]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
[arm] PR target/82975: Guard against reg_renumber being NULL in arm.h
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
cbe34bb5 2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2
AM
23#include "backend.h"
24#include "tree.h"
25#include "rtl.h"
26#include "df.h"
4d0cdd0c 27#include "memmodel.h"
e855c69d 28#include "tm_p.h"
e855c69d 29#include "regs.h"
60393bbc 30#include "cfgbuild.h"
e855c69d
AB
31#include "insn-config.h"
32#include "insn-attr.h"
e855c69d
AB
33#include "params.h"
34#include "target.h"
e855c69d 35#include "sched-int.h"
e855c69d 36#include "rtlhooks-def.h"
b4979ab9 37#include "ira.h"
8f3f5ac0 38#include "ira-int.h"
34a1e300 39#include "rtl-iter.h"
e855c69d
AB
40
41#ifdef INSN_SCHEDULING
c7131fb2
AM
42#include "regset.h"
43#include "cfgloop.h"
e855c69d
AB
44#include "sel-sched-ir.h"
45#include "sel-sched-dump.h"
46#include "sel-sched.h"
47#include "dbgcnt.h"
48
49/* Implementation of selective scheduling approach.
50 The below implementation follows the original approach with the following
51 changes:
52
b8698a0f 53 o the scheduler works after register allocation (but can be also tuned
e855c69d
AB
54 to work before RA);
55 o some instructions are not copied or register renamed;
56 o conditional jumps are not moved with code duplication;
57 o several jumps in one parallel group are not supported;
58 o when pipelining outer loops, code motion through inner loops
59 is not supported;
60 o control and data speculation are supported;
61 o some improvements for better compile time/performance were made.
62
63 Terminology
64 ===========
65
b8698a0f
L
66 A vinsn, or virtual insn, is an insn with additional data characterizing
67 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
68 Vinsns also act as smart pointers to save memory by reusing them in
e855c69d
AB
69 different expressions. A vinsn is described by vinsn_t type.
70
71 An expression is a vinsn with additional data characterizing its properties
b8698a0f 72 at some point in the control flow graph. The data may be its usefulness,
e855c69d
AB
73 priority, speculative status, whether it was renamed/subsituted, etc.
74 An expression is described by expr_t type.
75
b8698a0f 76 Availability set (av_set) is a set of expressions at a given control flow
e855c69d 77 point. It is represented as av_set_t. The expressions in av sets are kept
b8698a0f 78 sorted in the terms of expr_greater_p function. It allows to truncate
e855c69d 79 the set while leaving the best expressions.
b8698a0f 80
e855c69d
AB
81 A fence is a point through which code motion is prohibited. On each step,
82 we gather a parallel group of insns at a fence. It is possible to have
83 multiple fences. A fence is represented via fence_t.
84
85 A boundary is the border between the fence group and the rest of the code.
86 Currently, we never have more than one boundary per fence, as we finalize
b8698a0f 87 the fence group when a jump is scheduled. A boundary is represented
e855c69d
AB
88 via bnd_t.
89
90 High-level overview
91 ===================
92
93 The scheduler finds regions to schedule, schedules each one, and finalizes.
b8698a0f 94 The regions are formed starting from innermost loops, so that when the inner
e855c69d 95 loop is pipelined, its prologue can be scheduled together with yet unprocessed
b8698a0f 96 outer loop. The rest of acyclic regions are found using extend_rgns:
e855c69d 97 the blocks that are not yet allocated to any regions are traversed in top-down
b8698a0f 98 order, and a block is added to a region to which all its predecessors belong;
e855c69d
AB
99 otherwise, the block starts its own region.
100
101 The main scheduling loop (sel_sched_region_2) consists of just
102 scheduling on each fence and updating fences. For each fence,
103 we fill a parallel group of insns (fill_insns) until some insns can be added.
b8698a0f
L
104 First, we compute available exprs (av-set) at the boundary of the current
105 group. Second, we choose the best expression from it. If the stall is
e855c69d 106 required to schedule any of the expressions, we advance the current cycle
b8698a0f 107 appropriately. So, the final group does not exactly correspond to a VLIW
e855c69d
AB
108 word. Third, we move the chosen expression to the boundary (move_op)
109 and update the intermediate av sets and liveness sets. We quit fill_insns
110 when either no insns left for scheduling or we have scheduled enough insns
b8698a0f 111 so we feel like advancing a scheduling point.
e855c69d
AB
112
113 Computing available expressions
114 ===============================
115
116 The computation (compute_av_set) is a bottom-up traversal. At each insn,
b8698a0f
L
117 we're moving the union of its successors' sets through it via
118 moveup_expr_set. The dependent expressions are removed. Local
119 transformations (substitution, speculation) are applied to move more
e855c69d
AB
120 exprs. Then the expr corresponding to the current insn is added.
121 The result is saved on each basic block header.
122
123 When traversing the CFG, we're moving down for no more than max_ws insns.
124 Also, we do not move down to ineligible successors (is_ineligible_successor),
125 which include moving along a back-edge, moving to already scheduled code,
b8698a0f 126 and moving to another fence. The first two restrictions are lifted during
e855c69d
AB
127 pipelining, which allows us to move insns along a back-edge. We always have
128 an acyclic region for scheduling because we forbid motion through fences.
129
130 Choosing the best expression
131 ============================
132
133 We sort the final availability set via sel_rank_for_schedule, then we remove
134 expressions which are not yet ready (tick_check_p) or which dest registers
b8698a0f
L
135 cannot be used. For some of them, we choose another register via
136 find_best_reg. To do this, we run find_used_regs to calculate the set of
e855c69d
AB
137 registers which cannot be used. The find_used_regs function performs
138 a traversal of code motion paths for an expr. We consider for renaming
b8698a0f 139 only registers which are from the same regclass as the original one and
e855c69d
AB
140 using which does not interfere with any live ranges. Finally, we convert
141 the resulting set to the ready list format and use max_issue and reorder*
142 hooks similarly to the Haifa scheduler.
143
144 Scheduling the best expression
145 ==============================
146
b8698a0f 147 We run the move_op routine to perform the same type of code motion paths
e855c69d
AB
148 traversal as in find_used_regs. (These are working via the same driver,
149 code_motion_path_driver.) When moving down the CFG, we look for original
b8698a0f 150 instruction that gave birth to a chosen expression. We undo
e855c69d 151 the transformations performed on an expression via the history saved in it.
b8698a0f
L
152 When found, we remove the instruction or leave a reg-reg copy/speculation
153 check if needed. On a way up, we insert bookkeeping copies at each join
154 point. If a copy is not needed, it will be removed later during this
e855c69d
AB
155 traversal. We update the saved av sets and liveness sets on the way up, too.
156
157 Finalizing the schedule
158 =======================
159
b8698a0f
L
160 When pipelining, we reschedule the blocks from which insns were pipelined
161 to get a tighter schedule. On Itanium, we also perform bundling via
162 the same routine from ia64.c.
e855c69d
AB
163
164 Dependence analysis changes
165 ===========================
166
167 We augmented the sched-deps.c with hooks that get called when a particular
168 dependence is found in a particular part of an insn. Using these hooks, we
169 can do several actions such as: determine whether an insn can be moved through
b8698a0f
L
170 another (has_dependence_p, moveup_expr); find out whether an insn can be
171 scheduled on the current cycle (tick_check_p); find out registers that
172 are set/used/clobbered by an insn and find out all the strange stuff that
173 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e855c69d
AB
174 init_global_and_expr_for_insn).
175
176 Initialization changes
177 ======================
178
b8698a0f 179 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e855c69d 180 reused in all of the schedulers. We have split up the initialization of data
b8698a0f 181 of such parts into different functions prefixed with scheduler type and
e855c69d
AB
182 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
183 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
b8698a0f
L
184 The same splitting is done with current_sched_info structure:
185 dependence-related parts are in sched_deps_info, common part is in
e855c69d 186 common_sched_info, and haifa/sel/etc part is in current_sched_info.
b8698a0f 187
e855c69d
AB
188 Target contexts
189 ===============
190
191 As we now have multiple-point scheduling, this would not work with backends
b8698a0f
L
192 which save some of the scheduler state to use it in the target hooks.
193 For this purpose, we introduce a concept of target contexts, which
e855c69d
AB
194 encapsulate such information. The backend should implement simple routines
195 of allocating/freeing/setting such a context. The scheduler calls these
196 as target hooks and handles the target context as an opaque pointer (similar
197 to the DFA state type, state_t).
198
199 Various speedups
200 ================
201
202 As the correct data dependence graph is not supported during scheduling (which
b8698a0f
L
203 is to be changed in mid-term), we cache as much of the dependence analysis
204 results as possible to avoid reanalyzing. This includes: bitmap caches on
205 each insn in stream of the region saying yes/no for a query with a pair of
e855c69d
AB
206 UIDs; hashtables with the previously done transformations on each insn in
207 stream; a vector keeping a history of transformations on each expr.
208
209 Also, we try to minimize the dependence context used on each fence to check
210 whether the given expression is ready for scheduling by removing from it
b8698a0f 211 insns that are definitely completed the execution. The results of
e855c69d
AB
212 tick_check_p checks are also cached in a vector on each fence.
213
b8698a0f 214 We keep a valid liveness set on each insn in a region to avoid the high
e855c69d
AB
215 cost of recomputation on large basic blocks.
216
217 Finally, we try to minimize the number of needed updates to the availability
b8698a0f 218 sets. The updates happen in two cases: when fill_insns terminates,
e855c69d
AB
219 we advance all fences and increase the stage number to show that the region
220 has changed and the sets are to be recomputed; and when the next iteration
221 of a loop in fill_insns happens (but this one reuses the saved av sets
222 on bb headers.) Thus, we try to break the fill_insns loop only when
223 "significant" number of insns from the current scheduling window was
224 scheduled. This should be made a target param.
b8698a0f 225
e855c69d
AB
226
227 TODO: correctly support the data dependence graph at all stages and get rid
228 of all caches. This should speed up the scheduler.
229 TODO: implement moving cond jumps with bookkeeping copies on both targets.
230 TODO: tune the scheduler before RA so it does not create too much pseudos.
231
232
233 References:
234 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
b8698a0f
L
235 selective scheduling and software pipelining.
236 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e855c69d 237
b8698a0f
L
238 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
239 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e855c69d
AB
240 for GCC. In Proceedings of GCC Developers' Summit 2006.
241
b8698a0f 242 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e855c69d
AB
243 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
244 http://rogue.colorado.edu/EPIC7/.
b8698a0f 245
e855c69d
AB
246*/
247
248/* True when pipelining is enabled. */
249bool pipelining_p;
250
251/* True if bookkeeping is enabled. */
252bool bookkeeping_p;
253
254/* Maximum number of insns that are eligible for renaming. */
255int max_insns_to_rename;
256\f
257
258/* Definitions of local types and macros. */
259
260/* Represents possible outcomes of moving an expression through an insn. */
b8698a0f
L
261enum MOVEUP_EXPR_CODE
262 {
e855c69d 263 /* The expression is not changed. */
b8698a0f 264 MOVEUP_EXPR_SAME,
e855c69d
AB
265
266 /* Not changed, but requires a new destination register. */
b8698a0f 267 MOVEUP_EXPR_AS_RHS,
e855c69d
AB
268
269 /* Cannot be moved. */
b8698a0f 270 MOVEUP_EXPR_NULL,
e855c69d
AB
271
272 /* Changed (substituted or speculated). */
b8698a0f 273 MOVEUP_EXPR_CHANGED
e855c69d
AB
274 };
275
276/* The container to be passed into rtx search & replace functions. */
277struct rtx_search_arg
278{
279 /* What we are searching for. */
280 rtx x;
281
073a8998 282 /* The occurrence counter. */
e855c69d
AB
283 int n;
284};
285
286typedef struct rtx_search_arg *rtx_search_arg_p;
287
b8698a0f 288/* This struct contains precomputed hard reg sets that are needed when
e855c69d 289 computing registers available for renaming. */
b8698a0f 290struct hard_regs_data
e855c69d 291{
b8698a0f 292 /* For every mode, this stores registers available for use with
e855c69d
AB
293 that mode. */
294 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
295
296 /* True when regs_for_mode[mode] is initialized. */
297 bool regs_for_mode_ok[NUM_MACHINE_MODES];
298
299 /* For every register, it has regs that are ok to rename into it.
300 The register in question is always set. If not, this means
301 that the whole set is not computed yet. */
302 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
303
b8698a0f 304 /* For every mode, this stores registers not available due to
e855c69d
AB
305 call clobbering. */
306 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
307
308 /* All registers that are used or call used. */
309 HARD_REG_SET regs_ever_used;
310
311#ifdef STACK_REGS
312 /* Stack registers. */
313 HARD_REG_SET stack_regs;
314#endif
315};
316
317/* Holds the results of computation of available for renaming and
318 unavailable hard registers. */
319struct reg_rename
320{
321 /* These are unavailable due to calls crossing, globalness, etc. */
322 HARD_REG_SET unavailable_hard_regs;
323
324 /* These are *available* for renaming. */
325 HARD_REG_SET available_for_renaming;
326
327 /* Whether this code motion path crosses a call. */
328 bool crosses_call;
329};
330
b8698a0f 331/* A global structure that contains the needed information about harg
e855c69d
AB
332 regs. */
333static struct hard_regs_data sel_hrd;
334\f
335
b8698a0f
L
336/* This structure holds local data used in code_motion_path_driver hooks on
337 the same or adjacent levels of recursion. Here we keep those parameters
338 that are not used in code_motion_path_driver routine itself, but only in
339 its hooks. Moreover, all parameters that can be modified in hooks are
340 in this structure, so all other parameters passed explicitly to hooks are
e855c69d
AB
341 read-only. */
342struct cmpd_local_params
343{
344 /* Local params used in move_op_* functions. */
345
346 /* Edges for bookkeeping generation. */
347 edge e1, e2;
348
349 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
350 expr_t c_expr_merged, c_expr_local;
351
352 /* Local params used in fur_* functions. */
353 /* Copy of the ORIGINAL_INSN list, stores the original insns already
354 found before entering the current level of code_motion_path_driver. */
355 def_list_t old_original_insns;
356
357 /* Local params used in move_op_* functions. */
b8698a0f 358 /* True when we have removed last insn in the block which was
e855c69d
AB
359 also a boundary. Do not update anything or create bookkeeping copies. */
360 BOOL_BITFIELD removed_last_insn : 1;
361};
362
363/* Stores the static parameters for move_op_* calls. */
364struct moveop_static_params
365{
366 /* Destination register. */
367 rtx dest;
368
369 /* Current C_EXPR. */
370 expr_t c_expr;
371
372 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
373 they are to be removed. */
374 int uid;
375
e855c69d
AB
376 /* This is initialized to the insn on which the driver stopped its traversal. */
377 insn_t failed_insn;
e855c69d
AB
378
379 /* True if we scheduled an insn with different register. */
380 bool was_renamed;
381};
382
383/* Stores the static parameters for fur_* calls. */
384struct fur_static_params
385{
386 /* Set of registers unavailable on the code motion path. */
387 regset used_regs;
388
389 /* Pointer to the list of original insns definitions. */
390 def_list_t *original_insns;
391
392 /* True if a code motion path contains a CALL insn. */
393 bool crosses_call;
394};
395
396typedef struct fur_static_params *fur_static_params_p;
397typedef struct cmpd_local_params *cmpd_local_params_p;
398typedef struct moveop_static_params *moveop_static_params_p;
399
9c582551 400/* Set of hooks and parameters that determine behavior specific to
e855c69d
AB
401 move_op or find_used_regs functions. */
402struct code_motion_path_driver_info_def
403{
404 /* Called on enter to the basic block. */
405 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
406
407 /* Called when original expr is found. */
408 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
409
410 /* Called while descending current basic block if current insn is not
411 the original EXPR we're searching for. */
412 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
413
414 /* Function to merge C_EXPRes from different successors. */
415 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
416
417 /* Function to finalize merge from different successors and possibly
418 deallocate temporary data structures used for merging. */
419 void (*after_merge_succs) (cmpd_local_params_p, void *);
420
421 /* Called on the backward stage of recursion to do moveup_expr.
422 Used only with move_op_*. */
423 void (*ascend) (insn_t, void *);
424
b8698a0f 425 /* Called on the ascending pass, before returning from the current basic
e855c69d
AB
426 block or from the whole traversal. */
427 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
428
b8698a0f 429 /* When processing successors in move_op we need only descend into
e855c69d
AB
430 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
431 int succ_flags;
432
433 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
434 const char *routine_name;
435};
436
437/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
438 FUR_HOOKS. */
439struct code_motion_path_driver_info_def *code_motion_path_driver_info;
440
441/* Set of hooks for performing move_op and find_used_regs routines with
442 code_motion_path_driver. */
c32e2175 443extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e855c69d 444
b8698a0f
L
445/* True if/when we want to emulate Haifa scheduler in the common code.
446 This is used in sched_rgn_local_init and in various places in
e855c69d
AB
447 sched-deps.c. */
448int sched_emulate_haifa_p;
449
450/* GLOBAL_LEVEL is used to discard information stored in basic block headers
451 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
452 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
453 scheduling window. */
454int global_level;
455
456/* Current fences. */
457flist_t fences;
458
459/* True when separable insns should be scheduled as RHSes. */
460static bool enable_schedule_as_rhs_p;
461
462/* Used in verify_target_availability to assert that target reg is reported
463 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
b8698a0f 464 we haven't scheduled anything on the previous fence.
e855c69d 465 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
b8698a0f 466 have more conservative value than the one returned by the
e855c69d
AB
467 find_used_regs, thus we shouldn't assert that these values are equal. */
468static bool scheduled_something_on_previous_fence;
469
470/* All newly emitted insns will have their uids greater than this value. */
471static int first_emitted_uid;
472
473/* Set of basic blocks that are forced to start new ebbs. This is a subset
474 of all the ebb heads. */
475static bitmap_head _forced_ebb_heads;
476bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
477
478/* Blocks that need to be rescheduled after pipelining. */
479bitmap blocks_to_reschedule = NULL;
480
481/* True when the first lv set should be ignored when updating liveness. */
482static bool ignore_first = false;
483
484/* Number of insns max_issue has initialized data structures for. */
485static int max_issue_size = 0;
486
487/* Whether we can issue more instructions. */
488static int can_issue_more;
489
490/* Maximum software lookahead window size, reduced when rescheduling after
491 pipelining. */
492static int max_ws;
493
494/* Number of insns scheduled in current region. */
495static int num_insns_scheduled;
496
497/* A vector of expressions is used to be able to sort them. */
7de76362 498static vec<expr_t> vec_av_set;
e855c69d
AB
499
500/* A vector of vinsns is used to hold temporary lists of vinsns. */
9771b263 501typedef vec<vinsn_t> vinsn_vec_t;
e855c69d
AB
502
503/* This vector has the exprs which may still present in av_sets, but actually
504 can't be moved up due to bookkeeping created during code motion to another
505 fence. See comment near the call to update_and_record_unavailable_insns
506 for the detailed explanations. */
c3284718 507static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
e855c69d 508
b8698a0f 509/* This vector has vinsns which are scheduled with renaming on the first fence
e855c69d
AB
510 and then seen on the second. For expressions with such vinsns, target
511 availability information may be wrong. */
c3284718 512static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
e855c69d
AB
513
514/* Vector to store temporary nops inserted in move_op to prevent removal
515 of empty bbs. */
7de76362 516static vec<insn_t> vec_temp_moveop_nops;
e855c69d 517
b8698a0f
L
518/* These bitmaps record original instructions scheduled on the current
519 iteration and bookkeeping copies created by them. */
e855c69d
AB
520static bitmap current_originators = NULL;
521static bitmap current_copies = NULL;
522
523/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
524 visit them afterwards. */
525static bitmap code_motion_visited_blocks = NULL;
526
527/* Variables to accumulate different statistics. */
528
529/* The number of bookkeeping copies created. */
530static int stat_bookkeeping_copies;
531
532/* The number of insns that required bookkeeiping for their scheduling. */
533static int stat_insns_needed_bookkeeping;
534
535/* The number of insns that got renamed. */
536static int stat_renamed_scheduled;
537
538/* The number of substitutions made during scheduling. */
539static int stat_substitutions_total;
540\f
541
542/* Forward declarations of static functions. */
543static bool rtx_ok_for_substitution_p (rtx, rtx);
544static int sel_rank_for_schedule (const void *, const void *);
545static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
b5b8b0ac 546static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e855c69d
AB
547
548static rtx get_dest_from_orig_ops (av_set_t);
549static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
b8698a0f 550static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e855c69d 551 def_list_t *);
72a54528
AM
552static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
553static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
554 cmpd_local_params_p, void *);
e855c69d
AB
555static void sel_sched_region_1 (void);
556static void sel_sched_region_2 (int);
557static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
558
559static void debug_state (state_t);
560\f
561
562/* Functions that work with fences. */
563
564/* Advance one cycle on FENCE. */
565static void
566advance_one_cycle (fence_t fence)
567{
568 unsigned i;
569 int cycle;
6144a836 570 rtx_insn *insn;
b8698a0f 571
e855c69d
AB
572 advance_state (FENCE_STATE (fence));
573 cycle = ++FENCE_CYCLE (fence);
574 FENCE_ISSUED_INSNS (fence) = 0;
575 FENCE_STARTS_CYCLE_P (fence) = 1;
576 can_issue_more = issue_rate;
136e01a3 577 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d 578
9771b263 579 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
e855c69d
AB
580 {
581 if (INSN_READY_CYCLE (insn) < cycle)
582 {
583 remove_from_deps (FENCE_DC (fence), insn);
9771b263 584 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
e855c69d
AB
585 continue;
586 }
587 i++;
588 }
589 if (sched_verbose >= 2)
590 {
591 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
592 debug_state (FENCE_STATE (fence));
593 }
594}
595
596/* Returns true when SUCC in a fallthru bb of INSN, possibly
597 skipping empty basic blocks. */
598static bool
90831096 599in_fallthru_bb_p (rtx_insn *insn, rtx succ)
e855c69d
AB
600{
601 basic_block bb = BLOCK_FOR_INSN (insn);
0fd4b31d 602 edge e;
e855c69d
AB
603
604 if (bb == BLOCK_FOR_INSN (succ))
605 return true;
606
0fd4b31d
NF
607 e = find_fallthru_edge_from (bb);
608 if (e)
609 bb = e->dest;
e855c69d
AB
610 else
611 return false;
612
613 while (sel_bb_empty_p (bb))
614 bb = bb->next_bb;
615
616 return bb == BLOCK_FOR_INSN (succ);
617}
618
b8698a0f 619/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e855c69d
AB
620 When a successor will continue a ebb, transfer all parameters of a fence
621 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
622 of scheduling helping to distinguish between the old and the new code. */
623static void
624extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
625 int orig_max_seqno)
626{
627 bool was_here_p = false;
6144a836 628 insn_t insn = NULL;
e855c69d
AB
629 insn_t succ;
630 succ_iterator si;
631 ilist_iterator ii;
632 fence_t fence = FLIST_FENCE (old_fences);
633 basic_block bb;
634
635 /* Get the only element of FENCE_BNDS (fence). */
636 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
637 {
638 gcc_assert (!was_here_p);
639 was_here_p = true;
640 }
641 gcc_assert (was_here_p && insn != NULL_RTX);
642
b8698a0f 643 /* When in the "middle" of the block, just move this fence
e855c69d
AB
644 to the new list. */
645 bb = BLOCK_FOR_INSN (insn);
646 if (! sel_bb_end_p (insn)
b8698a0f 647 || (single_succ_p (bb)
e855c69d
AB
648 && single_pred_p (single_succ (bb))))
649 {
650 insn_t succ;
651
b8698a0f 652 succ = (sel_bb_end_p (insn)
e855c69d
AB
653 ? sel_bb_head (single_succ (bb))
654 : NEXT_INSN (insn));
655
b8698a0f 656 if (INSN_SEQNO (succ) > 0
e855c69d
AB
657 && INSN_SEQNO (succ) <= orig_max_seqno
658 && INSN_SCHED_TIMES (succ) <= 0)
659 {
660 FENCE_INSN (fence) = succ;
661 move_fence_to_fences (old_fences, new_fences);
662
663 if (sched_verbose >= 1)
b8698a0f 664 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e855c69d
AB
665 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
666 }
667 return;
668 }
669
670 /* Otherwise copy fence's structures to (possibly) multiple successors. */
671 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
672 {
673 int seqno = INSN_SEQNO (succ);
674
675 if (0 < seqno && seqno <= orig_max_seqno
676 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
677 {
678 bool b = (in_same_ebb_p (insn, succ)
b8698a0f 679 || in_fallthru_bb_p (insn, succ));
e855c69d
AB
680
681 if (sched_verbose >= 1)
b8698a0f
L
682 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
683 INSN_UID (insn), INSN_UID (succ),
e855c69d
AB
684 BLOCK_NUM (succ), b ? "continue" : "reset");
685
686 if (b)
687 add_dirty_fence_to_fences (new_fences, succ, fence);
688 else
689 {
690 /* Mark block of the SUCC as head of the new ebb. */
691 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
692 add_clean_fence_to_fences (new_fences, succ, fence);
693 }
694 }
695 }
696}
697\f
698
699/* Functions to support substitution. */
700
b8698a0f
L
701/* Returns whether INSN with dependence status DS is eligible for
702 substitution, i.e. it's a copy operation x := y, and RHS that is
e855c69d
AB
703 moved up through this insn should be substituted. */
704static bool
705can_substitute_through_p (insn_t insn, ds_t ds)
706{
707 /* We can substitute only true dependencies. */
708 if ((ds & DEP_OUTPUT)
709 || (ds & DEP_ANTI)
710 || ! INSN_RHS (insn)
711 || ! INSN_LHS (insn))
712 return false;
713
b8698a0f 714 /* Now we just need to make sure the INSN_RHS consists of only one
e855c69d 715 simple REG rtx. */
b8698a0f 716 if (REG_P (INSN_LHS (insn))
e855c69d 717 && REG_P (INSN_RHS (insn)))
b8698a0f 718 return true;
e855c69d
AB
719 return false;
720}
721
073a8998 722/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
e855c69d
AB
723 source (if INSN is eligible for substitution). Returns TRUE if
724 substitution was actually performed, FALSE otherwise. Substitution might
725 be not performed because it's either EXPR' vinsn doesn't contain INSN's
b8698a0f 726 destination or the resulting insn is invalid for the target machine.
e855c69d
AB
727 When UNDO is true, perform unsubstitution instead (the difference is in
728 the part of rtx on which validate_replace_rtx is called). */
729static bool
730substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
731{
732 rtx *where;
733 bool new_insn_valid;
734 vinsn_t *vi = &EXPR_VINSN (expr);
735 bool has_rhs = VINSN_RHS (*vi) != NULL;
736 rtx old, new_rtx;
737
738 /* Do not try to replace in SET_DEST. Although we'll choose new
b8698a0f 739 register for the RHS, we don't want to change RHS' original reg.
e855c69d 740 If the insn is not SET, we may still be able to substitute something
b8698a0f 741 in it, and if we're here (don't have deps), it doesn't write INSN's
e855c69d
AB
742 dest. */
743 where = (has_rhs
744 ? &VINSN_RHS (*vi)
745 : &PATTERN (VINSN_INSN_RTX (*vi)));
746 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
747
748 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
749 if (rtx_ok_for_substitution_p (old, *where))
750 {
eec818f4 751 rtx_insn *new_insn;
e855c69d
AB
752 rtx *where_replace;
753
754 /* We should copy these rtxes before substitution. */
755 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
756 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
757
b8698a0f 758 /* Where we'll replace.
e855c69d
AB
759 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
760 used instead of SET_SRC. */
761 where_replace = (has_rhs
762 ? &SET_SRC (PATTERN (new_insn))
763 : &PATTERN (new_insn));
764
b8698a0f
L
765 new_insn_valid
766 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e855c69d
AB
767 new_insn);
768
769 /* ??? Actually, constrain_operands result depends upon choice of
770 destination register. E.g. if we allow single register to be an rhs,
b8698a0f 771 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e855c69d
AB
772 in invalid insn dx=dx, so we'll loose this rhs here.
773 Just can't come up with significant testcase for this, so just
774 leaving it for now. */
775 if (new_insn_valid)
776 {
b8698a0f 777 change_vinsn_in_expr (expr,
e855c69d
AB
778 create_vinsn_from_insn_rtx (new_insn, false));
779
b8698a0f 780 /* Do not allow clobbering the address register of speculative
e855c69d
AB
781 insns. */
782 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
cf3d5824
SG
783 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
784 expr_dest_reg (expr)))
e855c69d
AB
785 EXPR_TARGET_AVAILABLE (expr) = false;
786
787 return true;
788 }
789 else
790 return false;
791 }
792 else
793 return false;
794}
795
b8698a0f 796/* Return the number of places WHAT appears within WHERE.
e855c69d 797 Bail out when we found a reference occupying several hard registers. */
b8698a0f 798static int
34a1e300 799count_occurrences_equiv (const_rtx what, const_rtx where)
e855c69d 800{
34a1e300
RS
801 int count = 0;
802 subrtx_iterator::array_type array;
803 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
804 {
805 const_rtx x = *iter;
806 if (REG_P (x) && REGNO (x) == REGNO (what))
807 {
808 /* Bail out if mode is different or more than one register is
809 used. */
dc8afb70 810 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
34a1e300
RS
811 return 0;
812 count += 1;
813 }
814 else if (GET_CODE (x) == SUBREG
815 && (!REG_P (SUBREG_REG (x))
816 || REGNO (SUBREG_REG (x)) == REGNO (what)))
817 /* ??? Do not support substituting regs inside subregs. In that case,
818 simplify_subreg will be called by validate_replace_rtx, and
819 unsubstitution will fail later. */
820 return 0;
821 }
822 return count;
e855c69d
AB
823}
824
825/* Returns TRUE if WHAT is found in WHERE rtx tree. */
826static bool
827rtx_ok_for_substitution_p (rtx what, rtx where)
828{
829 return (count_occurrences_equiv (what, where) > 0);
830}
831\f
832
833/* Functions to support register renaming. */
834
835/* Substitute VI's set source with REGNO. Returns newly created pattern
836 that has REGNO as its source. */
eec818f4 837static rtx_insn *
e855c69d
AB
838create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
839{
840 rtx lhs_rtx;
841 rtx pattern;
eec818f4 842 rtx_insn *insn_rtx;
e855c69d
AB
843
844 lhs_rtx = copy_rtx (VINSN_LHS (vi));
845
f7df4a84 846 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e855c69d
AB
847 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
848
849 return insn_rtx;
850}
851
b8698a0f 852/* Returns whether INSN's src can be replaced with register number
e855c69d
AB
853 NEW_SRC_REG. E.g. the following insn is valid for i386:
854
b8698a0f 855 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e855c69d
AB
856 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
857 (reg:SI 0 ax [orig:770 c1 ] [770]))
858 (const_int 288 [0x120])) [0 str S1 A8])
859 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
860 (nil))
861
862 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
b8698a0f 863 because of operand constraints:
e855c69d
AB
864
865 (define_insn "*movqi_1"
866 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
867 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
868 )]
b8698a0f
L
869
870 So do constrain_operands here, before choosing NEW_SRC_REG as best
e855c69d
AB
871 reg for rhs. */
872
873static bool
874replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
875{
876 vinsn_t vi = INSN_VINSN (insn);
ef4bddc2 877 machine_mode mode;
e855c69d
AB
878 rtx dst_loc;
879 bool res;
880
881 gcc_assert (VINSN_SEPARABLE_P (vi));
882
883 get_dest_and_mode (insn, &dst_loc, &mode);
884 gcc_assert (mode == GET_MODE (new_src_reg));
885
886 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
887 return true;
888
889 /* See whether SET_SRC can be replaced with this register. */
890 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
891 res = verify_changes (0);
892 cancel_changes (0);
893
894 return res;
895}
896
897/* Returns whether INSN still be valid after replacing it's DEST with
898 register NEW_REG. */
899static bool
900replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
901{
902 vinsn_t vi = INSN_VINSN (insn);
903 bool res;
904
905 /* We should deal here only with separable insns. */
906 gcc_assert (VINSN_SEPARABLE_P (vi));
907 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
908
909 /* See whether SET_DEST can be replaced with this register. */
910 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
913
914 return res;
915}
916
917/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
eec818f4 918static rtx_insn *
e855c69d
AB
919create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
920{
921 rtx rhs_rtx;
922 rtx pattern;
eec818f4 923 rtx_insn *insn_rtx;
e855c69d
AB
924
925 rhs_rtx = copy_rtx (VINSN_RHS (vi));
926
f7df4a84 927 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e855c69d
AB
928 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
929
930 return insn_rtx;
931}
932
b8698a0f 933/* Substitute lhs in the given expression EXPR for the register with number
e855c69d
AB
934 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
935static void
936replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
937{
6144a836 938 rtx_insn *insn_rtx;
e855c69d
AB
939 vinsn_t vinsn;
940
941 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
942 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
943
944 change_vinsn_in_expr (expr, vinsn);
945 EXPR_WAS_RENAMED (expr) = 1;
946 EXPR_TARGET_AVAILABLE (expr) = 1;
947}
948
949/* Returns whether VI writes either one of the USED_REGS registers or,
950 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
951static bool
b8698a0f 952vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e855c69d
AB
953 HARD_REG_SET unavailable_hard_regs)
954{
955 unsigned regno;
956 reg_set_iterator rsi;
957
958 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
959 {
960 if (REGNO_REG_SET_P (used_regs, regno))
961 return true;
962 if (HARD_REGISTER_NUM_P (regno)
963 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
964 return true;
965 }
966
967 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
968 {
969 if (REGNO_REG_SET_P (used_regs, regno))
970 return true;
971 if (HARD_REGISTER_NUM_P (regno)
972 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
973 return true;
974 }
975
976 return false;
977}
978
b8698a0f 979/* Returns register class of the output register in INSN.
e855c69d
AB
980 Returns NO_REGS for call insns because some targets have constraints on
981 destination register of a call insn.
b8698a0f 982
e855c69d
AB
983 Code adopted from regrename.c::build_def_use. */
984static enum reg_class
647d790d 985get_reg_class (rtx_insn *insn)
e855c69d 986{
29d70a0f 987 int i, n_ops;
e855c69d 988
75d25a02 989 extract_constrain_insn (insn);
1145837d 990 preprocess_constraints (insn);
e855c69d
AB
991 n_ops = recog_data.n_operands;
992
5efe5dec 993 const operand_alternative *op_alt = which_op_alt ();
e855c69d
AB
994 if (asm_noperands (PATTERN (insn)) > 0)
995 {
996 for (i = 0; i < n_ops; i++)
997 if (recog_data.operand_type[i] == OP_OUT)
998 {
999 rtx *loc = recog_data.operand_loc[i];
1000 rtx op = *loc;
5efe5dec 1001 enum reg_class cl = alternative_class (op_alt, i);
e855c69d
AB
1002
1003 if (REG_P (op)
1004 && REGNO (op) == ORIGINAL_REGNO (op))
1005 continue;
1006
1007 return cl;
1008 }
1009 }
1010 else if (!CALL_P (insn))
1011 {
1012 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1013 {
1014 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
5efe5dec 1015 enum reg_class cl = alternative_class (op_alt, opn);
b8698a0f 1016
e855c69d
AB
1017 if (recog_data.operand_type[opn] == OP_OUT ||
1018 recog_data.operand_type[opn] == OP_INOUT)
1019 return cl;
1020 }
1021 }
1022
1023/* Insns like
1024 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1025 may result in returning NO_REGS, cause flags is written implicitly through
1026 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1027 return NO_REGS;
1028}
1029
e855c69d
AB
1030/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1031static void
1032init_hard_regno_rename (int regno)
1033{
1034 int cur_reg;
1035
1036 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1037
1038 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1039 {
1040 /* We are not interested in renaming in other regs. */
1041 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1042 continue;
1043
1044 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1045 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1046 }
1047}
e855c69d 1048
b8698a0f 1049/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e855c69d
AB
1050 data first. */
1051static inline bool
a20d7130 1052sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d 1053{
e855c69d
AB
1054 /* Check whether this is all calculated. */
1055 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1056 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057
1058 init_hard_regno_rename (from);
1059
1060 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
e855c69d
AB
1061}
1062
1063/* Calculate set of registers that are capable of holding MODE. */
1064static void
ef4bddc2 1065init_regs_for_mode (machine_mode mode)
e855c69d
AB
1066{
1067 int cur_reg;
b8698a0f 1068
e855c69d
AB
1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1070 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1071
1072 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1073 {
f742cf90 1074 int nregs;
e855c69d 1075 int i;
b8698a0f 1076
f742cf90
L
1077 /* See whether it accepts all modes that occur in
1078 original insns. */
f939c3e6 1079 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
f742cf90
L
1080 continue;
1081
ad474626 1082 nregs = hard_regno_nregs (cur_reg, mode);
f742cf90 1083
e855c69d
AB
1084 for (i = nregs - 1; i >= 0; --i)
1085 if (fixed_regs[cur_reg + i]
1086 || global_regs[cur_reg + i]
b8698a0f 1087 /* Can't use regs which aren't saved by
e855c69d
AB
1088 the prologue. */
1089 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
8fd0a474
AM
1090 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1091 it affects aliasing globally and invalidates all AV sets. */
1092 || get_reg_base_value (cur_reg + i)
e855c69d
AB
1093#ifdef LEAF_REGISTERS
1094 /* We can't use a non-leaf register if we're in a
1095 leaf function. */
416ff32e 1096 || (crtl->is_leaf
e855c69d
AB
1097 && !LEAF_REGISTERS[cur_reg + i])
1098#endif
1099 )
1100 break;
b8698a0f
L
1101
1102 if (i >= 0)
e855c69d 1103 continue;
b8698a0f 1104
80ec73f4 1105 if (targetm.hard_regno_call_part_clobbered (cur_reg, mode))
b8698a0f 1106 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e855c69d 1107 cur_reg);
b8698a0f
L
1108
1109 /* If the CUR_REG passed all the checks above,
e855c69d
AB
1110 then it's ok. */
1111 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1112 }
1113
1114 sel_hrd.regs_for_mode_ok[mode] = true;
1115}
1116
1117/* Init all register sets gathered in HRD. */
1118static void
1119init_hard_regs_data (void)
1120{
1121 int cur_reg = 0;
32e8bb8e 1122 int cur_mode = 0;
e855c69d
AB
1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1127 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
b8698a0f
L
1128
1129 /* Initialize registers that are valid based on mode when this is
e855c69d
AB
1130 really needed. */
1131 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1132 sel_hrd.regs_for_mode_ok[cur_mode] = false;
b8698a0f 1133
e855c69d
AB
1134 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1137
1138#ifdef STACK_REGS
1139 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1140
1141 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1142 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1143#endif
b8698a0f 1144}
e855c69d 1145
b8698a0f 1146/* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
1147 for renaming rhs in INSN due to hardware restrictions (register class,
1148 modes compatibility etc). This doesn't affect original insn's dest reg,
1149 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1150 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1151 Registers that are in used_regs are always marked in
1152 unavailable_hard_regs as well. */
1153
1154static void
1155mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1156 regset used_regs ATTRIBUTE_UNUSED)
1157{
ef4bddc2 1158 machine_mode mode;
e855c69d
AB
1159 enum reg_class cl = NO_REGS;
1160 rtx orig_dest;
1161 unsigned cur_reg, regno;
1162 hard_reg_set_iterator hrsi;
1163
1164 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1165 gcc_assert (reg_rename_p);
1166
1167 orig_dest = SET_DEST (PATTERN (def->orig_insn));
b8698a0f 1168
e855c69d
AB
1169 /* We have decided not to rename 'mem = something;' insns, as 'something'
1170 is usually a register. */
1171 if (!REG_P (orig_dest))
1172 return;
1173
1174 regno = REGNO (orig_dest);
1175
1176 /* If before reload, don't try to work with pseudos. */
1177 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1178 return;
1179
0c94f956
AM
1180 if (reload_completed)
1181 cl = get_reg_class (def->orig_insn);
e855c69d 1182
0c94f956
AM
1183 /* Stop if the original register is one of the fixed_regs, global_regs or
1184 frame pointer, or we could not discover its class. */
b8698a0f 1185 if (fixed_regs[regno]
e855c69d 1186 || global_regs[regno]
de824c8b
TS
1187 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1188 && regno == HARD_FRAME_POINTER_REGNUM)
a943bb7f 1189 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
de824c8b 1190 && regno == FRAME_POINTER_REGNUM)
0c94f956 1191 || (reload_completed && cl == NO_REGS))
e855c69d
AB
1192 {
1193 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1194
1195 /* Give a chance for original register, if it isn't in used_regs. */
1196 if (!def->crosses_call)
1197 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1198
1199 return;
1200 }
1201
1202 /* If something allocated on stack in this function, mark frame pointer
b8698a0f 1203 register unavailable, considering also modes.
e855c69d
AB
1204 FIXME: it is enough to do this once per all original defs. */
1205 if (frame_pointer_needed)
1206 {
d108e679
AS
1207 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1208 Pmode, FRAME_POINTER_REGNUM);
e855c69d 1209
d108e679
AS
1210 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1211 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
d0381b37 1212 Pmode, HARD_FRAME_POINTER_REGNUM);
e855c69d
AB
1213 }
1214
1215#ifdef STACK_REGS
1216 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1217 is equivalent to as if all stack regs were in this set.
1218 I.e. no stack register can be renamed, and even if it's an original
b8698a0f
L
1219 register here we make sure it won't be lifted over it's previous def
1220 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e855c69d
AB
1221 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1222 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
b8698a0f
L
1223 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1224 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d 1225 sel_hrd.stack_regs);
b8698a0f 1226#endif
e855c69d 1227
b8698a0f 1228 /* If there's a call on this path, make regs from call_used_reg_set
e855c69d
AB
1229 unavailable. */
1230 if (def->crosses_call)
b8698a0f 1231 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1232 call_used_reg_set);
1233
b8698a0f 1234 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e855c69d
AB
1235 but not register classes. */
1236 if (!reload_completed)
1237 return;
1238
b8698a0f 1239 /* Leave regs as 'available' only from the current
e855c69d 1240 register class. */
e855c69d
AB
1241 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1242 reg_class_contents[cl]);
1243
0c94f956
AM
1244 mode = GET_MODE (orig_dest);
1245
e855c69d
AB
1246 /* Leave only registers available for this mode. */
1247 if (!sel_hrd.regs_for_mode_ok[mode])
1248 init_regs_for_mode (mode);
b8698a0f 1249 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1250 sel_hrd.regs_for_mode[mode]);
1251
1252 /* Exclude registers that are partially call clobbered. */
1253 if (def->crosses_call
80ec73f4 1254 && !targetm.hard_regno_call_part_clobbered (regno, mode))
b8698a0f 1255 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1256 sel_hrd.regs_for_call_clobbered[mode]);
1257
1258 /* Leave only those that are ok to rename. */
1259 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1260 0, cur_reg, hrsi)
1261 {
1262 int nregs;
1263 int i;
1264
ad474626 1265 nregs = hard_regno_nregs (cur_reg, mode);
e855c69d
AB
1266 gcc_assert (nregs > 0);
1267
1268 for (i = nregs - 1; i >= 0; --i)
1269 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1270 break;
1271
b8698a0f
L
1272 if (i >= 0)
1273 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e855c69d
AB
1274 cur_reg);
1275 }
1276
b8698a0f 1277 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1278 reg_rename_p->unavailable_hard_regs);
1279
1280 /* Regno is always ok from the renaming part of view, but it really
1281 could be in *unavailable_hard_regs already, so set it here instead
1282 of there. */
1283 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1284}
1285
1286/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1287 best register more recently than REG2. */
1288static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1289
1290/* Indicates the number of times renaming happened before the current one. */
1291static int reg_rename_this_tick;
1292
b8698a0f 1293/* Choose the register among free, that is suitable for storing
e855c69d
AB
1294 the rhs value.
1295
1296 ORIGINAL_INSNS is the list of insns where the operation (rhs)
b8698a0f
L
1297 originally appears. There could be multiple original operations
1298 for single rhs since we moving it up and merging along different
e855c69d
AB
1299 paths.
1300
1301 Some code is adapted from regrename.c (regrename_optimize).
1302 If original register is available, function returns it.
1303 Otherwise it performs the checks, so the new register should
1304 comply with the following:
b8698a0f 1305 - it should not violate any live ranges (such registers are in
e855c69d
AB
1306 REG_RENAME_P->available_for_renaming set);
1307 - it should not be in the HARD_REGS_USED regset;
1308 - it should be in the class compatible with original uses;
1309 - it should not be clobbered through reference with different mode;
b8698a0f 1310 - if we're in the leaf function, then the new register should
e855c69d
AB
1311 not be in the LEAF_REGISTERS;
1312 - etc.
1313
1314 If several registers meet the conditions, the register with smallest
1315 tick is returned to achieve more even register allocation.
1316
1317 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1318
1319 If no register satisfies the above conditions, NULL_RTX is returned. */
1320static rtx
b8698a0f
L
1321choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1322 struct reg_rename *reg_rename_p,
e855c69d
AB
1323 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1324{
1325 int best_new_reg;
1326 unsigned cur_reg;
ef4bddc2 1327 machine_mode mode = VOIDmode;
e855c69d
AB
1328 unsigned regno, i, n;
1329 hard_reg_set_iterator hrsi;
1330 def_list_iterator di;
1331 def_t def;
1332
1333 /* If original register is available, return it. */
1334 *is_orig_reg_p_ptr = true;
1335
1336 FOR_EACH_DEF (def, di, original_insns)
1337 {
1338 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1339
1340 gcc_assert (REG_P (orig_dest));
1341
b8698a0f 1342 /* Check that all original operations have the same mode.
e855c69d 1343 This is done for the next loop; if we'd return from this
b8698a0f 1344 loop, we'd check only part of them, but in this case
e855c69d
AB
1345 it doesn't matter. */
1346 if (mode == VOIDmode)
1347 mode = GET_MODE (orig_dest);
1348 gcc_assert (mode == GET_MODE (orig_dest));
1349
1350 regno = REGNO (orig_dest);
462a99aa 1351 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
e855c69d
AB
1352 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1353 break;
1354
1355 /* All hard registers are available. */
1356 if (i == n)
1357 {
1358 gcc_assert (mode != VOIDmode);
b8698a0f 1359
e855c69d
AB
1360 /* Hard registers should not be shared. */
1361 return gen_rtx_REG (mode, regno);
1362 }
1363 }
b8698a0f 1364
e855c69d
AB
1365 *is_orig_reg_p_ptr = false;
1366 best_new_reg = -1;
b8698a0f
L
1367
1368 /* Among all available regs choose the register that was
e855c69d
AB
1369 allocated earliest. */
1370 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1371 0, cur_reg, hrsi)
1372 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1373 {
a9ced68b 1374 /* Check that all hard regs for mode are available. */
ad474626 1375 for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
a9ced68b
AM
1376 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1377 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1378 cur_reg + i))
1379 break;
1380
1381 if (i < n)
1382 continue;
1383
e855c69d
AB
1384 /* All hard registers are available. */
1385 if (best_new_reg < 0
1386 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1387 {
1388 best_new_reg = cur_reg;
b8698a0f 1389
e855c69d
AB
1390 /* Return immediately when we know there's no better reg. */
1391 if (! reg_rename_tick[best_new_reg])
1392 break;
1393 }
1394 }
1395
1396 if (best_new_reg >= 0)
1397 {
1398 /* Use the check from the above loop. */
1399 gcc_assert (mode != VOIDmode);
1400 return gen_rtx_REG (mode, best_new_reg);
1401 }
1402
1403 return NULL_RTX;
1404}
1405
1406/* A wrapper around choose_best_reg_1 () to verify that we make correct
1407 assumptions about available registers in the function. */
1408static rtx
b8698a0f 1409choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e855c69d
AB
1410 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1411{
b8698a0f 1412 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e855c69d
AB
1413 original_insns, is_orig_reg_p_ptr);
1414
a9ced68b 1415 /* FIXME loop over hard_regno_nregs here. */
e855c69d
AB
1416 gcc_assert (best_reg == NULL_RTX
1417 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1418
1419 return best_reg;
1420}
1421
b8698a0f 1422/* Choose the pseudo register for storing rhs value. As this is supposed
e855c69d 1423 to work before reload, we return either the original register or make
b8698a0f
L
1424 the new one. The parameters are the same that in choose_nest_reg_1
1425 functions, except that USED_REGS may contain pseudos.
e855c69d
AB
1426 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1427
b8698a0f
L
1428 TODO: take into account register pressure while doing this. Up to this
1429 moment, this function would never return NULL for pseudos, but we should
e855c69d
AB
1430 not rely on this. */
1431static rtx
b8698a0f
L
1432choose_best_pseudo_reg (regset used_regs,
1433 struct reg_rename *reg_rename_p,
e855c69d
AB
1434 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1435{
1436 def_list_iterator i;
1437 def_t def;
ef4bddc2 1438 machine_mode mode = VOIDmode;
e855c69d 1439 bool bad_hard_regs = false;
b8698a0f 1440
e855c69d
AB
1441 /* We should not use this after reload. */
1442 gcc_assert (!reload_completed);
1443
1444 /* If original register is available, return it. */
1445 *is_orig_reg_p_ptr = true;
1446
1447 FOR_EACH_DEF (def, i, original_insns)
1448 {
1449 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1450 int orig_regno;
b8698a0f 1451
e855c69d 1452 gcc_assert (REG_P (dest));
b8698a0f 1453
e855c69d
AB
1454 /* Check that all original operations have the same mode. */
1455 if (mode == VOIDmode)
1456 mode = GET_MODE (dest);
1457 else
1458 gcc_assert (mode == GET_MODE (dest));
1459 orig_regno = REGNO (dest);
b8698a0f 1460
d0aca6ab
AB
1461 /* Check that nothing in used_regs intersects with orig_regno. When
1462 we have a hard reg here, still loop over hard_regno_nregs. */
1463 if (HARD_REGISTER_NUM_P (orig_regno))
1464 {
1465 int j, n;
462a99aa 1466 for (j = 0, n = REG_NREGS (dest); j < n; j++)
d0aca6ab
AB
1467 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1468 break;
1469 if (j < n)
1470 continue;
1471 }
1472 else
1473 {
1474 if (REGNO_REG_SET_P (used_regs, orig_regno))
1475 continue;
1476 }
1477 if (HARD_REGISTER_NUM_P (orig_regno))
1478 {
1479 gcc_assert (df_regs_ever_live_p (orig_regno));
1480
1481 /* For hard registers, we have to check hardware imposed
1482 limitations (frame/stack registers, calls crossed). */
1483 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1484 orig_regno))
1485 {
1486 /* Don't let register cross a call if it doesn't already
1487 cross one. This condition is written in accordance with
1488 that in sched-deps.c sched_analyze_reg(). */
1489 if (!reg_rename_p->crosses_call
1490 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1491 return gen_rtx_REG (mode, orig_regno);
1492 }
1493
1494 bad_hard_regs = true;
1495 }
1496 else
1497 return dest;
1498 }
e855c69d
AB
1499
1500 *is_orig_reg_p_ptr = false;
b8698a0f 1501
e855c69d
AB
1502 /* We had some original hard registers that couldn't be used.
1503 Those were likely special. Don't try to create a pseudo. */
1504 if (bad_hard_regs)
1505 return NULL_RTX;
b8698a0f
L
1506
1507 /* We haven't found a register from original operations. Get a new one.
e855c69d
AB
1508 FIXME: control register pressure somehow. */
1509 {
1510 rtx new_reg = gen_reg_rtx (mode);
1511
1512 gcc_assert (mode != VOIDmode);
1513
1514 max_regno = max_reg_num ();
1515 maybe_extend_reg_info_p ();
1516 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1517
1518 return new_reg;
1519 }
1520}
1521
1522/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1523 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1524static void
b8698a0f 1525verify_target_availability (expr_t expr, regset used_regs,
e855c69d
AB
1526 struct reg_rename *reg_rename_p)
1527{
1528 unsigned n, i, regno;
ef4bddc2 1529 machine_mode mode;
e855c69d
AB
1530 bool target_available, live_available, hard_available;
1531
1532 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1533 return;
b8698a0f 1534
e855c69d
AB
1535 regno = expr_dest_regno (expr);
1536 mode = GET_MODE (EXPR_LHS (expr));
1537 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
ad474626 1538 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
e855c69d
AB
1539
1540 live_available = hard_available = true;
1541 for (i = 0; i < n; i++)
1542 {
1543 if (bitmap_bit_p (used_regs, regno + i))
1544 live_available = false;
1545 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1546 hard_available = false;
1547 }
1548
b8698a0f 1549 /* When target is not available, it may be due to hard register
e855c69d
AB
1550 restrictions, e.g. crosses calls, so we check hard_available too. */
1551 if (target_available)
1552 gcc_assert (live_available);
1553 else
b8698a0f 1554 /* Check only if we haven't scheduled something on the previous fence,
e855c69d
AB
1555 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1556 and having more than one fence, we may end having targ_un in a block
b8698a0f 1557 in which successors target register is actually available.
e855c69d
AB
1558
1559 The last condition handles the case when a dependence from a call insn
b8698a0f
L
1560 was created in sched-deps.c for insns with destination registers that
1561 never crossed a call before, but do cross one after our code motion.
e855c69d 1562
b8698a0f
L
1563 FIXME: in the latter case, we just uselessly called find_used_regs,
1564 because we can't move this expression with any other register
e855c69d 1565 as well. */
b8698a0f
L
1566 gcc_assert (scheduled_something_on_previous_fence || !live_available
1567 || !hard_available
1568 || (!reload_completed && reg_rename_p->crosses_call
e855c69d
AB
1569 && REG_N_CALLS_CROSSED (regno) == 0));
1570}
1571
b8698a0f
L
1572/* Collect unavailable registers due to liveness for EXPR from BNDS
1573 into USED_REGS. Save additional information about available
e855c69d
AB
1574 registers and unavailable due to hardware restriction registers
1575 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1576 list. */
1577static void
1578collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1579 struct reg_rename *reg_rename_p,
1580 def_list_t *original_insns)
1581{
1582 for (; bnds; bnds = BLIST_NEXT (bnds))
1583 {
1584 bool res;
1585 av_set_t orig_ops = NULL;
1586 bnd_t bnd = BLIST_BND (bnds);
1587
1588 /* If the chosen best expr doesn't belong to current boundary,
1589 skip it. */
1590 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1591 continue;
1592
1593 /* Put in ORIG_OPS all exprs from this boundary that became
1594 RES on top. */
1595 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1596
1597 /* Compute used regs and OR it into the USED_REGS. */
1598 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1599 reg_rename_p, original_insns);
1600
1601 /* FIXME: the assert is true until we'd have several boundaries. */
1602 gcc_assert (res);
1603 av_set_clear (&orig_ops);
1604 }
1605}
1606
1607/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1608 If BEST_REG is valid, replace LHS of EXPR with it. */
1609static bool
1610try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1611{
e855c69d
AB
1612 /* Try whether we'll be able to generate the insn
1613 'dest := best_reg' at the place of the original operation. */
1614 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1615 {
1616 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1617
1618 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1619
0666ff4e
AB
1620 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1621 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1622 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e855c69d
AB
1623 return false;
1624 }
1625
1626 /* Make sure that EXPR has the right destination
1627 register. */
0666ff4e
AB
1628 if (expr_dest_regno (expr) != REGNO (best_reg))
1629 replace_dest_with_reg_in_expr (expr, best_reg);
1630 else
1631 EXPR_TARGET_AVAILABLE (expr) = 1;
1632
e855c69d
AB
1633 return true;
1634}
1635
b8698a0f
L
1636/* Select and assign best register to EXPR searching from BNDS.
1637 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e855c69d
AB
1638 Return FALSE if no register can be chosen, which could happen when:
1639 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1640 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1641 that are used on the moving path. */
1642static bool
1643find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1644{
1645 static struct reg_rename reg_rename_data;
1646
1647 regset used_regs;
1648 def_list_t original_insns = NULL;
1649 bool reg_ok;
1650
1651 *is_orig_reg_p = false;
1652
1653 /* Don't bother to do anything if this insn doesn't set any registers. */
1654 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1655 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1656 return true;
1657
1658 used_regs = get_clear_regset_from_pool ();
1659 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1660
1661 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1662 &original_insns);
1663
e855c69d 1664 /* If after reload, make sure we're working with hard regs here. */
b2b29377 1665 if (flag_checking && reload_completed)
e855c69d
AB
1666 {
1667 reg_set_iterator rsi;
1668 unsigned i;
b8698a0f 1669
e855c69d
AB
1670 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1671 gcc_unreachable ();
1672 }
e855c69d
AB
1673
1674 if (EXPR_SEPARABLE_P (expr))
1675 {
1676 rtx best_reg = NULL_RTX;
1677 /* Check that we have computed availability of a target register
1678 correctly. */
1679 verify_target_availability (expr, used_regs, &reg_rename_data);
1680
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed)
1683 {
1684 HARD_REG_SET hard_regs_used;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1686
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used,
1690 reg_rename_data.unavailable_hard_regs);
1691
1692 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1693 original_insns, is_orig_reg_p);
1694 }
1695 else
1696 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1697 original_insns, is_orig_reg_p);
1698
1699 if (!best_reg)
1700 reg_ok = false;
1701 else if (*is_orig_reg_p)
1702 {
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1705 ORIGINAL_INSNS. */
1706 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1707 }
1708 else
1709 {
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1712 reg_ok = false;
1713 else
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1715 }
1716 }
1717 else
1718 {
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1722 reg_rename_data.unavailable_hard_regs))
1723 {
1724 reg_ok = false;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1726 }
1727 else
1728 {
1729 reg_ok = true;
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1731 }
1732 }
1733
1734 ilist_clear (&original_insns);
1735 return_regset_to_pool (used_regs);
1736
1737 return reg_ok;
1738}
1739\f
1740
1741/* Return true if dependence described by DS can be overcomed. */
1742static bool
1743can_speculate_dep_p (ds_t ds)
1744{
1745 if (spec_info == NULL)
1746 return false;
1747
1748 /* Leave only speculative data. */
1749 ds &= SPECULATIVE;
1750
1751 if (ds == 0)
1752 return false;
1753
1754 {
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask = spec_info->mask;
1758
1759 if ((ds & spec_mask) != ds)
1760 return false;
1761 }
1762
1763 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1764 return false;
1765
1766 return true;
1767}
1768
1769/* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1773static insn_t
1774create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1775{
1776 rtx check_pattern;
eec818f4 1777 rtx_insn *insn_rtx;
e855c69d
AB
1778 insn_t insn;
1779 basic_block recovery_block;
ac44248e 1780 rtx_insn *label;
e855c69d
AB
1781
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
388092d5 1784 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1786 {
1787 recovery_block = sel_create_recovery_block (orig_insn);
1788 label = BB_HEAD (recovery_block);
1789 }
1790 else
1791 {
1792 recovery_block = NULL;
ac44248e 1793 label = NULL;
e855c69d
AB
1794 }
1795
1796 /* Get pattern of the check. */
1797 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1798 check_ds);
1799
1800 gcc_assert (check_pattern != NULL);
1801
1802 /* Emit check. */
1803 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1804
1805 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1806 INSN_SEQNO (orig_insn), orig_insn);
1807
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1811
1812 /* Decrease priority of check by difference of load/check instruction
1813 latencies. */
1814 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1815 - sel_vinsn_cost (INSN_VINSN (insn)));
1816
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block != NULL)
1820 {
1821 rtx twin_rtx;
e855c69d
AB
1822
1823 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1824 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1124098b
JJ
1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1826 INSN_EXPR (orig_insn),
1827 INSN_SEQNO (insn),
1828 bb_note (recovery_block));
e855c69d
AB
1829 }
1830
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1834 check won't fail.
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds = ds_get_max_dep_weak (check_ds);
1839 speculate_expr (c_expr, check_ds);
b8698a0f 1840
e855c69d
AB
1841 return insn;
1842}
1843
1844/* True when INSN is a "regN = regN" copy. */
1845static bool
90831096 1846identical_copy_p (rtx_insn *insn)
e855c69d
AB
1847{
1848 rtx lhs, rhs, pat;
1849
1850 pat = PATTERN (insn);
1851
1852 if (GET_CODE (pat) != SET)
1853 return false;
1854
1855 lhs = SET_DEST (pat);
1856 if (!REG_P (lhs))
1857 return false;
1858
1859 rhs = SET_SRC (pat);
1860 if (!REG_P (rhs))
1861 return false;
1862
1863 return REGNO (lhs) == REGNO (rhs);
1864}
1865
b8698a0f 1866/* Undo all transformations on *AV_PTR that were done when
e855c69d
AB
1867 moving through INSN. */
1868static void
6144a836 1869undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
e855c69d
AB
1870{
1871 av_set_iterator av_iter;
1872 expr_t expr;
1873 av_set_t new_set = NULL;
1874
b8698a0f 1875 /* First, kill any EXPR that uses registers set by an insn. This is
e855c69d
AB
1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1878 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
b8698a0f 1879 && bitmap_intersect_p (INSN_REG_SETS (insn),
e855c69d
AB
1880 VINSN_REG_USES (EXPR_VINSN (expr)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
b8698a0f 1883 gcc.c-torture/execute/961125-1.c. */
e855c69d
AB
1884 && !identical_copy_p (insn))
1885 {
1886 if (sched_verbose >= 6)
b8698a0f 1887 sel_print ("Expr %d removed due to use/set conflict\n",
e855c69d
AB
1888 INSN_UID (EXPR_INSN_RTX (expr)));
1889 av_set_iter_remove (&av_iter);
1890 }
1891
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1894 {
1895 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1896 insn, EXPR_VINSN (expr), true);
1897
1898 if (index >= 0)
1899 {
1900 expr_history_def *phist;
1901
9771b263 1902 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
e855c69d 1903
b8698a0f 1904 switch (phist->type)
e855c69d
AB
1905 {
1906 case TRANS_SPECULATION:
1907 {
1908 ds_t old_ds, new_ds;
b8698a0f 1909
e855c69d 1910 /* Compute the difference between old and new speculative
b8698a0f 1911 statuses: that's what we need to check.
e855c69d
AB
1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
b8698a0f
L
1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
e855c69d
AB
1917 record this in the history vector. */
1918 old_ds = phist->spec_ds;
1919 new_ds = EXPR_SPEC_DONE_DS (expr);
1920
1921 old_ds &= SPECULATIVE;
1922 new_ds &= SPECULATIVE;
1923 new_ds &= ~old_ds;
b8698a0f 1924
e855c69d
AB
1925 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1926 break;
1927 }
1928 case TRANS_SUBSTITUTION:
1929 {
1930 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1931 vinsn_t new_vi;
1932 bool add = true;
b8698a0f 1933
e855c69d 1934 new_vi = phist->old_expr_vinsn;
b8698a0f
L
1935
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e855c69d
AB
1937 == EXPR_SEPARABLE_P (expr));
1938 copy_expr (tmp_expr, expr);
1939
b8698a0f 1940 if (vinsn_equal_p (phist->new_expr_vinsn,
e855c69d
AB
1941 EXPR_VINSN (tmp_expr)))
1942 change_vinsn_in_expr (tmp_expr, new_vi);
1943 else
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add = substitute_reg_in_expr (tmp_expr, insn, true);
1948 if (add)
1949 av_set_add (&new_set, tmp_expr);
1950 clear_expr (tmp_expr);
1951 break;
1952 }
1953 default:
1954 gcc_unreachable ();
1955 }
1956 }
b8698a0f 1957
e855c69d
AB
1958 }
1959
1960 av_set_union_and_clear (av_ptr, &new_set, NULL);
1961}
1962\f
1963
1964/* Moveup_* helpers for code motion and computing av sets. */
1965
1966/* Propagates EXPR inside an insn group through THROUGH_INSN.
b8698a0f 1967 The difference from the below function is that only substitution is
e855c69d
AB
1968 performed. */
1969static enum MOVEUP_EXPR_CODE
1970moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1971{
1972 vinsn_t vi = EXPR_VINSN (expr);
1973 ds_t *has_dep_p;
1974 ds_t full_ds;
1975
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1978
1979 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1980 if (full_ds == 0)
1981 return MOVEUP_EXPR_SAME;
1982
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p[DEPS_IN_RHS])
1985 {
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi));
b8698a0f
L
1988
1989 if (can_substitute_through_p (through_insn,
e855c69d
AB
1990 has_dep_p[DEPS_IN_RHS])
1991 && substitute_reg_in_expr (expr, through_insn, false))
1992 {
1993 EXPR_WAS_SUBSTITUTED (expr) = true;
1994 return MOVEUP_EXPR_CHANGED;
1995 }
1996
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME;
2000 }
2001
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p[DEPS_IN_INSN])
2004 return MOVEUP_EXPR_NULL;
b8698a0f 2005
e855c69d
AB
2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2008 will fix this. */
2009 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2010 return MOVEUP_EXPR_AS_RHS;
2011}
2012
2013/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014#define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2018
2019/* True when a conflict on a target register was found during moveup_expr. */
2020static bool was_target_conflict = false;
2021
b5b8b0ac
AO
2022/* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2026
2027static bool
2028moving_insn_creates_bookkeeping_block_p (insn_t insn,
2029 insn_t through_insn)
2030{
2031 basic_block bbi, bbt;
2032 edge e1, e2;
2033 edge_iterator ei1, ei2;
2034
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2036 {
2037 if (sched_verbose >= 9)
2038 sel_print ("no bookkeeping required: ");
2039 return FALSE;
2040 }
2041
2042 bbi = BLOCK_FOR_INSN (insn);
2043
2044 if (EDGE_COUNT (bbi->preds) == 1)
2045 {
2046 if (sched_verbose >= 9)
2047 sel_print ("only one pred edge: ");
2048 return TRUE;
2049 }
2050
2051 bbt = BLOCK_FOR_INSN (through_insn);
2052
2053 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2054 {
2055 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2056 {
2057 if (find_block_for_bookkeeping (e1, e2, TRUE))
2058 {
2059 if (sched_verbose >= 9)
2060 sel_print ("found existing block: ");
2061 return FALSE;
2062 }
2063 }
2064 }
2065
2066 if (sched_verbose >= 9)
2067 sel_print ("would create bookkeeping block: ");
2068
2069 return TRUE;
2070}
2071
b4979ab9
AB
2072/* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2074static bool
2075implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2076{
2077 HARD_REG_SET temp;
eec818f4
DM
2078 rtx_insn *insn;
2079 rtx reg, rhs, pat;
b4979ab9
AB
2080 hard_reg_set_iterator hrsi;
2081 unsigned regno;
2082 bool valid;
2083
2084 /* Make a new pseudo register. */
2085 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2086 max_regno = max_reg_num ();
2087 maybe_extend_reg_info_p ();
2088
2089 /* Validate a change and bail out early. */
2090 insn = EXPR_INSN_RTX (expr);
2091 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2092 valid = verify_changes (0);
2093 cancel_changes (0);
2094 if (!valid)
2095 {
2096 if (sched_verbose >= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2098 return true;
2099 }
2100
2101 /* Make a new insn with it. */
2102 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
f7df4a84 2103 pat = gen_rtx_SET (reg, rhs);
b4979ab9
AB
2104 start_sequence ();
2105 insn = emit_insn (pat);
2106 end_sequence ();
2107
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn);
1145837d 2110 preprocess_constraints (insn);
8f3f5ac0
L
2111 alternative_mask prefrred = get_preferred_alternatives (insn);
2112 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
b4979ab9
AB
2113 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2114
2115 /* If any implicit clobber registers intersect with regular ones in
2116 through_insn, we have a dependency and thus bail out. */
2117 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2118 {
2119 vinsn_t vi = INSN_VINSN (through_insn);
2120 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2122 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2123 return true;
2124 }
2125
2126 return false;
2127}
2128
e855c69d 2129/* Modifies EXPR so it can be moved through the THROUGH_INSN,
b8698a0f
L
2130 performing necessary transformations. Record the type of transformation
2131 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e855c69d 2132 permit all dependencies except true ones, and try to remove those
b8698a0f
L
2133 too via forward substitution. All cases when a non-eliminable
2134 non-zero cost dependency exists inside an insn group will be fixed
e855c69d
AB
2135 in tick_check_p instead. */
2136static enum MOVEUP_EXPR_CODE
2137moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2138 enum local_trans_type *ptrans_type)
2139{
2140 vinsn_t vi = EXPR_VINSN (expr);
2141 insn_t insn = VINSN_INSN_RTX (vi);
2142 bool was_changed = false;
2143 bool as_rhs = false;
2144 ds_t *has_dep_p;
2145 ds_t full_ds;
2146
48bb58b1
AO
2147 /* ??? We use dependencies of non-debug insns on debug insns to
2148 indicate that the debug insns need to be reset if the non-debug
2149 insn is pulled ahead of it. It's hard to figure out how to
2150 introduce such a notion in sel-sched, but it already fails to
2151 support debug insns in other ways, so we just go ahead and
2152 let the deug insns go corrupt for now. */
2153 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2154 return MOVEUP_EXPR_SAME;
2155
e855c69d
AB
2156 /* When inside_insn_group, delegate to the helper. */
2157 if (inside_insn_group)
2158 return moveup_expr_inside_insn_group (expr, through_insn);
2159
2160 /* Deal with unique insns and control dependencies. */
2161 if (VINSN_UNIQUE_P (vi))
2162 {
2163 /* We can move jumps without side-effects or jumps that are
2164 mutually exclusive with instruction THROUGH_INSN (all in cases
2165 dependencies allow to do so and jump is not speculative). */
2166 if (control_flow_insn_p (insn))
2167 {
2168 basic_block fallthru_bb;
2169
b8698a0f 2170 /* Do not move checks and do not move jumps through other
e855c69d
AB
2171 jumps. */
2172 if (control_flow_insn_p (through_insn)
2173 || sel_insn_is_speculation_check (insn))
2174 return MOVEUP_EXPR_NULL;
2175
2176 /* Don't move jumps through CFG joins. */
2177 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2178 return MOVEUP_EXPR_NULL;
2179
b8698a0f 2180 /* The jump should have a clear fallthru block, and
e855c69d
AB
2181 this block should be in the current region. */
2182 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2183 || ! in_current_region_p (fallthru_bb))
2184 return MOVEUP_EXPR_NULL;
b8698a0f 2185
eb277bf1
AM
2186 /* And it should be mutually exclusive with through_insn. */
2187 if (! sched_insns_conditions_mutex_p (insn, through_insn)
b5b8b0ac 2188 && ! DEBUG_INSN_P (through_insn))
e855c69d
AB
2189 return MOVEUP_EXPR_NULL;
2190 }
2191
2192 /* Don't move what we can't move. */
2193 if (EXPR_CANT_MOVE (expr)
2194 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2195 return MOVEUP_EXPR_NULL;
2196
2197 /* Don't move SCHED_GROUP instruction through anything.
2198 If we don't force this, then it will be possible to start
2199 scheduling a sched_group before all its dependencies are
2200 resolved.
2201 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2202 as late as possible through rank_for_schedule. */
2203 if (SCHED_GROUP_P (insn))
2204 return MOVEUP_EXPR_NULL;
2205 }
2206 else
2207 gcc_assert (!control_flow_insn_p (insn));
2208
b5b8b0ac
AO
2209 /* Don't move debug insns if this would require bookkeeping. */
2210 if (DEBUG_INSN_P (insn)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2212 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2213 return MOVEUP_EXPR_NULL;
2214
e855c69d
AB
2215 /* Deal with data dependencies. */
2216 was_target_conflict = false;
2217 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2218 if (full_ds == 0)
2219 {
2220 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2221 return MOVEUP_EXPR_SAME;
2222 }
2223 else
2224 {
b8698a0f 2225 /* We can move UNIQUE insn up only as a whole and unchanged,
e855c69d
AB
2226 so it shouldn't have any dependencies. */
2227 if (VINSN_UNIQUE_P (vi))
2228 return MOVEUP_EXPR_NULL;
2229 }
2230
2231 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2232 {
2233 int res;
2234
2235 res = speculate_expr (expr, full_ds);
2236 if (res >= 0)
2237 {
2238 /* Speculation was successful. */
2239 full_ds = 0;
2240 was_changed = (res > 0);
2241 if (res == 2)
2242 was_target_conflict = true;
2243 if (ptrans_type)
2244 *ptrans_type = TRANS_SPECULATION;
2245 sel_clear_has_dependence ();
2246 }
2247 }
2248
2249 if (has_dep_p[DEPS_IN_INSN])
2250 /* We have some dependency that cannot be discarded. */
2251 return MOVEUP_EXPR_NULL;
2252
2253 if (has_dep_p[DEPS_IN_LHS])
b8698a0f 2254 {
e855c69d 2255 /* Only separable insns can be moved up with the new register.
b8698a0f 2256 Anyways, we should mark that the original register is
e855c69d
AB
2257 unavailable. */
2258 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2259 return MOVEUP_EXPR_NULL;
2260
b4979ab9
AB
2261 /* When renaming a hard register to a pseudo before reload, extra
2262 dependencies can occur from the implicit clobbers of the insn.
2263 Filter out such cases here. */
2264 if (!reload_completed && REG_P (EXPR_LHS (expr))
2265 && HARD_REGISTER_P (EXPR_LHS (expr))
2266 && implicit_clobber_conflict_p (through_insn, expr))
2267 {
2268 if (sched_verbose >= 6)
2269 sel_print ("implicit clobbers conflict detected, ");
2270 return MOVEUP_EXPR_NULL;
2271 }
e855c69d
AB
2272 EXPR_TARGET_AVAILABLE (expr) = false;
2273 was_target_conflict = true;
2274 as_rhs = true;
2275 }
2276
2277 /* At this point we have either separable insns, that will be lifted
2278 up only as RHSes, or non-separable insns with no dependency in lhs.
2279 If dependency is in RHS, then try to perform substitution and move up
2280 substituted RHS:
2281
2282 Ex. 1: Ex.2
2283 y = x; y = x;
2284 z = y*2; y = y*2;
2285
b8698a0f 2286 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e855c69d
AB
2287 moved above y=x assignment as z=x*2.
2288
b8698a0f 2289 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e855c69d
AB
2290 side can be moved because of the output dependency. The operation was
2291 cropped to its rhs above. */
2292 if (has_dep_p[DEPS_IN_RHS])
2293 {
2294 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2295
2296 /* Can't substitute UNIQUE VINSNs. */
2297 gcc_assert (!VINSN_UNIQUE_P (vi));
2298
2299 if (can_speculate_dep_p (*rhs_dsp))
2300 {
2301 int res;
b8698a0f 2302
e855c69d
AB
2303 res = speculate_expr (expr, *rhs_dsp);
2304 if (res >= 0)
2305 {
2306 /* Speculation was successful. */
2307 *rhs_dsp = 0;
2308 was_changed = (res > 0);
2309 if (res == 2)
2310 was_target_conflict = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SPECULATION;
2313 }
2314 else
2315 return MOVEUP_EXPR_NULL;
2316 }
2317 else if (can_substitute_through_p (through_insn,
2318 *rhs_dsp)
2319 && substitute_reg_in_expr (expr, through_insn, false))
2320 {
2321 /* ??? We cannot perform substitution AND speculation on the same
2322 insn. */
2323 gcc_assert (!was_changed);
2324 was_changed = true;
2325 if (ptrans_type)
2326 *ptrans_type = TRANS_SUBSTITUTION;
2327 EXPR_WAS_SUBSTITUTED (expr) = true;
2328 }
2329 else
2330 return MOVEUP_EXPR_NULL;
2331 }
2332
2333 /* Don't move trapping insns through jumps.
2334 This check should be at the end to give a chance to control speculation
2335 to perform its duties. */
2336 if (CANT_MOVE_TRAPPING (expr, through_insn))
2337 return MOVEUP_EXPR_NULL;
2338
b8698a0f
L
2339 return (was_changed
2340 ? MOVEUP_EXPR_CHANGED
2341 : (as_rhs
e855c69d
AB
2342 ? MOVEUP_EXPR_AS_RHS
2343 : MOVEUP_EXPR_SAME));
2344}
2345
b8698a0f 2346/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d
AB
2347 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2348 that can exist within a parallel group. Write to RES the resulting
2349 code for moveup_expr. */
b8698a0f 2350static bool
e855c69d
AB
2351try_bitmap_cache (expr_t expr, insn_t insn,
2352 bool inside_insn_group,
2353 enum MOVEUP_EXPR_CODE *res)
2354{
2355 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
b8698a0f 2356
e855c69d
AB
2357 /* First check whether we've analyzed this situation already. */
2358 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2359 {
2360 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2361 {
2362 if (sched_verbose >= 6)
2363 sel_print ("removed (cached)\n");
2364 *res = MOVEUP_EXPR_NULL;
2365 return true;
2366 }
2367 else
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (cached)\n");
2371 *res = MOVEUP_EXPR_SAME;
2372 return true;
2373 }
2374 }
2375 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2376 {
2377 if (inside_insn_group)
2378 {
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2381 *res = MOVEUP_EXPR_SAME;
2382 return true;
b8698a0f 2383
e855c69d
AB
2384 }
2385 else
2386 EXPR_TARGET_AVAILABLE (expr) = false;
2387
b8698a0f
L
2388 /* This is the only case when propagation result can change over time,
2389 as we can dynamically switch off scheduling as RHS. In this case,
e855c69d
AB
2390 just check the flag to reach the correct decision. */
2391 if (enable_schedule_as_rhs_p)
2392 {
2393 if (sched_verbose >= 6)
2394 sel_print ("unchanged (as RHS, cached)\n");
2395 *res = MOVEUP_EXPR_AS_RHS;
2396 return true;
2397 }
2398 else
2399 {
2400 if (sched_verbose >= 6)
2401 sel_print ("removed (cached as RHS, but renaming"
2402 " is now disabled)\n");
2403 *res = MOVEUP_EXPR_NULL;
2404 return true;
2405 }
2406 }
2407
2408 return false;
2409}
2410
b8698a0f 2411/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d 2412 if successful. Write to RES the resulting code for moveup_expr. */
b8698a0f 2413static bool
e855c69d
AB
2414try_transformation_cache (expr_t expr, insn_t insn,
2415 enum MOVEUP_EXPR_CODE *res)
2416{
b8698a0f 2417 struct transformed_insns *pti
e855c69d
AB
2418 = (struct transformed_insns *)
2419 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
b8698a0f 2420 &EXPR_VINSN (expr),
e855c69d
AB
2421 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2422 if (pti)
2423 {
b8698a0f
L
2424 /* This EXPR was already moved through this insn and was
2425 changed as a result. Fetch the proper data from
e855c69d 2426 the hashtable. */
b8698a0f
L
2427 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2428 INSN_UID (insn), pti->type,
2429 pti->vinsn_old, pti->vinsn_new,
e855c69d 2430 EXPR_SPEC_DONE_DS (expr));
b8698a0f 2431
e855c69d
AB
2432 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2433 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2434 change_vinsn_in_expr (expr, pti->vinsn_new);
2435 if (pti->was_target_conflict)
2436 EXPR_TARGET_AVAILABLE (expr) = false;
2437 if (pti->type == TRANS_SPECULATION)
2438 {
e855c69d
AB
2439 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2440 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2441 }
2442
2443 if (sched_verbose >= 6)
2444 {
2445 sel_print ("changed (cached): ");
2446 dump_expr (expr);
2447 sel_print ("\n");
2448 }
2449
2450 *res = MOVEUP_EXPR_CHANGED;
2451 return true;
2452 }
2453
2454 return false;
2455}
2456
2457/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458static void
b8698a0f 2459update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e855c69d
AB
2460 enum MOVEUP_EXPR_CODE res)
2461{
2462 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2463
b8698a0f 2464 /* Do not cache result of propagating jumps through an insn group,
e855c69d
AB
2465 as it is always true, which is not useful outside the group. */
2466 if (inside_insn_group)
2467 return;
b8698a0f 2468
e855c69d
AB
2469 if (res == MOVEUP_EXPR_NULL)
2470 {
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2473 }
2474 else if (res == MOVEUP_EXPR_SAME)
2475 {
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2478 }
2479 else if (res == MOVEUP_EXPR_AS_RHS)
2480 {
2481 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2483 }
2484 else
2485 gcc_unreachable ();
2486}
2487
2488/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2489 and transformation type TRANS_TYPE. */
2490static void
b8698a0f 2491update_transformation_cache (expr_t expr, insn_t insn,
e855c69d 2492 bool inside_insn_group,
b8698a0f 2493 enum local_trans_type trans_type,
e855c69d
AB
2494 vinsn_t expr_old_vinsn)
2495{
2496 struct transformed_insns *pti;
2497
2498 if (inside_insn_group)
2499 return;
b8698a0f 2500
e855c69d
AB
2501 pti = XNEW (struct transformed_insns);
2502 pti->vinsn_old = expr_old_vinsn;
2503 pti->vinsn_new = EXPR_VINSN (expr);
2504 pti->type = trans_type;
2505 pti->was_target_conflict = was_target_conflict;
2506 pti->ds = EXPR_SPEC_DONE_DS (expr);
2507 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2508 vinsn_attach (pti->vinsn_old);
2509 vinsn_attach (pti->vinsn_new);
b8698a0f 2510 *((struct transformed_insns **)
e855c69d
AB
2511 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2512 pti, VINSN_HASH_RTX (expr_old_vinsn),
2513 INSERT)) = pti;
2514}
2515
b8698a0f 2516/* Same as moveup_expr, but first looks up the result of
e855c69d
AB
2517 transformation in caches. */
2518static enum MOVEUP_EXPR_CODE
2519moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2520{
2521 enum MOVEUP_EXPR_CODE res;
2522 bool got_answer = false;
2523
2524 if (sched_verbose >= 6)
2525 {
b8698a0f 2526 sel_print ("Moving ");
e855c69d
AB
2527 dump_expr (expr);
2528 sel_print (" through %d: ", INSN_UID (insn));
2529 }
2530
b5b8b0ac 2531 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
d4cbfca4 2532 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
b5b8b0ac
AO
2533 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2534 == EXPR_INSN_RTX (expr)))
2535 /* Don't use cached information for debug insns that are heads of
2536 basic blocks. */;
2537 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e855c69d
AB
2538 /* When inside insn group, we do not want remove stores conflicting
2539 with previosly issued loads. */
2540 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2541 else if (try_transformation_cache (expr, insn, &res))
2542 got_answer = true;
2543
2544 if (! got_answer)
2545 {
2546 /* Invoke moveup_expr and record the results. */
2547 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2548 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2549 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2550 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2551 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2552
b8698a0f 2553 /* ??? Invent something better than this. We can't allow old_vinsn
e855c69d
AB
2554 to go, we need it for the history vector. */
2555 vinsn_attach (expr_old_vinsn);
2556
2557 res = moveup_expr (expr, insn, inside_insn_group,
2558 &trans_type);
2559 switch (res)
2560 {
2561 case MOVEUP_EXPR_NULL:
2562 update_bitmap_cache (expr, insn, inside_insn_group, res);
2563 if (sched_verbose >= 6)
2564 sel_print ("removed\n");
2565 break;
2566
2567 case MOVEUP_EXPR_SAME:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("unchanged\n");
2571 break;
2572
2573 case MOVEUP_EXPR_AS_RHS:
2574 gcc_assert (!unique_p || inside_insn_group);
2575 update_bitmap_cache (expr, insn, inside_insn_group, res);
2576 if (sched_verbose >= 6)
2577 sel_print ("unchanged (as RHS)\n");
2578 break;
2579
2580 case MOVEUP_EXPR_CHANGED:
2581 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2582 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
b8698a0f
L
2583 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2584 INSN_UID (insn), trans_type,
2585 expr_old_vinsn, EXPR_VINSN (expr),
e855c69d
AB
2586 expr_old_spec_ds);
2587 update_transformation_cache (expr, insn, inside_insn_group,
2588 trans_type, expr_old_vinsn);
2589 if (sched_verbose >= 6)
2590 {
2591 sel_print ("changed: ");
2592 dump_expr (expr);
2593 sel_print ("\n");
2594 }
2595 break;
2596 default:
2597 gcc_unreachable ();
2598 }
2599
2600 vinsn_detach (expr_old_vinsn);
2601 }
2602
2603 return res;
2604}
2605
b8698a0f 2606/* Moves an av set AVP up through INSN, performing necessary
e855c69d
AB
2607 transformations. */
2608static void
2609moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2610{
2611 av_set_iterator i;
2612 expr_t expr;
2613
b8698a0f
L
2614 FOR_EACH_EXPR_1 (expr, i, avp)
2615 {
2616
e855c69d
AB
2617 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2618 {
2619 case MOVEUP_EXPR_SAME:
2620 case MOVEUP_EXPR_AS_RHS:
2621 break;
2622
2623 case MOVEUP_EXPR_NULL:
2624 av_set_iter_remove (&i);
2625 break;
2626
2627 case MOVEUP_EXPR_CHANGED:
2628 expr = merge_with_other_exprs (avp, &i, expr);
2629 break;
b8698a0f 2630
e855c69d
AB
2631 default:
2632 gcc_unreachable ();
2633 }
2634 }
2635}
2636
2637/* Moves AVP set along PATH. */
2638static void
2639moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2640{
2641 int last_cycle;
b8698a0f 2642
e855c69d
AB
2643 if (sched_verbose >= 6)
2644 sel_print ("Moving expressions up in the insn group...\n");
2645 if (! path)
2646 return;
2647 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
b8698a0f 2648 while (path
e855c69d
AB
2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2650 {
2651 moveup_set_expr (avp, ILIST_INSN (path), true);
2652 path = ILIST_NEXT (path);
2653 }
2654}
2655
2656/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2657static bool
2658equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2659{
2660 expr_def _tmp, *tmp = &_tmp;
2661 int last_cycle;
2662 bool res = true;
2663
2664 copy_expr_onside (tmp, expr);
2665 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
b8698a0f 2666 while (path
e855c69d
AB
2667 && res
2668 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2669 {
b8698a0f 2670 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e855c69d
AB
2671 != MOVEUP_EXPR_NULL);
2672 path = ILIST_NEXT (path);
2673 }
2674
2675 if (res)
2676 {
2677 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2678 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2679
2680 if (tmp_vinsn != expr_vliw_vinsn)
2681 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2682 }
2683
2684 clear_expr (tmp);
2685 return res;
2686}
2687\f
2688
2689/* Functions that compute av and lv sets. */
2690
b8698a0f 2691/* Returns true if INSN is not a downward continuation of the given path P in
e855c69d
AB
2692 the current stage. */
2693static bool
2694is_ineligible_successor (insn_t insn, ilist_t p)
2695{
2696 insn_t prev_insn;
2697
2698 /* Check if insn is not deleted. */
2699 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2702 gcc_unreachable ();
2703
2704 /* If it's the first insn visited, then the successor is ok. */
2705 if (!p)
2706 return false;
2707
2708 prev_insn = ILIST_INSN (p);
2709
2710 if (/* a backward edge. */
2711 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2712 /* is already visited. */
2713 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2714 && (ilist_is_in_p (p, insn)
b8698a0f
L
2715 /* We can reach another fence here and still seqno of insn
2716 would be equal to seqno of prev_insn. This is possible
e855c69d
AB
2717 when prev_insn is a previously created bookkeeping copy.
2718 In that case it'd get a seqno of insn. Thus, check here
2719 whether insn is in current fence too. */
2720 || IN_CURRENT_FENCE_P (insn)))
2721 /* Was already scheduled on this round. */
2722 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2723 && IN_CURRENT_FENCE_P (insn))
b8698a0f
L
2724 /* An insn from another fence could also be
2725 scheduled earlier even if this insn is not in
e855c69d
AB
2726 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2727 || (!pipelining_p
2728 && INSN_SCHED_TIMES (insn) > 0))
2729 return true;
2730 else
2731 return false;
2732}
2733
b8698a0f
L
2734/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2735 of handling multiple successors and properly merging its av_sets. P is
2736 the current path traversed. WS is the size of lookahead window.
e855c69d
AB
2737 Return the av set computed. */
2738static av_set_t
2739compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2740{
2741 struct succs_info *sinfo;
2742 av_set_t expr_in_all_succ_branches = NULL;
2743 int is;
2744 insn_t succ, zero_succ = NULL;
2745 av_set_t av1 = NULL;
2746
2747 gcc_assert (sel_bb_end_p (insn));
2748
b8698a0f 2749 /* Find different kind of successors needed for correct computing of
e855c69d
AB
2750 SPEC and TARGET_AVAILABLE attributes. */
2751 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2752
2753 /* Debug output. */
2754 if (sched_verbose >= 6)
2755 {
2756 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2757 dump_insn_vector (sinfo->succs_ok);
2758 sel_print ("\n");
2759 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2760 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2761 }
2762
dd5a833e 2763 /* Add insn to the tail of current path. */
e855c69d
AB
2764 ilist_add (&p, insn);
2765
9771b263 2766 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e855c69d
AB
2767 {
2768 av_set_t succ_set;
2769
2770 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2771 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2772
b8698a0f 2773 av_set_split_usefulness (succ_set,
9771b263 2774 sinfo->probs_ok[is],
e855c69d
AB
2775 sinfo->all_prob);
2776
c6486552 2777 if (sinfo->all_succs_n > 1)
e855c69d 2778 {
b8698a0f 2779 /* Find EXPR'es that came from *all* successors and save them
e855c69d
AB
2780 into expr_in_all_succ_branches. This set will be used later
2781 for calculating speculation attributes of EXPR'es. */
2782 if (is == 0)
2783 {
2784 expr_in_all_succ_branches = av_set_copy (succ_set);
2785
2786 /* Remember the first successor for later. */
2787 zero_succ = succ;
2788 }
2789 else
2790 {
2791 av_set_iterator i;
2792 expr_t expr;
b8698a0f 2793
e855c69d
AB
2794 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2795 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2796 av_set_iter_remove (&i);
2797 }
2798 }
2799
2800 /* Union the av_sets. Check liveness restrictions on target registers
2801 in special case of two successors. */
2802 if (sinfo->succs_ok_n == 2 && is == 1)
2803 {
2804 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2805 basic_block bb1 = BLOCK_FOR_INSN (succ);
2806
2807 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
b8698a0f 2808 av_set_union_and_live (&av1, &succ_set,
e855c69d
AB
2809 BB_LV_SET (bb0),
2810 BB_LV_SET (bb1),
2811 insn);
2812 }
2813 else
2814 av_set_union_and_clear (&av1, &succ_set, insn);
2815 }
2816
b8698a0f 2817 /* Check liveness restrictions via hard way when there are more than
e855c69d
AB
2818 two successors. */
2819 if (sinfo->succs_ok_n > 2)
9771b263 2820 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e855c69d
AB
2821 {
2822 basic_block succ_bb = BLOCK_FOR_INSN (succ);
b8698a0f 2823
e855c69d 2824 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
b8698a0f 2825 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
e855c69d
AB
2826 BB_LV_SET (succ_bb));
2827 }
b8698a0f
L
2828
2829 /* Finally, check liveness restrictions on paths leaving the region. */
e855c69d 2830 if (sinfo->all_succs_n > sinfo->succs_ok_n)
9771b263 2831 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
b8698a0f 2832 mark_unavailable_targets
e855c69d
AB
2833 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2834
2835 if (sinfo->all_succs_n > 1)
2836 {
2837 av_set_iterator i;
2838 expr_t expr;
2839
b8698a0f 2840 /* Increase the spec attribute of all EXPR'es that didn't come
e855c69d
AB
2841 from all successors. */
2842 FOR_EACH_EXPR (expr, i, av1)
2843 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2844 EXPR_SPEC (expr)++;
2845
2846 av_set_clear (&expr_in_all_succ_branches);
b8698a0f
L
2847
2848 /* Do not move conditional branches through other
2849 conditional branches. So, remove all conditional
e855c69d
AB
2850 branches from av_set if current operator is a conditional
2851 branch. */
2852 av_set_substract_cond_branches (&av1);
2853 }
b8698a0f 2854
e855c69d
AB
2855 ilist_remove (&p);
2856 free_succs_info (sinfo);
2857
2858 if (sched_verbose >= 6)
2859 {
2860 sel_print ("av_succs (%d): ", INSN_UID (insn));
2861 dump_av_set (av1);
2862 sel_print ("\n");
2863 }
2864
2865 return av1;
2866}
2867
b8698a0f
L
2868/* This function computes av_set for the FIRST_INSN by dragging valid
2869 av_set through all basic block insns either from the end of basic block
2870 (computed using compute_av_set_at_bb_end) or from the insn on which
e855c69d
AB
2871 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2872 below the basic block and handling conditional branches.
2873 FIRST_INSN - the basic block head, P - path consisting of the insns
2874 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2875 and bb ends are added to the path), WS - current window size,
2876 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2877static av_set_t
b8698a0f 2878compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e855c69d
AB
2879 bool need_copy_p)
2880{
2881 insn_t cur_insn;
2882 int end_ws = ws;
2883 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2884 insn_t after_bb_end = NEXT_INSN (bb_end);
2885 insn_t last_insn;
2886 av_set_t av = NULL;
2887 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2888
2889 /* Return NULL if insn is not on the legitimate downward path. */
2890 if (is_ineligible_successor (first_insn, p))
2891 {
2892 if (sched_verbose >= 6)
2893 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2894
2895 return NULL;
2896 }
2897
b8698a0f 2898 /* If insn already has valid av(insn) computed, just return it. */
e855c69d
AB
2899 if (AV_SET_VALID_P (first_insn))
2900 {
2901 av_set_t av_set;
2902
2903 if (sel_bb_head_p (first_insn))
2904 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2905 else
2906 av_set = NULL;
2907
2908 if (sched_verbose >= 6)
2909 {
2910 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2911 dump_av_set (av_set);
2912 sel_print ("\n");
2913 }
2914
2915 return need_copy_p ? av_set_copy (av_set) : av_set;
2916 }
2917
2918 ilist_add (&p, first_insn);
2919
2920 /* As the result after this loop have completed, in LAST_INSN we'll
b8698a0f
L
2921 have the insn which has valid av_set to start backward computation
2922 from: it either will be NULL because on it the window size was exceeded
2923 or other valid av_set as returned by compute_av_set for the last insn
e855c69d
AB
2924 of the basic block. */
2925 for (last_insn = first_insn; last_insn != after_bb_end;
2926 last_insn = NEXT_INSN (last_insn))
2927 {
2928 /* We may encounter valid av_set not only on bb_head, but also on
2929 those insns on which previously MAX_WS was exceeded. */
2930 if (AV_SET_VALID_P (last_insn))
2931 {
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2934 break;
2935 }
2936
2937 /* The special case: the last insn of the BB may be an
2938 ineligible_successor due to its SEQ_NO that was set on
2939 it as a bookkeeping. */
b8698a0f 2940 if (last_insn != first_insn
e855c69d
AB
2941 && is_ineligible_successor (last_insn, p))
2942 {
2943 if (sched_verbose >= 6)
2944 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
b8698a0f 2945 break;
e855c69d
AB
2946 }
2947
b5b8b0ac
AO
2948 if (DEBUG_INSN_P (last_insn))
2949 continue;
2950
e855c69d
AB
2951 if (end_ws > max_ws)
2952 {
b8698a0f 2953 /* We can reach max lookahead size at bb_header, so clean av_set
e855c69d
AB
2954 first. */
2955 INSN_WS_LEVEL (last_insn) = global_level;
2956
2957 if (sched_verbose >= 6)
2958 sel_print ("Insn %d is beyond the software lookahead window size\n",
2959 INSN_UID (last_insn));
2960 break;
2961 }
2962
2963 end_ws++;
2964 }
2965
2966 /* Get the valid av_set into AV above the LAST_INSN to start backward
2967 computation from. It either will be empty av_set or av_set computed from
2968 the successors on the last insn of the current bb. */
2969 if (last_insn != after_bb_end)
2970 {
2971 av = NULL;
2972
b8698a0f 2973 /* This is needed only to obtain av_sets that are identical to
e855c69d
AB
2974 those computed by the old compute_av_set version. */
2975 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2976 av_set_add (&av, INSN_EXPR (last_insn));
2977 }
2978 else
2979 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2980 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2981
2982 /* Compute av_set in AV starting from below the LAST_INSN up to
2983 location above the FIRST_INSN. */
2984 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
b8698a0f 2985 cur_insn = PREV_INSN (cur_insn))
e855c69d
AB
2986 if (!INSN_NOP_P (cur_insn))
2987 {
2988 expr_t expr;
b8698a0f 2989
e855c69d 2990 moveup_set_expr (&av, cur_insn, false);
b8698a0f
L
2991
2992 /* If the expression for CUR_INSN is already in the set,
e855c69d 2993 replace it by the new one. */
b8698a0f 2994 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e855c69d
AB
2995 if (expr != NULL)
2996 {
2997 clear_expr (expr);
2998 copy_expr (expr, INSN_EXPR (cur_insn));
2999 }
3000 else
3001 av_set_add (&av, INSN_EXPR (cur_insn));
3002 }
3003
3004 /* Clear stale bb_av_set. */
3005 if (sel_bb_head_p (first_insn))
3006 {
3007 av_set_clear (&BB_AV_SET (cur_bb));
3008 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3009 BB_AV_LEVEL (cur_bb) = global_level;
3010 }
3011
3012 if (sched_verbose >= 6)
3013 {
3014 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3015 dump_av_set (av);
3016 sel_print ("\n");
3017 }
3018
3019 ilist_remove (&p);
3020 return av;
3021}
3022
3023/* Compute av set before INSN.
3024 INSN - the current operation (actual rtx INSN)
3025 P - the current path, which is list of insns visited so far
3026 WS - software lookahead window size.
3027 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3028 if we want to save computed av_set in s_i_d, we should make a copy of it.
3029
3030 In the resulting set we will have only expressions that don't have delay
3031 stalls and nonsubstitutable dependences. */
3032static av_set_t
3033compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3034{
3035 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3036}
3037
3038/* Propagate a liveness set LV through INSN. */
3039static void
3040propagate_lv_set (regset lv, insn_t insn)
3041{
3042 gcc_assert (INSN_P (insn));
3043
3044 if (INSN_NOP_P (insn))
3045 return;
3046
02b47899 3047 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
3048}
3049
3050/* Return livness set at the end of BB. */
3051static regset
3052compute_live_after_bb (basic_block bb)
3053{
3054 edge e;
3055 edge_iterator ei;
3056 regset lv = get_clear_regset_from_pool ();
3057
3058 gcc_assert (!ignore_first);
3059
3060 FOR_EACH_EDGE (e, ei, bb->succs)
3061 if (sel_bb_empty_p (e->dest))
3062 {
3063 if (! BB_LV_SET_VALID_P (e->dest))
3064 {
3065 gcc_unreachable ();
3066 gcc_assert (BB_LV_SET (e->dest) == NULL);
3067 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3068 BB_LV_SET_VALID_P (e->dest) = true;
3069 }
3070 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3071 }
3072 else
3073 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3074
3075 return lv;
3076}
3077
3078/* Compute the set of all live registers at the point before INSN and save
3079 it at INSN if INSN is bb header. */
3080regset
3081compute_live (insn_t insn)
3082{
3083 basic_block bb = BLOCK_FOR_INSN (insn);
3084 insn_t final, temp;
3085 regset lv;
3086
3087 /* Return the valid set if we're already on it. */
3088 if (!ignore_first)
3089 {
3090 regset src = NULL;
b8698a0f 3091
e855c69d
AB
3092 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3093 src = BB_LV_SET (bb);
b8698a0f 3094 else
e855c69d
AB
3095 {
3096 gcc_assert (in_current_region_p (bb));
3097 if (INSN_LIVE_VALID_P (insn))
3098 src = INSN_LIVE (insn);
3099 }
b8698a0f 3100
e855c69d
AB
3101 if (src)
3102 {
3103 lv = get_regset_from_pool ();
3104 COPY_REG_SET (lv, src);
3105
3106 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3107 {
3108 COPY_REG_SET (BB_LV_SET (bb), lv);
3109 BB_LV_SET_VALID_P (bb) = true;
3110 }
b8698a0f 3111
e855c69d
AB
3112 return_regset_to_pool (lv);
3113 return lv;
3114 }
3115 }
3116
3117 /* We've skipped the wrong lv_set. Don't skip the right one. */
3118 ignore_first = false;
3119 gcc_assert (in_current_region_p (bb));
3120
b8698a0f
L
3121 /* Find a valid LV set in this block or below, if needed.
3122 Start searching from the next insn: either ignore_first is true, or
e855c69d
AB
3123 INSN doesn't have a correct live set. */
3124 temp = NEXT_INSN (insn);
3125 final = NEXT_INSN (BB_END (bb));
3126 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3127 temp = NEXT_INSN (temp);
3128 if (temp == final)
3129 {
3130 lv = compute_live_after_bb (bb);
3131 temp = PREV_INSN (temp);
3132 }
3133 else
3134 {
3135 lv = get_regset_from_pool ();
3136 COPY_REG_SET (lv, INSN_LIVE (temp));
3137 }
3138
3139 /* Put correct lv sets on the insns which have bad sets. */
3140 final = PREV_INSN (insn);
3141 while (temp != final)
3142 {
3143 propagate_lv_set (lv, temp);
3144 COPY_REG_SET (INSN_LIVE (temp), lv);
3145 INSN_LIVE_VALID_P (temp) = true;
3146 temp = PREV_INSN (temp);
3147 }
3148
3149 /* Also put it in a BB. */
3150 if (sel_bb_head_p (insn))
3151 {
3152 basic_block bb = BLOCK_FOR_INSN (insn);
b8698a0f 3153
e855c69d
AB
3154 COPY_REG_SET (BB_LV_SET (bb), lv);
3155 BB_LV_SET_VALID_P (bb) = true;
3156 }
b8698a0f 3157
e855c69d
AB
3158 /* We return LV to the pool, but will not clear it there. Thus we can
3159 legimatelly use LV till the next use of regset_pool_get (). */
3160 return_regset_to_pool (lv);
3161 return lv;
3162}
3163
3164/* Update liveness sets for INSN. */
3165static inline void
6144a836 3166update_liveness_on_insn (rtx_insn *insn)
e855c69d
AB
3167{
3168 ignore_first = true;
3169 compute_live (insn);
3170}
3171
3172/* Compute liveness below INSN and write it into REGS. */
3173static inline void
6144a836 3174compute_live_below_insn (rtx_insn *insn, regset regs)
e855c69d 3175{
6144a836 3176 rtx_insn *succ;
e855c69d 3177 succ_iterator si;
b8698a0f
L
3178
3179 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e855c69d
AB
3180 IOR_REG_SET (regs, compute_live (succ));
3181}
3182
3183/* Update the data gathered in av and lv sets starting from INSN. */
3184static void
6144a836 3185update_data_sets (rtx_insn *insn)
e855c69d
AB
3186{
3187 update_liveness_on_insn (insn);
3188 if (sel_bb_head_p (insn))
3189 {
3190 gcc_assert (AV_LEVEL (insn) != 0);
3191 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3192 compute_av_set (insn, NULL, 0, 0);
3193 }
3194}
3195\f
3196
3197/* Helper for move_op () and find_used_regs ().
3198 Return speculation type for which a check should be created on the place
3199 of INSN. EXPR is one of the original ops we are searching for. */
3200static ds_t
3201get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3202{
3203 ds_t to_check_ds;
3204 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3205
3206 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3207
3208 if (targetm.sched.get_insn_checked_ds)
3209 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3210
3211 if (spec_info != NULL
3212 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3213 already_checked_ds |= BEGIN_CONTROL;
3214
3215 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3216
3217 to_check_ds &= ~already_checked_ds;
3218
3219 return to_check_ds;
3220}
3221
b8698a0f 3222/* Find the set of registers that are unavailable for storing expres
e855c69d
AB
3223 while moving ORIG_OPS up on the path starting from INSN due to
3224 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3225
3226 All the original operations found during the traversal are saved in the
3227 ORIGINAL_INSNS list.
3228
3229 REG_RENAME_P denotes the set of hardware registers that
3230 can not be used with renaming due to the register class restrictions,
b8698a0f 3231 mode restrictions and other (the register we'll choose should be
e855c69d
AB
3232 compatible class with the original uses, shouldn't be in call_used_regs,
3233 should be HARD_REGNO_RENAME_OK etc).
3234
3235 Returns TRUE if we've found all original insns, FALSE otherwise.
3236
3237 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
b8698a0f
L
3238 to traverse the code motion paths. This helper function finds registers
3239 that are not available for storing expres while moving ORIG_OPS up on the
e855c69d
AB
3240 path starting from INSN. A register considered as used on the moving path,
3241 if one of the following conditions is not satisfied:
3242
b8698a0f
L
3243 (1) a register not set or read on any path from xi to an instance of
3244 the original operation,
3245 (2) not among the live registers of the point immediately following the
e855c69d
AB
3246 first original operation on a given downward path, except for the
3247 original target register of the operation,
b8698a0f 3248 (3) not live on the other path of any conditional branch that is passed
e855c69d
AB
3249 by the operation, in case original operations are not present on
3250 both paths of the conditional branch.
3251
3252 All the original operations found during the traversal are saved in the
3253 ORIGINAL_INSNS list.
3254
b8698a0f
L
3255 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3256 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e855c69d
AB
3257 to unavailable hard regs at the point original operation is found. */
3258
3259static bool
3260find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3261 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3262{
3263 def_list_iterator i;
3264 def_t def;
3265 int res;
3266 bool needs_spec_check_p = false;
3267 expr_t expr;
3268 av_set_iterator expr_iter;
3269 struct fur_static_params sparams;
3270 struct cmpd_local_params lparams;
3271
3272 /* We haven't visited any blocks yet. */
3273 bitmap_clear (code_motion_visited_blocks);
3274
3275 /* Init parameters for code_motion_path_driver. */
3276 sparams.crosses_call = false;
3277 sparams.original_insns = original_insns;
3278 sparams.used_regs = used_regs;
b8698a0f 3279
e855c69d
AB
3280 /* Set the appropriate hooks and data. */
3281 code_motion_path_driver_info = &fur_hooks;
b8698a0f 3282
e855c69d
AB
3283 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3284
3285 reg_rename_p->crosses_call |= sparams.crosses_call;
3286
3287 gcc_assert (res == 1);
3288 gcc_assert (original_insns && *original_insns);
3289
3290 /* ??? We calculate whether an expression needs a check when computing
3291 av sets. This information is not as precise as it could be due to
3292 merging this bit in merge_expr. We can do better in find_used_regs,
b8698a0f 3293 but we want to avoid multiple traversals of the same code motion
e855c69d
AB
3294 paths. */
3295 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3296 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3297
b8698a0f 3298 /* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
3299 for renaming expr in INSN due to hardware restrictions (register class,
3300 modes compatibility etc). */
3301 FOR_EACH_DEF (def, i, *original_insns)
3302 {
3303 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3304
3305 if (VINSN_SEPARABLE_P (vinsn))
3306 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3307
b8698a0f 3308 /* Do not allow clobbering of ld.[sa] address in case some of the
e855c69d
AB
3309 original operations need a check. */
3310 if (needs_spec_check_p)
3311 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3312 }
3313
3314 return true;
3315}
3316\f
3317
3318/* Functions to choose the best insn from available ones. */
3319
3320/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3321static int
3322sel_target_adjust_priority (expr_t expr)
3323{
3324 int priority = EXPR_PRIORITY (expr);
3325 int new_priority;
3326
3327 if (targetm.sched.adjust_priority)
3328 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3329 else
3330 new_priority = priority;
3331
3332 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3333 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3334
3335 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3336
136e01a3
AB
3337 if (sched_verbose >= 4)
3338 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
b8698a0f 3339 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e855c69d
AB
3340 EXPR_PRIORITY_ADJ (expr), new_priority);
3341
3342 return new_priority;
3343}
3344
3345/* Rank two available exprs for schedule. Never return 0 here. */
b8698a0f 3346static int
e855c69d
AB
3347sel_rank_for_schedule (const void *x, const void *y)
3348{
3349 expr_t tmp = *(const expr_t *) y;
3350 expr_t tmp2 = *(const expr_t *) x;
3351 insn_t tmp_insn, tmp2_insn;
3352 vinsn_t tmp_vinsn, tmp2_vinsn;
3353 int val;
3354
3355 tmp_vinsn = EXPR_VINSN (tmp);
3356 tmp2_vinsn = EXPR_VINSN (tmp2);
3357 tmp_insn = EXPR_INSN_RTX (tmp);
3358 tmp2_insn = EXPR_INSN_RTX (tmp2);
b8698a0f 3359
b5b8b0ac
AO
3360 /* Schedule debug insns as early as possible. */
3361 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3362 return -1;
3363 else if (DEBUG_INSN_P (tmp2_insn))
3364 return 1;
3365
e855c69d
AB
3366 /* Prefer SCHED_GROUP_P insns to any others. */
3367 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3368 {
b8698a0f 3369 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e855c69d
AB
3370 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3371
3372 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3373 cannot be cloned. */
3374 if (VINSN_UNIQUE_P (tmp2_vinsn))
3375 return 1;
3376 return -1;
3377 }
3378
3379 /* Discourage scheduling of speculative checks. */
3380 val = (sel_insn_is_speculation_check (tmp_insn)
3381 - sel_insn_is_speculation_check (tmp2_insn));
3382 if (val)
3383 return val;
3384
3385 /* Prefer not scheduled insn over scheduled one. */
3386 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3387 {
3388 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3389 if (val)
3390 return val;
3391 }
3392
3393 /* Prefer jump over non-jump instruction. */
3394 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3395 return -1;
3396 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3397 return 1;
3398
3399 /* Prefer an expr with greater priority. */
8041c629 3400 if (EXPR_USEFULNESS (tmp) != 0 || EXPR_USEFULNESS (tmp2) != 0)
e855c69d
AB
3401 {
3402 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3403 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3404
3405 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3406 }
3407 else
b8698a0f 3408 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
e855c69d
AB
3409 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3410 if (val)
3411 return val;
3412
3413 if (spec_info != NULL && spec_info->mask != 0)
3414 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3415 {
3416 ds_t ds1, ds2;
3417 dw_t dw1, dw2;
3418 int dw;
3419
3420 ds1 = EXPR_SPEC_DONE_DS (tmp);
3421 if (ds1)
3422 dw1 = ds_weak (ds1);
3423 else
3424 dw1 = NO_DEP_WEAK;
3425
3426 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3427 if (ds2)
3428 dw2 = ds_weak (ds2);
3429 else
3430 dw2 = NO_DEP_WEAK;
3431
3432 dw = dw2 - dw1;
3433 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3434 return dw;
3435 }
3436
e855c69d 3437 /* Prefer an old insn to a bookkeeping insn. */
b8698a0f 3438 if (INSN_UID (tmp_insn) < first_emitted_uid
e855c69d
AB
3439 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3440 return -1;
b8698a0f 3441 if (INSN_UID (tmp_insn) >= first_emitted_uid
e855c69d
AB
3442 && INSN_UID (tmp2_insn) < first_emitted_uid)
3443 return 1;
3444
b8698a0f 3445 /* Prefer an insn with smaller UID, as a last resort.
e855c69d
AB
3446 We can't safely use INSN_LUID as it is defined only for those insns
3447 that are in the stream. */
3448 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3449}
3450
b8698a0f 3451/* Filter out expressions from av set pointed to by AV_PTR
e855c69d
AB
3452 that are pipelined too many times. */
3453static void
3454process_pipelined_exprs (av_set_t *av_ptr)
3455{
3456 expr_t expr;
3457 av_set_iterator si;
3458
3459 /* Don't pipeline already pipelined code as that would increase
b8698a0f 3460 number of unnecessary register moves. */
e855c69d
AB
3461 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3462 {
3463 if (EXPR_SCHED_TIMES (expr)
3464 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3465 av_set_iter_remove (&si);
3466 }
3467}
3468
3469/* Filter speculative insns from AV_PTR if we don't want them. */
3470static void
3471process_spec_exprs (av_set_t *av_ptr)
3472{
e855c69d
AB
3473 expr_t expr;
3474 av_set_iterator si;
3475
3476 if (spec_info == NULL)
3477 return;
3478
3479 /* Scan *AV_PTR to find out if we want to consider speculative
3480 instructions for scheduling. */
3481 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 {
3483 ds_t ds;
3484
3485 ds = EXPR_SPEC_DONE_DS (expr);
3486
3487 /* The probability of a success is too low - don't speculate. */
3488 if ((ds & SPECULATIVE)
3489 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3490 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3491 || (pipelining_p && false
3492 && (ds & DATA_SPEC)
3493 && (ds & CONTROL_SPEC))))
3494 {
3495 av_set_iter_remove (&si);
3496 continue;
3497 }
e855c69d
AB
3498 }
3499}
3500
b8698a0f
L
3501/* Search for any use-like insns in AV_PTR and decide on scheduling
3502 them. Return one when found, and NULL otherwise.
e855c69d
AB
3503 Note that we check here whether a USE could be scheduled to avoid
3504 an infinite loop later. */
3505static expr_t
3506process_use_exprs (av_set_t *av_ptr)
3507{
3508 expr_t expr;
3509 av_set_iterator si;
3510 bool uses_present_p = false;
3511 bool try_uses_p = true;
3512
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3514 {
3515 /* This will also initialize INSN_CODE for later use. */
3516 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3517 {
3518 /* If we have a USE in *AV_PTR that was not scheduled yet,
3519 do so because it will do good only. */
3520 if (EXPR_SCHED_TIMES (expr) <= 0)
3521 {
3522 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3523 return expr;
3524
3525 av_set_iter_remove (&si);
3526 }
3527 else
3528 {
3529 gcc_assert (pipelining_p);
3530
3531 uses_present_p = true;
3532 }
3533 }
3534 else
3535 try_uses_p = false;
3536 }
3537
3538 if (uses_present_p)
3539 {
3540 /* If we don't want to schedule any USEs right now and we have some
3541 in *AV_PTR, remove them, else just return the first one found. */
3542 if (!try_uses_p)
3543 {
3544 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3545 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3546 av_set_iter_remove (&si);
3547 }
3548 else
3549 {
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 {
3552 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3553
3554 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3555 return expr;
3556
3557 av_set_iter_remove (&si);
3558 }
3559 }
3560 }
3561
3562 return NULL;
3563}
3564
0c02ab39
AB
3565/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3566 EXPR's history of changes. */
e855c69d
AB
3567static bool
3568vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3569{
0c02ab39 3570 vinsn_t vinsn, expr_vinsn;
e855c69d 3571 int n;
0c02ab39 3572 unsigned i;
e855c69d 3573
0c02ab39
AB
3574 /* Start with checking expr itself and then proceed with all the old forms
3575 of expr taken from its history vector. */
3576 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3577 expr_vinsn;
9771b263
DN
3578 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3579 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
0c02ab39 3580 : NULL))
9771b263 3581 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
0c02ab39
AB
3582 if (VINSN_SEPARABLE_P (vinsn))
3583 {
3584 if (vinsn_equal_p (vinsn, expr_vinsn))
3585 return true;
3586 }
3587 else
3588 {
3589 /* For non-separable instructions, the blocking insn can have
3590 another pattern due to substitution, and we can't choose
3591 different register as in the above case. Check all registers
3592 being written instead. */
3593 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3594 VINSN_REG_SETS (expr_vinsn)))
3595 return true;
3596 }
e855c69d
AB
3597
3598 return false;
3599}
3600
e855c69d
AB
3601/* Return true if either of expressions from ORIG_OPS can be blocked
3602 by previously created bookkeeping code. STATIC_PARAMS points to static
3603 parameters of move_op. */
3604static bool
3605av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3606{
3607 expr_t expr;
3608 av_set_iterator iter;
3609 moveop_static_params_p sparams;
3610
3611 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3612 created while scheduling on another fence. */
3613 FOR_EACH_EXPR (expr, iter, orig_ops)
3614 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3615 return true;
3616
3617 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3618 sparams = (moveop_static_params_p) static_params;
3619
3620 /* Expressions can be also blocked by bookkeeping created during current
3621 move_op. */
3622 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3623 FOR_EACH_EXPR (expr, iter, orig_ops)
3624 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3625 return true;
3626
3627 /* Expressions in ORIG_OPS may have wrong destination register due to
3628 renaming. Check with the right register instead. */
3629 if (sparams->dest && REG_P (sparams->dest))
3630 {
cf3d5824 3631 rtx reg = sparams->dest;
e855c69d
AB
3632 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3633
cf3d5824
SG
3634 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3635 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3636 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
e855c69d
AB
3637 return true;
3638 }
3639
3640 return false;
3641}
e855c69d
AB
3642
3643/* Clear VINSN_VEC and detach vinsns. */
3644static void
3645vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3646{
9771b263 3647 unsigned len = vinsn_vec->length ();
e855c69d
AB
3648 if (len > 0)
3649 {
3650 vinsn_t vinsn;
3651 int n;
b8698a0f 3652
9771b263 3653 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
e855c69d 3654 vinsn_detach (vinsn);
9771b263 3655 vinsn_vec->block_remove (0, len);
e855c69d
AB
3656 }
3657}
3658
3659/* Add the vinsn of EXPR to the VINSN_VEC. */
3660static void
3661vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3662{
3663 vinsn_attach (EXPR_VINSN (expr));
9771b263 3664 vinsn_vec->safe_push (EXPR_VINSN (expr));
e855c69d
AB
3665}
3666
b8698a0f 3667/* Free the vector representing blocked expressions. */
e855c69d 3668static void
9771b263 3669vinsn_vec_free (vinsn_vec_t &vinsn_vec)
e855c69d 3670{
9771b263 3671 vinsn_vec.release ();
e855c69d
AB
3672}
3673
3674/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3675
3676void sel_add_to_insn_priority (rtx insn, int amount)
3677{
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679
3680 if (sched_verbose >= 2)
b8698a0f 3681 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e855c69d
AB
3682 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3684}
3685
b8698a0f 3686/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e855c69d
AB
3687 true if there is something to schedule. BNDS and FENCE are current
3688 boundaries and fence, respectively. If we need to stall for some cycles
b8698a0f 3689 before an expr from AV would become available, write this number to
e855c69d
AB
3690 *PNEED_STALL. */
3691static bool
3692fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3693 int *pneed_stall)
3694{
3695 av_set_iterator si;
3696 expr_t expr;
3697 int sched_next_worked = 0, stalled, n;
3698 static int av_max_prio, est_ticks_till_branch;
3699 int min_need_stall = -1;
3700 deps_t dc = BND_DC (BLIST_BND (bnds));
3701
3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703 already scheduled. */
3704 if (av == NULL)
3705 return false;
3706
3707 /* Empty vector from the previous stuff. */
9771b263
DN
3708 if (vec_av_set.length () > 0)
3709 vec_av_set.block_remove (0, vec_av_set.length ());
e855c69d
AB
3710
3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3712 for each insn. */
9771b263 3713 gcc_assert (vec_av_set.is_empty ());
e855c69d 3714 FOR_EACH_EXPR (expr, si, av)
b8698a0f 3715 {
9771b263 3716 vec_av_set.safe_push (expr);
e855c69d
AB
3717
3718 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719
3720 /* Adjust priority using target backend hook. */
3721 sel_target_adjust_priority (expr);
3722 }
3723
3724 /* Sort the vector. */
9771b263 3725 vec_av_set.qsort (sel_rank_for_schedule);
e855c69d
AB
3726
3727 /* We record maximal priority of insns in av set for current instruction
3728 group. */
3729 if (FENCE_STARTS_CYCLE_P (fence))
3730 av_max_prio = est_ticks_till_branch = INT_MIN;
3731
3732 /* Filter out inappropriate expressions. Loop's direction is reversed to
9771b263 3733 visit "best" instructions first. We assume that vec::unordered_remove
e855c69d 3734 moves last element in place of one being deleted. */
9771b263 3735 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
e855c69d 3736 {
9771b263 3737 expr_t expr = vec_av_set[n];
e855c69d 3738 insn_t insn = EXPR_INSN_RTX (expr);
f3764768 3739 signed char target_available;
e855c69d
AB
3740 bool is_orig_reg_p = true;
3741 int need_cycles, new_prio;
c64476f1 3742 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
e855c69d
AB
3743
3744 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3745 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3746 {
9771b263 3747 vec_av_set.unordered_remove (n);
e855c69d
AB
3748 continue;
3749 }
3750
b8698a0f 3751 /* Set number of sched_next insns (just in case there
e855c69d
AB
3752 could be several). */
3753 if (FENCE_SCHED_NEXT (fence))
3754 sched_next_worked++;
b8698a0f
L
3755
3756 /* Check all liveness requirements and try renaming.
e855c69d
AB
3757 FIXME: try to minimize calls to this. */
3758 target_available = EXPR_TARGET_AVAILABLE (expr);
3759
3760 /* If insn was already scheduled on the current fence,
3761 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
c1c99405
AB
3762 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3763 && !fence_insn_p)
e855c69d
AB
3764 target_available = -1;
3765
3766 /* If the availability of the EXPR is invalidated by the insertion of
3767 bookkeeping earlier, make sure that we won't choose this expr for
3768 scheduling if it's not separable, and if it is separable, then
3769 we have to recompute the set of available registers for it. */
3770 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3771 {
9771b263 3772 vec_av_set.unordered_remove (n);
e855c69d
AB
3773 if (sched_verbose >= 4)
3774 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3775 INSN_UID (insn));
3776 continue;
3777 }
b8698a0f 3778
e855c69d
AB
3779 if (target_available == true)
3780 {
3781 /* Do nothing -- we can use an existing register. */
3782 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3783 }
b8698a0f 3784 else if (/* Non-separable instruction will never
e855c69d
AB
3785 get another register. */
3786 (target_available == false
3787 && !EXPR_SEPARABLE_P (expr))
3788 /* Don't try to find a register for low-priority expression. */
9771b263 3789 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
e855c69d
AB
3790 /* ??? FIXME: Don't try to rename data speculation. */
3791 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3792 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3793 {
9771b263 3794 vec_av_set.unordered_remove (n);
e855c69d 3795 if (sched_verbose >= 4)
b8698a0f 3796 sel_print ("Expr %d has no suitable target register\n",
e855c69d 3797 INSN_UID (insn));
c64476f1
AB
3798
3799 /* A fence insn should not get here. */
3800 gcc_assert (!fence_insn_p);
3801 continue;
e855c69d
AB
3802 }
3803
c64476f1
AB
3804 /* At this point a fence insn should always be available. */
3805 gcc_assert (!fence_insn_p
3806 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3807
e855c69d
AB
3808 /* Filter expressions that need to be renamed or speculated when
3809 pipelining, because compensating register copies or speculation
3810 checks are likely to be placed near the beginning of the loop,
3811 causing a stall. */
3812 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3813 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3814 {
3815 /* Estimation of number of cycles until loop branch for
3816 renaming/speculation to be successful. */
3817 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3818
3819 if ((int) current_loop_nest->ninsns < 9)
3820 {
9771b263 3821 vec_av_set.unordered_remove (n);
e855c69d
AB
3822 if (sched_verbose >= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3826 }
3827
3828 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3829 < need_n_ticks_till_branch * issue_rate / 2
3830 && est_ticks_till_branch < need_n_ticks_till_branch)
3831 {
9771b263 3832 vec_av_set.unordered_remove (n);
e855c69d
AB
3833 if (sched_verbose >= 4)
3834 sel_print ("Pipelining expr %d will likely cause stall\n",
3835 INSN_UID (insn));
3836 continue;
3837 }
3838 }
3839
3840 /* We want to schedule speculation checks as late as possible. Discard
3841 them from av set if there are instructions with higher priority. */
3842 if (sel_insn_is_speculation_check (insn)
3843 && EXPR_PRIORITY (expr) < av_max_prio)
3844 {
3845 stalled++;
3846 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
9771b263 3847 vec_av_set.unordered_remove (n);
e855c69d
AB
3848 if (sched_verbose >= 4)
3849 sel_print ("Delaying speculation check %d until its first use\n",
3850 INSN_UID (insn));
3851 continue;
3852 }
3853
3854 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3855 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3856 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3857
3858 /* Don't allow any insns whose data is not yet ready.
3859 Check first whether we've already tried them and failed. */
3860 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3861 {
3862 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3863 - FENCE_CYCLE (fence));
3864 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3865 est_ticks_till_branch = MAX (est_ticks_till_branch,
3866 EXPR_PRIORITY (expr) + need_cycles);
3867
3868 if (need_cycles > 0)
3869 {
3870 stalled++;
b8698a0f 3871 min_need_stall = (min_need_stall < 0
e855c69d
AB
3872 ? need_cycles
3873 : MIN (min_need_stall, need_cycles));
9771b263 3874 vec_av_set.unordered_remove (n);
e855c69d
AB
3875
3876 if (sched_verbose >= 4)
b8698a0f 3877 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e855c69d
AB
3878 INSN_UID (insn),
3879 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3880 continue;
3881 }
3882 }
3883
b8698a0f 3884 /* Now resort to dependence analysis to find whether EXPR might be
e855c69d
AB
3885 stalled due to dependencies from FENCE's context. */
3886 need_cycles = tick_check_p (expr, dc, fence);
3887 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3888
3889 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3890 est_ticks_till_branch = MAX (est_ticks_till_branch,
3891 new_prio);
3892
3893 if (need_cycles > 0)
3894 {
3895 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3896 {
3897 int new_size = INSN_UID (insn) * 3 / 2;
b8698a0f
L
3898
3899 FENCE_READY_TICKS (fence)
e855c69d
AB
3900 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3901 new_size, FENCE_READY_TICKS_SIZE (fence),
3902 sizeof (int));
3903 }
b8698a0f
L
3904 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3905 = FENCE_CYCLE (fence) + need_cycles;
3906
e855c69d 3907 stalled++;
b8698a0f 3908 min_need_stall = (min_need_stall < 0
e855c69d
AB
3909 ? need_cycles
3910 : MIN (min_need_stall, need_cycles));
3911
9771b263 3912 vec_av_set.unordered_remove (n);
b8698a0f 3913
e855c69d 3914 if (sched_verbose >= 4)
b8698a0f 3915 sel_print ("Expr %d is not ready yet until cycle %d\n",
e855c69d
AB
3916 INSN_UID (insn),
3917 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3918 continue;
3919 }
3920
3921 if (sched_verbose >= 4)
3922 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3923 min_need_stall = 0;
3924 }
3925
3926 /* Clear SCHED_NEXT. */
3927 if (FENCE_SCHED_NEXT (fence))
3928 {
3929 gcc_assert (sched_next_worked == 1);
6144a836 3930 FENCE_SCHED_NEXT (fence) = NULL;
e855c69d
AB
3931 }
3932
3933 /* No need to stall if this variable was not initialized. */
3934 if (min_need_stall < 0)
3935 min_need_stall = 0;
3936
9771b263 3937 if (vec_av_set.is_empty ())
e855c69d
AB
3938 {
3939 /* We need to set *pneed_stall here, because later we skip this code
3940 when ready list is empty. */
3941 *pneed_stall = min_need_stall;
3942 return false;
3943 }
3944 else
3945 gcc_assert (min_need_stall == 0);
3946
3947 /* Sort the vector. */
9771b263 3948 vec_av_set.qsort (sel_rank_for_schedule);
b8698a0f 3949
e855c69d
AB
3950 if (sched_verbose >= 4)
3951 {
b8698a0f 3952 sel_print ("Total ready exprs: %d, stalled: %d\n",
9771b263
DN
3953 vec_av_set.length (), stalled);
3954 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3955 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e855c69d
AB
3956 dump_expr (expr);
3957 sel_print ("\n");
3958 }
3959
3960 *pneed_stall = 0;
3961 return true;
3962}
3963
3964/* Convert a vectored and sorted av set to the ready list that
3965 the rest of the backend wants to see. */
3966static void
3967convert_vec_av_set_to_ready (void)
3968{
3969 int n;
3970 expr_t expr;
3971
3972 /* Allocate and fill the ready list from the sorted vector. */
9771b263 3973 ready.n_ready = vec_av_set.length ();
e855c69d 3974 ready.first = ready.n_ready - 1;
b8698a0f 3975
e855c69d
AB
3976 gcc_assert (ready.n_ready > 0);
3977
3978 if (ready.n_ready > max_issue_size)
3979 {
3980 max_issue_size = ready.n_ready;
3981 sched_extend_ready_list (ready.n_ready);
3982 }
b8698a0f 3983
9771b263 3984 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e855c69d
AB
3985 {
3986 vinsn_t vi = EXPR_VINSN (expr);
3987 insn_t insn = VINSN_INSN_RTX (vi);
3988
3989 ready_try[n] = 0;
6144a836 3990 ready.vec[n] = insn;
e855c69d
AB
3991 }
3992}
3993
3994/* Initialize ready list from *AV_PTR for the max_issue () call.
3995 If any unrecognizable insn found in *AV_PTR, return it (and skip
b8698a0f
L
3996 max_issue). BND and FENCE are current boundary and fence,
3997 respectively. If we need to stall for some cycles before an expr
e855c69d
AB
3998 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3999static expr_t
4000fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4001 int *pneed_stall)
4002{
4003 expr_t expr;
4004
4005 /* We do not support multiple boundaries per fence. */
4006 gcc_assert (BLIST_NEXT (bnds) == NULL);
4007
b8698a0f 4008 /* Process expressions required special handling, i.e. pipelined,
e855c69d
AB
4009 speculative and recog() < 0 expressions first. */
4010 process_pipelined_exprs (av_ptr);
4011 process_spec_exprs (av_ptr);
4012
4013 /* A USE could be scheduled immediately. */
4014 expr = process_use_exprs (av_ptr);
4015 if (expr)
4016 {
4017 *pneed_stall = 0;
4018 return expr;
4019 }
4020
4021 /* Turn the av set to a vector for sorting. */
4022 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4023 {
4024 ready.n_ready = 0;
4025 return NULL;
4026 }
4027
4028 /* Build the final ready list. */
4029 convert_vec_av_set_to_ready ();
4030 return NULL;
4031}
4032
4033/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4034static bool
4035sel_dfa_new_cycle (insn_t insn, fence_t fence)
4036{
b8698a0f
L
4037 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4038 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e855c69d
AB
4039 : FENCE_CYCLE (fence) - 1;
4040 bool res = false;
4041 int sort_p = 0;
4042
4043 if (!targetm.sched.dfa_new_cycle)
4044 return false;
4045
4046 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4047
4048 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4049 insn, last_scheduled_cycle,
4050 FENCE_CYCLE (fence), &sort_p))
4051 {
4052 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4053 advance_one_cycle (fence);
4054 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4055 res = true;
4056 }
4057
4058 return res;
4059}
4060
4061/* Invoke reorder* target hooks on the ready list. Return the number of insns
4062 we can issue. FENCE is the current fence. */
4063static int
4064invoke_reorder_hooks (fence_t fence)
4065{
4066 int issue_more;
4067 bool ran_hook = false;
4068
4069 /* Call the reorder hook at the beginning of the cycle, and call
4070 the reorder2 hook in the middle of the cycle. */
4071 if (FENCE_ISSUED_INSNS (fence) == 0)
4072 {
4073 if (targetm.sched.reorder
4074 && !SCHED_GROUP_P (ready_element (&ready, 0))
4075 && ready.n_ready > 1)
4076 {
4077 /* Don't give reorder the most prioritized insn as it can break
4078 pipelining. */
4079 if (pipelining_p)
4080 --ready.n_ready;
4081
4082 issue_more
4083 = targetm.sched.reorder (sched_dump, sched_verbose,
4084 ready_lastpos (&ready),
4085 &ready.n_ready, FENCE_CYCLE (fence));
4086
4087 if (pipelining_p)
4088 ++ready.n_ready;
4089
4090 ran_hook = true;
4091 }
4092 else
4093 /* Initialize can_issue_more for variable_issue. */
4094 issue_more = issue_rate;
4095 }
4096 else if (targetm.sched.reorder2
4097 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4098 {
4099 if (ready.n_ready == 1)
b8698a0f 4100 issue_more =
e855c69d
AB
4101 targetm.sched.reorder2 (sched_dump, sched_verbose,
4102 ready_lastpos (&ready),
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104 else
4105 {
4106 if (pipelining_p)
4107 --ready.n_ready;
4108
4109 issue_more =
4110 targetm.sched.reorder2 (sched_dump, sched_verbose,
4111 ready.n_ready
4112 ? ready_lastpos (&ready) : NULL,
4113 &ready.n_ready, FENCE_CYCLE (fence));
4114
4115 if (pipelining_p)
4116 ++ready.n_ready;
4117 }
4118
4119 ran_hook = true;
4120 }
b8698a0f 4121 else
136e01a3 4122 issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
4123
4124 /* Ensure that ready list and vec_av_set are in line with each other,
4125 i.e. vec_av_set[i] == ready_element (&ready, i). */
4126 if (issue_more && ran_hook)
4127 {
4128 int i, j, n;
ce1ce33a 4129 rtx_insn **arr = ready.vec;
9771b263 4130 expr_t *vec = vec_av_set.address ();
e855c69d
AB
4131
4132 for (i = 0, n = ready.n_ready; i < n; i++)
4133 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4134 {
e855c69d
AB
4135 for (j = i; j < n; j++)
4136 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4137 break;
4138 gcc_assert (j < n);
4139
fab27f52 4140 std::swap (vec[i], vec[j]);
e855c69d
AB
4141 }
4142 }
4143
4144 return issue_more;
4145}
4146
073a8998 4147/* Return an EXPR corresponding to INDEX element of ready list, if
b8698a0f
L
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e855c69d
AB
4150 ready.vec otherwise. */
4151static inline expr_t
4152find_expr_for_ready (int index, bool follow_ready_element)
4153{
4154 expr_t expr;
4155 int real_index;
4156
4157 real_index = follow_ready_element ? ready.first - index : index;
4158
9771b263 4159 expr = vec_av_set[real_index];
e855c69d
AB
4160 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4161
4162 return expr;
4163}
4164
4165/* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4167static int
4168invoke_dfa_lookahead_guard (void)
4169{
4170 int i, n;
b8698a0f 4171 bool have_hook
e855c69d
AB
4172 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4173
4174 if (sched_verbose >= 2)
4175 sel_print ("ready after reorder: ");
4176
4177 for (i = 0, n = 0; i < ready.n_ready; i++)
4178 {
4179 expr_t expr;
4180 insn_t insn;
4181 int r;
4182
b8698a0f 4183 /* In this loop insn is Ith element of the ready list given by
e855c69d
AB
4184 ready_element, not Ith element of ready.vec. */
4185 insn = ready_element (&ready, i);
b8698a0f 4186
e855c69d
AB
4187 if (! have_hook || i == 0)
4188 r = 0;
4189 else
4960a0cb 4190 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
b8698a0f 4191
e855c69d 4192 gcc_assert (INSN_CODE (insn) >= 0);
b8698a0f
L
4193
4194 /* Only insns with ready_try = 0 can get here
e855c69d
AB
4195 from fill_ready_list. */
4196 gcc_assert (ready_try [i] == 0);
4197 ready_try[i] = r;
4198 if (!r)
4199 n++;
4200
4201 expr = find_expr_for_ready (i, true);
b8698a0f 4202
e855c69d
AB
4203 if (sched_verbose >= 2)
4204 {
4205 dump_vinsn (EXPR_VINSN (expr));
4206 sel_print (":%d; ", ready_try[i]);
4207 }
4208 }
4209
4210 if (sched_verbose >= 2)
4211 sel_print ("\n");
4212 return n;
4213}
4214
4215/* Calculate the number of privileged insns and return it. */
4216static int
4217calculate_privileged_insns (void)
4218{
4219 expr_t cur_expr, min_spec_expr = NULL;
e855c69d
AB
4220 int privileged_n = 0, i;
4221
4222 for (i = 0; i < ready.n_ready; i++)
4223 {
4224 if (ready_try[i])
4225 continue;
4226
4227 if (! min_spec_expr)
1124098b 4228 min_spec_expr = find_expr_for_ready (i, true);
b8698a0f 4229
e855c69d
AB
4230 cur_expr = find_expr_for_ready (i, true);
4231
4232 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4233 break;
4234
4235 ++privileged_n;
4236 }
4237
4238 if (i == ready.n_ready)
4239 privileged_n = 0;
4240
4241 if (sched_verbose >= 2)
4242 sel_print ("privileged_n: %d insns with SPEC %d\n",
4243 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4244 return privileged_n;
4245}
4246
b8698a0f 4247/* Call the rest of the hooks after the choice was made. Return
e855c69d
AB
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4251static int
6144a836 4252invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
e855c69d
AB
4253{
4254 gcc_assert (INSN_P (best_insn));
4255
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (best_insn, fence);
b8698a0f 4258
e855c69d
AB
4259 if (targetm.sched.variable_issue)
4260 {
4261 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
b8698a0f 4262 issue_more =
e855c69d
AB
4263 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4264 issue_more);
4265 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4266 }
81fa2944
AB
4267 else if (!DEBUG_INSN_P (best_insn)
4268 && GET_CODE (PATTERN (best_insn)) != USE
4269 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
e855c69d
AB
4270 issue_more--;
4271
4272 return issue_more;
4273}
4274
d66b8f4b 4275/* Estimate the cost of issuing INSN on DFA state STATE. */
e855c69d 4276static int
84034c69 4277estimate_insn_cost (rtx_insn *insn, state_t state)
e855c69d
AB
4278{
4279 static state_t temp = NULL;
4280 int cost;
4281
4282 if (!temp)
4283 temp = xmalloc (dfa_state_size);
4284
4285 memcpy (temp, state, dfa_state_size);
4286 cost = state_transition (temp, insn);
4287
4288 if (cost < 0)
4289 return 0;
4290 else if (cost == 0)
4291 return 1;
4292 return cost;
4293}
4294
b8698a0f 4295/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e855c69d
AB
4296 This function properly handles ASMs, USEs etc. */
4297static int
4298get_expr_cost (expr_t expr, fence_t fence)
4299{
eec818f4 4300 rtx_insn *insn = EXPR_INSN_RTX (expr);
e855c69d
AB
4301
4302 if (recog_memoized (insn) < 0)
4303 {
b8698a0f 4304 if (!FENCE_STARTS_CYCLE_P (fence)
e855c69d
AB
4305 && INSN_ASM_P (insn))
4306 /* This is asm insn which is tryed to be issued on the
4307 cycle not first. Issue it on the next cycle. */
4308 return 1;
4309 else
4310 /* A USE insn, or something else we don't need to
4311 understand. We can't pass these directly to
4312 state_transition because it will trigger a
4313 fatal error for unrecognizable insns. */
4314 return 0;
4315 }
4316 else
d66b8f4b 4317 return estimate_insn_cost (insn, FENCE_STATE (fence));
e855c69d
AB
4318}
4319
b8698a0f 4320/* Find the best insn for scheduling, either via max_issue or just take
e855c69d
AB
4321 the most prioritized available. */
4322static int
4323choose_best_insn (fence_t fence, int privileged_n, int *index)
4324{
4325 int can_issue = 0;
4326
4327 if (dfa_lookahead > 0)
4328 {
4329 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
894fd6f2 4330 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
e855c69d 4331 can_issue = max_issue (&ready, privileged_n,
894fd6f2 4332 FENCE_STATE (fence), true, index);
e855c69d
AB
4333 if (sched_verbose >= 2)
4334 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4335 can_issue, FENCE_ISSUED_INSNS (fence));
4336 }
4337 else
4338 {
4339 /* We can't use max_issue; just return the first available element. */
4340 int i;
4341
4342 for (i = 0; i < ready.n_ready; i++)
4343 {
4344 expr_t expr = find_expr_for_ready (i, true);
4345
4346 if (get_expr_cost (expr, fence) < 1)
4347 {
4348 can_issue = can_issue_more;
4349 *index = i;
4350
4351 if (sched_verbose >= 2)
4352 sel_print ("using %dth insn from the ready list\n", i + 1);
4353
4354 break;
4355 }
4356 }
4357
4358 if (i == ready.n_ready)
4359 {
4360 can_issue = 0;
4361 *index = -1;
4362 }
4363 }
4364
4365 return can_issue;
4366}
4367
b8698a0f
L
4368/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4369 BNDS and FENCE are current boundaries and scheduling fence respectively.
4370 Return the expr found and NULL if nothing can be issued atm.
4371 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e855c69d
AB
4372static expr_t
4373find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4374 int *pneed_stall)
4375{
4376 expr_t best;
b8698a0f 4377
e855c69d
AB
4378 /* Choose the best insn for scheduling via:
4379 1) sorting the ready list based on priority;
4380 2) calling the reorder hook;
4381 3) calling max_issue. */
4382 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4383 if (best == NULL && ready.n_ready > 0)
4384 {
1124098b 4385 int privileged_n, index;
e855c69d
AB
4386
4387 can_issue_more = invoke_reorder_hooks (fence);
4388 if (can_issue_more > 0)
4389 {
b8698a0f 4390 /* Try choosing the best insn until we find one that is could be
e855c69d
AB
4391 scheduled due to liveness restrictions on its destination register.
4392 In the future, we'd like to choose once and then just probe insns
4393 in the order of their priority. */
1124098b 4394 invoke_dfa_lookahead_guard ();
e855c69d
AB
4395 privileged_n = calculate_privileged_insns ();
4396 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4397 if (can_issue_more)
4398 best = find_expr_for_ready (index, true);
4399 }
b8698a0f 4400 /* We had some available insns, so if we can't issue them,
e855c69d
AB
4401 we have a stall. */
4402 if (can_issue_more == 0)
4403 {
4404 best = NULL;
4405 *pneed_stall = 1;
4406 }
4407 }
4408
4409 if (best != NULL)
4410 {
4411 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4412 can_issue_more);
06f0c25f
AB
4413 if (targetm.sched.variable_issue
4414 && can_issue_more == 0)
e855c69d
AB
4415 *pneed_stall = 1;
4416 }
b8698a0f 4417
e855c69d
AB
4418 if (sched_verbose >= 2)
4419 {
4420 if (best != NULL)
4421 {
4422 sel_print ("Best expression (vliw form): ");
4423 dump_expr (best);
4424 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4425 }
4426 else
4427 sel_print ("No best expr found!\n");
4428 }
4429
4430 return best;
4431}
4432\f
4433
4434/* Functions that implement the core of the scheduler. */
4435
4436
b8698a0f 4437/* Emit an instruction from EXPR with SEQNO and VINSN after
e855c69d
AB
4438 PLACE_TO_INSERT. */
4439static insn_t
b8698a0f 4440emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
4441 insn_t place_to_insert)
4442{
4443 /* This assert fails when we have identical instructions
4444 one of which dominates the other. In this case move_op ()
4445 finds the first instruction and doesn't search for second one.
4446 The solution would be to compute av_set after the first found
4447 insn and, if insn present in that set, continue searching.
4448 For now we workaround this issue in move_op. */
4449 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4450
4451 if (EXPR_WAS_RENAMED (expr))
4452 {
4453 unsigned regno = expr_dest_regno (expr);
b8698a0f 4454
e855c69d
AB
4455 if (HARD_REGISTER_NUM_P (regno))
4456 {
4457 df_set_regs_ever_live (regno, true);
4458 reg_rename_tick[regno] = ++reg_rename_this_tick;
4459 }
4460 }
b8698a0f
L
4461
4462 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e855c69d
AB
4463 place_to_insert);
4464}
4465
4466/* Return TRUE if BB can hold bookkeeping code. */
4467static bool
4468block_valid_for_bookkeeping_p (basic_block bb)
4469{
4470 insn_t bb_end = BB_END (bb);
4471
4472 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4473 return false;
4474
4475 if (INSN_P (bb_end))
4476 {
4477 if (INSN_SCHED_TIMES (bb_end) > 0)
4478 return false;
4479 }
4480 else
4481 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4482
4483 return true;
4484}
4485
4486/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4487 into E2->dest, except from E1->src (there may be a sequence of empty basic
4488 blocks between E1->src and E2->dest). Return found block, or NULL if new
b5b8b0ac
AO
4489 one must be created. If LAX holds, don't assume there is a simple path
4490 from E1->src to E2->dest. */
e855c69d 4491static basic_block
b5b8b0ac 4492find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e855c69d
AB
4493{
4494 basic_block candidate_block = NULL;
4495 edge e;
4496
4497 /* Loop over edges from E1 to E2, inclusive. */
fefa31b5
DM
4498 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4499 EDGE_SUCC (e->dest, 0))
e855c69d
AB
4500 {
4501 if (EDGE_COUNT (e->dest->preds) == 2)
4502 {
4503 if (candidate_block == NULL)
4504 candidate_block = (EDGE_PRED (e->dest, 0) == e
4505 ? EDGE_PRED (e->dest, 1)->src
4506 : EDGE_PRED (e->dest, 0)->src);
4507 else
4508 /* Found additional edge leading to path from e1 to e2
4509 from aside. */
4510 return NULL;
4511 }
4512 else if (EDGE_COUNT (e->dest->preds) > 2)
4513 /* Several edges leading to path from e1 to e2 from aside. */
4514 return NULL;
4515
4516 if (e == e2)
b5b8b0ac
AO
4517 return ((!lax || candidate_block)
4518 && block_valid_for_bookkeeping_p (candidate_block)
e855c69d
AB
4519 ? candidate_block
4520 : NULL);
b5b8b0ac
AO
4521
4522 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4523 return NULL;
e855c69d 4524 }
b5b8b0ac
AO
4525
4526 if (lax)
4527 return NULL;
4528
e855c69d
AB
4529 gcc_unreachable ();
4530}
4531
4532/* Create new basic block for bookkeeping code for path(s) incoming into
4533 E2->dest, except from E1->src. Return created block. */
4534static basic_block
4535create_block_for_bookkeeping (edge e1, edge e2)
4536{
4537 basic_block new_bb, bb = e2->dest;
4538
4539 /* Check that we don't spoil the loop structure. */
4540 if (current_loop_nest)
4541 {
4542 basic_block latch = current_loop_nest->latch;
4543
4544 /* We do not split header. */
4545 gcc_assert (e2->dest != current_loop_nest->header);
4546
4547 /* We do not redirect the only edge to the latch block. */
4548 gcc_assert (e1->dest != latch
4549 || !single_pred_p (latch)
4550 || e1 != single_pred_edge (latch));
4551 }
4552
4553 /* Split BB to insert BOOK_INSN there. */
4554 new_bb = sched_split_block (bb, NULL);
4555
4556 /* Move note_list from the upper bb. */
4557 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
b311fd0f
DM
4558 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4559 BB_NOTE_LIST (bb) = NULL;
e855c69d
AB
4560
4561 gcc_assert (e2->dest == bb);
4562
4563 /* Skip block for bookkeeping copy when leaving E1->src. */
4564 if (e1->flags & EDGE_FALLTHRU)
4565 sel_redirect_edge_and_branch_force (e1, new_bb);
4566 else
4567 sel_redirect_edge_and_branch (e1, new_bb);
4568
4569 gcc_assert (e1->dest == new_bb);
4570 gcc_assert (sel_bb_empty_p (bb));
4571
b5b8b0ac
AO
4572 /* To keep basic block numbers in sync between debug and non-debug
4573 compilations, we have to rotate blocks here. Consider that we
4574 started from (a,b)->d, (c,d)->e, and d contained only debug
4575 insns. It would have been removed before if the debug insns
4576 weren't there, so we'd have split e rather than d. So what we do
4577 now is to swap the block numbers of new_bb and
4578 single_succ(new_bb) == e, so that the insns that were in e before
4579 get the new block number. */
4580
4581 if (MAY_HAVE_DEBUG_INSNS)
4582 {
4583 basic_block succ;
4584 insn_t insn = sel_bb_head (new_bb);
4585 insn_t last;
4586
4587 if (DEBUG_INSN_P (insn)
4588 && single_succ_p (new_bb)
4589 && (succ = single_succ (new_bb))
fefa31b5 4590 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
b5b8b0ac
AO
4591 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4592 {
4593 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4594 insn = NEXT_INSN (insn);
4595
4596 if (insn == last)
4597 {
4598 sel_global_bb_info_def gbi;
4599 sel_region_bb_info_def rbi;
b5b8b0ac
AO
4600
4601 if (sched_verbose >= 2)
4602 sel_print ("Swapping block ids %i and %i\n",
4603 new_bb->index, succ->index);
4604
fab27f52 4605 std::swap (new_bb->index, succ->index);
b5b8b0ac 4606
557c4b49
DM
4607 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4608 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
b5b8b0ac
AO
4609
4610 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4612 sizeof (gbi));
4613 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4614
4615 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4617 sizeof (rbi));
4618 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4619
fab27f52
MM
4620 std::swap (BLOCK_TO_BB (new_bb->index),
4621 BLOCK_TO_BB (succ->index));
b5b8b0ac 4622
fab27f52
MM
4623 std::swap (CONTAINING_RGN (new_bb->index),
4624 CONTAINING_RGN (succ->index));
b5b8b0ac 4625
fab27f52 4626 for (int i = 0; i < current_nr_blocks; i++)
b5b8b0ac
AO
4627 if (BB_TO_BLOCK (i) == succ->index)
4628 BB_TO_BLOCK (i) = new_bb->index;
4629 else if (BB_TO_BLOCK (i) == new_bb->index)
4630 BB_TO_BLOCK (i) = succ->index;
4631
4632 FOR_BB_INSNS (new_bb, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4635
4636 FOR_BB_INSNS (succ, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4639
fcaa4ca4
NF
4640 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
b5b8b0ac
AO
4642
4643 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4644 && LABEL_P (BB_HEAD (succ)));
4645
4646 if (sched_verbose >= 4)
4647 sel_print ("Swapping code labels %i and %i\n",
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4650
fab27f52
MM
4651 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)));
b5b8b0ac
AO
4653 }
4654 }
4655 }
4656
e855c69d
AB
4657 return bb;
4658}
4659
4660/* Return insn after which we must insert bookkeeping code for path(s) incoming
6fc5966f
AM
4661 into E2->dest, except from E1->src. If the returned insn immediately
4662 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
e855c69d 4663static insn_t
6fc5966f 4664find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
e855c69d
AB
4665{
4666 insn_t place_to_insert;
4667 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4668 create new basic block, but insert bookkeeping there. */
b5b8b0ac 4669 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e855c69d 4670
b5b8b0ac
AO
4671 if (book_block)
4672 {
4673 place_to_insert = BB_END (book_block);
4674
4675 /* Don't use a block containing only debug insns for
4676 bookkeeping, this causes scheduling differences between debug
4677 and non-debug compilations, for the block would have been
4678 removed already. */
4679 if (DEBUG_INSN_P (place_to_insert))
4680 {
5a59b408 4681 rtx_insn *insn = sel_bb_head (book_block);
e855c69d 4682
b5b8b0ac
AO
4683 while (insn != place_to_insert &&
4684 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4685 insn = NEXT_INSN (insn);
4686
4687 if (insn == place_to_insert)
4688 book_block = NULL;
4689 }
4690 }
4691
4692 if (!book_block)
4693 {
4694 book_block = create_block_for_bookkeeping (e1, e2);
4695 place_to_insert = BB_END (book_block);
4696 if (sched_verbose >= 9)
4697 sel_print ("New block is %i, split from bookkeeping block %i\n",
4698 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4699 }
4700 else
4701 {
4702 if (sched_verbose >= 9)
4703 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4704 }
e855c69d 4705
6fc5966f
AM
4706 *fence_to_rewind = NULL;
4707 /* If basic block ends with a jump, insert bookkeeping code right before it.
4708 Notice if we are crossing a fence when taking PREV_INSN. */
e855c69d 4709 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
6fc5966f
AM
4710 {
4711 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4712 place_to_insert = PREV_INSN (place_to_insert);
4713 }
e855c69d
AB
4714
4715 return place_to_insert;
4716}
4717
4718/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4719 for JOIN_POINT. */
4720static int
4721find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4722{
4723 int seqno;
e855c69d
AB
4724
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
e67d1102 4727 rtx_insn *next = NEXT_INSN (place_to_insert);
b8698a0f 4728 if (INSN_P (next)
e855c69d
AB
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4731 {
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4734 }
e855c69d
AB
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
da7ba240
AB
4738 {
4739 seqno = get_seqno_by_preds (place_to_insert);
4740
b8698a0f
L
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
da7ba240
AB
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4747 {
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4750 }
4751 }
b8698a0f 4752
e855c69d
AB
4753 gcc_assert (seqno > 0);
4754 return seqno;
4755}
4756
4757/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759static insn_t
4760emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761{
eec818f4 4762 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
e855c69d
AB
4763
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4770
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4773
4774 return new_insn;
4775}
4776
4777/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781static basic_block
4782generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783{
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
6fc5966f 4787 fence_t fence_to_rewind;
e855c69d
AB
4788
4789 if (sched_verbose >= 4)
4790 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 e2->dest->index);
4792
4793 join_point = sel_bb_head (e2->dest);
6fc5966f 4794 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
e855c69d
AB
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4798
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4800
6fc5966f
AM
4801 if (fence_to_rewind)
4802 FENCE_INSN (fence_to_rewind) = new_insn;
4803
e855c69d
AB
4804 /* When inserting bookkeeping insn in new block, av sets should be
4805 following: old basic block (that now holds bookkeeping) data sets are
4806 the same as was before generation of bookkeeping, and new basic block
4807 (that now hold all other insns of old basic block) data sets are
4808 invalid. So exchange data sets for these basic blocks as sel_split_block
4809 mistakenly exchanges them in this case. Cannot do it earlier because
4810 when single instruction is added to new basic block it should hold NULL
4811 lv_set. */
4812 if (need_to_exchange_data_sets)
4813 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4814 BLOCK_FOR_INSN (join_point));
4815
4816 stat_bookkeeping_copies++;
4817 return BLOCK_FOR_INSN (new_insn);
4818}
4819
b8698a0f 4820/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e855c69d
AB
4821 on FENCE, but we are unable to copy them. */
4822static void
4823remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4824{
4825 expr_t expr;
4826 av_set_iterator i;
4827
b8698a0f
L
4828 /* An expression does not need bookkeeping if it is available on all paths
4829 from current block to original block and current block dominates
4830 original block. We check availability on all paths by examining
4831 EXPR_SPEC; this is not equivalent, because it may be positive even
4832 if expr is available on all paths (but if expr is not available on
e855c69d
AB
4833 any path, EXPR_SPEC will be positive). */
4834
4835 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4836 {
4837 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 && (EXPR_SPEC (expr)
4840 || !EXPR_ORIG_BB_INDEX (expr)
4841 || !dominated_by_p (CDI_DOMINATORS,
06e28de2
DM
4842 BASIC_BLOCK_FOR_FN (cfun,
4843 EXPR_ORIG_BB_INDEX (expr)),
e855c69d
AB
4844 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4845 {
4846 if (sched_verbose >= 4)
4847 sel_print ("Expr %d removed because it would need bookkeeping, which "
4848 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4849 av_set_iter_remove (&i);
4850 }
4851 }
4852}
4853
4854/* Moving conditional jump through some instructions.
4855
4856 Consider example:
4857
4858 ... <- current scheduling point
4859 NOTE BASIC BLOCK: <- bb header
4860 (p8) add r14=r14+0x9;;
4861 (p8) mov [r14]=r23
4862 (!p8) jump L1;;
4863 NOTE BASIC BLOCK:
4864 ...
4865
b8698a0f 4866 We can schedule jump one cycle earlier, than mov, because they cannot be
e855c69d
AB
4867 executed together as their predicates are mutually exclusive.
4868
b8698a0f
L
4869 This is done in this way: first, new fallthrough basic block is created
4870 after jump (it is always can be done, because there already should be a
e855c69d 4871 fallthrough block, where control flow goes in case of predicate being true -
b8698a0f
L
4872 in our example; otherwise there should be a dependence between those
4873 instructions and jump and we cannot schedule jump right now);
4874 next, all instructions between jump and current scheduling point are moved
e855c69d
AB
4875 to this new block. And the result is this:
4876
4877 NOTE BASIC BLOCK:
4878 (!p8) jump L1 <- current scheduling point
4879 NOTE BASIC BLOCK: <- bb header
4880 (p8) add r14=r14+0x9;;
4881 (p8) mov [r14]=r23
4882 NOTE BASIC BLOCK:
4883 ...
4884*/
4885static void
6144a836 4886move_cond_jump (rtx_insn *insn, bnd_t bnd)
e855c69d
AB
4887{
4888 edge ft_edge;
324d3f45 4889 basic_block block_from, block_next, block_new, block_bnd, bb;
eec818f4 4890 rtx_insn *next, *prev, *link, *head;
e855c69d 4891
e855c69d 4892 block_from = BLOCK_FOR_INSN (insn);
324d3f45
AM
4893 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4894 prev = BND_TO (bnd);
e855c69d 4895
324d3f45
AM
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
b2b29377 4899 if (flag_checking && block_from != block_bnd)
324d3f45
AM
4900 {
4901 bb = block_from;
4902 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4903 link = PREV_INSN (link))
4904 {
4905 if (INSN_P (link))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4908 {
4909 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910 bb = BLOCK_FOR_INSN (link);
4911 }
4912 }
4913 }
e855c69d
AB
4914
4915 /* Jump is moved to the boundary. */
e855c69d 4916 next = PREV_INSN (insn);
6144a836 4917 BND_TO (bnd) = insn;
e855c69d 4918
0fd4b31d 4919 ft_edge = find_fallthru_edge_from (block_from);
e855c69d
AB
4920 block_next = ft_edge->dest;
4921 /* There must be a fallthrough block (or where should go
4922 control flow in case of false jump predicate otherwise?). */
4923 gcc_assert (block_next);
4924
4925 /* Create new empty basic block after source block. */
4926 block_new = sel_split_edge (ft_edge);
4927 gcc_assert (block_new->next_bb == block_next
4928 && block_from->next_bb == block_new);
4929
324d3f45
AM
4930 /* Move all instructions except INSN to BLOCK_NEW. */
4931 bb = block_bnd;
4932 head = BB_HEAD (block_new);
4933 while (bb != block_from->next_bb)
e855c69d 4934 {
eec818f4 4935 rtx_insn *from, *to;
324d3f45
AM
4936 from = bb == block_bnd ? prev : sel_bb_head (bb);
4937 to = bb == block_from ? next : sel_bb_end (bb);
e855c69d 4938
324d3f45
AM
4939 /* The jump being moved can be the first insn in the block.
4940 In this case we don't have to move anything in this block. */
4941 if (NEXT_INSN (to) != from)
4942 {
4943 reorder_insns (from, to, head);
4944
4945 for (link = to; link != head; link = PREV_INSN (link))
4946 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4947 head = to;
4948 }
e855c69d 4949
324d3f45
AM
4950 /* Cleanup possibly empty blocks left. */
4951 block_next = bb->next_bb;
4952 if (bb != block_from)
65592aad 4953 tidy_control_flow (bb, false);
324d3f45
AM
4954 bb = block_next;
4955 }
e855c69d
AB
4956
4957 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4958 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e855c69d
AB
4959
4960 gcc_assert (!sel_bb_empty_p (block_from)
4961 && !sel_bb_empty_p (block_new));
4962
4963 /* Update data sets for BLOCK_NEW to represent that INSN and
4964 instructions from the other branch of INSN is no longer
4965 available at BLOCK_NEW. */
4966 BB_AV_LEVEL (block_new) = global_level;
4967 gcc_assert (BB_LV_SET (block_new) == NULL);
4968 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4969 update_data_sets (sel_bb_head (block_new));
4970
4971 /* INSN is a new basic block header - so prepare its data
4972 structures and update availability and liveness sets. */
4973 update_data_sets (insn);
4974
4975 if (sched_verbose >= 4)
4976 sel_print ("Moving jump %d\n", INSN_UID (insn));
4977}
4978
4979/* Remove nops generated during move_op for preventing removal of empty
4980 basic blocks. */
4981static void
b5b8b0ac 4982remove_temp_moveop_nops (bool full_tidying)
e855c69d
AB
4983{
4984 int i;
4985 insn_t insn;
b8698a0f 4986
9771b263 4987 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
e855c69d
AB
4988 {
4989 gcc_assert (INSN_NOP_P (insn));
b5b8b0ac 4990 return_nop_to_pool (insn, full_tidying);
e855c69d
AB
4991 }
4992
4993 /* Empty the vector. */
9771b263
DN
4994 if (vec_temp_moveop_nops.length () > 0)
4995 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
e855c69d
AB
4996}
4997
4998/* Records the maximal UID before moving up an instruction. Used for
4999 distinguishing between bookkeeping copies and original insns. */
5000static int max_uid_before_move_op = 0;
5001
5002/* Remove from AV_VLIW_P all instructions but next when debug counter
5003 tells us so. Next instruction is fetched from BNDS. */
5004static void
5005remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5006{
5007 if (! dbg_cnt (sel_sched_insn_cnt))
5008 /* Leave only the next insn in av_vliw. */
5009 {
5010 av_set_iterator av_it;
5011 expr_t expr;
5012 bnd_t bnd = BLIST_BND (bnds);
5013 insn_t next = BND_TO (bnd);
5014
5015 gcc_assert (BLIST_NEXT (bnds) == NULL);
5016
5017 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5018 if (EXPR_INSN_RTX (expr) != next)
5019 av_set_iter_remove (&av_it);
5020 }
5021}
5022
b8698a0f 5023/* Compute available instructions on BNDS. FENCE is the current fence. Write
e855c69d
AB
5024 the computed set to *AV_VLIW_P. */
5025static void
5026compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5027{
5028 if (sched_verbose >= 2)
5029 {
5030 sel_print ("Boundaries: ");
5031 dump_blist (bnds);
5032 sel_print ("\n");
5033 }
5034
5035 for (; bnds; bnds = BLIST_NEXT (bnds))
5036 {
5037 bnd_t bnd = BLIST_BND (bnds);
5038 av_set_t av1_copy;
5039 insn_t bnd_to = BND_TO (bnd);
5040
5041 /* Rewind BND->TO to the basic block header in case some bookkeeping
5042 instructions were inserted before BND->TO and it needs to be
5043 adjusted. */
5044 if (sel_bb_head_p (bnd_to))
5045 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5046 else
5047 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5048 {
5049 bnd_to = PREV_INSN (bnd_to);
5050 if (sel_bb_head_p (bnd_to))
5051 break;
5052 }
5053
5054 if (BND_TO (bnd) != bnd_to)
5055 {
5056 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5057 FENCE_INSN (fence) = bnd_to;
6144a836 5058 BND_TO (bnd) = bnd_to;
e855c69d
AB
5059 }
5060
5061 av_set_clear (&BND_AV (bnd));
5062 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5063
5064 av_set_clear (&BND_AV1 (bnd));
5065 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5066
5067 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
b8698a0f 5068
e855c69d
AB
5069 av1_copy = av_set_copy (BND_AV1 (bnd));
5070 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5071 }
5072
5073 if (sched_verbose >= 2)
5074 {
5075 sel_print ("Available exprs (vliw form): ");
5076 dump_av_set (*av_vliw_p);
5077 sel_print ("\n");
5078 }
5079}
5080
b8698a0f
L
5081/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5082 expression. When FOR_MOVEOP is true, also replace the register of
e855c69d
AB
5083 expressions found with the register from EXPR_VLIW. */
5084static av_set_t
5085find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5086{
5087 av_set_t expr_seq = NULL;
5088 expr_t expr;
5089 av_set_iterator i;
b8698a0f 5090
e855c69d
AB
5091 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5092 {
5093 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5094 {
5095 if (for_moveop)
5096 {
b8698a0f
L
5097 /* The sequential expression has the right form to pass
5098 to move_op except when renaming happened. Put the
e855c69d
AB
5099 correct register in EXPR then. */
5100 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5101 {
5102 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5103 {
5104 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5105 stat_renamed_scheduled++;
5106 }
b8698a0f
L
5107 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5108 This is needed when renaming came up with original
e855c69d 5109 register. */
b8698a0f 5110 else if (EXPR_TARGET_AVAILABLE (expr)
e855c69d
AB
5111 != EXPR_TARGET_AVAILABLE (expr_vliw))
5112 {
5113 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5114 EXPR_TARGET_AVAILABLE (expr) = 1;
5115 }
5116 }
5117 if (EXPR_WAS_SUBSTITUTED (expr))
5118 stat_substitutions_total++;
5119 }
5120
5121 av_set_add (&expr_seq, expr);
b8698a0f
L
5122
5123 /* With substitution inside insn group, it is possible
5124 that more than one expression in expr_seq will correspond
5125 to expr_vliw. In this case, choose one as the attempt to
e855c69d
AB
5126 move both leads to miscompiles. */
5127 break;
5128 }
5129 }
5130
5131 if (for_moveop && sched_verbose >= 2)
5132 {
5133 sel_print ("Best expression(s) (sequential form): ");
5134 dump_av_set (expr_seq);
5135 sel_print ("\n");
5136 }
b8698a0f 5137
e855c69d
AB
5138 return expr_seq;
5139}
5140
5141
5142/* Move nop to previous block. */
5143static void ATTRIBUTE_UNUSED
5144move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5145{
e67d1102 5146 insn_t prev_insn, next_insn;
e855c69d 5147
b8698a0f 5148 gcc_assert (sel_bb_head_p (nop)
e855c69d 5149 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
e67d1102 5150 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
e855c69d
AB
5151 prev_insn = sel_bb_end (prev_bb);
5152 next_insn = NEXT_INSN (nop);
5153 gcc_assert (prev_insn != NULL_RTX
5154 && PREV_INSN (note) == prev_insn);
5155
0f82e5c9
DM
5156 SET_NEXT_INSN (prev_insn) = nop;
5157 SET_PREV_INSN (nop) = prev_insn;
e855c69d 5158
0f82e5c9
DM
5159 SET_PREV_INSN (note) = nop;
5160 SET_NEXT_INSN (note) = next_insn;
e855c69d 5161
0f82e5c9
DM
5162 SET_NEXT_INSN (nop) = note;
5163 SET_PREV_INSN (next_insn) = note;
e855c69d 5164
1130d5e3 5165 BB_END (prev_bb) = nop;
e855c69d
AB
5166 BLOCK_FOR_INSN (nop) = prev_bb;
5167}
5168
5169/* Prepare a place to insert the chosen expression on BND. */
5170static insn_t
5171prepare_place_to_insert (bnd_t bnd)
5172{
5173 insn_t place_to_insert;
5174
5175 /* Init place_to_insert before calling move_op, as the later
5176 can possibly remove BND_TO (bnd). */
5177 if (/* If this is not the first insn scheduled. */
5178 BND_PTR (bnd))
5179 {
5180 /* Add it after last scheduled. */
5181 place_to_insert = ILIST_INSN (BND_PTR (bnd));
b5b8b0ac
AO
5182 if (DEBUG_INSN_P (place_to_insert))
5183 {
5184 ilist_t l = BND_PTR (bnd);
5185 while ((l = ILIST_NEXT (l)) &&
5186 DEBUG_INSN_P (ILIST_INSN (l)))
5187 ;
5188 if (!l)
5189 place_to_insert = NULL;
5190 }
e855c69d
AB
5191 }
5192 else
b5b8b0ac
AO
5193 place_to_insert = NULL;
5194
5195 if (!place_to_insert)
e855c69d
AB
5196 {
5197 /* Add it before BND_TO. The difference is in the
5198 basic block, where INSN will be added. */
5199 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5200 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5201 == BLOCK_FOR_INSN (BND_TO (bnd)));
5202 }
5203
5204 return place_to_insert;
5205}
5206
b8698a0f 5207/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e855c69d 5208 Return the expression to emit in C_EXPR. */
72a54528 5209static bool
b8698a0f 5210move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e855c69d
AB
5211 av_set_t expr_seq, expr_t c_expr)
5212{
72a54528 5213 bool b, should_move;
e855c69d
AB
5214 unsigned book_uid;
5215 bitmap_iterator bi;
5216 int n_bookkeeping_copies_before_moveop;
5217
5218 /* Make a move. This call will remove the original operation,
5219 insert all necessary bookkeeping instructions and update the
5220 data sets. After that all we have to do is add the operation
5221 at before BND_TO (BND). */
5222 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5223 max_uid_before_move_op = get_max_uid ();
5224 bitmap_clear (current_copies);
5225 bitmap_clear (current_originators);
5226
b8698a0f 5227 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 5228 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d 5229
b8698a0f 5230 /* We should be able to find the expression we've chosen for
e855c69d 5231 scheduling. */
72a54528 5232 gcc_assert (b);
b8698a0f 5233
e855c69d
AB
5234 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5235 stat_insns_needed_bookkeeping++;
b8698a0f 5236
e855c69d
AB
5237 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5238 {
14f30b87
AM
5239 unsigned uid;
5240 bitmap_iterator bi;
5241
e855c69d
AB
5242 /* We allocate these bitmaps lazily. */
5243 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5244 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
b8698a0f
L
5245
5246 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e855c69d 5247 current_originators);
14f30b87
AM
5248
5249 /* Transitively add all originators' originators. */
5250 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5251 if (INSN_ORIGINATORS_BY_UID (uid))
5252 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5253 INSN_ORIGINATORS_BY_UID (uid));
e855c69d 5254 }
72a54528
AM
5255
5256 return should_move;
e855c69d
AB
5257}
5258
5259
5260/* Debug a DFA state as an array of bytes. */
5261static void
5262debug_state (state_t state)
5263{
5264 unsigned char *p;
5265 unsigned int i, size = dfa_state_size;
5266
5267 sel_print ("state (%u):", size);
5268 for (i = 0, p = (unsigned char *) state; i < size; i++)
5269 sel_print (" %d", p[i]);
5270 sel_print ("\n");
5271}
5272
b8698a0f 5273/* Advance state on FENCE with INSN. Return true if INSN is
e855c69d
AB
5274 an ASM, and we should advance state once more. */
5275static bool
5276advance_state_on_fence (fence_t fence, insn_t insn)
5277{
5278 bool asm_p;
5279
5280 if (recog_memoized (insn) >= 0)
5281 {
5282 int res;
5283 state_t temp_state = alloca (dfa_state_size);
b8698a0f 5284
e855c69d
AB
5285 gcc_assert (!INSN_ASM_P (insn));
5286 asm_p = false;
5287
5288 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5289 res = state_transition (FENCE_STATE (fence), insn);
5290 gcc_assert (res < 0);
5291
5292 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5293 {
5294 FENCE_ISSUED_INSNS (fence)++;
5295
5296 /* We should never issue more than issue_rate insns. */
5297 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5298 gcc_unreachable ();
5299 }
b8698a0f 5300 }
e855c69d
AB
5301 else
5302 {
b8698a0f 5303 /* This could be an ASM insn which we'd like to schedule
e855c69d
AB
5304 on the next cycle. */
5305 asm_p = INSN_ASM_P (insn);
5306 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5307 advance_one_cycle (fence);
5308 }
5309
5310 if (sched_verbose >= 2)
5311 debug_state (FENCE_STATE (fence));
b5b8b0ac
AO
5312 if (!DEBUG_INSN_P (insn))
5313 FENCE_STARTS_CYCLE_P (fence) = 0;
136e01a3 5314 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
5315 return asm_p;
5316}
5317
5318/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5319 is nonzero if we need to stall after issuing INSN. */
5320static void
5321update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5322{
5323 bool asm_p;
b8698a0f 5324
e855c69d
AB
5325 /* First, reflect that something is scheduled on this fence. */
5326 asm_p = advance_state_on_fence (fence, insn);
5327 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
9771b263 5328 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
e855c69d
AB
5329 if (SCHED_GROUP_P (insn))
5330 {
5331 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5332 SCHED_GROUP_P (insn) = 0;
5333 }
5334 else
6144a836 5335 FENCE_SCHED_NEXT (fence) = NULL;
e855c69d
AB
5336 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5337 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5338
5339 /* Set instruction scheduling info. This will be used in bundling,
5340 pipelining, tick computations etc. */
5341 ++INSN_SCHED_TIMES (insn);
5342 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5343 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5344 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5345 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5346
5347 /* This does not account for adjust_cost hooks, just add the biggest
b8698a0f 5348 constant the hook may add to the latency. TODO: make this
e855c69d 5349 a target dependent constant. */
b8698a0f
L
5350 INSN_READY_CYCLE (insn)
5351 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e855c69d
AB
5352 ? 1
5353 : maximal_insn_latency (insn) + 1);
5354
5355 /* Change these fields last, as they're used above. */
5356 FENCE_AFTER_STALL_P (fence) = 0;
5357 if (asm_p || need_stall)
5358 advance_one_cycle (fence);
b8698a0f 5359
e855c69d
AB
5360 /* Indicate that we've scheduled something on this fence. */
5361 FENCE_SCHEDULED_P (fence) = true;
5362 scheduled_something_on_previous_fence = true;
5363
5364 /* Print debug information when insn's fields are updated. */
5365 if (sched_verbose >= 2)
5366 {
5367 sel_print ("Scheduling insn: ");
5368 dump_insn_1 (insn, 1);
5369 sel_print ("\n");
5370 }
5371}
5372
b5b8b0ac
AO
5373/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5374 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5375 return it. */
e855c69d 5376static blist_t *
b5b8b0ac 5377update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e855c69d
AB
5378 blist_t *bnds_tailp)
5379{
5380 succ_iterator si;
5381 insn_t succ;
5382
5383 advance_deps_context (BND_DC (bnd), insn);
b8698a0f 5384 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
5385 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5386 {
5387 ilist_t ptr = ilist_copy (BND_PTR (bnd));
b8698a0f 5388
e855c69d 5389 ilist_add (&ptr, insn);
b5b8b0ac
AO
5390
5391 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5392 && is_ineligible_successor (succ, ptr))
5393 {
5394 ilist_clear (&ptr);
5395 continue;
5396 }
5397
5398 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5399 {
5400 if (sched_verbose >= 9)
5401 sel_print ("Updating fence insn from %i to %i\n",
5402 INSN_UID (insn), INSN_UID (succ));
5403 FENCE_INSN (fence) = succ;
5404 }
e855c69d
AB
5405 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5406 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5407 }
b8698a0f 5408
e855c69d
AB
5409 blist_remove (bndsp);
5410 return bnds_tailp;
5411}
5412
5413/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5414static insn_t
5415schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5416{
5417 av_set_t expr_seq;
5418 expr_t c_expr = XALLOCA (expr_def);
5419 insn_t place_to_insert;
5420 insn_t insn;
72a54528 5421 bool should_move;
e855c69d
AB
5422
5423 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5424
5425 /* In case of scheduling a jump skipping some other instructions,
b8698a0f 5426 prepare CFG. After this, jump is at the boundary and can be
e855c69d
AB
5427 scheduled as usual insn by MOVE_OP. */
5428 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5429 {
5430 insn = EXPR_INSN_RTX (expr_vliw);
b8698a0f 5431
e855c69d 5432 /* Speculative jumps are not handled. */
b8698a0f 5433 if (insn != BND_TO (bnd)
e855c69d
AB
5434 && !sel_insn_is_speculation_check (insn))
5435 move_cond_jump (insn, bnd);
5436 }
5437
e855c69d
AB
5438 /* Find a place for C_EXPR to schedule. */
5439 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5440 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d 5441 clear_expr (c_expr);
b8698a0f
L
5442
5443 /* Add the instruction. The corner case to care about is when
5444 the expr_seq set has more than one expr, and we chose the one that
5445 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e855c69d
AB
5446 we can't use it. Generate the new vinsn. */
5447 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5448 {
5449 vinsn_t vinsn_new;
b8698a0f 5450
e855c69d
AB
5451 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5452 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5453 should_move = false;
e855c69d 5454 }
72a54528
AM
5455 if (should_move)
5456 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5457 else
b8698a0f 5458 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e855c69d 5459 place_to_insert);
e855c69d
AB
5460
5461 /* Return the nops generated for preserving of data sets back
5462 into pool. */
5463 if (INSN_NOP_P (place_to_insert))
b5b8b0ac
AO
5464 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5465 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e855c69d
AB
5466
5467 av_set_clear (&expr_seq);
b8698a0f
L
5468
5469 /* Save the expression scheduled so to reset target availability if we'll
e855c69d
AB
5470 meet it later on the same fence. */
5471 if (EXPR_WAS_RENAMED (expr_vliw))
5472 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5473
5474 /* Check that the recent movement didn't destroyed loop
5475 structure. */
5476 gcc_assert (!pipelining_p
5477 || current_loop_nest == NULL
5478 || loop_latch_edge (current_loop_nest));
5479 return insn;
5480}
5481
5482/* Stall for N cycles on FENCE. */
5483static void
5484stall_for_cycles (fence_t fence, int n)
5485{
5486 int could_more;
b8698a0f 5487
e855c69d
AB
5488 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5489 while (n--)
5490 advance_one_cycle (fence);
5491 if (could_more)
5492 FENCE_AFTER_STALL_P (fence) = 1;
5493}
5494
b8698a0f
L
5495/* Gather a parallel group of insns at FENCE and assign their seqno
5496 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e855c69d
AB
5497 list for later recalculation of seqnos. */
5498static void
5499fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5500{
5501 blist_t bnds = NULL, *bnds_tailp;
5502 av_set_t av_vliw = NULL;
5503 insn_t insn = FENCE_INSN (fence);
5504
5505 if (sched_verbose >= 2)
b8698a0f 5506 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e855c69d
AB
5507 INSN_UID (insn), FENCE_CYCLE (fence));
5508
5509 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5510 bnds_tailp = &BLIST_NEXT (bnds);
5511 set_target_context (FENCE_TC (fence));
136e01a3 5512 can_issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
5513 target_bb = INSN_BB (insn);
5514
5515 /* Do while we can add any operation to the current group. */
5516 do
5517 {
5518 blist_t *bnds_tailp1, *bndsp;
5519 expr_t expr_vliw;
09a2806f 5520 int need_stall = false;
06f0c25f 5521 int was_stall = 0, scheduled_insns = 0;
e855c69d
AB
5522 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5523 int max_stall = pipelining_p ? 1 : 3;
b5b8b0ac
AO
5524 bool last_insn_was_debug = false;
5525 bool was_debug_bb_end_p = false;
5526
e855c69d
AB
5527 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5528 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5529 remove_insns_for_debug (bnds, &av_vliw);
5530
5531 /* Return early if we have nothing to schedule. */
5532 if (av_vliw == NULL)
5533 break;
5534
5535 /* Choose the best expression and, if needed, destination register
5536 for it. */
5537 do
5538 {
5539 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
06f0c25f 5540 if (! expr_vliw && need_stall)
e855c69d
AB
5541 {
5542 /* All expressions required a stall. Do not recompute av sets
5543 as we'll get the same answer (modulo the insns between
5544 the fence and its boundary, which will not be available for
06f0c25f
AB
5545 pipelining).
5546 If we are going to stall for too long, break to recompute av
e855c69d 5547 sets and bring more insns for pipelining. */
06f0c25f 5548 was_stall++;
e855c69d
AB
5549 if (need_stall <= 3)
5550 stall_for_cycles (fence, need_stall);
5551 else
5552 {
5553 stall_for_cycles (fence, 1);
5554 break;
5555 }
5556 }
5557 }
5558 while (! expr_vliw && need_stall);
b8698a0f 5559
e855c69d
AB
5560 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5561 if (!expr_vliw)
5562 {
5563 av_set_clear (&av_vliw);
5564 break;
5565 }
5566
5567 bndsp = &bnds;
5568 bnds_tailp1 = bnds_tailp;
5569
5570 do
b8698a0f 5571 /* This code will be executed only once until we'd have several
e855c69d
AB
5572 boundaries per fence. */
5573 {
5574 bnd_t bnd = BLIST_BND (*bndsp);
5575
5576 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5577 {
5578 bndsp = &BLIST_NEXT (*bndsp);
5579 continue;
5580 }
b8698a0f 5581
e855c69d 5582 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
b5b8b0ac
AO
5583 last_insn_was_debug = DEBUG_INSN_P (insn);
5584 if (last_insn_was_debug)
5585 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e855c69d 5586 update_fence_and_insn (fence, insn, need_stall);
b5b8b0ac 5587 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e855c69d
AB
5588
5589 /* Add insn to the list of scheduled on this cycle instructions. */
5590 ilist_add (*scheduled_insns_tailpp, insn);
5591 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5592 }
5593 while (*bndsp != *bnds_tailp1);
5594
5595 av_set_clear (&av_vliw);
b5b8b0ac
AO
5596 if (!last_insn_was_debug)
5597 scheduled_insns++;
e855c69d
AB
5598
5599 /* We currently support information about candidate blocks only for
5600 one 'target_bb' block. Hence we can't schedule after jump insn,
5601 as this will bring two boundaries and, hence, necessity to handle
5602 information for two or more blocks concurrently. */
b5b8b0ac 5603 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
b8698a0f
L
5604 || (was_stall
5605 && (was_stall >= max_stall
e855c69d
AB
5606 || scheduled_insns >= max_insns)))
5607 break;
5608 }
5609 while (bnds);
5610
5611 gcc_assert (!FENCE_BNDS (fence));
b8698a0f 5612
e855c69d
AB
5613 /* Update boundaries of the FENCE. */
5614 while (bnds)
5615 {
5616 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5617
5618 if (ptr)
5619 {
5620 insn = ILIST_INSN (ptr);
5621
5622 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5623 ilist_add (&FENCE_BNDS (fence), insn);
5624 }
b8698a0f 5625
e855c69d
AB
5626 blist_remove (&bnds);
5627 }
5628
5629 /* Update target context on the fence. */
5630 reset_target_context (FENCE_TC (fence), false);
5631}
5632
5633/* All exprs in ORIG_OPS must have the same destination register or memory.
5634 Return that destination. */
5635static rtx
5636get_dest_from_orig_ops (av_set_t orig_ops)
5637{
5638 rtx dest = NULL_RTX;
5639 av_set_iterator av_it;
5640 expr_t expr;
5641 bool first_p = true;
5642
5643 FOR_EACH_EXPR (expr, av_it, orig_ops)
5644 {
5645 rtx x = EXPR_LHS (expr);
5646
5647 if (first_p)
5648 {
5649 first_p = false;
5650 dest = x;
5651 }
5652 else
5653 gcc_assert (dest == x
5654 || (dest != NULL_RTX && x != NULL_RTX
5655 && rtx_equal_p (dest, x)));
5656 }
5657
5658 return dest;
5659}
5660
5661/* Update data sets for the bookkeeping block and record those expressions
5662 which become no longer available after inserting this bookkeeping. */
5663static void
5664update_and_record_unavailable_insns (basic_block book_block)
5665{
5666 av_set_iterator i;
5667 av_set_t old_av_set = NULL;
5668 expr_t cur_expr;
6144a836 5669 rtx_insn *bb_end = sel_bb_end (book_block);
e855c69d 5670
b8698a0f 5671 /* First, get correct liveness in the bookkeeping block. The problem is
e855c69d
AB
5672 the range between the bookeeping insn and the end of block. */
5673 update_liveness_on_insn (bb_end);
5674 if (control_flow_insn_p (bb_end))
5675 update_liveness_on_insn (PREV_INSN (bb_end));
5676
5677 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5678 fence above, where we may choose to schedule an insn which is
5679 actually blocked from moving up with the bookkeeping we create here. */
5680 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5681 {
5682 old_av_set = av_set_copy (BB_AV_SET (book_block));
5683 update_data_sets (sel_bb_head (book_block));
b8698a0f 5684
e855c69d
AB
5685 /* Traverse all the expressions in the old av_set and check whether
5686 CUR_EXPR is in new AV_SET. */
5687 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5688 {
b8698a0f 5689 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e855c69d
AB
5690 EXPR_VINSN (cur_expr));
5691
b8698a0f
L
5692 if (! new_expr
5693 /* In this case, we can just turn off the E_T_A bit, but we can't
e855c69d 5694 represent this information with the current vector. */
b8698a0f 5695 || EXPR_TARGET_AVAILABLE (new_expr)
e855c69d
AB
5696 != EXPR_TARGET_AVAILABLE (cur_expr))
5697 /* Unfortunately, the below code could be also fired up on
0c02ab39
AB
5698 separable insns, e.g. when moving insns through the new
5699 speculation check as in PR 53701. */
e855c69d
AB
5700 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5701 }
5702
5703 av_set_clear (&old_av_set);
5704 }
5705}
5706
b8698a0f 5707/* The main effect of this function is that sparams->c_expr is merged
e855c69d
AB
5708 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5709 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
b8698a0f
L
5710 lparams->c_expr_merged is copied back to sparams->c_expr after all
5711 successors has been traversed. lparams->c_expr_local is an expr allocated
5712 on stack in the caller function, and is used if there is more than one
5713 successor.
e855c69d
AB
5714
5715 SUCC is one of the SUCCS_NORMAL successors of INSN,
5716 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5717 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5718static void
b8698a0f
L
5719move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5720 insn_t succ ATTRIBUTE_UNUSED,
5721 int moveop_drv_call_res,
e855c69d
AB
5722 cmpd_local_params_p lparams, void *static_params)
5723{
5724 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5725
5726 /* Nothing to do, if original expr wasn't found below. */
5727 if (moveop_drv_call_res != 1)
5728 return;
5729
5730 /* If this is a first successor. */
5731 if (!lparams->c_expr_merged)
5732 {
5733 lparams->c_expr_merged = sparams->c_expr;
5734 sparams->c_expr = lparams->c_expr_local;
5735 }
5736 else
5737 {
5738 /* We must merge all found expressions to get reasonable
5739 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5740 do so then we can first find the expr with epsilon
5741 speculation success probability and only then with the
5742 good probability. As a result the insn will get epsilon
5743 probability and will never be scheduled because of
5744 weakness_cutoff in find_best_expr.
5745
b8698a0f 5746 We call merge_expr_data here instead of merge_expr
e855c69d
AB
5747 because due to speculation C_EXPR and X may have the
5748 same insns with different speculation types. And as of
b8698a0f 5749 now such insns are considered non-equal.
e855c69d 5750
b8698a0f
L
5751 However, EXPR_SCHED_TIMES is different -- we must get
5752 SCHED_TIMES from a real insn, not a bookkeeping copy.
e855c69d 5753 We force this here. Instead, we may consider merging
b8698a0f 5754 SCHED_TIMES to the maximum instead of minimum in the
e855c69d
AB
5755 below function. */
5756 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5757
5758 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5759 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5760 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5761
5762 clear_expr (sparams->c_expr);
5763 }
5764}
5765
5766/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5767
5768 SUCC is one of the SUCCS_NORMAL successors of INSN,
5769 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5770 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5771 STATIC_PARAMS contain USED_REGS set. */
5772static void
b8698a0f
L
5773fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5774 int moveop_drv_call_res,
5775 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5776 void *static_params)
5777{
5778 regset succ_live;
5779 fur_static_params_p sparams = (fur_static_params_p) static_params;
5780
5781 /* Here we compute live regsets only for branches that do not lie
b8698a0f 5782 on the code motion paths. These branches correspond to value
e855c69d
AB
5783 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5784 for such branches code_motion_path_driver is not called. */
5785 if (moveop_drv_call_res != 0)
5786 return;
5787
5788 /* Mark all registers that do not meet the following condition:
5789 (3) not live on the other path of any conditional branch
5790 that is passed by the operation, in case original
5791 operations are not present on both paths of the
5792 conditional branch. */
5793 succ_live = compute_live (succ);
5794 IOR_REG_SET (sparams->used_regs, succ_live);
5795}
5796
5797/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5798 into SP->CEXPR. */
5799static void
5800move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
b8698a0f 5801{
e855c69d
AB
5802 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5803
5804 sp->c_expr = lp->c_expr_merged;
5805}
5806
5807/* Track bookkeeping copies created, insns scheduled, and blocks for
5808 rescheduling when INSN is found by move_op. */
5809static void
90831096 5810track_scheduled_insns_and_blocks (rtx_insn *insn)
e855c69d
AB
5811{
5812 /* Even if this insn can be a copy that will be removed during current move_op,
5813 we still need to count it as an originator. */
5814 bitmap_set_bit (current_originators, INSN_UID (insn));
5815
fcaa4ca4 5816 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e855c69d
AB
5817 {
5818 /* Note that original block needs to be rescheduled, as we pulled an
5819 instruction out of it. */
5820 if (INSN_SCHED_TIMES (insn) > 0)
5821 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
b5b8b0ac 5822 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e855c69d
AB
5823 num_insns_scheduled++;
5824 }
e855c69d
AB
5825
5826 /* For instructions we must immediately remove insn from the
5827 stream, so subsequent update_data_sets () won't include this
5828 insn into av_set.
5829 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5830 if (INSN_UID (insn) > max_uid_before_move_op)
5831 stat_bookkeeping_copies--;
5832}
5833
b8698a0f 5834/* Emit a register-register copy for INSN if needed. Return true if
e855c69d
AB
5835 emitted one. PARAMS is the move_op static parameters. */
5836static bool
6144a836 5837maybe_emit_renaming_copy (rtx_insn *insn,
e855c69d
AB
5838 moveop_static_params_p params)
5839{
5840 bool insn_emitted = false;
f07013eb 5841 rtx cur_reg;
e855c69d 5842
f07013eb
AM
5843 /* Bail out early when expression can not be renamed at all. */
5844 if (!EXPR_SEPARABLE_P (params->c_expr))
5845 return false;
5846
5847 cur_reg = expr_dest_reg (params->c_expr);
5848 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e855c69d
AB
5849
5850 /* If original operation has expr and the register chosen for
5851 that expr is not original operation's dest reg, substitute
5852 operation's right hand side with the register chosen. */
f07013eb 5853 if (REGNO (params->dest) != REGNO (cur_reg))
e855c69d
AB
5854 {
5855 insn_t reg_move_insn, reg_move_insn_rtx;
b8698a0f
L
5856
5857 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e855c69d 5858 params->dest);
b8698a0f
L
5859 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5860 INSN_EXPR (insn),
5861 INSN_SEQNO (insn),
e855c69d
AB
5862 insn);
5863 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5864 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
b8698a0f 5865
e855c69d
AB
5866 insn_emitted = true;
5867 params->was_renamed = true;
5868 }
b8698a0f 5869
e855c69d
AB
5870 return insn_emitted;
5871}
5872
b8698a0f
L
5873/* Emit a speculative check for INSN speculated as EXPR if needed.
5874 Return true if we've emitted one. PARAMS is the move_op static
e855c69d
AB
5875 parameters. */
5876static bool
6144a836 5877maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
e855c69d
AB
5878 moveop_static_params_p params)
5879{
5880 bool insn_emitted = false;
5881 insn_t x;
5882 ds_t check_ds;
5883
5884 check_ds = get_spec_check_type_for_insn (insn, expr);
5885 if (check_ds != 0)
5886 {
5887 /* A speculation check should be inserted. */
5888 x = create_speculation_check (params->c_expr, check_ds, insn);
5889 insn_emitted = true;
5890 }
5891 else
5892 {
5893 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5894 x = insn;
5895 }
b8698a0f 5896
e855c69d
AB
5897 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5898 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5899 return insn_emitted;
5900}
5901
b8698a0f
L
5902/* Handle transformations that leave an insn in place of original
5903 insn such as renaming/speculation. Return true if one of such
e855c69d
AB
5904 transformations actually happened, and we have emitted this insn. */
5905static bool
6144a836 5906handle_emitting_transformations (rtx_insn *insn, expr_t expr,
e855c69d
AB
5907 moveop_static_params_p params)
5908{
5909 bool insn_emitted = false;
5910
5911 insn_emitted = maybe_emit_renaming_copy (insn, params);
5912 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5913
5914 return insn_emitted;
b8698a0f 5915}
e855c69d 5916
b5b8b0ac
AO
5917/* If INSN is the only insn in the basic block (not counting JUMP,
5918 which may be a jump to next insn, and DEBUG_INSNs), we want to
5919 leave a NOP there till the return to fill_insns. */
5920
5921static bool
5a59b408 5922need_nop_to_preserve_insn_bb (rtx_insn *insn)
e855c69d 5923{
b5b8b0ac 5924 insn_t bb_head, bb_end, bb_next, in_next;
e855c69d
AB
5925 basic_block bb = BLOCK_FOR_INSN (insn);
5926
e855c69d
AB
5927 bb_head = sel_bb_head (bb);
5928 bb_end = sel_bb_end (bb);
e855c69d 5929
b5b8b0ac
AO
5930 if (bb_head == bb_end)
5931 return true;
5932
5933 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5934 bb_head = NEXT_INSN (bb_head);
5935
5936 if (bb_head == bb_end)
5937 return true;
5938
5939 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5940 bb_end = PREV_INSN (bb_end);
5941
5942 if (bb_head == bb_end)
5943 return true;
5944
5945 bb_next = NEXT_INSN (bb_head);
5946 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5947 bb_next = NEXT_INSN (bb_next);
5948
5949 if (bb_next == bb_end && JUMP_P (bb_end))
5950 return true;
5951
5952 in_next = NEXT_INSN (insn);
5953 while (DEBUG_INSN_P (in_next))
5954 in_next = NEXT_INSN (in_next);
5955
5956 if (IN_CURRENT_FENCE_P (in_next))
5957 return true;
5958
5959 return false;
5960}
5961
5962/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5963 is not removed but reused when INSN is re-emitted. */
5964static void
6144a836 5965remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
b5b8b0ac 5966{
e855c69d
AB
5967 /* If there's only one insn in the BB, make sure that a nop is
5968 inserted into it, so the basic block won't disappear when we'll
5969 delete INSN below with sel_remove_insn. It should also survive
b8698a0f 5970 till the return to fill_insns. */
b5b8b0ac 5971 if (need_nop_to_preserve_insn_bb (insn))
e855c69d 5972 {
b5b8b0ac 5973 insn_t nop = get_nop_from_pool (insn);
e855c69d 5974 gcc_assert (INSN_NOP_P (nop));
9771b263 5975 vec_temp_moveop_nops.safe_push (nop);
e855c69d
AB
5976 }
5977
5978 sel_remove_insn (insn, only_disconnect, false);
5979}
5980
5981/* This function is called when original expr is found.
b8698a0f 5982 INSN - current insn traversed, EXPR - the corresponding expr found.
e855c69d
AB
5983 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5984 is static parameters of move_op. */
5985static void
b8698a0f
L
5986move_op_orig_expr_found (insn_t insn, expr_t expr,
5987 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5988 void *static_params)
5989{
54b8379a 5990 bool only_disconnect;
e855c69d 5991 moveop_static_params_p params = (moveop_static_params_p) static_params;
b8698a0f 5992
e855c69d
AB
5993 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5994 track_scheduled_insns_and_blocks (insn);
54b8379a
AB
5995 handle_emitting_transformations (insn, expr, params);
5996 only_disconnect = params->uid == INSN_UID (insn);
72a54528
AM
5997
5998 /* Mark that we've disconnected an insn. */
5999 if (only_disconnect)
6000 params->uid = -1;
e855c69d
AB
6001 remove_insn_from_stream (insn, only_disconnect);
6002}
6003
6004/* The function is called when original expr is found.
6005 INSN - current insn traversed, EXPR - the corresponding expr found,
6006 crosses_call and original_insns in STATIC_PARAMS are updated. */
6007static void
6008fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6009 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6010 void *static_params)
6011{
6012 fur_static_params_p params = (fur_static_params_p) static_params;
6013 regset tmp;
6014
6015 if (CALL_P (insn))
6016 params->crosses_call = true;
6017
6018 def_list_add (params->original_insns, insn, params->crosses_call);
6019
6020 /* Mark the registers that do not meet the following condition:
b8698a0f
L
6021 (2) not among the live registers of the point
6022 immediately following the first original operation on
e855c69d
AB
6023 a given downward path, except for the original target
6024 register of the operation. */
6025 tmp = get_clear_regset_from_pool ();
6026 compute_live_below_insn (insn, tmp);
6027 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6028 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6029 IOR_REG_SET (params->used_regs, tmp);
6030 return_regset_to_pool (tmp);
6031
6032 /* (*1) We need to add to USED_REGS registers that are read by
6033 INSN's lhs. This may lead to choosing wrong src register.
6034 E.g. (scheduling const expr enabled):
6035
6036 429: ax=0x0 <- Can't use AX for this expr (0x0)
6037 433: dx=[bp-0x18]
6038 427: [ax+dx+0x1]=ax
6039 REG_DEAD: ax
6040 168: di=dx
6041 REG_DEAD: dx
6042 */
b8698a0f 6043 /* FIXME: see comment above and enable MEM_P
e855c69d
AB
6044 in vinsn_separable_p. */
6045 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6046 || !MEM_P (INSN_LHS (insn)));
6047}
6048
6049/* This function is called on the ascending pass, before returning from
6050 current basic block. */
6051static void
b8698a0f 6052move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e855c69d
AB
6053 void *static_params)
6054{
6055 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6056 basic_block book_block = NULL;
6057
b8698a0f 6058 /* When we have removed the boundary insn for scheduling, which also
e855c69d 6059 happened to be the end insn in its bb, we don't need to update sets. */
b8698a0f 6060 if (!lparams->removed_last_insn
e855c69d
AB
6061 && lparams->e1
6062 && sel_bb_head_p (insn))
6063 {
6064 /* We should generate bookkeeping code only if we are not at the
6065 top level of the move_op. */
6066 if (sel_num_cfg_preds_gt_1 (insn))
6067 book_block = generate_bookkeeping_insn (sparams->c_expr,
6068 lparams->e1, lparams->e2);
6069 /* Update data sets for the current insn. */
6070 update_data_sets (insn);
6071 }
b8698a0f 6072
e855c69d 6073 /* If bookkeeping code was inserted, we need to update av sets of basic
b8698a0f 6074 block that received bookkeeping. After generation of bookkeeping insn,
e855c69d 6075 bookkeeping block does not contain valid av set because we are not following
b8698a0f 6076 the original algorithm in every detail with regards to e.g. renaming
e855c69d 6077 simple reg-reg copies. Consider example:
b8698a0f 6078
e855c69d
AB
6079 bookkeeping block scheduling fence
6080 \ /
6081 \ join /
6082 ----------
6083 | |
6084 ----------
6085 / \
6086 / \
6087 r1 := r2 r1 := r3
6088
b8698a0f 6089 We try to schedule insn "r1 := r3" on the current
e855c69d
AB
6090 scheduling fence. Also, note that av set of bookkeeping block
6091 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6092 been scheduled, the CFG is as follows:
6093
6094 r1 := r3 r1 := r3
6095 bookkeeping block scheduling fence
6096 \ /
6097 \ join /
6098 ----------
6099 | |
6100 ----------
6101 / \
6102 / \
6103 r1 := r2
6104
6105 Here, insn "r1 := r3" was scheduled at the current scheduling point
6106 and bookkeeping code was generated at the bookeeping block. This
6107 way insn "r1 := r2" is no longer available as a whole instruction
6108 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
b8698a0f 6109 This situation is handled by calling update_data_sets.
e855c69d
AB
6110
6111 Since update_data_sets is called only on the bookkeeping block, and
b8698a0f 6112 it also may have predecessors with av_sets, containing instructions that
e855c69d
AB
6113 are no longer available, we save all such expressions that become
6114 unavailable during data sets update on the bookkeeping block in
b8698a0f
L
6115 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6116 expressions for scheduling. This allows us to avoid recomputation of
e855c69d 6117 av_sets outside the code motion path. */
b8698a0f 6118
e855c69d
AB
6119 if (book_block)
6120 update_and_record_unavailable_insns (book_block);
6121
6122 /* If INSN was previously marked for deletion, it's time to do it. */
6123 if (lparams->removed_last_insn)
6124 insn = PREV_INSN (insn);
b8698a0f 6125
e855c69d
AB
6126 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6127 kill a block with a single nop in which the insn should be emitted. */
6128 if (lparams->e1)
6129 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6130}
6131
6132/* This function is called on the ascending pass, before returning from the
6133 current basic block. */
6134static void
b8698a0f
L
6135fur_at_first_insn (insn_t insn,
6136 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
6137 void *static_params ATTRIBUTE_UNUSED)
6138{
6139 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6140 || AV_LEVEL (insn) == -1);
6141}
6142
6143/* Called on the backward stage of recursion to call moveup_expr for insn
6144 and sparams->c_expr. */
6145static void
6146move_op_ascend (insn_t insn, void *static_params)
6147{
6148 enum MOVEUP_EXPR_CODE res;
6149 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6150
6151 if (! INSN_NOP_P (insn))
6152 {
6153 res = moveup_expr_cached (sparams->c_expr, insn, false);
6154 gcc_assert (res != MOVEUP_EXPR_NULL);
6155 }
6156
6157 /* Update liveness for this insn as it was invalidated. */
6158 update_liveness_on_insn (insn);
6159}
6160
b8698a0f
L
6161/* This function is called on enter to the basic block.
6162 Returns TRUE if this block already have been visited and
e855c69d
AB
6163 code_motion_path_driver should return 1, FALSE otherwise. */
6164static int
b8698a0f 6165fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e855c69d
AB
6166 void *static_params, bool visited_p)
6167{
6168 fur_static_params_p sparams = (fur_static_params_p) static_params;
6169
6170 if (visited_p)
6171 {
6172 /* If we have found something below this block, there should be at
6173 least one insn in ORIGINAL_INSNS. */
6174 gcc_assert (*sparams->original_insns);
6175
6176 /* Adjust CROSSES_CALL, since we may have come to this block along
6177 different path. */
6178 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6179 |= sparams->crosses_call;
6180 }
6181 else
6182 local_params->old_original_insns = *sparams->original_insns;
6183
6184 return 1;
6185}
6186
6187/* Same as above but for move_op. */
6188static int
b8698a0f
L
6189move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6190 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e855c69d
AB
6191 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6192{
6193 if (visited_p)
6194 return -1;
6195 return 1;
6196}
6197
b8698a0f 6198/* This function is called while descending current basic block if current
e855c69d
AB
6199 insn is not the original EXPR we're searching for.
6200
b8698a0f 6201 Return value: FALSE, if code_motion_path_driver should perform a local
e855c69d
AB
6202 cleanup and return 0 itself;
6203 TRUE, if code_motion_path_driver should continue. */
6204static bool
6205move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6206 void *static_params)
6207{
6208 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6209
e855c69d 6210 sparams->failed_insn = insn;
e855c69d
AB
6211
6212 /* If we're scheduling separate expr, in order to generate correct code
b8698a0f 6213 we need to stop the search at bookkeeping code generated with the
e855c69d
AB
6214 same destination register or memory. */
6215 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6216 return false;
6217 return true;
6218}
6219
b8698a0f 6220/* This function is called while descending current basic block if current
e855c69d
AB
6221 insn is not the original EXPR we're searching for.
6222
6223 Return value: TRUE (code_motion_path_driver should continue). */
6224static bool
6225fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6226{
6227 bool mutexed;
6228 expr_t r;
6229 av_set_iterator avi;
6230 fur_static_params_p sparams = (fur_static_params_p) static_params;
6231
6232 if (CALL_P (insn))
6233 sparams->crosses_call = true;
b5b8b0ac
AO
6234 else if (DEBUG_INSN_P (insn))
6235 return true;
e855c69d
AB
6236
6237 /* If current insn we are looking at cannot be executed together
6238 with original insn, then we can skip it safely.
6239
6240 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6241 INSN = (!p6) r14 = r14 + 1;
6242
6243 Here we can schedule ORIG_OP with lhs = r14, though only
6244 looking at the set of used and set registers of INSN we must
6245 forbid it. So, add set/used in INSN registers to the
6246 untouchable set only if there is an insn in ORIG_OPS that can
6247 affect INSN. */
6248 mutexed = true;
6249 FOR_EACH_EXPR (r, avi, orig_ops)
6250 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6251 {
6252 mutexed = false;
6253 break;
6254 }
6255
6256 /* Mark all registers that do not meet the following condition:
6257 (1) Not set or read on any path from xi to an instance of the
6258 original operation. */
6259 if (!mutexed)
6260 {
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6264 }
6265
6266 return true;
6267}
6268
6269/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6270struct code_motion_path_driver_info_def move_op_hooks = {
6271 move_op_on_enter,
6272 move_op_orig_expr_found,
6273 move_op_orig_expr_not_found,
6274 move_op_merge_succs,
6275 move_op_after_merge_succs,
6276 move_op_ascend,
6277 move_op_at_first_insn,
6278 SUCCS_NORMAL,
6279 "move_op"
6280};
6281
b8698a0f 6282/* Hooks and data to perform find_used_regs operations
e855c69d
AB
6283 with code_motion_path_driver. */
6284struct code_motion_path_driver_info_def fur_hooks = {
6285 fur_on_enter,
6286 fur_orig_expr_found,
6287 fur_orig_expr_not_found,
6288 fur_merge_succs,
6289 NULL, /* fur_after_merge_succs */
6290 NULL, /* fur_ascend */
6291 fur_at_first_insn,
6292 SUCCS_ALL,
6293 "find_used_regs"
6294};
6295
6296/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
b8698a0f
L
6297 code_motion_path_driver is called recursively. Original operation
6298 was found at least on one path that is starting with one of INSN's
e855c69d
AB
6299 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6300 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
b8698a0f 6301 of either move_op or find_used_regs depending on the caller.
e855c69d
AB
6302
6303 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6304 know for sure at this point. */
6305static int
b8698a0f 6306code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e855c69d
AB
6307 ilist_t path, void *static_params)
6308{
6309 int res = 0;
6310 succ_iterator succ_i;
6144a836 6311 insn_t succ;
e855c69d
AB
6312 basic_block bb;
6313 int old_index;
6314 unsigned old_succs;
6315
6316 struct cmpd_local_params lparams;
6317 expr_def _x;
6318
6319 lparams.c_expr_local = &_x;
6320 lparams.c_expr_merged = NULL;
6321
6322 /* We need to process only NORMAL succs for move_op, and collect live
b8698a0f
L
6323 registers from ALL branches (including those leading out of the
6324 region) for find_used_regs.
e855c69d
AB
6325
6326 In move_op, there can be a case when insn's bb number has changed
b8698a0f
L
6327 due to created bookkeeping. This happens very rare, as we need to
6328 move expression from the beginning to the end of the same block.
6329 Rescan successors in this case. */
e855c69d
AB
6330
6331 rescan:
6332 bb = BLOCK_FOR_INSN (insn);
b8698a0f 6333 old_index = bb->index;
e855c69d 6334 old_succs = EDGE_COUNT (bb->succs);
b8698a0f 6335
e855c69d
AB
6336 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6337 {
6338 int b;
6339
6340 lparams.e1 = succ_i.e1;
6341 lparams.e2 = succ_i.e2;
6342
6343 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6344 current region). */
6345 if (succ_i.current_flags == SUCCS_NORMAL)
b8698a0f 6346 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e855c69d
AB
6347 static_params);
6348 else
6349 b = 0;
6350
6351 /* Merge c_expres found or unify live register sets from different
6352 successors. */
6353 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6354 static_params);
6355 if (b == 1)
6356 res = b;
6357 else if (b == -1 && res != 1)
6358 res = b;
6359
6360 /* We have simplified the control flow below this point. In this case,
e839e2a9
AB
6361 the iterator becomes invalid. We need to try again.
6362 If we have removed the insn itself, it could be only an
6363 unconditional jump. Thus, do not rescan but break immediately --
6364 we have already visited the only successor block. */
6365 if (!BLOCK_FOR_INSN (insn))
6366 {
6367 if (sched_verbose >= 6)
6368 sel_print ("Not doing rescan: already visited the only successor"
6369 " of block %d\n", old_index);
6370 break;
6371 }
e855c69d
AB
6372 if (BLOCK_FOR_INSN (insn)->index != old_index
6373 || EDGE_COUNT (bb->succs) != old_succs)
7c1f0b40 6374 {
e839e2a9
AB
6375 if (sched_verbose >= 6)
6376 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6377 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
7c1f0b40
DM
6378 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6379 goto rescan;
6380 }
e855c69d
AB
6381 }
6382
b8698a0f 6383 /* Here, RES==1 if original expr was found at least for one of the
e855c69d 6384 successors. After the loop, RES may happen to have zero value
b8698a0f
L
6385 only if at some point the expr searched is present in av_set, but is
6386 not found below. In most cases, this situation is an error.
e855c69d
AB
6387 The exception is when the original operation is blocked by
6388 bookkeeping generated for another fence or for another path in current
6389 move_op. */
b2b29377
MM
6390 gcc_checking_assert (res == 1
6391 || (res == 0
6392 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6393 || res == -1);
b8698a0f 6394
e855c69d 6395 /* Merge data, clean up, etc. */
72a54528 6396 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6397 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6398
6399 return res;
6400}
6401
6402
b8698a0f
L
6403/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6404 is the pointer to the av set with expressions we were looking for,
e855c69d
AB
6405 PATH_P is the pointer to the traversed path. */
6406static inline void
6407code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6408{
6409 ilist_remove (path_p);
6410 av_set_clear (orig_ops_p);
6411}
6412
b8698a0f
L
6413/* The driver function that implements move_op or find_used_regs
6414 functionality dependent whether code_motion_path_driver_INFO is set to
6415 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e855c69d
AB
6416 of code (CFG traversal etc) that are shared among both functions. INSN
6417 is the insn we're starting the search from, ORIG_OPS are the expressions
6418 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6419 parameters of the driver, and STATIC_PARAMS are static parameters of
b8698a0f 6420 the caller.
e855c69d
AB
6421
6422 Returns whether original instructions were found. Note that top-level
6423 code_motion_path_driver always returns true. */
72a54528 6424static int
b8698a0f
L
6425code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6426 cmpd_local_params_p local_params_in,
e855c69d
AB
6427 void *static_params)
6428{
6429 expr_t expr = NULL;
6430 basic_block bb = BLOCK_FOR_INSN (insn);
6431 insn_t first_insn, bb_tail, before_first;
6432 bool removed_last_insn = false;
6433
6434 if (sched_verbose >= 6)
6435 {
6436 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6437 dump_insn (insn);
6438 sel_print (",");
6439 dump_av_set (orig_ops);
6440 sel_print (")\n");
6441 }
6442
6443 gcc_assert (orig_ops);
6444
6445 /* If no original operations exist below this insn, return immediately. */
6446 if (is_ineligible_successor (insn, path))
6447 {
6448 if (sched_verbose >= 6)
6449 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6450 return false;
6451 }
b8698a0f 6452
e855c69d
AB
6453 /* The block can have invalid av set, in which case it was created earlier
6454 during move_op. Return immediately. */
6455 if (sel_bb_head_p (insn))
6456 {
6457 if (! AV_SET_VALID_P (insn))
6458 {
6459 if (sched_verbose >= 6)
6460 sel_print ("Returned from block %d as it had invalid av set\n",
6461 bb->index);
6462 return false;
6463 }
6464
6465 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6466 {
6467 /* We have already found an original operation on this branch, do not
6468 go any further and just return TRUE here. If we don't stop here,
9c582551 6469 function can have exponential behavior even on the small code
e855c69d
AB
6470 with many different paths (e.g. with data speculation and
6471 recovery blocks). */
6472 if (sched_verbose >= 6)
6473 sel_print ("Block %d already visited in this traversal\n", bb->index);
6474 if (code_motion_path_driver_info->on_enter)
b8698a0f 6475 return code_motion_path_driver_info->on_enter (insn,
e855c69d 6476 local_params_in,
b8698a0f 6477 static_params,
e855c69d
AB
6478 true);
6479 }
6480 }
b8698a0f 6481
e855c69d
AB
6482 if (code_motion_path_driver_info->on_enter)
6483 code_motion_path_driver_info->on_enter (insn, local_params_in,
6484 static_params, false);
6485 orig_ops = av_set_copy (orig_ops);
6486
6487 /* Filter the orig_ops set. */
6488 if (AV_SET_VALID_P (insn))
5d369d58 6489 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
e855c69d
AB
6490
6491 /* If no more original ops, return immediately. */
6492 if (!orig_ops)
6493 {
6494 if (sched_verbose >= 6)
6495 sel_print ("No intersection with av set of block %d\n", bb->index);
6496 return false;
6497 }
6498
6499 /* For non-speculative insns we have to leave only one form of the
b8698a0f 6500 original operation, because if we don't, we may end up with
e855c69d
AB
6501 different C_EXPRes and, consequently, with bookkeepings for different
6502 expression forms along the same code motion path. That may lead to
b8698a0f
L
6503 generation of incorrect code. So for each code motion we stick to
6504 the single form of the instruction, except for speculative insns
6505 which we need to keep in different forms with all speculation
e855c69d
AB
6506 types. */
6507 av_set_leave_one_nonspec (&orig_ops);
6508
6509 /* It is not possible that all ORIG_OPS are filtered out. */
6510 gcc_assert (orig_ops);
6511
6512 /* It is enough to place only heads and tails of visited basic blocks into
6513 the PATH. */
6514 ilist_add (&path, insn);
6515 first_insn = insn;
6516 bb_tail = sel_bb_end (bb);
6517
6518 /* Descend the basic block in search of the original expr; this part
b8698a0f 6519 corresponds to the part of the original move_op procedure executed
e855c69d
AB
6520 before the recursive call. */
6521 for (;;)
6522 {
6523 /* Look at the insn and decide if it could be an ancestor of currently
6524 scheduling operation. If it is so, then the insn "dest = op" could
6525 either be replaced with "dest = reg", because REG now holds the result
6526 of OP, or just removed, if we've scheduled the insn as a whole.
6527
6528 If this insn doesn't contain currently scheduling OP, then proceed
6529 with searching and look at its successors. Operations we're searching
b8698a0f 6530 for could have changed when moving up through this insn via
e855c69d
AB
6531 substituting. In this case, perform unsubstitution on them first.
6532
6533 When traversing the DAG below this insn is finished, insert
6534 bookkeeping code, if the insn is a joint point, and remove
6535 leftovers. */
6536
6537 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6538 if (expr)
6539 {
6540 insn_t last_insn = PREV_INSN (insn);
6541
6542 /* We have found the original operation. */
6543 if (sched_verbose >= 6)
6544 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6545
b8698a0f 6546 code_motion_path_driver_info->orig_expr_found
e855c69d
AB
6547 (insn, expr, local_params_in, static_params);
6548
6549 /* Step back, so on the way back we'll start traversing from the
b8698a0f 6550 previous insn (or we'll see that it's bb_note and skip that
e855c69d
AB
6551 loop). */
6552 if (insn == first_insn)
6553 {
6554 first_insn = NEXT_INSN (last_insn);
6555 removed_last_insn = sel_bb_end_p (last_insn);
6556 }
6557 insn = last_insn;
6558 break;
6559 }
6560 else
6561 {
6562 /* We haven't found the original expr, continue descending the basic
6563 block. */
b8698a0f 6564 if (code_motion_path_driver_info->orig_expr_not_found
e855c69d
AB
6565 (insn, orig_ops, static_params))
6566 {
b8698a0f 6567 /* Av set ops could have been changed when moving through this
e855c69d
AB
6568 insn. To find them below it, we have to un-substitute them. */
6569 undo_transformations (&orig_ops, insn);
6570 }
6571 else
6572 {
6573 /* Clean up and return, if the hook tells us to do so. It may
b8698a0f 6574 happen if we've encountered the previously created
e855c69d
AB
6575 bookkeeping. */
6576 code_motion_path_driver_cleanup (&orig_ops, &path);
6577 return -1;
6578 }
6579
6580 gcc_assert (orig_ops);
6581 }
6582
6583 /* Stop at insn if we got to the end of BB. */
6584 if (insn == bb_tail)
6585 break;
6586
6587 insn = NEXT_INSN (insn);
6588 }
6589
b8698a0f 6590 /* Here INSN either points to the insn before the original insn (may be
e855c69d
AB
6591 bb_note, if original insn was a bb_head) or to the bb_end. */
6592 if (!expr)
6593 {
6594 int res;
5a59b408 6595 rtx_insn *last_insn = PREV_INSN (insn);
7c1f0b40 6596 bool added_to_path;
e855c69d
AB
6597
6598 gcc_assert (insn == sel_bb_end (bb));
6599
6600 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6601 it's already in PATH then). */
6602 if (insn != first_insn)
7c1f0b40
DM
6603 {
6604 ilist_add (&path, insn);
6605 added_to_path = true;
6606 }
6607 else
6608 added_to_path = false;
e855c69d 6609
b8698a0f
L
6610 /* Process_successors should be able to find at least one
6611 successor for which code_motion_path_driver returns TRUE. */
6612 res = code_motion_process_successors (insn, orig_ops,
e855c69d
AB
6613 path, static_params);
6614
7c1f0b40
DM
6615 /* Jump in the end of basic block could have been removed or replaced
6616 during code_motion_process_successors, so recompute insn as the
6617 last insn in bb. */
6618 if (NEXT_INSN (last_insn) != insn)
6619 {
6620 insn = sel_bb_end (bb);
6621 first_insn = sel_bb_head (bb);
6622 }
6623
e855c69d 6624 /* Remove bb tail from path. */
7c1f0b40 6625 if (added_to_path)
e855c69d
AB
6626 ilist_remove (&path);
6627
6628 if (res != 1)
6629 {
6630 /* This is the case when one of the original expr is no longer available
b8698a0f 6631 due to bookkeeping created on this branch with the same register.
e855c69d 6632 In the original algorithm, which doesn't have update_data_sets call
b8698a0f
L
6633 on a bookkeeping block, it would simply result in returning
6634 FALSE when we've encountered a previously generated bookkeeping
e855c69d
AB
6635 insn in moveop_orig_expr_not_found. */
6636 code_motion_path_driver_cleanup (&orig_ops, &path);
6637 return res;
6638 }
6639 }
6640
6641 /* Don't need it any more. */
6642 av_set_clear (&orig_ops);
6643
b8698a0f 6644 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e855c69d
AB
6645 the beginning of the basic block. */
6646 before_first = PREV_INSN (first_insn);
6647 while (insn != before_first)
b8698a0f 6648 {
e855c69d
AB
6649 if (code_motion_path_driver_info->ascend)
6650 code_motion_path_driver_info->ascend (insn, static_params);
6651
6652 insn = PREV_INSN (insn);
6653 }
b8698a0f 6654
e855c69d
AB
6655 /* Now we're at the bb head. */
6656 insn = first_insn;
6657 ilist_remove (&path);
6658 local_params_in->removed_last_insn = removed_last_insn;
6659 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
b8698a0f 6660
e855c69d
AB
6661 /* This should be the very last operation as at bb head we could change
6662 the numbering by creating bookkeeping blocks. */
6663 if (removed_last_insn)
6664 insn = PREV_INSN (insn);
861ec4f3
AB
6665
6666 /* If we have simplified the control flow and removed the first jump insn,
6667 there's no point in marking this block in the visited blocks bitmap. */
6668 if (BLOCK_FOR_INSN (insn))
6669 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
e855c69d
AB
6670 return true;
6671}
6672
b8698a0f 6673/* Move up the operations from ORIG_OPS set traversing the dag starting
e855c69d
AB
6674 from INSN. PATH represents the edges traversed so far.
6675 DEST is the register chosen for scheduling the current expr. Insert
6676 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
b8698a0f 6677 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6678 Set *SHOULD_MOVE to indicate whether we have only disconnected
6679 one of the insns found.
e855c69d 6680
b8698a0f 6681 Returns whether original instructions were found, which is asserted
e855c69d
AB
6682 to be true in the caller. */
6683static bool
6684move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6685 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6686{
6687 struct moveop_static_params sparams;
6688 struct cmpd_local_params lparams;
6c8e9fc9 6689 int res;
e855c69d 6690
b8698a0f 6691 /* Init params for code_motion_path_driver. */
e855c69d
AB
6692 sparams.dest = dest;
6693 sparams.c_expr = c_expr;
6694 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
e855c69d 6695 sparams.failed_insn = NULL;
e855c69d
AB
6696 sparams.was_renamed = false;
6697 lparams.e1 = NULL;
6698
6699 /* We haven't visited any blocks yet. */
6700 bitmap_clear (code_motion_visited_blocks);
b8698a0f 6701
e855c69d
AB
6702 /* Set appropriate hooks and data. */
6703 code_motion_path_driver_info = &move_op_hooks;
6704 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6705
6c8e9fc9
AM
6706 gcc_assert (res != -1);
6707
e855c69d
AB
6708 if (sparams.was_renamed)
6709 EXPR_WAS_RENAMED (expr_vliw) = true;
6710
72a54528
AM
6711 *should_move = (sparams.uid == -1);
6712
e855c69d
AB
6713 return res;
6714}
6715\f
6716
6717/* Functions that work with regions. */
6718
6719/* Current number of seqno used in init_seqno and init_seqno_1. */
6720static int cur_seqno;
6721
b8698a0f
L
6722/* A helper for init_seqno. Traverse the region starting from BB and
6723 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e855c69d
AB
6724 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6725static void
6726init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6727{
6728 int bbi = BLOCK_TO_BB (bb->index);
e67d1102 6729 insn_t insn;
e855c69d
AB
6730 insn_t succ_insn;
6731 succ_iterator si;
6732
e67d1102 6733 rtx_note *note = bb_note (bb);
d7c028c0 6734 bitmap_set_bit (visited_bbs, bbi);
e855c69d
AB
6735 if (blocks_to_reschedule)
6736 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6737
b8698a0f 6738 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e855c69d
AB
6739 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6740 {
6741 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6742 int succ_bbi = BLOCK_TO_BB (succ->index);
6743
6744 gcc_assert (in_current_region_p (succ));
6745
d7c028c0 6746 if (!bitmap_bit_p (visited_bbs, succ_bbi))
e855c69d
AB
6747 {
6748 gcc_assert (succ_bbi > bbi);
6749
6750 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6751 }
06f0c25f
AB
6752 else if (blocks_to_reschedule)
6753 bitmap_set_bit (forced_ebb_heads, succ->index);
e855c69d
AB
6754 }
6755
6756 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6757 INSN_SEQNO (insn) = cur_seqno--;
6758}
6759
1f3b2b4e
AM
6760/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6761 blocks on which we're rescheduling when pipelining, FROM is the block where
e855c69d 6762 traversing region begins (it may not be the head of the region when
b8698a0f 6763 pipelining, but the head of the loop instead).
e855c69d
AB
6764
6765 Returns the maximal seqno found. */
6766static int
1f3b2b4e 6767init_seqno (bitmap blocks_to_reschedule, basic_block from)
e855c69d 6768{
e855c69d
AB
6769 bitmap_iterator bi;
6770 unsigned bbi;
6771
7ba9e72d 6772 auto_sbitmap visited_bbs (current_nr_blocks);
e855c69d
AB
6773
6774 if (blocks_to_reschedule)
6775 {
f61e445a 6776 bitmap_ones (visited_bbs);
e855c69d
AB
6777 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6778 {
6779 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
d7c028c0 6780 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
e855c69d
AB
6781 }
6782 }
6783 else
6784 {
f61e445a 6785 bitmap_clear (visited_bbs);
e855c69d
AB
6786 from = EBB_FIRST_BB (0);
6787 }
6788
1f3b2b4e 6789 cur_seqno = sched_max_luid - 1;
e855c69d 6790 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
1f3b2b4e
AM
6791
6792 /* cur_seqno may be positive if the number of instructions is less than
6793 sched_max_luid - 1 (when rescheduling or if some instructions have been
6794 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6795 gcc_assert (cur_seqno >= 0);
e855c69d 6796
e855c69d
AB
6797 return sched_max_luid - 1;
6798}
6799
6800/* Initialize scheduling parameters for current region. */
6801static void
6802sel_setup_region_sched_flags (void)
6803{
6804 enable_schedule_as_rhs_p = 1;
6805 bookkeeping_p = 1;
b8698a0f 6806 pipelining_p = (bookkeeping_p
e855c69d 6807 && (flag_sel_sched_pipelining != 0)
07643d76
AM
6808 && current_loop_nest != NULL
6809 && loop_has_exit_edges (current_loop_nest));
e855c69d
AB
6810 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6811 max_ws = MAX_WS;
6812}
6813
6814/* Return true if all basic blocks of current region are empty. */
6815static bool
6816current_region_empty_p (void)
6817{
6818 int i;
6819 for (i = 0; i < current_nr_blocks; i++)
06e28de2 6820 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
e855c69d
AB
6821 return false;
6822
6823 return true;
6824}
6825
6826/* Prepare and verify loop nest for pipelining. */
6827static void
ea4d630f 6828setup_current_loop_nest (int rgn, bb_vec_t *bbs)
e855c69d
AB
6829{
6830 current_loop_nest = get_loop_nest_for_rgn (rgn);
6831
6832 if (!current_loop_nest)
6833 return;
6834
6835 /* If this loop has any saved loop preheaders from nested loops,
6836 add these basic blocks to the current region. */
ea4d630f 6837 sel_add_loop_preheaders (bbs);
e855c69d
AB
6838
6839 /* Check that we're starting with a valid information. */
6840 gcc_assert (loop_latch_edge (current_loop_nest));
6841 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6842}
6843
e855c69d
AB
6844/* Compute instruction priorities for current region. */
6845static void
6846sel_compute_priorities (int rgn)
6847{
6848 sched_rgn_compute_dependencies (rgn);
6849
6850 /* Compute insn priorities in haifa style. Then free haifa style
6851 dependencies that we've calculated for this. */
6852 compute_priorities ();
6853
6854 if (sched_verbose >= 5)
6855 debug_rgn_dependencies (0);
6856
6857 free_rgn_deps ();
6858}
6859
6860/* Init scheduling data for RGN. Returns true when this region should not
6861 be scheduled. */
6862static bool
6863sel_region_init (int rgn)
6864{
6865 int i;
6866 bb_vec_t bbs;
6867
6868 rgn_setup_region (rgn);
6869
b8698a0f 6870 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e855c69d
AB
6871 do region initialization here so the region can be bundled correctly,
6872 but we'll skip the scheduling in sel_sched_region (). */
6873 if (current_region_empty_p ())
6874 return true;
6875
9771b263 6876 bbs.create (current_nr_blocks);
e855c69d
AB
6877
6878 for (i = 0; i < current_nr_blocks; i++)
06e28de2 6879 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e855c69d 6880
a95b23b4 6881 sel_init_bbs (bbs);
e855c69d 6882
ea4d630f
AM
6883 if (flag_sel_sched_pipelining)
6884 setup_current_loop_nest (rgn, &bbs);
6885
9d40778b
AM
6886 sel_setup_region_sched_flags ();
6887
e855c69d
AB
6888 /* Initialize luids and dependence analysis which both sel-sched and haifa
6889 need. */
a95b23b4 6890 sched_init_luids (bbs);
e855c69d
AB
6891 sched_deps_init (false);
6892
6893 /* Initialize haifa data. */
6894 rgn_setup_sched_infos ();
6895 sel_set_sched_flags ();
a95b23b4 6896 haifa_init_h_i_d (bbs);
e855c69d
AB
6897
6898 sel_compute_priorities (rgn);
6899 init_deps_global ();
6900
6901 /* Main initialization. */
6902 sel_setup_sched_infos ();
6903 sel_init_global_and_expr (bbs);
6904
9771b263 6905 bbs.release ();
e855c69d
AB
6906
6907 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6908
6909 /* Init correct liveness sets on each instruction of a single-block loop.
6910 This is the only situation when we can't update liveness when calling
6911 compute_live for the first insn of the loop. */
6912 if (current_loop_nest)
6913 {
06e28de2
DM
6914 int header =
6915 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6916 ? 1
6917 : 0);
e855c69d
AB
6918
6919 if (current_nr_blocks == header + 1)
b8698a0f 6920 update_liveness_on_insn
06e28de2 6921 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
e855c69d 6922 }
b8698a0f 6923
e855c69d
AB
6924 /* Set hooks so that no newly generated insn will go out unnoticed. */
6925 sel_register_cfg_hooks ();
6926
38f8b050
JR
6927 /* !!! We call target.sched.init () for the whole region, but we invoke
6928 targetm.sched.finish () for every ebb. */
6929 if (targetm.sched.init)
e855c69d 6930 /* None of the arguments are actually used in any target. */
38f8b050 6931 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
6932
6933 first_emitted_uid = get_max_uid () + 1;
6934 preheader_removed = false;
6935
6936 /* Reset register allocation ticks array. */
6937 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6938 reg_rename_this_tick = 0;
6939
6940 bitmap_initialize (forced_ebb_heads, 0);
6941 bitmap_clear (forced_ebb_heads);
6942
6943 setup_nop_vinsn ();
6944 current_copies = BITMAP_ALLOC (NULL);
6945 current_originators = BITMAP_ALLOC (NULL);
6946 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6947
6948 return false;
6949}
6950
6951/* Simplify insns after the scheduling. */
6952static void
6953simplify_changed_insns (void)
6954{
6955 int i;
6956
6957 for (i = 0; i < current_nr_blocks; i++)
6958 {
06e28de2 6959 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
5a59b408 6960 rtx_insn *insn;
e855c69d
AB
6961
6962 FOR_BB_INSNS (bb, insn)
6963 if (INSN_P (insn))
6964 {
6965 expr_t expr = INSN_EXPR (insn);
6966
b8698a0f 6967 if (EXPR_WAS_SUBSTITUTED (expr))
e855c69d
AB
6968 validate_simplify_insn (insn);
6969 }
6970 }
6971}
6972
6973/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6974 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6975 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6976static void
6977find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6978{
52d251b5 6979 rtx_insn *head, *tail;
e855c69d
AB
6980 basic_block bb1 = bb;
6981 if (sched_verbose >= 2)
6982 sel_print ("Finishing schedule in bbs: ");
6983
6984 do
6985 {
6986 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6987
6988 if (sched_verbose >= 2)
6989 sel_print ("%d; ", bb1->index);
6990 }
6991 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6992
6993 if (sched_verbose >= 2)
6994 sel_print ("\n");
6995
6996 get_ebb_head_tail (bb, bb1, &head, &tail);
6997
6998 current_sched_info->head = head;
6999 current_sched_info->tail = tail;
7000 current_sched_info->prev_head = PREV_INSN (head);
7001 current_sched_info->next_tail = NEXT_INSN (tail);
7002}
7003
7004/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7005static void
7006reset_sched_cycles_in_current_ebb (void)
7007{
7008 int last_clock = 0;
7009 int haifa_last_clock = -1;
7010 int haifa_clock = 0;
06f0c25f 7011 int issued_insns = 0;
e855c69d
AB
7012 insn_t insn;
7013
38f8b050 7014 if (targetm.sched.init)
e855c69d
AB
7015 {
7016 /* None of the arguments are actually used in any target.
7017 NB: We should have md_reset () hook for cases like this. */
38f8b050 7018 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7019 }
7020
7021 state_reset (curr_state);
7022 advance_state (curr_state);
b8698a0f 7023
e855c69d
AB
7024 for (insn = current_sched_info->head;
7025 insn != current_sched_info->next_tail;
7026 insn = NEXT_INSN (insn))
7027 {
7028 int cost, haifa_cost;
7029 int sort_p;
d66b8f4b 7030 bool asm_p, real_insn, after_stall, all_issued;
e855c69d
AB
7031 int clock;
7032
7033 if (!INSN_P (insn))
7034 continue;
7035
7036 asm_p = false;
7037 real_insn = recog_memoized (insn) >= 0;
7038 clock = INSN_SCHED_CYCLE (insn);
7039
7040 cost = clock - last_clock;
7041
7042 /* Initialize HAIFA_COST. */
7043 if (! real_insn)
7044 {
7045 asm_p = INSN_ASM_P (insn);
7046
7047 if (asm_p)
7048 /* This is asm insn which *had* to be scheduled first
7049 on the cycle. */
7050 haifa_cost = 1;
7051 else
b8698a0f 7052 /* This is a use/clobber insn. It should not change
e855c69d
AB
7053 cost. */
7054 haifa_cost = 0;
7055 }
7056 else
d66b8f4b 7057 haifa_cost = estimate_insn_cost (insn, curr_state);
e855c69d
AB
7058
7059 /* Stall for whatever cycles we've stalled before. */
7060 after_stall = 0;
7061 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7062 {
7063 haifa_cost = cost;
7064 after_stall = 1;
7065 }
9b0f04e7
AB
7066 all_issued = issued_insns == issue_rate;
7067 if (haifa_cost == 0 && all_issued)
06f0c25f 7068 haifa_cost = 1;
e855c69d
AB
7069 if (haifa_cost > 0)
7070 {
7071 int i = 0;
7072
7073 while (haifa_cost--)
7074 {
7075 advance_state (curr_state);
06f0c25f 7076 issued_insns = 0;
e855c69d
AB
7077 i++;
7078
7079 if (sched_verbose >= 2)
7080 {
7081 sel_print ("advance_state (state_transition)\n");
7082 debug_state (curr_state);
7083 }
7084
b8698a0f
L
7085 /* The DFA may report that e.g. insn requires 2 cycles to be
7086 issued, but on the next cycle it says that insn is ready
e855c69d
AB
7087 to go. Check this here. */
7088 if (!after_stall
b8698a0f 7089 && real_insn
e855c69d 7090 && haifa_cost > 0
d66b8f4b 7091 && estimate_insn_cost (insn, curr_state) == 0)
e855c69d 7092 break;
d7f672ec
AB
7093
7094 /* When the data dependency stall is longer than the DFA stall,
9b0f04e7
AB
7095 and when we have issued exactly issue_rate insns and stalled,
7096 it could be that after this longer stall the insn will again
d7f672ec
AB
7097 become unavailable to the DFA restrictions. Looks strange
7098 but happens e.g. on x86-64. So recheck DFA on the last
7099 iteration. */
9b0f04e7 7100 if ((after_stall || all_issued)
d7f672ec
AB
7101 && real_insn
7102 && haifa_cost == 0)
d66b8f4b 7103 haifa_cost = estimate_insn_cost (insn, curr_state);
d7f672ec 7104 }
e855c69d
AB
7105
7106 haifa_clock += i;
06f0c25f
AB
7107 if (sched_verbose >= 2)
7108 sel_print ("haifa clock: %d\n", haifa_clock);
e855c69d
AB
7109 }
7110 else
7111 gcc_assert (haifa_cost == 0);
7112
7113 if (sched_verbose >= 2)
7114 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7115
7116 if (targetm.sched.dfa_new_cycle)
7117 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7118 haifa_last_clock, haifa_clock,
7119 &sort_p))
7120 {
7121 advance_state (curr_state);
06f0c25f 7122 issued_insns = 0;
e855c69d
AB
7123 haifa_clock++;
7124 if (sched_verbose >= 2)
7125 {
7126 sel_print ("advance_state (dfa_new_cycle)\n");
7127 debug_state (curr_state);
06f0c25f 7128 sel_print ("haifa clock: %d\n", haifa_clock + 1);
e855c69d
AB
7129 }
7130 }
7131
7132 if (real_insn)
7133 {
d66b8f4b
AB
7134 static state_t temp = NULL;
7135
7136 if (!temp)
7137 temp = xmalloc (dfa_state_size);
7138 memcpy (temp, curr_state, dfa_state_size);
7139
e855c69d 7140 cost = state_transition (curr_state, insn);
d66b8f4b 7141 if (memcmp (temp, curr_state, dfa_state_size))
3f1960ac 7142 issued_insns++;
e855c69d
AB
7143
7144 if (sched_verbose >= 2)
06f0c25f
AB
7145 {
7146 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7147 haifa_clock + 1);
7148 debug_state (curr_state);
7149 }
e855c69d
AB
7150 gcc_assert (cost < 0);
7151 }
7152
7153 if (targetm.sched.variable_issue)
7154 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7155
7156 INSN_SCHED_CYCLE (insn) = haifa_clock;
7157
7158 last_clock = clock;
7159 haifa_last_clock = haifa_clock;
7160 }
7161}
7162
7163/* Put TImode markers on insns starting a new issue group. */
7164static void
7165put_TImodes (void)
7166{
7167 int last_clock = -1;
7168 insn_t insn;
7169
7170 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7171 insn = NEXT_INSN (insn))
7172 {
7173 int cost, clock;
7174
7175 if (!INSN_P (insn))
7176 continue;
7177
7178 clock = INSN_SCHED_CYCLE (insn);
7179 cost = (last_clock == -1) ? 1 : clock - last_clock;
7180
7181 gcc_assert (cost >= 0);
7182
7183 if (issue_rate > 1
7184 && GET_CODE (PATTERN (insn)) != USE
7185 && GET_CODE (PATTERN (insn)) != CLOBBER)
7186 {
7187 if (reload_completed && cost > 0)
7188 PUT_MODE (insn, TImode);
7189
7190 last_clock = clock;
7191 }
7192
7193 if (sched_verbose >= 2)
7194 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7195 }
7196}
7197
b8698a0f 7198/* Perform MD_FINISH on EBBs comprising current region. When
e855c69d
AB
7199 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7200 to produce correct sched cycles on insns. */
7201static void
7202sel_region_target_finish (bool reset_sched_cycles_p)
7203{
7204 int i;
7205 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7206
7207 for (i = 0; i < current_nr_blocks; i++)
7208 {
7209 if (bitmap_bit_p (scheduled_blocks, i))
7210 continue;
7211
7212 /* While pipelining outer loops, skip bundling for loop
7213 preheaders. Those will be rescheduled in the outer loop. */
7214 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7215 continue;
7216
7217 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7218
7219 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7220 continue;
7221
7222 if (reset_sched_cycles_p)
7223 reset_sched_cycles_in_current_ebb ();
7224
38f8b050
JR
7225 if (targetm.sched.init)
7226 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7227
7228 put_TImodes ();
7229
38f8b050 7230 if (targetm.sched.finish)
e855c69d 7231 {
38f8b050 7232 targetm.sched.finish (sched_dump, sched_verbose);
e855c69d
AB
7233
7234 /* Extend luids so that insns generated by the target will
7235 get zero luid. */
a95b23b4 7236 sched_extend_luids ();
e855c69d
AB
7237 }
7238 }
7239
7240 BITMAP_FREE (scheduled_blocks);
7241}
7242
7243/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
b8698a0f 7244 is true, make an additional pass emulating scheduler to get correct insn
e855c69d
AB
7245 cycles for md_finish calls. */
7246static void
7247sel_region_finish (bool reset_sched_cycles_p)
7248{
7249 simplify_changed_insns ();
7250 sched_finish_ready_list ();
7251 free_nop_pool ();
7252
7253 /* Free the vectors. */
9771b263 7254 vec_av_set.release ();
e855c69d
AB
7255 BITMAP_FREE (current_copies);
7256 BITMAP_FREE (current_originators);
7257 BITMAP_FREE (code_motion_visited_blocks);
9771b263
DN
7258 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7259 vinsn_vec_free (vec_target_unavailable_vinsns);
e855c69d
AB
7260
7261 /* If LV_SET of the region head should be updated, do it now because
7262 there will be no other chance. */
7263 {
7264 succ_iterator si;
7265 insn_t insn;
7266
7267 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7268 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7269 {
7270 basic_block bb = BLOCK_FOR_INSN (insn);
7271
7272 if (!BB_LV_SET_VALID_P (bb))
7273 compute_live (insn);
7274 }
7275 }
7276
7277 /* Emulate the Haifa scheduler for bundling. */
7278 if (reload_completed)
7279 sel_region_target_finish (reset_sched_cycles_p);
7280
7281 sel_finish_global_and_expr ();
7282
7283 bitmap_clear (forced_ebb_heads);
7284
7285 free_nop_vinsn ();
7286
7287 finish_deps_global ();
7288 sched_finish_luids ();
9771b263 7289 h_d_i_d.release ();
e855c69d
AB
7290
7291 sel_finish_bbs ();
7292 BITMAP_FREE (blocks_to_reschedule);
7293
7294 sel_unregister_cfg_hooks ();
7295
7296 max_issue_size = 0;
7297}
7298\f
7299
7300/* Functions that implement the scheduler driver. */
7301
7302/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7303 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7304 of insns scheduled -- these would be postprocessed later. */
7305static void
7306schedule_on_fences (flist_t fences, int max_seqno,
7307 ilist_t **scheduled_insns_tailpp)
7308{
7309 flist_t old_fences = fences;
7310
7311 if (sched_verbose >= 1)
7312 {
7313 sel_print ("\nScheduling on fences: ");
7314 dump_flist (fences);
7315 sel_print ("\n");
7316 }
7317
7318 scheduled_something_on_previous_fence = false;
7319 for (; fences; fences = FLIST_NEXT (fences))
7320 {
7321 fence_t fence = NULL;
7322 int seqno = 0;
7323 flist_t fences2;
7324 bool first_p = true;
b8698a0f 7325
e855c69d
AB
7326 /* Choose the next fence group to schedule.
7327 The fact that insn can be scheduled only once
7328 on the cycle is guaranteed by two properties:
7329 1. seqnos of parallel groups decrease with each iteration.
7330 2. If is_ineligible_successor () sees the larger seqno, it
7331 checks if candidate insn is_in_current_fence_p (). */
7332 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7333 {
7334 fence_t f = FLIST_FENCE (fences2);
7335
7336 if (!FENCE_PROCESSED_P (f))
7337 {
7338 int i = INSN_SEQNO (FENCE_INSN (f));
7339
7340 if (first_p || i > seqno)
7341 {
7342 seqno = i;
7343 fence = f;
7344 first_p = false;
7345 }
7346 else
7347 /* ??? Seqnos of different groups should be different. */
7348 gcc_assert (1 || i != seqno);
7349 }
7350 }
7351
7352 gcc_assert (fence);
7353
7354 /* As FENCE is nonnull, SEQNO is initialized. */
7355 seqno -= max_seqno + 1;
7356 fill_insns (fence, seqno, scheduled_insns_tailpp);
7357 FENCE_PROCESSED_P (fence) = true;
7358 }
7359
7360 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
b8698a0f 7361 don't need to keep bookkeeping-invalidated and target-unavailable
e855c69d
AB
7362 vinsns any more. */
7363 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7364 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7365}
7366
7367/* Calculate MIN_SEQNO and MAX_SEQNO. */
7368static void
7369find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7370{
7371 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7372
7373 /* The first element is already processed. */
7374 while ((fences = FLIST_NEXT (fences)))
7375 {
7376 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
b8698a0f 7377
e855c69d
AB
7378 if (*min_seqno > seqno)
7379 *min_seqno = seqno;
7380 else if (*max_seqno < seqno)
7381 *max_seqno = seqno;
7382 }
7383}
7384
41b2d514 7385/* Calculate new fences from FENCES. Write the current time to PTIME. */
b8698a0f 7386static flist_t
41b2d514 7387calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
e855c69d
AB
7388{
7389 flist_t old_fences = fences;
7390 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
41b2d514 7391 int max_time = 0;
e855c69d
AB
7392
7393 flist_tail_init (new_fences);
7394 for (; fences; fences = FLIST_NEXT (fences))
7395 {
7396 fence_t fence = FLIST_FENCE (fences);
7397 insn_t insn;
b8698a0f 7398
e855c69d
AB
7399 if (!FENCE_BNDS (fence))
7400 {
7401 /* This fence doesn't have any successors. */
7402 if (!FENCE_SCHEDULED_P (fence))
7403 {
7404 /* Nothing was scheduled on this fence. */
7405 int seqno;
7406
7407 insn = FENCE_INSN (fence);
7408 seqno = INSN_SEQNO (insn);
7409 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7410
7411 if (sched_verbose >= 1)
b8698a0f 7412 sel_print ("Fence %d[%d] has not changed\n",
e855c69d
AB
7413 INSN_UID (insn),
7414 BLOCK_NUM (insn));
7415 move_fence_to_fences (fences, new_fences);
7416 }
7417 }
7418 else
7419 extract_new_fences_from (fences, new_fences, orig_max_seqno);
41b2d514 7420 max_time = MAX (max_time, FENCE_CYCLE (fence));
e855c69d
AB
7421 }
7422
7423 flist_clear (&old_fences);
41b2d514 7424 *ptime = max_time;
e855c69d
AB
7425 return FLIST_TAIL_HEAD (new_fences);
7426}
7427
7428/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7429 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7430 the highest seqno used in a region. Return the updated highest seqno. */
7431static int
b8698a0f
L
7432update_seqnos_and_stage (int min_seqno, int max_seqno,
7433 int highest_seqno_in_use,
e855c69d
AB
7434 ilist_t *pscheduled_insns)
7435{
7436 int new_hs;
7437 ilist_iterator ii;
7438 insn_t insn;
b8698a0f 7439
e855c69d
AB
7440 /* Actually, new_hs is the seqno of the instruction, that was
7441 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7442 if (*pscheduled_insns)
7443 {
7444 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7445 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7446 gcc_assert (new_hs > highest_seqno_in_use);
7447 }
7448 else
7449 new_hs = highest_seqno_in_use;
7450
7451 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7452 {
7453 gcc_assert (INSN_SEQNO (insn) < 0);
7454 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7455 gcc_assert (INSN_SEQNO (insn) <= new_hs);
bcf33775
AB
7456
7457 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7458 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7459 require > 1GB of memory e.g. on limit-fnargs.c. */
7460 if (! pipelining_p)
7461 free_data_for_scheduled_insn (insn);
e855c69d
AB
7462 }
7463
7464 ilist_clear (pscheduled_insns);
7465 global_level++;
7466
7467 return new_hs;
7468}
7469
b8698a0f
L
7470/* The main driver for scheduling a region. This function is responsible
7471 for correct propagation of fences (i.e. scheduling points) and creating
7472 a group of parallel insns at each of them. It also supports
e855c69d
AB
7473 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7474 of scheduling. */
7475static void
7476sel_sched_region_2 (int orig_max_seqno)
7477{
7478 int highest_seqno_in_use = orig_max_seqno;
41b2d514 7479 int max_time = 0;
e855c69d
AB
7480
7481 stat_bookkeeping_copies = 0;
7482 stat_insns_needed_bookkeeping = 0;
7483 stat_renamed_scheduled = 0;
7484 stat_substitutions_total = 0;
7485 num_insns_scheduled = 0;
7486
7487 while (fences)
7488 {
7489 int min_seqno, max_seqno;
7490 ilist_t scheduled_insns = NULL;
7491 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7492
7493 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7494 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
41b2d514 7495 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
e855c69d
AB
7496 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7497 highest_seqno_in_use,
7498 &scheduled_insns);
7499 }
7500
7501 if (sched_verbose >= 1)
41b2d514
AB
7502 {
7503 sel_print ("Total scheduling time: %d cycles\n", max_time);
7504 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7505 "bookkeeping, %d insns renamed, %d insns substituted\n",
7506 stat_bookkeeping_copies,
7507 stat_insns_needed_bookkeeping,
7508 stat_renamed_scheduled,
7509 stat_substitutions_total);
7510 }
e855c69d
AB
7511}
7512
b8698a0f
L
7513/* Schedule a region. When pipelining, search for possibly never scheduled
7514 bookkeeping code and schedule it. Reschedule pipelined code without
e855c69d
AB
7515 pipelining after. */
7516static void
7517sel_sched_region_1 (void)
7518{
e855c69d
AB
7519 int orig_max_seqno;
7520
1f3b2b4e 7521 /* Remove empty blocks that might be in the region from the beginning. */
e855c69d
AB
7522 purge_empty_blocks ();
7523
1f3b2b4e 7524 orig_max_seqno = init_seqno (NULL, NULL);
e855c69d
AB
7525 gcc_assert (orig_max_seqno >= 1);
7526
7527 /* When pipelining outer loops, create fences on the loop header,
7528 not preheader. */
7529 fences = NULL;
7530 if (current_loop_nest)
7531 init_fences (BB_END (EBB_FIRST_BB (0)));
7532 else
7533 init_fences (bb_note (EBB_FIRST_BB (0)));
7534 global_level = 1;
7535
7536 sel_sched_region_2 (orig_max_seqno);
7537
7538 gcc_assert (fences == NULL);
7539
7540 if (pipelining_p)
7541 {
7542 int i;
7543 basic_block bb;
7544 struct flist_tail_def _new_fences;
7545 flist_tail_t new_fences = &_new_fences;
7546 bool do_p = true;
7547
7548 pipelining_p = false;
7549 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7550 bookkeeping_p = false;
7551 enable_schedule_as_rhs_p = false;
7552
7553 /* Schedule newly created code, that has not been scheduled yet. */
7554 do_p = true;
7555
7556 while (do_p)
7557 {
7558 do_p = false;
7559
7560 for (i = 0; i < current_nr_blocks; i++)
7561 {
7562 basic_block bb = EBB_FIRST_BB (i);
7563
e855c69d
AB
7564 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7565 {
d7f672ec
AB
7566 if (! bb_ends_ebb_p (bb))
7567 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7568 if (sel_bb_empty_p (bb))
7569 {
7570 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7571 continue;
7572 }
e855c69d
AB
7573 clear_outdated_rtx_info (bb);
7574 if (sel_insn_is_speculation_check (BB_END (bb))
7575 && JUMP_P (BB_END (bb)))
7576 bitmap_set_bit (blocks_to_reschedule,
7577 BRANCH_EDGE (bb)->dest->index);
7578 }
d7f672ec
AB
7579 else if (! sel_bb_empty_p (bb)
7580 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
e855c69d
AB
7581 bitmap_set_bit (blocks_to_reschedule, bb->index);
7582 }
7583
7584 for (i = 0; i < current_nr_blocks; i++)
7585 {
7586 bb = EBB_FIRST_BB (i);
7587
b8698a0f 7588 /* While pipelining outer loops, skip bundling for loop
e855c69d
AB
7589 preheaders. Those will be rescheduled in the outer
7590 loop. */
7591 if (sel_is_loop_preheader_p (bb))
7592 {
7593 clear_outdated_rtx_info (bb);
7594 continue;
7595 }
b8698a0f 7596
06f0c25f 7597 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
e855c69d
AB
7598 {
7599 flist_tail_init (new_fences);
7600
1f3b2b4e 7601 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
e855c69d
AB
7602
7603 /* Mark BB as head of the new ebb. */
7604 bitmap_set_bit (forced_ebb_heads, bb->index);
7605
e855c69d
AB
7606 gcc_assert (fences == NULL);
7607
7608 init_fences (bb_note (bb));
b8698a0f 7609
e855c69d 7610 sel_sched_region_2 (orig_max_seqno);
b8698a0f 7611
e855c69d
AB
7612 do_p = true;
7613 break;
7614 }
7615 }
7616 }
7617 }
7618}
7619
7620/* Schedule the RGN region. */
7621void
7622sel_sched_region (int rgn)
7623{
7624 bool schedule_p;
7625 bool reset_sched_cycles_p;
7626
7627 if (sel_region_init (rgn))
7628 return;
7629
7630 if (sched_verbose >= 1)
7631 sel_print ("Scheduling region %d\n", rgn);
7632
7633 schedule_p = (!sched_is_disabled_for_current_region_p ()
7634 && dbg_cnt (sel_sched_region_cnt));
7635 reset_sched_cycles_p = pipelining_p;
7636 if (schedule_p)
7637 sel_sched_region_1 ();
7638 else
7639 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7640 reset_sched_cycles_p = true;
b8698a0f 7641
e855c69d
AB
7642 sel_region_finish (reset_sched_cycles_p);
7643}
7644
7645/* Perform global init for the scheduler. */
7646static void
7647sel_global_init (void)
7648{
7649 calculate_dominance_info (CDI_DOMINATORS);
7650 alloc_sched_pools ();
7651
7652 /* Setup the infos for sched_init. */
7653 sel_setup_sched_infos ();
7654 setup_sched_dump ();
7655
7861732f 7656 sched_rgn_init (false);
d51e8a2d 7657 sched_init ();
e855c69d
AB
7658
7659 sched_init_bbs ();
7660 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7661 after_recovery = 0;
b8698a0f 7662 can_issue_more = issue_rate;
e855c69d
AB
7663
7664 sched_extend_target ();
7665 sched_deps_init (true);
7666 setup_nop_and_exit_insns ();
7667 sel_extend_global_bb_info ();
7668 init_lv_sets ();
7669 init_hard_regs_data ();
7670}
7671
7672/* Free the global data of the scheduler. */
7673static void
7674sel_global_finish (void)
7675{
7676 free_bb_note_pool ();
7677 free_lv_sets ();
7678 sel_finish_global_bb_info ();
7679
7680 free_regset_pool ();
7681 free_nop_and_exit_insns ();
7682
7683 sched_rgn_finish ();
7684 sched_deps_finish ();
7685 sched_finish ();
7686
7687 if (current_loops)
7688 sel_finish_pipelining ();
7689
7690 free_sched_pools ();
7691 free_dominance_info (CDI_DOMINATORS);
7692}
7693
7694/* Return true when we need to skip selective scheduling. Used for debugging. */
7695bool
7696maybe_skip_selective_scheduling (void)
7697{
7698 return ! dbg_cnt (sel_sched_cnt);
7699}
7700
7701/* The entry point. */
7702void
7703run_selective_scheduling (void)
7704{
7705 int rgn;
7706
0cae8d31 7707 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
e855c69d
AB
7708 return;
7709
7710 sel_global_init ();
7711
7712 for (rgn = 0; rgn < nr_regions; rgn++)
7713 sel_sched_region (rgn);
7714
7715 sel_global_finish ();
7716}
7717
7718#endif