]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
sel-sched.c (mark_unavailable_hard_regs): Do not try to search available registers...
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
66647d44 2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "toplev.h"
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
34#include "toplev.h"
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "output.h"
39#include "timevar.h"
40#include "tree-pass.h"
41#include "sched-int.h"
42#include "ggc.h"
43#include "tree.h"
44#include "vec.h"
45#include "langhooks.h"
46#include "rtlhooks-def.h"
47#include "output.h"
48
49#ifdef INSN_SCHEDULING
50#include "sel-sched-ir.h"
51#include "sel-sched-dump.h"
52#include "sel-sched.h"
53#include "dbgcnt.h"
54
55/* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
b8698a0f 59 o the scheduler works after register allocation (but can be also tuned
e855c69d
AB
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
b8698a0f
L
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
e855c69d
AB
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
b8698a0f 78 at some point in the control flow graph. The data may be its usefulness,
e855c69d
AB
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
b8698a0f 82 Availability set (av_set) is a set of expressions at a given control flow
e855c69d 83 point. It is represented as av_set_t. The expressions in av sets are kept
b8698a0f 84 sorted in the terms of expr_greater_p function. It allows to truncate
e855c69d 85 the set while leaving the best expressions.
b8698a0f 86
e855c69d
AB
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
b8698a0f 93 the fence group when a jump is scheduled. A boundary is represented
e855c69d
AB
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
b8698a0f 100 The regions are formed starting from innermost loops, so that when the inner
e855c69d 101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
b8698a0f 102 outer loop. The rest of acyclic regions are found using extend_rgns:
e855c69d 103 the blocks that are not yet allocated to any regions are traversed in top-down
b8698a0f 104 order, and a block is added to a region to which all its predecessors belong;
e855c69d
AB
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
b8698a0f
L
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
e855c69d 112 required to schedule any of the expressions, we advance the current cycle
b8698a0f 113 appropriately. So, the final group does not exactly correspond to a VLIW
e855c69d
AB
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
b8698a0f 117 so we feel like advancing a scheduling point.
e855c69d
AB
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
b8698a0f
L
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
e855c69d
AB
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
b8698a0f 132 and moving to another fence. The first two restrictions are lifted during
e855c69d
AB
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
b8698a0f
L
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
e855c69d
AB
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
b8698a0f 145 only registers which are from the same regclass as the original one and
e855c69d
AB
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
b8698a0f 153 We run the move_op routine to perform the same type of code motion paths
e855c69d
AB
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
b8698a0f 156 instruction that gave birth to a chosen expression. We undo
e855c69d 157 the transformations performed on an expression via the history saved in it.
b8698a0f
L
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
e855c69d
AB
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
b8698a0f
L
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
e855c69d
AB
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
b8698a0f
L
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e855c69d
AB
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
b8698a0f 185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e855c69d 186 reused in all of the schedulers. We have split up the initialization of data
b8698a0f 187 of such parts into different functions prefixed with scheduler type and
e855c69d
AB
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
b8698a0f
L
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
e855c69d 192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
b8698a0f 193
e855c69d
AB
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
b8698a0f
L
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
e855c69d
AB
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
b8698a0f
L
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
e855c69d
AB
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
b8698a0f 217 insns that are definitely completed the execution. The results of
e855c69d
AB
218 tick_check_p checks are also cached in a vector on each fence.
219
b8698a0f 220 We keep a valid liveness set on each insn in a region to avoid the high
e855c69d
AB
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
b8698a0f 224 sets. The updates happen in two cases: when fill_insns terminates,
e855c69d
AB
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
b8698a0f 231
e855c69d
AB
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
b8698a0f
L
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e855c69d 243
b8698a0f
L
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e855c69d
AB
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
b8698a0f 248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e855c69d
AB
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
b8698a0f 251
e855c69d
AB
252*/
253
254/* True when pipelining is enabled. */
255bool pipelining_p;
256
257/* True if bookkeeping is enabled. */
258bool bookkeeping_p;
259
260/* Maximum number of insns that are eligible for renaming. */
261int max_insns_to_rename;
262\f
263
264/* Definitions of local types and macros. */
265
266/* Represents possible outcomes of moving an expression through an insn. */
b8698a0f
L
267enum MOVEUP_EXPR_CODE
268 {
e855c69d 269 /* The expression is not changed. */
b8698a0f 270 MOVEUP_EXPR_SAME,
e855c69d
AB
271
272 /* Not changed, but requires a new destination register. */
b8698a0f 273 MOVEUP_EXPR_AS_RHS,
e855c69d
AB
274
275 /* Cannot be moved. */
b8698a0f 276 MOVEUP_EXPR_NULL,
e855c69d
AB
277
278 /* Changed (substituted or speculated). */
b8698a0f 279 MOVEUP_EXPR_CHANGED
e855c69d
AB
280 };
281
282/* The container to be passed into rtx search & replace functions. */
283struct rtx_search_arg
284{
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290};
291
292typedef struct rtx_search_arg *rtx_search_arg_p;
293
b8698a0f 294/* This struct contains precomputed hard reg sets that are needed when
e855c69d 295 computing registers available for renaming. */
b8698a0f 296struct hard_regs_data
e855c69d 297{
b8698a0f 298 /* For every mode, this stores registers available for use with
e855c69d
AB
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
b8698a0f 310 /* For every mode, this stores registers not available due to
e855c69d
AB
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317#ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320#endif
321};
322
323/* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325struct reg_rename
326{
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335};
336
b8698a0f 337/* A global structure that contains the needed information about harg
e855c69d
AB
338 regs. */
339static struct hard_regs_data sel_hrd;
340\f
341
b8698a0f
L
342/* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
e855c69d
AB
347 read-only. */
348struct cmpd_local_params
349{
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
b8698a0f 364 /* True when we have removed last insn in the block which was
e855c69d
AB
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367};
368
369/* Stores the static parameters for move_op_* calls. */
370struct moveop_static_params
371{
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382#ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385#endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389};
390
391/* Stores the static parameters for fur_* calls. */
392struct fur_static_params
393{
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402};
403
404typedef struct fur_static_params *fur_static_params_p;
405typedef struct cmpd_local_params *cmpd_local_params_p;
406typedef struct moveop_static_params *moveop_static_params_p;
407
408/* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410struct code_motion_path_driver_info_def
411{
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
b8698a0f 433 /* Called on the ascending pass, before returning from the current basic
e855c69d
AB
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
b8698a0f 437 /* When processing successors in move_op we need only descend into
e855c69d
AB
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443};
444
445/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449/* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
c32e2175 451extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e855c69d 452
b8698a0f
L
453/* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
e855c69d
AB
455 sched-deps.c. */
456int sched_emulate_haifa_p;
457
458/* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462int global_level;
463
464/* Current fences. */
465flist_t fences;
466
467/* True when separable insns should be scheduled as RHSes. */
468static bool enable_schedule_as_rhs_p;
469
470/* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
b8698a0f 472 we haven't scheduled anything on the previous fence.
e855c69d 473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
b8698a0f 474 have more conservative value than the one returned by the
e855c69d
AB
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476static bool scheduled_something_on_previous_fence;
477
478/* All newly emitted insns will have their uids greater than this value. */
479static int first_emitted_uid;
480
481/* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483static bitmap_head _forced_ebb_heads;
484bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486/* Blocks that need to be rescheduled after pipelining. */
487bitmap blocks_to_reschedule = NULL;
488
489/* True when the first lv set should be ignored when updating liveness. */
490static bool ignore_first = false;
491
492/* Number of insns max_issue has initialized data structures for. */
493static int max_issue_size = 0;
494
495/* Whether we can issue more instructions. */
496static int can_issue_more;
497
498/* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500static int max_ws;
501
502/* Number of insns scheduled in current region. */
503static int num_insns_scheduled;
504
505/* A vector of expressions is used to be able to sort them. */
506DEF_VEC_P(expr_t);
507DEF_VEC_ALLOC_P(expr_t,heap);
508static VEC(expr_t, heap) *vec_av_set = NULL;
509
510/* A vector of vinsns is used to hold temporary lists of vinsns. */
511DEF_VEC_P(vinsn_t);
512DEF_VEC_ALLOC_P(vinsn_t,heap);
513typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515/* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
b8698a0f 521/* This vector has vinsns which are scheduled with renaming on the first fence
e855c69d
AB
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526/* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528DEF_VEC_P(insn_t);
529DEF_VEC_ALLOC_P(insn_t,heap);
530static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
b8698a0f
L
532/* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
e855c69d
AB
534static bitmap current_originators = NULL;
535static bitmap current_copies = NULL;
536
537/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539static bitmap code_motion_visited_blocks = NULL;
540
541/* Variables to accumulate different statistics. */
542
543/* The number of bookkeeping copies created. */
544static int stat_bookkeeping_copies;
545
546/* The number of insns that required bookkeeiping for their scheduling. */
547static int stat_insns_needed_bookkeeping;
548
549/* The number of insns that got renamed. */
550static int stat_renamed_scheduled;
551
552/* The number of substitutions made during scheduling. */
553static int stat_substitutions_total;
554\f
555
556/* Forward declarations of static functions. */
557static bool rtx_ok_for_substitution_p (rtx, rtx);
558static int sel_rank_for_schedule (const void *, const void *);
559static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
b5b8b0ac 560static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e855c69d
AB
561
562static rtx get_dest_from_orig_ops (av_set_t);
563static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
b8698a0f 564static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e855c69d 565 def_list_t *);
72a54528
AM
566static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
e855c69d
AB
569static void sel_sched_region_1 (void);
570static void sel_sched_region_2 (int);
571static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572
573static void debug_state (state_t);
574\f
575
576/* Functions that work with fences. */
577
578/* Advance one cycle on FENCE. */
579static void
580advance_one_cycle (fence_t fence)
581{
582 unsigned i;
583 int cycle;
584 rtx insn;
b8698a0f 585
e855c69d
AB
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
136e01a3 591 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
592
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 {
595 if (INSN_READY_CYCLE (insn) < cycle)
596 {
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
600 }
601 i++;
602 }
603 if (sched_verbose >= 2)
604 {
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
607 }
608}
609
610/* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612static bool
613in_fallthru_bb_p (rtx insn, rtx succ)
614{
615 basic_block bb = BLOCK_FOR_INSN (insn);
616
617 if (bb == BLOCK_FOR_INSN (succ))
618 return true;
619
620 if (find_fallthru_edge (bb))
621 bb = find_fallthru_edge (bb)->dest;
622 else
623 return false;
624
625 while (sel_bb_empty_p (bb))
626 bb = bb->next_bb;
627
628 return bb == BLOCK_FOR_INSN (succ);
629}
630
b8698a0f 631/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e855c69d
AB
632 When a successor will continue a ebb, transfer all parameters of a fence
633 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
634 of scheduling helping to distinguish between the old and the new code. */
635static void
636extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
637 int orig_max_seqno)
638{
639 bool was_here_p = false;
640 insn_t insn = NULL_RTX;
641 insn_t succ;
642 succ_iterator si;
643 ilist_iterator ii;
644 fence_t fence = FLIST_FENCE (old_fences);
645 basic_block bb;
646
647 /* Get the only element of FENCE_BNDS (fence). */
648 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 {
650 gcc_assert (!was_here_p);
651 was_here_p = true;
652 }
653 gcc_assert (was_here_p && insn != NULL_RTX);
654
b8698a0f 655 /* When in the "middle" of the block, just move this fence
e855c69d
AB
656 to the new list. */
657 bb = BLOCK_FOR_INSN (insn);
658 if (! sel_bb_end_p (insn)
b8698a0f 659 || (single_succ_p (bb)
e855c69d
AB
660 && single_pred_p (single_succ (bb))))
661 {
662 insn_t succ;
663
b8698a0f 664 succ = (sel_bb_end_p (insn)
e855c69d
AB
665 ? sel_bb_head (single_succ (bb))
666 : NEXT_INSN (insn));
667
b8698a0f 668 if (INSN_SEQNO (succ) > 0
e855c69d
AB
669 && INSN_SEQNO (succ) <= orig_max_seqno
670 && INSN_SCHED_TIMES (succ) <= 0)
671 {
672 FENCE_INSN (fence) = succ;
673 move_fence_to_fences (old_fences, new_fences);
674
675 if (sched_verbose >= 1)
b8698a0f 676 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e855c69d
AB
677 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 }
679 return;
680 }
681
682 /* Otherwise copy fence's structures to (possibly) multiple successors. */
683 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 {
685 int seqno = INSN_SEQNO (succ);
686
687 if (0 < seqno && seqno <= orig_max_seqno
688 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 {
690 bool b = (in_same_ebb_p (insn, succ)
b8698a0f 691 || in_fallthru_bb_p (insn, succ));
e855c69d
AB
692
693 if (sched_verbose >= 1)
b8698a0f
L
694 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
695 INSN_UID (insn), INSN_UID (succ),
e855c69d
AB
696 BLOCK_NUM (succ), b ? "continue" : "reset");
697
698 if (b)
699 add_dirty_fence_to_fences (new_fences, succ, fence);
700 else
701 {
702 /* Mark block of the SUCC as head of the new ebb. */
703 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
704 add_clean_fence_to_fences (new_fences, succ, fence);
705 }
706 }
707 }
708}
709\f
710
711/* Functions to support substitution. */
712
b8698a0f
L
713/* Returns whether INSN with dependence status DS is eligible for
714 substitution, i.e. it's a copy operation x := y, and RHS that is
e855c69d
AB
715 moved up through this insn should be substituted. */
716static bool
717can_substitute_through_p (insn_t insn, ds_t ds)
718{
719 /* We can substitute only true dependencies. */
720 if ((ds & DEP_OUTPUT)
721 || (ds & DEP_ANTI)
722 || ! INSN_RHS (insn)
723 || ! INSN_LHS (insn))
724 return false;
725
b8698a0f 726 /* Now we just need to make sure the INSN_RHS consists of only one
e855c69d 727 simple REG rtx. */
b8698a0f 728 if (REG_P (INSN_LHS (insn))
e855c69d 729 && REG_P (INSN_RHS (insn)))
b8698a0f 730 return true;
e855c69d
AB
731 return false;
732}
733
b8698a0f 734/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
e855c69d
AB
735 source (if INSN is eligible for substitution). Returns TRUE if
736 substitution was actually performed, FALSE otherwise. Substitution might
737 be not performed because it's either EXPR' vinsn doesn't contain INSN's
b8698a0f 738 destination or the resulting insn is invalid for the target machine.
e855c69d
AB
739 When UNDO is true, perform unsubstitution instead (the difference is in
740 the part of rtx on which validate_replace_rtx is called). */
741static bool
742substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743{
744 rtx *where;
745 bool new_insn_valid;
746 vinsn_t *vi = &EXPR_VINSN (expr);
747 bool has_rhs = VINSN_RHS (*vi) != NULL;
748 rtx old, new_rtx;
749
750 /* Do not try to replace in SET_DEST. Although we'll choose new
b8698a0f 751 register for the RHS, we don't want to change RHS' original reg.
e855c69d 752 If the insn is not SET, we may still be able to substitute something
b8698a0f 753 in it, and if we're here (don't have deps), it doesn't write INSN's
e855c69d
AB
754 dest. */
755 where = (has_rhs
756 ? &VINSN_RHS (*vi)
757 : &PATTERN (VINSN_INSN_RTX (*vi)));
758 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759
760 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
761 if (rtx_ok_for_substitution_p (old, *where))
762 {
763 rtx new_insn;
764 rtx *where_replace;
765
766 /* We should copy these rtxes before substitution. */
767 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
768 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769
b8698a0f 770 /* Where we'll replace.
e855c69d
AB
771 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
772 used instead of SET_SRC. */
773 where_replace = (has_rhs
774 ? &SET_SRC (PATTERN (new_insn))
775 : &PATTERN (new_insn));
776
b8698a0f
L
777 new_insn_valid
778 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e855c69d
AB
779 new_insn);
780
781 /* ??? Actually, constrain_operands result depends upon choice of
782 destination register. E.g. if we allow single register to be an rhs,
b8698a0f 783 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e855c69d
AB
784 in invalid insn dx=dx, so we'll loose this rhs here.
785 Just can't come up with significant testcase for this, so just
786 leaving it for now. */
787 if (new_insn_valid)
788 {
b8698a0f 789 change_vinsn_in_expr (expr,
e855c69d
AB
790 create_vinsn_from_insn_rtx (new_insn, false));
791
b8698a0f 792 /* Do not allow clobbering the address register of speculative
e855c69d
AB
793 insns. */
794 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
b8698a0f 795 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
796 expr_dest_regno (expr)))
797 EXPR_TARGET_AVAILABLE (expr) = false;
798
799 return true;
800 }
801 else
802 return false;
803 }
804 else
805 return false;
806}
807
808/* Helper function for count_occurences_equiv. */
b8698a0f 809static int
e855c69d
AB
810count_occurrences_1 (rtx *cur_rtx, void *arg)
811{
812 rtx_search_arg_p p = (rtx_search_arg_p) arg;
813
814 /* The last param FOR_GCSE is true, because otherwise it performs excessive
815 substitutions like
816 r8 = r33
817 r16 = r33
818 for the last insn it presumes r33 equivalent to r8, so it changes it to
819 r33. Actually, there's no change, but it spoils debugging. */
820 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
821 {
822 /* Bail out if we occupy more than one register. */
823 if (REG_P (*cur_rtx)
72a54528 824 && HARD_REGISTER_P (*cur_rtx)
e855c69d
AB
825 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
826 {
827 p->n = 0;
828 return 1;
829 }
830
831 p->n++;
832
833 /* Do not traverse subexprs. */
834 return -1;
835 }
836
837 if (GET_CODE (*cur_rtx) == SUBREG
838 && REG_P (p->x)
839 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
840 {
841 /* ??? Do not support substituting regs inside subregs. In that case,
b8698a0f 842 simplify_subreg will be called by validate_replace_rtx, and
e855c69d
AB
843 unsubstitution will fail later. */
844 p->n = 0;
845 return 1;
846 }
847
848 /* Continue search. */
849 return 0;
850}
851
b8698a0f 852/* Return the number of places WHAT appears within WHERE.
e855c69d 853 Bail out when we found a reference occupying several hard registers. */
b8698a0f 854static int
e855c69d
AB
855count_occurrences_equiv (rtx what, rtx where)
856{
857 struct rtx_search_arg arg;
858
859 arg.x = what;
860 arg.n = 0;
861
862 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
863
864 return arg.n;
865}
866
867/* Returns TRUE if WHAT is found in WHERE rtx tree. */
868static bool
869rtx_ok_for_substitution_p (rtx what, rtx where)
870{
871 return (count_occurrences_equiv (what, where) > 0);
872}
873\f
874
875/* Functions to support register renaming. */
876
877/* Substitute VI's set source with REGNO. Returns newly created pattern
878 that has REGNO as its source. */
879static rtx
880create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
881{
882 rtx lhs_rtx;
883 rtx pattern;
884 rtx insn_rtx;
885
886 lhs_rtx = copy_rtx (VINSN_LHS (vi));
887
888 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
889 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
890
891 return insn_rtx;
892}
893
b8698a0f 894/* Returns whether INSN's src can be replaced with register number
e855c69d
AB
895 NEW_SRC_REG. E.g. the following insn is valid for i386:
896
b8698a0f 897 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e855c69d
AB
898 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
899 (reg:SI 0 ax [orig:770 c1 ] [770]))
900 (const_int 288 [0x120])) [0 str S1 A8])
901 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
902 (nil))
903
904 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
b8698a0f 905 because of operand constraints:
e855c69d
AB
906
907 (define_insn "*movqi_1"
908 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
909 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
910 )]
b8698a0f
L
911
912 So do constrain_operands here, before choosing NEW_SRC_REG as best
e855c69d
AB
913 reg for rhs. */
914
915static bool
916replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
917{
918 vinsn_t vi = INSN_VINSN (insn);
919 enum machine_mode mode;
920 rtx dst_loc;
921 bool res;
922
923 gcc_assert (VINSN_SEPARABLE_P (vi));
924
925 get_dest_and_mode (insn, &dst_loc, &mode);
926 gcc_assert (mode == GET_MODE (new_src_reg));
927
928 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
929 return true;
930
931 /* See whether SET_SRC can be replaced with this register. */
932 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
933 res = verify_changes (0);
934 cancel_changes (0);
935
936 return res;
937}
938
939/* Returns whether INSN still be valid after replacing it's DEST with
940 register NEW_REG. */
941static bool
942replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
943{
944 vinsn_t vi = INSN_VINSN (insn);
945 bool res;
946
947 /* We should deal here only with separable insns. */
948 gcc_assert (VINSN_SEPARABLE_P (vi));
949 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
950
951 /* See whether SET_DEST can be replaced with this register. */
952 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
953 res = verify_changes (0);
954 cancel_changes (0);
955
956 return res;
957}
958
959/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
960static rtx
961create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
962{
963 rtx rhs_rtx;
964 rtx pattern;
965 rtx insn_rtx;
966
967 rhs_rtx = copy_rtx (VINSN_RHS (vi));
968
969 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
970 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
971
972 return insn_rtx;
973}
974
b8698a0f 975/* Substitute lhs in the given expression EXPR for the register with number
e855c69d
AB
976 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
977static void
978replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
979{
980 rtx insn_rtx;
981 vinsn_t vinsn;
982
983 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
984 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
985
986 change_vinsn_in_expr (expr, vinsn);
987 EXPR_WAS_RENAMED (expr) = 1;
988 EXPR_TARGET_AVAILABLE (expr) = 1;
989}
990
991/* Returns whether VI writes either one of the USED_REGS registers or,
992 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
993static bool
b8698a0f 994vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e855c69d
AB
995 HARD_REG_SET unavailable_hard_regs)
996{
997 unsigned regno;
998 reg_set_iterator rsi;
999
1000 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1001 {
1002 if (REGNO_REG_SET_P (used_regs, regno))
1003 return true;
1004 if (HARD_REGISTER_NUM_P (regno)
1005 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1006 return true;
1007 }
1008
1009 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1010 {
1011 if (REGNO_REG_SET_P (used_regs, regno))
1012 return true;
1013 if (HARD_REGISTER_NUM_P (regno)
1014 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1015 return true;
1016 }
1017
1018 return false;
1019}
1020
b8698a0f 1021/* Returns register class of the output register in INSN.
e855c69d
AB
1022 Returns NO_REGS for call insns because some targets have constraints on
1023 destination register of a call insn.
b8698a0f 1024
e855c69d
AB
1025 Code adopted from regrename.c::build_def_use. */
1026static enum reg_class
1027get_reg_class (rtx insn)
1028{
1029 int alt, i, n_ops;
1030
1031 extract_insn (insn);
1032 if (! constrain_operands (1))
1033 fatal_insn_not_found (insn);
1034 preprocess_constraints ();
1035 alt = which_alternative;
1036 n_ops = recog_data.n_operands;
1037
1038 for (i = 0; i < n_ops; ++i)
1039 {
1040 int matches = recog_op_alt[i][alt].matches;
1041 if (matches >= 0)
1042 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1043 }
1044
1045 if (asm_noperands (PATTERN (insn)) > 0)
1046 {
1047 for (i = 0; i < n_ops; i++)
1048 if (recog_data.operand_type[i] == OP_OUT)
1049 {
1050 rtx *loc = recog_data.operand_loc[i];
1051 rtx op = *loc;
1052 enum reg_class cl = recog_op_alt[i][alt].cl;
1053
1054 if (REG_P (op)
1055 && REGNO (op) == ORIGINAL_REGNO (op))
1056 continue;
1057
1058 return cl;
1059 }
1060 }
1061 else if (!CALL_P (insn))
1062 {
1063 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1064 {
1065 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1066 enum reg_class cl = recog_op_alt[opn][alt].cl;
b8698a0f 1067
e855c69d
AB
1068 if (recog_data.operand_type[opn] == OP_OUT ||
1069 recog_data.operand_type[opn] == OP_INOUT)
1070 return cl;
1071 }
1072 }
1073
1074/* Insns like
1075 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1076 may result in returning NO_REGS, cause flags is written implicitly through
1077 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1078 return NO_REGS;
1079}
1080
1081#ifdef HARD_REGNO_RENAME_OK
1082/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1083static void
1084init_hard_regno_rename (int regno)
1085{
1086 int cur_reg;
1087
1088 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1089
1090 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1091 {
1092 /* We are not interested in renaming in other regs. */
1093 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1094 continue;
1095
1096 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1097 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1098 }
1099}
1100#endif
1101
b8698a0f 1102/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e855c69d
AB
1103 data first. */
1104static inline bool
a20d7130 1105sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d
AB
1106{
1107#ifdef HARD_REGNO_RENAME_OK
1108 /* Check whether this is all calculated. */
1109 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1110 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1111
1112 init_hard_regno_rename (from);
1113
1114 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1115#else
1116 return true;
1117#endif
1118}
1119
1120/* Calculate set of registers that are capable of holding MODE. */
1121static void
1122init_regs_for_mode (enum machine_mode mode)
1123{
1124 int cur_reg;
b8698a0f 1125
e855c69d
AB
1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1127 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1128
1129 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1130 {
1131 int nregs = hard_regno_nregs[cur_reg][mode];
1132 int i;
b8698a0f 1133
e855c69d
AB
1134 for (i = nregs - 1; i >= 0; --i)
1135 if (fixed_regs[cur_reg + i]
1136 || global_regs[cur_reg + i]
b8698a0f 1137 /* Can't use regs which aren't saved by
e855c69d
AB
1138 the prologue. */
1139 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1140#ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145#endif
1146 )
1147 break;
b8698a0f
L
1148
1149 if (i >= 0)
e855c69d 1150 continue;
b8698a0f 1151
e855c69d
AB
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
b8698a0f 1156
e855c69d 1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
b8698a0f 1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e855c69d 1159 cur_reg);
b8698a0f
L
1160
1161 /* If the CUR_REG passed all the checks above,
e855c69d
AB
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1164 }
1165
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1167}
1168
1169/* Init all register sets gathered in HRD. */
1170static void
1171init_hard_regs_data (void)
1172{
1173 int cur_reg = 0;
32e8bb8e 1174 int cur_mode = 0;
e855c69d
AB
1175
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
b8698a0f
L
1180
1181 /* Initialize registers that are valid based on mode when this is
e855c69d
AB
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
b8698a0f 1185
e855c69d
AB
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189
1190#ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195#endif
b8698a0f 1196}
e855c69d 1197
b8698a0f 1198/* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1205
1206static void
1207mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1209{
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1215
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1218
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
b8698a0f 1220
e855c69d
AB
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1225
1226 regno = REGNO (orig_dest);
1227
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1231
0c94f956
AM
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
e855c69d 1234
0c94f956
AM
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
b8698a0f 1237 if (fixed_regs[regno]
e855c69d
AB
1238 || global_regs[regno]
1239#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
0c94f956 1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
e855c69d 1241#else
0c94f956 1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
e855c69d 1243#endif
0c94f956 1244 || (reload_completed && cl == NO_REGS))
e855c69d
AB
1245 {
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251
1252 return;
1253 }
1254
1255 /* If something allocated on stack in this function, mark frame pointer
b8698a0f 1256 register unavailable, considering also modes.
e855c69d
AB
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1259 {
1260 int i;
1261
1262 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
b8698a0f 1263 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1264 FRAME_POINTER_REGNUM + i);
1265
1266#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1267 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
b8698a0f 1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1269 HARD_FRAME_POINTER_REGNUM + i);
1270#endif
1271 }
1272
1273#ifdef STACK_REGS
1274 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1275 is equivalent to as if all stack regs were in this set.
1276 I.e. no stack register can be renamed, and even if it's an original
b8698a0f
L
1277 register here we make sure it won't be lifted over it's previous def
1278 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e855c69d
AB
1279 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1280 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
b8698a0f
L
1281 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1282 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d 1283 sel_hrd.stack_regs);
b8698a0f 1284#endif
e855c69d 1285
b8698a0f 1286 /* If there's a call on this path, make regs from call_used_reg_set
e855c69d
AB
1287 unavailable. */
1288 if (def->crosses_call)
b8698a0f 1289 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1290 call_used_reg_set);
1291
b8698a0f 1292 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e855c69d
AB
1293 but not register classes. */
1294 if (!reload_completed)
1295 return;
1296
b8698a0f 1297 /* Leave regs as 'available' only from the current
e855c69d 1298 register class. */
e855c69d
AB
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]);
1301
0c94f956
AM
1302 mode = GET_MODE (orig_dest);
1303
e855c69d
AB
1304 /* Leave only registers available for this mode. */
1305 if (!sel_hrd.regs_for_mode_ok[mode])
1306 init_regs_for_mode (mode);
b8698a0f 1307 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1308 sel_hrd.regs_for_mode[mode]);
1309
1310 /* Exclude registers that are partially call clobbered. */
1311 if (def->crosses_call
1312 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
b8698a0f 1313 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1314 sel_hrd.regs_for_call_clobbered[mode]);
1315
1316 /* Leave only those that are ok to rename. */
1317 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1318 0, cur_reg, hrsi)
1319 {
1320 int nregs;
1321 int i;
1322
1323 nregs = hard_regno_nregs[cur_reg][mode];
1324 gcc_assert (nregs > 0);
1325
1326 for (i = nregs - 1; i >= 0; --i)
1327 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1328 break;
1329
b8698a0f
L
1330 if (i >= 0)
1331 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e855c69d
AB
1332 cur_reg);
1333 }
1334
b8698a0f 1335 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1336 reg_rename_p->unavailable_hard_regs);
1337
1338 /* Regno is always ok from the renaming part of view, but it really
1339 could be in *unavailable_hard_regs already, so set it here instead
1340 of there. */
1341 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1342}
1343
1344/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1345 best register more recently than REG2. */
1346static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1347
1348/* Indicates the number of times renaming happened before the current one. */
1349static int reg_rename_this_tick;
1350
b8698a0f 1351/* Choose the register among free, that is suitable for storing
e855c69d
AB
1352 the rhs value.
1353
1354 ORIGINAL_INSNS is the list of insns where the operation (rhs)
b8698a0f
L
1355 originally appears. There could be multiple original operations
1356 for single rhs since we moving it up and merging along different
e855c69d
AB
1357 paths.
1358
1359 Some code is adapted from regrename.c (regrename_optimize).
1360 If original register is available, function returns it.
1361 Otherwise it performs the checks, so the new register should
1362 comply with the following:
b8698a0f 1363 - it should not violate any live ranges (such registers are in
e855c69d
AB
1364 REG_RENAME_P->available_for_renaming set);
1365 - it should not be in the HARD_REGS_USED regset;
1366 - it should be in the class compatible with original uses;
1367 - it should not be clobbered through reference with different mode;
b8698a0f 1368 - if we're in the leaf function, then the new register should
e855c69d
AB
1369 not be in the LEAF_REGISTERS;
1370 - etc.
1371
1372 If several registers meet the conditions, the register with smallest
1373 tick is returned to achieve more even register allocation.
1374
1375 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1376
1377 If no register satisfies the above conditions, NULL_RTX is returned. */
1378static rtx
b8698a0f
L
1379choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1380 struct reg_rename *reg_rename_p,
e855c69d
AB
1381 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1382{
1383 int best_new_reg;
1384 unsigned cur_reg;
1385 enum machine_mode mode = VOIDmode;
1386 unsigned regno, i, n;
1387 hard_reg_set_iterator hrsi;
1388 def_list_iterator di;
1389 def_t def;
1390
1391 /* If original register is available, return it. */
1392 *is_orig_reg_p_ptr = true;
1393
1394 FOR_EACH_DEF (def, di, original_insns)
1395 {
1396 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1397
1398 gcc_assert (REG_P (orig_dest));
1399
b8698a0f 1400 /* Check that all original operations have the same mode.
e855c69d 1401 This is done for the next loop; if we'd return from this
b8698a0f 1402 loop, we'd check only part of them, but in this case
e855c69d
AB
1403 it doesn't matter. */
1404 if (mode == VOIDmode)
1405 mode = GET_MODE (orig_dest);
1406 gcc_assert (mode == GET_MODE (orig_dest));
1407
1408 regno = REGNO (orig_dest);
1409 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1410 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1411 break;
1412
1413 /* All hard registers are available. */
1414 if (i == n)
1415 {
1416 gcc_assert (mode != VOIDmode);
b8698a0f 1417
e855c69d
AB
1418 /* Hard registers should not be shared. */
1419 return gen_rtx_REG (mode, regno);
1420 }
1421 }
b8698a0f 1422
e855c69d
AB
1423 *is_orig_reg_p_ptr = false;
1424 best_new_reg = -1;
b8698a0f
L
1425
1426 /* Among all available regs choose the register that was
e855c69d
AB
1427 allocated earliest. */
1428 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1429 0, cur_reg, hrsi)
1430 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1431 {
1432 /* All hard registers are available. */
1433 if (best_new_reg < 0
1434 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1435 {
1436 best_new_reg = cur_reg;
b8698a0f 1437
e855c69d
AB
1438 /* Return immediately when we know there's no better reg. */
1439 if (! reg_rename_tick[best_new_reg])
1440 break;
1441 }
1442 }
1443
1444 if (best_new_reg >= 0)
1445 {
1446 /* Use the check from the above loop. */
1447 gcc_assert (mode != VOIDmode);
1448 return gen_rtx_REG (mode, best_new_reg);
1449 }
1450
1451 return NULL_RTX;
1452}
1453
1454/* A wrapper around choose_best_reg_1 () to verify that we make correct
1455 assumptions about available registers in the function. */
1456static rtx
b8698a0f 1457choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e855c69d
AB
1458 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1459{
b8698a0f 1460 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e855c69d
AB
1461 original_insns, is_orig_reg_p_ptr);
1462
1463 gcc_assert (best_reg == NULL_RTX
1464 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1465
1466 return best_reg;
1467}
1468
b8698a0f 1469/* Choose the pseudo register for storing rhs value. As this is supposed
e855c69d 1470 to work before reload, we return either the original register or make
b8698a0f
L
1471 the new one. The parameters are the same that in choose_nest_reg_1
1472 functions, except that USED_REGS may contain pseudos.
e855c69d
AB
1473 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1474
b8698a0f
L
1475 TODO: take into account register pressure while doing this. Up to this
1476 moment, this function would never return NULL for pseudos, but we should
e855c69d
AB
1477 not rely on this. */
1478static rtx
b8698a0f
L
1479choose_best_pseudo_reg (regset used_regs,
1480 struct reg_rename *reg_rename_p,
e855c69d
AB
1481 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1482{
1483 def_list_iterator i;
1484 def_t def;
1485 enum machine_mode mode = VOIDmode;
1486 bool bad_hard_regs = false;
b8698a0f 1487
e855c69d
AB
1488 /* We should not use this after reload. */
1489 gcc_assert (!reload_completed);
1490
1491 /* If original register is available, return it. */
1492 *is_orig_reg_p_ptr = true;
1493
1494 FOR_EACH_DEF (def, i, original_insns)
1495 {
1496 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1497 int orig_regno;
b8698a0f 1498
e855c69d 1499 gcc_assert (REG_P (dest));
b8698a0f 1500
e855c69d
AB
1501 /* Check that all original operations have the same mode. */
1502 if (mode == VOIDmode)
1503 mode = GET_MODE (dest);
1504 else
1505 gcc_assert (mode == GET_MODE (dest));
1506 orig_regno = REGNO (dest);
b8698a0f 1507
e855c69d
AB
1508 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1509 {
1510 if (orig_regno < FIRST_PSEUDO_REGISTER)
1511 {
1512 gcc_assert (df_regs_ever_live_p (orig_regno));
b8698a0f
L
1513
1514 /* For hard registers, we have to check hardware imposed
e855c69d 1515 limitations (frame/stack registers, calls crossed). */
b8698a0f 1516 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1517 orig_regno))
1518 {
b8698a0f
L
1519 /* Don't let register cross a call if it doesn't already
1520 cross one. This condition is written in accordance with
e855c69d 1521 that in sched-deps.c sched_analyze_reg(). */
b8698a0f 1522 if (!reg_rename_p->crosses_call
e855c69d 1523 || REG_N_CALLS_CROSSED (orig_regno) > 0)
b8698a0f 1524 return gen_rtx_REG (mode, orig_regno);
e855c69d 1525 }
b8698a0f 1526
e855c69d
AB
1527 bad_hard_regs = true;
1528 }
1529 else
1530 return dest;
1531 }
1532 }
1533
1534 *is_orig_reg_p_ptr = false;
b8698a0f 1535
e855c69d
AB
1536 /* We had some original hard registers that couldn't be used.
1537 Those were likely special. Don't try to create a pseudo. */
1538 if (bad_hard_regs)
1539 return NULL_RTX;
b8698a0f
L
1540
1541 /* We haven't found a register from original operations. Get a new one.
e855c69d
AB
1542 FIXME: control register pressure somehow. */
1543 {
1544 rtx new_reg = gen_reg_rtx (mode);
1545
1546 gcc_assert (mode != VOIDmode);
1547
1548 max_regno = max_reg_num ();
1549 maybe_extend_reg_info_p ();
1550 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1551
1552 return new_reg;
1553 }
1554}
1555
1556/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1557 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1558static void
b8698a0f 1559verify_target_availability (expr_t expr, regset used_regs,
e855c69d
AB
1560 struct reg_rename *reg_rename_p)
1561{
1562 unsigned n, i, regno;
1563 enum machine_mode mode;
1564 bool target_available, live_available, hard_available;
1565
1566 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1567 return;
b8698a0f 1568
e855c69d
AB
1569 regno = expr_dest_regno (expr);
1570 mode = GET_MODE (EXPR_LHS (expr));
1571 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1572 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1573
1574 live_available = hard_available = true;
1575 for (i = 0; i < n; i++)
1576 {
1577 if (bitmap_bit_p (used_regs, regno + i))
1578 live_available = false;
1579 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1580 hard_available = false;
1581 }
1582
b8698a0f 1583 /* When target is not available, it may be due to hard register
e855c69d
AB
1584 restrictions, e.g. crosses calls, so we check hard_available too. */
1585 if (target_available)
1586 gcc_assert (live_available);
1587 else
b8698a0f 1588 /* Check only if we haven't scheduled something on the previous fence,
e855c69d
AB
1589 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1590 and having more than one fence, we may end having targ_un in a block
b8698a0f 1591 in which successors target register is actually available.
e855c69d
AB
1592
1593 The last condition handles the case when a dependence from a call insn
b8698a0f
L
1594 was created in sched-deps.c for insns with destination registers that
1595 never crossed a call before, but do cross one after our code motion.
e855c69d 1596
b8698a0f
L
1597 FIXME: in the latter case, we just uselessly called find_used_regs,
1598 because we can't move this expression with any other register
e855c69d 1599 as well. */
b8698a0f
L
1600 gcc_assert (scheduled_something_on_previous_fence || !live_available
1601 || !hard_available
1602 || (!reload_completed && reg_rename_p->crosses_call
e855c69d
AB
1603 && REG_N_CALLS_CROSSED (regno) == 0));
1604}
1605
b8698a0f
L
1606/* Collect unavailable registers due to liveness for EXPR from BNDS
1607 into USED_REGS. Save additional information about available
e855c69d
AB
1608 registers and unavailable due to hardware restriction registers
1609 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1610 list. */
1611static void
1612collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1613 struct reg_rename *reg_rename_p,
1614 def_list_t *original_insns)
1615{
1616 for (; bnds; bnds = BLIST_NEXT (bnds))
1617 {
1618 bool res;
1619 av_set_t orig_ops = NULL;
1620 bnd_t bnd = BLIST_BND (bnds);
1621
1622 /* If the chosen best expr doesn't belong to current boundary,
1623 skip it. */
1624 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1625 continue;
1626
1627 /* Put in ORIG_OPS all exprs from this boundary that became
1628 RES on top. */
1629 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1630
1631 /* Compute used regs and OR it into the USED_REGS. */
1632 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1633 reg_rename_p, original_insns);
1634
1635 /* FIXME: the assert is true until we'd have several boundaries. */
1636 gcc_assert (res);
1637 av_set_clear (&orig_ops);
1638 }
1639}
1640
1641/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1642 If BEST_REG is valid, replace LHS of EXPR with it. */
1643static bool
1644try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1645{
e855c69d
AB
1646 /* Try whether we'll be able to generate the insn
1647 'dest := best_reg' at the place of the original operation. */
1648 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1649 {
1650 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1651
1652 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1653
0666ff4e
AB
1654 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1655 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1656 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e855c69d
AB
1657 return false;
1658 }
1659
1660 /* Make sure that EXPR has the right destination
1661 register. */
0666ff4e
AB
1662 if (expr_dest_regno (expr) != REGNO (best_reg))
1663 replace_dest_with_reg_in_expr (expr, best_reg);
1664 else
1665 EXPR_TARGET_AVAILABLE (expr) = 1;
1666
e855c69d
AB
1667 return true;
1668}
1669
b8698a0f
L
1670/* Select and assign best register to EXPR searching from BNDS.
1671 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e855c69d
AB
1672 Return FALSE if no register can be chosen, which could happen when:
1673 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1674 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1675 that are used on the moving path. */
1676static bool
1677find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1678{
1679 static struct reg_rename reg_rename_data;
1680
1681 regset used_regs;
1682 def_list_t original_insns = NULL;
1683 bool reg_ok;
1684
1685 *is_orig_reg_p = false;
1686
1687 /* Don't bother to do anything if this insn doesn't set any registers. */
1688 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1689 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1690 return true;
1691
1692 used_regs = get_clear_regset_from_pool ();
1693 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1694
1695 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1696 &original_insns);
1697
1698#ifdef ENABLE_CHECKING
1699 /* If after reload, make sure we're working with hard regs here. */
b8698a0f 1700 if (reload_completed)
e855c69d
AB
1701 {
1702 reg_set_iterator rsi;
1703 unsigned i;
b8698a0f 1704
e855c69d
AB
1705 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1706 gcc_unreachable ();
1707 }
1708#endif
1709
1710 if (EXPR_SEPARABLE_P (expr))
1711 {
1712 rtx best_reg = NULL_RTX;
1713 /* Check that we have computed availability of a target register
1714 correctly. */
1715 verify_target_availability (expr, used_regs, &reg_rename_data);
1716
1717 /* Turn everything in hard regs after reload. */
1718 if (reload_completed)
1719 {
1720 HARD_REG_SET hard_regs_used;
1721 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1722
1723 /* Join hard registers unavailable due to register class
1724 restrictions and live range intersection. */
1725 IOR_HARD_REG_SET (hard_regs_used,
1726 reg_rename_data.unavailable_hard_regs);
1727
1728 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1729 original_insns, is_orig_reg_p);
1730 }
1731 else
1732 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1733 original_insns, is_orig_reg_p);
1734
1735 if (!best_reg)
1736 reg_ok = false;
1737 else if (*is_orig_reg_p)
1738 {
1739 /* In case of unification BEST_REG may be different from EXPR's LHS
1740 when EXPR's LHS is unavailable, and there is another LHS among
1741 ORIGINAL_INSNS. */
1742 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1743 }
1744 else
1745 {
1746 /* Forbid renaming of low-cost insns. */
1747 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1748 reg_ok = false;
1749 else
1750 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1751 }
1752 }
1753 else
1754 {
1755 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1756 any of the HARD_REGS_USED set. */
1757 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1758 reg_rename_data.unavailable_hard_regs))
1759 {
1760 reg_ok = false;
1761 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1762 }
1763 else
1764 {
1765 reg_ok = true;
1766 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1767 }
1768 }
1769
1770 ilist_clear (&original_insns);
1771 return_regset_to_pool (used_regs);
1772
1773 return reg_ok;
1774}
1775\f
1776
1777/* Return true if dependence described by DS can be overcomed. */
1778static bool
1779can_speculate_dep_p (ds_t ds)
1780{
1781 if (spec_info == NULL)
1782 return false;
1783
1784 /* Leave only speculative data. */
1785 ds &= SPECULATIVE;
1786
1787 if (ds == 0)
1788 return false;
1789
1790 {
1791 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1792 that we can overcome. */
1793 ds_t spec_mask = spec_info->mask;
1794
1795 if ((ds & spec_mask) != ds)
1796 return false;
1797 }
1798
1799 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1800 return false;
1801
1802 return true;
1803}
1804
1805/* Get a speculation check instruction.
1806 C_EXPR is a speculative expression,
1807 CHECK_DS describes speculations that should be checked,
1808 ORIG_INSN is the original non-speculative insn in the stream. */
1809static insn_t
1810create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1811{
1812 rtx check_pattern;
1813 rtx insn_rtx;
1814 insn_t insn;
1815 basic_block recovery_block;
1816 rtx label;
1817
1818 /* Create a recovery block if target is going to emit branchy check, or if
1819 ORIG_INSN was speculative already. */
388092d5 1820 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1821 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1822 {
1823 recovery_block = sel_create_recovery_block (orig_insn);
1824 label = BB_HEAD (recovery_block);
1825 }
1826 else
1827 {
1828 recovery_block = NULL;
1829 label = NULL_RTX;
1830 }
1831
1832 /* Get pattern of the check. */
1833 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1834 check_ds);
1835
1836 gcc_assert (check_pattern != NULL);
1837
1838 /* Emit check. */
1839 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1840
1841 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1842 INSN_SEQNO (orig_insn), orig_insn);
1843
1844 /* Make check to be non-speculative. */
1845 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1846 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1847
1848 /* Decrease priority of check by difference of load/check instruction
1849 latencies. */
1850 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1851 - sel_vinsn_cost (INSN_VINSN (insn)));
1852
1853 /* Emit copy of original insn (though with replaced target register,
1854 if needed) to the recovery block. */
1855 if (recovery_block != NULL)
1856 {
1857 rtx twin_rtx;
1858 insn_t twin;
1859
1860 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1861 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1862 twin = sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1863 INSN_EXPR (orig_insn),
1864 INSN_SEQNO (insn),
1865 bb_note (recovery_block));
1866 }
1867
1868 /* If we've generated a data speculation check, make sure
1869 that all the bookkeeping instruction we'll create during
1870 this move_op () will allocate an ALAT entry so that the
1871 check won't fail.
1872 In case of control speculation we must convert C_EXPR to control
1873 speculative mode, because failing to do so will bring us an exception
1874 thrown by the non-control-speculative load. */
1875 check_ds = ds_get_max_dep_weak (check_ds);
1876 speculate_expr (c_expr, check_ds);
b8698a0f 1877
e855c69d
AB
1878 return insn;
1879}
1880
1881/* True when INSN is a "regN = regN" copy. */
1882static bool
1883identical_copy_p (rtx insn)
1884{
1885 rtx lhs, rhs, pat;
1886
1887 pat = PATTERN (insn);
1888
1889 if (GET_CODE (pat) != SET)
1890 return false;
1891
1892 lhs = SET_DEST (pat);
1893 if (!REG_P (lhs))
1894 return false;
1895
1896 rhs = SET_SRC (pat);
1897 if (!REG_P (rhs))
1898 return false;
1899
1900 return REGNO (lhs) == REGNO (rhs);
1901}
1902
b8698a0f 1903/* Undo all transformations on *AV_PTR that were done when
e855c69d
AB
1904 moving through INSN. */
1905static void
1906undo_transformations (av_set_t *av_ptr, rtx insn)
1907{
1908 av_set_iterator av_iter;
1909 expr_t expr;
1910 av_set_t new_set = NULL;
1911
b8698a0f 1912 /* First, kill any EXPR that uses registers set by an insn. This is
e855c69d
AB
1913 required for correctness. */
1914 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1915 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
b8698a0f 1916 && bitmap_intersect_p (INSN_REG_SETS (insn),
e855c69d
AB
1917 VINSN_REG_USES (EXPR_VINSN (expr)))
1918 /* When an insn looks like 'r1 = r1', we could substitute through
1919 it, but the above condition will still hold. This happened with
b8698a0f 1920 gcc.c-torture/execute/961125-1.c. */
e855c69d
AB
1921 && !identical_copy_p (insn))
1922 {
1923 if (sched_verbose >= 6)
b8698a0f 1924 sel_print ("Expr %d removed due to use/set conflict\n",
e855c69d
AB
1925 INSN_UID (EXPR_INSN_RTX (expr)));
1926 av_set_iter_remove (&av_iter);
1927 }
1928
1929 /* Undo transformations looking at the history vector. */
1930 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1931 {
1932 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1933 insn, EXPR_VINSN (expr), true);
1934
1935 if (index >= 0)
1936 {
1937 expr_history_def *phist;
1938
b8698a0f 1939 phist = VEC_index (expr_history_def,
e855c69d
AB
1940 EXPR_HISTORY_OF_CHANGES (expr),
1941 index);
1942
b8698a0f 1943 switch (phist->type)
e855c69d
AB
1944 {
1945 case TRANS_SPECULATION:
1946 {
1947 ds_t old_ds, new_ds;
b8698a0f 1948
e855c69d 1949 /* Compute the difference between old and new speculative
b8698a0f 1950 statuses: that's what we need to check.
e855c69d
AB
1951 Earlier we used to assert that the status will really
1952 change. This no longer works because only the probability
1953 bits in the status may have changed during compute_av_set,
b8698a0f
L
1954 and in the case of merging different probabilities of the
1955 same speculative status along different paths we do not
e855c69d
AB
1956 record this in the history vector. */
1957 old_ds = phist->spec_ds;
1958 new_ds = EXPR_SPEC_DONE_DS (expr);
1959
1960 old_ds &= SPECULATIVE;
1961 new_ds &= SPECULATIVE;
1962 new_ds &= ~old_ds;
b8698a0f 1963
e855c69d
AB
1964 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1965 break;
1966 }
1967 case TRANS_SUBSTITUTION:
1968 {
1969 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1970 vinsn_t new_vi;
1971 bool add = true;
b8698a0f 1972
e855c69d 1973 new_vi = phist->old_expr_vinsn;
b8698a0f
L
1974
1975 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e855c69d
AB
1976 == EXPR_SEPARABLE_P (expr));
1977 copy_expr (tmp_expr, expr);
1978
b8698a0f 1979 if (vinsn_equal_p (phist->new_expr_vinsn,
e855c69d
AB
1980 EXPR_VINSN (tmp_expr)))
1981 change_vinsn_in_expr (tmp_expr, new_vi);
1982 else
1983 /* This happens when we're unsubstituting on a bookkeeping
1984 copy, which was in turn substituted. The history is wrong
1985 in this case. Do it the hard way. */
1986 add = substitute_reg_in_expr (tmp_expr, insn, true);
1987 if (add)
1988 av_set_add (&new_set, tmp_expr);
1989 clear_expr (tmp_expr);
1990 break;
1991 }
1992 default:
1993 gcc_unreachable ();
1994 }
1995 }
b8698a0f 1996
e855c69d
AB
1997 }
1998
1999 av_set_union_and_clear (av_ptr, &new_set, NULL);
2000}
2001\f
2002
2003/* Moveup_* helpers for code motion and computing av sets. */
2004
2005/* Propagates EXPR inside an insn group through THROUGH_INSN.
b8698a0f 2006 The difference from the below function is that only substitution is
e855c69d
AB
2007 performed. */
2008static enum MOVEUP_EXPR_CODE
2009moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2010{
2011 vinsn_t vi = EXPR_VINSN (expr);
2012 ds_t *has_dep_p;
2013 ds_t full_ds;
2014
2015 /* Do this only inside insn group. */
2016 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2017
2018 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2019 if (full_ds == 0)
2020 return MOVEUP_EXPR_SAME;
2021
2022 /* Substitution is the possible choice in this case. */
2023 if (has_dep_p[DEPS_IN_RHS])
2024 {
2025 /* Can't substitute UNIQUE VINSNs. */
2026 gcc_assert (!VINSN_UNIQUE_P (vi));
b8698a0f
L
2027
2028 if (can_substitute_through_p (through_insn,
e855c69d
AB
2029 has_dep_p[DEPS_IN_RHS])
2030 && substitute_reg_in_expr (expr, through_insn, false))
2031 {
2032 EXPR_WAS_SUBSTITUTED (expr) = true;
2033 return MOVEUP_EXPR_CHANGED;
2034 }
2035
2036 /* Don't care about this, as even true dependencies may be allowed
2037 in an insn group. */
2038 return MOVEUP_EXPR_SAME;
2039 }
2040
2041 /* This can catch output dependencies in COND_EXECs. */
2042 if (has_dep_p[DEPS_IN_INSN])
2043 return MOVEUP_EXPR_NULL;
b8698a0f 2044
e855c69d
AB
2045 /* This is either an output or an anti dependence, which usually have
2046 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2047 will fix this. */
2048 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2049 return MOVEUP_EXPR_AS_RHS;
2050}
2051
2052/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2053#define CANT_MOVE_TRAPPING(expr, through_insn) \
2054 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2055 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2056 && !sel_insn_is_speculation_check (through_insn))
2057
2058/* True when a conflict on a target register was found during moveup_expr. */
2059static bool was_target_conflict = false;
2060
b5b8b0ac
AO
2061/* Return true when moving a debug INSN across THROUGH_INSN will
2062 create a bookkeeping block. We don't want to create such blocks,
2063 for they would cause codegen differences between compilations with
2064 and without debug info. */
2065
2066static bool
2067moving_insn_creates_bookkeeping_block_p (insn_t insn,
2068 insn_t through_insn)
2069{
2070 basic_block bbi, bbt;
2071 edge e1, e2;
2072 edge_iterator ei1, ei2;
2073
2074 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2075 {
2076 if (sched_verbose >= 9)
2077 sel_print ("no bookkeeping required: ");
2078 return FALSE;
2079 }
2080
2081 bbi = BLOCK_FOR_INSN (insn);
2082
2083 if (EDGE_COUNT (bbi->preds) == 1)
2084 {
2085 if (sched_verbose >= 9)
2086 sel_print ("only one pred edge: ");
2087 return TRUE;
2088 }
2089
2090 bbt = BLOCK_FOR_INSN (through_insn);
2091
2092 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2093 {
2094 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2095 {
2096 if (find_block_for_bookkeeping (e1, e2, TRUE))
2097 {
2098 if (sched_verbose >= 9)
2099 sel_print ("found existing block: ");
2100 return FALSE;
2101 }
2102 }
2103 }
2104
2105 if (sched_verbose >= 9)
2106 sel_print ("would create bookkeeping block: ");
2107
2108 return TRUE;
2109}
2110
e855c69d 2111/* Modifies EXPR so it can be moved through the THROUGH_INSN,
b8698a0f
L
2112 performing necessary transformations. Record the type of transformation
2113 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e855c69d 2114 permit all dependencies except true ones, and try to remove those
b8698a0f
L
2115 too via forward substitution. All cases when a non-eliminable
2116 non-zero cost dependency exists inside an insn group will be fixed
e855c69d
AB
2117 in tick_check_p instead. */
2118static enum MOVEUP_EXPR_CODE
2119moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2120 enum local_trans_type *ptrans_type)
2121{
2122 vinsn_t vi = EXPR_VINSN (expr);
2123 insn_t insn = VINSN_INSN_RTX (vi);
2124 bool was_changed = false;
2125 bool as_rhs = false;
2126 ds_t *has_dep_p;
2127 ds_t full_ds;
2128
2129 /* When inside_insn_group, delegate to the helper. */
2130 if (inside_insn_group)
2131 return moveup_expr_inside_insn_group (expr, through_insn);
2132
2133 /* Deal with unique insns and control dependencies. */
2134 if (VINSN_UNIQUE_P (vi))
2135 {
2136 /* We can move jumps without side-effects or jumps that are
2137 mutually exclusive with instruction THROUGH_INSN (all in cases
2138 dependencies allow to do so and jump is not speculative). */
2139 if (control_flow_insn_p (insn))
2140 {
2141 basic_block fallthru_bb;
2142
b8698a0f 2143 /* Do not move checks and do not move jumps through other
e855c69d
AB
2144 jumps. */
2145 if (control_flow_insn_p (through_insn)
2146 || sel_insn_is_speculation_check (insn))
2147 return MOVEUP_EXPR_NULL;
2148
2149 /* Don't move jumps through CFG joins. */
2150 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2151 return MOVEUP_EXPR_NULL;
2152
b8698a0f 2153 /* The jump should have a clear fallthru block, and
e855c69d
AB
2154 this block should be in the current region. */
2155 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2156 || ! in_current_region_p (fallthru_bb))
2157 return MOVEUP_EXPR_NULL;
b8698a0f
L
2158
2159 /* And it should be mutually exclusive with through_insn, or
e855c69d
AB
2160 be an unconditional jump. */
2161 if (! any_uncondjump_p (insn)
b5b8b0ac
AO
2162 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2163 && ! DEBUG_INSN_P (through_insn))
e855c69d
AB
2164 return MOVEUP_EXPR_NULL;
2165 }
2166
2167 /* Don't move what we can't move. */
2168 if (EXPR_CANT_MOVE (expr)
2169 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2170 return MOVEUP_EXPR_NULL;
2171
2172 /* Don't move SCHED_GROUP instruction through anything.
2173 If we don't force this, then it will be possible to start
2174 scheduling a sched_group before all its dependencies are
2175 resolved.
2176 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2177 as late as possible through rank_for_schedule. */
2178 if (SCHED_GROUP_P (insn))
2179 return MOVEUP_EXPR_NULL;
2180 }
2181 else
2182 gcc_assert (!control_flow_insn_p (insn));
2183
b5b8b0ac
AO
2184 /* Don't move debug insns if this would require bookkeeping. */
2185 if (DEBUG_INSN_P (insn)
2186 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2187 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2188 return MOVEUP_EXPR_NULL;
2189
e855c69d
AB
2190 /* Deal with data dependencies. */
2191 was_target_conflict = false;
2192 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2193 if (full_ds == 0)
2194 {
2195 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2196 return MOVEUP_EXPR_SAME;
2197 }
2198 else
2199 {
b8698a0f 2200 /* We can move UNIQUE insn up only as a whole and unchanged,
e855c69d
AB
2201 so it shouldn't have any dependencies. */
2202 if (VINSN_UNIQUE_P (vi))
2203 return MOVEUP_EXPR_NULL;
2204 }
2205
2206 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2207 {
2208 int res;
2209
2210 res = speculate_expr (expr, full_ds);
2211 if (res >= 0)
2212 {
2213 /* Speculation was successful. */
2214 full_ds = 0;
2215 was_changed = (res > 0);
2216 if (res == 2)
2217 was_target_conflict = true;
2218 if (ptrans_type)
2219 *ptrans_type = TRANS_SPECULATION;
2220 sel_clear_has_dependence ();
2221 }
2222 }
2223
2224 if (has_dep_p[DEPS_IN_INSN])
2225 /* We have some dependency that cannot be discarded. */
2226 return MOVEUP_EXPR_NULL;
2227
2228 if (has_dep_p[DEPS_IN_LHS])
b8698a0f 2229 {
e855c69d 2230 /* Only separable insns can be moved up with the new register.
b8698a0f 2231 Anyways, we should mark that the original register is
e855c69d
AB
2232 unavailable. */
2233 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2234 return MOVEUP_EXPR_NULL;
2235
2236 EXPR_TARGET_AVAILABLE (expr) = false;
2237 was_target_conflict = true;
2238 as_rhs = true;
2239 }
2240
2241 /* At this point we have either separable insns, that will be lifted
2242 up only as RHSes, or non-separable insns with no dependency in lhs.
2243 If dependency is in RHS, then try to perform substitution and move up
2244 substituted RHS:
2245
2246 Ex. 1: Ex.2
2247 y = x; y = x;
2248 z = y*2; y = y*2;
2249
b8698a0f 2250 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e855c69d
AB
2251 moved above y=x assignment as z=x*2.
2252
b8698a0f 2253 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e855c69d
AB
2254 side can be moved because of the output dependency. The operation was
2255 cropped to its rhs above. */
2256 if (has_dep_p[DEPS_IN_RHS])
2257 {
2258 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2259
2260 /* Can't substitute UNIQUE VINSNs. */
2261 gcc_assert (!VINSN_UNIQUE_P (vi));
2262
2263 if (can_speculate_dep_p (*rhs_dsp))
2264 {
2265 int res;
b8698a0f 2266
e855c69d
AB
2267 res = speculate_expr (expr, *rhs_dsp);
2268 if (res >= 0)
2269 {
2270 /* Speculation was successful. */
2271 *rhs_dsp = 0;
2272 was_changed = (res > 0);
2273 if (res == 2)
2274 was_target_conflict = true;
2275 if (ptrans_type)
2276 *ptrans_type = TRANS_SPECULATION;
2277 }
2278 else
2279 return MOVEUP_EXPR_NULL;
2280 }
2281 else if (can_substitute_through_p (through_insn,
2282 *rhs_dsp)
2283 && substitute_reg_in_expr (expr, through_insn, false))
2284 {
2285 /* ??? We cannot perform substitution AND speculation on the same
2286 insn. */
2287 gcc_assert (!was_changed);
2288 was_changed = true;
2289 if (ptrans_type)
2290 *ptrans_type = TRANS_SUBSTITUTION;
2291 EXPR_WAS_SUBSTITUTED (expr) = true;
2292 }
2293 else
2294 return MOVEUP_EXPR_NULL;
2295 }
2296
2297 /* Don't move trapping insns through jumps.
2298 This check should be at the end to give a chance to control speculation
2299 to perform its duties. */
2300 if (CANT_MOVE_TRAPPING (expr, through_insn))
2301 return MOVEUP_EXPR_NULL;
2302
b8698a0f
L
2303 return (was_changed
2304 ? MOVEUP_EXPR_CHANGED
2305 : (as_rhs
e855c69d
AB
2306 ? MOVEUP_EXPR_AS_RHS
2307 : MOVEUP_EXPR_SAME));
2308}
2309
b8698a0f 2310/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d
AB
2311 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2312 that can exist within a parallel group. Write to RES the resulting
2313 code for moveup_expr. */
b8698a0f 2314static bool
e855c69d
AB
2315try_bitmap_cache (expr_t expr, insn_t insn,
2316 bool inside_insn_group,
2317 enum MOVEUP_EXPR_CODE *res)
2318{
2319 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
b8698a0f 2320
e855c69d
AB
2321 /* First check whether we've analyzed this situation already. */
2322 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2323 {
2324 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2325 {
2326 if (sched_verbose >= 6)
2327 sel_print ("removed (cached)\n");
2328 *res = MOVEUP_EXPR_NULL;
2329 return true;
2330 }
2331 else
2332 {
2333 if (sched_verbose >= 6)
2334 sel_print ("unchanged (cached)\n");
2335 *res = MOVEUP_EXPR_SAME;
2336 return true;
2337 }
2338 }
2339 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2340 {
2341 if (inside_insn_group)
2342 {
2343 if (sched_verbose >= 6)
2344 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2345 *res = MOVEUP_EXPR_SAME;
2346 return true;
b8698a0f 2347
e855c69d
AB
2348 }
2349 else
2350 EXPR_TARGET_AVAILABLE (expr) = false;
2351
b8698a0f
L
2352 /* This is the only case when propagation result can change over time,
2353 as we can dynamically switch off scheduling as RHS. In this case,
e855c69d
AB
2354 just check the flag to reach the correct decision. */
2355 if (enable_schedule_as_rhs_p)
2356 {
2357 if (sched_verbose >= 6)
2358 sel_print ("unchanged (as RHS, cached)\n");
2359 *res = MOVEUP_EXPR_AS_RHS;
2360 return true;
2361 }
2362 else
2363 {
2364 if (sched_verbose >= 6)
2365 sel_print ("removed (cached as RHS, but renaming"
2366 " is now disabled)\n");
2367 *res = MOVEUP_EXPR_NULL;
2368 return true;
2369 }
2370 }
2371
2372 return false;
2373}
2374
b8698a0f 2375/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d 2376 if successful. Write to RES the resulting code for moveup_expr. */
b8698a0f 2377static bool
e855c69d
AB
2378try_transformation_cache (expr_t expr, insn_t insn,
2379 enum MOVEUP_EXPR_CODE *res)
2380{
b8698a0f 2381 struct transformed_insns *pti
e855c69d
AB
2382 = (struct transformed_insns *)
2383 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
b8698a0f 2384 &EXPR_VINSN (expr),
e855c69d
AB
2385 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2386 if (pti)
2387 {
b8698a0f
L
2388 /* This EXPR was already moved through this insn and was
2389 changed as a result. Fetch the proper data from
e855c69d 2390 the hashtable. */
b8698a0f
L
2391 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2392 INSN_UID (insn), pti->type,
2393 pti->vinsn_old, pti->vinsn_new,
e855c69d 2394 EXPR_SPEC_DONE_DS (expr));
b8698a0f 2395
e855c69d
AB
2396 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2397 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2398 change_vinsn_in_expr (expr, pti->vinsn_new);
2399 if (pti->was_target_conflict)
2400 EXPR_TARGET_AVAILABLE (expr) = false;
2401 if (pti->type == TRANS_SPECULATION)
2402 {
2403 ds_t ds;
2404
2405 ds = EXPR_SPEC_DONE_DS (expr);
b8698a0f 2406
e855c69d
AB
2407 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2408 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2409 }
2410
2411 if (sched_verbose >= 6)
2412 {
2413 sel_print ("changed (cached): ");
2414 dump_expr (expr);
2415 sel_print ("\n");
2416 }
2417
2418 *res = MOVEUP_EXPR_CHANGED;
2419 return true;
2420 }
2421
2422 return false;
2423}
2424
2425/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2426static void
b8698a0f 2427update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e855c69d
AB
2428 enum MOVEUP_EXPR_CODE res)
2429{
2430 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2431
b8698a0f 2432 /* Do not cache result of propagating jumps through an insn group,
e855c69d
AB
2433 as it is always true, which is not useful outside the group. */
2434 if (inside_insn_group)
2435 return;
b8698a0f 2436
e855c69d
AB
2437 if (res == MOVEUP_EXPR_NULL)
2438 {
2439 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2440 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2441 }
2442 else if (res == MOVEUP_EXPR_SAME)
2443 {
2444 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2445 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2446 }
2447 else if (res == MOVEUP_EXPR_AS_RHS)
2448 {
2449 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2450 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2451 }
2452 else
2453 gcc_unreachable ();
2454}
2455
2456/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2457 and transformation type TRANS_TYPE. */
2458static void
b8698a0f 2459update_transformation_cache (expr_t expr, insn_t insn,
e855c69d 2460 bool inside_insn_group,
b8698a0f 2461 enum local_trans_type trans_type,
e855c69d
AB
2462 vinsn_t expr_old_vinsn)
2463{
2464 struct transformed_insns *pti;
2465
2466 if (inside_insn_group)
2467 return;
b8698a0f 2468
e855c69d
AB
2469 pti = XNEW (struct transformed_insns);
2470 pti->vinsn_old = expr_old_vinsn;
2471 pti->vinsn_new = EXPR_VINSN (expr);
2472 pti->type = trans_type;
2473 pti->was_target_conflict = was_target_conflict;
2474 pti->ds = EXPR_SPEC_DONE_DS (expr);
2475 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2476 vinsn_attach (pti->vinsn_old);
2477 vinsn_attach (pti->vinsn_new);
b8698a0f 2478 *((struct transformed_insns **)
e855c69d
AB
2479 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2480 pti, VINSN_HASH_RTX (expr_old_vinsn),
2481 INSERT)) = pti;
2482}
2483
b8698a0f 2484/* Same as moveup_expr, but first looks up the result of
e855c69d
AB
2485 transformation in caches. */
2486static enum MOVEUP_EXPR_CODE
2487moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2488{
2489 enum MOVEUP_EXPR_CODE res;
2490 bool got_answer = false;
2491
2492 if (sched_verbose >= 6)
2493 {
b8698a0f 2494 sel_print ("Moving ");
e855c69d
AB
2495 dump_expr (expr);
2496 sel_print (" through %d: ", INSN_UID (insn));
2497 }
2498
b5b8b0ac
AO
2499 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2500 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2501 == EXPR_INSN_RTX (expr)))
2502 /* Don't use cached information for debug insns that are heads of
2503 basic blocks. */;
2504 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e855c69d
AB
2505 /* When inside insn group, we do not want remove stores conflicting
2506 with previosly issued loads. */
2507 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2508 else if (try_transformation_cache (expr, insn, &res))
2509 got_answer = true;
2510
2511 if (! got_answer)
2512 {
2513 /* Invoke moveup_expr and record the results. */
2514 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2515 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2516 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2517 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2518 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2519
b8698a0f 2520 /* ??? Invent something better than this. We can't allow old_vinsn
e855c69d
AB
2521 to go, we need it for the history vector. */
2522 vinsn_attach (expr_old_vinsn);
2523
2524 res = moveup_expr (expr, insn, inside_insn_group,
2525 &trans_type);
2526 switch (res)
2527 {
2528 case MOVEUP_EXPR_NULL:
2529 update_bitmap_cache (expr, insn, inside_insn_group, res);
2530 if (sched_verbose >= 6)
2531 sel_print ("removed\n");
2532 break;
2533
2534 case MOVEUP_EXPR_SAME:
2535 update_bitmap_cache (expr, insn, inside_insn_group, res);
2536 if (sched_verbose >= 6)
2537 sel_print ("unchanged\n");
2538 break;
2539
2540 case MOVEUP_EXPR_AS_RHS:
2541 gcc_assert (!unique_p || inside_insn_group);
2542 update_bitmap_cache (expr, insn, inside_insn_group, res);
2543 if (sched_verbose >= 6)
2544 sel_print ("unchanged (as RHS)\n");
2545 break;
2546
2547 case MOVEUP_EXPR_CHANGED:
2548 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2549 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
b8698a0f
L
2550 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2551 INSN_UID (insn), trans_type,
2552 expr_old_vinsn, EXPR_VINSN (expr),
e855c69d
AB
2553 expr_old_spec_ds);
2554 update_transformation_cache (expr, insn, inside_insn_group,
2555 trans_type, expr_old_vinsn);
2556 if (sched_verbose >= 6)
2557 {
2558 sel_print ("changed: ");
2559 dump_expr (expr);
2560 sel_print ("\n");
2561 }
2562 break;
2563 default:
2564 gcc_unreachable ();
2565 }
2566
2567 vinsn_detach (expr_old_vinsn);
2568 }
2569
2570 return res;
2571}
2572
b8698a0f 2573/* Moves an av set AVP up through INSN, performing necessary
e855c69d
AB
2574 transformations. */
2575static void
2576moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2577{
2578 av_set_iterator i;
2579 expr_t expr;
2580
b8698a0f
L
2581 FOR_EACH_EXPR_1 (expr, i, avp)
2582 {
2583
e855c69d
AB
2584 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2585 {
2586 case MOVEUP_EXPR_SAME:
2587 case MOVEUP_EXPR_AS_RHS:
2588 break;
2589
2590 case MOVEUP_EXPR_NULL:
2591 av_set_iter_remove (&i);
2592 break;
2593
2594 case MOVEUP_EXPR_CHANGED:
2595 expr = merge_with_other_exprs (avp, &i, expr);
2596 break;
b8698a0f 2597
e855c69d
AB
2598 default:
2599 gcc_unreachable ();
2600 }
2601 }
2602}
2603
2604/* Moves AVP set along PATH. */
2605static void
2606moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2607{
2608 int last_cycle;
b8698a0f 2609
e855c69d
AB
2610 if (sched_verbose >= 6)
2611 sel_print ("Moving expressions up in the insn group...\n");
2612 if (! path)
2613 return;
2614 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
b8698a0f 2615 while (path
e855c69d
AB
2616 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2617 {
2618 moveup_set_expr (avp, ILIST_INSN (path), true);
2619 path = ILIST_NEXT (path);
2620 }
2621}
2622
2623/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2624static bool
2625equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2626{
2627 expr_def _tmp, *tmp = &_tmp;
2628 int last_cycle;
2629 bool res = true;
2630
2631 copy_expr_onside (tmp, expr);
2632 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
b8698a0f 2633 while (path
e855c69d
AB
2634 && res
2635 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2636 {
b8698a0f 2637 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e855c69d
AB
2638 != MOVEUP_EXPR_NULL);
2639 path = ILIST_NEXT (path);
2640 }
2641
2642 if (res)
2643 {
2644 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2645 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2646
2647 if (tmp_vinsn != expr_vliw_vinsn)
2648 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2649 }
2650
2651 clear_expr (tmp);
2652 return res;
2653}
2654\f
2655
2656/* Functions that compute av and lv sets. */
2657
b8698a0f 2658/* Returns true if INSN is not a downward continuation of the given path P in
e855c69d
AB
2659 the current stage. */
2660static bool
2661is_ineligible_successor (insn_t insn, ilist_t p)
2662{
2663 insn_t prev_insn;
2664
2665 /* Check if insn is not deleted. */
2666 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2667 gcc_unreachable ();
2668 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2669 gcc_unreachable ();
2670
2671 /* If it's the first insn visited, then the successor is ok. */
2672 if (!p)
2673 return false;
2674
2675 prev_insn = ILIST_INSN (p);
2676
2677 if (/* a backward edge. */
2678 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2679 /* is already visited. */
2680 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2681 && (ilist_is_in_p (p, insn)
b8698a0f
L
2682 /* We can reach another fence here and still seqno of insn
2683 would be equal to seqno of prev_insn. This is possible
e855c69d
AB
2684 when prev_insn is a previously created bookkeeping copy.
2685 In that case it'd get a seqno of insn. Thus, check here
2686 whether insn is in current fence too. */
2687 || IN_CURRENT_FENCE_P (insn)))
2688 /* Was already scheduled on this round. */
2689 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2690 && IN_CURRENT_FENCE_P (insn))
b8698a0f
L
2691 /* An insn from another fence could also be
2692 scheduled earlier even if this insn is not in
e855c69d
AB
2693 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2694 || (!pipelining_p
2695 && INSN_SCHED_TIMES (insn) > 0))
2696 return true;
2697 else
2698 return false;
2699}
2700
b8698a0f
L
2701/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2702 of handling multiple successors and properly merging its av_sets. P is
2703 the current path traversed. WS is the size of lookahead window.
e855c69d
AB
2704 Return the av set computed. */
2705static av_set_t
2706compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2707{
2708 struct succs_info *sinfo;
2709 av_set_t expr_in_all_succ_branches = NULL;
2710 int is;
2711 insn_t succ, zero_succ = NULL;
2712 av_set_t av1 = NULL;
2713
2714 gcc_assert (sel_bb_end_p (insn));
2715
b8698a0f 2716 /* Find different kind of successors needed for correct computing of
e855c69d
AB
2717 SPEC and TARGET_AVAILABLE attributes. */
2718 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2719
2720 /* Debug output. */
2721 if (sched_verbose >= 6)
2722 {
2723 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2724 dump_insn_vector (sinfo->succs_ok);
2725 sel_print ("\n");
2726 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2727 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2728 }
2729
2730 /* Add insn to to the tail of current path. */
2731 ilist_add (&p, insn);
2732
2733 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2734 {
2735 av_set_t succ_set;
2736
2737 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2738 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2739
b8698a0f
L
2740 av_set_split_usefulness (succ_set,
2741 VEC_index (int, sinfo->probs_ok, is),
e855c69d
AB
2742 sinfo->all_prob);
2743
b8698a0f 2744 if (sinfo->all_succs_n > 1
e855c69d
AB
2745 && sinfo->all_succs_n == sinfo->succs_ok_n)
2746 {
b8698a0f 2747 /* Find EXPR'es that came from *all* successors and save them
e855c69d
AB
2748 into expr_in_all_succ_branches. This set will be used later
2749 for calculating speculation attributes of EXPR'es. */
2750 if (is == 0)
2751 {
2752 expr_in_all_succ_branches = av_set_copy (succ_set);
2753
2754 /* Remember the first successor for later. */
2755 zero_succ = succ;
2756 }
2757 else
2758 {
2759 av_set_iterator i;
2760 expr_t expr;
b8698a0f 2761
e855c69d
AB
2762 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2763 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2764 av_set_iter_remove (&i);
2765 }
2766 }
2767
2768 /* Union the av_sets. Check liveness restrictions on target registers
2769 in special case of two successors. */
2770 if (sinfo->succs_ok_n == 2 && is == 1)
2771 {
2772 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2773 basic_block bb1 = BLOCK_FOR_INSN (succ);
2774
2775 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
b8698a0f 2776 av_set_union_and_live (&av1, &succ_set,
e855c69d
AB
2777 BB_LV_SET (bb0),
2778 BB_LV_SET (bb1),
2779 insn);
2780 }
2781 else
2782 av_set_union_and_clear (&av1, &succ_set, insn);
2783 }
2784
b8698a0f 2785 /* Check liveness restrictions via hard way when there are more than
e855c69d
AB
2786 two successors. */
2787 if (sinfo->succs_ok_n > 2)
2788 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2789 {
2790 basic_block succ_bb = BLOCK_FOR_INSN (succ);
b8698a0f 2791
e855c69d 2792 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
b8698a0f 2793 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
e855c69d
AB
2794 BB_LV_SET (succ_bb));
2795 }
b8698a0f
L
2796
2797 /* Finally, check liveness restrictions on paths leaving the region. */
e855c69d
AB
2798 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2799 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
b8698a0f 2800 mark_unavailable_targets
e855c69d
AB
2801 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2802
2803 if (sinfo->all_succs_n > 1)
2804 {
2805 av_set_iterator i;
2806 expr_t expr;
2807
b8698a0f 2808 /* Increase the spec attribute of all EXPR'es that didn't come
e855c69d
AB
2809 from all successors. */
2810 FOR_EACH_EXPR (expr, i, av1)
2811 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2812 EXPR_SPEC (expr)++;
2813
2814 av_set_clear (&expr_in_all_succ_branches);
b8698a0f
L
2815
2816 /* Do not move conditional branches through other
2817 conditional branches. So, remove all conditional
e855c69d
AB
2818 branches from av_set if current operator is a conditional
2819 branch. */
2820 av_set_substract_cond_branches (&av1);
2821 }
b8698a0f 2822
e855c69d
AB
2823 ilist_remove (&p);
2824 free_succs_info (sinfo);
2825
2826 if (sched_verbose >= 6)
2827 {
2828 sel_print ("av_succs (%d): ", INSN_UID (insn));
2829 dump_av_set (av1);
2830 sel_print ("\n");
2831 }
2832
2833 return av1;
2834}
2835
b8698a0f
L
2836/* This function computes av_set for the FIRST_INSN by dragging valid
2837 av_set through all basic block insns either from the end of basic block
2838 (computed using compute_av_set_at_bb_end) or from the insn on which
e855c69d
AB
2839 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2840 below the basic block and handling conditional branches.
2841 FIRST_INSN - the basic block head, P - path consisting of the insns
2842 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2843 and bb ends are added to the path), WS - current window size,
2844 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2845static av_set_t
b8698a0f 2846compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e855c69d
AB
2847 bool need_copy_p)
2848{
2849 insn_t cur_insn;
2850 int end_ws = ws;
2851 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2852 insn_t after_bb_end = NEXT_INSN (bb_end);
2853 insn_t last_insn;
2854 av_set_t av = NULL;
2855 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2856
2857 /* Return NULL if insn is not on the legitimate downward path. */
2858 if (is_ineligible_successor (first_insn, p))
2859 {
2860 if (sched_verbose >= 6)
2861 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2862
2863 return NULL;
2864 }
2865
b8698a0f 2866 /* If insn already has valid av(insn) computed, just return it. */
e855c69d
AB
2867 if (AV_SET_VALID_P (first_insn))
2868 {
2869 av_set_t av_set;
2870
2871 if (sel_bb_head_p (first_insn))
2872 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2873 else
2874 av_set = NULL;
2875
2876 if (sched_verbose >= 6)
2877 {
2878 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2879 dump_av_set (av_set);
2880 sel_print ("\n");
2881 }
2882
2883 return need_copy_p ? av_set_copy (av_set) : av_set;
2884 }
2885
2886 ilist_add (&p, first_insn);
2887
2888 /* As the result after this loop have completed, in LAST_INSN we'll
b8698a0f
L
2889 have the insn which has valid av_set to start backward computation
2890 from: it either will be NULL because on it the window size was exceeded
2891 or other valid av_set as returned by compute_av_set for the last insn
e855c69d
AB
2892 of the basic block. */
2893 for (last_insn = first_insn; last_insn != after_bb_end;
2894 last_insn = NEXT_INSN (last_insn))
2895 {
2896 /* We may encounter valid av_set not only on bb_head, but also on
2897 those insns on which previously MAX_WS was exceeded. */
2898 if (AV_SET_VALID_P (last_insn))
2899 {
2900 if (sched_verbose >= 6)
2901 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2902 break;
2903 }
2904
2905 /* The special case: the last insn of the BB may be an
2906 ineligible_successor due to its SEQ_NO that was set on
2907 it as a bookkeeping. */
b8698a0f 2908 if (last_insn != first_insn
e855c69d
AB
2909 && is_ineligible_successor (last_insn, p))
2910 {
2911 if (sched_verbose >= 6)
2912 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
b8698a0f 2913 break;
e855c69d
AB
2914 }
2915
b5b8b0ac
AO
2916 if (DEBUG_INSN_P (last_insn))
2917 continue;
2918
e855c69d
AB
2919 if (end_ws > max_ws)
2920 {
b8698a0f 2921 /* We can reach max lookahead size at bb_header, so clean av_set
e855c69d
AB
2922 first. */
2923 INSN_WS_LEVEL (last_insn) = global_level;
2924
2925 if (sched_verbose >= 6)
2926 sel_print ("Insn %d is beyond the software lookahead window size\n",
2927 INSN_UID (last_insn));
2928 break;
2929 }
2930
2931 end_ws++;
2932 }
2933
2934 /* Get the valid av_set into AV above the LAST_INSN to start backward
2935 computation from. It either will be empty av_set or av_set computed from
2936 the successors on the last insn of the current bb. */
2937 if (last_insn != after_bb_end)
2938 {
2939 av = NULL;
2940
b8698a0f 2941 /* This is needed only to obtain av_sets that are identical to
e855c69d
AB
2942 those computed by the old compute_av_set version. */
2943 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2944 av_set_add (&av, INSN_EXPR (last_insn));
2945 }
2946 else
2947 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2948 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2949
2950 /* Compute av_set in AV starting from below the LAST_INSN up to
2951 location above the FIRST_INSN. */
2952 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
b8698a0f 2953 cur_insn = PREV_INSN (cur_insn))
e855c69d
AB
2954 if (!INSN_NOP_P (cur_insn))
2955 {
2956 expr_t expr;
b8698a0f 2957
e855c69d 2958 moveup_set_expr (&av, cur_insn, false);
b8698a0f
L
2959
2960 /* If the expression for CUR_INSN is already in the set,
e855c69d 2961 replace it by the new one. */
b8698a0f 2962 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e855c69d
AB
2963 if (expr != NULL)
2964 {
2965 clear_expr (expr);
2966 copy_expr (expr, INSN_EXPR (cur_insn));
2967 }
2968 else
2969 av_set_add (&av, INSN_EXPR (cur_insn));
2970 }
2971
2972 /* Clear stale bb_av_set. */
2973 if (sel_bb_head_p (first_insn))
2974 {
2975 av_set_clear (&BB_AV_SET (cur_bb));
2976 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2977 BB_AV_LEVEL (cur_bb) = global_level;
2978 }
2979
2980 if (sched_verbose >= 6)
2981 {
2982 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2983 dump_av_set (av);
2984 sel_print ("\n");
2985 }
2986
2987 ilist_remove (&p);
2988 return av;
2989}
2990
2991/* Compute av set before INSN.
2992 INSN - the current operation (actual rtx INSN)
2993 P - the current path, which is list of insns visited so far
2994 WS - software lookahead window size.
2995 UNIQUE_P - TRUE, if returned av_set will be changed, hence
2996 if we want to save computed av_set in s_i_d, we should make a copy of it.
2997
2998 In the resulting set we will have only expressions that don't have delay
2999 stalls and nonsubstitutable dependences. */
3000static av_set_t
3001compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3002{
3003 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3004}
3005
3006/* Propagate a liveness set LV through INSN. */
3007static void
3008propagate_lv_set (regset lv, insn_t insn)
3009{
3010 gcc_assert (INSN_P (insn));
3011
3012 if (INSN_NOP_P (insn))
3013 return;
3014
02b47899 3015 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
3016}
3017
3018/* Return livness set at the end of BB. */
3019static regset
3020compute_live_after_bb (basic_block bb)
3021{
3022 edge e;
3023 edge_iterator ei;
3024 regset lv = get_clear_regset_from_pool ();
3025
3026 gcc_assert (!ignore_first);
3027
3028 FOR_EACH_EDGE (e, ei, bb->succs)
3029 if (sel_bb_empty_p (e->dest))
3030 {
3031 if (! BB_LV_SET_VALID_P (e->dest))
3032 {
3033 gcc_unreachable ();
3034 gcc_assert (BB_LV_SET (e->dest) == NULL);
3035 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3036 BB_LV_SET_VALID_P (e->dest) = true;
3037 }
3038 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3039 }
3040 else
3041 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3042
3043 return lv;
3044}
3045
3046/* Compute the set of all live registers at the point before INSN and save
3047 it at INSN if INSN is bb header. */
3048regset
3049compute_live (insn_t insn)
3050{
3051 basic_block bb = BLOCK_FOR_INSN (insn);
3052 insn_t final, temp;
3053 regset lv;
3054
3055 /* Return the valid set if we're already on it. */
3056 if (!ignore_first)
3057 {
3058 regset src = NULL;
b8698a0f 3059
e855c69d
AB
3060 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3061 src = BB_LV_SET (bb);
b8698a0f 3062 else
e855c69d
AB
3063 {
3064 gcc_assert (in_current_region_p (bb));
3065 if (INSN_LIVE_VALID_P (insn))
3066 src = INSN_LIVE (insn);
3067 }
b8698a0f 3068
e855c69d
AB
3069 if (src)
3070 {
3071 lv = get_regset_from_pool ();
3072 COPY_REG_SET (lv, src);
3073
3074 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3075 {
3076 COPY_REG_SET (BB_LV_SET (bb), lv);
3077 BB_LV_SET_VALID_P (bb) = true;
3078 }
b8698a0f 3079
e855c69d
AB
3080 return_regset_to_pool (lv);
3081 return lv;
3082 }
3083 }
3084
3085 /* We've skipped the wrong lv_set. Don't skip the right one. */
3086 ignore_first = false;
3087 gcc_assert (in_current_region_p (bb));
3088
b8698a0f
L
3089 /* Find a valid LV set in this block or below, if needed.
3090 Start searching from the next insn: either ignore_first is true, or
e855c69d
AB
3091 INSN doesn't have a correct live set. */
3092 temp = NEXT_INSN (insn);
3093 final = NEXT_INSN (BB_END (bb));
3094 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3095 temp = NEXT_INSN (temp);
3096 if (temp == final)
3097 {
3098 lv = compute_live_after_bb (bb);
3099 temp = PREV_INSN (temp);
3100 }
3101 else
3102 {
3103 lv = get_regset_from_pool ();
3104 COPY_REG_SET (lv, INSN_LIVE (temp));
3105 }
3106
3107 /* Put correct lv sets on the insns which have bad sets. */
3108 final = PREV_INSN (insn);
3109 while (temp != final)
3110 {
3111 propagate_lv_set (lv, temp);
3112 COPY_REG_SET (INSN_LIVE (temp), lv);
3113 INSN_LIVE_VALID_P (temp) = true;
3114 temp = PREV_INSN (temp);
3115 }
3116
3117 /* Also put it in a BB. */
3118 if (sel_bb_head_p (insn))
3119 {
3120 basic_block bb = BLOCK_FOR_INSN (insn);
b8698a0f 3121
e855c69d
AB
3122 COPY_REG_SET (BB_LV_SET (bb), lv);
3123 BB_LV_SET_VALID_P (bb) = true;
3124 }
b8698a0f 3125
e855c69d
AB
3126 /* We return LV to the pool, but will not clear it there. Thus we can
3127 legimatelly use LV till the next use of regset_pool_get (). */
3128 return_regset_to_pool (lv);
3129 return lv;
3130}
3131
3132/* Update liveness sets for INSN. */
3133static inline void
3134update_liveness_on_insn (rtx insn)
3135{
3136 ignore_first = true;
3137 compute_live (insn);
3138}
3139
3140/* Compute liveness below INSN and write it into REGS. */
3141static inline void
3142compute_live_below_insn (rtx insn, regset regs)
3143{
3144 rtx succ;
3145 succ_iterator si;
b8698a0f
L
3146
3147 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e855c69d
AB
3148 IOR_REG_SET (regs, compute_live (succ));
3149}
3150
3151/* Update the data gathered in av and lv sets starting from INSN. */
3152static void
3153update_data_sets (rtx insn)
3154{
3155 update_liveness_on_insn (insn);
3156 if (sel_bb_head_p (insn))
3157 {
3158 gcc_assert (AV_LEVEL (insn) != 0);
3159 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3160 compute_av_set (insn, NULL, 0, 0);
3161 }
3162}
3163\f
3164
3165/* Helper for move_op () and find_used_regs ().
3166 Return speculation type for which a check should be created on the place
3167 of INSN. EXPR is one of the original ops we are searching for. */
3168static ds_t
3169get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3170{
3171 ds_t to_check_ds;
3172 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3173
3174 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3175
3176 if (targetm.sched.get_insn_checked_ds)
3177 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3178
3179 if (spec_info != NULL
3180 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3181 already_checked_ds |= BEGIN_CONTROL;
3182
3183 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3184
3185 to_check_ds &= ~already_checked_ds;
3186
3187 return to_check_ds;
3188}
3189
b8698a0f 3190/* Find the set of registers that are unavailable for storing expres
e855c69d
AB
3191 while moving ORIG_OPS up on the path starting from INSN due to
3192 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3193
3194 All the original operations found during the traversal are saved in the
3195 ORIGINAL_INSNS list.
3196
3197 REG_RENAME_P denotes the set of hardware registers that
3198 can not be used with renaming due to the register class restrictions,
b8698a0f 3199 mode restrictions and other (the register we'll choose should be
e855c69d
AB
3200 compatible class with the original uses, shouldn't be in call_used_regs,
3201 should be HARD_REGNO_RENAME_OK etc).
3202
3203 Returns TRUE if we've found all original insns, FALSE otherwise.
3204
3205 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
b8698a0f
L
3206 to traverse the code motion paths. This helper function finds registers
3207 that are not available for storing expres while moving ORIG_OPS up on the
e855c69d
AB
3208 path starting from INSN. A register considered as used on the moving path,
3209 if one of the following conditions is not satisfied:
3210
b8698a0f
L
3211 (1) a register not set or read on any path from xi to an instance of
3212 the original operation,
3213 (2) not among the live registers of the point immediately following the
e855c69d
AB
3214 first original operation on a given downward path, except for the
3215 original target register of the operation,
b8698a0f 3216 (3) not live on the other path of any conditional branch that is passed
e855c69d
AB
3217 by the operation, in case original operations are not present on
3218 both paths of the conditional branch.
3219
3220 All the original operations found during the traversal are saved in the
3221 ORIGINAL_INSNS list.
3222
b8698a0f
L
3223 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3224 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e855c69d
AB
3225 to unavailable hard regs at the point original operation is found. */
3226
3227static bool
3228find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3229 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3230{
3231 def_list_iterator i;
3232 def_t def;
3233 int res;
3234 bool needs_spec_check_p = false;
3235 expr_t expr;
3236 av_set_iterator expr_iter;
3237 struct fur_static_params sparams;
3238 struct cmpd_local_params lparams;
3239
3240 /* We haven't visited any blocks yet. */
3241 bitmap_clear (code_motion_visited_blocks);
3242
3243 /* Init parameters for code_motion_path_driver. */
3244 sparams.crosses_call = false;
3245 sparams.original_insns = original_insns;
3246 sparams.used_regs = used_regs;
b8698a0f 3247
e855c69d
AB
3248 /* Set the appropriate hooks and data. */
3249 code_motion_path_driver_info = &fur_hooks;
b8698a0f 3250
e855c69d
AB
3251 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3252
3253 reg_rename_p->crosses_call |= sparams.crosses_call;
3254
3255 gcc_assert (res == 1);
3256 gcc_assert (original_insns && *original_insns);
3257
3258 /* ??? We calculate whether an expression needs a check when computing
3259 av sets. This information is not as precise as it could be due to
3260 merging this bit in merge_expr. We can do better in find_used_regs,
b8698a0f 3261 but we want to avoid multiple traversals of the same code motion
e855c69d
AB
3262 paths. */
3263 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3264 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3265
b8698a0f 3266 /* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
3267 for renaming expr in INSN due to hardware restrictions (register class,
3268 modes compatibility etc). */
3269 FOR_EACH_DEF (def, i, *original_insns)
3270 {
3271 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3272
3273 if (VINSN_SEPARABLE_P (vinsn))
3274 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3275
b8698a0f 3276 /* Do not allow clobbering of ld.[sa] address in case some of the
e855c69d
AB
3277 original operations need a check. */
3278 if (needs_spec_check_p)
3279 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3280 }
3281
3282 return true;
3283}
3284\f
3285
3286/* Functions to choose the best insn from available ones. */
3287
3288/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3289static int
3290sel_target_adjust_priority (expr_t expr)
3291{
3292 int priority = EXPR_PRIORITY (expr);
3293 int new_priority;
3294
3295 if (targetm.sched.adjust_priority)
3296 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3297 else
3298 new_priority = priority;
3299
3300 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3301 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3302
3303 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3304
136e01a3
AB
3305 if (sched_verbose >= 4)
3306 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
b8698a0f 3307 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e855c69d
AB
3308 EXPR_PRIORITY_ADJ (expr), new_priority);
3309
3310 return new_priority;
3311}
3312
3313/* Rank two available exprs for schedule. Never return 0 here. */
b8698a0f 3314static int
e855c69d
AB
3315sel_rank_for_schedule (const void *x, const void *y)
3316{
3317 expr_t tmp = *(const expr_t *) y;
3318 expr_t tmp2 = *(const expr_t *) x;
3319 insn_t tmp_insn, tmp2_insn;
3320 vinsn_t tmp_vinsn, tmp2_vinsn;
3321 int val;
3322
3323 tmp_vinsn = EXPR_VINSN (tmp);
3324 tmp2_vinsn = EXPR_VINSN (tmp2);
3325 tmp_insn = EXPR_INSN_RTX (tmp);
3326 tmp2_insn = EXPR_INSN_RTX (tmp2);
b8698a0f 3327
b5b8b0ac
AO
3328 /* Schedule debug insns as early as possible. */
3329 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3330 return -1;
3331 else if (DEBUG_INSN_P (tmp2_insn))
3332 return 1;
3333
e855c69d
AB
3334 /* Prefer SCHED_GROUP_P insns to any others. */
3335 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3336 {
b8698a0f 3337 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e855c69d
AB
3338 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3339
3340 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3341 cannot be cloned. */
3342 if (VINSN_UNIQUE_P (tmp2_vinsn))
3343 return 1;
3344 return -1;
3345 }
3346
3347 /* Discourage scheduling of speculative checks. */
3348 val = (sel_insn_is_speculation_check (tmp_insn)
3349 - sel_insn_is_speculation_check (tmp2_insn));
3350 if (val)
3351 return val;
3352
3353 /* Prefer not scheduled insn over scheduled one. */
3354 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3355 {
3356 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3357 if (val)
3358 return val;
3359 }
3360
3361 /* Prefer jump over non-jump instruction. */
3362 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3363 return -1;
3364 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3365 return 1;
3366
3367 /* Prefer an expr with greater priority. */
3368 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3369 {
3370 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3371 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3372
3373 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3374 }
3375 else
b8698a0f 3376 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
e855c69d
AB
3377 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3378 if (val)
3379 return val;
3380
3381 if (spec_info != NULL && spec_info->mask != 0)
3382 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3383 {
3384 ds_t ds1, ds2;
3385 dw_t dw1, dw2;
3386 int dw;
3387
3388 ds1 = EXPR_SPEC_DONE_DS (tmp);
3389 if (ds1)
3390 dw1 = ds_weak (ds1);
3391 else
3392 dw1 = NO_DEP_WEAK;
3393
3394 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3395 if (ds2)
3396 dw2 = ds_weak (ds2);
3397 else
3398 dw2 = NO_DEP_WEAK;
3399
3400 dw = dw2 - dw1;
3401 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3402 return dw;
3403 }
3404
e855c69d 3405 /* Prefer an old insn to a bookkeeping insn. */
b8698a0f 3406 if (INSN_UID (tmp_insn) < first_emitted_uid
e855c69d
AB
3407 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3408 return -1;
b8698a0f 3409 if (INSN_UID (tmp_insn) >= first_emitted_uid
e855c69d
AB
3410 && INSN_UID (tmp2_insn) < first_emitted_uid)
3411 return 1;
3412
b8698a0f 3413 /* Prefer an insn with smaller UID, as a last resort.
e855c69d
AB
3414 We can't safely use INSN_LUID as it is defined only for those insns
3415 that are in the stream. */
3416 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3417}
3418
b8698a0f 3419/* Filter out expressions from av set pointed to by AV_PTR
e855c69d
AB
3420 that are pipelined too many times. */
3421static void
3422process_pipelined_exprs (av_set_t *av_ptr)
3423{
3424 expr_t expr;
3425 av_set_iterator si;
3426
3427 /* Don't pipeline already pipelined code as that would increase
b8698a0f 3428 number of unnecessary register moves. */
e855c69d
AB
3429 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3430 {
3431 if (EXPR_SCHED_TIMES (expr)
3432 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3433 av_set_iter_remove (&si);
3434 }
3435}
3436
3437/* Filter speculative insns from AV_PTR if we don't want them. */
3438static void
3439process_spec_exprs (av_set_t *av_ptr)
3440{
3441 bool try_data_p = true;
3442 bool try_control_p = true;
3443 expr_t expr;
3444 av_set_iterator si;
3445
3446 if (spec_info == NULL)
3447 return;
3448
3449 /* Scan *AV_PTR to find out if we want to consider speculative
3450 instructions for scheduling. */
3451 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3452 {
3453 ds_t ds;
3454
3455 ds = EXPR_SPEC_DONE_DS (expr);
3456
3457 /* The probability of a success is too low - don't speculate. */
3458 if ((ds & SPECULATIVE)
3459 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3460 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3461 || (pipelining_p && false
3462 && (ds & DATA_SPEC)
3463 && (ds & CONTROL_SPEC))))
3464 {
3465 av_set_iter_remove (&si);
3466 continue;
3467 }
3468
3469 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3470 && !(ds & BEGIN_DATA))
3471 try_data_p = false;
3472
3473 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3474 && !(ds & BEGIN_CONTROL))
3475 try_control_p = false;
3476 }
3477
3478 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3479 {
3480 ds_t ds;
3481
3482 ds = EXPR_SPEC_DONE_DS (expr);
3483
3484 if (ds & SPECULATIVE)
3485 {
3486 if ((ds & BEGIN_DATA) && !try_data_p)
3487 /* We don't want any data speculative instructions right
3488 now. */
3489 av_set_iter_remove (&si);
3490
3491 if ((ds & BEGIN_CONTROL) && !try_control_p)
3492 /* We don't want any control speculative instructions right
3493 now. */
3494 av_set_iter_remove (&si);
3495 }
3496 }
3497}
3498
b8698a0f
L
3499/* Search for any use-like insns in AV_PTR and decide on scheduling
3500 them. Return one when found, and NULL otherwise.
e855c69d
AB
3501 Note that we check here whether a USE could be scheduled to avoid
3502 an infinite loop later. */
3503static expr_t
3504process_use_exprs (av_set_t *av_ptr)
3505{
3506 expr_t expr;
3507 av_set_iterator si;
3508 bool uses_present_p = false;
3509 bool try_uses_p = true;
3510
3511 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3512 {
3513 /* This will also initialize INSN_CODE for later use. */
3514 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3515 {
3516 /* If we have a USE in *AV_PTR that was not scheduled yet,
3517 do so because it will do good only. */
3518 if (EXPR_SCHED_TIMES (expr) <= 0)
3519 {
3520 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3521 return expr;
3522
3523 av_set_iter_remove (&si);
3524 }
3525 else
3526 {
3527 gcc_assert (pipelining_p);
3528
3529 uses_present_p = true;
3530 }
3531 }
3532 else
3533 try_uses_p = false;
3534 }
3535
3536 if (uses_present_p)
3537 {
3538 /* If we don't want to schedule any USEs right now and we have some
3539 in *AV_PTR, remove them, else just return the first one found. */
3540 if (!try_uses_p)
3541 {
3542 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3543 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3544 av_set_iter_remove (&si);
3545 }
3546 else
3547 {
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 {
3550 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3551
3552 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3553 return expr;
3554
3555 av_set_iter_remove (&si);
3556 }
3557 }
3558 }
3559
3560 return NULL;
3561}
3562
3563/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3564static bool
3565vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3566{
3567 vinsn_t vinsn;
3568 int n;
3569
3570 for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
3571 if (VINSN_SEPARABLE_P (vinsn))
3572 {
3573 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3574 return true;
3575 }
3576 else
3577 {
3578 /* For non-separable instructions, the blocking insn can have
3579 another pattern due to substitution, and we can't choose
3580 different register as in the above case. Check all registers
3581 being written instead. */
b8698a0f 3582 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
e855c69d
AB
3583 VINSN_REG_SETS (EXPR_VINSN (expr))))
3584 return true;
3585 }
3586
3587 return false;
3588}
3589
3590#ifdef ENABLE_CHECKING
3591/* Return true if either of expressions from ORIG_OPS can be blocked
3592 by previously created bookkeeping code. STATIC_PARAMS points to static
3593 parameters of move_op. */
3594static bool
3595av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3596{
3597 expr_t expr;
3598 av_set_iterator iter;
3599 moveop_static_params_p sparams;
3600
3601 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3602 created while scheduling on another fence. */
3603 FOR_EACH_EXPR (expr, iter, orig_ops)
3604 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3605 return true;
3606
3607 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3608 sparams = (moveop_static_params_p) static_params;
3609
3610 /* Expressions can be also blocked by bookkeeping created during current
3611 move_op. */
3612 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3613 FOR_EACH_EXPR (expr, iter, orig_ops)
3614 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3615 return true;
3616
3617 /* Expressions in ORIG_OPS may have wrong destination register due to
3618 renaming. Check with the right register instead. */
3619 if (sparams->dest && REG_P (sparams->dest))
3620 {
3621 unsigned regno = REGNO (sparams->dest);
3622 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3623
3624 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3625 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3626 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3627 return true;
3628 }
3629
3630 return false;
3631}
3632#endif
3633
3634/* Clear VINSN_VEC and detach vinsns. */
3635static void
3636vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3637{
3638 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3639 if (len > 0)
3640 {
3641 vinsn_t vinsn;
3642 int n;
b8698a0f 3643
e855c69d
AB
3644 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3645 vinsn_detach (vinsn);
3646 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3647 }
3648}
3649
3650/* Add the vinsn of EXPR to the VINSN_VEC. */
3651static void
3652vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3653{
3654 vinsn_attach (EXPR_VINSN (expr));
3655 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3656}
3657
b8698a0f 3658/* Free the vector representing blocked expressions. */
e855c69d
AB
3659static void
3660vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3661{
3662 if (*vinsn_vec)
3663 VEC_free (vinsn_t, heap, *vinsn_vec);
3664}
3665
3666/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3667
3668void sel_add_to_insn_priority (rtx insn, int amount)
3669{
3670 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3671
3672 if (sched_verbose >= 2)
b8698a0f 3673 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e855c69d
AB
3674 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3675 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3676}
3677
b8698a0f 3678/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e855c69d
AB
3679 true if there is something to schedule. BNDS and FENCE are current
3680 boundaries and fence, respectively. If we need to stall for some cycles
b8698a0f 3681 before an expr from AV would become available, write this number to
e855c69d
AB
3682 *PNEED_STALL. */
3683static bool
3684fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3685 int *pneed_stall)
3686{
3687 av_set_iterator si;
3688 expr_t expr;
3689 int sched_next_worked = 0, stalled, n;
3690 static int av_max_prio, est_ticks_till_branch;
3691 int min_need_stall = -1;
3692 deps_t dc = BND_DC (BLIST_BND (bnds));
3693
3694 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3695 already scheduled. */
3696 if (av == NULL)
3697 return false;
3698
3699 /* Empty vector from the previous stuff. */
3700 if (VEC_length (expr_t, vec_av_set) > 0)
3701 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3702
3703 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3704 for each insn. */
3705 gcc_assert (VEC_empty (expr_t, vec_av_set));
3706 FOR_EACH_EXPR (expr, si, av)
b8698a0f 3707 {
e855c69d
AB
3708 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3709
3710 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3711
3712 /* Adjust priority using target backend hook. */
3713 sel_target_adjust_priority (expr);
3714 }
3715
3716 /* Sort the vector. */
3717 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3718 sizeof (expr_t), sel_rank_for_schedule);
3719
3720 /* We record maximal priority of insns in av set for current instruction
3721 group. */
3722 if (FENCE_STARTS_CYCLE_P (fence))
3723 av_max_prio = est_ticks_till_branch = INT_MIN;
3724
3725 /* Filter out inappropriate expressions. Loop's direction is reversed to
3726 visit "best" instructions first. We assume that VEC_unordered_remove
3727 moves last element in place of one being deleted. */
3728 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3729 {
3730 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3731 insn_t insn = EXPR_INSN_RTX (expr);
3732 char target_available;
3733 bool is_orig_reg_p = true;
3734 int need_cycles, new_prio;
3735
3736 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3737 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3738 {
3739 VEC_unordered_remove (expr_t, vec_av_set, n);
3740 continue;
3741 }
3742
b8698a0f 3743 /* Set number of sched_next insns (just in case there
e855c69d
AB
3744 could be several). */
3745 if (FENCE_SCHED_NEXT (fence))
3746 sched_next_worked++;
b8698a0f
L
3747
3748 /* Check all liveness requirements and try renaming.
e855c69d
AB
3749 FIXME: try to minimize calls to this. */
3750 target_available = EXPR_TARGET_AVAILABLE (expr);
3751
3752 /* If insn was already scheduled on the current fence,
3753 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3754 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3755 target_available = -1;
3756
3757 /* If the availability of the EXPR is invalidated by the insertion of
3758 bookkeeping earlier, make sure that we won't choose this expr for
3759 scheduling if it's not separable, and if it is separable, then
3760 we have to recompute the set of available registers for it. */
3761 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3762 {
3763 VEC_unordered_remove (expr_t, vec_av_set, n);
3764 if (sched_verbose >= 4)
3765 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3766 INSN_UID (insn));
3767 continue;
3768 }
b8698a0f 3769
e855c69d
AB
3770 if (target_available == true)
3771 {
3772 /* Do nothing -- we can use an existing register. */
3773 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3774 }
b8698a0f 3775 else if (/* Non-separable instruction will never
e855c69d
AB
3776 get another register. */
3777 (target_available == false
3778 && !EXPR_SEPARABLE_P (expr))
3779 /* Don't try to find a register for low-priority expression. */
3780 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3781 /* ??? FIXME: Don't try to rename data speculation. */
3782 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3783 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3784 {
3785 VEC_unordered_remove (expr_t, vec_av_set, n);
3786 if (sched_verbose >= 4)
b8698a0f 3787 sel_print ("Expr %d has no suitable target register\n",
e855c69d
AB
3788 INSN_UID (insn));
3789 continue;
3790 }
3791
3792 /* Filter expressions that need to be renamed or speculated when
3793 pipelining, because compensating register copies or speculation
3794 checks are likely to be placed near the beginning of the loop,
3795 causing a stall. */
3796 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3797 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3798 {
3799 /* Estimation of number of cycles until loop branch for
3800 renaming/speculation to be successful. */
3801 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3802
3803 if ((int) current_loop_nest->ninsns < 9)
3804 {
3805 VEC_unordered_remove (expr_t, vec_av_set, n);
3806 if (sched_verbose >= 4)
3807 sel_print ("Pipelining expr %d will likely cause stall\n",
3808 INSN_UID (insn));
3809 continue;
3810 }
3811
3812 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3813 < need_n_ticks_till_branch * issue_rate / 2
3814 && est_ticks_till_branch < need_n_ticks_till_branch)
3815 {
3816 VEC_unordered_remove (expr_t, vec_av_set, n);
3817 if (sched_verbose >= 4)
3818 sel_print ("Pipelining expr %d will likely cause stall\n",
3819 INSN_UID (insn));
3820 continue;
3821 }
3822 }
3823
3824 /* We want to schedule speculation checks as late as possible. Discard
3825 them from av set if there are instructions with higher priority. */
3826 if (sel_insn_is_speculation_check (insn)
3827 && EXPR_PRIORITY (expr) < av_max_prio)
3828 {
3829 stalled++;
3830 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3831 VEC_unordered_remove (expr_t, vec_av_set, n);
3832 if (sched_verbose >= 4)
3833 sel_print ("Delaying speculation check %d until its first use\n",
3834 INSN_UID (insn));
3835 continue;
3836 }
3837
3838 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3839 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3840 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3841
3842 /* Don't allow any insns whose data is not yet ready.
3843 Check first whether we've already tried them and failed. */
3844 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3845 {
3846 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3847 - FENCE_CYCLE (fence));
3848 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3849 est_ticks_till_branch = MAX (est_ticks_till_branch,
3850 EXPR_PRIORITY (expr) + need_cycles);
3851
3852 if (need_cycles > 0)
3853 {
3854 stalled++;
b8698a0f 3855 min_need_stall = (min_need_stall < 0
e855c69d
AB
3856 ? need_cycles
3857 : MIN (min_need_stall, need_cycles));
3858 VEC_unordered_remove (expr_t, vec_av_set, n);
3859
3860 if (sched_verbose >= 4)
b8698a0f 3861 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e855c69d
AB
3862 INSN_UID (insn),
3863 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3864 continue;
3865 }
3866 }
3867
b8698a0f 3868 /* Now resort to dependence analysis to find whether EXPR might be
e855c69d
AB
3869 stalled due to dependencies from FENCE's context. */
3870 need_cycles = tick_check_p (expr, dc, fence);
3871 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3872
3873 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3874 est_ticks_till_branch = MAX (est_ticks_till_branch,
3875 new_prio);
3876
3877 if (need_cycles > 0)
3878 {
3879 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3880 {
3881 int new_size = INSN_UID (insn) * 3 / 2;
b8698a0f
L
3882
3883 FENCE_READY_TICKS (fence)
e855c69d
AB
3884 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3885 new_size, FENCE_READY_TICKS_SIZE (fence),
3886 sizeof (int));
3887 }
b8698a0f
L
3888 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3889 = FENCE_CYCLE (fence) + need_cycles;
3890
e855c69d 3891 stalled++;
b8698a0f 3892 min_need_stall = (min_need_stall < 0
e855c69d
AB
3893 ? need_cycles
3894 : MIN (min_need_stall, need_cycles));
3895
3896 VEC_unordered_remove (expr_t, vec_av_set, n);
b8698a0f 3897
e855c69d 3898 if (sched_verbose >= 4)
b8698a0f 3899 sel_print ("Expr %d is not ready yet until cycle %d\n",
e855c69d
AB
3900 INSN_UID (insn),
3901 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3902 continue;
3903 }
3904
3905 if (sched_verbose >= 4)
3906 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3907 min_need_stall = 0;
3908 }
3909
3910 /* Clear SCHED_NEXT. */
3911 if (FENCE_SCHED_NEXT (fence))
3912 {
3913 gcc_assert (sched_next_worked == 1);
3914 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3915 }
3916
3917 /* No need to stall if this variable was not initialized. */
3918 if (min_need_stall < 0)
3919 min_need_stall = 0;
3920
3921 if (VEC_empty (expr_t, vec_av_set))
3922 {
3923 /* We need to set *pneed_stall here, because later we skip this code
3924 when ready list is empty. */
3925 *pneed_stall = min_need_stall;
3926 return false;
3927 }
3928 else
3929 gcc_assert (min_need_stall == 0);
3930
3931 /* Sort the vector. */
3932 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3933 sizeof (expr_t), sel_rank_for_schedule);
b8698a0f 3934
e855c69d
AB
3935 if (sched_verbose >= 4)
3936 {
b8698a0f 3937 sel_print ("Total ready exprs: %d, stalled: %d\n",
e855c69d
AB
3938 VEC_length (expr_t, vec_av_set), stalled);
3939 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3940 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3941 dump_expr (expr);
3942 sel_print ("\n");
3943 }
3944
3945 *pneed_stall = 0;
3946 return true;
3947}
3948
3949/* Convert a vectored and sorted av set to the ready list that
3950 the rest of the backend wants to see. */
3951static void
3952convert_vec_av_set_to_ready (void)
3953{
3954 int n;
3955 expr_t expr;
3956
3957 /* Allocate and fill the ready list from the sorted vector. */
3958 ready.n_ready = VEC_length (expr_t, vec_av_set);
3959 ready.first = ready.n_ready - 1;
b8698a0f 3960
e855c69d
AB
3961 gcc_assert (ready.n_ready > 0);
3962
3963 if (ready.n_ready > max_issue_size)
3964 {
3965 max_issue_size = ready.n_ready;
3966 sched_extend_ready_list (ready.n_ready);
3967 }
b8698a0f 3968
e855c69d
AB
3969 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3970 {
3971 vinsn_t vi = EXPR_VINSN (expr);
3972 insn_t insn = VINSN_INSN_RTX (vi);
3973
3974 ready_try[n] = 0;
3975 ready.vec[n] = insn;
3976 }
3977}
3978
3979/* Initialize ready list from *AV_PTR for the max_issue () call.
3980 If any unrecognizable insn found in *AV_PTR, return it (and skip
b8698a0f
L
3981 max_issue). BND and FENCE are current boundary and fence,
3982 respectively. If we need to stall for some cycles before an expr
e855c69d
AB
3983 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3984static expr_t
3985fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3986 int *pneed_stall)
3987{
3988 expr_t expr;
3989
3990 /* We do not support multiple boundaries per fence. */
3991 gcc_assert (BLIST_NEXT (bnds) == NULL);
3992
b8698a0f 3993 /* Process expressions required special handling, i.e. pipelined,
e855c69d
AB
3994 speculative and recog() < 0 expressions first. */
3995 process_pipelined_exprs (av_ptr);
3996 process_spec_exprs (av_ptr);
3997
3998 /* A USE could be scheduled immediately. */
3999 expr = process_use_exprs (av_ptr);
4000 if (expr)
4001 {
4002 *pneed_stall = 0;
4003 return expr;
4004 }
4005
4006 /* Turn the av set to a vector for sorting. */
4007 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4008 {
4009 ready.n_ready = 0;
4010 return NULL;
4011 }
4012
4013 /* Build the final ready list. */
4014 convert_vec_av_set_to_ready ();
4015 return NULL;
4016}
4017
4018/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4019static bool
4020sel_dfa_new_cycle (insn_t insn, fence_t fence)
4021{
b8698a0f
L
4022 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4023 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e855c69d
AB
4024 : FENCE_CYCLE (fence) - 1;
4025 bool res = false;
4026 int sort_p = 0;
4027
4028 if (!targetm.sched.dfa_new_cycle)
4029 return false;
4030
4031 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4032
4033 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4034 insn, last_scheduled_cycle,
4035 FENCE_CYCLE (fence), &sort_p))
4036 {
4037 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4038 advance_one_cycle (fence);
4039 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4040 res = true;
4041 }
4042
4043 return res;
4044}
4045
4046/* Invoke reorder* target hooks on the ready list. Return the number of insns
4047 we can issue. FENCE is the current fence. */
4048static int
4049invoke_reorder_hooks (fence_t fence)
4050{
4051 int issue_more;
4052 bool ran_hook = false;
4053
4054 /* Call the reorder hook at the beginning of the cycle, and call
4055 the reorder2 hook in the middle of the cycle. */
4056 if (FENCE_ISSUED_INSNS (fence) == 0)
4057 {
4058 if (targetm.sched.reorder
4059 && !SCHED_GROUP_P (ready_element (&ready, 0))
4060 && ready.n_ready > 1)
4061 {
4062 /* Don't give reorder the most prioritized insn as it can break
4063 pipelining. */
4064 if (pipelining_p)
4065 --ready.n_ready;
4066
4067 issue_more
4068 = targetm.sched.reorder (sched_dump, sched_verbose,
4069 ready_lastpos (&ready),
4070 &ready.n_ready, FENCE_CYCLE (fence));
4071
4072 if (pipelining_p)
4073 ++ready.n_ready;
4074
4075 ran_hook = true;
4076 }
4077 else
4078 /* Initialize can_issue_more for variable_issue. */
4079 issue_more = issue_rate;
4080 }
4081 else if (targetm.sched.reorder2
4082 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4083 {
4084 if (ready.n_ready == 1)
b8698a0f 4085 issue_more =
e855c69d
AB
4086 targetm.sched.reorder2 (sched_dump, sched_verbose,
4087 ready_lastpos (&ready),
4088 &ready.n_ready, FENCE_CYCLE (fence));
4089 else
4090 {
4091 if (pipelining_p)
4092 --ready.n_ready;
4093
4094 issue_more =
4095 targetm.sched.reorder2 (sched_dump, sched_verbose,
4096 ready.n_ready
4097 ? ready_lastpos (&ready) : NULL,
4098 &ready.n_ready, FENCE_CYCLE (fence));
4099
4100 if (pipelining_p)
4101 ++ready.n_ready;
4102 }
4103
4104 ran_hook = true;
4105 }
b8698a0f 4106 else
136e01a3 4107 issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
4108
4109 /* Ensure that ready list and vec_av_set are in line with each other,
4110 i.e. vec_av_set[i] == ready_element (&ready, i). */
4111 if (issue_more && ran_hook)
4112 {
4113 int i, j, n;
4114 rtx *arr = ready.vec;
4115 expr_t *vec = VEC_address (expr_t, vec_av_set);
4116
4117 for (i = 0, n = ready.n_ready; i < n; i++)
4118 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4119 {
4120 expr_t tmp;
4121
4122 for (j = i; j < n; j++)
4123 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4124 break;
4125 gcc_assert (j < n);
4126
b8698a0f 4127 tmp = vec[i];
e855c69d
AB
4128 vec[i] = vec[j];
4129 vec[j] = tmp;
4130 }
4131 }
4132
4133 return issue_more;
4134}
4135
b8698a0f
L
4136/* Return an EXPR correponding to INDEX element of ready list, if
4137 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4138 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e855c69d
AB
4139 ready.vec otherwise. */
4140static inline expr_t
4141find_expr_for_ready (int index, bool follow_ready_element)
4142{
4143 expr_t expr;
4144 int real_index;
4145
4146 real_index = follow_ready_element ? ready.first - index : index;
4147
4148 expr = VEC_index (expr_t, vec_av_set, real_index);
4149 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4150
4151 return expr;
4152}
4153
4154/* Calculate insns worth trying via lookahead_guard hook. Return a number
4155 of such insns found. */
4156static int
4157invoke_dfa_lookahead_guard (void)
4158{
4159 int i, n;
b8698a0f 4160 bool have_hook
e855c69d
AB
4161 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4162
4163 if (sched_verbose >= 2)
4164 sel_print ("ready after reorder: ");
4165
4166 for (i = 0, n = 0; i < ready.n_ready; i++)
4167 {
4168 expr_t expr;
4169 insn_t insn;
4170 int r;
4171
b8698a0f 4172 /* In this loop insn is Ith element of the ready list given by
e855c69d
AB
4173 ready_element, not Ith element of ready.vec. */
4174 insn = ready_element (&ready, i);
b8698a0f 4175
e855c69d
AB
4176 if (! have_hook || i == 0)
4177 r = 0;
4178 else
4179 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
b8698a0f 4180
e855c69d 4181 gcc_assert (INSN_CODE (insn) >= 0);
b8698a0f
L
4182
4183 /* Only insns with ready_try = 0 can get here
e855c69d
AB
4184 from fill_ready_list. */
4185 gcc_assert (ready_try [i] == 0);
4186 ready_try[i] = r;
4187 if (!r)
4188 n++;
4189
4190 expr = find_expr_for_ready (i, true);
b8698a0f 4191
e855c69d
AB
4192 if (sched_verbose >= 2)
4193 {
4194 dump_vinsn (EXPR_VINSN (expr));
4195 sel_print (":%d; ", ready_try[i]);
4196 }
4197 }
4198
4199 if (sched_verbose >= 2)
4200 sel_print ("\n");
4201 return n;
4202}
4203
4204/* Calculate the number of privileged insns and return it. */
4205static int
4206calculate_privileged_insns (void)
4207{
4208 expr_t cur_expr, min_spec_expr = NULL;
4209 insn_t cur_insn, min_spec_insn;
4210 int privileged_n = 0, i;
4211
4212 for (i = 0; i < ready.n_ready; i++)
4213 {
4214 if (ready_try[i])
4215 continue;
4216
4217 if (! min_spec_expr)
4218 {
4219 min_spec_insn = ready_element (&ready, i);
4220 min_spec_expr = find_expr_for_ready (i, true);
4221 }
b8698a0f 4222
e855c69d
AB
4223 cur_insn = ready_element (&ready, i);
4224 cur_expr = find_expr_for_ready (i, true);
4225
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4228
4229 ++privileged_n;
4230 }
4231
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4234
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4239}
4240
b8698a0f 4241/* Call the rest of the hooks after the choice was made. Return
e855c69d
AB
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245static int
4246invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247{
4248 gcc_assert (INSN_P (best_insn));
4249
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
b8698a0f 4252
e855c69d
AB
4253 if (targetm.sched.variable_issue)
4254 {
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
b8698a0f 4256 issue_more =
e855c69d
AB
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 }
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266}
4267
4268/* Estimate the cost of issuing INSN on DFA state STATE. */
4269static int
4270estimate_insn_cost (rtx insn, state_t state)
4271{
4272 static state_t temp = NULL;
4273 int cost;
4274
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4277
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4280
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4286}
4287
b8698a0f 4288/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e855c69d
AB
4289 This function properly handles ASMs, USEs etc. */
4290static int
4291get_expr_cost (expr_t expr, fence_t fence)
4292{
4293 rtx insn = EXPR_INSN_RTX (expr);
4294
4295 if (recog_memoized (insn) < 0)
4296 {
b8698a0f 4297 if (!FENCE_STARTS_CYCLE_P (fence)
e855c69d
AB
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4308 }
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4311}
4312
b8698a0f 4313/* Find the best insn for scheduling, either via max_issue or just take
e855c69d
AB
4314 the most prioritized available. */
4315static int
4316choose_best_insn (fence_t fence, int privileged_n, int *index)
4317{
4318 int can_issue = 0;
4319
4320 if (dfa_lookahead > 0)
4321 {
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 can_issue = max_issue (&ready, privileged_n,
4324 FENCE_STATE (fence), index);
4325 if (sched_verbose >= 2)
4326 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327 can_issue, FENCE_ISSUED_INSNS (fence));
4328 }
4329 else
4330 {
4331 /* We can't use max_issue; just return the first available element. */
4332 int i;
4333
4334 for (i = 0; i < ready.n_ready; i++)
4335 {
4336 expr_t expr = find_expr_for_ready (i, true);
4337
4338 if (get_expr_cost (expr, fence) < 1)
4339 {
4340 can_issue = can_issue_more;
4341 *index = i;
4342
4343 if (sched_verbose >= 2)
4344 sel_print ("using %dth insn from the ready list\n", i + 1);
4345
4346 break;
4347 }
4348 }
4349
4350 if (i == ready.n_ready)
4351 {
4352 can_issue = 0;
4353 *index = -1;
4354 }
4355 }
4356
4357 return can_issue;
4358}
4359
b8698a0f
L
4360/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361 BNDS and FENCE are current boundaries and scheduling fence respectively.
4362 Return the expr found and NULL if nothing can be issued atm.
4363 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e855c69d
AB
4364static expr_t
4365find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366 int *pneed_stall)
4367{
4368 expr_t best;
b8698a0f 4369
e855c69d
AB
4370 /* Choose the best insn for scheduling via:
4371 1) sorting the ready list based on priority;
4372 2) calling the reorder hook;
4373 3) calling max_issue. */
4374 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375 if (best == NULL && ready.n_ready > 0)
4376 {
4377 int privileged_n, index, avail_n;
4378
4379 can_issue_more = invoke_reorder_hooks (fence);
4380 if (can_issue_more > 0)
4381 {
b8698a0f 4382 /* Try choosing the best insn until we find one that is could be
e855c69d
AB
4383 scheduled due to liveness restrictions on its destination register.
4384 In the future, we'd like to choose once and then just probe insns
4385 in the order of their priority. */
4386 avail_n = invoke_dfa_lookahead_guard ();
4387 privileged_n = calculate_privileged_insns ();
4388 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389 if (can_issue_more)
4390 best = find_expr_for_ready (index, true);
4391 }
b8698a0f 4392 /* We had some available insns, so if we can't issue them,
e855c69d
AB
4393 we have a stall. */
4394 if (can_issue_more == 0)
4395 {
4396 best = NULL;
4397 *pneed_stall = 1;
4398 }
4399 }
4400
4401 if (best != NULL)
4402 {
4403 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404 can_issue_more);
4405 if (can_issue_more == 0)
4406 *pneed_stall = 1;
4407 }
b8698a0f 4408
e855c69d
AB
4409 if (sched_verbose >= 2)
4410 {
4411 if (best != NULL)
4412 {
4413 sel_print ("Best expression (vliw form): ");
4414 dump_expr (best);
4415 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4416 }
4417 else
4418 sel_print ("No best expr found!\n");
4419 }
4420
4421 return best;
4422}
4423\f
4424
4425/* Functions that implement the core of the scheduler. */
4426
4427
b8698a0f 4428/* Emit an instruction from EXPR with SEQNO and VINSN after
e855c69d
AB
4429 PLACE_TO_INSERT. */
4430static insn_t
b8698a0f 4431emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
4432 insn_t place_to_insert)
4433{
4434 /* This assert fails when we have identical instructions
4435 one of which dominates the other. In this case move_op ()
4436 finds the first instruction and doesn't search for second one.
4437 The solution would be to compute av_set after the first found
4438 insn and, if insn present in that set, continue searching.
4439 For now we workaround this issue in move_op. */
4440 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4441
4442 if (EXPR_WAS_RENAMED (expr))
4443 {
4444 unsigned regno = expr_dest_regno (expr);
b8698a0f 4445
e855c69d
AB
4446 if (HARD_REGISTER_NUM_P (regno))
4447 {
4448 df_set_regs_ever_live (regno, true);
4449 reg_rename_tick[regno] = ++reg_rename_this_tick;
4450 }
4451 }
b8698a0f
L
4452
4453 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e855c69d
AB
4454 place_to_insert);
4455}
4456
4457/* Return TRUE if BB can hold bookkeeping code. */
4458static bool
4459block_valid_for_bookkeeping_p (basic_block bb)
4460{
4461 insn_t bb_end = BB_END (bb);
4462
4463 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4464 return false;
4465
4466 if (INSN_P (bb_end))
4467 {
4468 if (INSN_SCHED_TIMES (bb_end) > 0)
4469 return false;
4470 }
4471 else
4472 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4473
4474 return true;
4475}
4476
4477/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4478 into E2->dest, except from E1->src (there may be a sequence of empty basic
4479 blocks between E1->src and E2->dest). Return found block, or NULL if new
b5b8b0ac
AO
4480 one must be created. If LAX holds, don't assume there is a simple path
4481 from E1->src to E2->dest. */
e855c69d 4482static basic_block
b5b8b0ac 4483find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e855c69d
AB
4484{
4485 basic_block candidate_block = NULL;
4486 edge e;
4487
4488 /* Loop over edges from E1 to E2, inclusive. */
b5b8b0ac 4489 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
e855c69d
AB
4490 {
4491 if (EDGE_COUNT (e->dest->preds) == 2)
4492 {
4493 if (candidate_block == NULL)
4494 candidate_block = (EDGE_PRED (e->dest, 0) == e
4495 ? EDGE_PRED (e->dest, 1)->src
4496 : EDGE_PRED (e->dest, 0)->src);
4497 else
4498 /* Found additional edge leading to path from e1 to e2
4499 from aside. */
4500 return NULL;
4501 }
4502 else if (EDGE_COUNT (e->dest->preds) > 2)
4503 /* Several edges leading to path from e1 to e2 from aside. */
4504 return NULL;
4505
4506 if (e == e2)
b5b8b0ac
AO
4507 return ((!lax || candidate_block)
4508 && block_valid_for_bookkeeping_p (candidate_block)
e855c69d
AB
4509 ? candidate_block
4510 : NULL);
b5b8b0ac
AO
4511
4512 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4513 return NULL;
e855c69d 4514 }
b5b8b0ac
AO
4515
4516 if (lax)
4517 return NULL;
4518
e855c69d
AB
4519 gcc_unreachable ();
4520}
4521
4522/* Create new basic block for bookkeeping code for path(s) incoming into
4523 E2->dest, except from E1->src. Return created block. */
4524static basic_block
4525create_block_for_bookkeeping (edge e1, edge e2)
4526{
4527 basic_block new_bb, bb = e2->dest;
4528
4529 /* Check that we don't spoil the loop structure. */
4530 if (current_loop_nest)
4531 {
4532 basic_block latch = current_loop_nest->latch;
4533
4534 /* We do not split header. */
4535 gcc_assert (e2->dest != current_loop_nest->header);
4536
4537 /* We do not redirect the only edge to the latch block. */
4538 gcc_assert (e1->dest != latch
4539 || !single_pred_p (latch)
4540 || e1 != single_pred_edge (latch));
4541 }
4542
4543 /* Split BB to insert BOOK_INSN there. */
4544 new_bb = sched_split_block (bb, NULL);
4545
4546 /* Move note_list from the upper bb. */
4547 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4548 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4549 BB_NOTE_LIST (bb) = NULL_RTX;
4550
4551 gcc_assert (e2->dest == bb);
4552
4553 /* Skip block for bookkeeping copy when leaving E1->src. */
4554 if (e1->flags & EDGE_FALLTHRU)
4555 sel_redirect_edge_and_branch_force (e1, new_bb);
4556 else
4557 sel_redirect_edge_and_branch (e1, new_bb);
4558
4559 gcc_assert (e1->dest == new_bb);
4560 gcc_assert (sel_bb_empty_p (bb));
4561
b5b8b0ac
AO
4562 /* To keep basic block numbers in sync between debug and non-debug
4563 compilations, we have to rotate blocks here. Consider that we
4564 started from (a,b)->d, (c,d)->e, and d contained only debug
4565 insns. It would have been removed before if the debug insns
4566 weren't there, so we'd have split e rather than d. So what we do
4567 now is to swap the block numbers of new_bb and
4568 single_succ(new_bb) == e, so that the insns that were in e before
4569 get the new block number. */
4570
4571 if (MAY_HAVE_DEBUG_INSNS)
4572 {
4573 basic_block succ;
4574 insn_t insn = sel_bb_head (new_bb);
4575 insn_t last;
4576
4577 if (DEBUG_INSN_P (insn)
4578 && single_succ_p (new_bb)
4579 && (succ = single_succ (new_bb))
4580 && succ != EXIT_BLOCK_PTR
4581 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4582 {
4583 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4584 insn = NEXT_INSN (insn);
4585
4586 if (insn == last)
4587 {
4588 sel_global_bb_info_def gbi;
4589 sel_region_bb_info_def rbi;
4590 int i;
4591
4592 if (sched_verbose >= 2)
4593 sel_print ("Swapping block ids %i and %i\n",
4594 new_bb->index, succ->index);
4595
4596 i = new_bb->index;
4597 new_bb->index = succ->index;
4598 succ->index = i;
4599
4600 SET_BASIC_BLOCK (new_bb->index, new_bb);
4601 SET_BASIC_BLOCK (succ->index, succ);
4602
4603 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4605 sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607
4608 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4610 sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612
4613 i = BLOCK_TO_BB (new_bb->index);
4614 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4615 BLOCK_TO_BB (succ->index) = i;
4616
4617 i = CONTAINING_RGN (new_bb->index);
4618 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4619 CONTAINING_RGN (succ->index) = i;
4620
4621 for (i = 0; i < current_nr_blocks; i++)
4622 if (BB_TO_BLOCK (i) == succ->index)
4623 BB_TO_BLOCK (i) = new_bb->index;
4624 else if (BB_TO_BLOCK (i) == new_bb->index)
4625 BB_TO_BLOCK (i) = succ->index;
4626
4627 FOR_BB_INSNS (new_bb, insn)
4628 if (INSN_P (insn))
4629 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4630
4631 FOR_BB_INSNS (succ, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4634
4635 if (bitmap_bit_p (code_motion_visited_blocks, new_bb->index))
4636 {
4637 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4638 bitmap_clear_bit (code_motion_visited_blocks, new_bb->index);
4639 }
4640
4641 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4642 && LABEL_P (BB_HEAD (succ)));
4643
4644 if (sched_verbose >= 4)
4645 sel_print ("Swapping code labels %i and %i\n",
4646 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4647 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4648
4649 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4650 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4651 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4653 }
4654 }
4655 }
4656
e855c69d
AB
4657 return bb;
4658}
4659
4660/* Return insn after which we must insert bookkeeping code for path(s) incoming
4661 into E2->dest, except from E1->src. */
4662static insn_t
4663find_place_for_bookkeeping (edge e1, edge e2)
4664{
4665 insn_t place_to_insert;
4666 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4667 create new basic block, but insert bookkeeping there. */
b5b8b0ac 4668 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e855c69d 4669
b5b8b0ac
AO
4670 if (book_block)
4671 {
4672 place_to_insert = BB_END (book_block);
4673
4674 /* Don't use a block containing only debug insns for
4675 bookkeeping, this causes scheduling differences between debug
4676 and non-debug compilations, for the block would have been
4677 removed already. */
4678 if (DEBUG_INSN_P (place_to_insert))
4679 {
4680 rtx insn = sel_bb_head (book_block);
e855c69d 4681
b5b8b0ac
AO
4682 while (insn != place_to_insert &&
4683 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 insn = NEXT_INSN (insn);
4685
4686 if (insn == place_to_insert)
4687 book_block = NULL;
4688 }
4689 }
4690
4691 if (!book_block)
4692 {
4693 book_block = create_block_for_bookkeeping (e1, e2);
4694 place_to_insert = BB_END (book_block);
4695 if (sched_verbose >= 9)
4696 sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698 }
4699 else
4700 {
4701 if (sched_verbose >= 9)
4702 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4703 }
e855c69d
AB
4704
4705 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4706 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4707 place_to_insert = PREV_INSN (place_to_insert);
4708
4709 return place_to_insert;
4710}
4711
4712/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4713 for JOIN_POINT. */
4714static int
4715find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4716{
4717 int seqno;
4718 rtx next;
4719
4720 /* Check if we are about to insert bookkeeping copy before a jump, and use
4721 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4722 next = NEXT_INSN (place_to_insert);
b8698a0f 4723 if (INSN_P (next)
e855c69d
AB
4724 && JUMP_P (next)
4725 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4726 {
4727 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4728 seqno = INSN_SEQNO (next);
4729 }
e855c69d
AB
4730 else if (INSN_SEQNO (join_point) > 0)
4731 seqno = INSN_SEQNO (join_point);
4732 else
da7ba240
AB
4733 {
4734 seqno = get_seqno_by_preds (place_to_insert);
4735
b8698a0f
L
4736 /* Sometimes the fences can move in such a way that there will be
4737 no instructions with positive seqno around this bookkeeping.
da7ba240
AB
4738 This means that there will be no way to get to it by a regular
4739 fence movement. Never mind because we pick up such pieces for
4740 rescheduling anyways, so any positive value will do for now. */
4741 if (seqno < 0)
4742 {
4743 gcc_assert (pipelining_p);
4744 seqno = 1;
4745 }
4746 }
b8698a0f 4747
e855c69d
AB
4748 gcc_assert (seqno > 0);
4749 return seqno;
4750}
4751
4752/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4753 NEW_SEQNO to it. Return created insn. */
4754static insn_t
4755emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4756{
4757 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4758
4759 vinsn_t new_vinsn
4760 = create_vinsn_from_insn_rtx (new_insn_rtx,
4761 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4762
4763 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4764 place_to_insert);
4765
4766 INSN_SCHED_TIMES (new_insn) = 0;
4767 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4768
4769 return new_insn;
4770}
4771
4772/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4773 E2->dest, except from E1->src (there may be a sequence of empty blocks
4774 between E1->src and E2->dest). Return block containing the copy.
4775 All scheduler data is initialized for the newly created insn. */
4776static basic_block
4777generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4778{
4779 insn_t join_point, place_to_insert, new_insn;
4780 int new_seqno;
4781 bool need_to_exchange_data_sets;
4782
4783 if (sched_verbose >= 4)
4784 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4785 e2->dest->index);
4786
4787 join_point = sel_bb_head (e2->dest);
4788 place_to_insert = find_place_for_bookkeeping (e1, e2);
b5b8b0ac
AO
4789 if (!place_to_insert)
4790 return NULL;
e855c69d
AB
4791 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4792 need_to_exchange_data_sets
4793 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4794
4795 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4796
4797 /* When inserting bookkeeping insn in new block, av sets should be
4798 following: old basic block (that now holds bookkeeping) data sets are
4799 the same as was before generation of bookkeeping, and new basic block
4800 (that now hold all other insns of old basic block) data sets are
4801 invalid. So exchange data sets for these basic blocks as sel_split_block
4802 mistakenly exchanges them in this case. Cannot do it earlier because
4803 when single instruction is added to new basic block it should hold NULL
4804 lv_set. */
4805 if (need_to_exchange_data_sets)
4806 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4807 BLOCK_FOR_INSN (join_point));
4808
4809 stat_bookkeeping_copies++;
4810 return BLOCK_FOR_INSN (new_insn);
4811}
4812
b8698a0f 4813/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e855c69d
AB
4814 on FENCE, but we are unable to copy them. */
4815static void
4816remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4817{
4818 expr_t expr;
4819 av_set_iterator i;
4820
b8698a0f
L
4821 /* An expression does not need bookkeeping if it is available on all paths
4822 from current block to original block and current block dominates
4823 original block. We check availability on all paths by examining
4824 EXPR_SPEC; this is not equivalent, because it may be positive even
4825 if expr is available on all paths (but if expr is not available on
e855c69d
AB
4826 any path, EXPR_SPEC will be positive). */
4827
4828 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4829 {
4830 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4831 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4832 && (EXPR_SPEC (expr)
4833 || !EXPR_ORIG_BB_INDEX (expr)
4834 || !dominated_by_p (CDI_DOMINATORS,
4835 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4836 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4837 {
4838 if (sched_verbose >= 4)
4839 sel_print ("Expr %d removed because it would need bookkeeping, which "
4840 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4841 av_set_iter_remove (&i);
4842 }
4843 }
4844}
4845
4846/* Moving conditional jump through some instructions.
4847
4848 Consider example:
4849
4850 ... <- current scheduling point
4851 NOTE BASIC BLOCK: <- bb header
4852 (p8) add r14=r14+0x9;;
4853 (p8) mov [r14]=r23
4854 (!p8) jump L1;;
4855 NOTE BASIC BLOCK:
4856 ...
4857
b8698a0f 4858 We can schedule jump one cycle earlier, than mov, because they cannot be
e855c69d
AB
4859 executed together as their predicates are mutually exclusive.
4860
b8698a0f
L
4861 This is done in this way: first, new fallthrough basic block is created
4862 after jump (it is always can be done, because there already should be a
e855c69d 4863 fallthrough block, where control flow goes in case of predicate being true -
b8698a0f
L
4864 in our example; otherwise there should be a dependence between those
4865 instructions and jump and we cannot schedule jump right now);
4866 next, all instructions between jump and current scheduling point are moved
e855c69d
AB
4867 to this new block. And the result is this:
4868
4869 NOTE BASIC BLOCK:
4870 (!p8) jump L1 <- current scheduling point
4871 NOTE BASIC BLOCK: <- bb header
4872 (p8) add r14=r14+0x9;;
4873 (p8) mov [r14]=r23
4874 NOTE BASIC BLOCK:
4875 ...
4876*/
4877static void
4878move_cond_jump (rtx insn, bnd_t bnd)
4879{
4880 edge ft_edge;
4881 basic_block block_from, block_next, block_new;
4882 rtx next, prev, link;
4883
4884 /* BLOCK_FROM holds basic block of the jump. */
4885 block_from = BLOCK_FOR_INSN (insn);
4886
4887 /* Moving of jump should not cross any other jumps or
4888 beginnings of new basic blocks. */
4889 gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
4890
4891 /* Jump is moved to the boundary. */
4892 prev = BND_TO (bnd);
4893 next = PREV_INSN (insn);
4894 BND_TO (bnd) = insn;
4895
4896 ft_edge = find_fallthru_edge (block_from);
4897 block_next = ft_edge->dest;
4898 /* There must be a fallthrough block (or where should go
4899 control flow in case of false jump predicate otherwise?). */
4900 gcc_assert (block_next);
4901
4902 /* Create new empty basic block after source block. */
4903 block_new = sel_split_edge (ft_edge);
4904 gcc_assert (block_new->next_bb == block_next
4905 && block_from->next_bb == block_new);
4906
4907 gcc_assert (BB_END (block_from) == insn);
4908
4909 /* Move all instructions except INSN from BLOCK_FROM to
4910 BLOCK_NEW. */
4911 for (link = prev; link != insn; link = NEXT_INSN (link))
4912 {
4913 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4914 df_insn_change_bb (link, block_new);
4915 }
4916
4917 /* Set correct basic block and instructions properties. */
4918 BB_END (block_new) = PREV_INSN (insn);
4919
4920 NEXT_INSN (PREV_INSN (prev)) = insn;
4921 PREV_INSN (insn) = PREV_INSN (prev);
4922
4923 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4924 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4925 PREV_INSN (prev) = BB_HEAD (block_new);
4926 NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
4927 NEXT_INSN (BB_HEAD (block_new)) = prev;
4928 PREV_INSN (NEXT_INSN (next)) = next;
4929
4930 gcc_assert (!sel_bb_empty_p (block_from)
4931 && !sel_bb_empty_p (block_new));
4932
4933 /* Update data sets for BLOCK_NEW to represent that INSN and
4934 instructions from the other branch of INSN is no longer
4935 available at BLOCK_NEW. */
4936 BB_AV_LEVEL (block_new) = global_level;
4937 gcc_assert (BB_LV_SET (block_new) == NULL);
4938 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4939 update_data_sets (sel_bb_head (block_new));
4940
4941 /* INSN is a new basic block header - so prepare its data
4942 structures and update availability and liveness sets. */
4943 update_data_sets (insn);
4944
4945 if (sched_verbose >= 4)
4946 sel_print ("Moving jump %d\n", INSN_UID (insn));
4947}
4948
4949/* Remove nops generated during move_op for preventing removal of empty
4950 basic blocks. */
4951static void
b5b8b0ac 4952remove_temp_moveop_nops (bool full_tidying)
e855c69d
AB
4953{
4954 int i;
4955 insn_t insn;
b8698a0f 4956
e855c69d
AB
4957 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4958 {
4959 gcc_assert (INSN_NOP_P (insn));
b5b8b0ac 4960 return_nop_to_pool (insn, full_tidying);
e855c69d
AB
4961 }
4962
4963 /* Empty the vector. */
4964 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
b8698a0f 4965 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
e855c69d
AB
4966 VEC_length (insn_t, vec_temp_moveop_nops));
4967}
4968
4969/* Records the maximal UID before moving up an instruction. Used for
4970 distinguishing between bookkeeping copies and original insns. */
4971static int max_uid_before_move_op = 0;
4972
4973/* Remove from AV_VLIW_P all instructions but next when debug counter
4974 tells us so. Next instruction is fetched from BNDS. */
4975static void
4976remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4977{
4978 if (! dbg_cnt (sel_sched_insn_cnt))
4979 /* Leave only the next insn in av_vliw. */
4980 {
4981 av_set_iterator av_it;
4982 expr_t expr;
4983 bnd_t bnd = BLIST_BND (bnds);
4984 insn_t next = BND_TO (bnd);
4985
4986 gcc_assert (BLIST_NEXT (bnds) == NULL);
4987
4988 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
4989 if (EXPR_INSN_RTX (expr) != next)
4990 av_set_iter_remove (&av_it);
4991 }
4992}
4993
b8698a0f 4994/* Compute available instructions on BNDS. FENCE is the current fence. Write
e855c69d
AB
4995 the computed set to *AV_VLIW_P. */
4996static void
4997compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
4998{
4999 if (sched_verbose >= 2)
5000 {
5001 sel_print ("Boundaries: ");
5002 dump_blist (bnds);
5003 sel_print ("\n");
5004 }
5005
5006 for (; bnds; bnds = BLIST_NEXT (bnds))
5007 {
5008 bnd_t bnd = BLIST_BND (bnds);
5009 av_set_t av1_copy;
5010 insn_t bnd_to = BND_TO (bnd);
5011
5012 /* Rewind BND->TO to the basic block header in case some bookkeeping
5013 instructions were inserted before BND->TO and it needs to be
5014 adjusted. */
5015 if (sel_bb_head_p (bnd_to))
5016 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5017 else
5018 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5019 {
5020 bnd_to = PREV_INSN (bnd_to);
5021 if (sel_bb_head_p (bnd_to))
5022 break;
5023 }
5024
5025 if (BND_TO (bnd) != bnd_to)
5026 {
5027 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5028 FENCE_INSN (fence) = bnd_to;
5029 BND_TO (bnd) = bnd_to;
5030 }
5031
5032 av_set_clear (&BND_AV (bnd));
5033 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5034
5035 av_set_clear (&BND_AV1 (bnd));
5036 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5037
5038 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
b8698a0f 5039
e855c69d
AB
5040 av1_copy = av_set_copy (BND_AV1 (bnd));
5041 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5042 }
5043
5044 if (sched_verbose >= 2)
5045 {
5046 sel_print ("Available exprs (vliw form): ");
5047 dump_av_set (*av_vliw_p);
5048 sel_print ("\n");
5049 }
5050}
5051
b8698a0f
L
5052/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5053 expression. When FOR_MOVEOP is true, also replace the register of
e855c69d
AB
5054 expressions found with the register from EXPR_VLIW. */
5055static av_set_t
5056find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5057{
5058 av_set_t expr_seq = NULL;
5059 expr_t expr;
5060 av_set_iterator i;
b8698a0f 5061
e855c69d
AB
5062 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5063 {
5064 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5065 {
5066 if (for_moveop)
5067 {
b8698a0f
L
5068 /* The sequential expression has the right form to pass
5069 to move_op except when renaming happened. Put the
e855c69d
AB
5070 correct register in EXPR then. */
5071 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5072 {
5073 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5074 {
5075 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5076 stat_renamed_scheduled++;
5077 }
b8698a0f
L
5078 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5079 This is needed when renaming came up with original
e855c69d 5080 register. */
b8698a0f 5081 else if (EXPR_TARGET_AVAILABLE (expr)
e855c69d
AB
5082 != EXPR_TARGET_AVAILABLE (expr_vliw))
5083 {
5084 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5085 EXPR_TARGET_AVAILABLE (expr) = 1;
5086 }
5087 }
5088 if (EXPR_WAS_SUBSTITUTED (expr))
5089 stat_substitutions_total++;
5090 }
5091
5092 av_set_add (&expr_seq, expr);
b8698a0f
L
5093
5094 /* With substitution inside insn group, it is possible
5095 that more than one expression in expr_seq will correspond
5096 to expr_vliw. In this case, choose one as the attempt to
e855c69d
AB
5097 move both leads to miscompiles. */
5098 break;
5099 }
5100 }
5101
5102 if (for_moveop && sched_verbose >= 2)
5103 {
5104 sel_print ("Best expression(s) (sequential form): ");
5105 dump_av_set (expr_seq);
5106 sel_print ("\n");
5107 }
b8698a0f 5108
e855c69d
AB
5109 return expr_seq;
5110}
5111
5112
5113/* Move nop to previous block. */
5114static void ATTRIBUTE_UNUSED
5115move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5116{
5117 insn_t prev_insn, next_insn, note;
5118
b8698a0f 5119 gcc_assert (sel_bb_head_p (nop)
e855c69d
AB
5120 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5121 note = bb_note (BLOCK_FOR_INSN (nop));
5122 prev_insn = sel_bb_end (prev_bb);
5123 next_insn = NEXT_INSN (nop);
5124 gcc_assert (prev_insn != NULL_RTX
5125 && PREV_INSN (note) == prev_insn);
5126
5127 NEXT_INSN (prev_insn) = nop;
5128 PREV_INSN (nop) = prev_insn;
5129
5130 PREV_INSN (note) = nop;
5131 NEXT_INSN (note) = next_insn;
5132
5133 NEXT_INSN (nop) = note;
5134 PREV_INSN (next_insn) = note;
5135
5136 BB_END (prev_bb) = nop;
5137 BLOCK_FOR_INSN (nop) = prev_bb;
5138}
5139
5140/* Prepare a place to insert the chosen expression on BND. */
5141static insn_t
5142prepare_place_to_insert (bnd_t bnd)
5143{
5144 insn_t place_to_insert;
5145
5146 /* Init place_to_insert before calling move_op, as the later
5147 can possibly remove BND_TO (bnd). */
5148 if (/* If this is not the first insn scheduled. */
5149 BND_PTR (bnd))
5150 {
5151 /* Add it after last scheduled. */
5152 place_to_insert = ILIST_INSN (BND_PTR (bnd));
b5b8b0ac
AO
5153 if (DEBUG_INSN_P (place_to_insert))
5154 {
5155 ilist_t l = BND_PTR (bnd);
5156 while ((l = ILIST_NEXT (l)) &&
5157 DEBUG_INSN_P (ILIST_INSN (l)))
5158 ;
5159 if (!l)
5160 place_to_insert = NULL;
5161 }
e855c69d
AB
5162 }
5163 else
b5b8b0ac
AO
5164 place_to_insert = NULL;
5165
5166 if (!place_to_insert)
e855c69d
AB
5167 {
5168 /* Add it before BND_TO. The difference is in the
5169 basic block, where INSN will be added. */
5170 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5171 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5172 == BLOCK_FOR_INSN (BND_TO (bnd)));
5173 }
5174
5175 return place_to_insert;
5176}
5177
b8698a0f 5178/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e855c69d 5179 Return the expression to emit in C_EXPR. */
72a54528 5180static bool
b8698a0f 5181move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e855c69d
AB
5182 av_set_t expr_seq, expr_t c_expr)
5183{
72a54528 5184 bool b, should_move;
e855c69d
AB
5185 unsigned book_uid;
5186 bitmap_iterator bi;
5187 int n_bookkeeping_copies_before_moveop;
5188
5189 /* Make a move. This call will remove the original operation,
5190 insert all necessary bookkeeping instructions and update the
5191 data sets. After that all we have to do is add the operation
5192 at before BND_TO (BND). */
5193 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5194 max_uid_before_move_op = get_max_uid ();
5195 bitmap_clear (current_copies);
5196 bitmap_clear (current_originators);
5197
b8698a0f 5198 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 5199 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d 5200
b8698a0f 5201 /* We should be able to find the expression we've chosen for
e855c69d 5202 scheduling. */
72a54528 5203 gcc_assert (b);
b8698a0f 5204
e855c69d
AB
5205 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5206 stat_insns_needed_bookkeeping++;
b8698a0f 5207
e855c69d
AB
5208 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5209 {
14f30b87
AM
5210 unsigned uid;
5211 bitmap_iterator bi;
5212
e855c69d
AB
5213 /* We allocate these bitmaps lazily. */
5214 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5215 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
b8698a0f
L
5216
5217 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e855c69d 5218 current_originators);
14f30b87
AM
5219
5220 /* Transitively add all originators' originators. */
5221 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5222 if (INSN_ORIGINATORS_BY_UID (uid))
5223 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5224 INSN_ORIGINATORS_BY_UID (uid));
e855c69d 5225 }
72a54528
AM
5226
5227 return should_move;
e855c69d
AB
5228}
5229
5230
5231/* Debug a DFA state as an array of bytes. */
5232static void
5233debug_state (state_t state)
5234{
5235 unsigned char *p;
5236 unsigned int i, size = dfa_state_size;
5237
5238 sel_print ("state (%u):", size);
5239 for (i = 0, p = (unsigned char *) state; i < size; i++)
5240 sel_print (" %d", p[i]);
5241 sel_print ("\n");
5242}
5243
b8698a0f 5244/* Advance state on FENCE with INSN. Return true if INSN is
e855c69d
AB
5245 an ASM, and we should advance state once more. */
5246static bool
5247advance_state_on_fence (fence_t fence, insn_t insn)
5248{
5249 bool asm_p;
5250
5251 if (recog_memoized (insn) >= 0)
5252 {
5253 int res;
5254 state_t temp_state = alloca (dfa_state_size);
b8698a0f 5255
e855c69d
AB
5256 gcc_assert (!INSN_ASM_P (insn));
5257 asm_p = false;
5258
5259 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5260 res = state_transition (FENCE_STATE (fence), insn);
5261 gcc_assert (res < 0);
5262
5263 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5264 {
5265 FENCE_ISSUED_INSNS (fence)++;
5266
5267 /* We should never issue more than issue_rate insns. */
5268 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5269 gcc_unreachable ();
5270 }
b8698a0f 5271 }
e855c69d
AB
5272 else
5273 {
b8698a0f 5274 /* This could be an ASM insn which we'd like to schedule
e855c69d
AB
5275 on the next cycle. */
5276 asm_p = INSN_ASM_P (insn);
5277 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5278 advance_one_cycle (fence);
5279 }
5280
5281 if (sched_verbose >= 2)
5282 debug_state (FENCE_STATE (fence));
b5b8b0ac
AO
5283 if (!DEBUG_INSN_P (insn))
5284 FENCE_STARTS_CYCLE_P (fence) = 0;
136e01a3 5285 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
5286 return asm_p;
5287}
5288
5289/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5290 is nonzero if we need to stall after issuing INSN. */
5291static void
5292update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5293{
5294 bool asm_p;
b8698a0f 5295
e855c69d
AB
5296 /* First, reflect that something is scheduled on this fence. */
5297 asm_p = advance_state_on_fence (fence, insn);
5298 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5299 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5300 if (SCHED_GROUP_P (insn))
5301 {
5302 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5303 SCHED_GROUP_P (insn) = 0;
5304 }
5305 else
5306 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5307 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5308 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5309
5310 /* Set instruction scheduling info. This will be used in bundling,
5311 pipelining, tick computations etc. */
5312 ++INSN_SCHED_TIMES (insn);
5313 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5314 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5315 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5316 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5317
5318 /* This does not account for adjust_cost hooks, just add the biggest
b8698a0f 5319 constant the hook may add to the latency. TODO: make this
e855c69d 5320 a target dependent constant. */
b8698a0f
L
5321 INSN_READY_CYCLE (insn)
5322 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e855c69d
AB
5323 ? 1
5324 : maximal_insn_latency (insn) + 1);
5325
5326 /* Change these fields last, as they're used above. */
5327 FENCE_AFTER_STALL_P (fence) = 0;
5328 if (asm_p || need_stall)
5329 advance_one_cycle (fence);
b8698a0f 5330
e855c69d
AB
5331 /* Indicate that we've scheduled something on this fence. */
5332 FENCE_SCHEDULED_P (fence) = true;
5333 scheduled_something_on_previous_fence = true;
5334
5335 /* Print debug information when insn's fields are updated. */
5336 if (sched_verbose >= 2)
5337 {
5338 sel_print ("Scheduling insn: ");
5339 dump_insn_1 (insn, 1);
5340 sel_print ("\n");
5341 }
5342}
5343
b5b8b0ac
AO
5344/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5345 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5346 return it. */
e855c69d 5347static blist_t *
b5b8b0ac 5348update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e855c69d
AB
5349 blist_t *bnds_tailp)
5350{
5351 succ_iterator si;
5352 insn_t succ;
5353
5354 advance_deps_context (BND_DC (bnd), insn);
b8698a0f 5355 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
5356 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5357 {
5358 ilist_t ptr = ilist_copy (BND_PTR (bnd));
b8698a0f 5359
e855c69d 5360 ilist_add (&ptr, insn);
b5b8b0ac
AO
5361
5362 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5363 && is_ineligible_successor (succ, ptr))
5364 {
5365 ilist_clear (&ptr);
5366 continue;
5367 }
5368
5369 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5370 {
5371 if (sched_verbose >= 9)
5372 sel_print ("Updating fence insn from %i to %i\n",
5373 INSN_UID (insn), INSN_UID (succ));
5374 FENCE_INSN (fence) = succ;
5375 }
e855c69d
AB
5376 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5377 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5378 }
b8698a0f 5379
e855c69d
AB
5380 blist_remove (bndsp);
5381 return bnds_tailp;
5382}
5383
5384/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5385static insn_t
5386schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5387{
5388 av_set_t expr_seq;
5389 expr_t c_expr = XALLOCA (expr_def);
5390 insn_t place_to_insert;
5391 insn_t insn;
72a54528 5392 bool should_move;
e855c69d
AB
5393
5394 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5395
5396 /* In case of scheduling a jump skipping some other instructions,
b8698a0f 5397 prepare CFG. After this, jump is at the boundary and can be
e855c69d
AB
5398 scheduled as usual insn by MOVE_OP. */
5399 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5400 {
5401 insn = EXPR_INSN_RTX (expr_vliw);
b8698a0f 5402
e855c69d 5403 /* Speculative jumps are not handled. */
b8698a0f 5404 if (insn != BND_TO (bnd)
e855c69d
AB
5405 && !sel_insn_is_speculation_check (insn))
5406 move_cond_jump (insn, bnd);
5407 }
5408
e855c69d
AB
5409 /* Find a place for C_EXPR to schedule. */
5410 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5411 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d 5412 clear_expr (c_expr);
b8698a0f
L
5413
5414 /* Add the instruction. The corner case to care about is when
5415 the expr_seq set has more than one expr, and we chose the one that
5416 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e855c69d
AB
5417 we can't use it. Generate the new vinsn. */
5418 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5419 {
5420 vinsn_t vinsn_new;
b8698a0f 5421
e855c69d
AB
5422 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5423 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5424 should_move = false;
e855c69d 5425 }
72a54528
AM
5426 if (should_move)
5427 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5428 else
b8698a0f 5429 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e855c69d 5430 place_to_insert);
e855c69d
AB
5431
5432 /* Return the nops generated for preserving of data sets back
5433 into pool. */
5434 if (INSN_NOP_P (place_to_insert))
b5b8b0ac
AO
5435 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5436 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e855c69d
AB
5437
5438 av_set_clear (&expr_seq);
b8698a0f
L
5439
5440 /* Save the expression scheduled so to reset target availability if we'll
e855c69d
AB
5441 meet it later on the same fence. */
5442 if (EXPR_WAS_RENAMED (expr_vliw))
5443 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5444
5445 /* Check that the recent movement didn't destroyed loop
5446 structure. */
5447 gcc_assert (!pipelining_p
5448 || current_loop_nest == NULL
5449 || loop_latch_edge (current_loop_nest));
5450 return insn;
5451}
5452
5453/* Stall for N cycles on FENCE. */
5454static void
5455stall_for_cycles (fence_t fence, int n)
5456{
5457 int could_more;
b8698a0f 5458
e855c69d
AB
5459 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5460 while (n--)
5461 advance_one_cycle (fence);
5462 if (could_more)
5463 FENCE_AFTER_STALL_P (fence) = 1;
5464}
5465
b8698a0f
L
5466/* Gather a parallel group of insns at FENCE and assign their seqno
5467 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e855c69d
AB
5468 list for later recalculation of seqnos. */
5469static void
5470fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5471{
5472 blist_t bnds = NULL, *bnds_tailp;
5473 av_set_t av_vliw = NULL;
5474 insn_t insn = FENCE_INSN (fence);
5475
5476 if (sched_verbose >= 2)
b8698a0f 5477 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e855c69d
AB
5478 INSN_UID (insn), FENCE_CYCLE (fence));
5479
5480 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5481 bnds_tailp = &BLIST_NEXT (bnds);
5482 set_target_context (FENCE_TC (fence));
136e01a3 5483 can_issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
5484 target_bb = INSN_BB (insn);
5485
5486 /* Do while we can add any operation to the current group. */
5487 do
5488 {
5489 blist_t *bnds_tailp1, *bndsp;
5490 expr_t expr_vliw;
5491 int need_stall;
5492 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5493 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5494 int max_stall = pipelining_p ? 1 : 3;
b5b8b0ac
AO
5495 bool last_insn_was_debug = false;
5496 bool was_debug_bb_end_p = false;
5497
e855c69d
AB
5498 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5499 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5500 remove_insns_for_debug (bnds, &av_vliw);
5501
5502 /* Return early if we have nothing to schedule. */
5503 if (av_vliw == NULL)
5504 break;
5505
5506 /* Choose the best expression and, if needed, destination register
5507 for it. */
5508 do
5509 {
5510 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5511 if (!expr_vliw && need_stall)
5512 {
5513 /* All expressions required a stall. Do not recompute av sets
5514 as we'll get the same answer (modulo the insns between
5515 the fence and its boundary, which will not be available for
5516 pipelining). */
5517 gcc_assert (! expr_vliw && stall_iterations < 2);
5518 was_stall++;
5519 /* If we are going to stall for too long, break to recompute av
5520 sets and bring more insns for pipelining. */
5521 if (need_stall <= 3)
5522 stall_for_cycles (fence, need_stall);
5523 else
5524 {
5525 stall_for_cycles (fence, 1);
5526 break;
5527 }
5528 }
5529 }
5530 while (! expr_vliw && need_stall);
b8698a0f 5531
e855c69d
AB
5532 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5533 if (!expr_vliw)
5534 {
5535 av_set_clear (&av_vliw);
5536 break;
5537 }
5538
5539 bndsp = &bnds;
5540 bnds_tailp1 = bnds_tailp;
5541
5542 do
b8698a0f 5543 /* This code will be executed only once until we'd have several
e855c69d
AB
5544 boundaries per fence. */
5545 {
5546 bnd_t bnd = BLIST_BND (*bndsp);
5547
5548 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5549 {
5550 bndsp = &BLIST_NEXT (*bndsp);
5551 continue;
5552 }
b8698a0f 5553
e855c69d 5554 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
b5b8b0ac
AO
5555 last_insn_was_debug = DEBUG_INSN_P (insn);
5556 if (last_insn_was_debug)
5557 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e855c69d 5558 update_fence_and_insn (fence, insn, need_stall);
b5b8b0ac 5559 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e855c69d
AB
5560
5561 /* Add insn to the list of scheduled on this cycle instructions. */
5562 ilist_add (*scheduled_insns_tailpp, insn);
5563 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5564 }
5565 while (*bndsp != *bnds_tailp1);
5566
5567 av_set_clear (&av_vliw);
b5b8b0ac
AO
5568 if (!last_insn_was_debug)
5569 scheduled_insns++;
e855c69d
AB
5570
5571 /* We currently support information about candidate blocks only for
5572 one 'target_bb' block. Hence we can't schedule after jump insn,
5573 as this will bring two boundaries and, hence, necessity to handle
5574 information for two or more blocks concurrently. */
b5b8b0ac 5575 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
b8698a0f
L
5576 || (was_stall
5577 && (was_stall >= max_stall
e855c69d
AB
5578 || scheduled_insns >= max_insns)))
5579 break;
5580 }
5581 while (bnds);
5582
5583 gcc_assert (!FENCE_BNDS (fence));
b8698a0f 5584
e855c69d
AB
5585 /* Update boundaries of the FENCE. */
5586 while (bnds)
5587 {
5588 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5589
5590 if (ptr)
5591 {
5592 insn = ILIST_INSN (ptr);
5593
5594 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5595 ilist_add (&FENCE_BNDS (fence), insn);
5596 }
b8698a0f 5597
e855c69d
AB
5598 blist_remove (&bnds);
5599 }
5600
5601 /* Update target context on the fence. */
5602 reset_target_context (FENCE_TC (fence), false);
5603}
5604
5605/* All exprs in ORIG_OPS must have the same destination register or memory.
5606 Return that destination. */
5607static rtx
5608get_dest_from_orig_ops (av_set_t orig_ops)
5609{
5610 rtx dest = NULL_RTX;
5611 av_set_iterator av_it;
5612 expr_t expr;
5613 bool first_p = true;
5614
5615 FOR_EACH_EXPR (expr, av_it, orig_ops)
5616 {
5617 rtx x = EXPR_LHS (expr);
5618
5619 if (first_p)
5620 {
5621 first_p = false;
5622 dest = x;
5623 }
5624 else
5625 gcc_assert (dest == x
5626 || (dest != NULL_RTX && x != NULL_RTX
5627 && rtx_equal_p (dest, x)));
5628 }
5629
5630 return dest;
5631}
5632
5633/* Update data sets for the bookkeeping block and record those expressions
5634 which become no longer available after inserting this bookkeeping. */
5635static void
5636update_and_record_unavailable_insns (basic_block book_block)
5637{
5638 av_set_iterator i;
5639 av_set_t old_av_set = NULL;
5640 expr_t cur_expr;
5641 rtx bb_end = sel_bb_end (book_block);
5642
b8698a0f 5643 /* First, get correct liveness in the bookkeeping block. The problem is
e855c69d
AB
5644 the range between the bookeeping insn and the end of block. */
5645 update_liveness_on_insn (bb_end);
5646 if (control_flow_insn_p (bb_end))
5647 update_liveness_on_insn (PREV_INSN (bb_end));
5648
5649 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5650 fence above, where we may choose to schedule an insn which is
5651 actually blocked from moving up with the bookkeeping we create here. */
5652 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5653 {
5654 old_av_set = av_set_copy (BB_AV_SET (book_block));
5655 update_data_sets (sel_bb_head (book_block));
b8698a0f 5656
e855c69d
AB
5657 /* Traverse all the expressions in the old av_set and check whether
5658 CUR_EXPR is in new AV_SET. */
5659 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5660 {
b8698a0f 5661 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e855c69d
AB
5662 EXPR_VINSN (cur_expr));
5663
b8698a0f
L
5664 if (! new_expr
5665 /* In this case, we can just turn off the E_T_A bit, but we can't
e855c69d 5666 represent this information with the current vector. */
b8698a0f 5667 || EXPR_TARGET_AVAILABLE (new_expr)
e855c69d
AB
5668 != EXPR_TARGET_AVAILABLE (cur_expr))
5669 /* Unfortunately, the below code could be also fired up on
5670 separable insns.
5671 FIXME: add an example of how this could happen. */
5672 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5673 }
5674
5675 av_set_clear (&old_av_set);
5676 }
5677}
5678
b8698a0f 5679/* The main effect of this function is that sparams->c_expr is merged
e855c69d
AB
5680 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5681 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
b8698a0f
L
5682 lparams->c_expr_merged is copied back to sparams->c_expr after all
5683 successors has been traversed. lparams->c_expr_local is an expr allocated
5684 on stack in the caller function, and is used if there is more than one
5685 successor.
e855c69d
AB
5686
5687 SUCC is one of the SUCCS_NORMAL successors of INSN,
5688 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5689 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5690static void
b8698a0f
L
5691move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5692 insn_t succ ATTRIBUTE_UNUSED,
5693 int moveop_drv_call_res,
e855c69d
AB
5694 cmpd_local_params_p lparams, void *static_params)
5695{
5696 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5697
5698 /* Nothing to do, if original expr wasn't found below. */
5699 if (moveop_drv_call_res != 1)
5700 return;
5701
5702 /* If this is a first successor. */
5703 if (!lparams->c_expr_merged)
5704 {
5705 lparams->c_expr_merged = sparams->c_expr;
5706 sparams->c_expr = lparams->c_expr_local;
5707 }
5708 else
5709 {
5710 /* We must merge all found expressions to get reasonable
5711 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5712 do so then we can first find the expr with epsilon
5713 speculation success probability and only then with the
5714 good probability. As a result the insn will get epsilon
5715 probability and will never be scheduled because of
5716 weakness_cutoff in find_best_expr.
5717
b8698a0f 5718 We call merge_expr_data here instead of merge_expr
e855c69d
AB
5719 because due to speculation C_EXPR and X may have the
5720 same insns with different speculation types. And as of
b8698a0f 5721 now such insns are considered non-equal.
e855c69d 5722
b8698a0f
L
5723 However, EXPR_SCHED_TIMES is different -- we must get
5724 SCHED_TIMES from a real insn, not a bookkeeping copy.
e855c69d 5725 We force this here. Instead, we may consider merging
b8698a0f 5726 SCHED_TIMES to the maximum instead of minimum in the
e855c69d
AB
5727 below function. */
5728 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5729
5730 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5731 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5732 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5733
5734 clear_expr (sparams->c_expr);
5735 }
5736}
5737
5738/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5739
5740 SUCC is one of the SUCCS_NORMAL successors of INSN,
5741 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5742 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5743 STATIC_PARAMS contain USED_REGS set. */
5744static void
b8698a0f
L
5745fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5746 int moveop_drv_call_res,
5747 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5748 void *static_params)
5749{
5750 regset succ_live;
5751 fur_static_params_p sparams = (fur_static_params_p) static_params;
5752
5753 /* Here we compute live regsets only for branches that do not lie
b8698a0f 5754 on the code motion paths. These branches correspond to value
e855c69d
AB
5755 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5756 for such branches code_motion_path_driver is not called. */
5757 if (moveop_drv_call_res != 0)
5758 return;
5759
5760 /* Mark all registers that do not meet the following condition:
5761 (3) not live on the other path of any conditional branch
5762 that is passed by the operation, in case original
5763 operations are not present on both paths of the
5764 conditional branch. */
5765 succ_live = compute_live (succ);
5766 IOR_REG_SET (sparams->used_regs, succ_live);
5767}
5768
5769/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5770 into SP->CEXPR. */
5771static void
5772move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
b8698a0f 5773{
e855c69d
AB
5774 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5775
5776 sp->c_expr = lp->c_expr_merged;
5777}
5778
5779/* Track bookkeeping copies created, insns scheduled, and blocks for
5780 rescheduling when INSN is found by move_op. */
5781static void
5782track_scheduled_insns_and_blocks (rtx insn)
5783{
5784 /* Even if this insn can be a copy that will be removed during current move_op,
5785 we still need to count it as an originator. */
5786 bitmap_set_bit (current_originators, INSN_UID (insn));
5787
5788 if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
5789 {
5790 /* Note that original block needs to be rescheduled, as we pulled an
5791 instruction out of it. */
5792 if (INSN_SCHED_TIMES (insn) > 0)
5793 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
b5b8b0ac 5794 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e855c69d
AB
5795 num_insns_scheduled++;
5796 }
5797 else
5798 bitmap_clear_bit (current_copies, INSN_UID (insn));
5799
5800 /* For instructions we must immediately remove insn from the
5801 stream, so subsequent update_data_sets () won't include this
5802 insn into av_set.
5803 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5804 if (INSN_UID (insn) > max_uid_before_move_op)
5805 stat_bookkeeping_copies--;
5806}
5807
b8698a0f 5808/* Emit a register-register copy for INSN if needed. Return true if
e855c69d
AB
5809 emitted one. PARAMS is the move_op static parameters. */
5810static bool
b8698a0f 5811maybe_emit_renaming_copy (rtx insn,
e855c69d
AB
5812 moveop_static_params_p params)
5813{
5814 bool insn_emitted = false;
5815 rtx cur_reg = expr_dest_reg (params->c_expr);
5816
5817 gcc_assert (!cur_reg || (params->dest && REG_P (params->dest)));
5818
5819 /* If original operation has expr and the register chosen for
5820 that expr is not original operation's dest reg, substitute
5821 operation's right hand side with the register chosen. */
5822 if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg))
5823 {
5824 insn_t reg_move_insn, reg_move_insn_rtx;
b8698a0f
L
5825
5826 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e855c69d 5827 params->dest);
b8698a0f
L
5828 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5829 INSN_EXPR (insn),
5830 INSN_SEQNO (insn),
e855c69d
AB
5831 insn);
5832 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5833 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
b8698a0f 5834
e855c69d
AB
5835 insn_emitted = true;
5836 params->was_renamed = true;
5837 }
b8698a0f 5838
e855c69d
AB
5839 return insn_emitted;
5840}
5841
b8698a0f
L
5842/* Emit a speculative check for INSN speculated as EXPR if needed.
5843 Return true if we've emitted one. PARAMS is the move_op static
e855c69d
AB
5844 parameters. */
5845static bool
5846maybe_emit_speculative_check (rtx insn, expr_t expr,
5847 moveop_static_params_p params)
5848{
5849 bool insn_emitted = false;
5850 insn_t x;
5851 ds_t check_ds;
5852
5853 check_ds = get_spec_check_type_for_insn (insn, expr);
5854 if (check_ds != 0)
5855 {
5856 /* A speculation check should be inserted. */
5857 x = create_speculation_check (params->c_expr, check_ds, insn);
5858 insn_emitted = true;
5859 }
5860 else
5861 {
5862 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5863 x = insn;
5864 }
b8698a0f 5865
e855c69d
AB
5866 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5867 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5868 return insn_emitted;
5869}
5870
b8698a0f
L
5871/* Handle transformations that leave an insn in place of original
5872 insn such as renaming/speculation. Return true if one of such
e855c69d
AB
5873 transformations actually happened, and we have emitted this insn. */
5874static bool
b8698a0f 5875handle_emitting_transformations (rtx insn, expr_t expr,
e855c69d
AB
5876 moveop_static_params_p params)
5877{
5878 bool insn_emitted = false;
5879
5880 insn_emitted = maybe_emit_renaming_copy (insn, params);
5881 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5882
5883 return insn_emitted;
b8698a0f 5884}
e855c69d 5885
b5b8b0ac
AO
5886/* If INSN is the only insn in the basic block (not counting JUMP,
5887 which may be a jump to next insn, and DEBUG_INSNs), we want to
5888 leave a NOP there till the return to fill_insns. */
5889
5890static bool
5891need_nop_to_preserve_insn_bb (rtx insn)
e855c69d 5892{
b5b8b0ac 5893 insn_t bb_head, bb_end, bb_next, in_next;
e855c69d
AB
5894 basic_block bb = BLOCK_FOR_INSN (insn);
5895
e855c69d
AB
5896 bb_head = sel_bb_head (bb);
5897 bb_end = sel_bb_end (bb);
e855c69d 5898
b5b8b0ac
AO
5899 if (bb_head == bb_end)
5900 return true;
5901
5902 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5903 bb_head = NEXT_INSN (bb_head);
5904
5905 if (bb_head == bb_end)
5906 return true;
5907
5908 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5909 bb_end = PREV_INSN (bb_end);
5910
5911 if (bb_head == bb_end)
5912 return true;
5913
5914 bb_next = NEXT_INSN (bb_head);
5915 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5916 bb_next = NEXT_INSN (bb_next);
5917
5918 if (bb_next == bb_end && JUMP_P (bb_end))
5919 return true;
5920
5921 in_next = NEXT_INSN (insn);
5922 while (DEBUG_INSN_P (in_next))
5923 in_next = NEXT_INSN (in_next);
5924
5925 if (IN_CURRENT_FENCE_P (in_next))
5926 return true;
5927
5928 return false;
5929}
5930
5931/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5932 is not removed but reused when INSN is re-emitted. */
5933static void
5934remove_insn_from_stream (rtx insn, bool only_disconnect)
5935{
e855c69d
AB
5936 /* If there's only one insn in the BB, make sure that a nop is
5937 inserted into it, so the basic block won't disappear when we'll
5938 delete INSN below with sel_remove_insn. It should also survive
b8698a0f 5939 till the return to fill_insns. */
b5b8b0ac 5940 if (need_nop_to_preserve_insn_bb (insn))
e855c69d 5941 {
b5b8b0ac 5942 insn_t nop = get_nop_from_pool (insn);
e855c69d
AB
5943 gcc_assert (INSN_NOP_P (nop));
5944 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5945 }
5946
5947 sel_remove_insn (insn, only_disconnect, false);
5948}
5949
5950/* This function is called when original expr is found.
b8698a0f 5951 INSN - current insn traversed, EXPR - the corresponding expr found.
e855c69d
AB
5952 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5953 is static parameters of move_op. */
5954static void
b8698a0f
L
5955move_op_orig_expr_found (insn_t insn, expr_t expr,
5956 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5957 void *static_params)
5958{
5959 bool only_disconnect, insn_emitted;
5960 moveop_static_params_p params = (moveop_static_params_p) static_params;
b8698a0f 5961
e855c69d
AB
5962 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5963 track_scheduled_insns_and_blocks (insn);
5964 insn_emitted = handle_emitting_transformations (insn, expr, params);
5965 only_disconnect = (params->uid == INSN_UID (insn)
5966 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
72a54528
AM
5967
5968 /* Mark that we've disconnected an insn. */
5969 if (only_disconnect)
5970 params->uid = -1;
e855c69d
AB
5971 remove_insn_from_stream (insn, only_disconnect);
5972}
5973
5974/* The function is called when original expr is found.
5975 INSN - current insn traversed, EXPR - the corresponding expr found,
5976 crosses_call and original_insns in STATIC_PARAMS are updated. */
5977static void
5978fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5979 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5980 void *static_params)
5981{
5982 fur_static_params_p params = (fur_static_params_p) static_params;
5983 regset tmp;
5984
5985 if (CALL_P (insn))
5986 params->crosses_call = true;
5987
5988 def_list_add (params->original_insns, insn, params->crosses_call);
5989
5990 /* Mark the registers that do not meet the following condition:
b8698a0f
L
5991 (2) not among the live registers of the point
5992 immediately following the first original operation on
e855c69d
AB
5993 a given downward path, except for the original target
5994 register of the operation. */
5995 tmp = get_clear_regset_from_pool ();
5996 compute_live_below_insn (insn, tmp);
5997 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
5998 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
5999 IOR_REG_SET (params->used_regs, tmp);
6000 return_regset_to_pool (tmp);
6001
6002 /* (*1) We need to add to USED_REGS registers that are read by
6003 INSN's lhs. This may lead to choosing wrong src register.
6004 E.g. (scheduling const expr enabled):
6005
6006 429: ax=0x0 <- Can't use AX for this expr (0x0)
6007 433: dx=[bp-0x18]
6008 427: [ax+dx+0x1]=ax
6009 REG_DEAD: ax
6010 168: di=dx
6011 REG_DEAD: dx
6012 */
b8698a0f 6013 /* FIXME: see comment above and enable MEM_P
e855c69d
AB
6014 in vinsn_separable_p. */
6015 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6016 || !MEM_P (INSN_LHS (insn)));
6017}
6018
6019/* This function is called on the ascending pass, before returning from
6020 current basic block. */
6021static void
b8698a0f 6022move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e855c69d
AB
6023 void *static_params)
6024{
6025 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6026 basic_block book_block = NULL;
6027
b8698a0f 6028 /* When we have removed the boundary insn for scheduling, which also
e855c69d 6029 happened to be the end insn in its bb, we don't need to update sets. */
b8698a0f 6030 if (!lparams->removed_last_insn
e855c69d
AB
6031 && lparams->e1
6032 && sel_bb_head_p (insn))
6033 {
6034 /* We should generate bookkeeping code only if we are not at the
6035 top level of the move_op. */
6036 if (sel_num_cfg_preds_gt_1 (insn))
6037 book_block = generate_bookkeeping_insn (sparams->c_expr,
6038 lparams->e1, lparams->e2);
6039 /* Update data sets for the current insn. */
6040 update_data_sets (insn);
6041 }
b8698a0f 6042
e855c69d 6043 /* If bookkeeping code was inserted, we need to update av sets of basic
b8698a0f 6044 block that received bookkeeping. After generation of bookkeeping insn,
e855c69d 6045 bookkeeping block does not contain valid av set because we are not following
b8698a0f 6046 the original algorithm in every detail with regards to e.g. renaming
e855c69d 6047 simple reg-reg copies. Consider example:
b8698a0f 6048
e855c69d
AB
6049 bookkeeping block scheduling fence
6050 \ /
6051 \ join /
6052 ----------
6053 | |
6054 ----------
6055 / \
6056 / \
6057 r1 := r2 r1 := r3
6058
b8698a0f 6059 We try to schedule insn "r1 := r3" on the current
e855c69d
AB
6060 scheduling fence. Also, note that av set of bookkeeping block
6061 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6062 been scheduled, the CFG is as follows:
6063
6064 r1 := r3 r1 := r3
6065 bookkeeping block scheduling fence
6066 \ /
6067 \ join /
6068 ----------
6069 | |
6070 ----------
6071 / \
6072 / \
6073 r1 := r2
6074
6075 Here, insn "r1 := r3" was scheduled at the current scheduling point
6076 and bookkeeping code was generated at the bookeeping block. This
6077 way insn "r1 := r2" is no longer available as a whole instruction
6078 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
b8698a0f 6079 This situation is handled by calling update_data_sets.
e855c69d
AB
6080
6081 Since update_data_sets is called only on the bookkeeping block, and
b8698a0f 6082 it also may have predecessors with av_sets, containing instructions that
e855c69d
AB
6083 are no longer available, we save all such expressions that become
6084 unavailable during data sets update on the bookkeeping block in
b8698a0f
L
6085 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6086 expressions for scheduling. This allows us to avoid recomputation of
e855c69d 6087 av_sets outside the code motion path. */
b8698a0f 6088
e855c69d
AB
6089 if (book_block)
6090 update_and_record_unavailable_insns (book_block);
6091
6092 /* If INSN was previously marked for deletion, it's time to do it. */
6093 if (lparams->removed_last_insn)
6094 insn = PREV_INSN (insn);
b8698a0f 6095
e855c69d
AB
6096 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6097 kill a block with a single nop in which the insn should be emitted. */
6098 if (lparams->e1)
6099 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6100}
6101
6102/* This function is called on the ascending pass, before returning from the
6103 current basic block. */
6104static void
b8698a0f
L
6105fur_at_first_insn (insn_t insn,
6106 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
6107 void *static_params ATTRIBUTE_UNUSED)
6108{
6109 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6110 || AV_LEVEL (insn) == -1);
6111}
6112
6113/* Called on the backward stage of recursion to call moveup_expr for insn
6114 and sparams->c_expr. */
6115static void
6116move_op_ascend (insn_t insn, void *static_params)
6117{
6118 enum MOVEUP_EXPR_CODE res;
6119 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6120
6121 if (! INSN_NOP_P (insn))
6122 {
6123 res = moveup_expr_cached (sparams->c_expr, insn, false);
6124 gcc_assert (res != MOVEUP_EXPR_NULL);
6125 }
6126
6127 /* Update liveness for this insn as it was invalidated. */
6128 update_liveness_on_insn (insn);
6129}
6130
b8698a0f
L
6131/* This function is called on enter to the basic block.
6132 Returns TRUE if this block already have been visited and
e855c69d
AB
6133 code_motion_path_driver should return 1, FALSE otherwise. */
6134static int
b8698a0f 6135fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e855c69d
AB
6136 void *static_params, bool visited_p)
6137{
6138 fur_static_params_p sparams = (fur_static_params_p) static_params;
6139
6140 if (visited_p)
6141 {
6142 /* If we have found something below this block, there should be at
6143 least one insn in ORIGINAL_INSNS. */
6144 gcc_assert (*sparams->original_insns);
6145
6146 /* Adjust CROSSES_CALL, since we may have come to this block along
6147 different path. */
6148 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6149 |= sparams->crosses_call;
6150 }
6151 else
6152 local_params->old_original_insns = *sparams->original_insns;
6153
6154 return 1;
6155}
6156
6157/* Same as above but for move_op. */
6158static int
b8698a0f
L
6159move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6160 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e855c69d
AB
6161 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6162{
6163 if (visited_p)
6164 return -1;
6165 return 1;
6166}
6167
b8698a0f 6168/* This function is called while descending current basic block if current
e855c69d
AB
6169 insn is not the original EXPR we're searching for.
6170
b8698a0f 6171 Return value: FALSE, if code_motion_path_driver should perform a local
e855c69d
AB
6172 cleanup and return 0 itself;
6173 TRUE, if code_motion_path_driver should continue. */
6174static bool
6175move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6176 void *static_params)
6177{
6178 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6179
6180#ifdef ENABLE_CHECKING
6181 sparams->failed_insn = insn;
6182#endif
6183
6184 /* If we're scheduling separate expr, in order to generate correct code
b8698a0f 6185 we need to stop the search at bookkeeping code generated with the
e855c69d
AB
6186 same destination register or memory. */
6187 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6188 return false;
6189 return true;
6190}
6191
b8698a0f 6192/* This function is called while descending current basic block if current
e855c69d
AB
6193 insn is not the original EXPR we're searching for.
6194
6195 Return value: TRUE (code_motion_path_driver should continue). */
6196static bool
6197fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6198{
6199 bool mutexed;
6200 expr_t r;
6201 av_set_iterator avi;
6202 fur_static_params_p sparams = (fur_static_params_p) static_params;
6203
6204 if (CALL_P (insn))
6205 sparams->crosses_call = true;
b5b8b0ac
AO
6206 else if (DEBUG_INSN_P (insn))
6207 return true;
e855c69d
AB
6208
6209 /* If current insn we are looking at cannot be executed together
6210 with original insn, then we can skip it safely.
6211
6212 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6213 INSN = (!p6) r14 = r14 + 1;
6214
6215 Here we can schedule ORIG_OP with lhs = r14, though only
6216 looking at the set of used and set registers of INSN we must
6217 forbid it. So, add set/used in INSN registers to the
6218 untouchable set only if there is an insn in ORIG_OPS that can
6219 affect INSN. */
6220 mutexed = true;
6221 FOR_EACH_EXPR (r, avi, orig_ops)
6222 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6223 {
6224 mutexed = false;
6225 break;
6226 }
6227
6228 /* Mark all registers that do not meet the following condition:
6229 (1) Not set or read on any path from xi to an instance of the
6230 original operation. */
6231 if (!mutexed)
6232 {
6233 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6234 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6235 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6236 }
6237
6238 return true;
6239}
6240
6241/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6242struct code_motion_path_driver_info_def move_op_hooks = {
6243 move_op_on_enter,
6244 move_op_orig_expr_found,
6245 move_op_orig_expr_not_found,
6246 move_op_merge_succs,
6247 move_op_after_merge_succs,
6248 move_op_ascend,
6249 move_op_at_first_insn,
6250 SUCCS_NORMAL,
6251 "move_op"
6252};
6253
b8698a0f 6254/* Hooks and data to perform find_used_regs operations
e855c69d
AB
6255 with code_motion_path_driver. */
6256struct code_motion_path_driver_info_def fur_hooks = {
6257 fur_on_enter,
6258 fur_orig_expr_found,
6259 fur_orig_expr_not_found,
6260 fur_merge_succs,
6261 NULL, /* fur_after_merge_succs */
6262 NULL, /* fur_ascend */
6263 fur_at_first_insn,
6264 SUCCS_ALL,
6265 "find_used_regs"
6266};
6267
6268/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
b8698a0f
L
6269 code_motion_path_driver is called recursively. Original operation
6270 was found at least on one path that is starting with one of INSN's
e855c69d
AB
6271 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6272 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
b8698a0f 6273 of either move_op or find_used_regs depending on the caller.
e855c69d
AB
6274
6275 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6276 know for sure at this point. */
6277static int
b8698a0f 6278code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e855c69d
AB
6279 ilist_t path, void *static_params)
6280{
6281 int res = 0;
6282 succ_iterator succ_i;
6283 rtx succ;
6284 basic_block bb;
6285 int old_index;
6286 unsigned old_succs;
6287
6288 struct cmpd_local_params lparams;
6289 expr_def _x;
6290
6291 lparams.c_expr_local = &_x;
6292 lparams.c_expr_merged = NULL;
6293
6294 /* We need to process only NORMAL succs for move_op, and collect live
b8698a0f
L
6295 registers from ALL branches (including those leading out of the
6296 region) for find_used_regs.
e855c69d
AB
6297
6298 In move_op, there can be a case when insn's bb number has changed
b8698a0f
L
6299 due to created bookkeeping. This happens very rare, as we need to
6300 move expression from the beginning to the end of the same block.
6301 Rescan successors in this case. */
e855c69d
AB
6302
6303 rescan:
6304 bb = BLOCK_FOR_INSN (insn);
b8698a0f 6305 old_index = bb->index;
e855c69d 6306 old_succs = EDGE_COUNT (bb->succs);
b8698a0f 6307
e855c69d
AB
6308 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6309 {
6310 int b;
6311
6312 lparams.e1 = succ_i.e1;
6313 lparams.e2 = succ_i.e2;
6314
6315 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6316 current region). */
6317 if (succ_i.current_flags == SUCCS_NORMAL)
b8698a0f 6318 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e855c69d
AB
6319 static_params);
6320 else
6321 b = 0;
6322
6323 /* Merge c_expres found or unify live register sets from different
6324 successors. */
6325 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6326 static_params);
6327 if (b == 1)
6328 res = b;
6329 else if (b == -1 && res != 1)
6330 res = b;
6331
6332 /* We have simplified the control flow below this point. In this case,
6333 the iterator becomes invalid. We need to try again. */
6334 if (BLOCK_FOR_INSN (insn)->index != old_index
6335 || EDGE_COUNT (bb->succs) != old_succs)
6336 goto rescan;
6337 }
6338
6339#ifdef ENABLE_CHECKING
b8698a0f 6340 /* Here, RES==1 if original expr was found at least for one of the
e855c69d 6341 successors. After the loop, RES may happen to have zero value
b8698a0f
L
6342 only if at some point the expr searched is present in av_set, but is
6343 not found below. In most cases, this situation is an error.
e855c69d
AB
6344 The exception is when the original operation is blocked by
6345 bookkeeping generated for another fence or for another path in current
6346 move_op. */
b8698a0f
L
6347 gcc_assert (res == 1
6348 || (res == 0
e855c69d
AB
6349 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6350 static_params))
6351 || res == -1);
6352#endif
b8698a0f 6353
e855c69d 6354 /* Merge data, clean up, etc. */
72a54528 6355 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6356 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6357
6358 return res;
6359}
6360
6361
b8698a0f
L
6362/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6363 is the pointer to the av set with expressions we were looking for,
e855c69d
AB
6364 PATH_P is the pointer to the traversed path. */
6365static inline void
6366code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6367{
6368 ilist_remove (path_p);
6369 av_set_clear (orig_ops_p);
6370}
6371
b8698a0f
L
6372/* The driver function that implements move_op or find_used_regs
6373 functionality dependent whether code_motion_path_driver_INFO is set to
6374 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e855c69d
AB
6375 of code (CFG traversal etc) that are shared among both functions. INSN
6376 is the insn we're starting the search from, ORIG_OPS are the expressions
6377 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6378 parameters of the driver, and STATIC_PARAMS are static parameters of
b8698a0f 6379 the caller.
e855c69d
AB
6380
6381 Returns whether original instructions were found. Note that top-level
6382 code_motion_path_driver always returns true. */
72a54528 6383static int
b8698a0f
L
6384code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6385 cmpd_local_params_p local_params_in,
e855c69d
AB
6386 void *static_params)
6387{
6388 expr_t expr = NULL;
6389 basic_block bb = BLOCK_FOR_INSN (insn);
6390 insn_t first_insn, bb_tail, before_first;
6391 bool removed_last_insn = false;
6392
6393 if (sched_verbose >= 6)
6394 {
6395 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6396 dump_insn (insn);
6397 sel_print (",");
6398 dump_av_set (orig_ops);
6399 sel_print (")\n");
6400 }
6401
6402 gcc_assert (orig_ops);
6403
6404 /* If no original operations exist below this insn, return immediately. */
6405 if (is_ineligible_successor (insn, path))
6406 {
6407 if (sched_verbose >= 6)
6408 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6409 return false;
6410 }
b8698a0f 6411
e855c69d
AB
6412 /* The block can have invalid av set, in which case it was created earlier
6413 during move_op. Return immediately. */
6414 if (sel_bb_head_p (insn))
6415 {
6416 if (! AV_SET_VALID_P (insn))
6417 {
6418 if (sched_verbose >= 6)
6419 sel_print ("Returned from block %d as it had invalid av set\n",
6420 bb->index);
6421 return false;
6422 }
6423
6424 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6425 {
6426 /* We have already found an original operation on this branch, do not
6427 go any further and just return TRUE here. If we don't stop here,
b8698a0f 6428 function can have exponential behaviour even on the small code
e855c69d
AB
6429 with many different paths (e.g. with data speculation and
6430 recovery blocks). */
6431 if (sched_verbose >= 6)
6432 sel_print ("Block %d already visited in this traversal\n", bb->index);
6433 if (code_motion_path_driver_info->on_enter)
b8698a0f 6434 return code_motion_path_driver_info->on_enter (insn,
e855c69d 6435 local_params_in,
b8698a0f 6436 static_params,
e855c69d
AB
6437 true);
6438 }
6439 }
b8698a0f 6440
e855c69d
AB
6441 if (code_motion_path_driver_info->on_enter)
6442 code_motion_path_driver_info->on_enter (insn, local_params_in,
6443 static_params, false);
6444 orig_ops = av_set_copy (orig_ops);
6445
6446 /* Filter the orig_ops set. */
6447 if (AV_SET_VALID_P (insn))
6448 av_set_intersect (&orig_ops, AV_SET (insn));
6449
6450 /* If no more original ops, return immediately. */
6451 if (!orig_ops)
6452 {
6453 if (sched_verbose >= 6)
6454 sel_print ("No intersection with av set of block %d\n", bb->index);
6455 return false;
6456 }
6457
6458 /* For non-speculative insns we have to leave only one form of the
b8698a0f 6459 original operation, because if we don't, we may end up with
e855c69d
AB
6460 different C_EXPRes and, consequently, with bookkeepings for different
6461 expression forms along the same code motion path. That may lead to
b8698a0f
L
6462 generation of incorrect code. So for each code motion we stick to
6463 the single form of the instruction, except for speculative insns
6464 which we need to keep in different forms with all speculation
e855c69d
AB
6465 types. */
6466 av_set_leave_one_nonspec (&orig_ops);
6467
6468 /* It is not possible that all ORIG_OPS are filtered out. */
6469 gcc_assert (orig_ops);
6470
6471 /* It is enough to place only heads and tails of visited basic blocks into
6472 the PATH. */
6473 ilist_add (&path, insn);
6474 first_insn = insn;
6475 bb_tail = sel_bb_end (bb);
6476
6477 /* Descend the basic block in search of the original expr; this part
b8698a0f 6478 corresponds to the part of the original move_op procedure executed
e855c69d
AB
6479 before the recursive call. */
6480 for (;;)
6481 {
6482 /* Look at the insn and decide if it could be an ancestor of currently
6483 scheduling operation. If it is so, then the insn "dest = op" could
6484 either be replaced with "dest = reg", because REG now holds the result
6485 of OP, or just removed, if we've scheduled the insn as a whole.
6486
6487 If this insn doesn't contain currently scheduling OP, then proceed
6488 with searching and look at its successors. Operations we're searching
b8698a0f 6489 for could have changed when moving up through this insn via
e855c69d
AB
6490 substituting. In this case, perform unsubstitution on them first.
6491
6492 When traversing the DAG below this insn is finished, insert
6493 bookkeeping code, if the insn is a joint point, and remove
6494 leftovers. */
6495
6496 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6497 if (expr)
6498 {
6499 insn_t last_insn = PREV_INSN (insn);
6500
6501 /* We have found the original operation. */
6502 if (sched_verbose >= 6)
6503 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6504
b8698a0f 6505 code_motion_path_driver_info->orig_expr_found
e855c69d
AB
6506 (insn, expr, local_params_in, static_params);
6507
6508 /* Step back, so on the way back we'll start traversing from the
b8698a0f 6509 previous insn (or we'll see that it's bb_note and skip that
e855c69d
AB
6510 loop). */
6511 if (insn == first_insn)
6512 {
6513 first_insn = NEXT_INSN (last_insn);
6514 removed_last_insn = sel_bb_end_p (last_insn);
6515 }
6516 insn = last_insn;
6517 break;
6518 }
6519 else
6520 {
6521 /* We haven't found the original expr, continue descending the basic
6522 block. */
b8698a0f 6523 if (code_motion_path_driver_info->orig_expr_not_found
e855c69d
AB
6524 (insn, orig_ops, static_params))
6525 {
b8698a0f 6526 /* Av set ops could have been changed when moving through this
e855c69d
AB
6527 insn. To find them below it, we have to un-substitute them. */
6528 undo_transformations (&orig_ops, insn);
6529 }
6530 else
6531 {
6532 /* Clean up and return, if the hook tells us to do so. It may
b8698a0f 6533 happen if we've encountered the previously created
e855c69d
AB
6534 bookkeeping. */
6535 code_motion_path_driver_cleanup (&orig_ops, &path);
6536 return -1;
6537 }
6538
6539 gcc_assert (orig_ops);
6540 }
6541
6542 /* Stop at insn if we got to the end of BB. */
6543 if (insn == bb_tail)
6544 break;
6545
6546 insn = NEXT_INSN (insn);
6547 }
6548
b8698a0f 6549 /* Here INSN either points to the insn before the original insn (may be
e855c69d
AB
6550 bb_note, if original insn was a bb_head) or to the bb_end. */
6551 if (!expr)
6552 {
6553 int res;
6554
6555 gcc_assert (insn == sel_bb_end (bb));
6556
6557 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6558 it's already in PATH then). */
6559 if (insn != first_insn)
6560 ilist_add (&path, insn);
6561
b8698a0f
L
6562 /* Process_successors should be able to find at least one
6563 successor for which code_motion_path_driver returns TRUE. */
6564 res = code_motion_process_successors (insn, orig_ops,
e855c69d
AB
6565 path, static_params);
6566
6567 /* Remove bb tail from path. */
6568 if (insn != first_insn)
6569 ilist_remove (&path);
6570
6571 if (res != 1)
6572 {
6573 /* This is the case when one of the original expr is no longer available
b8698a0f 6574 due to bookkeeping created on this branch with the same register.
e855c69d 6575 In the original algorithm, which doesn't have update_data_sets call
b8698a0f
L
6576 on a bookkeeping block, it would simply result in returning
6577 FALSE when we've encountered a previously generated bookkeeping
e855c69d
AB
6578 insn in moveop_orig_expr_not_found. */
6579 code_motion_path_driver_cleanup (&orig_ops, &path);
6580 return res;
6581 }
6582 }
6583
6584 /* Don't need it any more. */
6585 av_set_clear (&orig_ops);
6586
b8698a0f 6587 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e855c69d
AB
6588 the beginning of the basic block. */
6589 before_first = PREV_INSN (first_insn);
6590 while (insn != before_first)
b8698a0f 6591 {
e855c69d
AB
6592 if (code_motion_path_driver_info->ascend)
6593 code_motion_path_driver_info->ascend (insn, static_params);
6594
6595 insn = PREV_INSN (insn);
6596 }
b8698a0f 6597
e855c69d
AB
6598 /* Now we're at the bb head. */
6599 insn = first_insn;
6600 ilist_remove (&path);
6601 local_params_in->removed_last_insn = removed_last_insn;
6602 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
b8698a0f 6603
e855c69d
AB
6604 /* This should be the very last operation as at bb head we could change
6605 the numbering by creating bookkeeping blocks. */
6606 if (removed_last_insn)
6607 insn = PREV_INSN (insn);
6608 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6609 return true;
6610}
6611
b8698a0f 6612/* Move up the operations from ORIG_OPS set traversing the dag starting
e855c69d
AB
6613 from INSN. PATH represents the edges traversed so far.
6614 DEST is the register chosen for scheduling the current expr. Insert
6615 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
b8698a0f 6616 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6617 Set *SHOULD_MOVE to indicate whether we have only disconnected
6618 one of the insns found.
e855c69d 6619
b8698a0f 6620 Returns whether original instructions were found, which is asserted
e855c69d
AB
6621 to be true in the caller. */
6622static bool
6623move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6624 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6625{
6626 struct moveop_static_params sparams;
6627 struct cmpd_local_params lparams;
6628 bool res;
6629
b8698a0f 6630 /* Init params for code_motion_path_driver. */
e855c69d
AB
6631 sparams.dest = dest;
6632 sparams.c_expr = c_expr;
6633 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6634#ifdef ENABLE_CHECKING
6635 sparams.failed_insn = NULL;
6636#endif
6637 sparams.was_renamed = false;
6638 lparams.e1 = NULL;
6639
6640 /* We haven't visited any blocks yet. */
6641 bitmap_clear (code_motion_visited_blocks);
b8698a0f 6642
e855c69d
AB
6643 /* Set appropriate hooks and data. */
6644 code_motion_path_driver_info = &move_op_hooks;
6645 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6646
6647 if (sparams.was_renamed)
6648 EXPR_WAS_RENAMED (expr_vliw) = true;
6649
72a54528
AM
6650 *should_move = (sparams.uid == -1);
6651
e855c69d
AB
6652 return res;
6653}
6654\f
6655
6656/* Functions that work with regions. */
6657
6658/* Current number of seqno used in init_seqno and init_seqno_1. */
6659static int cur_seqno;
6660
b8698a0f
L
6661/* A helper for init_seqno. Traverse the region starting from BB and
6662 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e855c69d
AB
6663 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6664static void
6665init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6666{
6667 int bbi = BLOCK_TO_BB (bb->index);
6668 insn_t insn, note = bb_note (bb);
6669 insn_t succ_insn;
6670 succ_iterator si;
6671
6672 SET_BIT (visited_bbs, bbi);
6673 if (blocks_to_reschedule)
6674 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6675
b8698a0f 6676 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e855c69d
AB
6677 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6678 {
6679 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6680 int succ_bbi = BLOCK_TO_BB (succ->index);
6681
6682 gcc_assert (in_current_region_p (succ));
6683
6684 if (!TEST_BIT (visited_bbs, succ_bbi))
6685 {
6686 gcc_assert (succ_bbi > bbi);
6687
6688 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6689 }
6690 }
6691
6692 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6693 INSN_SEQNO (insn) = cur_seqno--;
6694}
6695
6696/* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
b8698a0f 6697 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
e855c69d
AB
6698 which we're rescheduling when pipelining, FROM is the block where
6699 traversing region begins (it may not be the head of the region when
b8698a0f 6700 pipelining, but the head of the loop instead).
e855c69d
AB
6701
6702 Returns the maximal seqno found. */
6703static int
6704init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6705{
6706 sbitmap visited_bbs;
6707 bitmap_iterator bi;
6708 unsigned bbi;
6709
6710 visited_bbs = sbitmap_alloc (current_nr_blocks);
6711
6712 if (blocks_to_reschedule)
6713 {
6714 sbitmap_ones (visited_bbs);
6715 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6716 {
6717 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6718 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6719 }
6720 }
6721 else
6722 {
6723 sbitmap_zero (visited_bbs);
6724 from = EBB_FIRST_BB (0);
6725 }
6726
6727 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6728 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6729 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6730
6731 sbitmap_free (visited_bbs);
6732 return sched_max_luid - 1;
6733}
6734
6735/* Initialize scheduling parameters for current region. */
6736static void
6737sel_setup_region_sched_flags (void)
6738{
6739 enable_schedule_as_rhs_p = 1;
6740 bookkeeping_p = 1;
b8698a0f 6741 pipelining_p = (bookkeeping_p
e855c69d
AB
6742 && (flag_sel_sched_pipelining != 0)
6743 && current_loop_nest != NULL);
6744 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6745 max_ws = MAX_WS;
6746}
6747
6748/* Return true if all basic blocks of current region are empty. */
6749static bool
6750current_region_empty_p (void)
6751{
6752 int i;
6753 for (i = 0; i < current_nr_blocks; i++)
6754 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6755 return false;
6756
6757 return true;
6758}
6759
6760/* Prepare and verify loop nest for pipelining. */
6761static void
6762setup_current_loop_nest (int rgn)
6763{
6764 current_loop_nest = get_loop_nest_for_rgn (rgn);
6765
6766 if (!current_loop_nest)
6767 return;
6768
6769 /* If this loop has any saved loop preheaders from nested loops,
6770 add these basic blocks to the current region. */
6771 sel_add_loop_preheaders ();
6772
6773 /* Check that we're starting with a valid information. */
6774 gcc_assert (loop_latch_edge (current_loop_nest));
6775 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6776}
6777
e855c69d
AB
6778/* Compute instruction priorities for current region. */
6779static void
6780sel_compute_priorities (int rgn)
6781{
6782 sched_rgn_compute_dependencies (rgn);
6783
6784 /* Compute insn priorities in haifa style. Then free haifa style
6785 dependencies that we've calculated for this. */
6786 compute_priorities ();
6787
6788 if (sched_verbose >= 5)
6789 debug_rgn_dependencies (0);
6790
6791 free_rgn_deps ();
6792}
6793
6794/* Init scheduling data for RGN. Returns true when this region should not
6795 be scheduled. */
6796static bool
6797sel_region_init (int rgn)
6798{
6799 int i;
6800 bb_vec_t bbs;
6801
6802 rgn_setup_region (rgn);
6803
b8698a0f 6804 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e855c69d
AB
6805 do region initialization here so the region can be bundled correctly,
6806 but we'll skip the scheduling in sel_sched_region (). */
6807 if (current_region_empty_p ())
6808 return true;
6809
6810 if (flag_sel_sched_pipelining)
6811 setup_current_loop_nest (rgn);
6812
6813 sel_setup_region_sched_flags ();
6814
6815 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6816
6817 for (i = 0; i < current_nr_blocks; i++)
6818 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6819
6820 sel_init_bbs (bbs, NULL);
6821
6822 /* Initialize luids and dependence analysis which both sel-sched and haifa
6823 need. */
6824 sched_init_luids (bbs, NULL, NULL, NULL);
6825 sched_deps_init (false);
6826
6827 /* Initialize haifa data. */
6828 rgn_setup_sched_infos ();
6829 sel_set_sched_flags ();
6830 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6831
6832 sel_compute_priorities (rgn);
6833 init_deps_global ();
6834
6835 /* Main initialization. */
6836 sel_setup_sched_infos ();
6837 sel_init_global_and_expr (bbs);
6838
6839 VEC_free (basic_block, heap, bbs);
6840
6841 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6842
6843 /* Init correct liveness sets on each instruction of a single-block loop.
6844 This is the only situation when we can't update liveness when calling
6845 compute_live for the first insn of the loop. */
6846 if (current_loop_nest)
6847 {
6848 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6849 ? 1
6850 : 0);
6851
6852 if (current_nr_blocks == header + 1)
b8698a0f 6853 update_liveness_on_insn
e855c69d
AB
6854 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6855 }
b8698a0f 6856
e855c69d
AB
6857 /* Set hooks so that no newly generated insn will go out unnoticed. */
6858 sel_register_cfg_hooks ();
6859
6860 /* !!! We call target.sched.md_init () for the whole region, but we invoke
6861 targetm.sched.md_finish () for every ebb. */
6862 if (targetm.sched.md_init)
6863 /* None of the arguments are actually used in any target. */
6864 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6865
6866 first_emitted_uid = get_max_uid () + 1;
6867 preheader_removed = false;
6868
6869 /* Reset register allocation ticks array. */
6870 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6871 reg_rename_this_tick = 0;
6872
6873 bitmap_initialize (forced_ebb_heads, 0);
6874 bitmap_clear (forced_ebb_heads);
6875
6876 setup_nop_vinsn ();
6877 current_copies = BITMAP_ALLOC (NULL);
6878 current_originators = BITMAP_ALLOC (NULL);
6879 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6880
6881 return false;
6882}
6883
6884/* Simplify insns after the scheduling. */
6885static void
6886simplify_changed_insns (void)
6887{
6888 int i;
6889
6890 for (i = 0; i < current_nr_blocks; i++)
6891 {
6892 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6893 rtx insn;
6894
6895 FOR_BB_INSNS (bb, insn)
6896 if (INSN_P (insn))
6897 {
6898 expr_t expr = INSN_EXPR (insn);
6899
b8698a0f 6900 if (EXPR_WAS_SUBSTITUTED (expr))
e855c69d
AB
6901 validate_simplify_insn (insn);
6902 }
6903 }
6904}
6905
6906/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6907 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6908 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6909static void
6910find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6911{
6912 insn_t head, tail;
6913 basic_block bb1 = bb;
6914 if (sched_verbose >= 2)
6915 sel_print ("Finishing schedule in bbs: ");
6916
6917 do
6918 {
6919 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6920
6921 if (sched_verbose >= 2)
6922 sel_print ("%d; ", bb1->index);
6923 }
6924 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6925
6926 if (sched_verbose >= 2)
6927 sel_print ("\n");
6928
6929 get_ebb_head_tail (bb, bb1, &head, &tail);
6930
6931 current_sched_info->head = head;
6932 current_sched_info->tail = tail;
6933 current_sched_info->prev_head = PREV_INSN (head);
6934 current_sched_info->next_tail = NEXT_INSN (tail);
6935}
6936
6937/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6938static void
6939reset_sched_cycles_in_current_ebb (void)
6940{
6941 int last_clock = 0;
6942 int haifa_last_clock = -1;
6943 int haifa_clock = 0;
6944 insn_t insn;
6945
6946 if (targetm.sched.md_init)
6947 {
6948 /* None of the arguments are actually used in any target.
6949 NB: We should have md_reset () hook for cases like this. */
6950 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6951 }
6952
6953 state_reset (curr_state);
6954 advance_state (curr_state);
b8698a0f 6955
e855c69d
AB
6956 for (insn = current_sched_info->head;
6957 insn != current_sched_info->next_tail;
6958 insn = NEXT_INSN (insn))
6959 {
6960 int cost, haifa_cost;
6961 int sort_p;
6962 bool asm_p, real_insn, after_stall;
6963 int clock;
6964
6965 if (!INSN_P (insn))
6966 continue;
6967
6968 asm_p = false;
6969 real_insn = recog_memoized (insn) >= 0;
6970 clock = INSN_SCHED_CYCLE (insn);
6971
6972 cost = clock - last_clock;
6973
6974 /* Initialize HAIFA_COST. */
6975 if (! real_insn)
6976 {
6977 asm_p = INSN_ASM_P (insn);
6978
6979 if (asm_p)
6980 /* This is asm insn which *had* to be scheduled first
6981 on the cycle. */
6982 haifa_cost = 1;
6983 else
b8698a0f 6984 /* This is a use/clobber insn. It should not change
e855c69d
AB
6985 cost. */
6986 haifa_cost = 0;
6987 }
6988 else
6989 haifa_cost = estimate_insn_cost (insn, curr_state);
6990
6991 /* Stall for whatever cycles we've stalled before. */
6992 after_stall = 0;
6993 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
6994 {
6995 haifa_cost = cost;
6996 after_stall = 1;
6997 }
6998
6999 if (haifa_cost > 0)
7000 {
7001 int i = 0;
7002
7003 while (haifa_cost--)
7004 {
7005 advance_state (curr_state);
7006 i++;
7007
7008 if (sched_verbose >= 2)
7009 {
7010 sel_print ("advance_state (state_transition)\n");
7011 debug_state (curr_state);
7012 }
7013
b8698a0f
L
7014 /* The DFA may report that e.g. insn requires 2 cycles to be
7015 issued, but on the next cycle it says that insn is ready
e855c69d
AB
7016 to go. Check this here. */
7017 if (!after_stall
b8698a0f 7018 && real_insn
e855c69d
AB
7019 && haifa_cost > 0
7020 && estimate_insn_cost (insn, curr_state) == 0)
7021 break;
7022 }
7023
7024 haifa_clock += i;
7025 }
7026 else
7027 gcc_assert (haifa_cost == 0);
7028
7029 if (sched_verbose >= 2)
7030 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7031
7032 if (targetm.sched.dfa_new_cycle)
7033 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7034 haifa_last_clock, haifa_clock,
7035 &sort_p))
7036 {
7037 advance_state (curr_state);
7038 haifa_clock++;
7039 if (sched_verbose >= 2)
7040 {
7041 sel_print ("advance_state (dfa_new_cycle)\n");
7042 debug_state (curr_state);
7043 }
7044 }
7045
7046 if (real_insn)
7047 {
7048 cost = state_transition (curr_state, insn);
7049
7050 if (sched_verbose >= 2)
7051 debug_state (curr_state);
7052
7053 gcc_assert (cost < 0);
7054 }
7055
7056 if (targetm.sched.variable_issue)
7057 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7058
7059 INSN_SCHED_CYCLE (insn) = haifa_clock;
7060
7061 last_clock = clock;
7062 haifa_last_clock = haifa_clock;
7063 }
7064}
7065
7066/* Put TImode markers on insns starting a new issue group. */
7067static void
7068put_TImodes (void)
7069{
7070 int last_clock = -1;
7071 insn_t insn;
7072
7073 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7074 insn = NEXT_INSN (insn))
7075 {
7076 int cost, clock;
7077
7078 if (!INSN_P (insn))
7079 continue;
7080
7081 clock = INSN_SCHED_CYCLE (insn);
7082 cost = (last_clock == -1) ? 1 : clock - last_clock;
7083
7084 gcc_assert (cost >= 0);
7085
7086 if (issue_rate > 1
7087 && GET_CODE (PATTERN (insn)) != USE
7088 && GET_CODE (PATTERN (insn)) != CLOBBER)
7089 {
7090 if (reload_completed && cost > 0)
7091 PUT_MODE (insn, TImode);
7092
7093 last_clock = clock;
7094 }
7095
7096 if (sched_verbose >= 2)
7097 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7098 }
7099}
7100
b8698a0f 7101/* Perform MD_FINISH on EBBs comprising current region. When
e855c69d
AB
7102 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7103 to produce correct sched cycles on insns. */
7104static void
7105sel_region_target_finish (bool reset_sched_cycles_p)
7106{
7107 int i;
7108 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7109
7110 for (i = 0; i < current_nr_blocks; i++)
7111 {
7112 if (bitmap_bit_p (scheduled_blocks, i))
7113 continue;
7114
7115 /* While pipelining outer loops, skip bundling for loop
7116 preheaders. Those will be rescheduled in the outer loop. */
7117 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7118 continue;
7119
7120 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7121
7122 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7123 continue;
7124
7125 if (reset_sched_cycles_p)
7126 reset_sched_cycles_in_current_ebb ();
7127
7128 if (targetm.sched.md_init)
7129 targetm.sched.md_init (sched_dump, sched_verbose, -1);
7130
7131 put_TImodes ();
7132
7133 if (targetm.sched.md_finish)
7134 {
7135 targetm.sched.md_finish (sched_dump, sched_verbose);
7136
7137 /* Extend luids so that insns generated by the target will
7138 get zero luid. */
7139 sched_init_luids (NULL, NULL, NULL, NULL);
7140 }
7141 }
7142
7143 BITMAP_FREE (scheduled_blocks);
7144}
7145
7146/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
b8698a0f 7147 is true, make an additional pass emulating scheduler to get correct insn
e855c69d
AB
7148 cycles for md_finish calls. */
7149static void
7150sel_region_finish (bool reset_sched_cycles_p)
7151{
7152 simplify_changed_insns ();
7153 sched_finish_ready_list ();
7154 free_nop_pool ();
7155
7156 /* Free the vectors. */
7157 if (vec_av_set)
7158 VEC_free (expr_t, heap, vec_av_set);
7159 BITMAP_FREE (current_copies);
7160 BITMAP_FREE (current_originators);
7161 BITMAP_FREE (code_motion_visited_blocks);
7162 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7163 vinsn_vec_free (&vec_target_unavailable_vinsns);
7164
7165 /* If LV_SET of the region head should be updated, do it now because
7166 there will be no other chance. */
7167 {
7168 succ_iterator si;
7169 insn_t insn;
7170
7171 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7172 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7173 {
7174 basic_block bb = BLOCK_FOR_INSN (insn);
7175
7176 if (!BB_LV_SET_VALID_P (bb))
7177 compute_live (insn);
7178 }
7179 }
7180
7181 /* Emulate the Haifa scheduler for bundling. */
7182 if (reload_completed)
7183 sel_region_target_finish (reset_sched_cycles_p);
7184
7185 sel_finish_global_and_expr ();
7186
7187 bitmap_clear (forced_ebb_heads);
7188
7189 free_nop_vinsn ();
7190
7191 finish_deps_global ();
7192 sched_finish_luids ();
7193
7194 sel_finish_bbs ();
7195 BITMAP_FREE (blocks_to_reschedule);
7196
7197 sel_unregister_cfg_hooks ();
7198
7199 max_issue_size = 0;
7200}
7201\f
7202
7203/* Functions that implement the scheduler driver. */
7204
7205/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7206 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7207 of insns scheduled -- these would be postprocessed later. */
7208static void
7209schedule_on_fences (flist_t fences, int max_seqno,
7210 ilist_t **scheduled_insns_tailpp)
7211{
7212 flist_t old_fences = fences;
7213
7214 if (sched_verbose >= 1)
7215 {
7216 sel_print ("\nScheduling on fences: ");
7217 dump_flist (fences);
7218 sel_print ("\n");
7219 }
7220
7221 scheduled_something_on_previous_fence = false;
7222 for (; fences; fences = FLIST_NEXT (fences))
7223 {
7224 fence_t fence = NULL;
7225 int seqno = 0;
7226 flist_t fences2;
7227 bool first_p = true;
b8698a0f 7228
e855c69d
AB
7229 /* Choose the next fence group to schedule.
7230 The fact that insn can be scheduled only once
7231 on the cycle is guaranteed by two properties:
7232 1. seqnos of parallel groups decrease with each iteration.
7233 2. If is_ineligible_successor () sees the larger seqno, it
7234 checks if candidate insn is_in_current_fence_p (). */
7235 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7236 {
7237 fence_t f = FLIST_FENCE (fences2);
7238
7239 if (!FENCE_PROCESSED_P (f))
7240 {
7241 int i = INSN_SEQNO (FENCE_INSN (f));
7242
7243 if (first_p || i > seqno)
7244 {
7245 seqno = i;
7246 fence = f;
7247 first_p = false;
7248 }
7249 else
7250 /* ??? Seqnos of different groups should be different. */
7251 gcc_assert (1 || i != seqno);
7252 }
7253 }
7254
7255 gcc_assert (fence);
7256
7257 /* As FENCE is nonnull, SEQNO is initialized. */
7258 seqno -= max_seqno + 1;
7259 fill_insns (fence, seqno, scheduled_insns_tailpp);
7260 FENCE_PROCESSED_P (fence) = true;
7261 }
7262
7263 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
b8698a0f 7264 don't need to keep bookkeeping-invalidated and target-unavailable
e855c69d
AB
7265 vinsns any more. */
7266 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7267 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7268}
7269
7270/* Calculate MIN_SEQNO and MAX_SEQNO. */
7271static void
7272find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7273{
7274 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7275
7276 /* The first element is already processed. */
7277 while ((fences = FLIST_NEXT (fences)))
7278 {
7279 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
b8698a0f 7280
e855c69d
AB
7281 if (*min_seqno > seqno)
7282 *min_seqno = seqno;
7283 else if (*max_seqno < seqno)
7284 *max_seqno = seqno;
7285 }
7286}
7287
7288/* Calculate new fences from FENCES. */
b8698a0f 7289static flist_t
e855c69d
AB
7290calculate_new_fences (flist_t fences, int orig_max_seqno)
7291{
7292 flist_t old_fences = fences;
7293 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7294
7295 flist_tail_init (new_fences);
7296 for (; fences; fences = FLIST_NEXT (fences))
7297 {
7298 fence_t fence = FLIST_FENCE (fences);
7299 insn_t insn;
b8698a0f 7300
e855c69d
AB
7301 if (!FENCE_BNDS (fence))
7302 {
7303 /* This fence doesn't have any successors. */
7304 if (!FENCE_SCHEDULED_P (fence))
7305 {
7306 /* Nothing was scheduled on this fence. */
7307 int seqno;
7308
7309 insn = FENCE_INSN (fence);
7310 seqno = INSN_SEQNO (insn);
7311 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7312
7313 if (sched_verbose >= 1)
b8698a0f 7314 sel_print ("Fence %d[%d] has not changed\n",
e855c69d
AB
7315 INSN_UID (insn),
7316 BLOCK_NUM (insn));
7317 move_fence_to_fences (fences, new_fences);
7318 }
7319 }
7320 else
7321 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7322 }
7323
7324 flist_clear (&old_fences);
7325 return FLIST_TAIL_HEAD (new_fences);
7326}
7327
7328/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7329 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7330 the highest seqno used in a region. Return the updated highest seqno. */
7331static int
b8698a0f
L
7332update_seqnos_and_stage (int min_seqno, int max_seqno,
7333 int highest_seqno_in_use,
e855c69d
AB
7334 ilist_t *pscheduled_insns)
7335{
7336 int new_hs;
7337 ilist_iterator ii;
7338 insn_t insn;
b8698a0f 7339
e855c69d
AB
7340 /* Actually, new_hs is the seqno of the instruction, that was
7341 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7342 if (*pscheduled_insns)
7343 {
7344 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7345 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7346 gcc_assert (new_hs > highest_seqno_in_use);
7347 }
7348 else
7349 new_hs = highest_seqno_in_use;
7350
7351 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7352 {
7353 gcc_assert (INSN_SEQNO (insn) < 0);
7354 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7355 gcc_assert (INSN_SEQNO (insn) <= new_hs);
bcf33775
AB
7356
7357 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7358 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7359 require > 1GB of memory e.g. on limit-fnargs.c. */
7360 if (! pipelining_p)
7361 free_data_for_scheduled_insn (insn);
e855c69d
AB
7362 }
7363
7364 ilist_clear (pscheduled_insns);
7365 global_level++;
7366
7367 return new_hs;
7368}
7369
b8698a0f
L
7370/* The main driver for scheduling a region. This function is responsible
7371 for correct propagation of fences (i.e. scheduling points) and creating
7372 a group of parallel insns at each of them. It also supports
e855c69d
AB
7373 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7374 of scheduling. */
7375static void
7376sel_sched_region_2 (int orig_max_seqno)
7377{
7378 int highest_seqno_in_use = orig_max_seqno;
7379
7380 stat_bookkeeping_copies = 0;
7381 stat_insns_needed_bookkeeping = 0;
7382 stat_renamed_scheduled = 0;
7383 stat_substitutions_total = 0;
7384 num_insns_scheduled = 0;
7385
7386 while (fences)
7387 {
7388 int min_seqno, max_seqno;
7389 ilist_t scheduled_insns = NULL;
7390 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7391
7392 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7393 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7394 fences = calculate_new_fences (fences, orig_max_seqno);
7395 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7396 highest_seqno_in_use,
7397 &scheduled_insns);
7398 }
7399
7400 if (sched_verbose >= 1)
7401 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7402 "bookkeeping, %d insns renamed, %d insns substituted\n",
7403 stat_bookkeeping_copies,
7404 stat_insns_needed_bookkeeping,
7405 stat_renamed_scheduled,
7406 stat_substitutions_total);
7407}
7408
b8698a0f
L
7409/* Schedule a region. When pipelining, search for possibly never scheduled
7410 bookkeeping code and schedule it. Reschedule pipelined code without
e855c69d
AB
7411 pipelining after. */
7412static void
7413sel_sched_region_1 (void)
7414{
7415 int number_of_insns;
7416 int orig_max_seqno;
7417
b8698a0f 7418 /* Remove empty blocks that might be in the region from the beginning.
e855c69d 7419 We need to do save sched_max_luid before that, as it actually shows
b8698a0f 7420 the number of insns in the region, and purge_empty_blocks can
e855c69d
AB
7421 alter it. */
7422 number_of_insns = sched_max_luid - 1;
7423 purge_empty_blocks ();
7424
7425 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7426 gcc_assert (orig_max_seqno >= 1);
7427
7428 /* When pipelining outer loops, create fences on the loop header,
7429 not preheader. */
7430 fences = NULL;
7431 if (current_loop_nest)
7432 init_fences (BB_END (EBB_FIRST_BB (0)));
7433 else
7434 init_fences (bb_note (EBB_FIRST_BB (0)));
7435 global_level = 1;
7436
7437 sel_sched_region_2 (orig_max_seqno);
7438
7439 gcc_assert (fences == NULL);
7440
7441 if (pipelining_p)
7442 {
7443 int i;
7444 basic_block bb;
7445 struct flist_tail_def _new_fences;
7446 flist_tail_t new_fences = &_new_fences;
7447 bool do_p = true;
7448
7449 pipelining_p = false;
7450 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7451 bookkeeping_p = false;
7452 enable_schedule_as_rhs_p = false;
7453
7454 /* Schedule newly created code, that has not been scheduled yet. */
7455 do_p = true;
7456
7457 while (do_p)
7458 {
7459 do_p = false;
7460
7461 for (i = 0; i < current_nr_blocks; i++)
7462 {
7463 basic_block bb = EBB_FIRST_BB (i);
7464
7465 if (sel_bb_empty_p (bb))
7466 {
7467 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7468 continue;
7469 }
7470
7471 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7472 {
7473 clear_outdated_rtx_info (bb);
7474 if (sel_insn_is_speculation_check (BB_END (bb))
7475 && JUMP_P (BB_END (bb)))
7476 bitmap_set_bit (blocks_to_reschedule,
7477 BRANCH_EDGE (bb)->dest->index);
7478 }
7479 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7480 bitmap_set_bit (blocks_to_reschedule, bb->index);
7481 }
7482
7483 for (i = 0; i < current_nr_blocks; i++)
7484 {
7485 bb = EBB_FIRST_BB (i);
7486
b8698a0f 7487 /* While pipelining outer loops, skip bundling for loop
e855c69d
AB
7488 preheaders. Those will be rescheduled in the outer
7489 loop. */
7490 if (sel_is_loop_preheader_p (bb))
7491 {
7492 clear_outdated_rtx_info (bb);
7493 continue;
7494 }
b8698a0f 7495
e855c69d
AB
7496 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7497 {
7498 flist_tail_init (new_fences);
7499
7500 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7501
7502 /* Mark BB as head of the new ebb. */
7503 bitmap_set_bit (forced_ebb_heads, bb->index);
7504
7505 bitmap_clear_bit (blocks_to_reschedule, bb->index);
b8698a0f 7506
e855c69d
AB
7507 gcc_assert (fences == NULL);
7508
7509 init_fences (bb_note (bb));
b8698a0f 7510
e855c69d 7511 sel_sched_region_2 (orig_max_seqno);
b8698a0f 7512
e855c69d
AB
7513 do_p = true;
7514 break;
7515 }
7516 }
7517 }
7518 }
7519}
7520
7521/* Schedule the RGN region. */
7522void
7523sel_sched_region (int rgn)
7524{
7525 bool schedule_p;
7526 bool reset_sched_cycles_p;
7527
7528 if (sel_region_init (rgn))
7529 return;
7530
7531 if (sched_verbose >= 1)
7532 sel_print ("Scheduling region %d\n", rgn);
7533
7534 schedule_p = (!sched_is_disabled_for_current_region_p ()
7535 && dbg_cnt (sel_sched_region_cnt));
7536 reset_sched_cycles_p = pipelining_p;
7537 if (schedule_p)
7538 sel_sched_region_1 ();
7539 else
7540 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7541 reset_sched_cycles_p = true;
b8698a0f 7542
e855c69d
AB
7543 sel_region_finish (reset_sched_cycles_p);
7544}
7545
7546/* Perform global init for the scheduler. */
7547static void
7548sel_global_init (void)
7549{
7550 calculate_dominance_info (CDI_DOMINATORS);
7551 alloc_sched_pools ();
7552
7553 /* Setup the infos for sched_init. */
7554 sel_setup_sched_infos ();
7555 setup_sched_dump ();
7556
7557 sched_rgn_init (false);
7558 sched_init ();
7559
7560 sched_init_bbs ();
7561 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7562 after_recovery = 0;
b8698a0f 7563 can_issue_more = issue_rate;
e855c69d
AB
7564
7565 sched_extend_target ();
7566 sched_deps_init (true);
7567 setup_nop_and_exit_insns ();
7568 sel_extend_global_bb_info ();
7569 init_lv_sets ();
7570 init_hard_regs_data ();
7571}
7572
7573/* Free the global data of the scheduler. */
7574static void
7575sel_global_finish (void)
7576{
7577 free_bb_note_pool ();
7578 free_lv_sets ();
7579 sel_finish_global_bb_info ();
7580
7581 free_regset_pool ();
7582 free_nop_and_exit_insns ();
7583
7584 sched_rgn_finish ();
7585 sched_deps_finish ();
7586 sched_finish ();
7587
7588 if (current_loops)
7589 sel_finish_pipelining ();
7590
7591 free_sched_pools ();
7592 free_dominance_info (CDI_DOMINATORS);
7593}
7594
7595/* Return true when we need to skip selective scheduling. Used for debugging. */
7596bool
7597maybe_skip_selective_scheduling (void)
7598{
7599 return ! dbg_cnt (sel_sched_cnt);
7600}
7601
7602/* The entry point. */
7603void
7604run_selective_scheduling (void)
7605{
7606 int rgn;
7607
7608 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7609 return;
7610
7611 sel_global_init ();
7612
7613 for (rgn = 0; rgn < nr_regions; rgn++)
7614 sel_sched_region (rgn);
7615
7616 sel_global_finish ();
7617}
7618
7619#endif