]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
df-problems.c (df_byte_lr_alloc): Don't set problem_data to itself.
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
66647d44 2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "toplev.h"
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
34#include "toplev.h"
35#include "recog.h"
36#include "params.h"
37#include "target.h"
38#include "output.h"
39#include "timevar.h"
40#include "tree-pass.h"
41#include "sched-int.h"
42#include "ggc.h"
43#include "tree.h"
44#include "vec.h"
45#include "langhooks.h"
46#include "rtlhooks-def.h"
47#include "output.h"
48
49#ifdef INSN_SCHEDULING
50#include "sel-sched-ir.h"
51#include "sel-sched-dump.h"
52#include "sel-sched.h"
53#include "dbgcnt.h"
54
55/* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
86
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
219
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
231
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
251
252*/
253
254/* True when pipelining is enabled. */
255bool pipelining_p;
256
257/* True if bookkeeping is enabled. */
258bool bookkeeping_p;
259
260/* Maximum number of insns that are eligible for renaming. */
261int max_insns_to_rename;
262\f
263
264/* Definitions of local types and macros. */
265
266/* Represents possible outcomes of moving an expression through an insn. */
267enum MOVEUP_EXPR_CODE
268 {
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
271
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
274
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
277
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
280 };
281
282/* The container to be passed into rtx search & replace functions. */
283struct rtx_search_arg
284{
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290};
291
292typedef struct rtx_search_arg *rtx_search_arg_p;
293
294/* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296struct hard_regs_data
297{
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317#ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320#endif
321};
322
323/* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325struct reg_rename
326{
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335};
336
337/* A global structure that contains the needed information about harg
338 regs. */
339static struct hard_regs_data sel_hrd;
340\f
341
342/* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348struct cmpd_local_params
349{
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367};
368
369/* Stores the static parameters for move_op_* calls. */
370struct moveop_static_params
371{
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382#ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385#endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389};
390
391/* Stores the static parameters for fur_* calls. */
392struct fur_static_params
393{
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402};
403
404typedef struct fur_static_params *fur_static_params_p;
405typedef struct cmpd_local_params *cmpd_local_params_p;
406typedef struct moveop_static_params *moveop_static_params_p;
407
408/* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410struct code_motion_path_driver_info_def
411{
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443};
444
445/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449/* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452
453/* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456int sched_emulate_haifa_p;
457
458/* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462int global_level;
463
464/* Current fences. */
465flist_t fences;
466
467/* True when separable insns should be scheduled as RHSes. */
468static bool enable_schedule_as_rhs_p;
469
470/* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476static bool scheduled_something_on_previous_fence;
477
478/* All newly emitted insns will have their uids greater than this value. */
479static int first_emitted_uid;
480
481/* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483static bitmap_head _forced_ebb_heads;
484bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486/* Blocks that need to be rescheduled after pipelining. */
487bitmap blocks_to_reschedule = NULL;
488
489/* True when the first lv set should be ignored when updating liveness. */
490static bool ignore_first = false;
491
492/* Number of insns max_issue has initialized data structures for. */
493static int max_issue_size = 0;
494
495/* Whether we can issue more instructions. */
496static int can_issue_more;
497
498/* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500static int max_ws;
501
502/* Number of insns scheduled in current region. */
503static int num_insns_scheduled;
504
505/* A vector of expressions is used to be able to sort them. */
506DEF_VEC_P(expr_t);
507DEF_VEC_ALLOC_P(expr_t,heap);
508static VEC(expr_t, heap) *vec_av_set = NULL;
509
510/* A vector of vinsns is used to hold temporary lists of vinsns. */
511DEF_VEC_P(vinsn_t);
512DEF_VEC_ALLOC_P(vinsn_t,heap);
513typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515/* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
521/* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526/* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528DEF_VEC_P(insn_t);
529DEF_VEC_ALLOC_P(insn_t,heap);
530static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
532/* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534static bitmap current_originators = NULL;
535static bitmap current_copies = NULL;
536
537/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539static bitmap code_motion_visited_blocks = NULL;
540
541/* Variables to accumulate different statistics. */
542
543/* The number of bookkeeping copies created. */
544static int stat_bookkeeping_copies;
545
546/* The number of insns that required bookkeeiping for their scheduling. */
547static int stat_insns_needed_bookkeeping;
548
549/* The number of insns that got renamed. */
550static int stat_renamed_scheduled;
551
552/* The number of substitutions made during scheduling. */
553static int stat_substitutions_total;
554\f
555
556/* Forward declarations of static functions. */
557static bool rtx_ok_for_substitution_p (rtx, rtx);
558static int sel_rank_for_schedule (const void *, const void *);
559static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560
561static rtx get_dest_from_orig_ops (av_set_t);
562static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
72a54528
AM
565static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
e855c69d
AB
568static void sel_sched_region_1 (void);
569static void sel_sched_region_2 (int);
570static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572static void debug_state (state_t);
573\f
574
575/* Functions that work with fences. */
576
577/* Advance one cycle on FENCE. */
578static void
579advance_one_cycle (fence_t fence)
580{
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590
591 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
592 {
593 if (INSN_READY_CYCLE (insn) < cycle)
594 {
595 remove_from_deps (FENCE_DC (fence), insn);
596 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
597 continue;
598 }
599 i++;
600 }
601 if (sched_verbose >= 2)
602 {
603 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
604 debug_state (FENCE_STATE (fence));
605 }
606}
607
608/* Returns true when SUCC in a fallthru bb of INSN, possibly
609 skipping empty basic blocks. */
610static bool
611in_fallthru_bb_p (rtx insn, rtx succ)
612{
613 basic_block bb = BLOCK_FOR_INSN (insn);
614
615 if (bb == BLOCK_FOR_INSN (succ))
616 return true;
617
618 if (find_fallthru_edge (bb))
619 bb = find_fallthru_edge (bb)->dest;
620 else
621 return false;
622
623 while (sel_bb_empty_p (bb))
624 bb = bb->next_bb;
625
626 return bb == BLOCK_FOR_INSN (succ);
627}
628
629/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
630 When a successor will continue a ebb, transfer all parameters of a fence
631 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
632 of scheduling helping to distinguish between the old and the new code. */
633static void
634extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
635 int orig_max_seqno)
636{
637 bool was_here_p = false;
638 insn_t insn = NULL_RTX;
639 insn_t succ;
640 succ_iterator si;
641 ilist_iterator ii;
642 fence_t fence = FLIST_FENCE (old_fences);
643 basic_block bb;
644
645 /* Get the only element of FENCE_BNDS (fence). */
646 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
647 {
648 gcc_assert (!was_here_p);
649 was_here_p = true;
650 }
651 gcc_assert (was_here_p && insn != NULL_RTX);
652
653 /* When in the "middle" of the block, just move this fence
654 to the new list. */
655 bb = BLOCK_FOR_INSN (insn);
656 if (! sel_bb_end_p (insn)
657 || (single_succ_p (bb)
658 && single_pred_p (single_succ (bb))))
659 {
660 insn_t succ;
661
662 succ = (sel_bb_end_p (insn)
663 ? sel_bb_head (single_succ (bb))
664 : NEXT_INSN (insn));
665
666 if (INSN_SEQNO (succ) > 0
667 && INSN_SEQNO (succ) <= orig_max_seqno
668 && INSN_SCHED_TIMES (succ) <= 0)
669 {
670 FENCE_INSN (fence) = succ;
671 move_fence_to_fences (old_fences, new_fences);
672
673 if (sched_verbose >= 1)
674 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
675 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
676 }
677 return;
678 }
679
680 /* Otherwise copy fence's structures to (possibly) multiple successors. */
681 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
682 {
683 int seqno = INSN_SEQNO (succ);
684
685 if (0 < seqno && seqno <= orig_max_seqno
686 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
687 {
688 bool b = (in_same_ebb_p (insn, succ)
689 || in_fallthru_bb_p (insn, succ));
690
691 if (sched_verbose >= 1)
692 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
693 INSN_UID (insn), INSN_UID (succ),
694 BLOCK_NUM (succ), b ? "continue" : "reset");
695
696 if (b)
697 add_dirty_fence_to_fences (new_fences, succ, fence);
698 else
699 {
700 /* Mark block of the SUCC as head of the new ebb. */
701 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
702 add_clean_fence_to_fences (new_fences, succ, fence);
703 }
704 }
705 }
706}
707\f
708
709/* Functions to support substitution. */
710
711/* Returns whether INSN with dependence status DS is eligible for
712 substitution, i.e. it's a copy operation x := y, and RHS that is
713 moved up through this insn should be substituted. */
714static bool
715can_substitute_through_p (insn_t insn, ds_t ds)
716{
717 /* We can substitute only true dependencies. */
718 if ((ds & DEP_OUTPUT)
719 || (ds & DEP_ANTI)
720 || ! INSN_RHS (insn)
721 || ! INSN_LHS (insn))
722 return false;
723
724 /* Now we just need to make sure the INSN_RHS consists of only one
725 simple REG rtx. */
726 if (REG_P (INSN_LHS (insn))
727 && REG_P (INSN_RHS (insn)))
728 return true;
729 return false;
730}
731
732/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
733 source (if INSN is eligible for substitution). Returns TRUE if
734 substitution was actually performed, FALSE otherwise. Substitution might
735 be not performed because it's either EXPR' vinsn doesn't contain INSN's
736 destination or the resulting insn is invalid for the target machine.
737 When UNDO is true, perform unsubstitution instead (the difference is in
738 the part of rtx on which validate_replace_rtx is called). */
739static bool
740substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
741{
742 rtx *where;
743 bool new_insn_valid;
744 vinsn_t *vi = &EXPR_VINSN (expr);
745 bool has_rhs = VINSN_RHS (*vi) != NULL;
746 rtx old, new_rtx;
747
748 /* Do not try to replace in SET_DEST. Although we'll choose new
749 register for the RHS, we don't want to change RHS' original reg.
750 If the insn is not SET, we may still be able to substitute something
751 in it, and if we're here (don't have deps), it doesn't write INSN's
752 dest. */
753 where = (has_rhs
754 ? &VINSN_RHS (*vi)
755 : &PATTERN (VINSN_INSN_RTX (*vi)));
756 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
757
758 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
759 if (rtx_ok_for_substitution_p (old, *where))
760 {
761 rtx new_insn;
762 rtx *where_replace;
763
764 /* We should copy these rtxes before substitution. */
765 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
766 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
767
768 /* Where we'll replace.
769 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
770 used instead of SET_SRC. */
771 where_replace = (has_rhs
772 ? &SET_SRC (PATTERN (new_insn))
773 : &PATTERN (new_insn));
774
775 new_insn_valid
776 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
777 new_insn);
778
779 /* ??? Actually, constrain_operands result depends upon choice of
780 destination register. E.g. if we allow single register to be an rhs,
781 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
782 in invalid insn dx=dx, so we'll loose this rhs here.
783 Just can't come up with significant testcase for this, so just
784 leaving it for now. */
785 if (new_insn_valid)
786 {
787 change_vinsn_in_expr (expr,
788 create_vinsn_from_insn_rtx (new_insn, false));
789
790 /* Do not allow clobbering the address register of speculative
791 insns. */
792 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
793 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
794 expr_dest_regno (expr)))
795 EXPR_TARGET_AVAILABLE (expr) = false;
796
797 return true;
798 }
799 else
800 return false;
801 }
802 else
803 return false;
804}
805
806/* Helper function for count_occurences_equiv. */
807static int
808count_occurrences_1 (rtx *cur_rtx, void *arg)
809{
810 rtx_search_arg_p p = (rtx_search_arg_p) arg;
811
812 /* The last param FOR_GCSE is true, because otherwise it performs excessive
813 substitutions like
814 r8 = r33
815 r16 = r33
816 for the last insn it presumes r33 equivalent to r8, so it changes it to
817 r33. Actually, there's no change, but it spoils debugging. */
818 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
819 {
820 /* Bail out if we occupy more than one register. */
821 if (REG_P (*cur_rtx)
72a54528 822 && HARD_REGISTER_P (*cur_rtx)
e855c69d
AB
823 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
824 {
825 p->n = 0;
826 return 1;
827 }
828
829 p->n++;
830
831 /* Do not traverse subexprs. */
832 return -1;
833 }
834
835 if (GET_CODE (*cur_rtx) == SUBREG
836 && REG_P (p->x)
837 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
838 {
839 /* ??? Do not support substituting regs inside subregs. In that case,
840 simplify_subreg will be called by validate_replace_rtx, and
841 unsubstitution will fail later. */
842 p->n = 0;
843 return 1;
844 }
845
846 /* Continue search. */
847 return 0;
848}
849
850/* Return the number of places WHAT appears within WHERE.
851 Bail out when we found a reference occupying several hard registers. */
852static int
853count_occurrences_equiv (rtx what, rtx where)
854{
855 struct rtx_search_arg arg;
856
857 arg.x = what;
858 arg.n = 0;
859
860 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
861
862 return arg.n;
863}
864
865/* Returns TRUE if WHAT is found in WHERE rtx tree. */
866static bool
867rtx_ok_for_substitution_p (rtx what, rtx where)
868{
869 return (count_occurrences_equiv (what, where) > 0);
870}
871\f
872
873/* Functions to support register renaming. */
874
875/* Substitute VI's set source with REGNO. Returns newly created pattern
876 that has REGNO as its source. */
877static rtx
878create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
879{
880 rtx lhs_rtx;
881 rtx pattern;
882 rtx insn_rtx;
883
884 lhs_rtx = copy_rtx (VINSN_LHS (vi));
885
886 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
887 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
888
889 return insn_rtx;
890}
891
892/* Returns whether INSN's src can be replaced with register number
893 NEW_SRC_REG. E.g. the following insn is valid for i386:
894
895 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
896 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
897 (reg:SI 0 ax [orig:770 c1 ] [770]))
898 (const_int 288 [0x120])) [0 str S1 A8])
899 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
900 (nil))
901
902 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
903 because of operand constraints:
904
905 (define_insn "*movqi_1"
906 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
907 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
908 )]
909
910 So do constrain_operands here, before choosing NEW_SRC_REG as best
911 reg for rhs. */
912
913static bool
914replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
915{
916 vinsn_t vi = INSN_VINSN (insn);
917 enum machine_mode mode;
918 rtx dst_loc;
919 bool res;
920
921 gcc_assert (VINSN_SEPARABLE_P (vi));
922
923 get_dest_and_mode (insn, &dst_loc, &mode);
924 gcc_assert (mode == GET_MODE (new_src_reg));
925
926 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
927 return true;
928
929 /* See whether SET_SRC can be replaced with this register. */
930 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
931 res = verify_changes (0);
932 cancel_changes (0);
933
934 return res;
935}
936
937/* Returns whether INSN still be valid after replacing it's DEST with
938 register NEW_REG. */
939static bool
940replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
941{
942 vinsn_t vi = INSN_VINSN (insn);
943 bool res;
944
945 /* We should deal here only with separable insns. */
946 gcc_assert (VINSN_SEPARABLE_P (vi));
947 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
948
949 /* See whether SET_DEST can be replaced with this register. */
950 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
951 res = verify_changes (0);
952 cancel_changes (0);
953
954 return res;
955}
956
957/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
958static rtx
959create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
960{
961 rtx rhs_rtx;
962 rtx pattern;
963 rtx insn_rtx;
964
965 rhs_rtx = copy_rtx (VINSN_RHS (vi));
966
967 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
968 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
969
970 return insn_rtx;
971}
972
973/* Substitute lhs in the given expression EXPR for the register with number
974 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
975static void
976replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
977{
978 rtx insn_rtx;
979 vinsn_t vinsn;
980
981 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
982 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
983
984 change_vinsn_in_expr (expr, vinsn);
985 EXPR_WAS_RENAMED (expr) = 1;
986 EXPR_TARGET_AVAILABLE (expr) = 1;
987}
988
989/* Returns whether VI writes either one of the USED_REGS registers or,
990 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
991static bool
992vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
993 HARD_REG_SET unavailable_hard_regs)
994{
995 unsigned regno;
996 reg_set_iterator rsi;
997
998 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
999 {
1000 if (REGNO_REG_SET_P (used_regs, regno))
1001 return true;
1002 if (HARD_REGISTER_NUM_P (regno)
1003 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1004 return true;
1005 }
1006
1007 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1008 {
1009 if (REGNO_REG_SET_P (used_regs, regno))
1010 return true;
1011 if (HARD_REGISTER_NUM_P (regno)
1012 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1013 return true;
1014 }
1015
1016 return false;
1017}
1018
1019/* Returns register class of the output register in INSN.
1020 Returns NO_REGS for call insns because some targets have constraints on
1021 destination register of a call insn.
1022
1023 Code adopted from regrename.c::build_def_use. */
1024static enum reg_class
1025get_reg_class (rtx insn)
1026{
1027 int alt, i, n_ops;
1028
1029 extract_insn (insn);
1030 if (! constrain_operands (1))
1031 fatal_insn_not_found (insn);
1032 preprocess_constraints ();
1033 alt = which_alternative;
1034 n_ops = recog_data.n_operands;
1035
1036 for (i = 0; i < n_ops; ++i)
1037 {
1038 int matches = recog_op_alt[i][alt].matches;
1039 if (matches >= 0)
1040 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1041 }
1042
1043 if (asm_noperands (PATTERN (insn)) > 0)
1044 {
1045 for (i = 0; i < n_ops; i++)
1046 if (recog_data.operand_type[i] == OP_OUT)
1047 {
1048 rtx *loc = recog_data.operand_loc[i];
1049 rtx op = *loc;
1050 enum reg_class cl = recog_op_alt[i][alt].cl;
1051
1052 if (REG_P (op)
1053 && REGNO (op) == ORIGINAL_REGNO (op))
1054 continue;
1055
1056 return cl;
1057 }
1058 }
1059 else if (!CALL_P (insn))
1060 {
1061 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1062 {
1063 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1064 enum reg_class cl = recog_op_alt[opn][alt].cl;
1065
1066 if (recog_data.operand_type[opn] == OP_OUT ||
1067 recog_data.operand_type[opn] == OP_INOUT)
1068 return cl;
1069 }
1070 }
1071
1072/* Insns like
1073 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1074 may result in returning NO_REGS, cause flags is written implicitly through
1075 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1076 return NO_REGS;
1077}
1078
1079#ifdef HARD_REGNO_RENAME_OK
1080/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1081static void
1082init_hard_regno_rename (int regno)
1083{
1084 int cur_reg;
1085
1086 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1087
1088 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1089 {
1090 /* We are not interested in renaming in other regs. */
1091 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1092 continue;
1093
1094 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1095 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1096 }
1097}
1098#endif
1099
1100/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1101 data first. */
1102static inline bool
a20d7130 1103sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d
AB
1104{
1105#ifdef HARD_REGNO_RENAME_OK
1106 /* Check whether this is all calculated. */
1107 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1108 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1109
1110 init_hard_regno_rename (from);
1111
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113#else
1114 return true;
1115#endif
1116}
1117
1118/* Calculate set of registers that are capable of holding MODE. */
1119static void
1120init_regs_for_mode (enum machine_mode mode)
1121{
1122 int cur_reg;
1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1126
1127 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128 {
1129 int nregs = hard_regno_nregs[cur_reg][mode];
1130 int i;
1131
1132 for (i = nregs - 1; i >= 0; --i)
1133 if (fixed_regs[cur_reg + i]
1134 || global_regs[cur_reg + i]
1135 /* Can't use regs which aren't saved by
1136 the prologue. */
1137 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1138#ifdef LEAF_REGISTERS
1139 /* We can't use a non-leaf register if we're in a
1140 leaf function. */
1141 || (current_function_is_leaf
1142 && !LEAF_REGISTERS[cur_reg + i])
1143#endif
1144 )
1145 break;
1146
1147 if (i >= 0)
1148 continue;
1149
1150 /* See whether it accepts all modes that occur in
1151 original insns. */
1152 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1153 continue;
1154
1155 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1156 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1157 cur_reg);
1158
1159 /* If the CUR_REG passed all the checks above,
1160 then it's ok. */
1161 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1162 }
1163
1164 sel_hrd.regs_for_mode_ok[mode] = true;
1165}
1166
1167/* Init all register sets gathered in HRD. */
1168static void
1169init_hard_regs_data (void)
1170{
1171 int cur_reg = 0;
32e8bb8e 1172 int cur_mode = 0;
e855c69d
AB
1173
1174 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1175 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1176 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1177 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1178
1179 /* Initialize registers that are valid based on mode when this is
1180 really needed. */
1181 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1182 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1183
1184 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1185 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1186 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1187
1188#ifdef STACK_REGS
1189 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1190
1191 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1192 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1193#endif
1194}
1195
1196/* Mark hardware regs in REG_RENAME_P that are not suitable
1197 for renaming rhs in INSN due to hardware restrictions (register class,
1198 modes compatibility etc). This doesn't affect original insn's dest reg,
1199 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1200 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1201 Registers that are in used_regs are always marked in
1202 unavailable_hard_regs as well. */
1203
1204static void
1205mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1206 regset used_regs ATTRIBUTE_UNUSED)
1207{
1208 enum machine_mode mode;
1209 enum reg_class cl = NO_REGS;
1210 rtx orig_dest;
1211 unsigned cur_reg, regno;
1212 hard_reg_set_iterator hrsi;
1213
1214 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1215 gcc_assert (reg_rename_p);
1216
1217 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1218
1219 /* We have decided not to rename 'mem = something;' insns, as 'something'
1220 is usually a register. */
1221 if (!REG_P (orig_dest))
1222 return;
1223
1224 regno = REGNO (orig_dest);
1225
1226 /* If before reload, don't try to work with pseudos. */
1227 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1228 return;
1229
1230 mode = GET_MODE (orig_dest);
1231
1232 /* Stop when mode is not supported for renaming. Also can't proceed
1233 if the original register is one of the fixed_regs, global_regs or
1234 frame pointer. */
1235 if (fixed_regs[regno]
1236 || global_regs[regno]
1237#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1238 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1239#else
1240 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1241#endif
1242 )
1243 {
1244 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1245
1246 /* Give a chance for original register, if it isn't in used_regs. */
1247 if (!def->crosses_call)
1248 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1249
1250 return;
1251 }
1252
1253 /* If something allocated on stack in this function, mark frame pointer
1254 register unavailable, considering also modes.
1255 FIXME: it is enough to do this once per all original defs. */
1256 if (frame_pointer_needed)
1257 {
1258 int i;
1259
1260 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1261 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1262 FRAME_POINTER_REGNUM + i);
1263
1264#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1265 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1266 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1267 HARD_FRAME_POINTER_REGNUM + i);
1268#endif
1269 }
1270
1271#ifdef STACK_REGS
1272 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1273 is equivalent to as if all stack regs were in this set.
1274 I.e. no stack register can be renamed, and even if it's an original
1275 register here we make sure it won't be lifted over it's previous def
1276 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1277 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1278 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1279 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1280 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1281 sel_hrd.stack_regs);
1282#endif
1283
1284 /* If there's a call on this path, make regs from call_used_reg_set
1285 unavailable. */
1286 if (def->crosses_call)
1287 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1288 call_used_reg_set);
1289
1290 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1291 but not register classes. */
1292 if (!reload_completed)
1293 return;
1294
1295 /* Leave regs as 'available' only from the current
1296 register class. */
1297 cl = get_reg_class (def->orig_insn);
1298 gcc_assert (cl != NO_REGS);
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]);
1301
1302 /* Leave only registers available for this mode. */
1303 if (!sel_hrd.regs_for_mode_ok[mode])
1304 init_regs_for_mode (mode);
1305 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 sel_hrd.regs_for_mode[mode]);
1307
1308 /* Exclude registers that are partially call clobbered. */
1309 if (def->crosses_call
1310 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1311 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1312 sel_hrd.regs_for_call_clobbered[mode]);
1313
1314 /* Leave only those that are ok to rename. */
1315 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1316 0, cur_reg, hrsi)
1317 {
1318 int nregs;
1319 int i;
1320
1321 nregs = hard_regno_nregs[cur_reg][mode];
1322 gcc_assert (nregs > 0);
1323
1324 for (i = nregs - 1; i >= 0; --i)
1325 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1326 break;
1327
1328 if (i >= 0)
1329 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1330 cur_reg);
1331 }
1332
1333 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1334 reg_rename_p->unavailable_hard_regs);
1335
1336 /* Regno is always ok from the renaming part of view, but it really
1337 could be in *unavailable_hard_regs already, so set it here instead
1338 of there. */
1339 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1340}
1341
1342/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1343 best register more recently than REG2. */
1344static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1345
1346/* Indicates the number of times renaming happened before the current one. */
1347static int reg_rename_this_tick;
1348
1349/* Choose the register among free, that is suitable for storing
1350 the rhs value.
1351
1352 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1353 originally appears. There could be multiple original operations
1354 for single rhs since we moving it up and merging along different
1355 paths.
1356
1357 Some code is adapted from regrename.c (regrename_optimize).
1358 If original register is available, function returns it.
1359 Otherwise it performs the checks, so the new register should
1360 comply with the following:
1361 - it should not violate any live ranges (such registers are in
1362 REG_RENAME_P->available_for_renaming set);
1363 - it should not be in the HARD_REGS_USED regset;
1364 - it should be in the class compatible with original uses;
1365 - it should not be clobbered through reference with different mode;
1366 - if we're in the leaf function, then the new register should
1367 not be in the LEAF_REGISTERS;
1368 - etc.
1369
1370 If several registers meet the conditions, the register with smallest
1371 tick is returned to achieve more even register allocation.
1372
1373 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1374
1375 If no register satisfies the above conditions, NULL_RTX is returned. */
1376static rtx
1377choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1378 struct reg_rename *reg_rename_p,
1379 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1380{
1381 int best_new_reg;
1382 unsigned cur_reg;
1383 enum machine_mode mode = VOIDmode;
1384 unsigned regno, i, n;
1385 hard_reg_set_iterator hrsi;
1386 def_list_iterator di;
1387 def_t def;
1388
1389 /* If original register is available, return it. */
1390 *is_orig_reg_p_ptr = true;
1391
1392 FOR_EACH_DEF (def, di, original_insns)
1393 {
1394 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1395
1396 gcc_assert (REG_P (orig_dest));
1397
1398 /* Check that all original operations have the same mode.
1399 This is done for the next loop; if we'd return from this
1400 loop, we'd check only part of them, but in this case
1401 it doesn't matter. */
1402 if (mode == VOIDmode)
1403 mode = GET_MODE (orig_dest);
1404 gcc_assert (mode == GET_MODE (orig_dest));
1405
1406 regno = REGNO (orig_dest);
1407 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1408 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1409 break;
1410
1411 /* All hard registers are available. */
1412 if (i == n)
1413 {
1414 gcc_assert (mode != VOIDmode);
1415
1416 /* Hard registers should not be shared. */
1417 return gen_rtx_REG (mode, regno);
1418 }
1419 }
1420
1421 *is_orig_reg_p_ptr = false;
1422 best_new_reg = -1;
1423
1424 /* Among all available regs choose the register that was
1425 allocated earliest. */
1426 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1427 0, cur_reg, hrsi)
1428 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1429 {
1430 /* All hard registers are available. */
1431 if (best_new_reg < 0
1432 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1433 {
1434 best_new_reg = cur_reg;
1435
1436 /* Return immediately when we know there's no better reg. */
1437 if (! reg_rename_tick[best_new_reg])
1438 break;
1439 }
1440 }
1441
1442 if (best_new_reg >= 0)
1443 {
1444 /* Use the check from the above loop. */
1445 gcc_assert (mode != VOIDmode);
1446 return gen_rtx_REG (mode, best_new_reg);
1447 }
1448
1449 return NULL_RTX;
1450}
1451
1452/* A wrapper around choose_best_reg_1 () to verify that we make correct
1453 assumptions about available registers in the function. */
1454static rtx
1455choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1456 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1457{
1458 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1459 original_insns, is_orig_reg_p_ptr);
1460
1461 gcc_assert (best_reg == NULL_RTX
1462 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1463
1464 return best_reg;
1465}
1466
1467/* Choose the pseudo register for storing rhs value. As this is supposed
1468 to work before reload, we return either the original register or make
1469 the new one. The parameters are the same that in choose_nest_reg_1
1470 functions, except that USED_REGS may contain pseudos.
1471 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1472
1473 TODO: take into account register pressure while doing this. Up to this
1474 moment, this function would never return NULL for pseudos, but we should
1475 not rely on this. */
1476static rtx
1477choose_best_pseudo_reg (regset used_regs,
1478 struct reg_rename *reg_rename_p,
1479 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1480{
1481 def_list_iterator i;
1482 def_t def;
1483 enum machine_mode mode = VOIDmode;
1484 bool bad_hard_regs = false;
1485
1486 /* We should not use this after reload. */
1487 gcc_assert (!reload_completed);
1488
1489 /* If original register is available, return it. */
1490 *is_orig_reg_p_ptr = true;
1491
1492 FOR_EACH_DEF (def, i, original_insns)
1493 {
1494 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1495 int orig_regno;
1496
1497 gcc_assert (REG_P (dest));
1498
1499 /* Check that all original operations have the same mode. */
1500 if (mode == VOIDmode)
1501 mode = GET_MODE (dest);
1502 else
1503 gcc_assert (mode == GET_MODE (dest));
1504 orig_regno = REGNO (dest);
1505
1506 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1507 {
1508 if (orig_regno < FIRST_PSEUDO_REGISTER)
1509 {
1510 gcc_assert (df_regs_ever_live_p (orig_regno));
1511
1512 /* For hard registers, we have to check hardware imposed
1513 limitations (frame/stack registers, calls crossed). */
1514 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1515 orig_regno))
1516 {
1517 /* Don't let register cross a call if it doesn't already
1518 cross one. This condition is written in accordance with
1519 that in sched-deps.c sched_analyze_reg(). */
1520 if (!reg_rename_p->crosses_call
1521 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1522 return gen_rtx_REG (mode, orig_regno);
1523 }
1524
1525 bad_hard_regs = true;
1526 }
1527 else
1528 return dest;
1529 }
1530 }
1531
1532 *is_orig_reg_p_ptr = false;
1533
1534 /* We had some original hard registers that couldn't be used.
1535 Those were likely special. Don't try to create a pseudo. */
1536 if (bad_hard_regs)
1537 return NULL_RTX;
1538
1539 /* We haven't found a register from original operations. Get a new one.
1540 FIXME: control register pressure somehow. */
1541 {
1542 rtx new_reg = gen_reg_rtx (mode);
1543
1544 gcc_assert (mode != VOIDmode);
1545
1546 max_regno = max_reg_num ();
1547 maybe_extend_reg_info_p ();
1548 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1549
1550 return new_reg;
1551 }
1552}
1553
1554/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1555 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1556static void
1557verify_target_availability (expr_t expr, regset used_regs,
1558 struct reg_rename *reg_rename_p)
1559{
1560 unsigned n, i, regno;
1561 enum machine_mode mode;
1562 bool target_available, live_available, hard_available;
1563
1564 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1565 return;
1566
1567 regno = expr_dest_regno (expr);
1568 mode = GET_MODE (EXPR_LHS (expr));
1569 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1570 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1571
1572 live_available = hard_available = true;
1573 for (i = 0; i < n; i++)
1574 {
1575 if (bitmap_bit_p (used_regs, regno + i))
1576 live_available = false;
1577 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1578 hard_available = false;
1579 }
1580
1581 /* When target is not available, it may be due to hard register
1582 restrictions, e.g. crosses calls, so we check hard_available too. */
1583 if (target_available)
1584 gcc_assert (live_available);
1585 else
1586 /* Check only if we haven't scheduled something on the previous fence,
1587 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1588 and having more than one fence, we may end having targ_un in a block
1589 in which successors target register is actually available.
1590
1591 The last condition handles the case when a dependence from a call insn
1592 was created in sched-deps.c for insns with destination registers that
1593 never crossed a call before, but do cross one after our code motion.
1594
1595 FIXME: in the latter case, we just uselessly called find_used_regs,
1596 because we can't move this expression with any other register
1597 as well. */
1598 gcc_assert (scheduled_something_on_previous_fence || !live_available
1599 || !hard_available
1600 || (!reload_completed && reg_rename_p->crosses_call
1601 && REG_N_CALLS_CROSSED (regno) == 0));
1602}
1603
1604/* Collect unavailable registers due to liveness for EXPR from BNDS
1605 into USED_REGS. Save additional information about available
1606 registers and unavailable due to hardware restriction registers
1607 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1608 list. */
1609static void
1610collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1611 struct reg_rename *reg_rename_p,
1612 def_list_t *original_insns)
1613{
1614 for (; bnds; bnds = BLIST_NEXT (bnds))
1615 {
1616 bool res;
1617 av_set_t orig_ops = NULL;
1618 bnd_t bnd = BLIST_BND (bnds);
1619
1620 /* If the chosen best expr doesn't belong to current boundary,
1621 skip it. */
1622 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1623 continue;
1624
1625 /* Put in ORIG_OPS all exprs from this boundary that became
1626 RES on top. */
1627 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1628
1629 /* Compute used regs and OR it into the USED_REGS. */
1630 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1631 reg_rename_p, original_insns);
1632
1633 /* FIXME: the assert is true until we'd have several boundaries. */
1634 gcc_assert (res);
1635 av_set_clear (&orig_ops);
1636 }
1637}
1638
1639/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1640 If BEST_REG is valid, replace LHS of EXPR with it. */
1641static bool
1642try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1643{
1644 if (expr_dest_regno (expr) == REGNO (best_reg))
1645 {
1646 EXPR_TARGET_AVAILABLE (expr) = 1;
1647 return true;
1648 }
1649
1650 gcc_assert (orig_insns);
1651
1652 /* Try whether we'll be able to generate the insn
1653 'dest := best_reg' at the place of the original operation. */
1654 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1655 {
1656 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1657
1658 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1659
1660 if (!replace_src_with_reg_ok_p (orig_insn, best_reg)
1661 || !replace_dest_with_reg_ok_p (orig_insn, best_reg))
1662 return false;
1663 }
1664
1665 /* Make sure that EXPR has the right destination
1666 register. */
1667 replace_dest_with_reg_in_expr (expr, best_reg);
1668 return true;
1669}
1670
1671/* Select and assign best register to EXPR searching from BNDS.
1672 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1673 Return FALSE if no register can be chosen, which could happen when:
1674 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1675 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1676 that are used on the moving path. */
1677static bool
1678find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1679{
1680 static struct reg_rename reg_rename_data;
1681
1682 regset used_regs;
1683 def_list_t original_insns = NULL;
1684 bool reg_ok;
1685
1686 *is_orig_reg_p = false;
1687
1688 /* Don't bother to do anything if this insn doesn't set any registers. */
1689 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1690 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1691 return true;
1692
1693 used_regs = get_clear_regset_from_pool ();
1694 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1695
1696 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1697 &original_insns);
1698
1699#ifdef ENABLE_CHECKING
1700 /* If after reload, make sure we're working with hard regs here. */
1701 if (reload_completed)
1702 {
1703 reg_set_iterator rsi;
1704 unsigned i;
1705
1706 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1707 gcc_unreachable ();
1708 }
1709#endif
1710
1711 if (EXPR_SEPARABLE_P (expr))
1712 {
1713 rtx best_reg = NULL_RTX;
1714 /* Check that we have computed availability of a target register
1715 correctly. */
1716 verify_target_availability (expr, used_regs, &reg_rename_data);
1717
1718 /* Turn everything in hard regs after reload. */
1719 if (reload_completed)
1720 {
1721 HARD_REG_SET hard_regs_used;
1722 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1723
1724 /* Join hard registers unavailable due to register class
1725 restrictions and live range intersection. */
1726 IOR_HARD_REG_SET (hard_regs_used,
1727 reg_rename_data.unavailable_hard_regs);
1728
1729 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1730 original_insns, is_orig_reg_p);
1731 }
1732 else
1733 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1734 original_insns, is_orig_reg_p);
1735
1736 if (!best_reg)
1737 reg_ok = false;
1738 else if (*is_orig_reg_p)
1739 {
1740 /* In case of unification BEST_REG may be different from EXPR's LHS
1741 when EXPR's LHS is unavailable, and there is another LHS among
1742 ORIGINAL_INSNS. */
1743 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1744 }
1745 else
1746 {
1747 /* Forbid renaming of low-cost insns. */
1748 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1749 reg_ok = false;
1750 else
1751 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1752 }
1753 }
1754 else
1755 {
1756 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1757 any of the HARD_REGS_USED set. */
1758 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1759 reg_rename_data.unavailable_hard_regs))
1760 {
1761 reg_ok = false;
1762 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1763 }
1764 else
1765 {
1766 reg_ok = true;
1767 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1768 }
1769 }
1770
1771 ilist_clear (&original_insns);
1772 return_regset_to_pool (used_regs);
1773
1774 return reg_ok;
1775}
1776\f
1777
1778/* Return true if dependence described by DS can be overcomed. */
1779static bool
1780can_speculate_dep_p (ds_t ds)
1781{
1782 if (spec_info == NULL)
1783 return false;
1784
1785 /* Leave only speculative data. */
1786 ds &= SPECULATIVE;
1787
1788 if (ds == 0)
1789 return false;
1790
1791 {
1792 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1793 that we can overcome. */
1794 ds_t spec_mask = spec_info->mask;
1795
1796 if ((ds & spec_mask) != ds)
1797 return false;
1798 }
1799
1800 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1801 return false;
1802
1803 return true;
1804}
1805
1806/* Get a speculation check instruction.
1807 C_EXPR is a speculative expression,
1808 CHECK_DS describes speculations that should be checked,
1809 ORIG_INSN is the original non-speculative insn in the stream. */
1810static insn_t
1811create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1812{
1813 rtx check_pattern;
1814 rtx insn_rtx;
1815 insn_t insn;
1816 basic_block recovery_block;
1817 rtx label;
1818
1819 /* Create a recovery block if target is going to emit branchy check, or if
1820 ORIG_INSN was speculative already. */
388092d5 1821 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1822 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1823 {
1824 recovery_block = sel_create_recovery_block (orig_insn);
1825 label = BB_HEAD (recovery_block);
1826 }
1827 else
1828 {
1829 recovery_block = NULL;
1830 label = NULL_RTX;
1831 }
1832
1833 /* Get pattern of the check. */
1834 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1835 check_ds);
1836
1837 gcc_assert (check_pattern != NULL);
1838
1839 /* Emit check. */
1840 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1841
1842 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1843 INSN_SEQNO (orig_insn), orig_insn);
1844
1845 /* Make check to be non-speculative. */
1846 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1847 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1848
1849 /* Decrease priority of check by difference of load/check instruction
1850 latencies. */
1851 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1852 - sel_vinsn_cost (INSN_VINSN (insn)));
1853
1854 /* Emit copy of original insn (though with replaced target register,
1855 if needed) to the recovery block. */
1856 if (recovery_block != NULL)
1857 {
1858 rtx twin_rtx;
1859 insn_t twin;
1860
1861 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1862 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1863 twin = sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1864 INSN_EXPR (orig_insn),
1865 INSN_SEQNO (insn),
1866 bb_note (recovery_block));
1867 }
1868
1869 /* If we've generated a data speculation check, make sure
1870 that all the bookkeeping instruction we'll create during
1871 this move_op () will allocate an ALAT entry so that the
1872 check won't fail.
1873 In case of control speculation we must convert C_EXPR to control
1874 speculative mode, because failing to do so will bring us an exception
1875 thrown by the non-control-speculative load. */
1876 check_ds = ds_get_max_dep_weak (check_ds);
1877 speculate_expr (c_expr, check_ds);
1878
1879 return insn;
1880}
1881
1882/* True when INSN is a "regN = regN" copy. */
1883static bool
1884identical_copy_p (rtx insn)
1885{
1886 rtx lhs, rhs, pat;
1887
1888 pat = PATTERN (insn);
1889
1890 if (GET_CODE (pat) != SET)
1891 return false;
1892
1893 lhs = SET_DEST (pat);
1894 if (!REG_P (lhs))
1895 return false;
1896
1897 rhs = SET_SRC (pat);
1898 if (!REG_P (rhs))
1899 return false;
1900
1901 return REGNO (lhs) == REGNO (rhs);
1902}
1903
1904/* Undo all transformations on *AV_PTR that were done when
1905 moving through INSN. */
1906static void
1907undo_transformations (av_set_t *av_ptr, rtx insn)
1908{
1909 av_set_iterator av_iter;
1910 expr_t expr;
1911 av_set_t new_set = NULL;
1912
1913 /* First, kill any EXPR that uses registers set by an insn. This is
1914 required for correctness. */
1915 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1916 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1917 && bitmap_intersect_p (INSN_REG_SETS (insn),
1918 VINSN_REG_USES (EXPR_VINSN (expr)))
1919 /* When an insn looks like 'r1 = r1', we could substitute through
1920 it, but the above condition will still hold. This happened with
1921 gcc.c-torture/execute/961125-1.c. */
1922 && !identical_copy_p (insn))
1923 {
1924 if (sched_verbose >= 6)
1925 sel_print ("Expr %d removed due to use/set conflict\n",
1926 INSN_UID (EXPR_INSN_RTX (expr)));
1927 av_set_iter_remove (&av_iter);
1928 }
1929
1930 /* Undo transformations looking at the history vector. */
1931 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1932 {
1933 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1934 insn, EXPR_VINSN (expr), true);
1935
1936 if (index >= 0)
1937 {
1938 expr_history_def *phist;
1939
1940 phist = VEC_index (expr_history_def,
1941 EXPR_HISTORY_OF_CHANGES (expr),
1942 index);
1943
1944 switch (phist->type)
1945 {
1946 case TRANS_SPECULATION:
1947 {
1948 ds_t old_ds, new_ds;
1949
1950 /* Compute the difference between old and new speculative
1951 statuses: that's what we need to check.
1952 Earlier we used to assert that the status will really
1953 change. This no longer works because only the probability
1954 bits in the status may have changed during compute_av_set,
1955 and in the case of merging different probabilities of the
1956 same speculative status along different paths we do not
1957 record this in the history vector. */
1958 old_ds = phist->spec_ds;
1959 new_ds = EXPR_SPEC_DONE_DS (expr);
1960
1961 old_ds &= SPECULATIVE;
1962 new_ds &= SPECULATIVE;
1963 new_ds &= ~old_ds;
1964
1965 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1966 break;
1967 }
1968 case TRANS_SUBSTITUTION:
1969 {
1970 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1971 vinsn_t new_vi;
1972 bool add = true;
1973
1974 new_vi = phist->old_expr_vinsn;
1975
1976 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1977 == EXPR_SEPARABLE_P (expr));
1978 copy_expr (tmp_expr, expr);
1979
1980 if (vinsn_equal_p (phist->new_expr_vinsn,
1981 EXPR_VINSN (tmp_expr)))
1982 change_vinsn_in_expr (tmp_expr, new_vi);
1983 else
1984 /* This happens when we're unsubstituting on a bookkeeping
1985 copy, which was in turn substituted. The history is wrong
1986 in this case. Do it the hard way. */
1987 add = substitute_reg_in_expr (tmp_expr, insn, true);
1988 if (add)
1989 av_set_add (&new_set, tmp_expr);
1990 clear_expr (tmp_expr);
1991 break;
1992 }
1993 default:
1994 gcc_unreachable ();
1995 }
1996 }
1997
1998 }
1999
2000 av_set_union_and_clear (av_ptr, &new_set, NULL);
2001}
2002\f
2003
2004/* Moveup_* helpers for code motion and computing av sets. */
2005
2006/* Propagates EXPR inside an insn group through THROUGH_INSN.
2007 The difference from the below function is that only substitution is
2008 performed. */
2009static enum MOVEUP_EXPR_CODE
2010moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2011{
2012 vinsn_t vi = EXPR_VINSN (expr);
2013 ds_t *has_dep_p;
2014 ds_t full_ds;
2015
2016 /* Do this only inside insn group. */
2017 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2018
2019 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2020 if (full_ds == 0)
2021 return MOVEUP_EXPR_SAME;
2022
2023 /* Substitution is the possible choice in this case. */
2024 if (has_dep_p[DEPS_IN_RHS])
2025 {
2026 /* Can't substitute UNIQUE VINSNs. */
2027 gcc_assert (!VINSN_UNIQUE_P (vi));
2028
2029 if (can_substitute_through_p (through_insn,
2030 has_dep_p[DEPS_IN_RHS])
2031 && substitute_reg_in_expr (expr, through_insn, false))
2032 {
2033 EXPR_WAS_SUBSTITUTED (expr) = true;
2034 return MOVEUP_EXPR_CHANGED;
2035 }
2036
2037 /* Don't care about this, as even true dependencies may be allowed
2038 in an insn group. */
2039 return MOVEUP_EXPR_SAME;
2040 }
2041
2042 /* This can catch output dependencies in COND_EXECs. */
2043 if (has_dep_p[DEPS_IN_INSN])
2044 return MOVEUP_EXPR_NULL;
2045
2046 /* This is either an output or an anti dependence, which usually have
2047 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2048 will fix this. */
2049 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2050 return MOVEUP_EXPR_AS_RHS;
2051}
2052
2053/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2054#define CANT_MOVE_TRAPPING(expr, through_insn) \
2055 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2056 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2057 && !sel_insn_is_speculation_check (through_insn))
2058
2059/* True when a conflict on a target register was found during moveup_expr. */
2060static bool was_target_conflict = false;
2061
2062/* Modifies EXPR so it can be moved through the THROUGH_INSN,
2063 performing necessary transformations. Record the type of transformation
2064 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2065 permit all dependencies except true ones, and try to remove those
2066 too via forward substitution. All cases when a non-eliminable
2067 non-zero cost dependency exists inside an insn group will be fixed
2068 in tick_check_p instead. */
2069static enum MOVEUP_EXPR_CODE
2070moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2071 enum local_trans_type *ptrans_type)
2072{
2073 vinsn_t vi = EXPR_VINSN (expr);
2074 insn_t insn = VINSN_INSN_RTX (vi);
2075 bool was_changed = false;
2076 bool as_rhs = false;
2077 ds_t *has_dep_p;
2078 ds_t full_ds;
2079
2080 /* When inside_insn_group, delegate to the helper. */
2081 if (inside_insn_group)
2082 return moveup_expr_inside_insn_group (expr, through_insn);
2083
2084 /* Deal with unique insns and control dependencies. */
2085 if (VINSN_UNIQUE_P (vi))
2086 {
2087 /* We can move jumps without side-effects or jumps that are
2088 mutually exclusive with instruction THROUGH_INSN (all in cases
2089 dependencies allow to do so and jump is not speculative). */
2090 if (control_flow_insn_p (insn))
2091 {
2092 basic_block fallthru_bb;
2093
2094 /* Do not move checks and do not move jumps through other
2095 jumps. */
2096 if (control_flow_insn_p (through_insn)
2097 || sel_insn_is_speculation_check (insn))
2098 return MOVEUP_EXPR_NULL;
2099
2100 /* Don't move jumps through CFG joins. */
2101 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2102 return MOVEUP_EXPR_NULL;
2103
2104 /* The jump should have a clear fallthru block, and
2105 this block should be in the current region. */
2106 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2107 || ! in_current_region_p (fallthru_bb))
2108 return MOVEUP_EXPR_NULL;
2109
2110 /* And it should be mutually exclusive with through_insn, or
2111 be an unconditional jump. */
2112 if (! any_uncondjump_p (insn)
2113 && ! sched_insns_conditions_mutex_p (insn, through_insn))
2114 return MOVEUP_EXPR_NULL;
2115 }
2116
2117 /* Don't move what we can't move. */
2118 if (EXPR_CANT_MOVE (expr)
2119 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2120 return MOVEUP_EXPR_NULL;
2121
2122 /* Don't move SCHED_GROUP instruction through anything.
2123 If we don't force this, then it will be possible to start
2124 scheduling a sched_group before all its dependencies are
2125 resolved.
2126 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2127 as late as possible through rank_for_schedule. */
2128 if (SCHED_GROUP_P (insn))
2129 return MOVEUP_EXPR_NULL;
2130 }
2131 else
2132 gcc_assert (!control_flow_insn_p (insn));
2133
2134 /* Deal with data dependencies. */
2135 was_target_conflict = false;
2136 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2137 if (full_ds == 0)
2138 {
2139 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2140 return MOVEUP_EXPR_SAME;
2141 }
2142 else
2143 {
2144 /* We can move UNIQUE insn up only as a whole and unchanged,
2145 so it shouldn't have any dependencies. */
2146 if (VINSN_UNIQUE_P (vi))
2147 return MOVEUP_EXPR_NULL;
2148 }
2149
2150 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2151 {
2152 int res;
2153
2154 res = speculate_expr (expr, full_ds);
2155 if (res >= 0)
2156 {
2157 /* Speculation was successful. */
2158 full_ds = 0;
2159 was_changed = (res > 0);
2160 if (res == 2)
2161 was_target_conflict = true;
2162 if (ptrans_type)
2163 *ptrans_type = TRANS_SPECULATION;
2164 sel_clear_has_dependence ();
2165 }
2166 }
2167
2168 if (has_dep_p[DEPS_IN_INSN])
2169 /* We have some dependency that cannot be discarded. */
2170 return MOVEUP_EXPR_NULL;
2171
2172 if (has_dep_p[DEPS_IN_LHS])
2173 {
2174 /* Only separable insns can be moved up with the new register.
2175 Anyways, we should mark that the original register is
2176 unavailable. */
2177 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2178 return MOVEUP_EXPR_NULL;
2179
2180 EXPR_TARGET_AVAILABLE (expr) = false;
2181 was_target_conflict = true;
2182 as_rhs = true;
2183 }
2184
2185 /* At this point we have either separable insns, that will be lifted
2186 up only as RHSes, or non-separable insns with no dependency in lhs.
2187 If dependency is in RHS, then try to perform substitution and move up
2188 substituted RHS:
2189
2190 Ex. 1: Ex.2
2191 y = x; y = x;
2192 z = y*2; y = y*2;
2193
2194 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2195 moved above y=x assignment as z=x*2.
2196
2197 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2198 side can be moved because of the output dependency. The operation was
2199 cropped to its rhs above. */
2200 if (has_dep_p[DEPS_IN_RHS])
2201 {
2202 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2203
2204 /* Can't substitute UNIQUE VINSNs. */
2205 gcc_assert (!VINSN_UNIQUE_P (vi));
2206
2207 if (can_speculate_dep_p (*rhs_dsp))
2208 {
2209 int res;
2210
2211 res = speculate_expr (expr, *rhs_dsp);
2212 if (res >= 0)
2213 {
2214 /* Speculation was successful. */
2215 *rhs_dsp = 0;
2216 was_changed = (res > 0);
2217 if (res == 2)
2218 was_target_conflict = true;
2219 if (ptrans_type)
2220 *ptrans_type = TRANS_SPECULATION;
2221 }
2222 else
2223 return MOVEUP_EXPR_NULL;
2224 }
2225 else if (can_substitute_through_p (through_insn,
2226 *rhs_dsp)
2227 && substitute_reg_in_expr (expr, through_insn, false))
2228 {
2229 /* ??? We cannot perform substitution AND speculation on the same
2230 insn. */
2231 gcc_assert (!was_changed);
2232 was_changed = true;
2233 if (ptrans_type)
2234 *ptrans_type = TRANS_SUBSTITUTION;
2235 EXPR_WAS_SUBSTITUTED (expr) = true;
2236 }
2237 else
2238 return MOVEUP_EXPR_NULL;
2239 }
2240
2241 /* Don't move trapping insns through jumps.
2242 This check should be at the end to give a chance to control speculation
2243 to perform its duties. */
2244 if (CANT_MOVE_TRAPPING (expr, through_insn))
2245 return MOVEUP_EXPR_NULL;
2246
2247 return (was_changed
2248 ? MOVEUP_EXPR_CHANGED
2249 : (as_rhs
2250 ? MOVEUP_EXPR_AS_RHS
2251 : MOVEUP_EXPR_SAME));
2252}
2253
2254/* Try to look at bitmap caches for EXPR and INSN pair, return true
2255 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2256 that can exist within a parallel group. Write to RES the resulting
2257 code for moveup_expr. */
2258static bool
2259try_bitmap_cache (expr_t expr, insn_t insn,
2260 bool inside_insn_group,
2261 enum MOVEUP_EXPR_CODE *res)
2262{
2263 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2264
2265 /* First check whether we've analyzed this situation already. */
2266 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2267 {
2268 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2269 {
2270 if (sched_verbose >= 6)
2271 sel_print ("removed (cached)\n");
2272 *res = MOVEUP_EXPR_NULL;
2273 return true;
2274 }
2275 else
2276 {
2277 if (sched_verbose >= 6)
2278 sel_print ("unchanged (cached)\n");
2279 *res = MOVEUP_EXPR_SAME;
2280 return true;
2281 }
2282 }
2283 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2284 {
2285 if (inside_insn_group)
2286 {
2287 if (sched_verbose >= 6)
2288 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2289 *res = MOVEUP_EXPR_SAME;
2290 return true;
2291
2292 }
2293 else
2294 EXPR_TARGET_AVAILABLE (expr) = false;
2295
2296 /* This is the only case when propagation result can change over time,
2297 as we can dynamically switch off scheduling as RHS. In this case,
2298 just check the flag to reach the correct decision. */
2299 if (enable_schedule_as_rhs_p)
2300 {
2301 if (sched_verbose >= 6)
2302 sel_print ("unchanged (as RHS, cached)\n");
2303 *res = MOVEUP_EXPR_AS_RHS;
2304 return true;
2305 }
2306 else
2307 {
2308 if (sched_verbose >= 6)
2309 sel_print ("removed (cached as RHS, but renaming"
2310 " is now disabled)\n");
2311 *res = MOVEUP_EXPR_NULL;
2312 return true;
2313 }
2314 }
2315
2316 return false;
2317}
2318
2319/* Try to look at bitmap caches for EXPR and INSN pair, return true
2320 if successful. Write to RES the resulting code for moveup_expr. */
2321static bool
2322try_transformation_cache (expr_t expr, insn_t insn,
2323 enum MOVEUP_EXPR_CODE *res)
2324{
2325 struct transformed_insns *pti
2326 = (struct transformed_insns *)
2327 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2328 &EXPR_VINSN (expr),
2329 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2330 if (pti)
2331 {
2332 /* This EXPR was already moved through this insn and was
2333 changed as a result. Fetch the proper data from
2334 the hashtable. */
2335 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2336 INSN_UID (insn), pti->type,
2337 pti->vinsn_old, pti->vinsn_new,
2338 EXPR_SPEC_DONE_DS (expr));
2339
2340 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2341 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2342 change_vinsn_in_expr (expr, pti->vinsn_new);
2343 if (pti->was_target_conflict)
2344 EXPR_TARGET_AVAILABLE (expr) = false;
2345 if (pti->type == TRANS_SPECULATION)
2346 {
2347 ds_t ds;
2348
2349 ds = EXPR_SPEC_DONE_DS (expr);
2350
2351 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2352 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2353 }
2354
2355 if (sched_verbose >= 6)
2356 {
2357 sel_print ("changed (cached): ");
2358 dump_expr (expr);
2359 sel_print ("\n");
2360 }
2361
2362 *res = MOVEUP_EXPR_CHANGED;
2363 return true;
2364 }
2365
2366 return false;
2367}
2368
2369/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2370static void
2371update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2372 enum MOVEUP_EXPR_CODE res)
2373{
2374 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2375
2376 /* Do not cache result of propagating jumps through an insn group,
2377 as it is always true, which is not useful outside the group. */
2378 if (inside_insn_group)
2379 return;
2380
2381 if (res == MOVEUP_EXPR_NULL)
2382 {
2383 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2384 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2385 }
2386 else if (res == MOVEUP_EXPR_SAME)
2387 {
2388 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2389 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2390 }
2391 else if (res == MOVEUP_EXPR_AS_RHS)
2392 {
2393 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2394 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2395 }
2396 else
2397 gcc_unreachable ();
2398}
2399
2400/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2401 and transformation type TRANS_TYPE. */
2402static void
2403update_transformation_cache (expr_t expr, insn_t insn,
2404 bool inside_insn_group,
2405 enum local_trans_type trans_type,
2406 vinsn_t expr_old_vinsn)
2407{
2408 struct transformed_insns *pti;
2409
2410 if (inside_insn_group)
2411 return;
2412
2413 pti = XNEW (struct transformed_insns);
2414 pti->vinsn_old = expr_old_vinsn;
2415 pti->vinsn_new = EXPR_VINSN (expr);
2416 pti->type = trans_type;
2417 pti->was_target_conflict = was_target_conflict;
2418 pti->ds = EXPR_SPEC_DONE_DS (expr);
2419 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2420 vinsn_attach (pti->vinsn_old);
2421 vinsn_attach (pti->vinsn_new);
2422 *((struct transformed_insns **)
2423 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2424 pti, VINSN_HASH_RTX (expr_old_vinsn),
2425 INSERT)) = pti;
2426}
2427
2428/* Same as moveup_expr, but first looks up the result of
2429 transformation in caches. */
2430static enum MOVEUP_EXPR_CODE
2431moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2432{
2433 enum MOVEUP_EXPR_CODE res;
2434 bool got_answer = false;
2435
2436 if (sched_verbose >= 6)
2437 {
2438 sel_print ("Moving ");
2439 dump_expr (expr);
2440 sel_print (" through %d: ", INSN_UID (insn));
2441 }
2442
2443 if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2444 /* When inside insn group, we do not want remove stores conflicting
2445 with previosly issued loads. */
2446 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2447 else if (try_transformation_cache (expr, insn, &res))
2448 got_answer = true;
2449
2450 if (! got_answer)
2451 {
2452 /* Invoke moveup_expr and record the results. */
2453 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2454 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2455 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2456 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2457 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2458
2459 /* ??? Invent something better than this. We can't allow old_vinsn
2460 to go, we need it for the history vector. */
2461 vinsn_attach (expr_old_vinsn);
2462
2463 res = moveup_expr (expr, insn, inside_insn_group,
2464 &trans_type);
2465 switch (res)
2466 {
2467 case MOVEUP_EXPR_NULL:
2468 update_bitmap_cache (expr, insn, inside_insn_group, res);
2469 if (sched_verbose >= 6)
2470 sel_print ("removed\n");
2471 break;
2472
2473 case MOVEUP_EXPR_SAME:
2474 update_bitmap_cache (expr, insn, inside_insn_group, res);
2475 if (sched_verbose >= 6)
2476 sel_print ("unchanged\n");
2477 break;
2478
2479 case MOVEUP_EXPR_AS_RHS:
2480 gcc_assert (!unique_p || inside_insn_group);
2481 update_bitmap_cache (expr, insn, inside_insn_group, res);
2482 if (sched_verbose >= 6)
2483 sel_print ("unchanged (as RHS)\n");
2484 break;
2485
2486 case MOVEUP_EXPR_CHANGED:
2487 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2488 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2489 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2490 INSN_UID (insn), trans_type,
2491 expr_old_vinsn, EXPR_VINSN (expr),
2492 expr_old_spec_ds);
2493 update_transformation_cache (expr, insn, inside_insn_group,
2494 trans_type, expr_old_vinsn);
2495 if (sched_verbose >= 6)
2496 {
2497 sel_print ("changed: ");
2498 dump_expr (expr);
2499 sel_print ("\n");
2500 }
2501 break;
2502 default:
2503 gcc_unreachable ();
2504 }
2505
2506 vinsn_detach (expr_old_vinsn);
2507 }
2508
2509 return res;
2510}
2511
2512/* Moves an av set AVP up through INSN, performing necessary
2513 transformations. */
2514static void
2515moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2516{
2517 av_set_iterator i;
2518 expr_t expr;
2519
2520 FOR_EACH_EXPR_1 (expr, i, avp)
2521 {
2522
2523 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2524 {
2525 case MOVEUP_EXPR_SAME:
2526 case MOVEUP_EXPR_AS_RHS:
2527 break;
2528
2529 case MOVEUP_EXPR_NULL:
2530 av_set_iter_remove (&i);
2531 break;
2532
2533 case MOVEUP_EXPR_CHANGED:
2534 expr = merge_with_other_exprs (avp, &i, expr);
2535 break;
2536
2537 default:
2538 gcc_unreachable ();
2539 }
2540 }
2541}
2542
2543/* Moves AVP set along PATH. */
2544static void
2545moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2546{
2547 int last_cycle;
2548
2549 if (sched_verbose >= 6)
2550 sel_print ("Moving expressions up in the insn group...\n");
2551 if (! path)
2552 return;
2553 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2554 while (path
2555 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2556 {
2557 moveup_set_expr (avp, ILIST_INSN (path), true);
2558 path = ILIST_NEXT (path);
2559 }
2560}
2561
2562/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2563static bool
2564equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2565{
2566 expr_def _tmp, *tmp = &_tmp;
2567 int last_cycle;
2568 bool res = true;
2569
2570 copy_expr_onside (tmp, expr);
2571 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2572 while (path
2573 && res
2574 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2575 {
2576 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2577 != MOVEUP_EXPR_NULL);
2578 path = ILIST_NEXT (path);
2579 }
2580
2581 if (res)
2582 {
2583 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2584 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2585
2586 if (tmp_vinsn != expr_vliw_vinsn)
2587 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2588 }
2589
2590 clear_expr (tmp);
2591 return res;
2592}
2593\f
2594
2595/* Functions that compute av and lv sets. */
2596
2597/* Returns true if INSN is not a downward continuation of the given path P in
2598 the current stage. */
2599static bool
2600is_ineligible_successor (insn_t insn, ilist_t p)
2601{
2602 insn_t prev_insn;
2603
2604 /* Check if insn is not deleted. */
2605 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2606 gcc_unreachable ();
2607 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2608 gcc_unreachable ();
2609
2610 /* If it's the first insn visited, then the successor is ok. */
2611 if (!p)
2612 return false;
2613
2614 prev_insn = ILIST_INSN (p);
2615
2616 if (/* a backward edge. */
2617 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2618 /* is already visited. */
2619 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2620 && (ilist_is_in_p (p, insn)
2621 /* We can reach another fence here and still seqno of insn
2622 would be equal to seqno of prev_insn. This is possible
2623 when prev_insn is a previously created bookkeeping copy.
2624 In that case it'd get a seqno of insn. Thus, check here
2625 whether insn is in current fence too. */
2626 || IN_CURRENT_FENCE_P (insn)))
2627 /* Was already scheduled on this round. */
2628 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2629 && IN_CURRENT_FENCE_P (insn))
2630 /* An insn from another fence could also be
2631 scheduled earlier even if this insn is not in
2632 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2633 || (!pipelining_p
2634 && INSN_SCHED_TIMES (insn) > 0))
2635 return true;
2636 else
2637 return false;
2638}
2639
2640/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2641 of handling multiple successors and properly merging its av_sets. P is
2642 the current path traversed. WS is the size of lookahead window.
2643 Return the av set computed. */
2644static av_set_t
2645compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2646{
2647 struct succs_info *sinfo;
2648 av_set_t expr_in_all_succ_branches = NULL;
2649 int is;
2650 insn_t succ, zero_succ = NULL;
2651 av_set_t av1 = NULL;
2652
2653 gcc_assert (sel_bb_end_p (insn));
2654
2655 /* Find different kind of successors needed for correct computing of
2656 SPEC and TARGET_AVAILABLE attributes. */
2657 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2658
2659 /* Debug output. */
2660 if (sched_verbose >= 6)
2661 {
2662 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2663 dump_insn_vector (sinfo->succs_ok);
2664 sel_print ("\n");
2665 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2666 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2667 }
2668
2669 /* Add insn to to the tail of current path. */
2670 ilist_add (&p, insn);
2671
2672 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2673 {
2674 av_set_t succ_set;
2675
2676 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2677 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2678
2679 av_set_split_usefulness (succ_set,
2680 VEC_index (int, sinfo->probs_ok, is),
2681 sinfo->all_prob);
2682
2683 if (sinfo->all_succs_n > 1
2684 && sinfo->all_succs_n == sinfo->succs_ok_n)
2685 {
2686 /* Find EXPR'es that came from *all* successors and save them
2687 into expr_in_all_succ_branches. This set will be used later
2688 for calculating speculation attributes of EXPR'es. */
2689 if (is == 0)
2690 {
2691 expr_in_all_succ_branches = av_set_copy (succ_set);
2692
2693 /* Remember the first successor for later. */
2694 zero_succ = succ;
2695 }
2696 else
2697 {
2698 av_set_iterator i;
2699 expr_t expr;
2700
2701 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2702 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2703 av_set_iter_remove (&i);
2704 }
2705 }
2706
2707 /* Union the av_sets. Check liveness restrictions on target registers
2708 in special case of two successors. */
2709 if (sinfo->succs_ok_n == 2 && is == 1)
2710 {
2711 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2712 basic_block bb1 = BLOCK_FOR_INSN (succ);
2713
2714 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2715 av_set_union_and_live (&av1, &succ_set,
2716 BB_LV_SET (bb0),
2717 BB_LV_SET (bb1),
2718 insn);
2719 }
2720 else
2721 av_set_union_and_clear (&av1, &succ_set, insn);
2722 }
2723
2724 /* Check liveness restrictions via hard way when there are more than
2725 two successors. */
2726 if (sinfo->succs_ok_n > 2)
2727 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2728 {
2729 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2730
2731 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2732 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2733 BB_LV_SET (succ_bb));
2734 }
2735
2736 /* Finally, check liveness restrictions on paths leaving the region. */
2737 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2738 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
2739 mark_unavailable_targets
2740 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2741
2742 if (sinfo->all_succs_n > 1)
2743 {
2744 av_set_iterator i;
2745 expr_t expr;
2746
2747 /* Increase the spec attribute of all EXPR'es that didn't come
2748 from all successors. */
2749 FOR_EACH_EXPR (expr, i, av1)
2750 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2751 EXPR_SPEC (expr)++;
2752
2753 av_set_clear (&expr_in_all_succ_branches);
2754
2755 /* Do not move conditional branches through other
2756 conditional branches. So, remove all conditional
2757 branches from av_set if current operator is a conditional
2758 branch. */
2759 av_set_substract_cond_branches (&av1);
2760 }
2761
2762 ilist_remove (&p);
2763 free_succs_info (sinfo);
2764
2765 if (sched_verbose >= 6)
2766 {
2767 sel_print ("av_succs (%d): ", INSN_UID (insn));
2768 dump_av_set (av1);
2769 sel_print ("\n");
2770 }
2771
2772 return av1;
2773}
2774
2775/* This function computes av_set for the FIRST_INSN by dragging valid
2776 av_set through all basic block insns either from the end of basic block
2777 (computed using compute_av_set_at_bb_end) or from the insn on which
2778 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2779 below the basic block and handling conditional branches.
2780 FIRST_INSN - the basic block head, P - path consisting of the insns
2781 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2782 and bb ends are added to the path), WS - current window size,
2783 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2784static av_set_t
2785compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2786 bool need_copy_p)
2787{
2788 insn_t cur_insn;
2789 int end_ws = ws;
2790 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2791 insn_t after_bb_end = NEXT_INSN (bb_end);
2792 insn_t last_insn;
2793 av_set_t av = NULL;
2794 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2795
2796 /* Return NULL if insn is not on the legitimate downward path. */
2797 if (is_ineligible_successor (first_insn, p))
2798 {
2799 if (sched_verbose >= 6)
2800 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2801
2802 return NULL;
2803 }
2804
2805 /* If insn already has valid av(insn) computed, just return it. */
2806 if (AV_SET_VALID_P (first_insn))
2807 {
2808 av_set_t av_set;
2809
2810 if (sel_bb_head_p (first_insn))
2811 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2812 else
2813 av_set = NULL;
2814
2815 if (sched_verbose >= 6)
2816 {
2817 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2818 dump_av_set (av_set);
2819 sel_print ("\n");
2820 }
2821
2822 return need_copy_p ? av_set_copy (av_set) : av_set;
2823 }
2824
2825 ilist_add (&p, first_insn);
2826
2827 /* As the result after this loop have completed, in LAST_INSN we'll
2828 have the insn which has valid av_set to start backward computation
2829 from: it either will be NULL because on it the window size was exceeded
2830 or other valid av_set as returned by compute_av_set for the last insn
2831 of the basic block. */
2832 for (last_insn = first_insn; last_insn != after_bb_end;
2833 last_insn = NEXT_INSN (last_insn))
2834 {
2835 /* We may encounter valid av_set not only on bb_head, but also on
2836 those insns on which previously MAX_WS was exceeded. */
2837 if (AV_SET_VALID_P (last_insn))
2838 {
2839 if (sched_verbose >= 6)
2840 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2841 break;
2842 }
2843
2844 /* The special case: the last insn of the BB may be an
2845 ineligible_successor due to its SEQ_NO that was set on
2846 it as a bookkeeping. */
2847 if (last_insn != first_insn
2848 && is_ineligible_successor (last_insn, p))
2849 {
2850 if (sched_verbose >= 6)
2851 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2852 break;
2853 }
2854
2855 if (end_ws > max_ws)
2856 {
2857 /* We can reach max lookahead size at bb_header, so clean av_set
2858 first. */
2859 INSN_WS_LEVEL (last_insn) = global_level;
2860
2861 if (sched_verbose >= 6)
2862 sel_print ("Insn %d is beyond the software lookahead window size\n",
2863 INSN_UID (last_insn));
2864 break;
2865 }
2866
2867 end_ws++;
2868 }
2869
2870 /* Get the valid av_set into AV above the LAST_INSN to start backward
2871 computation from. It either will be empty av_set or av_set computed from
2872 the successors on the last insn of the current bb. */
2873 if (last_insn != after_bb_end)
2874 {
2875 av = NULL;
2876
2877 /* This is needed only to obtain av_sets that are identical to
2878 those computed by the old compute_av_set version. */
2879 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2880 av_set_add (&av, INSN_EXPR (last_insn));
2881 }
2882 else
2883 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2884 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2885
2886 /* Compute av_set in AV starting from below the LAST_INSN up to
2887 location above the FIRST_INSN. */
2888 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2889 cur_insn = PREV_INSN (cur_insn))
2890 if (!INSN_NOP_P (cur_insn))
2891 {
2892 expr_t expr;
2893
2894 moveup_set_expr (&av, cur_insn, false);
2895
2896 /* If the expression for CUR_INSN is already in the set,
2897 replace it by the new one. */
2898 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2899 if (expr != NULL)
2900 {
2901 clear_expr (expr);
2902 copy_expr (expr, INSN_EXPR (cur_insn));
2903 }
2904 else
2905 av_set_add (&av, INSN_EXPR (cur_insn));
2906 }
2907
2908 /* Clear stale bb_av_set. */
2909 if (sel_bb_head_p (first_insn))
2910 {
2911 av_set_clear (&BB_AV_SET (cur_bb));
2912 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2913 BB_AV_LEVEL (cur_bb) = global_level;
2914 }
2915
2916 if (sched_verbose >= 6)
2917 {
2918 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2919 dump_av_set (av);
2920 sel_print ("\n");
2921 }
2922
2923 ilist_remove (&p);
2924 return av;
2925}
2926
2927/* Compute av set before INSN.
2928 INSN - the current operation (actual rtx INSN)
2929 P - the current path, which is list of insns visited so far
2930 WS - software lookahead window size.
2931 UNIQUE_P - TRUE, if returned av_set will be changed, hence
2932 if we want to save computed av_set in s_i_d, we should make a copy of it.
2933
2934 In the resulting set we will have only expressions that don't have delay
2935 stalls and nonsubstitutable dependences. */
2936static av_set_t
2937compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
2938{
2939 return compute_av_set_inside_bb (insn, p, ws, unique_p);
2940}
2941
2942/* Propagate a liveness set LV through INSN. */
2943static void
2944propagate_lv_set (regset lv, insn_t insn)
2945{
2946 gcc_assert (INSN_P (insn));
2947
2948 if (INSN_NOP_P (insn))
2949 return;
2950
02b47899 2951 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
2952}
2953
2954/* Return livness set at the end of BB. */
2955static regset
2956compute_live_after_bb (basic_block bb)
2957{
2958 edge e;
2959 edge_iterator ei;
2960 regset lv = get_clear_regset_from_pool ();
2961
2962 gcc_assert (!ignore_first);
2963
2964 FOR_EACH_EDGE (e, ei, bb->succs)
2965 if (sel_bb_empty_p (e->dest))
2966 {
2967 if (! BB_LV_SET_VALID_P (e->dest))
2968 {
2969 gcc_unreachable ();
2970 gcc_assert (BB_LV_SET (e->dest) == NULL);
2971 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
2972 BB_LV_SET_VALID_P (e->dest) = true;
2973 }
2974 IOR_REG_SET (lv, BB_LV_SET (e->dest));
2975 }
2976 else
2977 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
2978
2979 return lv;
2980}
2981
2982/* Compute the set of all live registers at the point before INSN and save
2983 it at INSN if INSN is bb header. */
2984regset
2985compute_live (insn_t insn)
2986{
2987 basic_block bb = BLOCK_FOR_INSN (insn);
2988 insn_t final, temp;
2989 regset lv;
2990
2991 /* Return the valid set if we're already on it. */
2992 if (!ignore_first)
2993 {
2994 regset src = NULL;
2995
2996 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
2997 src = BB_LV_SET (bb);
2998 else
2999 {
3000 gcc_assert (in_current_region_p (bb));
3001 if (INSN_LIVE_VALID_P (insn))
3002 src = INSN_LIVE (insn);
3003 }
3004
3005 if (src)
3006 {
3007 lv = get_regset_from_pool ();
3008 COPY_REG_SET (lv, src);
3009
3010 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3011 {
3012 COPY_REG_SET (BB_LV_SET (bb), lv);
3013 BB_LV_SET_VALID_P (bb) = true;
3014 }
3015
3016 return_regset_to_pool (lv);
3017 return lv;
3018 }
3019 }
3020
3021 /* We've skipped the wrong lv_set. Don't skip the right one. */
3022 ignore_first = false;
3023 gcc_assert (in_current_region_p (bb));
3024
3025 /* Find a valid LV set in this block or below, if needed.
3026 Start searching from the next insn: either ignore_first is true, or
3027 INSN doesn't have a correct live set. */
3028 temp = NEXT_INSN (insn);
3029 final = NEXT_INSN (BB_END (bb));
3030 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3031 temp = NEXT_INSN (temp);
3032 if (temp == final)
3033 {
3034 lv = compute_live_after_bb (bb);
3035 temp = PREV_INSN (temp);
3036 }
3037 else
3038 {
3039 lv = get_regset_from_pool ();
3040 COPY_REG_SET (lv, INSN_LIVE (temp));
3041 }
3042
3043 /* Put correct lv sets on the insns which have bad sets. */
3044 final = PREV_INSN (insn);
3045 while (temp != final)
3046 {
3047 propagate_lv_set (lv, temp);
3048 COPY_REG_SET (INSN_LIVE (temp), lv);
3049 INSN_LIVE_VALID_P (temp) = true;
3050 temp = PREV_INSN (temp);
3051 }
3052
3053 /* Also put it in a BB. */
3054 if (sel_bb_head_p (insn))
3055 {
3056 basic_block bb = BLOCK_FOR_INSN (insn);
3057
3058 COPY_REG_SET (BB_LV_SET (bb), lv);
3059 BB_LV_SET_VALID_P (bb) = true;
3060 }
3061
3062 /* We return LV to the pool, but will not clear it there. Thus we can
3063 legimatelly use LV till the next use of regset_pool_get (). */
3064 return_regset_to_pool (lv);
3065 return lv;
3066}
3067
3068/* Update liveness sets for INSN. */
3069static inline void
3070update_liveness_on_insn (rtx insn)
3071{
3072 ignore_first = true;
3073 compute_live (insn);
3074}
3075
3076/* Compute liveness below INSN and write it into REGS. */
3077static inline void
3078compute_live_below_insn (rtx insn, regset regs)
3079{
3080 rtx succ;
3081 succ_iterator si;
3082
3083 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3084 IOR_REG_SET (regs, compute_live (succ));
3085}
3086
3087/* Update the data gathered in av and lv sets starting from INSN. */
3088static void
3089update_data_sets (rtx insn)
3090{
3091 update_liveness_on_insn (insn);
3092 if (sel_bb_head_p (insn))
3093 {
3094 gcc_assert (AV_LEVEL (insn) != 0);
3095 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3096 compute_av_set (insn, NULL, 0, 0);
3097 }
3098}
3099\f
3100
3101/* Helper for move_op () and find_used_regs ().
3102 Return speculation type for which a check should be created on the place
3103 of INSN. EXPR is one of the original ops we are searching for. */
3104static ds_t
3105get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3106{
3107 ds_t to_check_ds;
3108 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3109
3110 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3111
3112 if (targetm.sched.get_insn_checked_ds)
3113 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3114
3115 if (spec_info != NULL
3116 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3117 already_checked_ds |= BEGIN_CONTROL;
3118
3119 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3120
3121 to_check_ds &= ~already_checked_ds;
3122
3123 return to_check_ds;
3124}
3125
3126/* Find the set of registers that are unavailable for storing expres
3127 while moving ORIG_OPS up on the path starting from INSN due to
3128 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3129
3130 All the original operations found during the traversal are saved in the
3131 ORIGINAL_INSNS list.
3132
3133 REG_RENAME_P denotes the set of hardware registers that
3134 can not be used with renaming due to the register class restrictions,
3135 mode restrictions and other (the register we'll choose should be
3136 compatible class with the original uses, shouldn't be in call_used_regs,
3137 should be HARD_REGNO_RENAME_OK etc).
3138
3139 Returns TRUE if we've found all original insns, FALSE otherwise.
3140
3141 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3142 to traverse the code motion paths. This helper function finds registers
3143 that are not available for storing expres while moving ORIG_OPS up on the
3144 path starting from INSN. A register considered as used on the moving path,
3145 if one of the following conditions is not satisfied:
3146
3147 (1) a register not set or read on any path from xi to an instance of
3148 the original operation,
3149 (2) not among the live registers of the point immediately following the
3150 first original operation on a given downward path, except for the
3151 original target register of the operation,
3152 (3) not live on the other path of any conditional branch that is passed
3153 by the operation, in case original operations are not present on
3154 both paths of the conditional branch.
3155
3156 All the original operations found during the traversal are saved in the
3157 ORIGINAL_INSNS list.
3158
3159 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3160 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3161 to unavailable hard regs at the point original operation is found. */
3162
3163static bool
3164find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3165 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3166{
3167 def_list_iterator i;
3168 def_t def;
3169 int res;
3170 bool needs_spec_check_p = false;
3171 expr_t expr;
3172 av_set_iterator expr_iter;
3173 struct fur_static_params sparams;
3174 struct cmpd_local_params lparams;
3175
3176 /* We haven't visited any blocks yet. */
3177 bitmap_clear (code_motion_visited_blocks);
3178
3179 /* Init parameters for code_motion_path_driver. */
3180 sparams.crosses_call = false;
3181 sparams.original_insns = original_insns;
3182 sparams.used_regs = used_regs;
3183
3184 /* Set the appropriate hooks and data. */
3185 code_motion_path_driver_info = &fur_hooks;
3186
3187 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3188
3189 reg_rename_p->crosses_call |= sparams.crosses_call;
3190
3191 gcc_assert (res == 1);
3192 gcc_assert (original_insns && *original_insns);
3193
3194 /* ??? We calculate whether an expression needs a check when computing
3195 av sets. This information is not as precise as it could be due to
3196 merging this bit in merge_expr. We can do better in find_used_regs,
3197 but we want to avoid multiple traversals of the same code motion
3198 paths. */
3199 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3200 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3201
3202 /* Mark hardware regs in REG_RENAME_P that are not suitable
3203 for renaming expr in INSN due to hardware restrictions (register class,
3204 modes compatibility etc). */
3205 FOR_EACH_DEF (def, i, *original_insns)
3206 {
3207 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3208
3209 if (VINSN_SEPARABLE_P (vinsn))
3210 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3211
3212 /* Do not allow clobbering of ld.[sa] address in case some of the
3213 original operations need a check. */
3214 if (needs_spec_check_p)
3215 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3216 }
3217
3218 return true;
3219}
3220\f
3221
3222/* Functions to choose the best insn from available ones. */
3223
3224/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3225static int
3226sel_target_adjust_priority (expr_t expr)
3227{
3228 int priority = EXPR_PRIORITY (expr);
3229 int new_priority;
3230
3231 if (targetm.sched.adjust_priority)
3232 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3233 else
3234 new_priority = priority;
3235
3236 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3237 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3238
3239 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3240
3241 if (sched_verbose >= 2)
3242 sel_print ("sel_target_adjust_priority: insn %d, %d +%d = %d.\n",
3243 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3244 EXPR_PRIORITY_ADJ (expr), new_priority);
3245
3246 return new_priority;
3247}
3248
3249/* Rank two available exprs for schedule. Never return 0 here. */
3250static int
3251sel_rank_for_schedule (const void *x, const void *y)
3252{
3253 expr_t tmp = *(const expr_t *) y;
3254 expr_t tmp2 = *(const expr_t *) x;
3255 insn_t tmp_insn, tmp2_insn;
3256 vinsn_t tmp_vinsn, tmp2_vinsn;
3257 int val;
3258
3259 tmp_vinsn = EXPR_VINSN (tmp);
3260 tmp2_vinsn = EXPR_VINSN (tmp2);
3261 tmp_insn = EXPR_INSN_RTX (tmp);
3262 tmp2_insn = EXPR_INSN_RTX (tmp2);
3263
3264 /* Prefer SCHED_GROUP_P insns to any others. */
3265 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3266 {
3267 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3268 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3269
3270 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3271 cannot be cloned. */
3272 if (VINSN_UNIQUE_P (tmp2_vinsn))
3273 return 1;
3274 return -1;
3275 }
3276
3277 /* Discourage scheduling of speculative checks. */
3278 val = (sel_insn_is_speculation_check (tmp_insn)
3279 - sel_insn_is_speculation_check (tmp2_insn));
3280 if (val)
3281 return val;
3282
3283 /* Prefer not scheduled insn over scheduled one. */
3284 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3285 {
3286 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3287 if (val)
3288 return val;
3289 }
3290
3291 /* Prefer jump over non-jump instruction. */
3292 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3293 return -1;
3294 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3295 return 1;
3296
3297 /* Prefer an expr with greater priority. */
3298 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3299 {
3300 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3301 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3302
3303 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3304 }
3305 else
3306 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3307 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3308 if (val)
3309 return val;
3310
3311 if (spec_info != NULL && spec_info->mask != 0)
3312 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3313 {
3314 ds_t ds1, ds2;
3315 dw_t dw1, dw2;
3316 int dw;
3317
3318 ds1 = EXPR_SPEC_DONE_DS (tmp);
3319 if (ds1)
3320 dw1 = ds_weak (ds1);
3321 else
3322 dw1 = NO_DEP_WEAK;
3323
3324 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3325 if (ds2)
3326 dw2 = ds_weak (ds2);
3327 else
3328 dw2 = NO_DEP_WEAK;
3329
3330 dw = dw2 - dw1;
3331 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3332 return dw;
3333 }
3334
3335 tmp_insn = EXPR_INSN_RTX (tmp);
3336 tmp2_insn = EXPR_INSN_RTX (tmp2);
3337
3338 /* Prefer an old insn to a bookkeeping insn. */
3339 if (INSN_UID (tmp_insn) < first_emitted_uid
3340 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3341 return -1;
3342 if (INSN_UID (tmp_insn) >= first_emitted_uid
3343 && INSN_UID (tmp2_insn) < first_emitted_uid)
3344 return 1;
3345
3346 /* Prefer an insn with smaller UID, as a last resort.
3347 We can't safely use INSN_LUID as it is defined only for those insns
3348 that are in the stream. */
3349 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3350}
3351
3352/* Filter out expressions from av set pointed to by AV_PTR
3353 that are pipelined too many times. */
3354static void
3355process_pipelined_exprs (av_set_t *av_ptr)
3356{
3357 expr_t expr;
3358 av_set_iterator si;
3359
3360 /* Don't pipeline already pipelined code as that would increase
3361 number of unnecessary register moves. */
3362 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3363 {
3364 if (EXPR_SCHED_TIMES (expr)
3365 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3366 av_set_iter_remove (&si);
3367 }
3368}
3369
3370/* Filter speculative insns from AV_PTR if we don't want them. */
3371static void
3372process_spec_exprs (av_set_t *av_ptr)
3373{
3374 bool try_data_p = true;
3375 bool try_control_p = true;
3376 expr_t expr;
3377 av_set_iterator si;
3378
3379 if (spec_info == NULL)
3380 return;
3381
3382 /* Scan *AV_PTR to find out if we want to consider speculative
3383 instructions for scheduling. */
3384 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3385 {
3386 ds_t ds;
3387
3388 ds = EXPR_SPEC_DONE_DS (expr);
3389
3390 /* The probability of a success is too low - don't speculate. */
3391 if ((ds & SPECULATIVE)
3392 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3393 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3394 || (pipelining_p && false
3395 && (ds & DATA_SPEC)
3396 && (ds & CONTROL_SPEC))))
3397 {
3398 av_set_iter_remove (&si);
3399 continue;
3400 }
3401
3402 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3403 && !(ds & BEGIN_DATA))
3404 try_data_p = false;
3405
3406 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3407 && !(ds & BEGIN_CONTROL))
3408 try_control_p = false;
3409 }
3410
3411 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3412 {
3413 ds_t ds;
3414
3415 ds = EXPR_SPEC_DONE_DS (expr);
3416
3417 if (ds & SPECULATIVE)
3418 {
3419 if ((ds & BEGIN_DATA) && !try_data_p)
3420 /* We don't want any data speculative instructions right
3421 now. */
3422 av_set_iter_remove (&si);
3423
3424 if ((ds & BEGIN_CONTROL) && !try_control_p)
3425 /* We don't want any control speculative instructions right
3426 now. */
3427 av_set_iter_remove (&si);
3428 }
3429 }
3430}
3431
3432/* Search for any use-like insns in AV_PTR and decide on scheduling
3433 them. Return one when found, and NULL otherwise.
3434 Note that we check here whether a USE could be scheduled to avoid
3435 an infinite loop later. */
3436static expr_t
3437process_use_exprs (av_set_t *av_ptr)
3438{
3439 expr_t expr;
3440 av_set_iterator si;
3441 bool uses_present_p = false;
3442 bool try_uses_p = true;
3443
3444 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3445 {
3446 /* This will also initialize INSN_CODE for later use. */
3447 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3448 {
3449 /* If we have a USE in *AV_PTR that was not scheduled yet,
3450 do so because it will do good only. */
3451 if (EXPR_SCHED_TIMES (expr) <= 0)
3452 {
3453 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3454 return expr;
3455
3456 av_set_iter_remove (&si);
3457 }
3458 else
3459 {
3460 gcc_assert (pipelining_p);
3461
3462 uses_present_p = true;
3463 }
3464 }
3465 else
3466 try_uses_p = false;
3467 }
3468
3469 if (uses_present_p)
3470 {
3471 /* If we don't want to schedule any USEs right now and we have some
3472 in *AV_PTR, remove them, else just return the first one found. */
3473 if (!try_uses_p)
3474 {
3475 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3476 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3477 av_set_iter_remove (&si);
3478 }
3479 else
3480 {
3481 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 {
3483 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3484
3485 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3486 return expr;
3487
3488 av_set_iter_remove (&si);
3489 }
3490 }
3491 }
3492
3493 return NULL;
3494}
3495
3496/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3497static bool
3498vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3499{
3500 vinsn_t vinsn;
3501 int n;
3502
3503 for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
3504 if (VINSN_SEPARABLE_P (vinsn))
3505 {
3506 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3507 return true;
3508 }
3509 else
3510 {
3511 /* For non-separable instructions, the blocking insn can have
3512 another pattern due to substitution, and we can't choose
3513 different register as in the above case. Check all registers
3514 being written instead. */
3515 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3516 VINSN_REG_SETS (EXPR_VINSN (expr))))
3517 return true;
3518 }
3519
3520 return false;
3521}
3522
3523#ifdef ENABLE_CHECKING
3524/* Return true if either of expressions from ORIG_OPS can be blocked
3525 by previously created bookkeeping code. STATIC_PARAMS points to static
3526 parameters of move_op. */
3527static bool
3528av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3529{
3530 expr_t expr;
3531 av_set_iterator iter;
3532 moveop_static_params_p sparams;
3533
3534 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3535 created while scheduling on another fence. */
3536 FOR_EACH_EXPR (expr, iter, orig_ops)
3537 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3538 return true;
3539
3540 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3541 sparams = (moveop_static_params_p) static_params;
3542
3543 /* Expressions can be also blocked by bookkeeping created during current
3544 move_op. */
3545 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3546 FOR_EACH_EXPR (expr, iter, orig_ops)
3547 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3548 return true;
3549
3550 /* Expressions in ORIG_OPS may have wrong destination register due to
3551 renaming. Check with the right register instead. */
3552 if (sparams->dest && REG_P (sparams->dest))
3553 {
3554 unsigned regno = REGNO (sparams->dest);
3555 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3556
3557 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3558 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3559 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3560 return true;
3561 }
3562
3563 return false;
3564}
3565#endif
3566
3567/* Clear VINSN_VEC and detach vinsns. */
3568static void
3569vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3570{
3571 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3572 if (len > 0)
3573 {
3574 vinsn_t vinsn;
3575 int n;
3576
3577 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3578 vinsn_detach (vinsn);
3579 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3580 }
3581}
3582
3583/* Add the vinsn of EXPR to the VINSN_VEC. */
3584static void
3585vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3586{
3587 vinsn_attach (EXPR_VINSN (expr));
3588 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3589}
3590
3591/* Free the vector representing blocked expressions. */
3592static void
3593vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3594{
3595 if (*vinsn_vec)
3596 VEC_free (vinsn_t, heap, *vinsn_vec);
3597}
3598
3599/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3600
3601void sel_add_to_insn_priority (rtx insn, int amount)
3602{
3603 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3604
3605 if (sched_verbose >= 2)
3606 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3607 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3608 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3609}
3610
3611/* Turn AV into a vector, filter inappropriate insns and sort it. Return
3612 true if there is something to schedule. BNDS and FENCE are current
3613 boundaries and fence, respectively. If we need to stall for some cycles
3614 before an expr from AV would become available, write this number to
3615 *PNEED_STALL. */
3616static bool
3617fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3618 int *pneed_stall)
3619{
3620 av_set_iterator si;
3621 expr_t expr;
3622 int sched_next_worked = 0, stalled, n;
3623 static int av_max_prio, est_ticks_till_branch;
3624 int min_need_stall = -1;
3625 deps_t dc = BND_DC (BLIST_BND (bnds));
3626
3627 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3628 already scheduled. */
3629 if (av == NULL)
3630 return false;
3631
3632 /* Empty vector from the previous stuff. */
3633 if (VEC_length (expr_t, vec_av_set) > 0)
3634 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3635
3636 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3637 for each insn. */
3638 gcc_assert (VEC_empty (expr_t, vec_av_set));
3639 FOR_EACH_EXPR (expr, si, av)
3640 {
3641 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3642
3643 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3644
3645 /* Adjust priority using target backend hook. */
3646 sel_target_adjust_priority (expr);
3647 }
3648
3649 /* Sort the vector. */
3650 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3651 sizeof (expr_t), sel_rank_for_schedule);
3652
3653 /* We record maximal priority of insns in av set for current instruction
3654 group. */
3655 if (FENCE_STARTS_CYCLE_P (fence))
3656 av_max_prio = est_ticks_till_branch = INT_MIN;
3657
3658 /* Filter out inappropriate expressions. Loop's direction is reversed to
3659 visit "best" instructions first. We assume that VEC_unordered_remove
3660 moves last element in place of one being deleted. */
3661 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3662 {
3663 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3664 insn_t insn = EXPR_INSN_RTX (expr);
3665 char target_available;
3666 bool is_orig_reg_p = true;
3667 int need_cycles, new_prio;
3668
3669 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3670 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3671 {
3672 VEC_unordered_remove (expr_t, vec_av_set, n);
3673 continue;
3674 }
3675
3676 /* Set number of sched_next insns (just in case there
3677 could be several). */
3678 if (FENCE_SCHED_NEXT (fence))
3679 sched_next_worked++;
3680
3681 /* Check all liveness requirements and try renaming.
3682 FIXME: try to minimize calls to this. */
3683 target_available = EXPR_TARGET_AVAILABLE (expr);
3684
3685 /* If insn was already scheduled on the current fence,
3686 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3687 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3688 target_available = -1;
3689
3690 /* If the availability of the EXPR is invalidated by the insertion of
3691 bookkeeping earlier, make sure that we won't choose this expr for
3692 scheduling if it's not separable, and if it is separable, then
3693 we have to recompute the set of available registers for it. */
3694 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3695 {
3696 VEC_unordered_remove (expr_t, vec_av_set, n);
3697 if (sched_verbose >= 4)
3698 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3699 INSN_UID (insn));
3700 continue;
3701 }
3702
3703 if (target_available == true)
3704 {
3705 /* Do nothing -- we can use an existing register. */
3706 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3707 }
3708 else if (/* Non-separable instruction will never
3709 get another register. */
3710 (target_available == false
3711 && !EXPR_SEPARABLE_P (expr))
3712 /* Don't try to find a register for low-priority expression. */
3713 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3714 /* ??? FIXME: Don't try to rename data speculation. */
3715 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3716 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3717 {
3718 VEC_unordered_remove (expr_t, vec_av_set, n);
3719 if (sched_verbose >= 4)
3720 sel_print ("Expr %d has no suitable target register\n",
3721 INSN_UID (insn));
3722 continue;
3723 }
3724
3725 /* Filter expressions that need to be renamed or speculated when
3726 pipelining, because compensating register copies or speculation
3727 checks are likely to be placed near the beginning of the loop,
3728 causing a stall. */
3729 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3730 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3731 {
3732 /* Estimation of number of cycles until loop branch for
3733 renaming/speculation to be successful. */
3734 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3735
3736 if ((int) current_loop_nest->ninsns < 9)
3737 {
3738 VEC_unordered_remove (expr_t, vec_av_set, n);
3739 if (sched_verbose >= 4)
3740 sel_print ("Pipelining expr %d will likely cause stall\n",
3741 INSN_UID (insn));
3742 continue;
3743 }
3744
3745 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3746 < need_n_ticks_till_branch * issue_rate / 2
3747 && est_ticks_till_branch < need_n_ticks_till_branch)
3748 {
3749 VEC_unordered_remove (expr_t, vec_av_set, n);
3750 if (sched_verbose >= 4)
3751 sel_print ("Pipelining expr %d will likely cause stall\n",
3752 INSN_UID (insn));
3753 continue;
3754 }
3755 }
3756
3757 /* We want to schedule speculation checks as late as possible. Discard
3758 them from av set if there are instructions with higher priority. */
3759 if (sel_insn_is_speculation_check (insn)
3760 && EXPR_PRIORITY (expr) < av_max_prio)
3761 {
3762 stalled++;
3763 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3764 VEC_unordered_remove (expr_t, vec_av_set, n);
3765 if (sched_verbose >= 4)
3766 sel_print ("Delaying speculation check %d until its first use\n",
3767 INSN_UID (insn));
3768 continue;
3769 }
3770
3771 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3772 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3773 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3774
3775 /* Don't allow any insns whose data is not yet ready.
3776 Check first whether we've already tried them and failed. */
3777 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3778 {
3779 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3780 - FENCE_CYCLE (fence));
3781 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3782 est_ticks_till_branch = MAX (est_ticks_till_branch,
3783 EXPR_PRIORITY (expr) + need_cycles);
3784
3785 if (need_cycles > 0)
3786 {
3787 stalled++;
3788 min_need_stall = (min_need_stall < 0
3789 ? need_cycles
3790 : MIN (min_need_stall, need_cycles));
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792
3793 if (sched_verbose >= 4)
3794 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3795 INSN_UID (insn),
3796 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3797 continue;
3798 }
3799 }
3800
3801 /* Now resort to dependence analysis to find whether EXPR might be
3802 stalled due to dependencies from FENCE's context. */
3803 need_cycles = tick_check_p (expr, dc, fence);
3804 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3805
3806 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3807 est_ticks_till_branch = MAX (est_ticks_till_branch,
3808 new_prio);
3809
3810 if (need_cycles > 0)
3811 {
3812 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3813 {
3814 int new_size = INSN_UID (insn) * 3 / 2;
3815
3816 FENCE_READY_TICKS (fence)
3817 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3818 new_size, FENCE_READY_TICKS_SIZE (fence),
3819 sizeof (int));
3820 }
3821 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3822 = FENCE_CYCLE (fence) + need_cycles;
3823
3824 stalled++;
3825 min_need_stall = (min_need_stall < 0
3826 ? need_cycles
3827 : MIN (min_need_stall, need_cycles));
3828
3829 VEC_unordered_remove (expr_t, vec_av_set, n);
3830
3831 if (sched_verbose >= 4)
3832 sel_print ("Expr %d is not ready yet until cycle %d\n",
3833 INSN_UID (insn),
3834 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3835 continue;
3836 }
3837
3838 if (sched_verbose >= 4)
3839 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3840 min_need_stall = 0;
3841 }
3842
3843 /* Clear SCHED_NEXT. */
3844 if (FENCE_SCHED_NEXT (fence))
3845 {
3846 gcc_assert (sched_next_worked == 1);
3847 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3848 }
3849
3850 /* No need to stall if this variable was not initialized. */
3851 if (min_need_stall < 0)
3852 min_need_stall = 0;
3853
3854 if (VEC_empty (expr_t, vec_av_set))
3855 {
3856 /* We need to set *pneed_stall here, because later we skip this code
3857 when ready list is empty. */
3858 *pneed_stall = min_need_stall;
3859 return false;
3860 }
3861 else
3862 gcc_assert (min_need_stall == 0);
3863
3864 /* Sort the vector. */
3865 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3866 sizeof (expr_t), sel_rank_for_schedule);
3867
3868 if (sched_verbose >= 4)
3869 {
3870 sel_print ("Total ready exprs: %d, stalled: %d\n",
3871 VEC_length (expr_t, vec_av_set), stalled);
3872 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3873 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3874 dump_expr (expr);
3875 sel_print ("\n");
3876 }
3877
3878 *pneed_stall = 0;
3879 return true;
3880}
3881
3882/* Convert a vectored and sorted av set to the ready list that
3883 the rest of the backend wants to see. */
3884static void
3885convert_vec_av_set_to_ready (void)
3886{
3887 int n;
3888 expr_t expr;
3889
3890 /* Allocate and fill the ready list from the sorted vector. */
3891 ready.n_ready = VEC_length (expr_t, vec_av_set);
3892 ready.first = ready.n_ready - 1;
3893
3894 gcc_assert (ready.n_ready > 0);
3895
3896 if (ready.n_ready > max_issue_size)
3897 {
3898 max_issue_size = ready.n_ready;
3899 sched_extend_ready_list (ready.n_ready);
3900 }
3901
3902 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3903 {
3904 vinsn_t vi = EXPR_VINSN (expr);
3905 insn_t insn = VINSN_INSN_RTX (vi);
3906
3907 ready_try[n] = 0;
3908 ready.vec[n] = insn;
3909 }
3910}
3911
3912/* Initialize ready list from *AV_PTR for the max_issue () call.
3913 If any unrecognizable insn found in *AV_PTR, return it (and skip
3914 max_issue). BND and FENCE are current boundary and fence,
3915 respectively. If we need to stall for some cycles before an expr
3916 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3917static expr_t
3918fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3919 int *pneed_stall)
3920{
3921 expr_t expr;
3922
3923 /* We do not support multiple boundaries per fence. */
3924 gcc_assert (BLIST_NEXT (bnds) == NULL);
3925
3926 /* Process expressions required special handling, i.e. pipelined,
3927 speculative and recog() < 0 expressions first. */
3928 process_pipelined_exprs (av_ptr);
3929 process_spec_exprs (av_ptr);
3930
3931 /* A USE could be scheduled immediately. */
3932 expr = process_use_exprs (av_ptr);
3933 if (expr)
3934 {
3935 *pneed_stall = 0;
3936 return expr;
3937 }
3938
3939 /* Turn the av set to a vector for sorting. */
3940 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
3941 {
3942 ready.n_ready = 0;
3943 return NULL;
3944 }
3945
3946 /* Build the final ready list. */
3947 convert_vec_av_set_to_ready ();
3948 return NULL;
3949}
3950
3951/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
3952static bool
3953sel_dfa_new_cycle (insn_t insn, fence_t fence)
3954{
3955 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
3956 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
3957 : FENCE_CYCLE (fence) - 1;
3958 bool res = false;
3959 int sort_p = 0;
3960
3961 if (!targetm.sched.dfa_new_cycle)
3962 return false;
3963
3964 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
3965
3966 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3967 insn, last_scheduled_cycle,
3968 FENCE_CYCLE (fence), &sort_p))
3969 {
3970 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
3971 advance_one_cycle (fence);
3972 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
3973 res = true;
3974 }
3975
3976 return res;
3977}
3978
3979/* Invoke reorder* target hooks on the ready list. Return the number of insns
3980 we can issue. FENCE is the current fence. */
3981static int
3982invoke_reorder_hooks (fence_t fence)
3983{
3984 int issue_more;
3985 bool ran_hook = false;
3986
3987 /* Call the reorder hook at the beginning of the cycle, and call
3988 the reorder2 hook in the middle of the cycle. */
3989 if (FENCE_ISSUED_INSNS (fence) == 0)
3990 {
3991 if (targetm.sched.reorder
3992 && !SCHED_GROUP_P (ready_element (&ready, 0))
3993 && ready.n_ready > 1)
3994 {
3995 /* Don't give reorder the most prioritized insn as it can break
3996 pipelining. */
3997 if (pipelining_p)
3998 --ready.n_ready;
3999
4000 issue_more
4001 = targetm.sched.reorder (sched_dump, sched_verbose,
4002 ready_lastpos (&ready),
4003 &ready.n_ready, FENCE_CYCLE (fence));
4004
4005 if (pipelining_p)
4006 ++ready.n_ready;
4007
4008 ran_hook = true;
4009 }
4010 else
4011 /* Initialize can_issue_more for variable_issue. */
4012 issue_more = issue_rate;
4013 }
4014 else if (targetm.sched.reorder2
4015 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4016 {
4017 if (ready.n_ready == 1)
4018 issue_more =
4019 targetm.sched.reorder2 (sched_dump, sched_verbose,
4020 ready_lastpos (&ready),
4021 &ready.n_ready, FENCE_CYCLE (fence));
4022 else
4023 {
4024 if (pipelining_p)
4025 --ready.n_ready;
4026
4027 issue_more =
4028 targetm.sched.reorder2 (sched_dump, sched_verbose,
4029 ready.n_ready
4030 ? ready_lastpos (&ready) : NULL,
4031 &ready.n_ready, FENCE_CYCLE (fence));
4032
4033 if (pipelining_p)
4034 ++ready.n_ready;
4035 }
4036
4037 ran_hook = true;
4038 }
4039 else
4040 issue_more = issue_rate;
4041
4042 /* Ensure that ready list and vec_av_set are in line with each other,
4043 i.e. vec_av_set[i] == ready_element (&ready, i). */
4044 if (issue_more && ran_hook)
4045 {
4046 int i, j, n;
4047 rtx *arr = ready.vec;
4048 expr_t *vec = VEC_address (expr_t, vec_av_set);
4049
4050 for (i = 0, n = ready.n_ready; i < n; i++)
4051 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4052 {
4053 expr_t tmp;
4054
4055 for (j = i; j < n; j++)
4056 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4057 break;
4058 gcc_assert (j < n);
4059
4060 tmp = vec[i];
4061 vec[i] = vec[j];
4062 vec[j] = tmp;
4063 }
4064 }
4065
4066 return issue_more;
4067}
4068
4069/* Return an EXPR correponding to INDEX element of ready list, if
4070 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4071 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4072 ready.vec otherwise. */
4073static inline expr_t
4074find_expr_for_ready (int index, bool follow_ready_element)
4075{
4076 expr_t expr;
4077 int real_index;
4078
4079 real_index = follow_ready_element ? ready.first - index : index;
4080
4081 expr = VEC_index (expr_t, vec_av_set, real_index);
4082 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4083
4084 return expr;
4085}
4086
4087/* Calculate insns worth trying via lookahead_guard hook. Return a number
4088 of such insns found. */
4089static int
4090invoke_dfa_lookahead_guard (void)
4091{
4092 int i, n;
4093 bool have_hook
4094 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4095
4096 if (sched_verbose >= 2)
4097 sel_print ("ready after reorder: ");
4098
4099 for (i = 0, n = 0; i < ready.n_ready; i++)
4100 {
4101 expr_t expr;
4102 insn_t insn;
4103 int r;
4104
4105 /* In this loop insn is Ith element of the ready list given by
4106 ready_element, not Ith element of ready.vec. */
4107 insn = ready_element (&ready, i);
4108
4109 if (! have_hook || i == 0)
4110 r = 0;
4111 else
4112 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4113
4114 gcc_assert (INSN_CODE (insn) >= 0);
4115
4116 /* Only insns with ready_try = 0 can get here
4117 from fill_ready_list. */
4118 gcc_assert (ready_try [i] == 0);
4119 ready_try[i] = r;
4120 if (!r)
4121 n++;
4122
4123 expr = find_expr_for_ready (i, true);
4124
4125 if (sched_verbose >= 2)
4126 {
4127 dump_vinsn (EXPR_VINSN (expr));
4128 sel_print (":%d; ", ready_try[i]);
4129 }
4130 }
4131
4132 if (sched_verbose >= 2)
4133 sel_print ("\n");
4134 return n;
4135}
4136
4137/* Calculate the number of privileged insns and return it. */
4138static int
4139calculate_privileged_insns (void)
4140{
4141 expr_t cur_expr, min_spec_expr = NULL;
4142 insn_t cur_insn, min_spec_insn;
4143 int privileged_n = 0, i;
4144
4145 for (i = 0; i < ready.n_ready; i++)
4146 {
4147 if (ready_try[i])
4148 continue;
4149
4150 if (! min_spec_expr)
4151 {
4152 min_spec_insn = ready_element (&ready, i);
4153 min_spec_expr = find_expr_for_ready (i, true);
4154 }
4155
4156 cur_insn = ready_element (&ready, i);
4157 cur_expr = find_expr_for_ready (i, true);
4158
4159 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4160 break;
4161
4162 ++privileged_n;
4163 }
4164
4165 if (i == ready.n_ready)
4166 privileged_n = 0;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("privileged_n: %d insns with SPEC %d\n",
4170 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4171 return privileged_n;
4172}
4173
4174/* Call the rest of the hooks after the choice was made. Return
4175 the number of insns that still can be issued given that the current
4176 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4177 and the insn chosen for scheduling, respectively. */
4178static int
4179invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4180{
4181 gcc_assert (INSN_P (best_insn));
4182
4183 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4184 sel_dfa_new_cycle (best_insn, fence);
4185
4186 if (targetm.sched.variable_issue)
4187 {
4188 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4189 issue_more =
4190 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4191 issue_more);
4192 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4193 }
4194 else if (GET_CODE (PATTERN (best_insn)) != USE
4195 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4196 issue_more--;
4197
4198 return issue_more;
4199}
4200
4201/* Estimate the cost of issuing INSN on DFA state STATE. */
4202static int
4203estimate_insn_cost (rtx insn, state_t state)
4204{
4205 static state_t temp = NULL;
4206 int cost;
4207
4208 if (!temp)
4209 temp = xmalloc (dfa_state_size);
4210
4211 memcpy (temp, state, dfa_state_size);
4212 cost = state_transition (temp, insn);
4213
4214 if (cost < 0)
4215 return 0;
4216 else if (cost == 0)
4217 return 1;
4218 return cost;
4219}
4220
4221/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4222 This function properly handles ASMs, USEs etc. */
4223static int
4224get_expr_cost (expr_t expr, fence_t fence)
4225{
4226 rtx insn = EXPR_INSN_RTX (expr);
4227
4228 if (recog_memoized (insn) < 0)
4229 {
4230 if (!FENCE_STARTS_CYCLE_P (fence)
4231 /* FIXME: Is this condition necessary? */
4232 && VINSN_UNIQUE_P (EXPR_VINSN (expr))
4233 && INSN_ASM_P (insn))
4234 /* This is asm insn which is tryed to be issued on the
4235 cycle not first. Issue it on the next cycle. */
4236 return 1;
4237 else
4238 /* A USE insn, or something else we don't need to
4239 understand. We can't pass these directly to
4240 state_transition because it will trigger a
4241 fatal error for unrecognizable insns. */
4242 return 0;
4243 }
4244 else
4245 return estimate_insn_cost (insn, FENCE_STATE (fence));
4246}
4247
4248/* Find the best insn for scheduling, either via max_issue or just take
4249 the most prioritized available. */
4250static int
4251choose_best_insn (fence_t fence, int privileged_n, int *index)
4252{
4253 int can_issue = 0;
4254
4255 if (dfa_lookahead > 0)
4256 {
4257 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4258 can_issue = max_issue (&ready, privileged_n,
4259 FENCE_STATE (fence), index);
4260 if (sched_verbose >= 2)
4261 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4262 can_issue, FENCE_ISSUED_INSNS (fence));
4263 }
4264 else
4265 {
4266 /* We can't use max_issue; just return the first available element. */
4267 int i;
4268
4269 for (i = 0; i < ready.n_ready; i++)
4270 {
4271 expr_t expr = find_expr_for_ready (i, true);
4272
4273 if (get_expr_cost (expr, fence) < 1)
4274 {
4275 can_issue = can_issue_more;
4276 *index = i;
4277
4278 if (sched_verbose >= 2)
4279 sel_print ("using %dth insn from the ready list\n", i + 1);
4280
4281 break;
4282 }
4283 }
4284
4285 if (i == ready.n_ready)
4286 {
4287 can_issue = 0;
4288 *index = -1;
4289 }
4290 }
4291
4292 return can_issue;
4293}
4294
4295/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4296 BNDS and FENCE are current boundaries and scheduling fence respectively.
4297 Return the expr found and NULL if nothing can be issued atm.
4298 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4299static expr_t
4300find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4301 int *pneed_stall)
4302{
4303 expr_t best;
4304
4305 /* Choose the best insn for scheduling via:
4306 1) sorting the ready list based on priority;
4307 2) calling the reorder hook;
4308 3) calling max_issue. */
4309 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4310 if (best == NULL && ready.n_ready > 0)
4311 {
4312 int privileged_n, index, avail_n;
4313
4314 can_issue_more = invoke_reorder_hooks (fence);
4315 if (can_issue_more > 0)
4316 {
4317 /* Try choosing the best insn until we find one that is could be
4318 scheduled due to liveness restrictions on its destination register.
4319 In the future, we'd like to choose once and then just probe insns
4320 in the order of their priority. */
4321 avail_n = invoke_dfa_lookahead_guard ();
4322 privileged_n = calculate_privileged_insns ();
4323 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4324 if (can_issue_more)
4325 best = find_expr_for_ready (index, true);
4326 }
4327 /* We had some available insns, so if we can't issue them,
4328 we have a stall. */
4329 if (can_issue_more == 0)
4330 {
4331 best = NULL;
4332 *pneed_stall = 1;
4333 }
4334 }
4335
4336 if (best != NULL)
4337 {
4338 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4339 can_issue_more);
4340 if (can_issue_more == 0)
4341 *pneed_stall = 1;
4342 }
4343
4344 if (sched_verbose >= 2)
4345 {
4346 if (best != NULL)
4347 {
4348 sel_print ("Best expression (vliw form): ");
4349 dump_expr (best);
4350 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4351 }
4352 else
4353 sel_print ("No best expr found!\n");
4354 }
4355
4356 return best;
4357}
4358\f
4359
4360/* Functions that implement the core of the scheduler. */
4361
4362
4363/* Emit an instruction from EXPR with SEQNO and VINSN after
4364 PLACE_TO_INSERT. */
4365static insn_t
4366emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4367 insn_t place_to_insert)
4368{
4369 /* This assert fails when we have identical instructions
4370 one of which dominates the other. In this case move_op ()
4371 finds the first instruction and doesn't search for second one.
4372 The solution would be to compute av_set after the first found
4373 insn and, if insn present in that set, continue searching.
4374 For now we workaround this issue in move_op. */
4375 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4376
4377 if (EXPR_WAS_RENAMED (expr))
4378 {
4379 unsigned regno = expr_dest_regno (expr);
4380
4381 if (HARD_REGISTER_NUM_P (regno))
4382 {
4383 df_set_regs_ever_live (regno, true);
4384 reg_rename_tick[regno] = ++reg_rename_this_tick;
4385 }
4386 }
4387
4388 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4389 place_to_insert);
4390}
4391
4392/* Return TRUE if BB can hold bookkeeping code. */
4393static bool
4394block_valid_for_bookkeeping_p (basic_block bb)
4395{
4396 insn_t bb_end = BB_END (bb);
4397
4398 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4399 return false;
4400
4401 if (INSN_P (bb_end))
4402 {
4403 if (INSN_SCHED_TIMES (bb_end) > 0)
4404 return false;
4405 }
4406 else
4407 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4408
4409 return true;
4410}
4411
4412/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4413 into E2->dest, except from E1->src (there may be a sequence of empty basic
4414 blocks between E1->src and E2->dest). Return found block, or NULL if new
4415 one must be created. */
4416static basic_block
4417find_block_for_bookkeeping (edge e1, edge e2)
4418{
4419 basic_block candidate_block = NULL;
4420 edge e;
4421
4422 /* Loop over edges from E1 to E2, inclusive. */
4423 for (e = e1; ; e = EDGE_SUCC (e->dest, 0))
4424 {
4425 if (EDGE_COUNT (e->dest->preds) == 2)
4426 {
4427 if (candidate_block == NULL)
4428 candidate_block = (EDGE_PRED (e->dest, 0) == e
4429 ? EDGE_PRED (e->dest, 1)->src
4430 : EDGE_PRED (e->dest, 0)->src);
4431 else
4432 /* Found additional edge leading to path from e1 to e2
4433 from aside. */
4434 return NULL;
4435 }
4436 else if (EDGE_COUNT (e->dest->preds) > 2)
4437 /* Several edges leading to path from e1 to e2 from aside. */
4438 return NULL;
4439
4440 if (e == e2)
4441 return (block_valid_for_bookkeeping_p (candidate_block)
4442 ? candidate_block
4443 : NULL);
4444 }
4445 gcc_unreachable ();
4446}
4447
4448/* Create new basic block for bookkeeping code for path(s) incoming into
4449 E2->dest, except from E1->src. Return created block. */
4450static basic_block
4451create_block_for_bookkeeping (edge e1, edge e2)
4452{
4453 basic_block new_bb, bb = e2->dest;
4454
4455 /* Check that we don't spoil the loop structure. */
4456 if (current_loop_nest)
4457 {
4458 basic_block latch = current_loop_nest->latch;
4459
4460 /* We do not split header. */
4461 gcc_assert (e2->dest != current_loop_nest->header);
4462
4463 /* We do not redirect the only edge to the latch block. */
4464 gcc_assert (e1->dest != latch
4465 || !single_pred_p (latch)
4466 || e1 != single_pred_edge (latch));
4467 }
4468
4469 /* Split BB to insert BOOK_INSN there. */
4470 new_bb = sched_split_block (bb, NULL);
4471
4472 /* Move note_list from the upper bb. */
4473 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4474 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4475 BB_NOTE_LIST (bb) = NULL_RTX;
4476
4477 gcc_assert (e2->dest == bb);
4478
4479 /* Skip block for bookkeeping copy when leaving E1->src. */
4480 if (e1->flags & EDGE_FALLTHRU)
4481 sel_redirect_edge_and_branch_force (e1, new_bb);
4482 else
4483 sel_redirect_edge_and_branch (e1, new_bb);
4484
4485 gcc_assert (e1->dest == new_bb);
4486 gcc_assert (sel_bb_empty_p (bb));
4487
4488 return bb;
4489}
4490
4491/* Return insn after which we must insert bookkeeping code for path(s) incoming
4492 into E2->dest, except from E1->src. */
4493static insn_t
4494find_place_for_bookkeeping (edge e1, edge e2)
4495{
4496 insn_t place_to_insert;
4497 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4498 create new basic block, but insert bookkeeping there. */
4499 basic_block book_block = find_block_for_bookkeeping (e1, e2);
4500
4501 if (!book_block)
4502 book_block = create_block_for_bookkeeping (e1, e2);
4503
4504 place_to_insert = BB_END (book_block);
4505
4506 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4507 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4508 place_to_insert = PREV_INSN (place_to_insert);
4509
4510 return place_to_insert;
4511}
4512
4513/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4514 for JOIN_POINT. */
4515static int
4516find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4517{
4518 int seqno;
4519 rtx next;
4520
4521 /* Check if we are about to insert bookkeeping copy before a jump, and use
4522 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4523 next = NEXT_INSN (place_to_insert);
4524 if (INSN_P (next)
4525 && JUMP_P (next)
4526 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4527 {
4528 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4529 seqno = INSN_SEQNO (next);
4530 }
e855c69d
AB
4531 else if (INSN_SEQNO (join_point) > 0)
4532 seqno = INSN_SEQNO (join_point);
4533 else
da7ba240
AB
4534 {
4535 seqno = get_seqno_by_preds (place_to_insert);
4536
4537 /* Sometimes the fences can move in such a way that there will be
4538 no instructions with positive seqno around this bookkeeping.
4539 This means that there will be no way to get to it by a regular
4540 fence movement. Never mind because we pick up such pieces for
4541 rescheduling anyways, so any positive value will do for now. */
4542 if (seqno < 0)
4543 {
4544 gcc_assert (pipelining_p);
4545 seqno = 1;
4546 }
4547 }
e855c69d
AB
4548
4549 gcc_assert (seqno > 0);
4550 return seqno;
4551}
4552
4553/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4554 NEW_SEQNO to it. Return created insn. */
4555static insn_t
4556emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4557{
4558 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4559
4560 vinsn_t new_vinsn
4561 = create_vinsn_from_insn_rtx (new_insn_rtx,
4562 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4563
4564 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4565 place_to_insert);
4566
4567 INSN_SCHED_TIMES (new_insn) = 0;
4568 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4569
4570 return new_insn;
4571}
4572
4573/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4574 E2->dest, except from E1->src (there may be a sequence of empty blocks
4575 between E1->src and E2->dest). Return block containing the copy.
4576 All scheduler data is initialized for the newly created insn. */
4577static basic_block
4578generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4579{
4580 insn_t join_point, place_to_insert, new_insn;
4581 int new_seqno;
4582 bool need_to_exchange_data_sets;
4583
4584 if (sched_verbose >= 4)
4585 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4586 e2->dest->index);
4587
4588 join_point = sel_bb_head (e2->dest);
4589 place_to_insert = find_place_for_bookkeeping (e1, e2);
4590 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4591 need_to_exchange_data_sets
4592 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4593
4594 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4595
4596 /* When inserting bookkeeping insn in new block, av sets should be
4597 following: old basic block (that now holds bookkeeping) data sets are
4598 the same as was before generation of bookkeeping, and new basic block
4599 (that now hold all other insns of old basic block) data sets are
4600 invalid. So exchange data sets for these basic blocks as sel_split_block
4601 mistakenly exchanges them in this case. Cannot do it earlier because
4602 when single instruction is added to new basic block it should hold NULL
4603 lv_set. */
4604 if (need_to_exchange_data_sets)
4605 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4606 BLOCK_FOR_INSN (join_point));
4607
4608 stat_bookkeeping_copies++;
4609 return BLOCK_FOR_INSN (new_insn);
4610}
4611
4612/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4613 on FENCE, but we are unable to copy them. */
4614static void
4615remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4616{
4617 expr_t expr;
4618 av_set_iterator i;
4619
4620 /* An expression does not need bookkeeping if it is available on all paths
4621 from current block to original block and current block dominates
4622 original block. We check availability on all paths by examining
4623 EXPR_SPEC; this is not equivalent, because it may be positive even
4624 if expr is available on all paths (but if expr is not available on
4625 any path, EXPR_SPEC will be positive). */
4626
4627 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4628 {
4629 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4630 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4631 && (EXPR_SPEC (expr)
4632 || !EXPR_ORIG_BB_INDEX (expr)
4633 || !dominated_by_p (CDI_DOMINATORS,
4634 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4635 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4636 {
4637 if (sched_verbose >= 4)
4638 sel_print ("Expr %d removed because it would need bookkeeping, which "
4639 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4640 av_set_iter_remove (&i);
4641 }
4642 }
4643}
4644
4645/* Moving conditional jump through some instructions.
4646
4647 Consider example:
4648
4649 ... <- current scheduling point
4650 NOTE BASIC BLOCK: <- bb header
4651 (p8) add r14=r14+0x9;;
4652 (p8) mov [r14]=r23
4653 (!p8) jump L1;;
4654 NOTE BASIC BLOCK:
4655 ...
4656
4657 We can schedule jump one cycle earlier, than mov, because they cannot be
4658 executed together as their predicates are mutually exclusive.
4659
4660 This is done in this way: first, new fallthrough basic block is created
4661 after jump (it is always can be done, because there already should be a
4662 fallthrough block, where control flow goes in case of predicate being true -
4663 in our example; otherwise there should be a dependence between those
4664 instructions and jump and we cannot schedule jump right now);
4665 next, all instructions between jump and current scheduling point are moved
4666 to this new block. And the result is this:
4667
4668 NOTE BASIC BLOCK:
4669 (!p8) jump L1 <- current scheduling point
4670 NOTE BASIC BLOCK: <- bb header
4671 (p8) add r14=r14+0x9;;
4672 (p8) mov [r14]=r23
4673 NOTE BASIC BLOCK:
4674 ...
4675*/
4676static void
4677move_cond_jump (rtx insn, bnd_t bnd)
4678{
4679 edge ft_edge;
4680 basic_block block_from, block_next, block_new;
4681 rtx next, prev, link;
4682
4683 /* BLOCK_FROM holds basic block of the jump. */
4684 block_from = BLOCK_FOR_INSN (insn);
4685
4686 /* Moving of jump should not cross any other jumps or
4687 beginnings of new basic blocks. */
4688 gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
4689
4690 /* Jump is moved to the boundary. */
4691 prev = BND_TO (bnd);
4692 next = PREV_INSN (insn);
4693 BND_TO (bnd) = insn;
4694
4695 ft_edge = find_fallthru_edge (block_from);
4696 block_next = ft_edge->dest;
4697 /* There must be a fallthrough block (or where should go
4698 control flow in case of false jump predicate otherwise?). */
4699 gcc_assert (block_next);
4700
4701 /* Create new empty basic block after source block. */
4702 block_new = sel_split_edge (ft_edge);
4703 gcc_assert (block_new->next_bb == block_next
4704 && block_from->next_bb == block_new);
4705
4706 gcc_assert (BB_END (block_from) == insn);
4707
4708 /* Move all instructions except INSN from BLOCK_FROM to
4709 BLOCK_NEW. */
4710 for (link = prev; link != insn; link = NEXT_INSN (link))
4711 {
4712 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4713 df_insn_change_bb (link, block_new);
4714 }
4715
4716 /* Set correct basic block and instructions properties. */
4717 BB_END (block_new) = PREV_INSN (insn);
4718
4719 NEXT_INSN (PREV_INSN (prev)) = insn;
4720 PREV_INSN (insn) = PREV_INSN (prev);
4721
4722 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4723 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4724 PREV_INSN (prev) = BB_HEAD (block_new);
4725 NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
4726 NEXT_INSN (BB_HEAD (block_new)) = prev;
4727 PREV_INSN (NEXT_INSN (next)) = next;
4728
4729 gcc_assert (!sel_bb_empty_p (block_from)
4730 && !sel_bb_empty_p (block_new));
4731
4732 /* Update data sets for BLOCK_NEW to represent that INSN and
4733 instructions from the other branch of INSN is no longer
4734 available at BLOCK_NEW. */
4735 BB_AV_LEVEL (block_new) = global_level;
4736 gcc_assert (BB_LV_SET (block_new) == NULL);
4737 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4738 update_data_sets (sel_bb_head (block_new));
4739
4740 /* INSN is a new basic block header - so prepare its data
4741 structures and update availability and liveness sets. */
4742 update_data_sets (insn);
4743
4744 if (sched_verbose >= 4)
4745 sel_print ("Moving jump %d\n", INSN_UID (insn));
4746}
4747
4748/* Remove nops generated during move_op for preventing removal of empty
4749 basic blocks. */
4750static void
4751remove_temp_moveop_nops (void)
4752{
4753 int i;
4754 insn_t insn;
4755
4756 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4757 {
4758 gcc_assert (INSN_NOP_P (insn));
4759 return_nop_to_pool (insn);
4760 }
4761
4762 /* Empty the vector. */
4763 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4764 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4765 VEC_length (insn_t, vec_temp_moveop_nops));
4766}
4767
4768/* Records the maximal UID before moving up an instruction. Used for
4769 distinguishing between bookkeeping copies and original insns. */
4770static int max_uid_before_move_op = 0;
4771
4772/* Remove from AV_VLIW_P all instructions but next when debug counter
4773 tells us so. Next instruction is fetched from BNDS. */
4774static void
4775remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4776{
4777 if (! dbg_cnt (sel_sched_insn_cnt))
4778 /* Leave only the next insn in av_vliw. */
4779 {
4780 av_set_iterator av_it;
4781 expr_t expr;
4782 bnd_t bnd = BLIST_BND (bnds);
4783 insn_t next = BND_TO (bnd);
4784
4785 gcc_assert (BLIST_NEXT (bnds) == NULL);
4786
4787 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
4788 if (EXPR_INSN_RTX (expr) != next)
4789 av_set_iter_remove (&av_it);
4790 }
4791}
4792
4793/* Compute available instructions on BNDS. FENCE is the current fence. Write
4794 the computed set to *AV_VLIW_P. */
4795static void
4796compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
4797{
4798 if (sched_verbose >= 2)
4799 {
4800 sel_print ("Boundaries: ");
4801 dump_blist (bnds);
4802 sel_print ("\n");
4803 }
4804
4805 for (; bnds; bnds = BLIST_NEXT (bnds))
4806 {
4807 bnd_t bnd = BLIST_BND (bnds);
4808 av_set_t av1_copy;
4809 insn_t bnd_to = BND_TO (bnd);
4810
4811 /* Rewind BND->TO to the basic block header in case some bookkeeping
4812 instructions were inserted before BND->TO and it needs to be
4813 adjusted. */
4814 if (sel_bb_head_p (bnd_to))
4815 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
4816 else
4817 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
4818 {
4819 bnd_to = PREV_INSN (bnd_to);
4820 if (sel_bb_head_p (bnd_to))
4821 break;
4822 }
4823
4824 if (BND_TO (bnd) != bnd_to)
4825 {
4826 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
4827 FENCE_INSN (fence) = bnd_to;
4828 BND_TO (bnd) = bnd_to;
4829 }
4830
4831 av_set_clear (&BND_AV (bnd));
4832 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
4833
4834 av_set_clear (&BND_AV1 (bnd));
4835 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
4836
4837 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
4838
4839 av1_copy = av_set_copy (BND_AV1 (bnd));
4840 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
4841 }
4842
4843 if (sched_verbose >= 2)
4844 {
4845 sel_print ("Available exprs (vliw form): ");
4846 dump_av_set (*av_vliw_p);
4847 sel_print ("\n");
4848 }
4849}
4850
4851/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
4852 expression. When FOR_MOVEOP is true, also replace the register of
4853 expressions found with the register from EXPR_VLIW. */
4854static av_set_t
4855find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
4856{
4857 av_set_t expr_seq = NULL;
4858 expr_t expr;
4859 av_set_iterator i;
4860
4861 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
4862 {
4863 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
4864 {
4865 if (for_moveop)
4866 {
4867 /* The sequential expression has the right form to pass
4868 to move_op except when renaming happened. Put the
4869 correct register in EXPR then. */
4870 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
4871 {
4872 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
4873 {
4874 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
4875 stat_renamed_scheduled++;
4876 }
4877 /* Also put the correct TARGET_AVAILABLE bit on the expr.
4878 This is needed when renaming came up with original
4879 register. */
4880 else if (EXPR_TARGET_AVAILABLE (expr)
4881 != EXPR_TARGET_AVAILABLE (expr_vliw))
4882 {
4883 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
4884 EXPR_TARGET_AVAILABLE (expr) = 1;
4885 }
4886 }
4887 if (EXPR_WAS_SUBSTITUTED (expr))
4888 stat_substitutions_total++;
4889 }
4890
4891 av_set_add (&expr_seq, expr);
4892
4893 /* With substitution inside insn group, it is possible
4894 that more than one expression in expr_seq will correspond
4895 to expr_vliw. In this case, choose one as the attempt to
4896 move both leads to miscompiles. */
4897 break;
4898 }
4899 }
4900
4901 if (for_moveop && sched_verbose >= 2)
4902 {
4903 sel_print ("Best expression(s) (sequential form): ");
4904 dump_av_set (expr_seq);
4905 sel_print ("\n");
4906 }
4907
4908 return expr_seq;
4909}
4910
4911
4912/* Move nop to previous block. */
4913static void ATTRIBUTE_UNUSED
4914move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
4915{
4916 insn_t prev_insn, next_insn, note;
4917
4918 gcc_assert (sel_bb_head_p (nop)
4919 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
4920 note = bb_note (BLOCK_FOR_INSN (nop));
4921 prev_insn = sel_bb_end (prev_bb);
4922 next_insn = NEXT_INSN (nop);
4923 gcc_assert (prev_insn != NULL_RTX
4924 && PREV_INSN (note) == prev_insn);
4925
4926 NEXT_INSN (prev_insn) = nop;
4927 PREV_INSN (nop) = prev_insn;
4928
4929 PREV_INSN (note) = nop;
4930 NEXT_INSN (note) = next_insn;
4931
4932 NEXT_INSN (nop) = note;
4933 PREV_INSN (next_insn) = note;
4934
4935 BB_END (prev_bb) = nop;
4936 BLOCK_FOR_INSN (nop) = prev_bb;
4937}
4938
4939/* Prepare a place to insert the chosen expression on BND. */
4940static insn_t
4941prepare_place_to_insert (bnd_t bnd)
4942{
4943 insn_t place_to_insert;
4944
4945 /* Init place_to_insert before calling move_op, as the later
4946 can possibly remove BND_TO (bnd). */
4947 if (/* If this is not the first insn scheduled. */
4948 BND_PTR (bnd))
4949 {
4950 /* Add it after last scheduled. */
4951 place_to_insert = ILIST_INSN (BND_PTR (bnd));
4952 }
4953 else
4954 {
4955 /* Add it before BND_TO. The difference is in the
4956 basic block, where INSN will be added. */
4957 place_to_insert = get_nop_from_pool (BND_TO (bnd));
4958 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
4959 == BLOCK_FOR_INSN (BND_TO (bnd)));
4960 }
4961
4962 return place_to_insert;
4963}
4964
4965/* Find original instructions for EXPR_SEQ and move it to BND boundary.
4966 Return the expression to emit in C_EXPR. */
72a54528 4967static bool
e855c69d
AB
4968move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
4969 av_set_t expr_seq, expr_t c_expr)
4970{
72a54528 4971 bool b, should_move;
e855c69d
AB
4972 unsigned book_uid;
4973 bitmap_iterator bi;
4974 int n_bookkeeping_copies_before_moveop;
4975
4976 /* Make a move. This call will remove the original operation,
4977 insert all necessary bookkeeping instructions and update the
4978 data sets. After that all we have to do is add the operation
4979 at before BND_TO (BND). */
4980 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
4981 max_uid_before_move_op = get_max_uid ();
4982 bitmap_clear (current_copies);
4983 bitmap_clear (current_originators);
4984
4985 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 4986 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d
AB
4987
4988 /* We should be able to find the expression we've chosen for
4989 scheduling. */
72a54528 4990 gcc_assert (b);
e855c69d
AB
4991
4992 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
4993 stat_insns_needed_bookkeeping++;
4994
4995 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
4996 {
4997 /* We allocate these bitmaps lazily. */
4998 if (! INSN_ORIGINATORS_BY_UID (book_uid))
4999 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5000
5001 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5002 current_originators);
5003 }
72a54528
AM
5004
5005 return should_move;
e855c69d
AB
5006}
5007
5008
5009/* Debug a DFA state as an array of bytes. */
5010static void
5011debug_state (state_t state)
5012{
5013 unsigned char *p;
5014 unsigned int i, size = dfa_state_size;
5015
5016 sel_print ("state (%u):", size);
5017 for (i = 0, p = (unsigned char *) state; i < size; i++)
5018 sel_print (" %d", p[i]);
5019 sel_print ("\n");
5020}
5021
5022/* Advance state on FENCE with INSN. Return true if INSN is
5023 an ASM, and we should advance state once more. */
5024static bool
5025advance_state_on_fence (fence_t fence, insn_t insn)
5026{
5027 bool asm_p;
5028
5029 if (recog_memoized (insn) >= 0)
5030 {
5031 int res;
5032 state_t temp_state = alloca (dfa_state_size);
5033
5034 gcc_assert (!INSN_ASM_P (insn));
5035 asm_p = false;
5036
5037 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5038 res = state_transition (FENCE_STATE (fence), insn);
5039 gcc_assert (res < 0);
5040
5041 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5042 {
5043 FENCE_ISSUED_INSNS (fence)++;
5044
5045 /* We should never issue more than issue_rate insns. */
5046 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5047 gcc_unreachable ();
5048 }
5049 }
5050 else
5051 {
5052 /* This could be an ASM insn which we'd like to schedule
5053 on the next cycle. */
5054 asm_p = INSN_ASM_P (insn);
5055 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5056 advance_one_cycle (fence);
5057 }
5058
5059 if (sched_verbose >= 2)
5060 debug_state (FENCE_STATE (fence));
5061 FENCE_STARTS_CYCLE_P (fence) = 0;
5062 return asm_p;
5063}
5064
5065/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5066 is nonzero if we need to stall after issuing INSN. */
5067static void
5068update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5069{
5070 bool asm_p;
5071
5072 /* First, reflect that something is scheduled on this fence. */
5073 asm_p = advance_state_on_fence (fence, insn);
5074 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5075 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5076 if (SCHED_GROUP_P (insn))
5077 {
5078 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5079 SCHED_GROUP_P (insn) = 0;
5080 }
5081 else
5082 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5083 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5084 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5085
5086 /* Set instruction scheduling info. This will be used in bundling,
5087 pipelining, tick computations etc. */
5088 ++INSN_SCHED_TIMES (insn);
5089 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5090 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5091 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5092 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5093
5094 /* This does not account for adjust_cost hooks, just add the biggest
5095 constant the hook may add to the latency. TODO: make this
5096 a target dependent constant. */
5097 INSN_READY_CYCLE (insn)
5098 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5099 ? 1
5100 : maximal_insn_latency (insn) + 1);
5101
5102 /* Change these fields last, as they're used above. */
5103 FENCE_AFTER_STALL_P (fence) = 0;
5104 if (asm_p || need_stall)
5105 advance_one_cycle (fence);
5106
5107 /* Indicate that we've scheduled something on this fence. */
5108 FENCE_SCHEDULED_P (fence) = true;
5109 scheduled_something_on_previous_fence = true;
5110
5111 /* Print debug information when insn's fields are updated. */
5112 if (sched_verbose >= 2)
5113 {
5114 sel_print ("Scheduling insn: ");
5115 dump_insn_1 (insn, 1);
5116 sel_print ("\n");
5117 }
5118}
5119
5120/* Update boundary BND with INSN, remove the old boundary from
5121 BNDSP, add new boundaries to BNDS_TAIL_P and return it. */
5122static blist_t *
5123update_boundaries (bnd_t bnd, insn_t insn, blist_t *bndsp,
5124 blist_t *bnds_tailp)
5125{
5126 succ_iterator si;
5127 insn_t succ;
5128
5129 advance_deps_context (BND_DC (bnd), insn);
5130 FOR_EACH_SUCC_1 (succ, si, insn,
5131 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5132 {
5133 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5134
5135 ilist_add (&ptr, insn);
5136 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5137 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5138 }
5139
5140 blist_remove (bndsp);
5141 return bnds_tailp;
5142}
5143
5144/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5145static insn_t
5146schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5147{
5148 av_set_t expr_seq;
5149 expr_t c_expr = XALLOCA (expr_def);
5150 insn_t place_to_insert;
5151 insn_t insn;
72a54528 5152 bool should_move;
e855c69d
AB
5153
5154 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5155
5156 /* In case of scheduling a jump skipping some other instructions,
5157 prepare CFG. After this, jump is at the boundary and can be
5158 scheduled as usual insn by MOVE_OP. */
5159 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5160 {
5161 insn = EXPR_INSN_RTX (expr_vliw);
5162
5163 /* Speculative jumps are not handled. */
5164 if (insn != BND_TO (bnd)
5165 && !sel_insn_is_speculation_check (insn))
5166 move_cond_jump (insn, bnd);
5167 }
5168
e855c69d
AB
5169 /* Find a place for C_EXPR to schedule. */
5170 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5171 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d
AB
5172 clear_expr (c_expr);
5173
5174 /* Add the instruction. The corner case to care about is when
5175 the expr_seq set has more than one expr, and we chose the one that
5176 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5177 we can't use it. Generate the new vinsn. */
5178 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5179 {
5180 vinsn_t vinsn_new;
5181
5182 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5183 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5184 should_move = false;
e855c69d 5185 }
72a54528
AM
5186 if (should_move)
5187 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5188 else
e855c69d
AB
5189 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5190 place_to_insert);
e855c69d
AB
5191
5192 /* Return the nops generated for preserving of data sets back
5193 into pool. */
5194 if (INSN_NOP_P (place_to_insert))
5195 return_nop_to_pool (place_to_insert);
5196 remove_temp_moveop_nops ();
5197
5198 av_set_clear (&expr_seq);
5199
5200 /* Save the expression scheduled so to reset target availability if we'll
5201 meet it later on the same fence. */
5202 if (EXPR_WAS_RENAMED (expr_vliw))
5203 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5204
5205 /* Check that the recent movement didn't destroyed loop
5206 structure. */
5207 gcc_assert (!pipelining_p
5208 || current_loop_nest == NULL
5209 || loop_latch_edge (current_loop_nest));
5210 return insn;
5211}
5212
5213/* Stall for N cycles on FENCE. */
5214static void
5215stall_for_cycles (fence_t fence, int n)
5216{
5217 int could_more;
5218
5219 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5220 while (n--)
5221 advance_one_cycle (fence);
5222 if (could_more)
5223 FENCE_AFTER_STALL_P (fence) = 1;
5224}
5225
5226/* Gather a parallel group of insns at FENCE and assign their seqno
5227 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5228 list for later recalculation of seqnos. */
5229static void
5230fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5231{
5232 blist_t bnds = NULL, *bnds_tailp;
5233 av_set_t av_vliw = NULL;
5234 insn_t insn = FENCE_INSN (fence);
5235
5236 if (sched_verbose >= 2)
5237 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5238 INSN_UID (insn), FENCE_CYCLE (fence));
5239
5240 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5241 bnds_tailp = &BLIST_NEXT (bnds);
5242 set_target_context (FENCE_TC (fence));
5243 target_bb = INSN_BB (insn);
5244
5245 /* Do while we can add any operation to the current group. */
5246 do
5247 {
5248 blist_t *bnds_tailp1, *bndsp;
5249 expr_t expr_vliw;
5250 int need_stall;
5251 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5252 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5253 int max_stall = pipelining_p ? 1 : 3;
5254
5255 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5256 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5257 remove_insns_for_debug (bnds, &av_vliw);
5258
5259 /* Return early if we have nothing to schedule. */
5260 if (av_vliw == NULL)
5261 break;
5262
5263 /* Choose the best expression and, if needed, destination register
5264 for it. */
5265 do
5266 {
5267 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5268 if (!expr_vliw && need_stall)
5269 {
5270 /* All expressions required a stall. Do not recompute av sets
5271 as we'll get the same answer (modulo the insns between
5272 the fence and its boundary, which will not be available for
5273 pipelining). */
5274 gcc_assert (! expr_vliw && stall_iterations < 2);
5275 was_stall++;
5276 /* If we are going to stall for too long, break to recompute av
5277 sets and bring more insns for pipelining. */
5278 if (need_stall <= 3)
5279 stall_for_cycles (fence, need_stall);
5280 else
5281 {
5282 stall_for_cycles (fence, 1);
5283 break;
5284 }
5285 }
5286 }
5287 while (! expr_vliw && need_stall);
5288
5289 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5290 if (!expr_vliw)
5291 {
5292 av_set_clear (&av_vliw);
5293 break;
5294 }
5295
5296 bndsp = &bnds;
5297 bnds_tailp1 = bnds_tailp;
5298
5299 do
5300 /* This code will be executed only once until we'd have several
5301 boundaries per fence. */
5302 {
5303 bnd_t bnd = BLIST_BND (*bndsp);
5304
5305 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5306 {
5307 bndsp = &BLIST_NEXT (*bndsp);
5308 continue;
5309 }
5310
5311 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5312 update_fence_and_insn (fence, insn, need_stall);
5313 bnds_tailp = update_boundaries (bnd, insn, bndsp, bnds_tailp);
5314
5315 /* Add insn to the list of scheduled on this cycle instructions. */
5316 ilist_add (*scheduled_insns_tailpp, insn);
5317 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5318 }
5319 while (*bndsp != *bnds_tailp1);
5320
5321 av_set_clear (&av_vliw);
5322 scheduled_insns++;
5323
5324 /* We currently support information about candidate blocks only for
5325 one 'target_bb' block. Hence we can't schedule after jump insn,
5326 as this will bring two boundaries and, hence, necessity to handle
5327 information for two or more blocks concurrently. */
5328 if (sel_bb_end_p (insn)
5329 || (was_stall
5330 && (was_stall >= max_stall
5331 || scheduled_insns >= max_insns)))
5332 break;
5333 }
5334 while (bnds);
5335
5336 gcc_assert (!FENCE_BNDS (fence));
5337
5338 /* Update boundaries of the FENCE. */
5339 while (bnds)
5340 {
5341 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5342
5343 if (ptr)
5344 {
5345 insn = ILIST_INSN (ptr);
5346
5347 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5348 ilist_add (&FENCE_BNDS (fence), insn);
5349 }
5350
5351 blist_remove (&bnds);
5352 }
5353
5354 /* Update target context on the fence. */
5355 reset_target_context (FENCE_TC (fence), false);
5356}
5357
5358/* All exprs in ORIG_OPS must have the same destination register or memory.
5359 Return that destination. */
5360static rtx
5361get_dest_from_orig_ops (av_set_t orig_ops)
5362{
5363 rtx dest = NULL_RTX;
5364 av_set_iterator av_it;
5365 expr_t expr;
5366 bool first_p = true;
5367
5368 FOR_EACH_EXPR (expr, av_it, orig_ops)
5369 {
5370 rtx x = EXPR_LHS (expr);
5371
5372 if (first_p)
5373 {
5374 first_p = false;
5375 dest = x;
5376 }
5377 else
5378 gcc_assert (dest == x
5379 || (dest != NULL_RTX && x != NULL_RTX
5380 && rtx_equal_p (dest, x)));
5381 }
5382
5383 return dest;
5384}
5385
5386/* Update data sets for the bookkeeping block and record those expressions
5387 which become no longer available after inserting this bookkeeping. */
5388static void
5389update_and_record_unavailable_insns (basic_block book_block)
5390{
5391 av_set_iterator i;
5392 av_set_t old_av_set = NULL;
5393 expr_t cur_expr;
5394 rtx bb_end = sel_bb_end (book_block);
5395
5396 /* First, get correct liveness in the bookkeeping block. The problem is
5397 the range between the bookeeping insn and the end of block. */
5398 update_liveness_on_insn (bb_end);
5399 if (control_flow_insn_p (bb_end))
5400 update_liveness_on_insn (PREV_INSN (bb_end));
5401
5402 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5403 fence above, where we may choose to schedule an insn which is
5404 actually blocked from moving up with the bookkeeping we create here. */
5405 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5406 {
5407 old_av_set = av_set_copy (BB_AV_SET (book_block));
5408 update_data_sets (sel_bb_head (book_block));
5409
5410 /* Traverse all the expressions in the old av_set and check whether
5411 CUR_EXPR is in new AV_SET. */
5412 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5413 {
5414 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5415 EXPR_VINSN (cur_expr));
5416
5417 if (! new_expr
5418 /* In this case, we can just turn off the E_T_A bit, but we can't
5419 represent this information with the current vector. */
5420 || EXPR_TARGET_AVAILABLE (new_expr)
5421 != EXPR_TARGET_AVAILABLE (cur_expr))
5422 /* Unfortunately, the below code could be also fired up on
5423 separable insns.
5424 FIXME: add an example of how this could happen. */
5425 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5426 }
5427
5428 av_set_clear (&old_av_set);
5429 }
5430}
5431
5432/* The main effect of this function is that sparams->c_expr is merged
5433 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5434 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5435 lparams->c_expr_merged is copied back to sparams->c_expr after all
5436 successors has been traversed. lparams->c_expr_local is an expr allocated
5437 on stack in the caller function, and is used if there is more than one
5438 successor.
5439
5440 SUCC is one of the SUCCS_NORMAL successors of INSN,
5441 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5442 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5443static void
5444move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5445 insn_t succ ATTRIBUTE_UNUSED,
5446 int moveop_drv_call_res,
5447 cmpd_local_params_p lparams, void *static_params)
5448{
5449 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5450
5451 /* Nothing to do, if original expr wasn't found below. */
5452 if (moveop_drv_call_res != 1)
5453 return;
5454
5455 /* If this is a first successor. */
5456 if (!lparams->c_expr_merged)
5457 {
5458 lparams->c_expr_merged = sparams->c_expr;
5459 sparams->c_expr = lparams->c_expr_local;
5460 }
5461 else
5462 {
5463 /* We must merge all found expressions to get reasonable
5464 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5465 do so then we can first find the expr with epsilon
5466 speculation success probability and only then with the
5467 good probability. As a result the insn will get epsilon
5468 probability and will never be scheduled because of
5469 weakness_cutoff in find_best_expr.
5470
5471 We call merge_expr_data here instead of merge_expr
5472 because due to speculation C_EXPR and X may have the
5473 same insns with different speculation types. And as of
5474 now such insns are considered non-equal.
5475
5476 However, EXPR_SCHED_TIMES is different -- we must get
5477 SCHED_TIMES from a real insn, not a bookkeeping copy.
5478 We force this here. Instead, we may consider merging
5479 SCHED_TIMES to the maximum instead of minimum in the
5480 below function. */
5481 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5482
5483 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5484 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5485 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5486
5487 clear_expr (sparams->c_expr);
5488 }
5489}
5490
5491/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5492
5493 SUCC is one of the SUCCS_NORMAL successors of INSN,
5494 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5495 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5496 STATIC_PARAMS contain USED_REGS set. */
5497static void
5498fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5499 int moveop_drv_call_res,
5500 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5501 void *static_params)
5502{
5503 regset succ_live;
5504 fur_static_params_p sparams = (fur_static_params_p) static_params;
5505
5506 /* Here we compute live regsets only for branches that do not lie
5507 on the code motion paths. These branches correspond to value
5508 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5509 for such branches code_motion_path_driver is not called. */
5510 if (moveop_drv_call_res != 0)
5511 return;
5512
5513 /* Mark all registers that do not meet the following condition:
5514 (3) not live on the other path of any conditional branch
5515 that is passed by the operation, in case original
5516 operations are not present on both paths of the
5517 conditional branch. */
5518 succ_live = compute_live (succ);
5519 IOR_REG_SET (sparams->used_regs, succ_live);
5520}
5521
5522/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5523 into SP->CEXPR. */
5524static void
5525move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5526{
5527 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5528
5529 sp->c_expr = lp->c_expr_merged;
5530}
5531
5532/* Track bookkeeping copies created, insns scheduled, and blocks for
5533 rescheduling when INSN is found by move_op. */
5534static void
5535track_scheduled_insns_and_blocks (rtx insn)
5536{
5537 /* Even if this insn can be a copy that will be removed during current move_op,
5538 we still need to count it as an originator. */
5539 bitmap_set_bit (current_originators, INSN_UID (insn));
5540
5541 if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
5542 {
5543 /* Note that original block needs to be rescheduled, as we pulled an
5544 instruction out of it. */
5545 if (INSN_SCHED_TIMES (insn) > 0)
5546 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5547 else if (INSN_UID (insn) < first_emitted_uid)
5548 num_insns_scheduled++;
5549 }
5550 else
5551 bitmap_clear_bit (current_copies, INSN_UID (insn));
5552
5553 /* For instructions we must immediately remove insn from the
5554 stream, so subsequent update_data_sets () won't include this
5555 insn into av_set.
5556 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5557 if (INSN_UID (insn) > max_uid_before_move_op)
5558 stat_bookkeeping_copies--;
5559}
5560
5561/* Emit a register-register copy for INSN if needed. Return true if
5562 emitted one. PARAMS is the move_op static parameters. */
5563static bool
5564maybe_emit_renaming_copy (rtx insn,
5565 moveop_static_params_p params)
5566{
5567 bool insn_emitted = false;
5568 rtx cur_reg = expr_dest_reg (params->c_expr);
5569
5570 gcc_assert (!cur_reg || (params->dest && REG_P (params->dest)));
5571
5572 /* If original operation has expr and the register chosen for
5573 that expr is not original operation's dest reg, substitute
5574 operation's right hand side with the register chosen. */
5575 if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg))
5576 {
5577 insn_t reg_move_insn, reg_move_insn_rtx;
5578
5579 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5580 params->dest);
5581 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5582 INSN_EXPR (insn),
5583 INSN_SEQNO (insn),
5584 insn);
5585 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5586 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5587
5588 insn_emitted = true;
5589 params->was_renamed = true;
5590 }
5591
5592 return insn_emitted;
5593}
5594
5595/* Emit a speculative check for INSN speculated as EXPR if needed.
5596 Return true if we've emitted one. PARAMS is the move_op static
5597 parameters. */
5598static bool
5599maybe_emit_speculative_check (rtx insn, expr_t expr,
5600 moveop_static_params_p params)
5601{
5602 bool insn_emitted = false;
5603 insn_t x;
5604 ds_t check_ds;
5605
5606 check_ds = get_spec_check_type_for_insn (insn, expr);
5607 if (check_ds != 0)
5608 {
5609 /* A speculation check should be inserted. */
5610 x = create_speculation_check (params->c_expr, check_ds, insn);
5611 insn_emitted = true;
5612 }
5613 else
5614 {
5615 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5616 x = insn;
5617 }
5618
5619 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5620 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5621 return insn_emitted;
5622}
5623
5624/* Handle transformations that leave an insn in place of original
5625 insn such as renaming/speculation. Return true if one of such
5626 transformations actually happened, and we have emitted this insn. */
5627static bool
5628handle_emitting_transformations (rtx insn, expr_t expr,
5629 moveop_static_params_p params)
5630{
5631 bool insn_emitted = false;
5632
5633 insn_emitted = maybe_emit_renaming_copy (insn, params);
5634 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5635
5636 return insn_emitted;
5637}
5638
5639/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5640 is not removed but reused when INSN is re-emitted. */
5641static void
5642remove_insn_from_stream (rtx insn, bool only_disconnect)
5643{
5644 insn_t nop, bb_head, bb_end;
5645 bool need_nop_to_preserve_bb;
5646 basic_block bb = BLOCK_FOR_INSN (insn);
5647
5648 /* If INSN is the only insn in the basic block (not counting JUMP,
5649 which may be a jump to next insn), leave NOP there till the
5650 return to fill_insns. */
5651 bb_head = sel_bb_head (bb);
5652 bb_end = sel_bb_end (bb);
5653 need_nop_to_preserve_bb = ((bb_head == bb_end)
5654 || (NEXT_INSN (bb_head) == bb_end
5655 && JUMP_P (bb_end))
5656 || IN_CURRENT_FENCE_P (NEXT_INSN (insn)));
5657
5658 /* If there's only one insn in the BB, make sure that a nop is
5659 inserted into it, so the basic block won't disappear when we'll
5660 delete INSN below with sel_remove_insn. It should also survive
5661 till the return to fill_insns. */
5662 if (need_nop_to_preserve_bb)
5663 {
5664 nop = get_nop_from_pool (insn);
5665 gcc_assert (INSN_NOP_P (nop));
5666 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5667 }
5668
5669 sel_remove_insn (insn, only_disconnect, false);
5670}
5671
5672/* This function is called when original expr is found.
5673 INSN - current insn traversed, EXPR - the corresponding expr found.
5674 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5675 is static parameters of move_op. */
5676static void
5677move_op_orig_expr_found (insn_t insn, expr_t expr,
5678 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5679 void *static_params)
5680{
5681 bool only_disconnect, insn_emitted;
5682 moveop_static_params_p params = (moveop_static_params_p) static_params;
5683
5684 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5685 track_scheduled_insns_and_blocks (insn);
5686 insn_emitted = handle_emitting_transformations (insn, expr, params);
5687 only_disconnect = (params->uid == INSN_UID (insn)
5688 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
72a54528
AM
5689
5690 /* Mark that we've disconnected an insn. */
5691 if (only_disconnect)
5692 params->uid = -1;
e855c69d
AB
5693 remove_insn_from_stream (insn, only_disconnect);
5694}
5695
5696/* The function is called when original expr is found.
5697 INSN - current insn traversed, EXPR - the corresponding expr found,
5698 crosses_call and original_insns in STATIC_PARAMS are updated. */
5699static void
5700fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5701 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5702 void *static_params)
5703{
5704 fur_static_params_p params = (fur_static_params_p) static_params;
5705 regset tmp;
5706
5707 if (CALL_P (insn))
5708 params->crosses_call = true;
5709
5710 def_list_add (params->original_insns, insn, params->crosses_call);
5711
5712 /* Mark the registers that do not meet the following condition:
5713 (2) not among the live registers of the point
5714 immediately following the first original operation on
5715 a given downward path, except for the original target
5716 register of the operation. */
5717 tmp = get_clear_regset_from_pool ();
5718 compute_live_below_insn (insn, tmp);
5719 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
5720 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
5721 IOR_REG_SET (params->used_regs, tmp);
5722 return_regset_to_pool (tmp);
5723
5724 /* (*1) We need to add to USED_REGS registers that are read by
5725 INSN's lhs. This may lead to choosing wrong src register.
5726 E.g. (scheduling const expr enabled):
5727
5728 429: ax=0x0 <- Can't use AX for this expr (0x0)
5729 433: dx=[bp-0x18]
5730 427: [ax+dx+0x1]=ax
5731 REG_DEAD: ax
5732 168: di=dx
5733 REG_DEAD: dx
5734 */
5735 /* FIXME: see comment above and enable MEM_P
5736 in vinsn_separable_p. */
5737 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
5738 || !MEM_P (INSN_LHS (insn)));
5739}
5740
5741/* This function is called on the ascending pass, before returning from
5742 current basic block. */
5743static void
5744move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
5745 void *static_params)
5746{
5747 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5748 basic_block book_block = NULL;
5749
5750 /* When we have removed the boundary insn for scheduling, which also
5751 happened to be the end insn in its bb, we don't need to update sets. */
5752 if (!lparams->removed_last_insn
5753 && lparams->e1
5754 && sel_bb_head_p (insn))
5755 {
5756 /* We should generate bookkeeping code only if we are not at the
5757 top level of the move_op. */
5758 if (sel_num_cfg_preds_gt_1 (insn))
5759 book_block = generate_bookkeeping_insn (sparams->c_expr,
5760 lparams->e1, lparams->e2);
5761 /* Update data sets for the current insn. */
5762 update_data_sets (insn);
5763 }
5764
5765 /* If bookkeeping code was inserted, we need to update av sets of basic
5766 block that received bookkeeping. After generation of bookkeeping insn,
5767 bookkeeping block does not contain valid av set because we are not following
5768 the original algorithm in every detail with regards to e.g. renaming
5769 simple reg-reg copies. Consider example:
5770
5771 bookkeeping block scheduling fence
5772 \ /
5773 \ join /
5774 ----------
5775 | |
5776 ----------
5777 / \
5778 / \
5779 r1 := r2 r1 := r3
5780
5781 We try to schedule insn "r1 := r3" on the current
5782 scheduling fence. Also, note that av set of bookkeeping block
5783 contain both insns "r1 := r2" and "r1 := r3". When the insn has
5784 been scheduled, the CFG is as follows:
5785
5786 r1 := r3 r1 := r3
5787 bookkeeping block scheduling fence
5788 \ /
5789 \ join /
5790 ----------
5791 | |
5792 ----------
5793 / \
5794 / \
5795 r1 := r2
5796
5797 Here, insn "r1 := r3" was scheduled at the current scheduling point
5798 and bookkeeping code was generated at the bookeeping block. This
5799 way insn "r1 := r2" is no longer available as a whole instruction
5800 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
5801 This situation is handled by calling update_data_sets.
5802
5803 Since update_data_sets is called only on the bookkeeping block, and
5804 it also may have predecessors with av_sets, containing instructions that
5805 are no longer available, we save all such expressions that become
5806 unavailable during data sets update on the bookkeeping block in
5807 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
5808 expressions for scheduling. This allows us to avoid recomputation of
5809 av_sets outside the code motion path. */
5810
5811 if (book_block)
5812 update_and_record_unavailable_insns (book_block);
5813
5814 /* If INSN was previously marked for deletion, it's time to do it. */
5815 if (lparams->removed_last_insn)
5816 insn = PREV_INSN (insn);
5817
5818 /* Do not tidy control flow at the topmost moveop, as we can erroneously
5819 kill a block with a single nop in which the insn should be emitted. */
5820 if (lparams->e1)
5821 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
5822}
5823
5824/* This function is called on the ascending pass, before returning from the
5825 current basic block. */
5826static void
5827fur_at_first_insn (insn_t insn,
5828 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5829 void *static_params ATTRIBUTE_UNUSED)
5830{
5831 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
5832 || AV_LEVEL (insn) == -1);
5833}
5834
5835/* Called on the backward stage of recursion to call moveup_expr for insn
5836 and sparams->c_expr. */
5837static void
5838move_op_ascend (insn_t insn, void *static_params)
5839{
5840 enum MOVEUP_EXPR_CODE res;
5841 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5842
5843 if (! INSN_NOP_P (insn))
5844 {
5845 res = moveup_expr_cached (sparams->c_expr, insn, false);
5846 gcc_assert (res != MOVEUP_EXPR_NULL);
5847 }
5848
5849 /* Update liveness for this insn as it was invalidated. */
5850 update_liveness_on_insn (insn);
5851}
5852
5853/* This function is called on enter to the basic block.
5854 Returns TRUE if this block already have been visited and
5855 code_motion_path_driver should return 1, FALSE otherwise. */
5856static int
5857fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
5858 void *static_params, bool visited_p)
5859{
5860 fur_static_params_p sparams = (fur_static_params_p) static_params;
5861
5862 if (visited_p)
5863 {
5864 /* If we have found something below this block, there should be at
5865 least one insn in ORIGINAL_INSNS. */
5866 gcc_assert (*sparams->original_insns);
5867
5868 /* Adjust CROSSES_CALL, since we may have come to this block along
5869 different path. */
5870 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
5871 |= sparams->crosses_call;
5872 }
5873 else
5874 local_params->old_original_insns = *sparams->original_insns;
5875
5876 return 1;
5877}
5878
5879/* Same as above but for move_op. */
5880static int
5881move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
5882 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
5883 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
5884{
5885 if (visited_p)
5886 return -1;
5887 return 1;
5888}
5889
5890/* This function is called while descending current basic block if current
5891 insn is not the original EXPR we're searching for.
5892
5893 Return value: FALSE, if code_motion_path_driver should perform a local
5894 cleanup and return 0 itself;
5895 TRUE, if code_motion_path_driver should continue. */
5896static bool
5897move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
5898 void *static_params)
5899{
5900 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5901
5902#ifdef ENABLE_CHECKING
5903 sparams->failed_insn = insn;
5904#endif
5905
5906 /* If we're scheduling separate expr, in order to generate correct code
5907 we need to stop the search at bookkeeping code generated with the
5908 same destination register or memory. */
5909 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
5910 return false;
5911 return true;
5912}
5913
5914/* This function is called while descending current basic block if current
5915 insn is not the original EXPR we're searching for.
5916
5917 Return value: TRUE (code_motion_path_driver should continue). */
5918static bool
5919fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
5920{
5921 bool mutexed;
5922 expr_t r;
5923 av_set_iterator avi;
5924 fur_static_params_p sparams = (fur_static_params_p) static_params;
5925
5926 if (CALL_P (insn))
5927 sparams->crosses_call = true;
5928
5929 /* If current insn we are looking at cannot be executed together
5930 with original insn, then we can skip it safely.
5931
5932 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
5933 INSN = (!p6) r14 = r14 + 1;
5934
5935 Here we can schedule ORIG_OP with lhs = r14, though only
5936 looking at the set of used and set registers of INSN we must
5937 forbid it. So, add set/used in INSN registers to the
5938 untouchable set only if there is an insn in ORIG_OPS that can
5939 affect INSN. */
5940 mutexed = true;
5941 FOR_EACH_EXPR (r, avi, orig_ops)
5942 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
5943 {
5944 mutexed = false;
5945 break;
5946 }
5947
5948 /* Mark all registers that do not meet the following condition:
5949 (1) Not set or read on any path from xi to an instance of the
5950 original operation. */
5951 if (!mutexed)
5952 {
5953 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
5954 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
5955 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
5956 }
5957
5958 return true;
5959}
5960
5961/* Hooks and data to perform move_op operations with code_motion_path_driver. */
5962struct code_motion_path_driver_info_def move_op_hooks = {
5963 move_op_on_enter,
5964 move_op_orig_expr_found,
5965 move_op_orig_expr_not_found,
5966 move_op_merge_succs,
5967 move_op_after_merge_succs,
5968 move_op_ascend,
5969 move_op_at_first_insn,
5970 SUCCS_NORMAL,
5971 "move_op"
5972};
5973
5974/* Hooks and data to perform find_used_regs operations
5975 with code_motion_path_driver. */
5976struct code_motion_path_driver_info_def fur_hooks = {
5977 fur_on_enter,
5978 fur_orig_expr_found,
5979 fur_orig_expr_not_found,
5980 fur_merge_succs,
5981 NULL, /* fur_after_merge_succs */
5982 NULL, /* fur_ascend */
5983 fur_at_first_insn,
5984 SUCCS_ALL,
5985 "find_used_regs"
5986};
5987
5988/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
5989 code_motion_path_driver is called recursively. Original operation
5990 was found at least on one path that is starting with one of INSN's
5991 successors (this fact is asserted). ORIG_OPS is expressions we're looking
5992 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
5993 of either move_op or find_used_regs depending on the caller.
5994
5995 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
5996 know for sure at this point. */
5997static int
5998code_motion_process_successors (insn_t insn, av_set_t orig_ops,
5999 ilist_t path, void *static_params)
6000{
6001 int res = 0;
6002 succ_iterator succ_i;
6003 rtx succ;
6004 basic_block bb;
6005 int old_index;
6006 unsigned old_succs;
6007
6008 struct cmpd_local_params lparams;
6009 expr_def _x;
6010
6011 lparams.c_expr_local = &_x;
6012 lparams.c_expr_merged = NULL;
6013
6014 /* We need to process only NORMAL succs for move_op, and collect live
6015 registers from ALL branches (including those leading out of the
6016 region) for find_used_regs.
6017
6018 In move_op, there can be a case when insn's bb number has changed
6019 due to created bookkeeping. This happens very rare, as we need to
6020 move expression from the beginning to the end of the same block.
6021 Rescan successors in this case. */
6022
6023 rescan:
6024 bb = BLOCK_FOR_INSN (insn);
6025 old_index = bb->index;
6026 old_succs = EDGE_COUNT (bb->succs);
6027
6028 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6029 {
6030 int b;
6031
6032 lparams.e1 = succ_i.e1;
6033 lparams.e2 = succ_i.e2;
6034
6035 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6036 current region). */
6037 if (succ_i.current_flags == SUCCS_NORMAL)
6038 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6039 static_params);
6040 else
6041 b = 0;
6042
6043 /* Merge c_expres found or unify live register sets from different
6044 successors. */
6045 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6046 static_params);
6047 if (b == 1)
6048 res = b;
6049 else if (b == -1 && res != 1)
6050 res = b;
6051
6052 /* We have simplified the control flow below this point. In this case,
6053 the iterator becomes invalid. We need to try again. */
6054 if (BLOCK_FOR_INSN (insn)->index != old_index
6055 || EDGE_COUNT (bb->succs) != old_succs)
6056 goto rescan;
6057 }
6058
6059#ifdef ENABLE_CHECKING
6060 /* Here, RES==1 if original expr was found at least for one of the
6061 successors. After the loop, RES may happen to have zero value
6062 only if at some point the expr searched is present in av_set, but is
6063 not found below. In most cases, this situation is an error.
6064 The exception is when the original operation is blocked by
6065 bookkeeping generated for another fence or for another path in current
6066 move_op. */
6067 gcc_assert (res == 1
6068 || (res == 0
6069 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6070 static_params))
6071 || res == -1);
6072#endif
6073
6074 /* Merge data, clean up, etc. */
72a54528 6075 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6076 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6077
6078 return res;
6079}
6080
6081
6082/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6083 is the pointer to the av set with expressions we were looking for,
6084 PATH_P is the pointer to the traversed path. */
6085static inline void
6086code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6087{
6088 ilist_remove (path_p);
6089 av_set_clear (orig_ops_p);
6090}
6091
6092/* The driver function that implements move_op or find_used_regs
6093 functionality dependent whether code_motion_path_driver_INFO is set to
6094 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6095 of code (CFG traversal etc) that are shared among both functions. INSN
6096 is the insn we're starting the search from, ORIG_OPS are the expressions
6097 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6098 parameters of the driver, and STATIC_PARAMS are static parameters of
6099 the caller.
6100
6101 Returns whether original instructions were found. Note that top-level
6102 code_motion_path_driver always returns true. */
72a54528 6103static int
e855c69d
AB
6104code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6105 cmpd_local_params_p local_params_in,
6106 void *static_params)
6107{
6108 expr_t expr = NULL;
6109 basic_block bb = BLOCK_FOR_INSN (insn);
6110 insn_t first_insn, bb_tail, before_first;
6111 bool removed_last_insn = false;
6112
6113 if (sched_verbose >= 6)
6114 {
6115 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6116 dump_insn (insn);
6117 sel_print (",");
6118 dump_av_set (orig_ops);
6119 sel_print (")\n");
6120 }
6121
6122 gcc_assert (orig_ops);
6123
6124 /* If no original operations exist below this insn, return immediately. */
6125 if (is_ineligible_successor (insn, path))
6126 {
6127 if (sched_verbose >= 6)
6128 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6129 return false;
6130 }
6131
6132 /* The block can have invalid av set, in which case it was created earlier
6133 during move_op. Return immediately. */
6134 if (sel_bb_head_p (insn))
6135 {
6136 if (! AV_SET_VALID_P (insn))
6137 {
6138 if (sched_verbose >= 6)
6139 sel_print ("Returned from block %d as it had invalid av set\n",
6140 bb->index);
6141 return false;
6142 }
6143
6144 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6145 {
6146 /* We have already found an original operation on this branch, do not
6147 go any further and just return TRUE here. If we don't stop here,
6148 function can have exponential behaviour even on the small code
6149 with many different paths (e.g. with data speculation and
6150 recovery blocks). */
6151 if (sched_verbose >= 6)
6152 sel_print ("Block %d already visited in this traversal\n", bb->index);
6153 if (code_motion_path_driver_info->on_enter)
6154 return code_motion_path_driver_info->on_enter (insn,
6155 local_params_in,
6156 static_params,
6157 true);
6158 }
6159 }
6160
6161 if (code_motion_path_driver_info->on_enter)
6162 code_motion_path_driver_info->on_enter (insn, local_params_in,
6163 static_params, false);
6164 orig_ops = av_set_copy (orig_ops);
6165
6166 /* Filter the orig_ops set. */
6167 if (AV_SET_VALID_P (insn))
6168 av_set_intersect (&orig_ops, AV_SET (insn));
6169
6170 /* If no more original ops, return immediately. */
6171 if (!orig_ops)
6172 {
6173 if (sched_verbose >= 6)
6174 sel_print ("No intersection with av set of block %d\n", bb->index);
6175 return false;
6176 }
6177
6178 /* For non-speculative insns we have to leave only one form of the
6179 original operation, because if we don't, we may end up with
6180 different C_EXPRes and, consequently, with bookkeepings for different
6181 expression forms along the same code motion path. That may lead to
6182 generation of incorrect code. So for each code motion we stick to
6183 the single form of the instruction, except for speculative insns
6184 which we need to keep in different forms with all speculation
6185 types. */
6186 av_set_leave_one_nonspec (&orig_ops);
6187
6188 /* It is not possible that all ORIG_OPS are filtered out. */
6189 gcc_assert (orig_ops);
6190
6191 /* It is enough to place only heads and tails of visited basic blocks into
6192 the PATH. */
6193 ilist_add (&path, insn);
6194 first_insn = insn;
6195 bb_tail = sel_bb_end (bb);
6196
6197 /* Descend the basic block in search of the original expr; this part
6198 corresponds to the part of the original move_op procedure executed
6199 before the recursive call. */
6200 for (;;)
6201 {
6202 /* Look at the insn and decide if it could be an ancestor of currently
6203 scheduling operation. If it is so, then the insn "dest = op" could
6204 either be replaced with "dest = reg", because REG now holds the result
6205 of OP, or just removed, if we've scheduled the insn as a whole.
6206
6207 If this insn doesn't contain currently scheduling OP, then proceed
6208 with searching and look at its successors. Operations we're searching
6209 for could have changed when moving up through this insn via
6210 substituting. In this case, perform unsubstitution on them first.
6211
6212 When traversing the DAG below this insn is finished, insert
6213 bookkeeping code, if the insn is a joint point, and remove
6214 leftovers. */
6215
6216 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6217 if (expr)
6218 {
6219 insn_t last_insn = PREV_INSN (insn);
6220
6221 /* We have found the original operation. */
6222 if (sched_verbose >= 6)
6223 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6224
6225 code_motion_path_driver_info->orig_expr_found
6226 (insn, expr, local_params_in, static_params);
6227
6228 /* Step back, so on the way back we'll start traversing from the
6229 previous insn (or we'll see that it's bb_note and skip that
6230 loop). */
6231 if (insn == first_insn)
6232 {
6233 first_insn = NEXT_INSN (last_insn);
6234 removed_last_insn = sel_bb_end_p (last_insn);
6235 }
6236 insn = last_insn;
6237 break;
6238 }
6239 else
6240 {
6241 /* We haven't found the original expr, continue descending the basic
6242 block. */
6243 if (code_motion_path_driver_info->orig_expr_not_found
6244 (insn, orig_ops, static_params))
6245 {
6246 /* Av set ops could have been changed when moving through this
6247 insn. To find them below it, we have to un-substitute them. */
6248 undo_transformations (&orig_ops, insn);
6249 }
6250 else
6251 {
6252 /* Clean up and return, if the hook tells us to do so. It may
6253 happen if we've encountered the previously created
6254 bookkeeping. */
6255 code_motion_path_driver_cleanup (&orig_ops, &path);
6256 return -1;
6257 }
6258
6259 gcc_assert (orig_ops);
6260 }
6261
6262 /* Stop at insn if we got to the end of BB. */
6263 if (insn == bb_tail)
6264 break;
6265
6266 insn = NEXT_INSN (insn);
6267 }
6268
6269 /* Here INSN either points to the insn before the original insn (may be
6270 bb_note, if original insn was a bb_head) or to the bb_end. */
6271 if (!expr)
6272 {
6273 int res;
6274
6275 gcc_assert (insn == sel_bb_end (bb));
6276
6277 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6278 it's already in PATH then). */
6279 if (insn != first_insn)
6280 ilist_add (&path, insn);
6281
6282 /* Process_successors should be able to find at least one
6283 successor for which code_motion_path_driver returns TRUE. */
6284 res = code_motion_process_successors (insn, orig_ops,
6285 path, static_params);
6286
6287 /* Remove bb tail from path. */
6288 if (insn != first_insn)
6289 ilist_remove (&path);
6290
6291 if (res != 1)
6292 {
6293 /* This is the case when one of the original expr is no longer available
6294 due to bookkeeping created on this branch with the same register.
6295 In the original algorithm, which doesn't have update_data_sets call
6296 on a bookkeeping block, it would simply result in returning
6297 FALSE when we've encountered a previously generated bookkeeping
6298 insn in moveop_orig_expr_not_found. */
6299 code_motion_path_driver_cleanup (&orig_ops, &path);
6300 return res;
6301 }
6302 }
6303
6304 /* Don't need it any more. */
6305 av_set_clear (&orig_ops);
6306
6307 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6308 the beginning of the basic block. */
6309 before_first = PREV_INSN (first_insn);
6310 while (insn != before_first)
6311 {
6312 if (code_motion_path_driver_info->ascend)
6313 code_motion_path_driver_info->ascend (insn, static_params);
6314
6315 insn = PREV_INSN (insn);
6316 }
6317
6318 /* Now we're at the bb head. */
6319 insn = first_insn;
6320 ilist_remove (&path);
6321 local_params_in->removed_last_insn = removed_last_insn;
6322 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6323
6324 /* This should be the very last operation as at bb head we could change
6325 the numbering by creating bookkeeping blocks. */
6326 if (removed_last_insn)
6327 insn = PREV_INSN (insn);
6328 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6329 return true;
6330}
6331
6332/* Move up the operations from ORIG_OPS set traversing the dag starting
6333 from INSN. PATH represents the edges traversed so far.
6334 DEST is the register chosen for scheduling the current expr. Insert
6335 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6336 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6337 Set *SHOULD_MOVE to indicate whether we have only disconnected
6338 one of the insns found.
e855c69d
AB
6339
6340 Returns whether original instructions were found, which is asserted
6341 to be true in the caller. */
6342static bool
6343move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6344 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6345{
6346 struct moveop_static_params sparams;
6347 struct cmpd_local_params lparams;
6348 bool res;
6349
6350 /* Init params for code_motion_path_driver. */
6351 sparams.dest = dest;
6352 sparams.c_expr = c_expr;
6353 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6354#ifdef ENABLE_CHECKING
6355 sparams.failed_insn = NULL;
6356#endif
6357 sparams.was_renamed = false;
6358 lparams.e1 = NULL;
6359
6360 /* We haven't visited any blocks yet. */
6361 bitmap_clear (code_motion_visited_blocks);
6362
6363 /* Set appropriate hooks and data. */
6364 code_motion_path_driver_info = &move_op_hooks;
6365 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6366
6367 if (sparams.was_renamed)
6368 EXPR_WAS_RENAMED (expr_vliw) = true;
6369
72a54528
AM
6370 *should_move = (sparams.uid == -1);
6371
e855c69d
AB
6372 return res;
6373}
6374\f
6375
6376/* Functions that work with regions. */
6377
6378/* Current number of seqno used in init_seqno and init_seqno_1. */
6379static int cur_seqno;
6380
6381/* A helper for init_seqno. Traverse the region starting from BB and
6382 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6383 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6384static void
6385init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6386{
6387 int bbi = BLOCK_TO_BB (bb->index);
6388 insn_t insn, note = bb_note (bb);
6389 insn_t succ_insn;
6390 succ_iterator si;
6391
6392 SET_BIT (visited_bbs, bbi);
6393 if (blocks_to_reschedule)
6394 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6395
6396 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6397 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6398 {
6399 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6400 int succ_bbi = BLOCK_TO_BB (succ->index);
6401
6402 gcc_assert (in_current_region_p (succ));
6403
6404 if (!TEST_BIT (visited_bbs, succ_bbi))
6405 {
6406 gcc_assert (succ_bbi > bbi);
6407
6408 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6409 }
6410 }
6411
6412 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6413 INSN_SEQNO (insn) = cur_seqno--;
6414}
6415
6416/* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6417 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6418 which we're rescheduling when pipelining, FROM is the block where
6419 traversing region begins (it may not be the head of the region when
6420 pipelining, but the head of the loop instead).
6421
6422 Returns the maximal seqno found. */
6423static int
6424init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6425{
6426 sbitmap visited_bbs;
6427 bitmap_iterator bi;
6428 unsigned bbi;
6429
6430 visited_bbs = sbitmap_alloc (current_nr_blocks);
6431
6432 if (blocks_to_reschedule)
6433 {
6434 sbitmap_ones (visited_bbs);
6435 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6436 {
6437 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6438 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6439 }
6440 }
6441 else
6442 {
6443 sbitmap_zero (visited_bbs);
6444 from = EBB_FIRST_BB (0);
6445 }
6446
6447 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6448 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6449 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6450
6451 sbitmap_free (visited_bbs);
6452 return sched_max_luid - 1;
6453}
6454
6455/* Initialize scheduling parameters for current region. */
6456static void
6457sel_setup_region_sched_flags (void)
6458{
6459 enable_schedule_as_rhs_p = 1;
6460 bookkeeping_p = 1;
6461 pipelining_p = (bookkeeping_p
6462 && (flag_sel_sched_pipelining != 0)
6463 && current_loop_nest != NULL);
6464 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6465 max_ws = MAX_WS;
6466}
6467
6468/* Return true if all basic blocks of current region are empty. */
6469static bool
6470current_region_empty_p (void)
6471{
6472 int i;
6473 for (i = 0; i < current_nr_blocks; i++)
6474 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6475 return false;
6476
6477 return true;
6478}
6479
6480/* Prepare and verify loop nest for pipelining. */
6481static void
6482setup_current_loop_nest (int rgn)
6483{
6484 current_loop_nest = get_loop_nest_for_rgn (rgn);
6485
6486 if (!current_loop_nest)
6487 return;
6488
6489 /* If this loop has any saved loop preheaders from nested loops,
6490 add these basic blocks to the current region. */
6491 sel_add_loop_preheaders ();
6492
6493 /* Check that we're starting with a valid information. */
6494 gcc_assert (loop_latch_edge (current_loop_nest));
6495 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6496}
6497
6498/* Purge meaningless empty blocks in the middle of a region. */
6499static void
6500purge_empty_blocks (void)
6501{
f2c45f08
AM
6502 /* Do not attempt to delete preheader. */
6503 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
e855c69d 6504
f2c45f08 6505 while (i < current_nr_blocks)
e855c69d
AB
6506 {
6507 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
6508
6509 if (maybe_tidy_empty_bb (b))
6510 continue;
6511
6512 i++;
6513 }
6514}
6515
6516/* Compute instruction priorities for current region. */
6517static void
6518sel_compute_priorities (int rgn)
6519{
6520 sched_rgn_compute_dependencies (rgn);
6521
6522 /* Compute insn priorities in haifa style. Then free haifa style
6523 dependencies that we've calculated for this. */
6524 compute_priorities ();
6525
6526 if (sched_verbose >= 5)
6527 debug_rgn_dependencies (0);
6528
6529 free_rgn_deps ();
6530}
6531
6532/* Init scheduling data for RGN. Returns true when this region should not
6533 be scheduled. */
6534static bool
6535sel_region_init (int rgn)
6536{
6537 int i;
6538 bb_vec_t bbs;
6539
6540 rgn_setup_region (rgn);
6541
6542 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6543 do region initialization here so the region can be bundled correctly,
6544 but we'll skip the scheduling in sel_sched_region (). */
6545 if (current_region_empty_p ())
6546 return true;
6547
6548 if (flag_sel_sched_pipelining)
6549 setup_current_loop_nest (rgn);
6550
6551 sel_setup_region_sched_flags ();
6552
6553 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6554
6555 for (i = 0; i < current_nr_blocks; i++)
6556 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6557
6558 sel_init_bbs (bbs, NULL);
6559
6560 /* Initialize luids and dependence analysis which both sel-sched and haifa
6561 need. */
6562 sched_init_luids (bbs, NULL, NULL, NULL);
6563 sched_deps_init (false);
6564
6565 /* Initialize haifa data. */
6566 rgn_setup_sched_infos ();
6567 sel_set_sched_flags ();
6568 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6569
6570 sel_compute_priorities (rgn);
6571 init_deps_global ();
6572
6573 /* Main initialization. */
6574 sel_setup_sched_infos ();
6575 sel_init_global_and_expr (bbs);
6576
6577 VEC_free (basic_block, heap, bbs);
6578
6579 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6580
6581 /* Init correct liveness sets on each instruction of a single-block loop.
6582 This is the only situation when we can't update liveness when calling
6583 compute_live for the first insn of the loop. */
6584 if (current_loop_nest)
6585 {
6586 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6587 ? 1
6588 : 0);
6589
6590 if (current_nr_blocks == header + 1)
6591 update_liveness_on_insn
6592 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6593 }
6594
6595 /* Set hooks so that no newly generated insn will go out unnoticed. */
6596 sel_register_cfg_hooks ();
6597
6598 /* !!! We call target.sched.md_init () for the whole region, but we invoke
6599 targetm.sched.md_finish () for every ebb. */
6600 if (targetm.sched.md_init)
6601 /* None of the arguments are actually used in any target. */
6602 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6603
6604 first_emitted_uid = get_max_uid () + 1;
6605 preheader_removed = false;
6606
6607 /* Reset register allocation ticks array. */
6608 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6609 reg_rename_this_tick = 0;
6610
6611 bitmap_initialize (forced_ebb_heads, 0);
6612 bitmap_clear (forced_ebb_heads);
6613
6614 setup_nop_vinsn ();
6615 current_copies = BITMAP_ALLOC (NULL);
6616 current_originators = BITMAP_ALLOC (NULL);
6617 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6618
6619 return false;
6620}
6621
6622/* Simplify insns after the scheduling. */
6623static void
6624simplify_changed_insns (void)
6625{
6626 int i;
6627
6628 for (i = 0; i < current_nr_blocks; i++)
6629 {
6630 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6631 rtx insn;
6632
6633 FOR_BB_INSNS (bb, insn)
6634 if (INSN_P (insn))
6635 {
6636 expr_t expr = INSN_EXPR (insn);
6637
6638 if (EXPR_WAS_SUBSTITUTED (expr))
6639 validate_simplify_insn (insn);
6640 }
6641 }
6642}
6643
6644/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6645 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6646 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6647static void
6648find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6649{
6650 insn_t head, tail;
6651 basic_block bb1 = bb;
6652 if (sched_verbose >= 2)
6653 sel_print ("Finishing schedule in bbs: ");
6654
6655 do
6656 {
6657 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6658
6659 if (sched_verbose >= 2)
6660 sel_print ("%d; ", bb1->index);
6661 }
6662 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6663
6664 if (sched_verbose >= 2)
6665 sel_print ("\n");
6666
6667 get_ebb_head_tail (bb, bb1, &head, &tail);
6668
6669 current_sched_info->head = head;
6670 current_sched_info->tail = tail;
6671 current_sched_info->prev_head = PREV_INSN (head);
6672 current_sched_info->next_tail = NEXT_INSN (tail);
6673}
6674
6675/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6676static void
6677reset_sched_cycles_in_current_ebb (void)
6678{
6679 int last_clock = 0;
6680 int haifa_last_clock = -1;
6681 int haifa_clock = 0;
6682 insn_t insn;
6683
6684 if (targetm.sched.md_init)
6685 {
6686 /* None of the arguments are actually used in any target.
6687 NB: We should have md_reset () hook for cases like this. */
6688 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6689 }
6690
6691 state_reset (curr_state);
6692 advance_state (curr_state);
6693
6694 for (insn = current_sched_info->head;
6695 insn != current_sched_info->next_tail;
6696 insn = NEXT_INSN (insn))
6697 {
6698 int cost, haifa_cost;
6699 int sort_p;
6700 bool asm_p, real_insn, after_stall;
6701 int clock;
6702
6703 if (!INSN_P (insn))
6704 continue;
6705
6706 asm_p = false;
6707 real_insn = recog_memoized (insn) >= 0;
6708 clock = INSN_SCHED_CYCLE (insn);
6709
6710 cost = clock - last_clock;
6711
6712 /* Initialize HAIFA_COST. */
6713 if (! real_insn)
6714 {
6715 asm_p = INSN_ASM_P (insn);
6716
6717 if (asm_p)
6718 /* This is asm insn which *had* to be scheduled first
6719 on the cycle. */
6720 haifa_cost = 1;
6721 else
6722 /* This is a use/clobber insn. It should not change
6723 cost. */
6724 haifa_cost = 0;
6725 }
6726 else
6727 haifa_cost = estimate_insn_cost (insn, curr_state);
6728
6729 /* Stall for whatever cycles we've stalled before. */
6730 after_stall = 0;
6731 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
6732 {
6733 haifa_cost = cost;
6734 after_stall = 1;
6735 }
6736
6737 if (haifa_cost > 0)
6738 {
6739 int i = 0;
6740
6741 while (haifa_cost--)
6742 {
6743 advance_state (curr_state);
6744 i++;
6745
6746 if (sched_verbose >= 2)
6747 {
6748 sel_print ("advance_state (state_transition)\n");
6749 debug_state (curr_state);
6750 }
6751
6752 /* The DFA may report that e.g. insn requires 2 cycles to be
6753 issued, but on the next cycle it says that insn is ready
6754 to go. Check this here. */
6755 if (!after_stall
6756 && real_insn
6757 && haifa_cost > 0
6758 && estimate_insn_cost (insn, curr_state) == 0)
6759 break;
6760 }
6761
6762 haifa_clock += i;
6763 }
6764 else
6765 gcc_assert (haifa_cost == 0);
6766
6767 if (sched_verbose >= 2)
6768 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
6769
6770 if (targetm.sched.dfa_new_cycle)
6771 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
6772 haifa_last_clock, haifa_clock,
6773 &sort_p))
6774 {
6775 advance_state (curr_state);
6776 haifa_clock++;
6777 if (sched_verbose >= 2)
6778 {
6779 sel_print ("advance_state (dfa_new_cycle)\n");
6780 debug_state (curr_state);
6781 }
6782 }
6783
6784 if (real_insn)
6785 {
6786 cost = state_transition (curr_state, insn);
6787
6788 if (sched_verbose >= 2)
6789 debug_state (curr_state);
6790
6791 gcc_assert (cost < 0);
6792 }
6793
6794 if (targetm.sched.variable_issue)
6795 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
6796
6797 INSN_SCHED_CYCLE (insn) = haifa_clock;
6798
6799 last_clock = clock;
6800 haifa_last_clock = haifa_clock;
6801 }
6802}
6803
6804/* Put TImode markers on insns starting a new issue group. */
6805static void
6806put_TImodes (void)
6807{
6808 int last_clock = -1;
6809 insn_t insn;
6810
6811 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
6812 insn = NEXT_INSN (insn))
6813 {
6814 int cost, clock;
6815
6816 if (!INSN_P (insn))
6817 continue;
6818
6819 clock = INSN_SCHED_CYCLE (insn);
6820 cost = (last_clock == -1) ? 1 : clock - last_clock;
6821
6822 gcc_assert (cost >= 0);
6823
6824 if (issue_rate > 1
6825 && GET_CODE (PATTERN (insn)) != USE
6826 && GET_CODE (PATTERN (insn)) != CLOBBER)
6827 {
6828 if (reload_completed && cost > 0)
6829 PUT_MODE (insn, TImode);
6830
6831 last_clock = clock;
6832 }
6833
6834 if (sched_verbose >= 2)
6835 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
6836 }
6837}
6838
6839/* Perform MD_FINISH on EBBs comprising current region. When
6840 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
6841 to produce correct sched cycles on insns. */
6842static void
6843sel_region_target_finish (bool reset_sched_cycles_p)
6844{
6845 int i;
6846 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
6847
6848 for (i = 0; i < current_nr_blocks; i++)
6849 {
6850 if (bitmap_bit_p (scheduled_blocks, i))
6851 continue;
6852
6853 /* While pipelining outer loops, skip bundling for loop
6854 preheaders. Those will be rescheduled in the outer loop. */
6855 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
6856 continue;
6857
6858 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
6859
6860 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
6861 continue;
6862
6863 if (reset_sched_cycles_p)
6864 reset_sched_cycles_in_current_ebb ();
6865
6866 if (targetm.sched.md_init)
6867 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6868
6869 put_TImodes ();
6870
6871 if (targetm.sched.md_finish)
6872 {
6873 targetm.sched.md_finish (sched_dump, sched_verbose);
6874
6875 /* Extend luids so that insns generated by the target will
6876 get zero luid. */
6877 sched_init_luids (NULL, NULL, NULL, NULL);
6878 }
6879 }
6880
6881 BITMAP_FREE (scheduled_blocks);
6882}
6883
6884/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
6885 is true, make an additional pass emulating scheduler to get correct insn
6886 cycles for md_finish calls. */
6887static void
6888sel_region_finish (bool reset_sched_cycles_p)
6889{
6890 simplify_changed_insns ();
6891 sched_finish_ready_list ();
6892 free_nop_pool ();
6893
6894 /* Free the vectors. */
6895 if (vec_av_set)
6896 VEC_free (expr_t, heap, vec_av_set);
6897 BITMAP_FREE (current_copies);
6898 BITMAP_FREE (current_originators);
6899 BITMAP_FREE (code_motion_visited_blocks);
6900 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
6901 vinsn_vec_free (&vec_target_unavailable_vinsns);
6902
6903 /* If LV_SET of the region head should be updated, do it now because
6904 there will be no other chance. */
6905 {
6906 succ_iterator si;
6907 insn_t insn;
6908
6909 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
6910 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6911 {
6912 basic_block bb = BLOCK_FOR_INSN (insn);
6913
6914 if (!BB_LV_SET_VALID_P (bb))
6915 compute_live (insn);
6916 }
6917 }
6918
6919 /* Emulate the Haifa scheduler for bundling. */
6920 if (reload_completed)
6921 sel_region_target_finish (reset_sched_cycles_p);
6922
6923 sel_finish_global_and_expr ();
6924
6925 bitmap_clear (forced_ebb_heads);
6926
6927 free_nop_vinsn ();
6928
6929 finish_deps_global ();
6930 sched_finish_luids ();
6931
6932 sel_finish_bbs ();
6933 BITMAP_FREE (blocks_to_reschedule);
6934
6935 sel_unregister_cfg_hooks ();
6936
6937 max_issue_size = 0;
6938}
6939\f
6940
6941/* Functions that implement the scheduler driver. */
6942
6943/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
6944 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
6945 of insns scheduled -- these would be postprocessed later. */
6946static void
6947schedule_on_fences (flist_t fences, int max_seqno,
6948 ilist_t **scheduled_insns_tailpp)
6949{
6950 flist_t old_fences = fences;
6951
6952 if (sched_verbose >= 1)
6953 {
6954 sel_print ("\nScheduling on fences: ");
6955 dump_flist (fences);
6956 sel_print ("\n");
6957 }
6958
6959 scheduled_something_on_previous_fence = false;
6960 for (; fences; fences = FLIST_NEXT (fences))
6961 {
6962 fence_t fence = NULL;
6963 int seqno = 0;
6964 flist_t fences2;
6965 bool first_p = true;
6966
6967 /* Choose the next fence group to schedule.
6968 The fact that insn can be scheduled only once
6969 on the cycle is guaranteed by two properties:
6970 1. seqnos of parallel groups decrease with each iteration.
6971 2. If is_ineligible_successor () sees the larger seqno, it
6972 checks if candidate insn is_in_current_fence_p (). */
6973 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
6974 {
6975 fence_t f = FLIST_FENCE (fences2);
6976
6977 if (!FENCE_PROCESSED_P (f))
6978 {
6979 int i = INSN_SEQNO (FENCE_INSN (f));
6980
6981 if (first_p || i > seqno)
6982 {
6983 seqno = i;
6984 fence = f;
6985 first_p = false;
6986 }
6987 else
6988 /* ??? Seqnos of different groups should be different. */
6989 gcc_assert (1 || i != seqno);
6990 }
6991 }
6992
6993 gcc_assert (fence);
6994
6995 /* As FENCE is nonnull, SEQNO is initialized. */
6996 seqno -= max_seqno + 1;
6997 fill_insns (fence, seqno, scheduled_insns_tailpp);
6998 FENCE_PROCESSED_P (fence) = true;
6999 }
7000
7001 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7002 don't need to keep bookkeeping-invalidated and target-unavailable
7003 vinsns any more. */
7004 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7005 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7006}
7007
7008/* Calculate MIN_SEQNO and MAX_SEQNO. */
7009static void
7010find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7011{
7012 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7013
7014 /* The first element is already processed. */
7015 while ((fences = FLIST_NEXT (fences)))
7016 {
7017 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7018
7019 if (*min_seqno > seqno)
7020 *min_seqno = seqno;
7021 else if (*max_seqno < seqno)
7022 *max_seqno = seqno;
7023 }
7024}
7025
7026/* Calculate new fences from FENCES. */
7027static flist_t
7028calculate_new_fences (flist_t fences, int orig_max_seqno)
7029{
7030 flist_t old_fences = fences;
7031 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7032
7033 flist_tail_init (new_fences);
7034 for (; fences; fences = FLIST_NEXT (fences))
7035 {
7036 fence_t fence = FLIST_FENCE (fences);
7037 insn_t insn;
7038
7039 if (!FENCE_BNDS (fence))
7040 {
7041 /* This fence doesn't have any successors. */
7042 if (!FENCE_SCHEDULED_P (fence))
7043 {
7044 /* Nothing was scheduled on this fence. */
7045 int seqno;
7046
7047 insn = FENCE_INSN (fence);
7048 seqno = INSN_SEQNO (insn);
7049 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7050
7051 if (sched_verbose >= 1)
7052 sel_print ("Fence %d[%d] has not changed\n",
7053 INSN_UID (insn),
7054 BLOCK_NUM (insn));
7055 move_fence_to_fences (fences, new_fences);
7056 }
7057 }
7058 else
7059 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7060 }
7061
7062 flist_clear (&old_fences);
7063 return FLIST_TAIL_HEAD (new_fences);
7064}
7065
7066/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7067 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7068 the highest seqno used in a region. Return the updated highest seqno. */
7069static int
7070update_seqnos_and_stage (int min_seqno, int max_seqno,
7071 int highest_seqno_in_use,
7072 ilist_t *pscheduled_insns)
7073{
7074 int new_hs;
7075 ilist_iterator ii;
7076 insn_t insn;
7077
7078 /* Actually, new_hs is the seqno of the instruction, that was
7079 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7080 if (*pscheduled_insns)
7081 {
7082 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7083 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7084 gcc_assert (new_hs > highest_seqno_in_use);
7085 }
7086 else
7087 new_hs = highest_seqno_in_use;
7088
7089 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7090 {
7091 gcc_assert (INSN_SEQNO (insn) < 0);
7092 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7093 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7094 }
7095
7096 ilist_clear (pscheduled_insns);
7097 global_level++;
7098
7099 return new_hs;
7100}
7101
7102/* The main driver for scheduling a region. This function is responsible
7103 for correct propagation of fences (i.e. scheduling points) and creating
7104 a group of parallel insns at each of them. It also supports
7105 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7106 of scheduling. */
7107static void
7108sel_sched_region_2 (int orig_max_seqno)
7109{
7110 int highest_seqno_in_use = orig_max_seqno;
7111
7112 stat_bookkeeping_copies = 0;
7113 stat_insns_needed_bookkeeping = 0;
7114 stat_renamed_scheduled = 0;
7115 stat_substitutions_total = 0;
7116 num_insns_scheduled = 0;
7117
7118 while (fences)
7119 {
7120 int min_seqno, max_seqno;
7121 ilist_t scheduled_insns = NULL;
7122 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7123
7124 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7125 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7126 fences = calculate_new_fences (fences, orig_max_seqno);
7127 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7128 highest_seqno_in_use,
7129 &scheduled_insns);
7130 }
7131
7132 if (sched_verbose >= 1)
7133 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7134 "bookkeeping, %d insns renamed, %d insns substituted\n",
7135 stat_bookkeeping_copies,
7136 stat_insns_needed_bookkeeping,
7137 stat_renamed_scheduled,
7138 stat_substitutions_total);
7139}
7140
7141/* Schedule a region. When pipelining, search for possibly never scheduled
7142 bookkeeping code and schedule it. Reschedule pipelined code without
7143 pipelining after. */
7144static void
7145sel_sched_region_1 (void)
7146{
7147 int number_of_insns;
7148 int orig_max_seqno;
7149
7150 /* Remove empty blocks that might be in the region from the beginning.
7151 We need to do save sched_max_luid before that, as it actually shows
7152 the number of insns in the region, and purge_empty_blocks can
7153 alter it. */
7154 number_of_insns = sched_max_luid - 1;
7155 purge_empty_blocks ();
7156
7157 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7158 gcc_assert (orig_max_seqno >= 1);
7159
7160 /* When pipelining outer loops, create fences on the loop header,
7161 not preheader. */
7162 fences = NULL;
7163 if (current_loop_nest)
7164 init_fences (BB_END (EBB_FIRST_BB (0)));
7165 else
7166 init_fences (bb_note (EBB_FIRST_BB (0)));
7167 global_level = 1;
7168
7169 sel_sched_region_2 (orig_max_seqno);
7170
7171 gcc_assert (fences == NULL);
7172
7173 if (pipelining_p)
7174 {
7175 int i;
7176 basic_block bb;
7177 struct flist_tail_def _new_fences;
7178 flist_tail_t new_fences = &_new_fences;
7179 bool do_p = true;
7180
7181 pipelining_p = false;
7182 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7183 bookkeeping_p = false;
7184 enable_schedule_as_rhs_p = false;
7185
7186 /* Schedule newly created code, that has not been scheduled yet. */
7187 do_p = true;
7188
7189 while (do_p)
7190 {
7191 do_p = false;
7192
7193 for (i = 0; i < current_nr_blocks; i++)
7194 {
7195 basic_block bb = EBB_FIRST_BB (i);
7196
7197 if (sel_bb_empty_p (bb))
7198 {
7199 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7200 continue;
7201 }
7202
7203 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7204 {
7205 clear_outdated_rtx_info (bb);
7206 if (sel_insn_is_speculation_check (BB_END (bb))
7207 && JUMP_P (BB_END (bb)))
7208 bitmap_set_bit (blocks_to_reschedule,
7209 BRANCH_EDGE (bb)->dest->index);
7210 }
7211 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7212 bitmap_set_bit (blocks_to_reschedule, bb->index);
7213 }
7214
7215 for (i = 0; i < current_nr_blocks; i++)
7216 {
7217 bb = EBB_FIRST_BB (i);
7218
7219 /* While pipelining outer loops, skip bundling for loop
7220 preheaders. Those will be rescheduled in the outer
7221 loop. */
7222 if (sel_is_loop_preheader_p (bb))
7223 {
7224 clear_outdated_rtx_info (bb);
7225 continue;
7226 }
7227
7228 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7229 {
7230 flist_tail_init (new_fences);
7231
7232 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7233
7234 /* Mark BB as head of the new ebb. */
7235 bitmap_set_bit (forced_ebb_heads, bb->index);
7236
7237 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7238
7239 gcc_assert (fences == NULL);
7240
7241 init_fences (bb_note (bb));
7242
7243 sel_sched_region_2 (orig_max_seqno);
7244
7245 do_p = true;
7246 break;
7247 }
7248 }
7249 }
7250 }
7251}
7252
7253/* Schedule the RGN region. */
7254void
7255sel_sched_region (int rgn)
7256{
7257 bool schedule_p;
7258 bool reset_sched_cycles_p;
7259
7260 if (sel_region_init (rgn))
7261 return;
7262
7263 if (sched_verbose >= 1)
7264 sel_print ("Scheduling region %d\n", rgn);
7265
7266 schedule_p = (!sched_is_disabled_for_current_region_p ()
7267 && dbg_cnt (sel_sched_region_cnt));
7268 reset_sched_cycles_p = pipelining_p;
7269 if (schedule_p)
7270 sel_sched_region_1 ();
7271 else
7272 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7273 reset_sched_cycles_p = true;
7274
7275 sel_region_finish (reset_sched_cycles_p);
7276}
7277
7278/* Perform global init for the scheduler. */
7279static void
7280sel_global_init (void)
7281{
7282 calculate_dominance_info (CDI_DOMINATORS);
7283 alloc_sched_pools ();
7284
7285 /* Setup the infos for sched_init. */
7286 sel_setup_sched_infos ();
7287 setup_sched_dump ();
7288
7289 sched_rgn_init (false);
7290 sched_init ();
7291
7292 sched_init_bbs ();
7293 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7294 after_recovery = 0;
7295 can_issue_more = issue_rate;
7296
7297 sched_extend_target ();
7298 sched_deps_init (true);
7299 setup_nop_and_exit_insns ();
7300 sel_extend_global_bb_info ();
7301 init_lv_sets ();
7302 init_hard_regs_data ();
7303}
7304
7305/* Free the global data of the scheduler. */
7306static void
7307sel_global_finish (void)
7308{
7309 free_bb_note_pool ();
7310 free_lv_sets ();
7311 sel_finish_global_bb_info ();
7312
7313 free_regset_pool ();
7314 free_nop_and_exit_insns ();
7315
7316 sched_rgn_finish ();
7317 sched_deps_finish ();
7318 sched_finish ();
7319
7320 if (current_loops)
7321 sel_finish_pipelining ();
7322
7323 free_sched_pools ();
7324 free_dominance_info (CDI_DOMINATORS);
7325}
7326
7327/* Return true when we need to skip selective scheduling. Used for debugging. */
7328bool
7329maybe_skip_selective_scheduling (void)
7330{
7331 return ! dbg_cnt (sel_sched_cnt);
7332}
7333
7334/* The entry point. */
7335void
7336run_selective_scheduling (void)
7337{
7338 int rgn;
7339
7340 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7341 return;
7342
7343 sel_global_init ();
7344
7345 for (rgn = 0; rgn < nr_regions; rgn++)
7346 sel_sched_region (rgn);
7347
7348 sel_global_finish ();
7349}
7350
7351#endif