a 3096 else
e1ab7874 3097 {
3098 gcc_assert (in_current_region_p (bb));
3099 if (INSN_LIVE_VALID_P (insn))
3100 src = INSN_LIVE (insn);
3101 }
48e1416a 3102
e1ab7874 3103 if (src)
3104 {
3105 lv = get_regset_from_pool ();
3106 COPY_REG_SET (lv, src);
3107
3108 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3109 {
3110 COPY_REG_SET (BB_LV_SET (bb), lv);
3111 BB_LV_SET_VALID_P (bb) = true;
3112 }
48e1416a 3113
e1ab7874 3114 return_regset_to_pool (lv);
3115 return lv;
3116 }
3117 }
3118
3119 /* We've skipped the wrong lv_set. Don't skip the right one. */
3120 ignore_first = false;
3121 gcc_assert (in_current_region_p (bb));
3122
48e1416a 3123 /* Find a valid LV set in this block or below, if needed.
3124 Start searching from the next insn: either ignore_first is true, or
e1ab7874 3125 INSN doesn't have a correct live set. */
3126 temp = NEXT_INSN (insn);
3127 final = NEXT_INSN (BB_END (bb));
3128 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3129 temp = NEXT_INSN (temp);
3130 if (temp == final)
3131 {
3132 lv = compute_live_after_bb (bb);
3133 temp = PREV_INSN (temp);
3134 }
3135 else
3136 {
3137 lv = get_regset_from_pool ();
3138 COPY_REG_SET (lv, INSN_LIVE (temp));
3139 }
3140
3141 /* Put correct lv sets on the insns which have bad sets. */
3142 final = PREV_INSN (insn);
3143 while (temp != final)
3144 {
3145 propagate_lv_set (lv, temp);
3146 COPY_REG_SET (INSN_LIVE (temp), lv);
3147 INSN_LIVE_VALID_P (temp) = true;
3148 temp = PREV_INSN (temp);
3149 }
3150
3151 /* Also put it in a BB. */
3152 if (sel_bb_head_p (insn))
3153 {
3154 basic_block bb = BLOCK_FOR_INSN (insn);
48e1416a 3155
e1ab7874 3156 COPY_REG_SET (BB_LV_SET (bb), lv);
3157 BB_LV_SET_VALID_P (bb) = true;
3158 }
48e1416a 3159
e1ab7874 3160 /* We return LV to the pool, but will not clear it there. Thus we can
3161 legimatelly use LV till the next use of regset_pool_get (). */
3162 return_regset_to_pool (lv);
3163 return lv;
3164}
3165
3166/* Update liveness sets for INSN. */
3167static inline void
2f3c9801 3168update_liveness_on_insn (rtx_insn *insn)
e1ab7874 3169{
3170 ignore_first = true;
3171 compute_live (insn);
3172}
3173
3174/* Compute liveness below INSN and write it into REGS. */
3175static inline void
2f3c9801 3176compute_live_below_insn (rtx_insn *insn, regset regs)
e1ab7874 3177{
2f3c9801 3178 rtx_insn *succ;
e1ab7874 3179 succ_iterator si;
48e1416a 3180
3181 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e1ab7874 3182 IOR_REG_SET (regs, compute_live (succ));
3183}
3184
3185/* Update the data gathered in av and lv sets starting from INSN. */
3186static void
2f3c9801 3187update_data_sets (rtx_insn *insn)
e1ab7874 3188{
3189 update_liveness_on_insn (insn);
3190 if (sel_bb_head_p (insn))
3191 {
3192 gcc_assert (AV_LEVEL (insn) != 0);
3193 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3194 compute_av_set (insn, NULL, 0, 0);
3195 }
3196}
3197\f
3198
3199/* Helper for move_op () and find_used_regs ().
3200 Return speculation type for which a check should be created on the place
3201 of INSN. EXPR is one of the original ops we are searching for. */
3202static ds_t
3203get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3204{
3205 ds_t to_check_ds;
3206 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3207
3208 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3209
3210 if (targetm.sched.get_insn_checked_ds)
3211 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3212
3213 if (spec_info != NULL
3214 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3215 already_checked_ds |= BEGIN_CONTROL;
3216
3217 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3218
3219 to_check_ds &= ~already_checked_ds;
3220
3221 return to_check_ds;
3222}
3223
48e1416a 3224/* Find the set of registers that are unavailable for storing expres
e1ab7874 3225 while moving ORIG_OPS up on the path starting from INSN due to
3226 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3227
3228 All the original operations found during the traversal are saved in the
3229 ORIGINAL_INSNS list.
3230
3231 REG_RENAME_P denotes the set of hardware registers that
f4d3c071 3232 cannot be used with renaming due to the register class restrictions,
48e1416a 3233 mode restrictions and other (the register we'll choose should be
e1ab7874 3234 compatible class with the original uses, shouldn't be in call_used_regs,
3235 should be HARD_REGNO_RENAME_OK etc).
3236
3237 Returns TRUE if we've found all original insns, FALSE otherwise.
3238
3239 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
48e1416a 3240 to traverse the code motion paths. This helper function finds registers
3241 that are not available for storing expres while moving ORIG_OPS up on the
e1ab7874 3242 path starting from INSN. A register considered as used on the moving path,
3243 if one of the following conditions is not satisfied:
3244
48e1416a 3245 (1) a register not set or read on any path from xi to an instance of
3246 the original operation,
3247 (2) not among the live registers of the point immediately following the
e1ab7874 3248 first original operation on a given downward path, except for the
3249 original target register of the operation,
48e1416a 3250 (3) not live on the other path of any conditional branch that is passed
e1ab7874 3251 by the operation, in case original operations are not present on
3252 both paths of the conditional branch.
3253
3254 All the original operations found during the traversal are saved in the
3255 ORIGINAL_INSNS list.
3256
48e1416a 3257 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3258 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e1ab7874 3259 to unavailable hard regs at the point original operation is found. */
3260
3261static bool
3262find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3263 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3264{
3265 def_list_iterator i;
3266 def_t def;
3267 int res;
3268 bool needs_spec_check_p = false;
3269 expr_t expr;
3270 av_set_iterator expr_iter;
3271 struct fur_static_params sparams;
3272 struct cmpd_local_params lparams;
3273
3274 /* We haven't visited any blocks yet. */
3275 bitmap_clear (code_motion_visited_blocks);
3276
3277 /* Init parameters for code_motion_path_driver. */
3278 sparams.crosses_call = false;
3279 sparams.original_insns = original_insns;
3280 sparams.used_regs = used_regs;
48e1416a 3281
e1ab7874 3282 /* Set the appropriate hooks and data. */
3283 code_motion_path_driver_info = &fur_hooks;
48e1416a 3284
e1ab7874 3285 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3286
3287 reg_rename_p->crosses_call |= sparams.crosses_call;
3288
3289 gcc_assert (res == 1);
3290 gcc_assert (original_insns && *original_insns);
3291
3292 /* ??? We calculate whether an expression needs a check when computing
3293 av sets. This information is not as precise as it could be due to
3294 merging this bit in merge_expr. We can do better in find_used_regs,
48e1416a 3295 but we want to avoid multiple traversals of the same code motion
e1ab7874 3296 paths. */
3297 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3298 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3299
48e1416a 3300 /* Mark hardware regs in REG_RENAME_P that are not suitable
e1ab7874 3301 for renaming expr in INSN due to hardware restrictions (register class,
3302 modes compatibility etc). */
3303 FOR_EACH_DEF (def, i, *original_insns)
3304 {
3305 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3306
3307 if (VINSN_SEPARABLE_P (vinsn))
3308 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3309
48e1416a 3310 /* Do not allow clobbering of ld.[sa] address in case some of the
e1ab7874 3311 original operations need a check. */
3312 if (needs_spec_check_p)
3313 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3314 }
3315
3316 return true;
3317}
3318\f
3319
3320/* Functions to choose the best insn from available ones. */
3321
3322/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3323static int
3324sel_target_adjust_priority (expr_t expr)
3325{
3326 int priority = EXPR_PRIORITY (expr);
3327 int new_priority;
3328
3329 if (targetm.sched.adjust_priority)
3330 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3331 else
3332 new_priority = priority;
3333
f168267a 3334 gcc_assert (new_priority >= 0);
3335
e1ab7874 3336 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3337 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3338
abb9c563 3339 if (sched_verbose >= 4)
3340 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
48e1416a 3341 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e1ab7874 3342 EXPR_PRIORITY_ADJ (expr), new_priority);
3343
3344 return new_priority;
3345}
3346
3347/* Rank two available exprs for schedule. Never return 0 here. */
48e1416a 3348static int
e1ab7874 3349sel_rank_for_schedule (const void *x, const void *y)
3350{
3351 expr_t tmp = *(const expr_t *) y;
3352 expr_t tmp2 = *(const expr_t *) x;
3353 insn_t tmp_insn, tmp2_insn;
3354 vinsn_t tmp_vinsn, tmp2_vinsn;
3355 int val;
3356
3357 tmp_vinsn = EXPR_VINSN (tmp);
3358 tmp2_vinsn = EXPR_VINSN (tmp2);
3359 tmp_insn = EXPR_INSN_RTX (tmp);
3360 tmp2_insn = EXPR_INSN_RTX (tmp2);
48e1416a 3361
9845d120 3362 /* Schedule debug insns as early as possible. */
3363 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3364 return -1;
3365 else if (DEBUG_INSN_P (tmp2_insn))
3366 return 1;
3367
e1ab7874 3368 /* Prefer SCHED_GROUP_P insns to any others. */
3369 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3370 {
48e1416a 3371 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e1ab7874 3372 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3373
3374 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3375 cannot be cloned. */
3376 if (VINSN_UNIQUE_P (tmp2_vinsn))
3377 return 1;
3378 return -1;
3379 }
3380
3381 /* Discourage scheduling of speculative checks. */
3382 val = (sel_insn_is_speculation_check (tmp_insn)
3383 - sel_insn_is_speculation_check (tmp2_insn));
3384 if (val)
3385 return val;
3386
3387 /* Prefer not scheduled insn over scheduled one. */
3388 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3389 {
3390 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3391 if (val)
3392 return val;
3393 }
3394
3395 /* Prefer jump over non-jump instruction. */
3396 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3397 return -1;
3398 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3399 return 1;
3400
ae913d52 3401 /* Prefer an expr with non-zero usefulness. */
3402 int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
e1ab7874 3403
ae913d52 3404 if (u1 == 0)
3405 {
3406 if (u2 == 0)
3407 u1 = u2 = 1;
3408 else
3409 return 1;
e1ab7874 3410 }
ae913d52 3411 else if (u2 == 0)
3412 return -1;
3413
3414 /* Prefer an expr with greater priority. */
3415 val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3416 - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
e1ab7874 3417 if (val)
3418 return val;
3419
3420 if (spec_info != NULL && spec_info->mask != 0)
3421 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3422 {
3423 ds_t ds1, ds2;
3424 dw_t dw1, dw2;
3425 int dw;
3426
3427 ds1 = EXPR_SPEC_DONE_DS (tmp);
3428 if (ds1)
3429 dw1 = ds_weak (ds1);
3430 else
3431 dw1 = NO_DEP_WEAK;
3432
3433 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3434 if (ds2)
3435 dw2 = ds_weak (ds2);
3436 else
3437 dw2 = NO_DEP_WEAK;
3438
3439 dw = dw2 - dw1;
3440 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3441 return dw;
3442 }
3443
e1ab7874 3444 /* Prefer an old insn to a bookkeeping insn. */
48e1416a 3445 if (INSN_UID (tmp_insn) < first_emitted_uid
e1ab7874 3446 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3447 return -1;
48e1416a 3448 if (INSN_UID (tmp_insn) >= first_emitted_uid
e1ab7874 3449 && INSN_UID (tmp2_insn) < first_emitted_uid)
3450 return 1;
3451
48e1416a 3452 /* Prefer an insn with smaller UID, as a last resort.
e1ab7874 3453 We can't safely use INSN_LUID as it is defined only for those insns
3454 that are in the stream. */
3455 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3456}
3457
48e1416a 3458/* Filter out expressions from av set pointed to by AV_PTR
e1ab7874 3459 that are pipelined too many times. */
3460static void
3461process_pipelined_exprs (av_set_t *av_ptr)
3462{
3463 expr_t expr;
3464 av_set_iterator si;
3465
3466 /* Don't pipeline already pipelined code as that would increase
48e1416a 3467 number of unnecessary register moves. */
e1ab7874 3468 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3469 {
3470 if (EXPR_SCHED_TIMES (expr)
3471 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3472 av_set_iter_remove (&si);
3473 }
3474}
3475
3476/* Filter speculative insns from AV_PTR if we don't want them. */
3477static void
3478process_spec_exprs (av_set_t *av_ptr)
3479{
e1ab7874 3480 expr_t expr;
3481 av_set_iterator si;
3482
3483 if (spec_info == NULL)
3484 return;
3485
3486 /* Scan *AV_PTR to find out if we want to consider speculative
3487 instructions for scheduling. */
3488 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3489 {
3490 ds_t ds;
3491
3492 ds = EXPR_SPEC_DONE_DS (expr);
3493
3494 /* The probability of a success is too low - don't speculate. */
3495 if ((ds & SPECULATIVE)
3496 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3497 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3498 || (pipelining_p && false
3499 && (ds & DATA_SPEC)
3500 && (ds & CONTROL_SPEC))))
3501 {
3502 av_set_iter_remove (&si);
3503 continue;
3504 }
e1ab7874 3505 }
3506}
3507
48e1416a 3508/* Search for any use-like insns in AV_PTR and decide on scheduling
3509 them. Return one when found, and NULL otherwise.
e1ab7874 3510 Note that we check here whether a USE could be scheduled to avoid
3511 an infinite loop later. */
3512static expr_t
3513process_use_exprs (av_set_t *av_ptr)
3514{
3515 expr_t expr;
3516 av_set_iterator si;
3517 bool uses_present_p = false;
3518 bool try_uses_p = true;
3519
3520 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3521 {
3522 /* This will also initialize INSN_CODE for later use. */
3523 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3524 {
3525 /* If we have a USE in *AV_PTR that was not scheduled yet,
3526 do so because it will do good only. */
3527 if (EXPR_SCHED_TIMES (expr) <= 0)
3528 {
3529 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3530 return expr;
3531
3532 av_set_iter_remove (&si);
3533 }
3534 else
3535 {
3536 gcc_assert (pipelining_p);
3537
3538 uses_present_p = true;
3539 }
3540 }
3541 else
3542 try_uses_p = false;
3543 }
3544
3545 if (uses_present_p)
3546 {
3547 /* If we don't want to schedule any USEs right now and we have some
3548 in *AV_PTR, remove them, else just return the first one found. */
3549 if (!try_uses_p)
3550 {
3551 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3552 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3553 av_set_iter_remove (&si);
3554 }
3555 else
3556 {
3557 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3558 {
3559 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3560
3561 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3562 return expr;
3563
3564 av_set_iter_remove (&si);
3565 }
3566 }
3567 }
3568
3569 return NULL;
3570}
3571
846800d7 3572/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3573 EXPR's history of changes. */
e1ab7874 3574static bool
3575vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3576{
846800d7 3577 vinsn_t vinsn, expr_vinsn;
e1ab7874 3578 int n;
846800d7 3579 unsigned i;
e1ab7874 3580
846800d7 3581 /* Start with checking expr itself and then proceed with all the old forms
3582 of expr taken from its history vector. */
3583 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3584 expr_vinsn;
f1f41a6c 3585 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3586 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
846800d7 3587 : NULL))
f1f41a6c 3588 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
846800d7 3589 if (VINSN_SEPARABLE_P (vinsn))
3590 {
3591 if (vinsn_equal_p (vinsn, expr_vinsn))
3592 return true;
3593 }
3594 else
3595 {
3596 /* For non-separable instructions, the blocking insn can have
3597 another pattern due to substitution, and we can't choose
3598 different register as in the above case. Check all registers
3599 being written instead. */
3600 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3601 VINSN_REG_SETS (expr_vinsn)))
3602 return true;
3603 }
e1ab7874 3604
3605 return false;
3606}
3607
e1ab7874 3608/* Return true if either of expressions from ORIG_OPS can be blocked
3609 by previously created bookkeeping code. STATIC_PARAMS points to static
3610 parameters of move_op. */
3611static bool
3612av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3613{
3614 expr_t expr;
3615 av_set_iterator iter;
3616 moveop_static_params_p sparams;
3617
3618 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3619 created while scheduling on another fence. */
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3622 return true;
3623
3624 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3625 sparams = (moveop_static_params_p) static_params;
3626
3627 /* Expressions can be also blocked by bookkeeping created during current
3628 move_op. */
3629 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3630 FOR_EACH_EXPR (expr, iter, orig_ops)
3631 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3632 return true;
3633
3634 /* Expressions in ORIG_OPS may have wrong destination register due to
3635 renaming. Check with the right register instead. */
3636 if (sparams->dest && REG_P (sparams->dest))
3637 {
1f53e226 3638 rtx reg = sparams->dest;
e1ab7874 3639 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3640
1f53e226 3641 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3642 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3643 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
e1ab7874 3644 return true;
3645 }
3646
3647 return false;
3648}
e1ab7874 3649
3650/* Clear VINSN_VEC and detach vinsns. */
3651static void
3652vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3653{
f1f41a6c 3654 unsigned len = vinsn_vec->length ();
e1ab7874 3655 if (len > 0)
3656 {
3657 vinsn_t vinsn;
3658 int n;
48e1416a 3659
f1f41a6c 3660 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
e1ab7874 3661 vinsn_detach (vinsn);
f1f41a6c 3662 vinsn_vec->block_remove (0, len);
e1ab7874 3663 }
3664}
3665
3666/* Add the vinsn of EXPR to the VINSN_VEC. */
3667static void
3668vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3669{
3670 vinsn_attach (EXPR_VINSN (expr));
f1f41a6c 3671 vinsn_vec->safe_push (EXPR_VINSN (expr));
e1ab7874 3672}
3673
48e1416a 3674/* Free the vector representing blocked expressions. */
e1ab7874 3675static void
f1f41a6c 3676vinsn_vec_free (vinsn_vec_t &vinsn_vec)
e1ab7874 3677{
f1f41a6c 3678 vinsn_vec.release ();
e1ab7874 3679}
3680
3681/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3682
3683void sel_add_to_insn_priority (rtx insn, int amount)
3684{
3685 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3686
3687 if (sched_verbose >= 2)
48e1416a 3688 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e1ab7874 3689 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3690 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3691}
3692
48e1416a 3693/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e1ab7874 3694 true if there is something to schedule. BNDS and FENCE are current
3695 boundaries and fence, respectively. If we need to stall for some cycles
48e1416a 3696 before an expr from AV would become available, write this number to
e1ab7874 3697 *PNEED_STALL. */
3698static bool
3699fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3700 int *pneed_stall)
3701{
3702 av_set_iterator si;
3703 expr_t expr;
3704 int sched_next_worked = 0, stalled, n;
3705 static int av_max_prio, est_ticks_till_branch;
3706 int min_need_stall = -1;
3707 deps_t dc = BND_DC (BLIST_BND (bnds));
3708
3709 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3710 already scheduled. */
3711 if (av == NULL)
3712 return false;
3713
3714 /* Empty vector from the previous stuff. */
f1f41a6c 3715 if (vec_av_set.length () > 0)
3716 vec_av_set.block_remove (0, vec_av_set.length ());
e1ab7874 3717
3718 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3719 for each insn. */
f1f41a6c 3720 gcc_assert (vec_av_set.is_empty ());
e1ab7874 3721 FOR_EACH_EXPR (expr, si, av)
48e1416a 3722 {
f1f41a6c 3723 vec_av_set.safe_push (expr);
e1ab7874 3724
3725 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3726
3727 /* Adjust priority using target backend hook. */
3728 sel_target_adjust_priority (expr);
3729 }
3730
3731 /* Sort the vector. */
f1f41a6c 3732 vec_av_set.qsort (sel_rank_for_schedule);
e1ab7874 3733
3734 /* We record maximal priority of insns in av set for current instruction
3735 group. */
3736 if (FENCE_STARTS_CYCLE_P (fence))
3737 av_max_prio = est_ticks_till_branch = INT_MIN;
3738
3739 /* Filter out inappropriate expressions. Loop's direction is reversed to
f1f41a6c 3740 visit "best" instructions first. We assume that vec::unordered_remove
e1ab7874 3741 moves last element in place of one being deleted. */
f1f41a6c 3742 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
e1ab7874 3743 {
f1f41a6c 3744 expr_t expr = vec_av_set[n];
e1ab7874 3745 insn_t insn = EXPR_INSN_RTX (expr);
17435f96 3746 signed char target_available;
e1ab7874 3747 bool is_orig_reg_p = true;
3748 int need_cycles, new_prio;
c4326fd2 3749 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
e1ab7874 3750
3751 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3752 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3753 {
f1f41a6c 3754 vec_av_set.unordered_remove (n);
e1ab7874 3755 continue;
3756 }
3757
48e1416a 3758 /* Set number of sched_next insns (just in case there
e1ab7874 3759 could be several). */
3760 if (FENCE_SCHED_NEXT (fence))
3761 sched_next_worked++;
48e1416a 3762
3763 /* Check all liveness requirements and try renaming.
e1ab7874 3764 FIXME: try to minimize calls to this. */
3765 target_available = EXPR_TARGET_AVAILABLE (expr);
3766
3767 /* If insn was already scheduled on the current fence,
3768 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
a0d15f90 3769 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3770 && !fence_insn_p)
e1ab7874 3771 target_available = -1;
3772
3773 /* If the availability of the EXPR is invalidated by the insertion of
3774 bookkeeping earlier, make sure that we won't choose this expr for
3775 scheduling if it's not separable, and if it is separable, then
3776 we have to recompute the set of available registers for it. */
3777 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3778 {
f1f41a6c 3779 vec_av_set.unordered_remove (n);
e1ab7874 3780 if (sched_verbose >= 4)
3781 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3782 INSN_UID (insn));
3783 continue;
3784 }
48e1416a 3785
e1ab7874 3786 if (target_available == true)
3787 {
3788 /* Do nothing -- we can use an existing register. */
3789 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3790 }
48e1416a 3791 else if (/* Non-separable instruction will never
e1ab7874 3792 get another register. */
3793 (target_available == false
3794 && !EXPR_SEPARABLE_P (expr))
3795 /* Don't try to find a register for low-priority expression. */
f1f41a6c 3796 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
e1ab7874 3797 /* ??? FIXME: Don't try to rename data speculation. */
3798 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3799 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3800 {
f1f41a6c 3801 vec_av_set.unordered_remove (n);
e1ab7874 3802 if (sched_verbose >= 4)
48e1416a 3803 sel_print ("Expr %d has no suitable target register\n",
e1ab7874 3804 INSN_UID (insn));
c4326fd2 3805
3806 /* A fence insn should not get here. */
3807 gcc_assert (!fence_insn_p);
3808 continue;
e1ab7874 3809 }
3810
c4326fd2 3811 /* At this point a fence insn should always be available. */
3812 gcc_assert (!fence_insn_p
3813 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3814
e1ab7874 3815 /* Filter expressions that need to be renamed or speculated when
3816 pipelining, because compensating register copies or speculation
3817 checks are likely to be placed near the beginning of the loop,
3818 causing a stall. */
3819 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3820 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3821 {
3822 /* Estimation of number of cycles until loop branch for
3823 renaming/speculation to be successful. */
3824 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3825
3826 if ((int) current_loop_nest->ninsns < 9)
3827 {
f1f41a6c 3828 vec_av_set.unordered_remove (n);
e1ab7874 3829 if (sched_verbose >= 4)
3830 sel_print ("Pipelining expr %d will likely cause stall\n",
3831 INSN_UID (insn));
3832 continue;
3833 }
3834
3835 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3836 < need_n_ticks_till_branch * issue_rate / 2
3837 && est_ticks_till_branch < need_n_ticks_till_branch)
3838 {
f1f41a6c 3839 vec_av_set.unordered_remove (n);
e1ab7874 3840 if (sched_verbose >= 4)
3841 sel_print ("Pipelining expr %d will likely cause stall\n",
3842 INSN_UID (insn));
3843 continue;
3844 }
3845 }
3846
3847 /* We want to schedule speculation checks as late as possible. Discard
3848 them from av set if there are instructions with higher priority. */
3849 if (sel_insn_is_speculation_check (insn)
3850 && EXPR_PRIORITY (expr) < av_max_prio)
3851 {
3852 stalled++;
3853 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
f1f41a6c 3854 vec_av_set.unordered_remove (n);
e1ab7874 3855 if (sched_verbose >= 4)
3856 sel_print ("Delaying speculation check %d until its first use\n",
3857 INSN_UID (insn));
3858 continue;
3859 }
3860
3861 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3862 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3863 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3864
3865 /* Don't allow any insns whose data is not yet ready.
3866 Check first whether we've already tried them and failed. */
3867 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3868 {
3869 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3870 - FENCE_CYCLE (fence));
3871 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3872 est_ticks_till_branch = MAX (est_ticks_till_branch,
3873 EXPR_PRIORITY (expr) + need_cycles);
3874
3875 if (need_cycles > 0)
3876 {
3877 stalled++;
48e1416a 3878 min_need_stall = (min_need_stall < 0
e1ab7874 3879 ? need_cycles
3880 : MIN (min_need_stall, need_cycles));
f1f41a6c 3881 vec_av_set.unordered_remove (n);
e1ab7874 3882
3883 if (sched_verbose >= 4)
48e1416a 3884 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e1ab7874 3885 INSN_UID (insn),
3886 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3887 continue;
3888 }
3889 }
3890
48e1416a 3891 /* Now resort to dependence analysis to find whether EXPR might be
e1ab7874 3892 stalled due to dependencies from FENCE's context. */
3893 need_cycles = tick_check_p (expr, dc, fence);
3894 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3895
3896 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3897 est_ticks_till_branch = MAX (est_ticks_till_branch,
3898 new_prio);
3899
3900 if (need_cycles > 0)
3901 {
3902 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3903 {
3904 int new_size = INSN_UID (insn) * 3 / 2;
48e1416a 3905
3906 FENCE_READY_TICKS (fence)
e1ab7874 3907 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3908 new_size, FENCE_READY_TICKS_SIZE (fence),
3909 sizeof (int));
3910 }
48e1416a 3911 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3912 = FENCE_CYCLE (fence) + need_cycles;
3913
e1ab7874 3914 stalled++;
48e1416a 3915 min_need_stall = (min_need_stall < 0
e1ab7874 3916 ? need_cycles
3917 : MIN (min_need_stall, need_cycles));
3918
f1f41a6c 3919 vec_av_set.unordered_remove (n);
48e1416a 3920
e1ab7874 3921 if (sched_verbose >= 4)
48e1416a 3922 sel_print ("Expr %d is not ready yet until cycle %d\n",
e1ab7874 3923 INSN_UID (insn),
3924 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3925 continue;
3926 }
3927
3928 if (sched_verbose >= 4)
3929 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3930 min_need_stall = 0;
3931 }
3932
3933 /* Clear SCHED_NEXT. */
3934 if (FENCE_SCHED_NEXT (fence))
3935 {
3936 gcc_assert (sched_next_worked == 1);
2f3c9801 3937 FENCE_SCHED_NEXT (fence) = NULL;
e1ab7874 3938 }
3939
3940 /* No need to stall if this variable was not initialized. */
3941 if (min_need_stall < 0)
3942 min_need_stall = 0;
3943
f1f41a6c 3944 if (vec_av_set.is_empty ())
e1ab7874 3945 {
3946 /* We need to set *pneed_stall here, because later we skip this code
3947 when ready list is empty. */
3948 *pneed_stall = min_need_stall;
3949 return false;
3950 }
3951 else
3952 gcc_assert (min_need_stall == 0);
3953
3954 /* Sort the vector. */
f1f41a6c 3955 vec_av_set.qsort (sel_rank_for_schedule);
48e1416a 3956
e1ab7874 3957 if (sched_verbose >= 4)
3958 {
48e1416a 3959 sel_print ("Total ready exprs: %d, stalled: %d\n",
f1f41a6c 3960 vec_av_set.length (), stalled);
3961 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3962 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e1ab7874 3963 dump_expr (expr);
3964 sel_print ("\n");
3965 }
3966
3967 *pneed_stall = 0;
3968 return true;
3969}
3970
3971/* Convert a vectored and sorted av set to the ready list that
3972 the rest of the backend wants to see. */
3973static void
3974convert_vec_av_set_to_ready (void)
3975{
3976 int n;
3977 expr_t expr;
3978
3979 /* Allocate and fill the ready list from the sorted vector. */
f1f41a6c 3980 ready.n_ready = vec_av_set.length ();
e1ab7874 3981 ready.first = ready.n_ready - 1;
48e1416a 3982
e1ab7874 3983 gcc_assert (ready.n_ready > 0);
3984
3985 if (ready.n_ready > max_issue_size)
3986 {
3987 max_issue_size = ready.n_ready;
3988 sched_extend_ready_list (ready.n_ready);
3989 }
48e1416a 3990
f1f41a6c 3991 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e1ab7874 3992 {
3993 vinsn_t vi = EXPR_VINSN (expr);
3994 insn_t insn = VINSN_INSN_RTX (vi);
3995
3996 ready_try[n] = 0;
2f3c9801 3997 ready.vec[n] = insn;
e1ab7874 3998 }
3999}
4000
4001/* Initialize ready list from *AV_PTR for the max_issue () call.
4002 If any unrecognizable insn found in *AV_PTR, return it (and skip
48e1416a 4003 max_issue). BND and FENCE are current boundary and fence,
4004 respectively. If we need to stall for some cycles before an expr
e1ab7874 4005 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4006static expr_t
4007fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4008 int *pneed_stall)
4009{
4010 expr_t expr;
4011
4012 /* We do not support multiple boundaries per fence. */
4013 gcc_assert (BLIST_NEXT (bnds) == NULL);
4014
48e1416a 4015 /* Process expressions required special handling, i.e. pipelined,
e1ab7874 4016 speculative and recog() < 0 expressions first. */
4017 process_pipelined_exprs (av_ptr);
4018 process_spec_exprs (av_ptr);
4019
4020 /* A USE could be scheduled immediately. */
4021 expr = process_use_exprs (av_ptr);
4022 if (expr)
4023 {
4024 *pneed_stall = 0;
4025 return expr;
4026 }
4027
4028 /* Turn the av set to a vector for sorting. */
4029 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4030 {
4031 ready.n_ready = 0;
4032 return NULL;
4033 }
4034
4035 /* Build the final ready list. */
4036 convert_vec_av_set_to_ready ();
4037 return NULL;
4038}
4039
4040/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4041static bool
4042sel_dfa_new_cycle (insn_t insn, fence_t fence)
4043{
48e1416a 4044 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4045 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e1ab7874 4046 : FENCE_CYCLE (fence) - 1;
4047 bool res = false;
4048 int sort_p = 0;
4049
4050 if (!targetm.sched.dfa_new_cycle)
4051 return false;
4052
4053 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4054
4055 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4056 insn, last_scheduled_cycle,
4057 FENCE_CYCLE (fence), &sort_p))
4058 {
4059 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4060 advance_one_cycle (fence);
4061 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4062 res = true;
4063 }
4064
4065 return res;
4066}
4067
4068/* Invoke reorder* target hooks on the ready list. Return the number of insns
4069 we can issue. FENCE is the current fence. */
4070static int
4071invoke_reorder_hooks (fence_t fence)
4072{
4073 int issue_more;
4074 bool ran_hook = false;
4075
4076 /* Call the reorder hook at the beginning of the cycle, and call
4077 the reorder2 hook in the middle of the cycle. */
4078 if (FENCE_ISSUED_INSNS (fence) == 0)
4079 {
4080 if (targetm.sched.reorder
4081 && !SCHED_GROUP_P (ready_element (&ready, 0))
4082 && ready.n_ready > 1)
4083 {
4084 /* Don't give reorder the most prioritized insn as it can break
4085 pipelining. */
4086 if (pipelining_p)
4087 --ready.n_ready;
4088
4089 issue_more
4090 = targetm.sched.reorder (sched_dump, sched_verbose,
4091 ready_lastpos (&ready),
4092 &ready.n_ready, FENCE_CYCLE (fence));
4093
4094 if (pipelining_p)
4095 ++ready.n_ready;
4096
4097 ran_hook = true;
4098 }
4099 else
4100 /* Initialize can_issue_more for variable_issue. */
4101 issue_more = issue_rate;
4102 }
4103 else if (targetm.sched.reorder2
4104 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4105 {
4106 if (ready.n_ready == 1)
48e1416a 4107 issue_more =
e1ab7874 4108 targetm.sched.reorder2 (sched_dump, sched_verbose,
4109 ready_lastpos (&ready),
4110 &ready.n_ready, FENCE_CYCLE (fence));
4111 else
4112 {
4113 if (pipelining_p)
4114 --ready.n_ready;
4115
4116 issue_more =
4117 targetm.sched.reorder2 (sched_dump, sched_verbose,
4118 ready.n_ready
4119 ? ready_lastpos (&ready) : NULL,
4120 &ready.n_ready, FENCE_CYCLE (fence));
4121
4122 if (pipelining_p)
4123 ++ready.n_ready;
4124 }
4125
4126 ran_hook = true;
4127 }
48e1416a 4128 else
abb9c563 4129 issue_more = FENCE_ISSUE_MORE (fence);
e1ab7874 4130
4131 /* Ensure that ready list and vec_av_set are in line with each other,
4132 i.e. vec_av_set[i] == ready_element (&ready, i). */
4133 if (issue_more && ran_hook)
4134 {
4135 int i, j, n;
b24ef467 4136 rtx_insn **arr = ready.vec;
f1f41a6c 4137 expr_t *vec = vec_av_set.address ();
e1ab7874 4138
4139 for (i = 0, n = ready.n_ready; i < n; i++)
4140 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4141 {
e1ab7874 4142 for (j = i; j < n; j++)
4143 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4144 break;
4145 gcc_assert (j < n);
4146
dfcf26a5 4147 std::swap (vec[i], vec[j]);
e1ab7874 4148 }
4149 }
4150
4151 return issue_more;
4152}
4153
9d75589a 4154/* Return an EXPR corresponding to INDEX element of ready list, if
48e1416a 4155 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4156 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e1ab7874 4157 ready.vec otherwise. */
4158static inline expr_t
4159find_expr_for_ready (int index, bool follow_ready_element)
4160{
4161 expr_t expr;
4162 int real_index;
4163
4164 real_index = follow_ready_element ? ready.first - index : index;
4165
f1f41a6c 4166 expr = vec_av_set[real_index];
e1ab7874 4167 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4168
4169 return expr;
4170}
4171
4172/* Calculate insns worth trying via lookahead_guard hook. Return a number
4173 of such insns found. */
4174static int
4175invoke_dfa_lookahead_guard (void)
4176{
4177 int i, n;
48e1416a 4178 bool have_hook
e1ab7874 4179 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4180
4181 if (sched_verbose >= 2)
4182 sel_print ("ready after reorder: ");
4183
4184 for (i = 0, n = 0; i < ready.n_ready; i++)
4185 {
4186 expr_t expr;
4187 insn_t insn;
4188 int r;
4189
48e1416a 4190 /* In this loop insn is Ith element of the ready list given by
e1ab7874 4191 ready_element, not Ith element of ready.vec. */
4192 insn = ready_element (&ready, i);
48e1416a 4193
e1ab7874 4194 if (! have_hook || i == 0)
4195 r = 0;
4196 else
d9d89d92 4197 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
48e1416a 4198
e1ab7874 4199 gcc_assert (INSN_CODE (insn) >= 0);
48e1416a 4200
4201 /* Only insns with ready_try = 0 can get here
e1ab7874 4202 from fill_ready_list. */
4203 gcc_assert (ready_try [i] == 0);
4204 ready_try[i] = r;
4205 if (!r)
4206 n++;
4207
4208 expr = find_expr_for_ready (i, true);
48e1416a 4209
e1ab7874 4210 if (sched_verbose >= 2)
4211 {
4212 dump_vinsn (EXPR_VINSN (expr));
4213 sel_print (":%d; ", ready_try[i]);
4214 }
4215 }
4216
4217 if (sched_verbose >= 2)
4218 sel_print ("\n");
4219 return n;
4220}
4221
4222/* Calculate the number of privileged insns and return it. */
4223static int
4224calculate_privileged_insns (void)
4225{
4226 expr_t cur_expr, min_spec_expr = NULL;
e1ab7874 4227 int privileged_n = 0, i;
4228
4229 for (i = 0; i < ready.n_ready; i++)
4230 {
4231 if (ready_try[i])
4232 continue;
4233
4234 if (! min_spec_expr)
57ab8ec3 4235 min_spec_expr = find_expr_for_ready (i, true);
48e1416a 4236
e1ab7874 4237 cur_expr = find_expr_for_ready (i, true);
4238
4239 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4240 break;
4241
4242 ++privileged_n;
4243 }
4244
4245 if (i == ready.n_ready)
4246 privileged_n = 0;
4247
4248 if (sched_verbose >= 2)
4249 sel_print ("privileged_n: %d insns with SPEC %d\n",
4250 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4251 return privileged_n;
4252}
4253
48e1416a 4254/* Call the rest of the hooks after the choice was made. Return
e1ab7874 4255 the number of insns that still can be issued given that the current
4256 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4257 and the insn chosen for scheduling, respectively. */
4258static int
2f3c9801 4259invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
e1ab7874 4260{
4261 gcc_assert (INSN_P (best_insn));
4262
4263 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4264 sel_dfa_new_cycle (best_insn, fence);
48e1416a 4265
e1ab7874 4266 if (targetm.sched.variable_issue)
4267 {
4268 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
48e1416a 4269 issue_more =
e1ab7874 4270 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4271 issue_more);
4272 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4273 }
dd148b3a 4274 else if (!DEBUG_INSN_P (best_insn)
4275 && GET_CODE (PATTERN (best_insn)) != USE
4276 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
e1ab7874 4277 issue_more--;
4278
4279 return issue_more;
4280}
4281
30474b14 4282/* Estimate the cost of issuing INSN on DFA state STATE. */
e1ab7874 4283static int
d3ffa7b4 4284estimate_insn_cost (rtx_insn *insn, state_t state)
e1ab7874 4285{
4286 static state_t temp = NULL;
4287 int cost;
4288
4289 if (!temp)
4290 temp = xmalloc (dfa_state_size);
4291
4292 memcpy (temp, state, dfa_state_size);
4293 cost = state_transition (temp, insn);
4294
4295 if (cost < 0)
4296 return 0;
4297 else if (cost == 0)
4298 return 1;
4299 return cost;
4300}
4301
48e1416a 4302/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e1ab7874 4303 This function properly handles ASMs, USEs etc. */
4304static int
4305get_expr_cost (expr_t expr, fence_t fence)
4306{
9c4c93d0 4307 rtx_insn *insn = EXPR_INSN_RTX (expr);
e1ab7874 4308
4309 if (recog_memoized (insn) < 0)
4310 {
48e1416a 4311 if (!FENCE_STARTS_CYCLE_P (fence)
e1ab7874 4312 && INSN_ASM_P (insn))
4313 /* This is asm insn which is tryed to be issued on the
4314 cycle not first. Issue it on the next cycle. */
4315 return 1;
4316 else
4317 /* A USE insn, or something else we don't need to
4318 understand. We can't pass these directly to
4319 state_transition because it will trigger a
4320 fatal error for unrecognizable insns. */
4321 return 0;
4322 }
4323 else
30474b14 4324 return estimate_insn_cost (insn, FENCE_STATE (fence));
e1ab7874 4325}
4326
48e1416a 4327/* Find the best insn for scheduling, either via max_issue or just take
e1ab7874 4328 the most prioritized available. */
4329static int
4330choose_best_insn (fence_t fence, int privileged_n, int *index)
4331{
4332 int can_issue = 0;
4333
4334 if (dfa_lookahead > 0)
4335 {
4336 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
44ad1e56 4337 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
e1ab7874 4338 can_issue = max_issue (&ready, privileged_n,
44ad1e56 4339 FENCE_STATE (fence), true, index);
e1ab7874 4340 if (sched_verbose >= 2)
4341 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4342 can_issue, FENCE_ISSUED_INSNS (fence));
4343 }
4344 else
4345 {
4346 /* We can't use max_issue; just return the first available element. */
4347 int i;
4348
4349 for (i = 0; i < ready.n_ready; i++)
4350 {
4351 expr_t expr = find_expr_for_ready (i, true);
4352
4353 if (get_expr_cost (expr, fence) < 1)
4354 {
4355 can_issue = can_issue_more;
4356 *index = i;
4357
4358 if (sched_verbose >= 2)
4359 sel_print ("using %dth insn from the ready list\n", i + 1);
4360
4361 break;
4362 }
4363 }
4364
4365 if (i == ready.n_ready)
4366 {
4367 can_issue = 0;
4368 *index = -1;
4369 }
4370 }
4371
4372 return can_issue;
4373}
4374
48e1416a 4375/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4376 BNDS and FENCE are current boundaries and scheduling fence respectively.
4377 Return the expr found and NULL if nothing can be issued atm.
4378 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e1ab7874 4379static expr_t
4380find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4381 int *pneed_stall)
4382{
4383 expr_t best;
48e1416a 4384
e1ab7874 4385 /* Choose the best insn for scheduling via:
4386 1) sorting the ready list based on priority;
4387 2) calling the reorder hook;
4388 3) calling max_issue. */
4389 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4390 if (best == NULL && ready.n_ready > 0)
4391 {
57ab8ec3 4392 int privileged_n, index;
e1ab7874 4393
4394 can_issue_more = invoke_reorder_hooks (fence);
4395 if (can_issue_more > 0)
4396 {
48e1416a 4397 /* Try choosing the best insn until we find one that is could be
e1ab7874 4398 scheduled due to liveness restrictions on its destination register.
4399 In the future, we'd like to choose once and then just probe insns
4400 in the order of their priority. */
57ab8ec3 4401 invoke_dfa_lookahead_guard ();
e1ab7874 4402 privileged_n = calculate_privileged_insns ();
4403 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4404 if (can_issue_more)
4405 best = find_expr_for_ready (index, true);
4406 }
48e1416a 4407 /* We had some available insns, so if we can't issue them,
e1ab7874 4408 we have a stall. */
4409 if (can_issue_more == 0)
4410 {
4411 best = NULL;
4412 *pneed_stall = 1;
4413 }
4414 }
4415
4416 if (best != NULL)
4417 {
4418 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4419 can_issue_more);
08b41748 4420 if (targetm.sched.variable_issue
4421 && can_issue_more == 0)
e1ab7874 4422 *pneed_stall = 1;
4423 }
48e1416a 4424
e1ab7874 4425 if (sched_verbose >= 2)
4426 {
4427 if (best != NULL)
4428 {
4429 sel_print ("Best expression (vliw form): ");
4430 dump_expr (best);
4431 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4432 }
4433 else
4434 sel_print ("No best expr found!\n");
4435 }
4436
4437 return best;
4438}
4439\f
4440
4441/* Functions that implement the core of the scheduler. */
4442
4443
48e1416a 4444/* Emit an instruction from EXPR with SEQNO and VINSN after
e1ab7874 4445 PLACE_TO_INSERT. */
4446static insn_t
48e1416a 4447emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e1ab7874 4448 insn_t place_to_insert)
4449{
4450 /* This assert fails when we have identical instructions
4451 one of which dominates the other. In this case move_op ()
4452 finds the first instruction and doesn't search for second one.
4453 The solution would be to compute av_set after the first found
4454 insn and, if insn present in that set, continue searching.
4455 For now we workaround this issue in move_op. */
4456 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4457
4458 if (EXPR_WAS_RENAMED (expr))
4459 {
4460 unsigned regno = expr_dest_regno (expr);
48e1416a 4461
e1ab7874 4462 if (HARD_REGISTER_NUM_P (regno))
4463 {
4464 df_set_regs_ever_live (regno, true);
4465 reg_rename_tick[regno] = ++reg_rename_this_tick;
4466 }
4467 }
48e1416a 4468
4469 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e1ab7874 4470 place_to_insert);
4471}
4472
4473/* Return TRUE if BB can hold bookkeeping code. */
4474static bool
4475block_valid_for_bookkeeping_p (basic_block bb)
4476{
4477 insn_t bb_end = BB_END (bb);
4478
4479 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4480 return false;
4481
4482 if (INSN_P (bb_end))
4483 {
4484 if (INSN_SCHED_TIMES (bb_end) > 0)
4485 return false;
4486 }
4487 else
4488 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4489
4490 return true;
4491}
4492
4493/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4494 into E2->dest, except from E1->src (there may be a sequence of empty basic
4495 blocks between E1->src and E2->dest). Return found block, or NULL if new
9845d120 4496 one must be created. If LAX holds, don't assume there is a simple path
4497 from E1->src to E2->dest. */
e1ab7874 4498static basic_block
9845d120 4499find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e1ab7874 4500{
4501 basic_block candidate_block = NULL;
4502 edge e;
4503
4504 /* Loop over edges from E1 to E2, inclusive. */
34154e27 4505 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4506 EDGE_SUCC (e->dest, 0))
e1ab7874 4507 {
4508 if (EDGE_COUNT (e->dest->preds) == 2)
4509 {
4510 if (candidate_block == NULL)
4511 candidate_block = (EDGE_PRED (e->dest, 0) == e
4512 ? EDGE_PRED (e->dest, 1)->src
4513 : EDGE_PRED (e->dest, 0)->src);
4514 else
4515 /* Found additional edge leading to path from e1 to e2
4516 from aside. */
4517 return NULL;
4518 }
4519 else if (EDGE_COUNT (e->dest->preds) > 2)
4520 /* Several edges leading to path from e1 to e2 from aside. */
4521 return NULL;
4522
4523 if (e == e2)
9845d120 4524 return ((!lax || candidate_block)
4525 && block_valid_for_bookkeeping_p (candidate_block)
e1ab7874 4526 ? candidate_block
4527 : NULL);
9845d120 4528
4529 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4530 return NULL;
e1ab7874 4531 }
9845d120 4532
4533 if (lax)
4534 return NULL;
4535
e1ab7874 4536 gcc_unreachable ();
4537}
4538
4539/* Create new basic block for bookkeeping code for path(s) incoming into
4540 E2->dest, except from E1->src. Return created block. */
4541static basic_block
4542create_block_for_bookkeeping (edge e1, edge e2)
4543{
4544 basic_block new_bb, bb = e2->dest;
4545
4546 /* Check that we don't spoil the loop structure. */
4547 if (current_loop_nest)
4548 {
4549 basic_block latch = current_loop_nest->latch;
4550
4551 /* We do not split header. */
4552 gcc_assert (e2->dest != current_loop_nest->header);
4553
4554 /* We do not redirect the only edge to the latch block. */
4555 gcc_assert (e1->dest != latch
4556 || !single_pred_p (latch)
4557 || e1 != single_pred_edge (latch));
4558 }
4559
4560 /* Split BB to insert BOOK_INSN there. */
4561 new_bb = sched_split_block (bb, NULL);
4562
4563 /* Move note_list from the upper bb. */
4564 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
e97a173d 4565 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4566 BB_NOTE_LIST (bb) = NULL;
e1ab7874 4567
4568 gcc_assert (e2->dest == bb);
4569
4570 /* Skip block for bookkeeping copy when leaving E1->src. */
4571 if (e1->flags & EDGE_FALLTHRU)
4572 sel_redirect_edge_and_branch_force (e1, new_bb);
4573 else
4574 sel_redirect_edge_and_branch (e1, new_bb);
4575
4576 gcc_assert (e1->dest == new_bb);
4577 gcc_assert (sel_bb_empty_p (bb));
4578
9845d120 4579 /* To keep basic block numbers in sync between debug and non-debug
4580 compilations, we have to rotate blocks here. Consider that we
4581 started from (a,b)->d, (c,d)->e, and d contained only debug
4582 insns. It would have been removed before if the debug insns
4583 weren't there, so we'd have split e rather than d. So what we do
4584 now is to swap the block numbers of new_bb and
4585 single_succ(new_bb) == e, so that the insns that were in e before
4586 get the new block number. */
4587
4588 if (MAY_HAVE_DEBUG_INSNS)
4589 {
4590 basic_block succ;
4591 insn_t insn = sel_bb_head (new_bb);
4592 insn_t last;
4593
4594 if (DEBUG_INSN_P (insn)
4595 && single_succ_p (new_bb)
4596 && (succ = single_succ (new_bb))
34154e27 4597 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
9845d120 4598 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4599 {
4600 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4601 insn = NEXT_INSN (insn);
4602
4603 if (insn == last)
4604 {
4605 sel_global_bb_info_def gbi;
4606 sel_region_bb_info_def rbi;
9845d120 4607
4608 if (sched_verbose >= 2)
4609 sel_print ("Swapping block ids %i and %i\n",
4610 new_bb->index, succ->index);
4611
dfcf26a5 4612 std::swap (new_bb->index, succ->index);
9845d120 4613
f64d2ca4 4614 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4615 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
9845d120 4616
4617 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4618 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4619 sizeof (gbi));
4620 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4621
4622 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4623 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4624 sizeof (rbi));
4625 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4626
dfcf26a5 4627 std::swap (BLOCK_TO_BB (new_bb->index),
4628 BLOCK_TO_BB (succ->index));
9845d120 4629
dfcf26a5 4630 std::swap (CONTAINING_RGN (new_bb->index),
4631 CONTAINING_RGN (succ->index));
9845d120 4632
dfcf26a5 4633 for (int i = 0; i < current_nr_blocks; i++)
9845d120 4634 if (BB_TO_BLOCK (i) == succ->index)
4635 BB_TO_BLOCK (i) = new_bb->index;
4636 else if (BB_TO_BLOCK (i) == new_bb->index)
4637 BB_TO_BLOCK (i) = succ->index;
4638
4639 FOR_BB_INSNS (new_bb, insn)
4640 if (INSN_P (insn))
4641 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4642
4643 FOR_BB_INSNS (succ, insn)
4644 if (INSN_P (insn))
4645 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4646
6ef9bbe0 4647 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4648 bitmap_set_bit (code_motion_visited_blocks, succ->index);
9845d120 4649
4650 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4651 && LABEL_P (BB_HEAD (succ)));
4652
4653 if (sched_verbose >= 4)
4654 sel_print ("Swapping code labels %i and %i\n",
4655 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4656 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4657
dfcf26a5 4658 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4659 CODE_LABEL_NUMBER (BB_HEAD (succ)));
9845d120 4660 }
4661 }
4662 }
4663
e1ab7874 4664 return bb;
4665}
4666
4667/* Return insn after which we must insert bookkeeping code for path(s) incoming
f550c9b3 4668 into E2->dest, except from E1->src. If the returned insn immediately
4669 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
e1ab7874 4670static insn_t
f550c9b3 4671find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
e1ab7874 4672{
4673 insn_t place_to_insert;
4674 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4675 create new basic block, but insert bookkeeping there. */
9845d120 4676 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e1ab7874 4677
9845d120 4678 if (book_block)
4679 {
4680 place_to_insert = BB_END (book_block);
4681
4682 /* Don't use a block containing only debug insns for
4683 bookkeeping, this causes scheduling differences between debug
4684 and non-debug compilations, for the block would have been
4685 removed already. */
4686 if (DEBUG_INSN_P (place_to_insert))
4687 {
ff88d074 4688 rtx_insn *insn = sel_bb_head (book_block);
e1ab7874 4689
9845d120 4690 while (insn != place_to_insert &&
4691 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4692 insn = NEXT_INSN (insn);
4693
4694 if (insn == place_to_insert)
4695 book_block = NULL;
4696 }
4697 }
4698
4699 if (!book_block)
4700 {
4701 book_block = create_block_for_bookkeeping (e1, e2);
4702 place_to_insert = BB_END (book_block);
4703 if (sched_verbose >= 9)
4704 sel_print ("New block is %i, split from bookkeeping block %i\n",
4705 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4706 }
4707 else
4708 {
4709 if (sched_verbose >= 9)
4710 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4711 }
e1ab7874 4712
f550c9b3 4713 *fence_to_rewind = NULL;
4714 /* If basic block ends with a jump, insert bookkeeping code right before it.
4715 Notice if we are crossing a fence when taking PREV_INSN. */
e1ab7874 4716 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
f550c9b3 4717 {
4718 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4719 place_to_insert = PREV_INSN (place_to_insert);
4720 }
e1ab7874 4721
4722 return place_to_insert;
4723}
4724
4725/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4726 for JOIN_POINT. */
4727static int
4728find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4729{
4730 int seqno;
e1ab7874 4731
4732 /* Check if we are about to insert bookkeeping copy before a jump, and use
4733 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
9ed997be 4734 rtx_insn *next = NEXT_INSN (place_to_insert);
48e1416a 4735 if (INSN_P (next)
e1ab7874 4736 && JUMP_P (next)
4737 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
961d3eb8 4738 {
4739 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4740 seqno = INSN_SEQNO (next);
4741 }
e1ab7874 4742 else if (INSN_SEQNO (join_point) > 0)
4743 seqno = INSN_SEQNO (join_point);
4744 else
961d3eb8 4745 {
4746 seqno = get_seqno_by_preds (place_to_insert);
4747
48e1416a 4748 /* Sometimes the fences can move in such a way that there will be
4749 no instructions with positive seqno around this bookkeeping.
961d3eb8 4750 This means that there will be no way to get to it by a regular
4751 fence movement. Never mind because we pick up such pieces for
4752 rescheduling anyways, so any positive value will do for now. */
4753 if (seqno < 0)
4754 {
4755 gcc_assert (pipelining_p);
4756 seqno = 1;
4757 }
4758 }
48e1416a 4759
e1ab7874 4760 gcc_assert (seqno > 0);
4761 return seqno;
4762}
4763
4764/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4765 NEW_SEQNO to it. Return created insn. */
4766static insn_t
4767emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4768{
9c4c93d0 4769 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
e1ab7874 4770
4771 vinsn_t new_vinsn
4772 = create_vinsn_from_insn_rtx (new_insn_rtx,
4773 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4774
4775 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4776 place_to_insert);
4777
4778 INSN_SCHED_TIMES (new_insn) = 0;
4779 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4780
4781 return new_insn;
4782}
4783
4784/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4785 E2->dest, except from E1->src (there may be a sequence of empty blocks
4786 between E1->src and E2->dest). Return block containing the copy.
4787 All scheduler data is initialized for the newly created insn. */
4788static basic_block
4789generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4790{
4791 insn_t join_point, place_to_insert, new_insn;
4792 int new_seqno;
4793 bool need_to_exchange_data_sets;
f550c9b3 4794 fence_t fence_to_rewind;
e1ab7874 4795
4796 if (sched_verbose >= 4)
4797 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4798 e2->dest->index);
4799
4800 join_point = sel_bb_head (e2->dest);
f550c9b3 4801 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
e1ab7874 4802 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4803 need_to_exchange_data_sets
4804 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4805
4806 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4807
f550c9b3 4808 if (fence_to_rewind)
4809 FENCE_INSN (fence_to_rewind) = new_insn;
4810
e1ab7874 4811 /* When inserting bookkeeping insn in new block, av sets should be
4812 following: old basic block (that now holds bookkeeping) data sets are
4813 the same as was before generation of bookkeeping, and new basic block
4814 (that now hold all other insns of old basic block) data sets are
4815 invalid. So exchange data sets for these basic blocks as sel_split_block
4816 mistakenly exchanges them in this case. Cannot do it earlier because
4817 when single instruction is added to new basic block it should hold NULL
4818 lv_set. */
4819 if (need_to_exchange_data_sets)
4820 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4821 BLOCK_FOR_INSN (join_point));
4822
4823 stat_bookkeeping_copies++;
4824 return BLOCK_FOR_INSN (new_insn);
4825}
4826
48e1416a 4827/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e1ab7874 4828 on FENCE, but we are unable to copy them. */
4829static void
4830remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4831{
4832 expr_t expr;
4833 av_set_iterator i;
4834
48e1416a 4835 /* An expression does not need bookkeeping if it is available on all paths
4836 from current block to original block and current block dominates
4837 original block. We check availability on all paths by examining
4838 EXPR_SPEC; this is not equivalent, because it may be positive even
4839 if expr is available on all paths (but if expr is not available on
e1ab7874 4840 any path, EXPR_SPEC will be positive). */
4841
4842 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4843 {
4844 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4845 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4846 && (EXPR_SPEC (expr)
4847 || !EXPR_ORIG_BB_INDEX (expr)
4848 || !dominated_by_p (CDI_DOMINATORS,
f5a6b05f 4849 BASIC_BLOCK_FOR_FN (cfun,
4850 EXPR_ORIG_BB_INDEX (expr)),
e1ab7874 4851 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4852 {
4853 if (sched_verbose >= 4)
4854 sel_print ("Expr %d removed because it would need bookkeeping, which "
4855 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4856 av_set_iter_remove (&i);
4857 }
4858 }
4859}
4860
4861/* Moving conditional jump through some instructions.
4862
4863 Consider example:
4864
4865 ... <- current scheduling point
4866 NOTE BASIC BLOCK: <- bb header
4867 (p8) add r14=r14+0x9;;
4868 (p8) mov [r14]=r23
4869 (!p8) jump L1;;
4870 NOTE BASIC BLOCK:
4871 ...
4872
48e1416a 4873 We can schedule jump one cycle earlier, than mov, because they cannot be
e1ab7874 4874 executed together as their predicates are mutually exclusive.
4875
48e1416a 4876 This is done in this way: first, new fallthrough basic block is created
4877 after jump (it is always can be done, because there already should be a
e1ab7874 4878 fallthrough block, where control flow goes in case of predicate being true -
48e1416a 4879 in our example; otherwise there should be a dependence between those
4880 instructions and jump and we cannot schedule jump right now);
4881 next, all instructions between jump and current scheduling point are moved
e1ab7874 4882 to this new block. And the result is this:
4883
4884 NOTE BASIC BLOCK:
4885 (!p8) jump L1 <- current scheduling point
4886 NOTE BASIC BLOCK: <- bb header
4887 (p8) add r14=r14+0x9;;
4888 (p8) mov [r14]=r23
4889 NOTE BASIC BLOCK:
4890 ...
4891*/
4892static void
2f3c9801 4893move_cond_jump (rtx_insn *insn, bnd_t bnd)
e1ab7874 4894{
4895 edge ft_edge;
c6cff213 4896 basic_block block_from, block_next, block_new, block_bnd, bb;
9c4c93d0 4897 rtx_insn *next, *prev, *link, *head;
e1ab7874 4898
e1ab7874 4899 block_from = BLOCK_FOR_INSN (insn);
c6cff213 4900 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4901 prev = BND_TO (bnd);
e1ab7874 4902
c6cff213 4903 /* Moving of jump should not cross any other jumps or beginnings of new
4904 basic blocks. The only exception is when we move a jump through
4905 mutually exclusive insns along fallthru edges. */
382ecba7 4906 if (flag_checking && block_from != block_bnd)
c6cff213 4907 {
4908 bb = block_from;
4909 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4910 link = PREV_INSN (link))
4911 {
4912 if (INSN_P (link))
4913 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4914 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4915 {
4916 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4917 bb = BLOCK_FOR_INSN (link);
4918 }
4919 }
4920 }
e1ab7874 4921
4922 /* Jump is moved to the boundary. */
e1ab7874 4923 next = PREV_INSN (insn);
2f3c9801 4924 BND_TO (bnd) = insn;
e1ab7874 4925
7f58c05e 4926 ft_edge = find_fallthru_edge_from (block_from);
e1ab7874 4927 block_next = ft_edge->dest;
4928 /* There must be a fallthrough block (or where should go
4929 control flow in case of false jump predicate otherwise?). */
4930 gcc_assert (block_next);
4931
4932 /* Create new empty basic block after source block. */
4933 block_new = sel_split_edge (ft_edge);
4934 gcc_assert (block_new->next_bb == block_next
4935 && block_from->next_bb == block_new);
4936
c6cff213 4937 /* Move all instructions except INSN to BLOCK_NEW. */
4938 bb = block_bnd;
4939 head = BB_HEAD (block_new);
4940 while (bb != block_from->next_bb)
e1ab7874 4941 {
9c4c93d0 4942 rtx_insn *from, *to;
c6cff213 4943 from = bb == block_bnd ? prev : sel_bb_head (bb);
4944 to = bb == block_from ? next : sel_bb_end (bb);
e1ab7874 4945
c6cff213 4946 /* The jump being moved can be the first insn in the block.
4947 In this case we don't have to move anything in this block. */
4948 if (NEXT_INSN (to) != from)
4949 {
4950 reorder_insns (from, to, head);
4951
4952 for (link = to; link != head; link = PREV_INSN (link))
4953 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4954 head = to;
4955 }
e1ab7874 4956
c6cff213 4957 /* Cleanup possibly empty blocks left. */
4958 block_next = bb->next_bb;
4959 if (bb != block_from)
81d1ad0f 4960 tidy_control_flow (bb, false);
c6cff213 4961 bb = block_next;
4962 }
e1ab7874 4963
4964 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4965 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e1ab7874 4966
4967 gcc_assert (!sel_bb_empty_p (block_from)
4968 && !sel_bb_empty_p (block_new));
4969
4970 /* Update data sets for BLOCK_NEW to represent that INSN and
4971 instructions from the other branch of INSN is no longer
4972 available at BLOCK_NEW. */
4973 BB_AV_LEVEL (block_new) = global_level;
4974 gcc_assert (BB_LV_SET (block_new) == NULL);
4975 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4976 update_data_sets (sel_bb_head (block_new));
4977
4978 /* INSN is a new basic block header - so prepare its data
4979 structures and update availability and liveness sets. */
4980 update_data_sets (insn);
4981
4982 if (sched_verbose >= 4)
4983 sel_print ("Moving jump %d\n", INSN_UID (insn));
4984}
4985
4986/* Remove nops generated during move_op for preventing removal of empty
4987 basic blocks. */
4988static void
9845d120 4989remove_temp_moveop_nops (bool full_tidying)
e1ab7874 4990{
4991 int i;
4992 insn_t insn;
48e1416a 4993
f1f41a6c 4994 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
e1ab7874 4995 {
4996 gcc_assert (INSN_NOP_P (insn));
9845d120 4997 return_nop_to_pool (insn, full_tidying);
e1ab7874 4998 }
4999
5000 /* Empty the vector. */
f1f41a6c 5001 if (vec_temp_moveop_nops.length () > 0)
5002 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
e1ab7874 5003}
5004
5005/* Records the maximal UID before moving up an instruction. Used for
5006 distinguishing between bookkeeping copies and original insns. */
5007static int max_uid_before_move_op = 0;
5008
91d7a2f9 5009/* When true, we're always scheduling next insn on the already scheduled code
5010 to get the right insn data for the following bundling or other passes. */
5011static int force_next_insn = 0;
5012
e1ab7874 5013/* Remove from AV_VLIW_P all instructions but next when debug counter
5014 tells us so. Next instruction is fetched from BNDS. */
5015static void
5016remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5017{
91d7a2f9 5018 if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
e1ab7874 5019 /* Leave only the next insn in av_vliw. */
5020 {
5021 av_set_iterator av_it;
5022 expr_t expr;
5023 bnd_t bnd = BLIST_BND (bnds);
5024 insn_t next = BND_TO (bnd);
5025
5026 gcc_assert (BLIST_NEXT (bnds) == NULL);
5027
5028 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5029 if (EXPR_INSN_RTX (expr) != next)
5030 av_set_iter_remove (&av_it);
5031 }
5032}
5033
48e1416a 5034/* Compute available instructions on BNDS. FENCE is the current fence. Write
e1ab7874 5035 the computed set to *AV_VLIW_P. */
5036static void
5037compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5038{
5039 if (sched_verbose >= 2)
5040 {
5041 sel_print ("Boundaries: ");
5042 dump_blist (bnds);
5043 sel_print ("\n");
5044 }
5045
5046 for (; bnds; bnds = BLIST_NEXT (bnds))
5047 {
5048 bnd_t bnd = BLIST_BND (bnds);
5049 av_set_t av1_copy;
5050 insn_t bnd_to = BND_TO (bnd);
5051
5052 /* Rewind BND->TO to the basic block header in case some bookkeeping
5053 instructions were inserted before BND->TO and it needs to be
5054 adjusted. */
5055 if (sel_bb_head_p (bnd_to))
5056 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5057 else
5058 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5059 {
5060 bnd_to = PREV_INSN (bnd_to);
5061 if (sel_bb_head_p (bnd_to))
5062 break;
5063 }
5064
5065 if (BND_TO (bnd) != bnd_to)
5066 {
5067 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5068 FENCE_INSN (fence) = bnd_to;
2f3c9801 5069 BND_TO (bnd) = bnd_to;
e1ab7874 5070 }
5071
5072 av_set_clear (&BND_AV (bnd));
5073 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5074
5075 av_set_clear (&BND_AV1 (bnd));
5076 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5077
5078 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
48e1416a 5079
e1ab7874 5080 av1_copy = av_set_copy (BND_AV1 (bnd));
5081 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5082 }
5083
5084 if (sched_verbose >= 2)
5085 {
5086 sel_print ("Available exprs (vliw form): ");
5087 dump_av_set (*av_vliw_p);
5088 sel_print ("\n");
5089 }
5090}
5091
48e1416a 5092/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5093 expression. When FOR_MOVEOP is true, also replace the register of
e1ab7874 5094 expressions found with the register from EXPR_VLIW. */
5095static av_set_t
5096find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5097{
5098 av_set_t expr_seq = NULL;
5099 expr_t expr;
5100 av_set_iterator i;
48e1416a 5101
e1ab7874 5102 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5103 {
5104 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5105 {
5106 if (for_moveop)
5107 {
48e1416a 5108 /* The sequential expression has the right form to pass
5109 to move_op except when renaming happened. Put the
e1ab7874 5110 correct register in EXPR then. */
5111 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5112 {
5113 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5114 {
5115 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5116 stat_renamed_scheduled++;
5117 }
48e1416a 5118 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5119 This is needed when renaming came up with original
e1ab7874 5120 register. */
48e1416a 5121 else if (EXPR_TARGET_AVAILABLE (expr)
e1ab7874 5122 != EXPR_TARGET_AVAILABLE (expr_vliw))
5123 {
5124 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5125 EXPR_TARGET_AVAILABLE (expr) = 1;
5126 }
5127 }
5128 if (EXPR_WAS_SUBSTITUTED (expr))
5129 stat_substitutions_total++;
5130 }
5131
5132 av_set_add (&expr_seq, expr);
48e1416a 5133
5134 /* With substitution inside insn group, it is possible
5135 that more than one expression in expr_seq will correspond
5136 to expr_vliw. In this case, choose one as the attempt to
e1ab7874 5137 move both leads to miscompiles. */
5138 break;
5139 }
5140 }
5141
5142 if (for_moveop && sched_verbose >= 2)
5143 {
5144 sel_print ("Best expression(s) (sequential form): ");
5145 dump_av_set (expr_seq);
5146 sel_print ("\n");
5147 }
48e1416a 5148
e1ab7874 5149 return expr_seq;
5150}
5151
5152
5153/* Move nop to previous block. */
5154static void ATTRIBUTE_UNUSED
5155move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5156{
9ed997be 5157 insn_t prev_insn, next_insn;
e1ab7874 5158
48e1416a 5159 gcc_assert (sel_bb_head_p (nop)
e1ab7874 5160 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
9ed997be 5161 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
e1ab7874 5162 prev_insn = sel_bb_end (prev_bb);
5163 next_insn = NEXT_INSN (nop);
5164 gcc_assert (prev_insn != NULL_RTX
5165 && PREV_INSN (note) == prev_insn);
5166
4a57a2e8 5167 SET_NEXT_INSN (prev_insn) = nop;
5168 SET_PREV_INSN (nop) = prev_insn;
e1ab7874 5169
4a57a2e8 5170 SET_PREV_INSN (note) = nop;
5171 SET_NEXT_INSN (note) = next_insn;
e1ab7874 5172
4a57a2e8 5173 SET_NEXT_INSN (nop) = note;
5174 SET_PREV_INSN (next_insn) = note;
e1ab7874 5175
26bb3cb2 5176 BB_END (prev_bb) = nop;
e1ab7874 5177 BLOCK_FOR_INSN (nop) = prev_bb;
5178}
5179
5180/* Prepare a place to insert the chosen expression on BND. */
5181static insn_t
5182prepare_place_to_insert (bnd_t bnd)
5183{
5184 insn_t place_to_insert;
5185
5186 /* Init place_to_insert before calling move_op, as the later
5187 can possibly remove BND_TO (bnd). */
5188 if (/* If this is not the first insn scheduled. */
5189 BND_PTR (bnd))
5190 {
5191 /* Add it after last scheduled. */
5192 place_to_insert = ILIST_INSN (BND_PTR (bnd));
9845d120 5193 if (DEBUG_INSN_P (place_to_insert))
5194 {
5195 ilist_t l = BND_PTR (bnd);
5196 while ((l = ILIST_NEXT (l)) &&
5197 DEBUG_INSN_P (ILIST_INSN (l)))
5198 ;
5199 if (!l)
5200 place_to_insert = NULL;
5201 }
e1ab7874 5202 }
5203 else
9845d120 5204 place_to_insert = NULL;
5205
5206 if (!place_to_insert)
e1ab7874 5207 {
5208 /* Add it before BND_TO. The difference is in the
5209 basic block, where INSN will be added. */
5210 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5211 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5212 == BLOCK_FOR_INSN (BND_TO (bnd)));
5213 }
5214
5215 return place_to_insert;
5216}
5217
48e1416a 5218/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e1ab7874 5219 Return the expression to emit in C_EXPR. */
de353418 5220static bool
48e1416a 5221move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e1ab7874 5222 av_set_t expr_seq, expr_t c_expr)
5223{
de353418 5224 bool b, should_move;
e1ab7874 5225 unsigned book_uid;
5226 bitmap_iterator bi;
5227 int n_bookkeeping_copies_before_moveop;
5228
5229 /* Make a move. This call will remove the original operation,
5230 insert all necessary bookkeeping instructions and update the
5231 data sets. After that all we have to do is add the operation
5232 at before BND_TO (BND). */
5233 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5234 max_uid_before_move_op = get_max_uid ();
5235 bitmap_clear (current_copies);
5236 bitmap_clear (current_originators);
5237
48e1416a 5238 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
de353418 5239 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e1ab7874 5240
48e1416a 5241 /* We should be able to find the expression we've chosen for
e1ab7874 5242 scheduling. */
de353418 5243 gcc_assert (b);
48e1416a 5244
e1ab7874 5245 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5246 stat_insns_needed_bookkeeping++;
48e1416a 5247
e1ab7874 5248 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5249 {
dca13bd7 5250 unsigned uid;
5251 bitmap_iterator bi;
5252
e1ab7874 5253 /* We allocate these bitmaps lazily. */
5254 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5255 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
48e1416a 5256
5257 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e1ab7874 5258 current_originators);
dca13bd7 5259
5260 /* Transitively add all originators' originators. */
5261 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5262 if (INSN_ORIGINATORS_BY_UID (uid))
5263 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5264 INSN_ORIGINATORS_BY_UID (uid));
e1ab7874 5265 }
de353418 5266
5267 return should_move;
e1ab7874 5268}
5269
5270
5271/* Debug a DFA state as an array of bytes. */
5272static void
5273debug_state (state_t state)
5274{
5275 unsigned char *p;
5276 unsigned int i, size = dfa_state_size;
5277
5278 sel_print ("state (%u):", size);
5279 for (i = 0, p = (unsigned char *) state; i < size; i++)
5280 sel_print (" %d", p[i]);
5281 sel_print ("\n");
5282}
5283
48e1416a 5284/* Advance state on FENCE with INSN. Return true if INSN is
e1ab7874 5285 an ASM, and we should advance state once more. */
5286static bool
5287advance_state_on_fence (fence_t fence, insn_t insn)
5288{
5289 bool asm_p;
5290
5291 if (recog_memoized (insn) >= 0)
5292 {
5293 int res;
5294 state_t temp_state = alloca (dfa_state_size);
48e1416a 5295
e1ab7874 5296 gcc_assert (!INSN_ASM_P (insn));
5297 asm_p = false;
5298
5299 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5300 res = state_transition (FENCE_STATE (fence), insn);
5301 gcc_assert (res < 0);
5302
5303 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5304 {
5305 FENCE_ISSUED_INSNS (fence)++;
5306
5307 /* We should never issue more than issue_rate insns. */
5308 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5309 gcc_unreachable ();
5310 }
48e1416a 5311 }
e1ab7874 5312 else
5313 {
48e1416a 5314 /* This could be an ASM insn which we'd like to schedule
e1ab7874 5315 on the next cycle. */
5316 asm_p = INSN_ASM_P (insn);
5317 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5318 advance_one_cycle (fence);
5319 }
5320
5321 if (sched_verbose >= 2)
5322 debug_state (FENCE_STATE (fence));
9845d120 5323 if (!DEBUG_INSN_P (insn))
5324 FENCE_STARTS_CYCLE_P (fence) = 0;
abb9c563 5325 FENCE_ISSUE_MORE (fence) = can_issue_more;
e1ab7874 5326 return asm_p;
5327}
5328
5329/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5330 is nonzero if we need to stall after issuing INSN. */
5331static void
5332update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5333{
5334 bool asm_p;
48e1416a 5335
e1ab7874 5336 /* First, reflect that something is scheduled on this fence. */
5337 asm_p = advance_state_on_fence (fence, insn);
5338 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
f1f41a6c 5339 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
e1ab7874 5340 if (SCHED_GROUP_P (insn))
5341 {
5342 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5343 SCHED_GROUP_P (insn) = 0;
5344 }
5345 else
2f3c9801 5346 FENCE_SCHED_NEXT (fence) = NULL;
e1ab7874 5347 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5348 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5349
5350 /* Set instruction scheduling info. This will be used in bundling,
5351 pipelining, tick computations etc. */
5352 ++INSN_SCHED_TIMES (insn);
5353 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5354 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5355 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5356 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5357
5358 /* This does not account for adjust_cost hooks, just add the biggest
48e1416a 5359 constant the hook may add to the latency. TODO: make this
e1ab7874 5360 a target dependent constant. */
48e1416a 5361 INSN_READY_CYCLE (insn)
5362 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e1ab7874 5363 ? 1
5364 : maximal_insn_latency (insn) + 1);
5365
5366 /* Change these fields last, as they're used above. */
5367 FENCE_AFTER_STALL_P (fence) = 0;
5368 if (asm_p || need_stall)
5369 advance_one_cycle (fence);
48e1416a 5370
e1ab7874 5371 /* Indicate that we've scheduled something on this fence. */
5372 FENCE_SCHEDULED_P (fence) = true;
5373 scheduled_something_on_previous_fence = true;
5374
5375 /* Print debug information when insn's fields are updated. */
5376 if (sched_verbose >= 2)
5377 {
5378 sel_print ("Scheduling insn: ");
5379 dump_insn_1 (insn, 1);
5380 sel_print ("\n");
5381 }
5382}
5383
9845d120 5384/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5385 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5386 return it. */
e1ab7874 5387static blist_t *
9845d120 5388update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e1ab7874 5389 blist_t *bnds_tailp)
5390{
5391 succ_iterator si;
5392 insn_t succ;
5393
5394 advance_deps_context (BND_DC (bnd), insn);
48e1416a 5395 FOR_EACH_SUCC_1 (succ, si, insn,
e1ab7874 5396 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5397 {
5398 ilist_t ptr = ilist_copy (BND_PTR (bnd));
48e1416a 5399
e1ab7874 5400 ilist_add (&ptr, insn);
9845d120 5401
5402 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5403 && is_ineligible_successor (succ, ptr))
5404 {
5405 ilist_clear (&ptr);
5406 continue;
5407 }
5408
5409 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5410 {
5411 if (sched_verbose >= 9)
5412 sel_print ("Updating fence insn from %i to %i\n",
5413 INSN_UID (insn), INSN_UID (succ));
5414 FENCE_INSN (fence) = succ;
5415 }
e1ab7874 5416 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5417 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5418 }
48e1416a 5419
e1ab7874 5420 blist_remove (bndsp);
5421 return bnds_tailp;
5422}
5423
5424/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5425static insn_t
5426schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5427{
5428 av_set_t expr_seq;
5429 expr_t c_expr = XALLOCA (expr_def);
5430 insn_t place_to_insert;
5431 insn_t insn;
de353418 5432 bool should_move;
e1ab7874 5433
5434 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5435
5436 /* In case of scheduling a jump skipping some other instructions,
48e1416a 5437 prepare CFG. After this, jump is at the boundary and can be
e1ab7874 5438 scheduled as usual insn by MOVE_OP. */
5439 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5440 {
5441 insn = EXPR_INSN_RTX (expr_vliw);
48e1416a 5442
e1ab7874 5443 /* Speculative jumps are not handled. */
48e1416a 5444 if (insn != BND_TO (bnd)
e1ab7874 5445 && !sel_insn_is_speculation_check (insn))
5446 move_cond_jump (insn, bnd);
5447 }
5448
e1ab7874 5449 /* Find a place for C_EXPR to schedule. */
5450 place_to_insert = prepare_place_to_insert (bnd);
de353418 5451 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e1ab7874 5452 clear_expr (c_expr);
48e1416a 5453
5454 /* Add the instruction. The corner case to care about is when
5455 the expr_seq set has more than one expr, and we chose the one that
5456 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e1ab7874 5457 we can't use it. Generate the new vinsn. */
5458 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5459 {
5460 vinsn_t vinsn_new;
48e1416a 5461
e1ab7874 5462 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5463 change_vinsn_in_expr (expr_vliw, vinsn_new);
de353418 5464 should_move = false;
e1ab7874 5465 }
de353418 5466 if (should_move)
5467 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5468 else
48e1416a 5469 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e1ab7874 5470 place_to_insert);
e1ab7874 5471
5472 /* Return the nops generated for preserving of data sets back
5473 into pool. */
5474 if (INSN_NOP_P (place_to_insert))
9845d120 5475 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5476 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e1ab7874 5477
5478 av_set_clear (&expr_seq);
48e1416a 5479
5480 /* Save the expression scheduled so to reset target availability if we'll
e1ab7874 5481 meet it later on the same fence. */
5482 if (EXPR_WAS_RENAMED (expr_vliw))
5483 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5484
5485 /* Check that the recent movement didn't destroyed loop
5486 structure. */
5487 gcc_assert (!pipelining_p
5488 || current_loop_nest == NULL
5489 || loop_latch_edge (current_loop_nest));
5490 return insn;
5491}
5492
5493/* Stall for N cycles on FENCE. */
5494static void
5495stall_for_cycles (fence_t fence, int n)
5496{
5497 int could_more;
48e1416a 5498
e1ab7874 5499 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5500 while (n--)
5501 advance_one_cycle (fence);
5502 if (could_more)
5503 FENCE_AFTER_STALL_P (fence) = 1;
5504}
5505
48e1416a 5506/* Gather a parallel group of insns at FENCE and assign their seqno
5507 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e1ab7874 5508 list for later recalculation of seqnos. */
5509static void
5510fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5511{
5512 blist_t bnds = NULL, *bnds_tailp;
5513 av_set_t av_vliw = NULL;
5514 insn_t insn = FENCE_INSN (fence);
5515
5516 if (sched_verbose >= 2)
48e1416a 5517 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e1ab7874 5518 INSN_UID (insn), FENCE_CYCLE (fence));
5519
5520 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5521 bnds_tailp = &BLIST_NEXT (bnds);
5522 set_target_context (FENCE_TC (fence));
abb9c563 5523 can_issue_more = FENCE_ISSUE_MORE (fence);
e1ab7874 5524 target_bb = INSN_BB (insn);
5525
5526 /* Do while we can add any operation to the current group. */
5527 do
5528 {
5529 blist_t *bnds_tailp1, *bndsp;
5530 expr_t expr_vliw;
4055a556 5531 int need_stall = false;
08b41748 5532 int was_stall = 0, scheduled_insns = 0;
e1ab7874 5533 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5534 int max_stall = pipelining_p ? 1 : 3;
9845d120 5535 bool last_insn_was_debug = false;
5536 bool was_debug_bb_end_p = false;
5537
e1ab7874 5538 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5539 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5540 remove_insns_for_debug (bnds, &av_vliw);
5541
5542 /* Return early if we have nothing to schedule. */
5543 if (av_vliw == NULL)
5544 break;
5545
5546 /* Choose the best expression and, if needed, destination register
5547 for it. */
5548 do
5549 {
5550 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
08b41748 5551 if (! expr_vliw && need_stall)
e1ab7874 5552 {
5553 /* All expressions required a stall. Do not recompute av sets
5554 as we'll get the same answer (modulo the insns between
5555 the fence and its boundary, which will not be available for
08b41748 5556 pipelining).
5557 If we are going to stall for too long, break to recompute av
e1ab7874 5558 sets and bring more insns for pipelining. */
08b41748 5559 was_stall++;
e1ab7874 5560 if (need_stall <= 3)
5561 stall_for_cycles (fence, need_stall);
5562 else
5563 {
5564 stall_for_cycles (fence, 1);
5565 break;
5566 }
5567 }
5568 }
5569 while (! expr_vliw && need_stall);
48e1416a 5570
e1ab7874 5571 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5572 if (!expr_vliw)
5573 {
5574 av_set_clear (&av_vliw);
5575 break;
5576 }
5577
5578 bndsp = &bnds;
5579 bnds_tailp1 = bnds_tailp;
5580
5581 do
48e1416a 5582 /* This code will be executed only once until we'd have several
e1ab7874 5583 boundaries per fence. */
5584 {
5585 bnd_t bnd = BLIST_BND (*bndsp);
5586
5587 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5588 {
5589 bndsp = &BLIST_NEXT (*bndsp);
5590 continue;
5591 }
48e1416a 5592
e1ab7874 5593 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
9845d120 5594 last_insn_was_debug = DEBUG_INSN_P (insn);
5595 if (last_insn_was_debug)
5596 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e1ab7874 5597 update_fence_and_insn (fence, insn, need_stall);
9845d120 5598 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e1ab7874 5599
5600 /* Add insn to the list of scheduled on this cycle instructions. */
5601 ilist_add (*scheduled_insns_tailpp, insn);
5602 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5603 }
5604 while (*bndsp != *bnds_tailp1);
5605
5606 av_set_clear (&av_vliw);
9845d120 5607 if (!last_insn_was_debug)
5608 scheduled_insns++;
e1ab7874 5609
5610 /* We currently support information about candidate blocks only for
5611 one 'target_bb' block. Hence we can't schedule after jump insn,
5612 as this will bring two boundaries and, hence, necessity to handle
5613 information for two or more blocks concurrently. */
9845d120 5614 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
48e1416a 5615 || (was_stall
5616 && (was_stall >= max_stall
e1ab7874 5617 || scheduled_insns >= max_insns)))
5618 break;
5619 }
5620 while (bnds);
5621
5622 gcc_assert (!FENCE_BNDS (fence));
48e1416a 5623
e1ab7874 5624 /* Update boundaries of the FENCE. */
5625 while (bnds)
5626 {
5627 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5628
5629 if (ptr)
5630 {
5631 insn = ILIST_INSN (ptr);
5632
5633 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5634 ilist_add (&FENCE_BNDS (fence), insn);
5635 }
48e1416a 5636
e1ab7874 5637 blist_remove (&bnds);
5638 }
5639
5640 /* Update target context on the fence. */
5641 reset_target_context (FENCE_TC (fence), false);
5642}
5643
5644/* All exprs in ORIG_OPS must have the same destination register or memory.
5645 Return that destination. */
5646static rtx
5647get_dest_from_orig_ops (av_set_t orig_ops)
5648{
5649 rtx dest = NULL_RTX;
5650 av_set_iterator av_it;
5651 expr_t expr;
5652 bool first_p = true;
5653
5654 FOR_EACH_EXPR (expr, av_it, orig_ops)
5655 {
5656 rtx x = EXPR_LHS (expr);
5657
5658 if (first_p)
5659 {
5660 first_p = false;
5661 dest = x;
5662 }
5663 else
5664 gcc_assert (dest == x
5665 || (dest != NULL_RTX && x != NULL_RTX
5666 && rtx_equal_p (dest, x)));
5667 }
5668
5669 return dest;
5670}
5671
5672/* Update data sets for the bookkeeping block and record those expressions
5673 which become no longer available after inserting this bookkeeping. */
5674static void
5675update_and_record_unavailable_insns (basic_block book_block)
5676{
5677 av_set_iterator i;
5678 av_set_t old_av_set = NULL;
5679 expr_t cur_expr;
2f3c9801 5680 rtx_insn *bb_end = sel_bb_end (book_block);
e1ab7874 5681
48e1416a 5682 /* First, get correct liveness in the bookkeeping block. The problem is
e1ab7874 5683 the range between the bookeeping insn and the end of block. */
5684 update_liveness_on_insn (bb_end);
5685 if (control_flow_insn_p (bb_end))
5686 update_liveness_on_insn (PREV_INSN (bb_end));
5687
5688 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5689 fence above, where we may choose to schedule an insn which is
5690 actually blocked from moving up with the bookkeeping we create here. */
5691 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5692 {
5693 old_av_set = av_set_copy (BB_AV_SET (book_block));
5694 update_data_sets (sel_bb_head (book_block));
48e1416a 5695
e1ab7874 5696 /* Traverse all the expressions in the old av_set and check whether
5697 CUR_EXPR is in new AV_SET. */
5698 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5699 {
48e1416a 5700 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e1ab7874 5701 EXPR_VINSN (cur_expr));
5702
48e1416a 5703 if (! new_expr
5704 /* In this case, we can just turn off the E_T_A bit, but we can't
e1ab7874 5705 represent this information with the current vector. */
48e1416a 5706 || EXPR_TARGET_AVAILABLE (new_expr)
e1ab7874 5707 != EXPR_TARGET_AVAILABLE (cur_expr))
5708 /* Unfortunately, the below code could be also fired up on
846800d7 5709 separable insns, e.g. when moving insns through the new
5710 speculation check as in PR 53701. */
e1ab7874 5711 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5712 }
5713
5714 av_set_clear (&old_av_set);
5715 }
5716}
5717
48e1416a 5718/* The main effect of this function is that sparams->c_expr is merged
e1ab7874 5719 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5720 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
48e1416a 5721 lparams->c_expr_merged is copied back to sparams->c_expr after all
5722 successors has been traversed. lparams->c_expr_local is an expr allocated
5723 on stack in the caller function, and is used if there is more than one
5724 successor.
e1ab7874 5725
5726 SUCC is one of the SUCCS_NORMAL successors of INSN,
5727 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5728 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5729static void
48e1416a 5730move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5731 insn_t succ ATTRIBUTE_UNUSED,
5732 int moveop_drv_call_res,
e1ab7874 5733 cmpd_local_params_p lparams, void *static_params)
5734{
5735 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5736
5737 /* Nothing to do, if original expr wasn't found below. */
5738 if (moveop_drv_call_res != 1)
5739 return;
5740
5741 /* If this is a first successor. */
5742 if (!lparams->c_expr_merged)
5743 {
5744 lparams->c_expr_merged = sparams->c_expr;
5745 sparams->c_expr = lparams->c_expr_local;
5746 }
5747 else
5748 {
5749 /* We must merge all found expressions to get reasonable
5750 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5751 do so then we can first find the expr with epsilon
5752 speculation success probability and only then with the
5753 good probability. As a result the insn will get epsilon
5754 probability and will never be scheduled because of
5755 weakness_cutoff in find_best_expr.
5756
48e1416a 5757 We call merge_expr_data here instead of merge_expr
e1ab7874 5758 because due to speculation C_EXPR and X may have the
5759 same insns with different speculation types. And as of
48e1416a 5760 now such insns are considered non-equal.
e1ab7874 5761
48e1416a 5762 However, EXPR_SCHED_TIMES is different -- we must get
5763 SCHED_TIMES from a real insn, not a bookkeeping copy.
e1ab7874 5764 We force this here. Instead, we may consider merging
48e1416a 5765 SCHED_TIMES to the maximum instead of minimum in the
e1ab7874 5766 below function. */
5767 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5768
5769 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5770 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5771 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5772
5773 clear_expr (sparams->c_expr);
5774 }
5775}
5776
5777/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5778
5779 SUCC is one of the SUCCS_NORMAL successors of INSN,
5780 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5781 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5782 STATIC_PARAMS contain USED_REGS set. */
5783static void
48e1416a 5784fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5785 int moveop_drv_call_res,
5786 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e1ab7874 5787 void *static_params)
5788{
5789 regset succ_live;
5790 fur_static_params_p sparams = (fur_static_params_p) static_params;
5791
5792 /* Here we compute live regsets only for branches that do not lie
48e1416a 5793 on the code motion paths. These branches correspond to value
e1ab7874 5794 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5795 for such branches code_motion_path_driver is not called. */
5796 if (moveop_drv_call_res != 0)
5797 return;
5798
5799 /* Mark all registers that do not meet the following condition:
5800 (3) not live on the other path of any conditional branch
5801 that is passed by the operation, in case original
5802 operations are not present on both paths of the
5803 conditional branch. */
5804 succ_live = compute_live (succ);
5805 IOR_REG_SET (sparams->used_regs, succ_live);
5806}
5807
5808/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5809 into SP->CEXPR. */
5810static void
5811move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
48e1416a 5812{
e1ab7874 5813 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5814
5815 sp->c_expr = lp->c_expr_merged;
5816}
5817
5818/* Track bookkeeping copies created, insns scheduled, and blocks for
5819 rescheduling when INSN is found by move_op. */
5820static void
71ce7f59 5821track_scheduled_insns_and_blocks (rtx_insn *insn)
e1ab7874 5822{
5823 /* Even if this insn can be a copy that will be removed during current move_op,
5824 we still need to count it as an originator. */
5825 bitmap_set_bit (current_originators, INSN_UID (insn));
5826
6ef9bbe0 5827 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e1ab7874 5828 {
5829 /* Note that original block needs to be rescheduled, as we pulled an
5830 instruction out of it. */
5831 if (INSN_SCHED_TIMES (insn) > 0)
5832 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
9845d120 5833 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e1ab7874 5834 num_insns_scheduled++;
5835 }
e1ab7874 5836
5837 /* For instructions we must immediately remove insn from the
5838 stream, so subsequent update_data_sets () won't include this
5839 insn into av_set.
5840 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5841 if (INSN_UID (insn) > max_uid_before_move_op)
5842 stat_bookkeeping_copies--;
5843}
5844
48e1416a 5845/* Emit a register-register copy for INSN if needed. Return true if
e1ab7874 5846 emitted one. PARAMS is the move_op static parameters. */
5847static bool
2f3c9801 5848maybe_emit_renaming_copy (rtx_insn *insn,
e1ab7874 5849 moveop_static_params_p params)
5850{
5851 bool insn_emitted = false;
f7d03b30 5852 rtx cur_reg;
e1ab7874 5853
f4d3c071 5854 /* Bail out early when expression cannot be renamed at all. */
f7d03b30 5855 if (!EXPR_SEPARABLE_P (params->c_expr))
5856 return false;
5857
5858 cur_reg = expr_dest_reg (params->c_expr);
5859 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e1ab7874 5860
5861 /* If original operation has expr and the register chosen for
5862 that expr is not original operation's dest reg, substitute
5863 operation's right hand side with the register chosen. */
f7d03b30 5864 if (REGNO (params->dest) != REGNO (cur_reg))
e1ab7874 5865 {
5866 insn_t reg_move_insn, reg_move_insn_rtx;
48e1416a 5867
5868 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e1ab7874 5869 params->dest);
48e1416a 5870 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5871 INSN_EXPR (insn),
5872 INSN_SEQNO (insn),
e1ab7874 5873 insn);
5874 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5875 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
48e1416a 5876
e1ab7874 5877 insn_emitted = true;
5878 params->was_renamed = true;
5879 }
48e1416a 5880
e1ab7874 5881 return insn_emitted;
5882}
5883
48e1416a 5884/* Emit a speculative check for INSN speculated as EXPR if needed.
5885 Return true if we've emitted one. PARAMS is the move_op static
e1ab7874 5886 parameters. */
5887static bool
2f3c9801 5888maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
e1ab7874 5889 moveop_static_params_p params)
5890{
5891 bool insn_emitted = false;
5892 insn_t x;
5893 ds_t check_ds;
5894
5895 check_ds = get_spec_check_type_for_insn (insn, expr);
5896 if (check_ds != 0)
5897 {
5898 /* A speculation check should be inserted. */
5899 x = create_speculation_check (params->c_expr, check_ds, insn);
5900 insn_emitted = true;
5901 }
5902 else
5903 {
5904 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5905 x = insn;
5906 }
48e1416a 5907
e1ab7874 5908 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5909 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5910 return insn_emitted;
5911}
5912
48e1416a 5913/* Handle transformations that leave an insn in place of original
5914 insn such as renaming/speculation. Return true if one of such
e1ab7874 5915 transformations actually happened, and we have emitted this insn. */
5916static bool
2f3c9801 5917handle_emitting_transformations (rtx_insn *insn, expr_t expr,
e1ab7874 5918 moveop_static_params_p params)
5919{
5920 bool insn_emitted = false;
5921
5922 insn_emitted = maybe_emit_renaming_copy (insn, params);
5923 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5924
5925 return insn_emitted;
48e1416a 5926}
e1ab7874 5927
9845d120 5928/* If INSN is the only insn in the basic block (not counting JUMP,
5929 which may be a jump to next insn, and DEBUG_INSNs), we want to
5930 leave a NOP there till the return to fill_insns. */
5931
5932static bool
ff88d074 5933need_nop_to_preserve_insn_bb (rtx_insn *insn)
e1ab7874 5934{
9845d120 5935 insn_t bb_head, bb_end, bb_next, in_next;
e1ab7874 5936 basic_block bb = BLOCK_FOR_INSN (insn);
5937
e1ab7874 5938 bb_head = sel_bb_head (bb);
5939 bb_end = sel_bb_end (bb);
e1ab7874 5940
9845d120 5941 if (bb_head == bb_end)
5942 return true;
5943
5944 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5945 bb_head = NEXT_INSN (bb_head);
5946
5947 if (bb_head == bb_end)
5948 return true;
5949
5950 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5951 bb_end = PREV_INSN (bb_end);
5952
5953 if (bb_head == bb_end)
5954 return true;
5955
5956 bb_next = NEXT_INSN (bb_head);
5957 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5958 bb_next = NEXT_INSN (bb_next);
5959
5960 if (bb_next == bb_end && JUMP_P (bb_end))
5961 return true;
5962
5963 in_next = NEXT_INSN (insn);
5964 while (DEBUG_INSN_P (in_next))
5965 in_next = NEXT_INSN (in_next);
5966
5967 if (IN_CURRENT_FENCE_P (in_next))
5968 return true;
5969
5970 return false;
5971}
5972
5973/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5974 is not removed but reused when INSN is re-emitted. */
5975static void
2f3c9801 5976remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
9845d120 5977{
e1ab7874 5978 /* If there's only one insn in the BB, make sure that a nop is
5979 inserted into it, so the basic block won't disappear when we'll
5980 delete INSN below with sel_remove_insn. It should also survive
48e1416a 5981 till the return to fill_insns. */
9845d120 5982 if (need_nop_to_preserve_insn_bb (insn))
e1ab7874 5983 {
9845d120 5984 insn_t nop = get_nop_from_pool (insn);
e1ab7874 5985 gcc_assert (INSN_NOP_P (nop));
f1f41a6c 5986 vec_temp_moveop_nops.safe_push (nop);
e1ab7874 5987 }
5988
5989 sel_remove_insn (insn, only_disconnect, false);
5990}
5991
5992/* This function is called when original expr is found.
48e1416a 5993 INSN - current insn traversed, EXPR - the corresponding expr found.
e1ab7874 5994 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5995 is static parameters of move_op. */
5996static void
48e1416a 5997move_op_orig_expr_found (insn_t insn, expr_t expr,
5998 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e1ab7874 5999 void *static_params)
6000{
d5897457 6001 bool only_disconnect;
e1ab7874 6002 moveop_static_params_p params = (moveop_static_params_p) static_params;
48e1416a 6003
e1ab7874 6004 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6005 track_scheduled_insns_and_blocks (insn);
d5897457 6006 handle_emitting_transformations (insn, expr, params);
6007 only_disconnect = params->uid == INSN_UID (insn);
de353418 6008
6009 /* Mark that we've disconnected an insn. */
6010 if (only_disconnect)
6011 params->uid = -1;
e1ab7874 6012 remove_insn_from_stream (insn, only_disconnect);
6013}
6014
6015/* The function is called when original expr is found.
6016 INSN - current insn traversed, EXPR - the corresponding expr found,
6017 crosses_call and original_insns in STATIC_PARAMS are updated. */
6018static void
6019fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6020 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6021 void *static_params)
6022{
6023 fur_static_params_p params = (fur_static_params_p) static_params;
6024 regset tmp;
6025
6026 if (CALL_P (insn))
6027 params->crosses_call = true;
6028
6029 def_list_add (params->original_insns, insn, params->crosses_call);
6030
6031 /* Mark the registers that do not meet the following condition:
48e1416a 6032 (2) not among the live registers of the point
6033 immediately following the first original operation on
e1ab7874 6034 a given downward path, except for the original target
6035 register of the operation. */
6036 tmp = get_clear_regset_from_pool ();
6037 compute_live_below_insn (insn, tmp);
6038 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6039 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6040 IOR_REG_SET (params->used_regs, tmp);
6041 return_regset_to_pool (tmp);
6042
6043 /* (*1) We need to add to USED_REGS registers that are read by
6044 INSN's lhs. This may lead to choosing wrong src register.
6045 E.g. (scheduling const expr enabled):
6046
6047 429: ax=0x0 <- Can't use AX for this expr (0x0)
6048 433: dx=[bp-0x18]
6049 427: [ax+dx+0x1]=ax
6050 REG_DEAD: ax
6051 168: di=dx
6052 REG_DEAD: dx
6053 */
48e1416a 6054 /* FIXME: see comment above and enable MEM_P
e1ab7874 6055 in vinsn_separable_p. */
6056 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6057 || !MEM_P (INSN_LHS (insn)));
6058}
6059
6060/* This function is called on the ascending pass, before returning from
6061 current basic block. */
6062static void
48e1416a 6063move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e1ab7874 6064 void *static_params)
6065{
6066 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6067 basic_block book_block = NULL;
6068
48e1416a 6069 /* When we have removed the boundary insn for scheduling, which also
e1ab7874 6070 happened to be the end insn in its bb, we don't need to update sets. */
48e1416a 6071 if (!lparams->removed_last_insn
e1ab7874 6072 && lparams->e1
6073 && sel_bb_head_p (insn))
6074 {
6075 /* We should generate bookkeeping code only if we are not at the
6076 top level of the move_op. */
6077 if (sel_num_cfg_preds_gt_1 (insn))
6078 book_block = generate_bookkeeping_insn (sparams->c_expr,
6079 lparams->e1, lparams->e2);
6080 /* Update data sets for the current insn. */
6081 update_data_sets (insn);
6082 }
48e1416a 6083
e1ab7874 6084 /* If bookkeeping code was inserted, we need to update av sets of basic
48e1416a 6085 block that received bookkeeping. After generation of bookkeeping insn,
e1ab7874 6086 bookkeeping block does not contain valid av set because we are not following
48e1416a 6087 the original algorithm in every detail with regards to e.g. renaming
e1ab7874 6088 simple reg-reg copies. Consider example:
48e1416a 6089
e1ab7874 6090 bookkeeping block scheduling fence
6091 \ /
6092 \ join /
6093 ----------
6094 | |
6095 ----------
6096 / \
6097 / \
6098 r1 := r2 r1 := r3
6099
48e1416a 6100 We try to schedule insn "r1 := r3" on the current
e1ab7874 6101 scheduling fence. Also, note that av set of bookkeeping block
6102 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6103 been scheduled, the CFG is as follows:
6104
6105 r1 := r3 r1 := r3
6106 bookkeeping block scheduling fence
6107 \ /
6108 \ join /
6109 ----------
6110 | |
6111 ----------
6112 / \
6113 / \
6114 r1 := r2
6115
6116 Here, insn "r1 := r3" was scheduled at the current scheduling point
6117 and bookkeeping code was generated at the bookeeping block. This
6118 way insn "r1 := r2" is no longer available as a whole instruction
6119 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
48e1416a 6120 This situation is handled by calling update_data_sets.
e1ab7874 6121
6122 Since update_data_sets is called only on the bookkeeping block, and
48e1416a 6123 it also may have predecessors with av_sets, containing instructions that
e1ab7874 6124 are no longer available, we save all such expressions that become
6125 unavailable during data sets update on the bookkeeping block in
48e1416a 6126 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6127 expressions for scheduling. This allows us to avoid recomputation of
e1ab7874 6128 av_sets outside the code motion path. */
48e1416a 6129
e1ab7874 6130 if (book_block)
6131 update_and_record_unavailable_insns (book_block);
6132
6133 /* If INSN was previously marked for deletion, it's time to do it. */
6134 if (lparams->removed_last_insn)
6135 insn = PREV_INSN (insn);
48e1416a 6136
e1ab7874 6137 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6138 kill a block with a single nop in which the insn should be emitted. */
6139 if (lparams->e1)
6140 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6141}
6142
6143/* This function is called on the ascending pass, before returning from the
6144 current basic block. */
6145static void
48e1416a 6146fur_at_first_insn (insn_t insn,
6147 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e1ab7874 6148 void *static_params ATTRIBUTE_UNUSED)
6149{
6150 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6151 || AV_LEVEL (insn) == -1);
6152}
6153
6154/* Called on the backward stage of recursion to call moveup_expr for insn
6155 and sparams->c_expr. */
6156static void
6157move_op_ascend (insn_t insn, void *static_params)
6158{
6159 enum MOVEUP_EXPR_CODE res;
6160 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6161
6162 if (! INSN_NOP_P (insn))
6163 {
6164 res = moveup_expr_cached (sparams->c_expr, insn, false);
6165 gcc_assert (res != MOVEUP_EXPR_NULL);
6166 }
6167
6168 /* Update liveness for this insn as it was invalidated. */
6169 update_liveness_on_insn (insn);
6170}
6171
48e1416a 6172/* This function is called on enter to the basic block.
6173 Returns TRUE if this block already have been visited and
e1ab7874 6174 code_motion_path_driver should return 1, FALSE otherwise. */
6175static int
48e1416a 6176fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e1ab7874 6177 void *static_params, bool visited_p)
6178{
6179 fur_static_params_p sparams = (fur_static_params_p) static_params;
6180
6181 if (visited_p)
6182 {
6183 /* If we have found something below this block, there should be at
6184 least one insn in ORIGINAL_INSNS. */
6185 gcc_assert (*sparams->original_insns);
6186
6187 /* Adjust CROSSES_CALL, since we may have come to this block along
6188 different path. */
6189 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6190 |= sparams->crosses_call;
6191 }
6192 else
6193 local_params->old_original_insns = *sparams->original_insns;
6194
6195 return 1;
6196}
6197
6198/* Same as above but for move_op. */
6199static int
48e1416a 6200move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6201 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e1ab7874 6202 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6203{
6204 if (visited_p)
6205 return -1;
6206 return 1;
6207}
6208
48e1416a 6209/* This function is called while descending current basic block if current
e1ab7874 6210 insn is not the original EXPR we're searching for.
6211
48e1416a 6212 Return value: FALSE, if code_motion_path_driver should perform a local
e1ab7874 6213 cleanup and return 0 itself;
6214 TRUE, if code_motion_path_driver should continue. */
6215static bool
6216move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6217 void *static_params)
6218{
6219 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6220
e1ab7874 6221 sparams->failed_insn = insn;
e1ab7874 6222
6223 /* If we're scheduling separate expr, in order to generate correct code
48e1416a 6224 we need to stop the search at bookkeeping code generated with the
e1ab7874 6225 same destination register or memory. */
6226 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6227 return false;
6228 return true;
6229}
6230
48e1416a 6231/* This function is called while descending current basic block if current
e1ab7874 6232 insn is not the original EXPR we're searching for.
6233
6234 Return value: TRUE (code_motion_path_driver should continue). */
6235static bool
6236fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6237{
6238 bool mutexed;
6239 expr_t r;
6240 av_set_iterator avi;
6241 fur_static_params_p sparams = (fur_static_params_p) static_params;
6242
6243 if (CALL_P (insn))
6244 sparams->crosses_call = true;
9845d120 6245 else if (DEBUG_INSN_P (insn))
6246 return true;
e1ab7874 6247
6248 /* If current insn we are looking at cannot be executed together
6249 with original insn, then we can skip it safely.
6250
6251 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6252 INSN = (!p6) r14 = r14 + 1;
6253
6254 Here we can schedule ORIG_OP with lhs = r14, though only
6255 looking at the set of used and set registers of INSN we must
6256 forbid it. So, add set/used in INSN registers to the
6257 untouchable set only if there is an insn in ORIG_OPS that can
6258 affect INSN. */
6259 mutexed = true;
6260 FOR_EACH_EXPR (r, avi, orig_ops)
6261 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6262 {
6263 mutexed = false;
6264 break;
6265 }
6266
6267 /* Mark all registers that do not meet the following condition:
6268 (1) Not set or read on any path from xi to an instance of the
6269 original operation. */
6270 if (!mutexed)
6271 {
6272 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6273 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6274 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6275 }
6276
6277 return true;
6278}
6279
6280/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6281struct code_motion_path_driver_info_def move_op_hooks = {
6282 move_op_on_enter,
6283 move_op_orig_expr_found,
6284 move_op_orig_expr_not_found,
6285 move_op_merge_succs,
6286 move_op_after_merge_succs,
6287 move_op_ascend,
6288 move_op_at_first_insn,
6289 SUCCS_NORMAL,
6290 "move_op"
6291};
6292
48e1416a 6293/* Hooks and data to perform find_used_regs operations
e1ab7874 6294 with code_motion_path_driver. */
6295struct code_motion_path_driver_info_def fur_hooks = {
6296 fur_on_enter,
6297 fur_orig_expr_found,
6298 fur_orig_expr_not_found,
6299 fur_merge_succs,
6300 NULL, /* fur_after_merge_succs */
6301 NULL, /* fur_ascend */
6302 fur_at_first_insn,
6303 SUCCS_ALL,
6304 "find_used_regs"
6305};
6306
6307/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
48e1416a 6308 code_motion_path_driver is called recursively. Original operation
6309 was found at least on one path that is starting with one of INSN's
e1ab7874 6310 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6311 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
48e1416a 6312 of either move_op or find_used_regs depending on the caller.
e1ab7874 6313
6314 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6315 know for sure at this point. */
6316static int
48e1416a 6317code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e1ab7874 6318 ilist_t path, void *static_params)
6319{
6320 int res = 0;
6321 succ_iterator succ_i;
2f3c9801 6322 insn_t succ;
e1ab7874 6323 basic_block bb;
6324 int old_index;
6325 unsigned old_succs;
6326
6327 struct cmpd_local_params lparams;
6328 expr_def _x;
6329
6330 lparams.c_expr_local = &_x;
6331 lparams.c_expr_merged = NULL;
6332
6333 /* We need to process only NORMAL succs for move_op, and collect live
48e1416a 6334 registers from ALL branches (including those leading out of the
6335 region) for find_used_regs.
e1ab7874 6336
6337 In move_op, there can be a case when insn's bb number has changed
48e1416a 6338 due to created bookkeeping. This happens very rare, as we need to
6339 move expression from the beginning to the end of the same block.
6340 Rescan successors in this case. */
e1ab7874 6341
6342 rescan:
6343 bb = BLOCK_FOR_INSN (insn);
48e1416a 6344 old_index = bb->index;
e1ab7874 6345 old_succs = EDGE_COUNT (bb->succs);
48e1416a 6346
e1ab7874 6347 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6348 {
6349 int b;
6350
6351 lparams.e1 = succ_i.e1;
6352 lparams.e2 = succ_i.e2;
6353
6354 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6355 current region). */
6356 if (succ_i.current_flags == SUCCS_NORMAL)
48e1416a 6357 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e1ab7874 6358 static_params);
6359 else
6360 b = 0;
6361
6362 /* Merge c_expres found or unify live register sets from different
6363 successors. */
6364 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6365 static_params);
6366 if (b == 1)
6367 res = b;
6368 else if (b == -1 && res != 1)
6369 res = b;
6370
6371 /* We have simplified the control flow below this point. In this case,
91b338ea 6372 the iterator becomes invalid. We need to try again.
6373 If we have removed the insn itself, it could be only an
6374 unconditional jump. Thus, do not rescan but break immediately --
6375 we have already visited the only successor block. */
6376 if (!BLOCK_FOR_INSN (insn))
6377 {
6378 if (sched_verbose >= 6)
6379 sel_print ("Not doing rescan: already visited the only successor"
6380 " of block %d\n", old_index);
6381 break;
6382 }
e1ab7874 6383 if (BLOCK_FOR_INSN (insn)->index != old_index
6384 || EDGE_COUNT (bb->succs) != old_succs)
8ff642e9 6385 {
91b338ea 6386 if (sched_verbose >= 6)
6387 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6388 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
8ff642e9 6389 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6390 goto rescan;
6391 }
e1ab7874 6392 }
6393
48e1416a 6394 /* Here, RES==1 if original expr was found at least for one of the
e1ab7874 6395 successors. After the loop, RES may happen to have zero value
48e1416a 6396 only if at some point the expr searched is present in av_set, but is
6397 not found below. In most cases, this situation is an error.
e1ab7874 6398 The exception is when the original operation is blocked by
6399 bookkeeping generated for another fence or for another path in current
6400 move_op. */
382ecba7 6401 gcc_checking_assert (res == 1
6402 || (res == 0
6403 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6404 || res == -1);
48e1416a 6405
e1ab7874 6406 /* Merge data, clean up, etc. */
de353418 6407 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e1ab7874 6408 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6409
6410 return res;
6411}
6412
6413
48e1416a 6414/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6415 is the pointer to the av set with expressions we were looking for,
e1ab7874 6416 PATH_P is the pointer to the traversed path. */
6417static inline void
6418code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6419{
6420 ilist_remove (path_p);
6421 av_set_clear (orig_ops_p);
6422}
6423
48e1416a 6424/* The driver function that implements move_op or find_used_regs
6425 functionality dependent whether code_motion_path_driver_INFO is set to
6426 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e1ab7874 6427 of code (CFG traversal etc) that are shared among both functions. INSN
6428 is the insn we're starting the search from, ORIG_OPS are the expressions
6429 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6430 parameters of the driver, and STATIC_PARAMS are static parameters of
48e1416a 6431 the caller.
e1ab7874 6432
6433 Returns whether original instructions were found. Note that top-level
6434 code_motion_path_driver always returns true. */
de353418 6435static int
48e1416a 6436code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6437 cmpd_local_params_p local_params_in,
e1ab7874 6438 void *static_params)
6439{
6440 expr_t expr = NULL;
6441 basic_block bb = BLOCK_FOR_INSN (insn);
8da4fe0d 6442 insn_t first_insn, original_insn, bb_tail, before_first;
e1ab7874 6443 bool removed_last_insn = false;
6444
6445 if (sched_verbose >= 6)
6446 {
6447 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6448 dump_insn (insn);
6449 sel_print (",");
6450 dump_av_set (orig_ops);
6451 sel_print (")\n");
6452 }
6453
6454 gcc_assert (orig_ops);
6455
6456 /* If no original operations exist below this insn, return immediately. */
6457 if (is_ineligible_successor (insn, path))
6458 {
6459 if (sched_verbose >= 6)
6460 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6461 return false;
6462 }
48e1416a 6463
e1ab7874 6464 /* The block can have invalid av set, in which case it was created earlier
6465 during move_op. Return immediately. */
6466 if (sel_bb_head_p (insn))
6467 {
6468 if (! AV_SET_VALID_P (insn))
6469 {
6470 if (sched_verbose >= 6)
6471 sel_print ("Returned from block %d as it had invalid av set\n",
6472 bb->index);
6473 return false;
6474 }
6475
6476 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6477 {
6478 /* We have already found an original operation on this branch, do not
6479 go any further and just return TRUE here. If we don't stop here,
67cf9b55 6480 function can have exponential behavior even on the small code
e1ab7874 6481 with many different paths (e.g. with data speculation and
6482 recovery blocks). */
6483 if (sched_verbose >= 6)
6484 sel_print ("Block %d already visited in this traversal\n", bb->index);
6485 if (code_motion_path_driver_info->on_enter)
48e1416a 6486 return code_motion_path_driver_info->on_enter (insn,
e1ab7874 6487 local_params_in,
48e1416a 6488 static_params,
e1ab7874 6489 true);
6490 }
6491 }
48e1416a 6492
e1ab7874 6493 if (code_motion_path_driver_info->on_enter)
6494 code_motion_path_driver_info->on_enter (insn, local_params_in,
6495 static_params, false);
6496 orig_ops = av_set_copy (orig_ops);
6497
6498 /* Filter the orig_ops set. */
6499 if (AV_SET_VALID_P (insn))
c53624fb 6500 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
e1ab7874 6501
6502 /* If no more original ops, return immediately. */
6503 if (!orig_ops)
6504 {
6505 if (sched_verbose >= 6)
6506 sel_print ("No intersection with av set of block %d\n", bb->index);
6507 return false;
6508 }
6509
6510 /* For non-speculative insns we have to leave only one form of the
48e1416a 6511 original operation, because if we don't, we may end up with
e1ab7874 6512 different C_EXPRes and, consequently, with bookkeepings for different
6513 expression forms along the same code motion path. That may lead to
48e1416a 6514 generation of incorrect code. So for each code motion we stick to
6515 the single form of the instruction, except for speculative insns
6516 which we need to keep in different forms with all speculation
e1ab7874 6517 types. */
6518 av_set_leave_one_nonspec (&orig_ops);
6519
6520 /* It is not possible that all ORIG_OPS are filtered out. */
6521 gcc_assert (orig_ops);
6522
6523 /* It is enough to place only heads and tails of visited basic blocks into
6524 the PATH. */
6525 ilist_add (&path, insn);
8da4fe0d 6526 first_insn = original_insn = insn;
e1ab7874 6527 bb_tail = sel_bb_end (bb);
6528
6529 /* Descend the basic block in search of the original expr; this part
48e1416a 6530 corresponds to the part of the original move_op procedure executed
e1ab7874 6531 before the recursive call. */
6532 for (;;)
6533 {
6534 /* Look at the insn and decide if it could be an ancestor of currently
6535 scheduling operation. If it is so, then the insn "dest = op" could
6536 either be replaced with "dest = reg", because REG now holds the result
6537 of OP, or just removed, if we've scheduled the insn as a whole.
6538
6539 If this insn doesn't contain currently scheduling OP, then proceed
6540 with searching and look at its successors. Operations we're searching
48e1416a 6541 for could have changed when moving up through this insn via
e1ab7874 6542 substituting. In this case, perform unsubstitution on them first.
6543
6544 When traversing the DAG below this insn is finished, insert
6545 bookkeeping code, if the insn is a joint point, and remove
6546 leftovers. */
6547
6548 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6549 if (expr)
6550 {
6551 insn_t last_insn = PREV_INSN (insn);
6552
6553 /* We have found the original operation. */
6554 if (sched_verbose >= 6)
6555 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6556
48e1416a 6557 code_motion_path_driver_info->orig_expr_found
e1ab7874 6558 (insn, expr, local_params_in, static_params);
6559
6560 /* Step back, so on the way back we'll start traversing from the
48e1416a 6561 previous insn (or we'll see that it's bb_note and skip that
e1ab7874 6562 loop). */
6563 if (insn == first_insn)
6564 {
6565 first_insn = NEXT_INSN (last_insn);
6566 removed_last_insn = sel_bb_end_p (last_insn);
6567 }
6568 insn = last_insn;
6569 break;
6570 }
6571 else
6572 {
6573 /* We haven't found the original expr, continue descending the basic
6574 block. */
48e1416a 6575 if (code_motion_path_driver_info->orig_expr_not_found
e1ab7874 6576 (insn, orig_ops, static_params))
6577 {
48e1416a 6578 /* Av set ops could have been changed when moving through this
e1ab7874 6579 insn. To find them below it, we have to un-substitute them. */
6580 undo_transformations (&orig_ops, insn);
6581 }
6582 else
6583 {
6584 /* Clean up and return, if the hook tells us to do so. It may
48e1416a 6585 happen if we've encountered the previously created
e1ab7874 6586 bookkeeping. */
6587 code_motion_path_driver_cleanup (&orig_ops, &path);
6588 return -1;
6589 }
6590
6591 gcc_assert (orig_ops);
6592 }
6593
6594 /* Stop at insn if we got to the end of BB. */
6595 if (insn == bb_tail)
6596 break;
6597
6598 insn = NEXT_INSN (insn);
6599 }
6600
48e1416a 6601 /* Here INSN either points to the insn before the original insn (may be
e1ab7874 6602 bb_note, if original insn was a bb_head) or to the bb_end. */
6603 if (!expr)
6604 {
6605 int res;
ff88d074 6606 rtx_insn *last_insn = PREV_INSN (insn);
8ff642e9 6607 bool added_to_path;
e1ab7874 6608
6609 gcc_assert (insn == sel_bb_end (bb));
6610
6611 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6612 it's already in PATH then). */
6613 if (insn != first_insn)
8ff642e9 6614 {
6615 ilist_add (&path, insn);
6616 added_to_path = true;
6617 }
6618 else
6619 added_to_path = false;
e1ab7874 6620
48e1416a 6621 /* Process_successors should be able to find at least one
6622 successor for which code_motion_path_driver returns TRUE. */
6623 res = code_motion_process_successors (insn, orig_ops,
e1ab7874 6624 path, static_params);
6625
8ff642e9 6626 /* Jump in the end of basic block could have been removed or replaced
6627 during code_motion_process_successors, so recompute insn as the
6628 last insn in bb. */
6629 if (NEXT_INSN (last_insn) != insn)
6630 {
6631 insn = sel_bb_end (bb);
6632 first_insn = sel_bb_head (bb);
8da4fe0d 6633 if (first_insn != original_insn)
6634 first_insn = original_insn;
8ff642e9 6635 }
6636
e1ab7874 6637 /* Remove bb tail from path. */
8ff642e9 6638 if (added_to_path)
e1ab7874 6639 ilist_remove (&path);
6640
6641 if (res != 1)
6642 {
6643 /* This is the case when one of the original expr is no longer available
48e1416a 6644 due to bookkeeping created on this branch with the same register.
e1ab7874 6645 In the original algorithm, which doesn't have update_data_sets call
48e1416a 6646 on a bookkeeping block, it would simply result in returning
6647 FALSE when we've encountered a previously generated bookkeeping
e1ab7874 6648 insn in moveop_orig_expr_not_found. */
6649 code_motion_path_driver_cleanup (&orig_ops, &path);
6650 return res;
6651 }
6652 }
6653
6654 /* Don't need it any more. */
6655 av_set_clear (&orig_ops);
6656
48e1416a 6657 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e1ab7874 6658 the beginning of the basic block. */
6659 before_first = PREV_INSN (first_insn);
6660 while (insn != before_first)
48e1416a 6661 {
e1ab7874 6662 if (code_motion_path_driver_info->ascend)
6663 code_motion_path_driver_info->ascend (insn, static_params);
6664
6665 insn = PREV_INSN (insn);
6666 }
48e1416a 6667
e1ab7874 6668 /* Now we're at the bb head. */
6669 insn = first_insn;
6670 ilist_remove (&path);
6671 local_params_in->removed_last_insn = removed_last_insn;
6672 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
48e1416a 6673
e1ab7874 6674 /* This should be the very last operation as at bb head we could change
6675 the numbering by creating bookkeeping blocks. */
6676 if (removed_last_insn)
6677 insn = PREV_INSN (insn);
f18c3345 6678
6679 /* If we have simplified the control flow and removed the first jump insn,
6680 there's no point in marking this block in the visited blocks bitmap. */
6681 if (BLOCK_FOR_INSN (insn))
6682 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
e1ab7874 6683 return true;
6684}
6685
48e1416a 6686/* Move up the operations from ORIG_OPS set traversing the dag starting
e1ab7874 6687 from INSN. PATH represents the edges traversed so far.
6688 DEST is the register chosen for scheduling the current expr. Insert
6689 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
48e1416a 6690 C_EXPR is how it looks like at the given cfg point.
de353418 6691 Set *SHOULD_MOVE to indicate whether we have only disconnected
6692 one of the insns found.
e1ab7874 6693
48e1416a 6694 Returns whether original instructions were found, which is asserted
e1ab7874 6695 to be true in the caller. */
6696static bool
6697move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
de353418 6698 rtx dest, expr_t c_expr, bool *should_move)
e1ab7874 6699{
6700 struct moveop_static_params sparams;
6701 struct cmpd_local_params lparams;
93457441 6702 int res;
e1ab7874 6703
48e1416a 6704 /* Init params for code_motion_path_driver. */
e1ab7874 6705 sparams.dest = dest;
6706 sparams.c_expr = c_expr;
6707 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
e1ab7874 6708 sparams.failed_insn = NULL;
e1ab7874 6709 sparams.was_renamed = false;
6710 lparams.e1 = NULL;
6711
6712 /* We haven't visited any blocks yet. */
6713 bitmap_clear (code_motion_visited_blocks);
48e1416a 6714
e1ab7874 6715 /* Set appropriate hooks and data. */
6716 code_motion_path_driver_info = &move_op_hooks;
6717 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6718
93457441 6719 gcc_assert (res != -1);
6720
e1ab7874 6721 if (sparams.was_renamed)
6722 EXPR_WAS_RENAMED (expr_vliw) = true;
6723
de353418 6724 *should_move = (sparams.uid == -1);
6725
e1ab7874 6726 return res;
6727}
6728\f
6729
6730/* Functions that work with regions. */
6731
6732/* Current number of seqno used in init_seqno and init_seqno_1. */
6733static int cur_seqno;
6734
48e1416a 6735/* A helper for init_seqno. Traverse the region starting from BB and
6736 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e1ab7874 6737 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6738static void
6739init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6740{
6741 int bbi = BLOCK_TO_BB (bb->index);
9ed997be 6742 insn_t insn;
e1ab7874 6743 insn_t succ_insn;
6744 succ_iterator si;
6745
9ed997be 6746 rtx_note *note = bb_note (bb);
08b7917c 6747 bitmap_set_bit (visited_bbs, bbi);
e1ab7874 6748 if (blocks_to_reschedule)
6749 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6750
48e1416a 6751 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e1ab7874 6752 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6753 {
6754 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6755 int succ_bbi = BLOCK_TO_BB (succ->index);
6756
6757 gcc_assert (in_current_region_p (succ));
6758
08b7917c 6759 if (!bitmap_bit_p (visited_bbs, succ_bbi))
e1ab7874 6760 {
6761 gcc_assert (succ_bbi > bbi);
6762
6763 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6764 }
08b41748 6765 else if (blocks_to_reschedule)
6766 bitmap_set_bit (forced_ebb_heads, succ->index);
e1ab7874 6767 }
6768
6769 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6770 INSN_SEQNO (insn) = cur_seqno--;
6771}
6772
def66588 6773/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6774 blocks on which we're rescheduling when pipelining, FROM is the block where
e1ab7874 6775 traversing region begins (it may not be the head of the region when
48e1416a 6776 pipelining, but the head of the loop instead).
e1ab7874 6777
6778 Returns the maximal seqno found. */
6779static int
def66588 6780init_seqno (bitmap blocks_to_reschedule, basic_block from)
e1ab7874 6781{
e1ab7874 6782 bitmap_iterator bi;
6783 unsigned bbi;
6784
3c6549f8 6785 auto_sbitmap visited_bbs (current_nr_blocks);
e1ab7874 6786
6787 if (blocks_to_reschedule)
6788 {
53c5d9d4 6789 bitmap_ones (visited_bbs);
e1ab7874 6790 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6791 {
6792 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
08b7917c 6793 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
e1ab7874 6794 }
6795 }
6796 else
6797 {
53c5d9d4 6798 bitmap_clear (visited_bbs);
e1ab7874 6799 from = EBB_FIRST_BB (0);
6800 }
6801
def66588 6802 cur_seqno = sched_max_luid - 1;
e1ab7874 6803 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
def66588 6804
6805 /* cur_seqno may be positive if the number of instructions is less than
6806 sched_max_luid - 1 (when rescheduling or if some instructions have been
6807 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6808 gcc_assert (cur_seqno >= 0);
e1ab7874 6809
e1ab7874 6810 return sched_max_luid - 1;
6811}
6812
6813/* Initialize scheduling parameters for current region. */
6814static void
6815sel_setup_region_sched_flags (void)
6816{
6817 enable_schedule_as_rhs_p = 1;
6818 bookkeeping_p = 1;
48e1416a 6819 pipelining_p = (bookkeeping_p
e1ab7874 6820 && (flag_sel_sched_pipelining != 0)
a8d6ade3 6821 && current_loop_nest != NULL
6822 && loop_has_exit_edges (current_loop_nest));
e1ab7874 6823 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6824 max_ws = MAX_WS;
6825}
6826
6827/* Return true if all basic blocks of current region are empty. */
6828static bool
6829current_region_empty_p (void)
6830{
6831 int i;
6832 for (i = 0; i < current_nr_blocks; i++)
f5a6b05f 6833 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
e1ab7874 6834 return false;
6835
6836 return true;
6837}
6838
6839/* Prepare and verify loop nest for pipelining. */
6840static void
b73edd22 6841setup_current_loop_nest (int rgn, bb_vec_t *bbs)
e1ab7874 6842{
6843 current_loop_nest = get_loop_nest_for_rgn (rgn);
6844
6845 if (!current_loop_nest)
6846 return;
6847
6848 /* If this loop has any saved loop preheaders from nested loops,
6849 add these basic blocks to the current region. */
b73edd22 6850 sel_add_loop_preheaders (bbs);
e1ab7874 6851
6852 /* Check that we're starting with a valid information. */
6853 gcc_assert (loop_latch_edge (current_loop_nest));
6854 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6855}
6856
e1ab7874 6857/* Compute instruction priorities for current region. */
6858static void
6859sel_compute_priorities (int rgn)
6860{
6861 sched_rgn_compute_dependencies (rgn);
6862
6863 /* Compute insn priorities in haifa style. Then free haifa style
6864 dependencies that we've calculated for this. */
6865 compute_priorities ();
6866
6867 if (sched_verbose >= 5)
6868 debug_rgn_dependencies (0);
6869
6870 free_rgn_deps ();
6871}
6872
6873/* Init scheduling data for RGN. Returns true when this region should not
6874 be scheduled. */
6875static bool
6876sel_region_init (int rgn)
6877{
6878 int i;
6879 bb_vec_t bbs;
6880
6881 rgn_setup_region (rgn);
6882
48e1416a 6883 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e1ab7874 6884 do region initialization here so the region can be bundled correctly,
6885 but we'll skip the scheduling in sel_sched_region (). */
6886 if (current_region_empty_p ())
6887 return true;
6888
f1f41a6c 6889 bbs.create (current_nr_blocks);
e1ab7874 6890
6891 for (i = 0; i < current_nr_blocks; i++)
f5a6b05f 6892 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e1ab7874 6893
52d7e28c 6894 sel_init_bbs (bbs);
e1ab7874 6895
b73edd22 6896 if (flag_sel_sched_pipelining)
6897 setup_current_loop_nest (rgn, &bbs);
6898
a060ed03 6899 sel_setup_region_sched_flags ();
6900
e1ab7874 6901 /* Initialize luids and dependence analysis which both sel-sched and haifa
6902 need. */
52d7e28c 6903 sched_init_luids (bbs);
e1ab7874 6904 sched_deps_init (false);
6905
6906 /* Initialize haifa data. */
6907 rgn_setup_sched_infos ();
6908 sel_set_sched_flags ();
52d7e28c 6909 haifa_init_h_i_d (bbs);
e1ab7874 6910
6911 sel_compute_priorities (rgn);
6912 init_deps_global ();
6913
6914 /* Main initialization. */
6915 sel_setup_sched_infos ();
6916 sel_init_global_and_expr (bbs);
6917
f1f41a6c 6918 bbs.release ();
e1ab7874 6919
6920 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6921
6922 /* Init correct liveness sets on each instruction of a single-block loop.
6923 This is the only situation when we can't update liveness when calling
6924 compute_live for the first insn of the loop. */
6925 if (current_loop_nest)
6926 {
f5a6b05f 6927 int header =
6928 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6929 ? 1
6930 : 0);
e1ab7874 6931
6932 if (current_nr_blocks == header + 1)
48e1416a 6933 update_liveness_on_insn
f5a6b05f 6934 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
e1ab7874 6935 }
48e1416a 6936
e1ab7874 6937 /* Set hooks so that no newly generated insn will go out unnoticed. */
6938 sel_register_cfg_hooks ();
6939
202d6e5f 6940 /* !!! We call target.sched.init () for the whole region, but we invoke
6941 targetm.sched.finish () for every ebb. */
6942 if (targetm.sched.init)
e1ab7874 6943 /* None of the arguments are actually used in any target. */
202d6e5f 6944 targetm.sched.init (sched_dump, sched_verbose, -1);
e1ab7874 6945
6946 first_emitted_uid = get_max_uid () + 1;
6947 preheader_removed = false;
6948
6949 /* Reset register allocation ticks array. */
6950 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6951 reg_rename_this_tick = 0;
6952
6e6e5c14 6953 forced_ebb_heads = BITMAP_ALLOC (NULL);
e1ab7874 6954
6955 setup_nop_vinsn ();
6956 current_copies = BITMAP_ALLOC (NULL);
6957 current_originators = BITMAP_ALLOC (NULL);
6958 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6959
6960 return false;
6961}
6962
6963/* Simplify insns after the scheduling. */
6964static void
6965simplify_changed_insns (void)
6966{
6967 int i;
6968
6969 for (i = 0; i < current_nr_blocks; i++)
6970 {
f5a6b05f 6971 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
ff88d074 6972 rtx_insn *insn;
e1ab7874 6973
6974 FOR_BB_INSNS (bb, insn)
6975 if (INSN_P (insn))
6976 {
6977 expr_t expr = INSN_EXPR (insn);
6978
48e1416a 6979 if (EXPR_WAS_SUBSTITUTED (expr))
e1ab7874 6980 validate_simplify_insn (insn);
6981 }
6982 }
6983}
6984
6985/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6986 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6987 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6988static void
6989find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6990{
6fe7b8c2 6991 rtx_insn *head, *tail;
e1ab7874 6992 basic_block bb1 = bb;
6993 if (sched_verbose >= 2)
6994 sel_print ("Finishing schedule in bbs: ");
6995
6996 do
6997 {
6998 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6999
7000 if (sched_verbose >= 2)
7001 sel_print ("%d; ", bb1->index);
7002 }
7003 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7004
7005 if (sched_verbose >= 2)
7006 sel_print ("\n");
7007
7008 get_ebb_head_tail (bb, bb1, &head, &tail);
7009
7010 current_sched_info->head = head;
7011 current_sched_info->tail = tail;
7012 current_sched_info->prev_head = PREV_INSN (head);
7013 current_sched_info->next_tail = NEXT_INSN (tail);
7014}
7015
7016/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7017static void
7018reset_sched_cycles_in_current_ebb (void)
7019{
7020 int last_clock = 0;
7021 int haifa_last_clock = -1;
7022 int haifa_clock = 0;
08b41748 7023 int issued_insns = 0;
e1ab7874 7024 insn_t insn;
7025
202d6e5f 7026 if (targetm.sched.init)
e1ab7874 7027 {
7028 /* None of the arguments are actually used in any target.
7029 NB: We should have md_reset () hook for cases like this. */
202d6e5f 7030 targetm.sched.init (sched_dump, sched_verbose, -1);
e1ab7874 7031 }
7032
7033 state_reset (curr_state);
7034 advance_state (curr_state);
48e1416a 7035
e1ab7874 7036 for (insn = current_sched_info->head;
7037 insn != current_sched_info->next_tail;
7038 insn = NEXT_INSN (insn))
7039 {
7040 int cost, haifa_cost;
7041 int sort_p;
30474b14 7042 bool asm_p, real_insn, after_stall, all_issued;
e1ab7874 7043 int clock;
7044
7045 if (!INSN_P (insn))
7046 continue;
7047
7048 asm_p = false;
7049 real_insn = recog_memoized (insn) >= 0;
7050 clock = INSN_SCHED_CYCLE (insn);
7051
7052 cost = clock - last_clock;
7053
7054 /* Initialize HAIFA_COST. */
7055 if (! real_insn)
7056 {
7057 asm_p = INSN_ASM_P (insn);
7058
7059 if (asm_p)
7060 /* This is asm insn which *had* to be scheduled first
7061 on the cycle. */
7062 haifa_cost = 1;
7063 else
48e1416a 7064 /* This is a use/clobber insn. It should not change
e1ab7874 7065 cost. */
7066 haifa_cost = 0;
7067 }
7068 else
30474b14 7069 haifa_cost = estimate_insn_cost (insn, curr_state);
e1ab7874 7070
7071 /* Stall for whatever cycles we've stalled before. */
7072 after_stall = 0;
7073 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7074 {
7075 haifa_cost = cost;
7076 after_stall = 1;
7077 }
946d6c2b 7078 all_issued = issued_insns == issue_rate;
7079 if (haifa_cost == 0 && all_issued)
08b41748 7080 haifa_cost = 1;
e1ab7874 7081 if (haifa_cost > 0)
7082 {
7083 int i = 0;
7084
7085 while (haifa_cost--)
7086 {
7087 advance_state (curr_state);
08b41748 7088 issued_insns = 0;
e1ab7874 7089 i++;
7090
7091 if (sched_verbose >= 2)
7092 {
7093 sel_print ("advance_state (state_transition)\n");
7094 debug_state (curr_state);
7095 }
7096
48e1416a 7097 /* The DFA may report that e.g. insn requires 2 cycles to be
7098 issued, but on the next cycle it says that insn is ready
e1ab7874 7099 to go. Check this here. */
7100 if (!after_stall
48e1416a 7101 && real_insn
e1ab7874 7102 && haifa_cost > 0
30474b14 7103 && estimate_insn_cost (insn, curr_state) == 0)
e1ab7874 7104 break;
e7ea26b5 7105
7106 /* When the data dependency stall is longer than the DFA stall,
946d6c2b 7107 and when we have issued exactly issue_rate insns and stalled,
7108 it could be that after this longer stall the insn will again
e7ea26b5 7109 become unavailable to the DFA restrictions. Looks strange
7110 but happens e.g. on x86-64. So recheck DFA on the last
7111 iteration. */
946d6c2b 7112 if ((after_stall || all_issued)
e7ea26b5 7113 && real_insn
7114 && haifa_cost == 0)
30474b14 7115 haifa_cost = estimate_insn_cost (insn, curr_state);
e7ea26b5 7116 }
e1ab7874 7117
7118 haifa_clock += i;
08b41748 7119 if (sched_verbose >= 2)
7120 sel_print ("haifa clock: %d\n", haifa_clock);
e1ab7874 7121 }
7122 else
7123 gcc_assert (haifa_cost == 0);
7124
7125 if (sched_verbose >= 2)
7126 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7127
7128 if (targetm.sched.dfa_new_cycle)
7129 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7130 haifa_last_clock, haifa_clock,
7131 &sort_p))
7132 {
7133 advance_state (curr_state);
08b41748 7134 issued_insns = 0;
e1ab7874 7135 haifa_clock++;
7136 if (sched_verbose >= 2)
7137 {
7138 sel_print ("advance_state (dfa_new_cycle)\n");
7139 debug_state (curr_state);
08b41748 7140 sel_print ("haifa clock: %d\n", haifa_clock + 1);
e1ab7874 7141 }
7142 }
7143
7144 if (real_insn)
7145 {
30474b14 7146 static state_t temp = NULL;
7147
7148 if (!temp)
7149 temp = xmalloc (dfa_state_size);
7150 memcpy (temp, curr_state, dfa_state_size);
7151
e1ab7874 7152 cost = state_transition (curr_state, insn);
30474b14 7153 if (memcmp (temp, curr_state, dfa_state_size))
ed726cbf 7154 issued_insns++;
e1ab7874 7155
7156 if (sched_verbose >= 2)
08b41748 7157 {
7158 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7159 haifa_clock + 1);
7160 debug_state (curr_state);
7161 }
e1ab7874 7162 gcc_assert (cost < 0);
7163 }
7164
7165 if (targetm.sched.variable_issue)
7166 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7167
7168 INSN_SCHED_CYCLE (insn) = haifa_clock;
7169
7170 last_clock = clock;
7171 haifa_last_clock = haifa_clock;
7172 }
7173}
7174
7175/* Put TImode markers on insns starting a new issue group. */
7176static void
7177put_TImodes (void)
7178{
7179 int last_clock = -1;
7180 insn_t insn;
7181
7182 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7183 insn = NEXT_INSN (insn))
7184 {
7185 int cost, clock;
7186
7187 if (!INSN_P (insn))
7188 continue;
7189
7190 clock = INSN_SCHED_CYCLE (insn);
7191 cost = (last_clock == -1) ? 1 : clock - last_clock;
7192
7193 gcc_assert (cost >= 0);
7194
7195 if (issue_rate > 1
7196 && GET_CODE (PATTERN (insn)) != USE
7197 && GET_CODE (PATTERN (insn)) != CLOBBER)
7198 {
7199 if (reload_completed && cost > 0)
7200 PUT_MODE (insn, TImode);
7201
7202 last_clock = clock;
7203 }
7204
7205 if (sched_verbose >= 2)
7206 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7207 }
7208}
7209
48e1416a 7210/* Perform MD_FINISH on EBBs comprising current region. When
e1ab7874 7211 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7212 to produce correct sched cycles on insns. */
7213static void
7214sel_region_target_finish (bool reset_sched_cycles_p)
7215{
7216 int i;
7217 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7218
7219 for (i = 0; i < current_nr_blocks; i++)
7220 {
7221 if (bitmap_bit_p (scheduled_blocks, i))
7222 continue;
7223
7224 /* While pipelining outer loops, skip bundling for loop
7225 preheaders. Those will be rescheduled in the outer loop. */
7226 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7227 continue;
7228
7229 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7230
7231 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7232 continue;
7233
7234 if (reset_sched_cycles_p)
7235 reset_sched_cycles_in_current_ebb ();
7236
202d6e5f 7237 if (targetm.sched.init)
7238 targetm.sched.init (sched_dump, sched_verbose, -1);
e1ab7874 7239
7240 put_TImodes ();
7241
202d6e5f 7242 if (targetm.sched.finish)
e1ab7874 7243 {
202d6e5f 7244 targetm.sched.finish (sched_dump, sched_verbose);
e1ab7874 7245
7246 /* Extend luids so that insns generated by the target will
7247 get zero luid. */
52d7e28c 7248 sched_extend_luids ();
e1ab7874 7249 }
7250 }
7251
7252 BITMAP_FREE (scheduled_blocks);
7253}
7254
7255/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
48e1416a 7256 is true, make an additional pass emulating scheduler to get correct insn
e1ab7874 7257 cycles for md_finish calls. */
7258static void
7259sel_region_finish (bool reset_sched_cycles_p)
7260{
7261 simplify_changed_insns ();
7262 sched_finish_ready_list ();
7263 free_nop_pool ();
7264
7265 /* Free the vectors. */
f1f41a6c 7266 vec_av_set.release ();
e1ab7874 7267 BITMAP_FREE (current_copies);
7268 BITMAP_FREE (current_originators);
7269 BITMAP_FREE (code_motion_visited_blocks);
f1f41a6c 7270 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7271 vinsn_vec_free (vec_target_unavailable_vinsns);
e1ab7874 7272
7273 /* If LV_SET of the region head should be updated, do it now because
7274 there will be no other chance. */
7275 {
7276 succ_iterator si;
7277 insn_t insn;
7278
7279 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7280 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7281 {
7282 basic_block bb = BLOCK_FOR_INSN (insn);
7283
7284 if (!BB_LV_SET_VALID_P (bb))
7285 compute_live (insn);
7286 }
7287 }
7288
7289 /* Emulate the Haifa scheduler for bundling. */
7290 if (reload_completed)
7291 sel_region_target_finish (reset_sched_cycles_p);
7292
7293 sel_finish_global_and_expr ();
7294
6e6e5c14 7295 BITMAP_FREE (forced_ebb_heads);
e1ab7874 7296
7297 free_nop_vinsn ();
7298
7299 finish_deps_global ();
7300 sched_finish_luids ();
f1f41a6c 7301 h_d_i_d.release ();
e1ab7874 7302
7303 sel_finish_bbs ();
7304 BITMAP_FREE (blocks_to_reschedule);
7305
7306 sel_unregister_cfg_hooks ();
7307
7308 max_issue_size = 0;
7309}
7310\f
7311
7312/* Functions that implement the scheduler driver. */
7313
7314/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7315 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7316 of insns scheduled -- these would be postprocessed later. */
7317static void
7318schedule_on_fences (flist_t fences, int max_seqno,
7319 ilist_t **scheduled_insns_tailpp)
7320{
7321 flist_t old_fences = fences;
7322
7323 if (sched_verbose >= 1)
7324 {
7325 sel_print ("\nScheduling on fences: ");
7326 dump_flist (fences);
7327 sel_print ("\n");
7328 }
7329
7330 scheduled_something_on_previous_fence = false;
7331 for (; fences; fences = FLIST_NEXT (fences))
7332 {
7333 fence_t fence = NULL;
7334 int seqno = 0;
7335 flist_t fences2;
7336 bool first_p = true;
48e1416a 7337
e1ab7874 7338 /* Choose the next fence group to schedule.
7339 The fact that insn can be scheduled only once
7340 on the cycle is guaranteed by two properties:
7341 1. seqnos of parallel groups decrease with each iteration.
7342 2. If is_ineligible_successor () sees the larger seqno, it
7343 checks if candidate insn is_in_current_fence_p (). */
7344 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7345 {
7346 fence_t f = FLIST_FENCE (fences2);
7347
7348 if (!FENCE_PROCESSED_P (f))
7349 {
7350 int i = INSN_SEQNO (FENCE_INSN (f));
7351
7352 if (first_p || i > seqno)
7353 {
7354 seqno = i;
7355 fence = f;
7356 first_p = false;
7357 }
7358 else
7359 /* ??? Seqnos of different groups should be different. */
7360 gcc_assert (1 || i != seqno);
7361 }
7362 }
7363
7364 gcc_assert (fence);
7365
7366 /* As FENCE is nonnull, SEQNO is initialized. */
7367 seqno -= max_seqno + 1;
7368 fill_insns (fence, seqno, scheduled_insns_tailpp);
7369 FENCE_PROCESSED_P (fence) = true;
7370 }
7371
7372 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
48e1416a 7373 don't need to keep bookkeeping-invalidated and target-unavailable
e1ab7874 7374 vinsns any more. */
7375 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7376 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7377}
7378
7379/* Calculate MIN_SEQNO and MAX_SEQNO. */
7380static void
7381find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7382{
7383 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7384
7385 /* The first element is already processed. */
7386 while ((fences = FLIST_NEXT (fences)))
7387 {
7388 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
48e1416a 7389
e1ab7874 7390 if (*min_seqno > seqno)
7391 *min_seqno = seqno;
7392 else if (*max_seqno < seqno)
7393 *max_seqno = seqno;
7394 }
7395}
7396
dce9387e 7397/* Calculate new fences from FENCES. Write the current time to PTIME. */
48e1416a 7398static flist_t
dce9387e 7399calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
e1ab7874 7400{
7401 flist_t old_fences = fences;
7402 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
dce9387e 7403 int max_time = 0;
e1ab7874 7404
7405 flist_tail_init (new_fences);
7406 for (; fences; fences = FLIST_NEXT (fences))
7407 {
7408 fence_t fence = FLIST_FENCE (fences);
7409 insn_t insn;
48e1416a 7410
e1ab7874 7411 if (!FENCE_BNDS (fence))
7412 {
7413 /* This fence doesn't have any successors. */
7414 if (!FENCE_SCHEDULED_P (fence))
7415 {
7416 /* Nothing was scheduled on this fence. */
7417 int seqno;
7418
7419 insn = FENCE_INSN (fence);
7420 seqno = INSN_SEQNO (insn);
7421 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7422
7423 if (sched_verbose >= 1)
48e1416a 7424 sel_print ("Fence %d[%d] has not changed\n",
e1ab7874 7425 INSN_UID (insn),
7426 BLOCK_NUM (insn));
7427 move_fence_to_fences (fences, new_fences);
7428 }
7429 }
7430 else
7431 extract_new_fences_from (fences, new_fences, orig_max_seqno);
dce9387e 7432 max_time = MAX (max_time, FENCE_CYCLE (fence));
e1ab7874 7433 }
7434
7435 flist_clear (&old_fences);
dce9387e 7436 *ptime = max_time;
e1ab7874 7437 return FLIST_TAIL_HEAD (new_fences);
7438}
7439
7440/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7441 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7442 the highest seqno used in a region. Return the updated highest seqno. */
7443static int
48e1416a 7444update_seqnos_and_stage (int min_seqno, int max_seqno,
7445 int highest_seqno_in_use,
e1ab7874 7446 ilist_t *pscheduled_insns)
7447{
7448 int new_hs;
7449 ilist_iterator ii;
7450 insn_t insn;
48e1416a 7451
e1ab7874 7452 /* Actually, new_hs is the seqno of the instruction, that was
7453 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7454 if (*pscheduled_insns)
7455 {
7456 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7457 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7458 gcc_assert (new_hs > highest_seqno_in_use);
7459 }
7460 else
7461 new_hs = highest_seqno_in_use;
7462
7463 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7464 {
7465 gcc_assert (INSN_SEQNO (insn) < 0);
7466 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7467 gcc_assert (INSN_SEQNO (insn) <= new_hs);
d9ab2038 7468
7469 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7470 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7471 require > 1GB of memory e.g. on limit-fnargs.c. */
7472 if (! pipelining_p)
7473 free_data_for_scheduled_insn (insn);
e1ab7874 7474 }
7475
7476 ilist_clear (pscheduled_insns);
7477 global_level++;
7478
7479 return new_hs;
7480}
7481
48e1416a 7482/* The main driver for scheduling a region. This function is responsible
7483 for correct propagation of fences (i.e. scheduling points) and creating
7484 a group of parallel insns at each of them. It also supports
e1ab7874 7485 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7486 of scheduling. */
7487static void
7488sel_sched_region_2 (int orig_max_seqno)
7489{
7490 int highest_seqno_in_use = orig_max_seqno;
dce9387e 7491 int max_time = 0;
e1ab7874 7492
7493 stat_bookkeeping_copies = 0;
7494 stat_insns_needed_bookkeeping = 0;
7495 stat_renamed_scheduled = 0;
7496 stat_substitutions_total = 0;
7497 num_insns_scheduled = 0;
7498
7499 while (fences)
7500 {
7501 int min_seqno, max_seqno;
7502 ilist_t scheduled_insns = NULL;
7503 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7504
7505 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7506 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
dce9387e 7507 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
e1ab7874 7508 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7509 highest_seqno_in_use,
7510 &scheduled_insns);
7511 }
7512
7513 if (sched_verbose >= 1)
dce9387e 7514 {
7515 sel_print ("Total scheduling time: %d cycles\n", max_time);
7516 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7517 "bookkeeping, %d insns renamed, %d insns substituted\n",
7518 stat_bookkeeping_copies,
7519 stat_insns_needed_bookkeeping,
7520 stat_renamed_scheduled,
7521 stat_substitutions_total);
7522 }
e1ab7874 7523}
7524
48e1416a 7525/* Schedule a region. When pipelining, search for possibly never scheduled
7526 bookkeeping code and schedule it. Reschedule pipelined code without
e1ab7874 7527 pipelining after. */
7528static void
7529sel_sched_region_1 (void)
7530{
e1ab7874 7531 int orig_max_seqno;
7532
def66588 7533 /* Remove empty blocks that might be in the region from the beginning. */
e1ab7874 7534 purge_empty_blocks ();
7535
def66588 7536 orig_max_seqno = init_seqno (NULL, NULL);
e1ab7874 7537 gcc_assert (orig_max_seqno >= 1);
7538
7539 /* When pipelining outer loops, create fences on the loop header,
7540 not preheader. */
7541 fences = NULL;
7542 if (current_loop_nest)
7543 init_fences (BB_END (EBB_FIRST_BB (0)));
7544 else
7545 init_fences (bb_note (EBB_FIRST_BB (0)));
7546 global_level = 1;
7547
7548 sel_sched_region_2 (orig_max_seqno);
7549
7550 gcc_assert (fences == NULL);
7551
7552 if (pipelining_p)
7553 {
7554 int i;
7555 basic_block bb;
7556 struct flist_tail_def _new_fences;
7557 flist_tail_t new_fences = &_new_fences;
7558 bool do_p = true;
7559
7560 pipelining_p = false;
7561 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7562 bookkeeping_p = false;
7563 enable_schedule_as_rhs_p = false;
7564
7565 /* Schedule newly created code, that has not been scheduled yet. */
7566 do_p = true;
7567
7568 while (do_p)
7569 {
7570 do_p = false;
7571
7572 for (i = 0; i < current_nr_blocks; i++)
7573 {
7574 basic_block bb = EBB_FIRST_BB (i);
7575
e1ab7874 7576 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7577 {
e7ea26b5 7578 if (! bb_ends_ebb_p (bb))
7579 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7580 if (sel_bb_empty_p (bb))
7581 {
7582 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7583 continue;
7584 }
e1ab7874 7585 clear_outdated_rtx_info (bb);
7586 if (sel_insn_is_speculation_check (BB_END (bb))
7587 && JUMP_P (BB_END (bb)))
7588 bitmap_set_bit (blocks_to_reschedule,
7589 BRANCH_EDGE (bb)->dest->index);
7590 }
e7ea26b5 7591 else if (! sel_bb_empty_p (bb)
7592 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
e1ab7874 7593 bitmap_set_bit (blocks_to_reschedule, bb->index);
7594 }
7595
7596 for (i = 0; i < current_nr_blocks; i++)
7597 {
7598 bb = EBB_FIRST_BB (i);
7599
48e1416a 7600 /* While pipelining outer loops, skip bundling for loop
e1ab7874 7601 preheaders. Those will be rescheduled in the outer
7602 loop. */
7603 if (sel_is_loop_preheader_p (bb))
7604 {
7605 clear_outdated_rtx_info (bb);
7606 continue;
7607 }
48e1416a 7608
08b41748 7609 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
e1ab7874 7610 {
7611 flist_tail_init (new_fences);
7612
def66588 7613 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
e1ab7874 7614
7615 /* Mark BB as head of the new ebb. */
7616 bitmap_set_bit (forced_ebb_heads, bb->index);
7617
e1ab7874 7618 gcc_assert (fences == NULL);
7619
7620 init_fences (bb_note (bb));
48e1416a 7621
e1ab7874 7622 sel_sched_region_2 (orig_max_seqno);
48e1416a 7623
e1ab7874 7624 do_p = true;
7625 break;
7626 }
7627 }
7628 }
7629 }
7630}
7631
7632/* Schedule the RGN region. */
7633void
7634sel_sched_region (int rgn)
7635{
7636 bool schedule_p;
7637 bool reset_sched_cycles_p;
7638
7639 if (sel_region_init (rgn))
7640 return;
7641
7642 if (sched_verbose >= 1)
7643 sel_print ("Scheduling region %d\n", rgn);
7644
7645 schedule_p = (!sched_is_disabled_for_current_region_p ()
7646 && dbg_cnt (sel_sched_region_cnt));
7647 reset_sched_cycles_p = pipelining_p;
7648 if (schedule_p)
7649 sel_sched_region_1 ();
7650 else
91d7a2f9 7651 {
7652 /* Schedule always selecting the next insn to make the correct data
7653 for bundling or other later passes. */
7654 pipelining_p = false;
a78ef9b4 7655 reset_sched_cycles_p = false;
91d7a2f9 7656 force_next_insn = 1;
7657 sel_sched_region_1 ();
7658 force_next_insn = 0;
7659 }
e1ab7874 7660 sel_region_finish (reset_sched_cycles_p);
7661}
7662
7663/* Perform global init for the scheduler. */
7664static void
7665sel_global_init (void)
7666{
5a06e94f 7667 /* Remove empty blocks: their presence can break assumptions elsewhere,
7668 e.g. the logic to invoke update_liveness_on_insn in sel_region_init. */
7669 cleanup_cfg (0);
7670
e1ab7874 7671 calculate_dominance_info (CDI_DOMINATORS);
7672 alloc_sched_pools ();
7673
7674 /* Setup the infos for sched_init. */
7675 sel_setup_sched_infos ();
7676 setup_sched_dump ();
7677
c486a06e 7678 sched_rgn_init (false);
2bc1ac5a 7679 sched_init ();
e1ab7874 7680
7681 sched_init_bbs ();
7682 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7683 after_recovery = 0;
48e1416a 7684 can_issue_more = issue_rate;
e1ab7874 7685
7686 sched_extend_target ();
7687 sched_deps_init (true);
7688 setup_nop_and_exit_insns ();
7689 sel_extend_global_bb_info ();
7690 init_lv_sets ();
7691 init_hard_regs_data ();
7692}
7693
7694/* Free the global data of the scheduler. */
7695static void
7696sel_global_finish (void)
7697{
7698 free_bb_note_pool ();
7699 free_lv_sets ();
7700 sel_finish_global_bb_info ();
7701
7702 free_regset_pool ();
7703 free_nop_and_exit_insns ();
7704
7705 sched_rgn_finish ();
7706 sched_deps_finish ();
7707 sched_finish ();
7708
7709 if (current_loops)
7710 sel_finish_pipelining ();
7711
7712 free_sched_pools ();
7713 free_dominance_info (CDI_DOMINATORS);
7714}
7715
7716/* Return true when we need to skip selective scheduling. Used for debugging. */
7717bool
7718maybe_skip_selective_scheduling (void)
7719{
7720 return ! dbg_cnt (sel_sched_cnt);
7721}
7722
7723/* The entry point. */
7724void
7725run_selective_scheduling (void)
7726{
7727 int rgn;
7728
a28770e1 7729 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
e1ab7874 7730 return;
7731
7732 sel_global_init ();
7733
7734 for (rgn = 0; rgn < nr_regions; rgn++)
7735 sel_sched_region (rgn);
7736
7737 sel_global_finish ();
7738}
7739
7740#endif