]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
add auto_sbitmap class
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
818ab71a 2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2
AM
23#include "backend.h"
24#include "tree.h"
25#include "rtl.h"
26#include "df.h"
e855c69d 27#include "tm_p.h"
e855c69d 28#include "regs.h"
60393bbc 29#include "cfgbuild.h"
e855c69d
AB
30#include "insn-config.h"
31#include "insn-attr.h"
e855c69d
AB
32#include "params.h"
33#include "target.h"
e855c69d 34#include "sched-int.h"
e855c69d 35#include "rtlhooks-def.h"
b4979ab9 36#include "ira.h"
8f3f5ac0 37#include "ira-int.h"
34a1e300 38#include "rtl-iter.h"
e855c69d
AB
39
40#ifdef INSN_SCHEDULING
c7131fb2
AM
41#include "regset.h"
42#include "cfgloop.h"
e855c69d
AB
43#include "sel-sched-ir.h"
44#include "sel-sched-dump.h"
45#include "sel-sched.h"
46#include "dbgcnt.h"
47
48/* Implementation of selective scheduling approach.
49 The below implementation follows the original approach with the following
50 changes:
51
b8698a0f 52 o the scheduler works after register allocation (but can be also tuned
e855c69d
AB
53 to work before RA);
54 o some instructions are not copied or register renamed;
55 o conditional jumps are not moved with code duplication;
56 o several jumps in one parallel group are not supported;
57 o when pipelining outer loops, code motion through inner loops
58 is not supported;
59 o control and data speculation are supported;
60 o some improvements for better compile time/performance were made.
61
62 Terminology
63 ===========
64
b8698a0f
L
65 A vinsn, or virtual insn, is an insn with additional data characterizing
66 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
67 Vinsns also act as smart pointers to save memory by reusing them in
e855c69d
AB
68 different expressions. A vinsn is described by vinsn_t type.
69
70 An expression is a vinsn with additional data characterizing its properties
b8698a0f 71 at some point in the control flow graph. The data may be its usefulness,
e855c69d
AB
72 priority, speculative status, whether it was renamed/subsituted, etc.
73 An expression is described by expr_t type.
74
b8698a0f 75 Availability set (av_set) is a set of expressions at a given control flow
e855c69d 76 point. It is represented as av_set_t. The expressions in av sets are kept
b8698a0f 77 sorted in the terms of expr_greater_p function. It allows to truncate
e855c69d 78 the set while leaving the best expressions.
b8698a0f 79
e855c69d
AB
80 A fence is a point through which code motion is prohibited. On each step,
81 we gather a parallel group of insns at a fence. It is possible to have
82 multiple fences. A fence is represented via fence_t.
83
84 A boundary is the border between the fence group and the rest of the code.
85 Currently, we never have more than one boundary per fence, as we finalize
b8698a0f 86 the fence group when a jump is scheduled. A boundary is represented
e855c69d
AB
87 via bnd_t.
88
89 High-level overview
90 ===================
91
92 The scheduler finds regions to schedule, schedules each one, and finalizes.
b8698a0f 93 The regions are formed starting from innermost loops, so that when the inner
e855c69d 94 loop is pipelined, its prologue can be scheduled together with yet unprocessed
b8698a0f 95 outer loop. The rest of acyclic regions are found using extend_rgns:
e855c69d 96 the blocks that are not yet allocated to any regions are traversed in top-down
b8698a0f 97 order, and a block is added to a region to which all its predecessors belong;
e855c69d
AB
98 otherwise, the block starts its own region.
99
100 The main scheduling loop (sel_sched_region_2) consists of just
101 scheduling on each fence and updating fences. For each fence,
102 we fill a parallel group of insns (fill_insns) until some insns can be added.
b8698a0f
L
103 First, we compute available exprs (av-set) at the boundary of the current
104 group. Second, we choose the best expression from it. If the stall is
e855c69d 105 required to schedule any of the expressions, we advance the current cycle
b8698a0f 106 appropriately. So, the final group does not exactly correspond to a VLIW
e855c69d
AB
107 word. Third, we move the chosen expression to the boundary (move_op)
108 and update the intermediate av sets and liveness sets. We quit fill_insns
109 when either no insns left for scheduling or we have scheduled enough insns
b8698a0f 110 so we feel like advancing a scheduling point.
e855c69d
AB
111
112 Computing available expressions
113 ===============================
114
115 The computation (compute_av_set) is a bottom-up traversal. At each insn,
b8698a0f
L
116 we're moving the union of its successors' sets through it via
117 moveup_expr_set. The dependent expressions are removed. Local
118 transformations (substitution, speculation) are applied to move more
e855c69d
AB
119 exprs. Then the expr corresponding to the current insn is added.
120 The result is saved on each basic block header.
121
122 When traversing the CFG, we're moving down for no more than max_ws insns.
123 Also, we do not move down to ineligible successors (is_ineligible_successor),
124 which include moving along a back-edge, moving to already scheduled code,
b8698a0f 125 and moving to another fence. The first two restrictions are lifted during
e855c69d
AB
126 pipelining, which allows us to move insns along a back-edge. We always have
127 an acyclic region for scheduling because we forbid motion through fences.
128
129 Choosing the best expression
130 ============================
131
132 We sort the final availability set via sel_rank_for_schedule, then we remove
133 expressions which are not yet ready (tick_check_p) or which dest registers
b8698a0f
L
134 cannot be used. For some of them, we choose another register via
135 find_best_reg. To do this, we run find_used_regs to calculate the set of
e855c69d
AB
136 registers which cannot be used. The find_used_regs function performs
137 a traversal of code motion paths for an expr. We consider for renaming
b8698a0f 138 only registers which are from the same regclass as the original one and
e855c69d
AB
139 using which does not interfere with any live ranges. Finally, we convert
140 the resulting set to the ready list format and use max_issue and reorder*
141 hooks similarly to the Haifa scheduler.
142
143 Scheduling the best expression
144 ==============================
145
b8698a0f 146 We run the move_op routine to perform the same type of code motion paths
e855c69d
AB
147 traversal as in find_used_regs. (These are working via the same driver,
148 code_motion_path_driver.) When moving down the CFG, we look for original
b8698a0f 149 instruction that gave birth to a chosen expression. We undo
e855c69d 150 the transformations performed on an expression via the history saved in it.
b8698a0f
L
151 When found, we remove the instruction or leave a reg-reg copy/speculation
152 check if needed. On a way up, we insert bookkeeping copies at each join
153 point. If a copy is not needed, it will be removed later during this
e855c69d
AB
154 traversal. We update the saved av sets and liveness sets on the way up, too.
155
156 Finalizing the schedule
157 =======================
158
b8698a0f
L
159 When pipelining, we reschedule the blocks from which insns were pipelined
160 to get a tighter schedule. On Itanium, we also perform bundling via
161 the same routine from ia64.c.
e855c69d
AB
162
163 Dependence analysis changes
164 ===========================
165
166 We augmented the sched-deps.c with hooks that get called when a particular
167 dependence is found in a particular part of an insn. Using these hooks, we
168 can do several actions such as: determine whether an insn can be moved through
b8698a0f
L
169 another (has_dependence_p, moveup_expr); find out whether an insn can be
170 scheduled on the current cycle (tick_check_p); find out registers that
171 are set/used/clobbered by an insn and find out all the strange stuff that
172 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e855c69d
AB
173 init_global_and_expr_for_insn).
174
175 Initialization changes
176 ======================
177
b8698a0f 178 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e855c69d 179 reused in all of the schedulers. We have split up the initialization of data
b8698a0f 180 of such parts into different functions prefixed with scheduler type and
e855c69d
AB
181 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
182 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
b8698a0f
L
183 The same splitting is done with current_sched_info structure:
184 dependence-related parts are in sched_deps_info, common part is in
e855c69d 185 common_sched_info, and haifa/sel/etc part is in current_sched_info.
b8698a0f 186
e855c69d
AB
187 Target contexts
188 ===============
189
190 As we now have multiple-point scheduling, this would not work with backends
b8698a0f
L
191 which save some of the scheduler state to use it in the target hooks.
192 For this purpose, we introduce a concept of target contexts, which
e855c69d
AB
193 encapsulate such information. The backend should implement simple routines
194 of allocating/freeing/setting such a context. The scheduler calls these
195 as target hooks and handles the target context as an opaque pointer (similar
196 to the DFA state type, state_t).
197
198 Various speedups
199 ================
200
201 As the correct data dependence graph is not supported during scheduling (which
b8698a0f
L
202 is to be changed in mid-term), we cache as much of the dependence analysis
203 results as possible to avoid reanalyzing. This includes: bitmap caches on
204 each insn in stream of the region saying yes/no for a query with a pair of
e855c69d
AB
205 UIDs; hashtables with the previously done transformations on each insn in
206 stream; a vector keeping a history of transformations on each expr.
207
208 Also, we try to minimize the dependence context used on each fence to check
209 whether the given expression is ready for scheduling by removing from it
b8698a0f 210 insns that are definitely completed the execution. The results of
e855c69d
AB
211 tick_check_p checks are also cached in a vector on each fence.
212
b8698a0f 213 We keep a valid liveness set on each insn in a region to avoid the high
e855c69d
AB
214 cost of recomputation on large basic blocks.
215
216 Finally, we try to minimize the number of needed updates to the availability
b8698a0f 217 sets. The updates happen in two cases: when fill_insns terminates,
e855c69d
AB
218 we advance all fences and increase the stage number to show that the region
219 has changed and the sets are to be recomputed; and when the next iteration
220 of a loop in fill_insns happens (but this one reuses the saved av sets
221 on bb headers.) Thus, we try to break the fill_insns loop only when
222 "significant" number of insns from the current scheduling window was
223 scheduled. This should be made a target param.
b8698a0f 224
e855c69d
AB
225
226 TODO: correctly support the data dependence graph at all stages and get rid
227 of all caches. This should speed up the scheduler.
228 TODO: implement moving cond jumps with bookkeeping copies on both targets.
229 TODO: tune the scheduler before RA so it does not create too much pseudos.
230
231
232 References:
233 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
b8698a0f
L
234 selective scheduling and software pipelining.
235 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e855c69d 236
b8698a0f
L
237 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
238 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e855c69d
AB
239 for GCC. In Proceedings of GCC Developers' Summit 2006.
240
b8698a0f 241 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e855c69d
AB
242 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
243 http://rogue.colorado.edu/EPIC7/.
b8698a0f 244
e855c69d
AB
245*/
246
247/* True when pipelining is enabled. */
248bool pipelining_p;
249
250/* True if bookkeeping is enabled. */
251bool bookkeeping_p;
252
253/* Maximum number of insns that are eligible for renaming. */
254int max_insns_to_rename;
255\f
256
257/* Definitions of local types and macros. */
258
259/* Represents possible outcomes of moving an expression through an insn. */
b8698a0f
L
260enum MOVEUP_EXPR_CODE
261 {
e855c69d 262 /* The expression is not changed. */
b8698a0f 263 MOVEUP_EXPR_SAME,
e855c69d
AB
264
265 /* Not changed, but requires a new destination register. */
b8698a0f 266 MOVEUP_EXPR_AS_RHS,
e855c69d
AB
267
268 /* Cannot be moved. */
b8698a0f 269 MOVEUP_EXPR_NULL,
e855c69d
AB
270
271 /* Changed (substituted or speculated). */
b8698a0f 272 MOVEUP_EXPR_CHANGED
e855c69d
AB
273 };
274
275/* The container to be passed into rtx search & replace functions. */
276struct rtx_search_arg
277{
278 /* What we are searching for. */
279 rtx x;
280
073a8998 281 /* The occurrence counter. */
e855c69d
AB
282 int n;
283};
284
285typedef struct rtx_search_arg *rtx_search_arg_p;
286
b8698a0f 287/* This struct contains precomputed hard reg sets that are needed when
e855c69d 288 computing registers available for renaming. */
b8698a0f 289struct hard_regs_data
e855c69d 290{
b8698a0f 291 /* For every mode, this stores registers available for use with
e855c69d
AB
292 that mode. */
293 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
294
295 /* True when regs_for_mode[mode] is initialized. */
296 bool regs_for_mode_ok[NUM_MACHINE_MODES];
297
298 /* For every register, it has regs that are ok to rename into it.
299 The register in question is always set. If not, this means
300 that the whole set is not computed yet. */
301 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
302
b8698a0f 303 /* For every mode, this stores registers not available due to
e855c69d
AB
304 call clobbering. */
305 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
306
307 /* All registers that are used or call used. */
308 HARD_REG_SET regs_ever_used;
309
310#ifdef STACK_REGS
311 /* Stack registers. */
312 HARD_REG_SET stack_regs;
313#endif
314};
315
316/* Holds the results of computation of available for renaming and
317 unavailable hard registers. */
318struct reg_rename
319{
320 /* These are unavailable due to calls crossing, globalness, etc. */
321 HARD_REG_SET unavailable_hard_regs;
322
323 /* These are *available* for renaming. */
324 HARD_REG_SET available_for_renaming;
325
326 /* Whether this code motion path crosses a call. */
327 bool crosses_call;
328};
329
b8698a0f 330/* A global structure that contains the needed information about harg
e855c69d
AB
331 regs. */
332static struct hard_regs_data sel_hrd;
333\f
334
b8698a0f
L
335/* This structure holds local data used in code_motion_path_driver hooks on
336 the same or adjacent levels of recursion. Here we keep those parameters
337 that are not used in code_motion_path_driver routine itself, but only in
338 its hooks. Moreover, all parameters that can be modified in hooks are
339 in this structure, so all other parameters passed explicitly to hooks are
e855c69d
AB
340 read-only. */
341struct cmpd_local_params
342{
343 /* Local params used in move_op_* functions. */
344
345 /* Edges for bookkeeping generation. */
346 edge e1, e2;
347
348 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
349 expr_t c_expr_merged, c_expr_local;
350
351 /* Local params used in fur_* functions. */
352 /* Copy of the ORIGINAL_INSN list, stores the original insns already
353 found before entering the current level of code_motion_path_driver. */
354 def_list_t old_original_insns;
355
356 /* Local params used in move_op_* functions. */
b8698a0f 357 /* True when we have removed last insn in the block which was
e855c69d
AB
358 also a boundary. Do not update anything or create bookkeeping copies. */
359 BOOL_BITFIELD removed_last_insn : 1;
360};
361
362/* Stores the static parameters for move_op_* calls. */
363struct moveop_static_params
364{
365 /* Destination register. */
366 rtx dest;
367
368 /* Current C_EXPR. */
369 expr_t c_expr;
370
371 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
372 they are to be removed. */
373 int uid;
374
e855c69d
AB
375 /* This is initialized to the insn on which the driver stopped its traversal. */
376 insn_t failed_insn;
e855c69d
AB
377
378 /* True if we scheduled an insn with different register. */
379 bool was_renamed;
380};
381
382/* Stores the static parameters for fur_* calls. */
383struct fur_static_params
384{
385 /* Set of registers unavailable on the code motion path. */
386 regset used_regs;
387
388 /* Pointer to the list of original insns definitions. */
389 def_list_t *original_insns;
390
391 /* True if a code motion path contains a CALL insn. */
392 bool crosses_call;
393};
394
395typedef struct fur_static_params *fur_static_params_p;
396typedef struct cmpd_local_params *cmpd_local_params_p;
397typedef struct moveop_static_params *moveop_static_params_p;
398
9c582551 399/* Set of hooks and parameters that determine behavior specific to
e855c69d
AB
400 move_op or find_used_regs functions. */
401struct code_motion_path_driver_info_def
402{
403 /* Called on enter to the basic block. */
404 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
405
406 /* Called when original expr is found. */
407 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
408
409 /* Called while descending current basic block if current insn is not
410 the original EXPR we're searching for. */
411 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
412
413 /* Function to merge C_EXPRes from different successors. */
414 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
415
416 /* Function to finalize merge from different successors and possibly
417 deallocate temporary data structures used for merging. */
418 void (*after_merge_succs) (cmpd_local_params_p, void *);
419
420 /* Called on the backward stage of recursion to do moveup_expr.
421 Used only with move_op_*. */
422 void (*ascend) (insn_t, void *);
423
b8698a0f 424 /* Called on the ascending pass, before returning from the current basic
e855c69d
AB
425 block or from the whole traversal. */
426 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
427
b8698a0f 428 /* When processing successors in move_op we need only descend into
e855c69d
AB
429 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
430 int succ_flags;
431
432 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
433 const char *routine_name;
434};
435
436/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
437 FUR_HOOKS. */
438struct code_motion_path_driver_info_def *code_motion_path_driver_info;
439
440/* Set of hooks for performing move_op and find_used_regs routines with
441 code_motion_path_driver. */
c32e2175 442extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e855c69d 443
b8698a0f
L
444/* True if/when we want to emulate Haifa scheduler in the common code.
445 This is used in sched_rgn_local_init and in various places in
e855c69d
AB
446 sched-deps.c. */
447int sched_emulate_haifa_p;
448
449/* GLOBAL_LEVEL is used to discard information stored in basic block headers
450 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
451 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
452 scheduling window. */
453int global_level;
454
455/* Current fences. */
456flist_t fences;
457
458/* True when separable insns should be scheduled as RHSes. */
459static bool enable_schedule_as_rhs_p;
460
461/* Used in verify_target_availability to assert that target reg is reported
462 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
b8698a0f 463 we haven't scheduled anything on the previous fence.
e855c69d 464 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
b8698a0f 465 have more conservative value than the one returned by the
e855c69d
AB
466 find_used_regs, thus we shouldn't assert that these values are equal. */
467static bool scheduled_something_on_previous_fence;
468
469/* All newly emitted insns will have their uids greater than this value. */
470static int first_emitted_uid;
471
472/* Set of basic blocks that are forced to start new ebbs. This is a subset
473 of all the ebb heads. */
474static bitmap_head _forced_ebb_heads;
475bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
476
477/* Blocks that need to be rescheduled after pipelining. */
478bitmap blocks_to_reschedule = NULL;
479
480/* True when the first lv set should be ignored when updating liveness. */
481static bool ignore_first = false;
482
483/* Number of insns max_issue has initialized data structures for. */
484static int max_issue_size = 0;
485
486/* Whether we can issue more instructions. */
487static int can_issue_more;
488
489/* Maximum software lookahead window size, reduced when rescheduling after
490 pipelining. */
491static int max_ws;
492
493/* Number of insns scheduled in current region. */
494static int num_insns_scheduled;
495
496/* A vector of expressions is used to be able to sort them. */
6e1aa848 497static vec<expr_t> vec_av_set = vNULL;
e855c69d
AB
498
499/* A vector of vinsns is used to hold temporary lists of vinsns. */
9771b263 500typedef vec<vinsn_t> vinsn_vec_t;
e855c69d
AB
501
502/* This vector has the exprs which may still present in av_sets, but actually
503 can't be moved up due to bookkeeping created during code motion to another
504 fence. See comment near the call to update_and_record_unavailable_insns
505 for the detailed explanations. */
c3284718 506static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
e855c69d 507
b8698a0f 508/* This vector has vinsns which are scheduled with renaming on the first fence
e855c69d
AB
509 and then seen on the second. For expressions with such vinsns, target
510 availability information may be wrong. */
c3284718 511static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
e855c69d
AB
512
513/* Vector to store temporary nops inserted in move_op to prevent removal
514 of empty bbs. */
6e1aa848 515static vec<insn_t> vec_temp_moveop_nops = vNULL;
e855c69d 516
b8698a0f
L
517/* These bitmaps record original instructions scheduled on the current
518 iteration and bookkeeping copies created by them. */
e855c69d
AB
519static bitmap current_originators = NULL;
520static bitmap current_copies = NULL;
521
522/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
523 visit them afterwards. */
524static bitmap code_motion_visited_blocks = NULL;
525
526/* Variables to accumulate different statistics. */
527
528/* The number of bookkeeping copies created. */
529static int stat_bookkeeping_copies;
530
531/* The number of insns that required bookkeeiping for their scheduling. */
532static int stat_insns_needed_bookkeeping;
533
534/* The number of insns that got renamed. */
535static int stat_renamed_scheduled;
536
537/* The number of substitutions made during scheduling. */
538static int stat_substitutions_total;
539\f
540
541/* Forward declarations of static functions. */
542static bool rtx_ok_for_substitution_p (rtx, rtx);
543static int sel_rank_for_schedule (const void *, const void *);
544static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
b5b8b0ac 545static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e855c69d
AB
546
547static rtx get_dest_from_orig_ops (av_set_t);
548static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
b8698a0f 549static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e855c69d 550 def_list_t *);
72a54528
AM
551static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
552static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
553 cmpd_local_params_p, void *);
e855c69d
AB
554static void sel_sched_region_1 (void);
555static void sel_sched_region_2 (int);
556static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
557
558static void debug_state (state_t);
559\f
560
561/* Functions that work with fences. */
562
563/* Advance one cycle on FENCE. */
564static void
565advance_one_cycle (fence_t fence)
566{
567 unsigned i;
568 int cycle;
6144a836 569 rtx_insn *insn;
b8698a0f 570
e855c69d
AB
571 advance_state (FENCE_STATE (fence));
572 cycle = ++FENCE_CYCLE (fence);
573 FENCE_ISSUED_INSNS (fence) = 0;
574 FENCE_STARTS_CYCLE_P (fence) = 1;
575 can_issue_more = issue_rate;
136e01a3 576 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d 577
9771b263 578 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
e855c69d
AB
579 {
580 if (INSN_READY_CYCLE (insn) < cycle)
581 {
582 remove_from_deps (FENCE_DC (fence), insn);
9771b263 583 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
e855c69d
AB
584 continue;
585 }
586 i++;
587 }
588 if (sched_verbose >= 2)
589 {
590 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
591 debug_state (FENCE_STATE (fence));
592 }
593}
594
595/* Returns true when SUCC in a fallthru bb of INSN, possibly
596 skipping empty basic blocks. */
597static bool
90831096 598in_fallthru_bb_p (rtx_insn *insn, rtx succ)
e855c69d
AB
599{
600 basic_block bb = BLOCK_FOR_INSN (insn);
0fd4b31d 601 edge e;
e855c69d
AB
602
603 if (bb == BLOCK_FOR_INSN (succ))
604 return true;
605
0fd4b31d
NF
606 e = find_fallthru_edge_from (bb);
607 if (e)
608 bb = e->dest;
e855c69d
AB
609 else
610 return false;
611
612 while (sel_bb_empty_p (bb))
613 bb = bb->next_bb;
614
615 return bb == BLOCK_FOR_INSN (succ);
616}
617
b8698a0f 618/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e855c69d
AB
619 When a successor will continue a ebb, transfer all parameters of a fence
620 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
621 of scheduling helping to distinguish between the old and the new code. */
622static void
623extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
624 int orig_max_seqno)
625{
626 bool was_here_p = false;
6144a836 627 insn_t insn = NULL;
e855c69d
AB
628 insn_t succ;
629 succ_iterator si;
630 ilist_iterator ii;
631 fence_t fence = FLIST_FENCE (old_fences);
632 basic_block bb;
633
634 /* Get the only element of FENCE_BNDS (fence). */
635 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
636 {
637 gcc_assert (!was_here_p);
638 was_here_p = true;
639 }
640 gcc_assert (was_here_p && insn != NULL_RTX);
641
b8698a0f 642 /* When in the "middle" of the block, just move this fence
e855c69d
AB
643 to the new list. */
644 bb = BLOCK_FOR_INSN (insn);
645 if (! sel_bb_end_p (insn)
b8698a0f 646 || (single_succ_p (bb)
e855c69d
AB
647 && single_pred_p (single_succ (bb))))
648 {
649 insn_t succ;
650
b8698a0f 651 succ = (sel_bb_end_p (insn)
e855c69d
AB
652 ? sel_bb_head (single_succ (bb))
653 : NEXT_INSN (insn));
654
b8698a0f 655 if (INSN_SEQNO (succ) > 0
e855c69d
AB
656 && INSN_SEQNO (succ) <= orig_max_seqno
657 && INSN_SCHED_TIMES (succ) <= 0)
658 {
659 FENCE_INSN (fence) = succ;
660 move_fence_to_fences (old_fences, new_fences);
661
662 if (sched_verbose >= 1)
b8698a0f 663 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e855c69d
AB
664 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
665 }
666 return;
667 }
668
669 /* Otherwise copy fence's structures to (possibly) multiple successors. */
670 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
671 {
672 int seqno = INSN_SEQNO (succ);
673
674 if (0 < seqno && seqno <= orig_max_seqno
675 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
676 {
677 bool b = (in_same_ebb_p (insn, succ)
b8698a0f 678 || in_fallthru_bb_p (insn, succ));
e855c69d
AB
679
680 if (sched_verbose >= 1)
b8698a0f
L
681 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
682 INSN_UID (insn), INSN_UID (succ),
e855c69d
AB
683 BLOCK_NUM (succ), b ? "continue" : "reset");
684
685 if (b)
686 add_dirty_fence_to_fences (new_fences, succ, fence);
687 else
688 {
689 /* Mark block of the SUCC as head of the new ebb. */
690 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
691 add_clean_fence_to_fences (new_fences, succ, fence);
692 }
693 }
694 }
695}
696\f
697
698/* Functions to support substitution. */
699
b8698a0f
L
700/* Returns whether INSN with dependence status DS is eligible for
701 substitution, i.e. it's a copy operation x := y, and RHS that is
e855c69d
AB
702 moved up through this insn should be substituted. */
703static bool
704can_substitute_through_p (insn_t insn, ds_t ds)
705{
706 /* We can substitute only true dependencies. */
707 if ((ds & DEP_OUTPUT)
708 || (ds & DEP_ANTI)
709 || ! INSN_RHS (insn)
710 || ! INSN_LHS (insn))
711 return false;
712
b8698a0f 713 /* Now we just need to make sure the INSN_RHS consists of only one
e855c69d 714 simple REG rtx. */
b8698a0f 715 if (REG_P (INSN_LHS (insn))
e855c69d 716 && REG_P (INSN_RHS (insn)))
b8698a0f 717 return true;
e855c69d
AB
718 return false;
719}
720
073a8998 721/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
e855c69d
AB
722 source (if INSN is eligible for substitution). Returns TRUE if
723 substitution was actually performed, FALSE otherwise. Substitution might
724 be not performed because it's either EXPR' vinsn doesn't contain INSN's
b8698a0f 725 destination or the resulting insn is invalid for the target machine.
e855c69d
AB
726 When UNDO is true, perform unsubstitution instead (the difference is in
727 the part of rtx on which validate_replace_rtx is called). */
728static bool
729substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
730{
731 rtx *where;
732 bool new_insn_valid;
733 vinsn_t *vi = &EXPR_VINSN (expr);
734 bool has_rhs = VINSN_RHS (*vi) != NULL;
735 rtx old, new_rtx;
736
737 /* Do not try to replace in SET_DEST. Although we'll choose new
b8698a0f 738 register for the RHS, we don't want to change RHS' original reg.
e855c69d 739 If the insn is not SET, we may still be able to substitute something
b8698a0f 740 in it, and if we're here (don't have deps), it doesn't write INSN's
e855c69d
AB
741 dest. */
742 where = (has_rhs
743 ? &VINSN_RHS (*vi)
744 : &PATTERN (VINSN_INSN_RTX (*vi)));
745 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
746
747 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
748 if (rtx_ok_for_substitution_p (old, *where))
749 {
eec818f4 750 rtx_insn *new_insn;
e855c69d
AB
751 rtx *where_replace;
752
753 /* We should copy these rtxes before substitution. */
754 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
755 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
756
b8698a0f 757 /* Where we'll replace.
e855c69d
AB
758 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
759 used instead of SET_SRC. */
760 where_replace = (has_rhs
761 ? &SET_SRC (PATTERN (new_insn))
762 : &PATTERN (new_insn));
763
b8698a0f
L
764 new_insn_valid
765 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e855c69d
AB
766 new_insn);
767
768 /* ??? Actually, constrain_operands result depends upon choice of
769 destination register. E.g. if we allow single register to be an rhs,
b8698a0f 770 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e855c69d
AB
771 in invalid insn dx=dx, so we'll loose this rhs here.
772 Just can't come up with significant testcase for this, so just
773 leaving it for now. */
774 if (new_insn_valid)
775 {
b8698a0f 776 change_vinsn_in_expr (expr,
e855c69d
AB
777 create_vinsn_from_insn_rtx (new_insn, false));
778
b8698a0f 779 /* Do not allow clobbering the address register of speculative
e855c69d
AB
780 insns. */
781 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
cf3d5824
SG
782 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
783 expr_dest_reg (expr)))
e855c69d
AB
784 EXPR_TARGET_AVAILABLE (expr) = false;
785
786 return true;
787 }
788 else
789 return false;
790 }
791 else
792 return false;
793}
794
b8698a0f 795/* Return the number of places WHAT appears within WHERE.
e855c69d 796 Bail out when we found a reference occupying several hard registers. */
b8698a0f 797static int
34a1e300 798count_occurrences_equiv (const_rtx what, const_rtx where)
e855c69d 799{
34a1e300
RS
800 int count = 0;
801 subrtx_iterator::array_type array;
802 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
803 {
804 const_rtx x = *iter;
805 if (REG_P (x) && REGNO (x) == REGNO (what))
806 {
807 /* Bail out if mode is different or more than one register is
808 used. */
dc8afb70 809 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
34a1e300
RS
810 return 0;
811 count += 1;
812 }
813 else if (GET_CODE (x) == SUBREG
814 && (!REG_P (SUBREG_REG (x))
815 || REGNO (SUBREG_REG (x)) == REGNO (what)))
816 /* ??? Do not support substituting regs inside subregs. In that case,
817 simplify_subreg will be called by validate_replace_rtx, and
818 unsubstitution will fail later. */
819 return 0;
820 }
821 return count;
e855c69d
AB
822}
823
824/* Returns TRUE if WHAT is found in WHERE rtx tree. */
825static bool
826rtx_ok_for_substitution_p (rtx what, rtx where)
827{
828 return (count_occurrences_equiv (what, where) > 0);
829}
830\f
831
832/* Functions to support register renaming. */
833
834/* Substitute VI's set source with REGNO. Returns newly created pattern
835 that has REGNO as its source. */
eec818f4 836static rtx_insn *
e855c69d
AB
837create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
838{
839 rtx lhs_rtx;
840 rtx pattern;
eec818f4 841 rtx_insn *insn_rtx;
e855c69d
AB
842
843 lhs_rtx = copy_rtx (VINSN_LHS (vi));
844
f7df4a84 845 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e855c69d
AB
846 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
847
848 return insn_rtx;
849}
850
b8698a0f 851/* Returns whether INSN's src can be replaced with register number
e855c69d
AB
852 NEW_SRC_REG. E.g. the following insn is valid for i386:
853
b8698a0f 854 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e855c69d
AB
855 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
856 (reg:SI 0 ax [orig:770 c1 ] [770]))
857 (const_int 288 [0x120])) [0 str S1 A8])
858 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
859 (nil))
860
861 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
b8698a0f 862 because of operand constraints:
e855c69d
AB
863
864 (define_insn "*movqi_1"
865 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
866 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
867 )]
b8698a0f
L
868
869 So do constrain_operands here, before choosing NEW_SRC_REG as best
e855c69d
AB
870 reg for rhs. */
871
872static bool
873replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
874{
875 vinsn_t vi = INSN_VINSN (insn);
ef4bddc2 876 machine_mode mode;
e855c69d
AB
877 rtx dst_loc;
878 bool res;
879
880 gcc_assert (VINSN_SEPARABLE_P (vi));
881
882 get_dest_and_mode (insn, &dst_loc, &mode);
883 gcc_assert (mode == GET_MODE (new_src_reg));
884
885 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
886 return true;
887
888 /* See whether SET_SRC can be replaced with this register. */
889 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
890 res = verify_changes (0);
891 cancel_changes (0);
892
893 return res;
894}
895
896/* Returns whether INSN still be valid after replacing it's DEST with
897 register NEW_REG. */
898static bool
899replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
900{
901 vinsn_t vi = INSN_VINSN (insn);
902 bool res;
903
904 /* We should deal here only with separable insns. */
905 gcc_assert (VINSN_SEPARABLE_P (vi));
906 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
907
908 /* See whether SET_DEST can be replaced with this register. */
909 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
910 res = verify_changes (0);
911 cancel_changes (0);
912
913 return res;
914}
915
916/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
eec818f4 917static rtx_insn *
e855c69d
AB
918create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
919{
920 rtx rhs_rtx;
921 rtx pattern;
eec818f4 922 rtx_insn *insn_rtx;
e855c69d
AB
923
924 rhs_rtx = copy_rtx (VINSN_RHS (vi));
925
f7df4a84 926 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
e855c69d
AB
927 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
928
929 return insn_rtx;
930}
931
b8698a0f 932/* Substitute lhs in the given expression EXPR for the register with number
e855c69d
AB
933 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
934static void
935replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
936{
6144a836 937 rtx_insn *insn_rtx;
e855c69d
AB
938 vinsn_t vinsn;
939
940 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
941 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
942
943 change_vinsn_in_expr (expr, vinsn);
944 EXPR_WAS_RENAMED (expr) = 1;
945 EXPR_TARGET_AVAILABLE (expr) = 1;
946}
947
948/* Returns whether VI writes either one of the USED_REGS registers or,
949 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
950static bool
b8698a0f 951vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e855c69d
AB
952 HARD_REG_SET unavailable_hard_regs)
953{
954 unsigned regno;
955 reg_set_iterator rsi;
956
957 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
958 {
959 if (REGNO_REG_SET_P (used_regs, regno))
960 return true;
961 if (HARD_REGISTER_NUM_P (regno)
962 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
963 return true;
964 }
965
966 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
967 {
968 if (REGNO_REG_SET_P (used_regs, regno))
969 return true;
970 if (HARD_REGISTER_NUM_P (regno)
971 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
972 return true;
973 }
974
975 return false;
976}
977
b8698a0f 978/* Returns register class of the output register in INSN.
e855c69d
AB
979 Returns NO_REGS for call insns because some targets have constraints on
980 destination register of a call insn.
b8698a0f 981
e855c69d
AB
982 Code adopted from regrename.c::build_def_use. */
983static enum reg_class
647d790d 984get_reg_class (rtx_insn *insn)
e855c69d 985{
29d70a0f 986 int i, n_ops;
e855c69d 987
75d25a02 988 extract_constrain_insn (insn);
1145837d 989 preprocess_constraints (insn);
e855c69d
AB
990 n_ops = recog_data.n_operands;
991
5efe5dec 992 const operand_alternative *op_alt = which_op_alt ();
e855c69d
AB
993 if (asm_noperands (PATTERN (insn)) > 0)
994 {
995 for (i = 0; i < n_ops; i++)
996 if (recog_data.operand_type[i] == OP_OUT)
997 {
998 rtx *loc = recog_data.operand_loc[i];
999 rtx op = *loc;
5efe5dec 1000 enum reg_class cl = alternative_class (op_alt, i);
e855c69d
AB
1001
1002 if (REG_P (op)
1003 && REGNO (op) == ORIGINAL_REGNO (op))
1004 continue;
1005
1006 return cl;
1007 }
1008 }
1009 else if (!CALL_P (insn))
1010 {
1011 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1012 {
1013 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
5efe5dec 1014 enum reg_class cl = alternative_class (op_alt, opn);
b8698a0f 1015
e855c69d
AB
1016 if (recog_data.operand_type[opn] == OP_OUT ||
1017 recog_data.operand_type[opn] == OP_INOUT)
1018 return cl;
1019 }
1020 }
1021
1022/* Insns like
1023 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1024 may result in returning NO_REGS, cause flags is written implicitly through
1025 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1026 return NO_REGS;
1027}
1028
e855c69d
AB
1029/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1030static void
1031init_hard_regno_rename (int regno)
1032{
1033 int cur_reg;
1034
1035 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1036
1037 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1038 {
1039 /* We are not interested in renaming in other regs. */
1040 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1041 continue;
1042
1043 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1044 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1045 }
1046}
e855c69d 1047
b8698a0f 1048/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e855c69d
AB
1049 data first. */
1050static inline bool
a20d7130 1051sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d 1052{
e855c69d
AB
1053 /* Check whether this is all calculated. */
1054 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1055 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1056
1057 init_hard_regno_rename (from);
1058
1059 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
e855c69d
AB
1060}
1061
1062/* Calculate set of registers that are capable of holding MODE. */
1063static void
ef4bddc2 1064init_regs_for_mode (machine_mode mode)
e855c69d
AB
1065{
1066 int cur_reg;
b8698a0f 1067
e855c69d
AB
1068 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1070
1071 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1072 {
f742cf90 1073 int nregs;
e855c69d 1074 int i;
b8698a0f 1075
f742cf90
L
1076 /* See whether it accepts all modes that occur in
1077 original insns. */
1078 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1079 continue;
1080
1081 nregs = hard_regno_nregs[cur_reg][mode];
1082
e855c69d
AB
1083 for (i = nregs - 1; i >= 0; --i)
1084 if (fixed_regs[cur_reg + i]
1085 || global_regs[cur_reg + i]
b8698a0f 1086 /* Can't use regs which aren't saved by
e855c69d
AB
1087 the prologue. */
1088 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
8fd0a474
AM
1089 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1090 it affects aliasing globally and invalidates all AV sets. */
1091 || get_reg_base_value (cur_reg + i)
e855c69d
AB
1092#ifdef LEAF_REGISTERS
1093 /* We can't use a non-leaf register if we're in a
1094 leaf function. */
416ff32e 1095 || (crtl->is_leaf
e855c69d
AB
1096 && !LEAF_REGISTERS[cur_reg + i])
1097#endif
1098 )
1099 break;
b8698a0f
L
1100
1101 if (i >= 0)
e855c69d 1102 continue;
b8698a0f 1103
e855c69d 1104 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
b8698a0f 1105 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e855c69d 1106 cur_reg);
b8698a0f
L
1107
1108 /* If the CUR_REG passed all the checks above,
e855c69d
AB
1109 then it's ok. */
1110 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1111 }
1112
1113 sel_hrd.regs_for_mode_ok[mode] = true;
1114}
1115
1116/* Init all register sets gathered in HRD. */
1117static void
1118init_hard_regs_data (void)
1119{
1120 int cur_reg = 0;
32e8bb8e 1121 int cur_mode = 0;
e855c69d
AB
1122
1123 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1124 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1125 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1126 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
b8698a0f
L
1127
1128 /* Initialize registers that are valid based on mode when this is
e855c69d
AB
1129 really needed. */
1130 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1131 sel_hrd.regs_for_mode_ok[cur_mode] = false;
b8698a0f 1132
e855c69d
AB
1133 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1134 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1135 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1136
1137#ifdef STACK_REGS
1138 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1139
1140 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1141 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1142#endif
b8698a0f 1143}
e855c69d 1144
b8698a0f 1145/* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
1146 for renaming rhs in INSN due to hardware restrictions (register class,
1147 modes compatibility etc). This doesn't affect original insn's dest reg,
1148 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1149 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1150 Registers that are in used_regs are always marked in
1151 unavailable_hard_regs as well. */
1152
1153static void
1154mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1155 regset used_regs ATTRIBUTE_UNUSED)
1156{
ef4bddc2 1157 machine_mode mode;
e855c69d
AB
1158 enum reg_class cl = NO_REGS;
1159 rtx orig_dest;
1160 unsigned cur_reg, regno;
1161 hard_reg_set_iterator hrsi;
1162
1163 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1164 gcc_assert (reg_rename_p);
1165
1166 orig_dest = SET_DEST (PATTERN (def->orig_insn));
b8698a0f 1167
e855c69d
AB
1168 /* We have decided not to rename 'mem = something;' insns, as 'something'
1169 is usually a register. */
1170 if (!REG_P (orig_dest))
1171 return;
1172
1173 regno = REGNO (orig_dest);
1174
1175 /* If before reload, don't try to work with pseudos. */
1176 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1177 return;
1178
0c94f956
AM
1179 if (reload_completed)
1180 cl = get_reg_class (def->orig_insn);
e855c69d 1181
0c94f956
AM
1182 /* Stop if the original register is one of the fixed_regs, global_regs or
1183 frame pointer, or we could not discover its class. */
b8698a0f 1184 if (fixed_regs[regno]
e855c69d 1185 || global_regs[regno]
de824c8b
TS
1186 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1187 && regno == HARD_FRAME_POINTER_REGNUM)
1188 || (HARD_FRAME_POINTER_REGNUM && frame_pointer_needed
1189 && regno == FRAME_POINTER_REGNUM)
0c94f956 1190 || (reload_completed && cl == NO_REGS))
e855c69d
AB
1191 {
1192 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1193
1194 /* Give a chance for original register, if it isn't in used_regs. */
1195 if (!def->crosses_call)
1196 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1197
1198 return;
1199 }
1200
1201 /* If something allocated on stack in this function, mark frame pointer
b8698a0f 1202 register unavailable, considering also modes.
e855c69d
AB
1203 FIXME: it is enough to do this once per all original defs. */
1204 if (frame_pointer_needed)
1205 {
d108e679
AS
1206 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1207 Pmode, FRAME_POINTER_REGNUM);
e855c69d 1208
d108e679
AS
1209 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1210 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
d0381b37 1211 Pmode, HARD_FRAME_POINTER_REGNUM);
e855c69d
AB
1212 }
1213
1214#ifdef STACK_REGS
1215 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1216 is equivalent to as if all stack regs were in this set.
1217 I.e. no stack register can be renamed, and even if it's an original
b8698a0f
L
1218 register here we make sure it won't be lifted over it's previous def
1219 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e855c69d
AB
1220 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1221 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
b8698a0f
L
1222 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1223 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d 1224 sel_hrd.stack_regs);
b8698a0f 1225#endif
e855c69d 1226
b8698a0f 1227 /* If there's a call on this path, make regs from call_used_reg_set
e855c69d
AB
1228 unavailable. */
1229 if (def->crosses_call)
b8698a0f 1230 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1231 call_used_reg_set);
1232
b8698a0f 1233 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e855c69d
AB
1234 but not register classes. */
1235 if (!reload_completed)
1236 return;
1237
b8698a0f 1238 /* Leave regs as 'available' only from the current
e855c69d 1239 register class. */
e855c69d
AB
1240 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1241 reg_class_contents[cl]);
1242
0c94f956
AM
1243 mode = GET_MODE (orig_dest);
1244
e855c69d
AB
1245 /* Leave only registers available for this mode. */
1246 if (!sel_hrd.regs_for_mode_ok[mode])
1247 init_regs_for_mode (mode);
b8698a0f 1248 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1249 sel_hrd.regs_for_mode[mode]);
1250
1251 /* Exclude registers that are partially call clobbered. */
1252 if (def->crosses_call
1253 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
b8698a0f 1254 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1255 sel_hrd.regs_for_call_clobbered[mode]);
1256
1257 /* Leave only those that are ok to rename. */
1258 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1259 0, cur_reg, hrsi)
1260 {
1261 int nregs;
1262 int i;
1263
1264 nregs = hard_regno_nregs[cur_reg][mode];
1265 gcc_assert (nregs > 0);
1266
1267 for (i = nregs - 1; i >= 0; --i)
1268 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1269 break;
1270
b8698a0f
L
1271 if (i >= 0)
1272 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e855c69d
AB
1273 cur_reg);
1274 }
1275
b8698a0f 1276 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1277 reg_rename_p->unavailable_hard_regs);
1278
1279 /* Regno is always ok from the renaming part of view, but it really
1280 could be in *unavailable_hard_regs already, so set it here instead
1281 of there. */
1282 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1283}
1284
1285/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1286 best register more recently than REG2. */
1287static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1288
1289/* Indicates the number of times renaming happened before the current one. */
1290static int reg_rename_this_tick;
1291
b8698a0f 1292/* Choose the register among free, that is suitable for storing
e855c69d
AB
1293 the rhs value.
1294
1295 ORIGINAL_INSNS is the list of insns where the operation (rhs)
b8698a0f
L
1296 originally appears. There could be multiple original operations
1297 for single rhs since we moving it up and merging along different
e855c69d
AB
1298 paths.
1299
1300 Some code is adapted from regrename.c (regrename_optimize).
1301 If original register is available, function returns it.
1302 Otherwise it performs the checks, so the new register should
1303 comply with the following:
b8698a0f 1304 - it should not violate any live ranges (such registers are in
e855c69d
AB
1305 REG_RENAME_P->available_for_renaming set);
1306 - it should not be in the HARD_REGS_USED regset;
1307 - it should be in the class compatible with original uses;
1308 - it should not be clobbered through reference with different mode;
b8698a0f 1309 - if we're in the leaf function, then the new register should
e855c69d
AB
1310 not be in the LEAF_REGISTERS;
1311 - etc.
1312
1313 If several registers meet the conditions, the register with smallest
1314 tick is returned to achieve more even register allocation.
1315
1316 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1317
1318 If no register satisfies the above conditions, NULL_RTX is returned. */
1319static rtx
b8698a0f
L
1320choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1321 struct reg_rename *reg_rename_p,
e855c69d
AB
1322 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1323{
1324 int best_new_reg;
1325 unsigned cur_reg;
ef4bddc2 1326 machine_mode mode = VOIDmode;
e855c69d
AB
1327 unsigned regno, i, n;
1328 hard_reg_set_iterator hrsi;
1329 def_list_iterator di;
1330 def_t def;
1331
1332 /* If original register is available, return it. */
1333 *is_orig_reg_p_ptr = true;
1334
1335 FOR_EACH_DEF (def, di, original_insns)
1336 {
1337 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1338
1339 gcc_assert (REG_P (orig_dest));
1340
b8698a0f 1341 /* Check that all original operations have the same mode.
e855c69d 1342 This is done for the next loop; if we'd return from this
b8698a0f 1343 loop, we'd check only part of them, but in this case
e855c69d
AB
1344 it doesn't matter. */
1345 if (mode == VOIDmode)
1346 mode = GET_MODE (orig_dest);
1347 gcc_assert (mode == GET_MODE (orig_dest));
1348
1349 regno = REGNO (orig_dest);
1350 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1351 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1352 break;
1353
1354 /* All hard registers are available. */
1355 if (i == n)
1356 {
1357 gcc_assert (mode != VOIDmode);
b8698a0f 1358
e855c69d
AB
1359 /* Hard registers should not be shared. */
1360 return gen_rtx_REG (mode, regno);
1361 }
1362 }
b8698a0f 1363
e855c69d
AB
1364 *is_orig_reg_p_ptr = false;
1365 best_new_reg = -1;
b8698a0f
L
1366
1367 /* Among all available regs choose the register that was
e855c69d
AB
1368 allocated earliest. */
1369 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1370 0, cur_reg, hrsi)
1371 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1372 {
a9ced68b
AM
1373 /* Check that all hard regs for mode are available. */
1374 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1375 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1376 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1377 cur_reg + i))
1378 break;
1379
1380 if (i < n)
1381 continue;
1382
e855c69d
AB
1383 /* All hard registers are available. */
1384 if (best_new_reg < 0
1385 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1386 {
1387 best_new_reg = cur_reg;
b8698a0f 1388
e855c69d
AB
1389 /* Return immediately when we know there's no better reg. */
1390 if (! reg_rename_tick[best_new_reg])
1391 break;
1392 }
1393 }
1394
1395 if (best_new_reg >= 0)
1396 {
1397 /* Use the check from the above loop. */
1398 gcc_assert (mode != VOIDmode);
1399 return gen_rtx_REG (mode, best_new_reg);
1400 }
1401
1402 return NULL_RTX;
1403}
1404
1405/* A wrapper around choose_best_reg_1 () to verify that we make correct
1406 assumptions about available registers in the function. */
1407static rtx
b8698a0f 1408choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e855c69d
AB
1409 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1410{
b8698a0f 1411 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e855c69d
AB
1412 original_insns, is_orig_reg_p_ptr);
1413
a9ced68b 1414 /* FIXME loop over hard_regno_nregs here. */
e855c69d
AB
1415 gcc_assert (best_reg == NULL_RTX
1416 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1417
1418 return best_reg;
1419}
1420
b8698a0f 1421/* Choose the pseudo register for storing rhs value. As this is supposed
e855c69d 1422 to work before reload, we return either the original register or make
b8698a0f
L
1423 the new one. The parameters are the same that in choose_nest_reg_1
1424 functions, except that USED_REGS may contain pseudos.
e855c69d
AB
1425 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1426
b8698a0f
L
1427 TODO: take into account register pressure while doing this. Up to this
1428 moment, this function would never return NULL for pseudos, but we should
e855c69d
AB
1429 not rely on this. */
1430static rtx
b8698a0f
L
1431choose_best_pseudo_reg (regset used_regs,
1432 struct reg_rename *reg_rename_p,
e855c69d
AB
1433 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1434{
1435 def_list_iterator i;
1436 def_t def;
ef4bddc2 1437 machine_mode mode = VOIDmode;
e855c69d 1438 bool bad_hard_regs = false;
b8698a0f 1439
e855c69d
AB
1440 /* We should not use this after reload. */
1441 gcc_assert (!reload_completed);
1442
1443 /* If original register is available, return it. */
1444 *is_orig_reg_p_ptr = true;
1445
1446 FOR_EACH_DEF (def, i, original_insns)
1447 {
1448 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1449 int orig_regno;
b8698a0f 1450
e855c69d 1451 gcc_assert (REG_P (dest));
b8698a0f 1452
e855c69d
AB
1453 /* Check that all original operations have the same mode. */
1454 if (mode == VOIDmode)
1455 mode = GET_MODE (dest);
1456 else
1457 gcc_assert (mode == GET_MODE (dest));
1458 orig_regno = REGNO (dest);
b8698a0f 1459
d0aca6ab
AB
1460 /* Check that nothing in used_regs intersects with orig_regno. When
1461 we have a hard reg here, still loop over hard_regno_nregs. */
1462 if (HARD_REGISTER_NUM_P (orig_regno))
1463 {
1464 int j, n;
1465 for (j = 0, n = hard_regno_nregs[orig_regno][mode]; j < n; j++)
1466 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1467 break;
1468 if (j < n)
1469 continue;
1470 }
1471 else
1472 {
1473 if (REGNO_REG_SET_P (used_regs, orig_regno))
1474 continue;
1475 }
1476 if (HARD_REGISTER_NUM_P (orig_regno))
1477 {
1478 gcc_assert (df_regs_ever_live_p (orig_regno));
1479
1480 /* For hard registers, we have to check hardware imposed
1481 limitations (frame/stack registers, calls crossed). */
1482 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1483 orig_regno))
1484 {
1485 /* Don't let register cross a call if it doesn't already
1486 cross one. This condition is written in accordance with
1487 that in sched-deps.c sched_analyze_reg(). */
1488 if (!reg_rename_p->crosses_call
1489 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1490 return gen_rtx_REG (mode, orig_regno);
1491 }
1492
1493 bad_hard_regs = true;
1494 }
1495 else
1496 return dest;
1497 }
e855c69d
AB
1498
1499 *is_orig_reg_p_ptr = false;
b8698a0f 1500
e855c69d
AB
1501 /* We had some original hard registers that couldn't be used.
1502 Those were likely special. Don't try to create a pseudo. */
1503 if (bad_hard_regs)
1504 return NULL_RTX;
b8698a0f
L
1505
1506 /* We haven't found a register from original operations. Get a new one.
e855c69d
AB
1507 FIXME: control register pressure somehow. */
1508 {
1509 rtx new_reg = gen_reg_rtx (mode);
1510
1511 gcc_assert (mode != VOIDmode);
1512
1513 max_regno = max_reg_num ();
1514 maybe_extend_reg_info_p ();
1515 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1516
1517 return new_reg;
1518 }
1519}
1520
1521/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1522 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1523static void
b8698a0f 1524verify_target_availability (expr_t expr, regset used_regs,
e855c69d
AB
1525 struct reg_rename *reg_rename_p)
1526{
1527 unsigned n, i, regno;
ef4bddc2 1528 machine_mode mode;
e855c69d
AB
1529 bool target_available, live_available, hard_available;
1530
1531 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1532 return;
b8698a0f 1533
e855c69d
AB
1534 regno = expr_dest_regno (expr);
1535 mode = GET_MODE (EXPR_LHS (expr));
1536 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
944499ed 1537 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
e855c69d
AB
1538
1539 live_available = hard_available = true;
1540 for (i = 0; i < n; i++)
1541 {
1542 if (bitmap_bit_p (used_regs, regno + i))
1543 live_available = false;
1544 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1545 hard_available = false;
1546 }
1547
b8698a0f 1548 /* When target is not available, it may be due to hard register
e855c69d
AB
1549 restrictions, e.g. crosses calls, so we check hard_available too. */
1550 if (target_available)
1551 gcc_assert (live_available);
1552 else
b8698a0f 1553 /* Check only if we haven't scheduled something on the previous fence,
e855c69d
AB
1554 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1555 and having more than one fence, we may end having targ_un in a block
b8698a0f 1556 in which successors target register is actually available.
e855c69d
AB
1557
1558 The last condition handles the case when a dependence from a call insn
b8698a0f
L
1559 was created in sched-deps.c for insns with destination registers that
1560 never crossed a call before, but do cross one after our code motion.
e855c69d 1561
b8698a0f
L
1562 FIXME: in the latter case, we just uselessly called find_used_regs,
1563 because we can't move this expression with any other register
e855c69d 1564 as well. */
b8698a0f
L
1565 gcc_assert (scheduled_something_on_previous_fence || !live_available
1566 || !hard_available
1567 || (!reload_completed && reg_rename_p->crosses_call
e855c69d
AB
1568 && REG_N_CALLS_CROSSED (regno) == 0));
1569}
1570
b8698a0f
L
1571/* Collect unavailable registers due to liveness for EXPR from BNDS
1572 into USED_REGS. Save additional information about available
e855c69d
AB
1573 registers and unavailable due to hardware restriction registers
1574 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1575 list. */
1576static void
1577collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1578 struct reg_rename *reg_rename_p,
1579 def_list_t *original_insns)
1580{
1581 for (; bnds; bnds = BLIST_NEXT (bnds))
1582 {
1583 bool res;
1584 av_set_t orig_ops = NULL;
1585 bnd_t bnd = BLIST_BND (bnds);
1586
1587 /* If the chosen best expr doesn't belong to current boundary,
1588 skip it. */
1589 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1590 continue;
1591
1592 /* Put in ORIG_OPS all exprs from this boundary that became
1593 RES on top. */
1594 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1595
1596 /* Compute used regs and OR it into the USED_REGS. */
1597 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1598 reg_rename_p, original_insns);
1599
1600 /* FIXME: the assert is true until we'd have several boundaries. */
1601 gcc_assert (res);
1602 av_set_clear (&orig_ops);
1603 }
1604}
1605
1606/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1607 If BEST_REG is valid, replace LHS of EXPR with it. */
1608static bool
1609try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1610{
e855c69d
AB
1611 /* Try whether we'll be able to generate the insn
1612 'dest := best_reg' at the place of the original operation. */
1613 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1614 {
1615 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1616
1617 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1618
0666ff4e
AB
1619 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1620 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1621 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e855c69d
AB
1622 return false;
1623 }
1624
1625 /* Make sure that EXPR has the right destination
1626 register. */
0666ff4e
AB
1627 if (expr_dest_regno (expr) != REGNO (best_reg))
1628 replace_dest_with_reg_in_expr (expr, best_reg);
1629 else
1630 EXPR_TARGET_AVAILABLE (expr) = 1;
1631
e855c69d
AB
1632 return true;
1633}
1634
b8698a0f
L
1635/* Select and assign best register to EXPR searching from BNDS.
1636 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e855c69d
AB
1637 Return FALSE if no register can be chosen, which could happen when:
1638 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1639 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1640 that are used on the moving path. */
1641static bool
1642find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1643{
1644 static struct reg_rename reg_rename_data;
1645
1646 regset used_regs;
1647 def_list_t original_insns = NULL;
1648 bool reg_ok;
1649
1650 *is_orig_reg_p = false;
1651
1652 /* Don't bother to do anything if this insn doesn't set any registers. */
1653 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1654 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1655 return true;
1656
1657 used_regs = get_clear_regset_from_pool ();
1658 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1659
1660 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1661 &original_insns);
1662
e855c69d 1663 /* If after reload, make sure we're working with hard regs here. */
b2b29377 1664 if (flag_checking && reload_completed)
e855c69d
AB
1665 {
1666 reg_set_iterator rsi;
1667 unsigned i;
b8698a0f 1668
e855c69d
AB
1669 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1670 gcc_unreachable ();
1671 }
e855c69d
AB
1672
1673 if (EXPR_SEPARABLE_P (expr))
1674 {
1675 rtx best_reg = NULL_RTX;
1676 /* Check that we have computed availability of a target register
1677 correctly. */
1678 verify_target_availability (expr, used_regs, &reg_rename_data);
1679
1680 /* Turn everything in hard regs after reload. */
1681 if (reload_completed)
1682 {
1683 HARD_REG_SET hard_regs_used;
1684 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1685
1686 /* Join hard registers unavailable due to register class
1687 restrictions and live range intersection. */
1688 IOR_HARD_REG_SET (hard_regs_used,
1689 reg_rename_data.unavailable_hard_regs);
1690
1691 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1692 original_insns, is_orig_reg_p);
1693 }
1694 else
1695 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1696 original_insns, is_orig_reg_p);
1697
1698 if (!best_reg)
1699 reg_ok = false;
1700 else if (*is_orig_reg_p)
1701 {
1702 /* In case of unification BEST_REG may be different from EXPR's LHS
1703 when EXPR's LHS is unavailable, and there is another LHS among
1704 ORIGINAL_INSNS. */
1705 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1706 }
1707 else
1708 {
1709 /* Forbid renaming of low-cost insns. */
1710 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1711 reg_ok = false;
1712 else
1713 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1714 }
1715 }
1716 else
1717 {
1718 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1719 any of the HARD_REGS_USED set. */
1720 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1721 reg_rename_data.unavailable_hard_regs))
1722 {
1723 reg_ok = false;
1724 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1725 }
1726 else
1727 {
1728 reg_ok = true;
1729 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1730 }
1731 }
1732
1733 ilist_clear (&original_insns);
1734 return_regset_to_pool (used_regs);
1735
1736 return reg_ok;
1737}
1738\f
1739
1740/* Return true if dependence described by DS can be overcomed. */
1741static bool
1742can_speculate_dep_p (ds_t ds)
1743{
1744 if (spec_info == NULL)
1745 return false;
1746
1747 /* Leave only speculative data. */
1748 ds &= SPECULATIVE;
1749
1750 if (ds == 0)
1751 return false;
1752
1753 {
1754 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1755 that we can overcome. */
1756 ds_t spec_mask = spec_info->mask;
1757
1758 if ((ds & spec_mask) != ds)
1759 return false;
1760 }
1761
1762 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1763 return false;
1764
1765 return true;
1766}
1767
1768/* Get a speculation check instruction.
1769 C_EXPR is a speculative expression,
1770 CHECK_DS describes speculations that should be checked,
1771 ORIG_INSN is the original non-speculative insn in the stream. */
1772static insn_t
1773create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1774{
1775 rtx check_pattern;
eec818f4 1776 rtx_insn *insn_rtx;
e855c69d
AB
1777 insn_t insn;
1778 basic_block recovery_block;
ac44248e 1779 rtx_insn *label;
e855c69d
AB
1780
1781 /* Create a recovery block if target is going to emit branchy check, or if
1782 ORIG_INSN was speculative already. */
388092d5 1783 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1784 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1785 {
1786 recovery_block = sel_create_recovery_block (orig_insn);
1787 label = BB_HEAD (recovery_block);
1788 }
1789 else
1790 {
1791 recovery_block = NULL;
ac44248e 1792 label = NULL;
e855c69d
AB
1793 }
1794
1795 /* Get pattern of the check. */
1796 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1797 check_ds);
1798
1799 gcc_assert (check_pattern != NULL);
1800
1801 /* Emit check. */
1802 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1803
1804 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1805 INSN_SEQNO (orig_insn), orig_insn);
1806
1807 /* Make check to be non-speculative. */
1808 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1809 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1810
1811 /* Decrease priority of check by difference of load/check instruction
1812 latencies. */
1813 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1814 - sel_vinsn_cost (INSN_VINSN (insn)));
1815
1816 /* Emit copy of original insn (though with replaced target register,
1817 if needed) to the recovery block. */
1818 if (recovery_block != NULL)
1819 {
1820 rtx twin_rtx;
e855c69d
AB
1821
1822 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1823 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1124098b
JJ
1824 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1825 INSN_EXPR (orig_insn),
1826 INSN_SEQNO (insn),
1827 bb_note (recovery_block));
e855c69d
AB
1828 }
1829
1830 /* If we've generated a data speculation check, make sure
1831 that all the bookkeeping instruction we'll create during
1832 this move_op () will allocate an ALAT entry so that the
1833 check won't fail.
1834 In case of control speculation we must convert C_EXPR to control
1835 speculative mode, because failing to do so will bring us an exception
1836 thrown by the non-control-speculative load. */
1837 check_ds = ds_get_max_dep_weak (check_ds);
1838 speculate_expr (c_expr, check_ds);
b8698a0f 1839
e855c69d
AB
1840 return insn;
1841}
1842
1843/* True when INSN is a "regN = regN" copy. */
1844static bool
90831096 1845identical_copy_p (rtx_insn *insn)
e855c69d
AB
1846{
1847 rtx lhs, rhs, pat;
1848
1849 pat = PATTERN (insn);
1850
1851 if (GET_CODE (pat) != SET)
1852 return false;
1853
1854 lhs = SET_DEST (pat);
1855 if (!REG_P (lhs))
1856 return false;
1857
1858 rhs = SET_SRC (pat);
1859 if (!REG_P (rhs))
1860 return false;
1861
1862 return REGNO (lhs) == REGNO (rhs);
1863}
1864
b8698a0f 1865/* Undo all transformations on *AV_PTR that were done when
e855c69d
AB
1866 moving through INSN. */
1867static void
6144a836 1868undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
e855c69d
AB
1869{
1870 av_set_iterator av_iter;
1871 expr_t expr;
1872 av_set_t new_set = NULL;
1873
b8698a0f 1874 /* First, kill any EXPR that uses registers set by an insn. This is
e855c69d
AB
1875 required for correctness. */
1876 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1877 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
b8698a0f 1878 && bitmap_intersect_p (INSN_REG_SETS (insn),
e855c69d
AB
1879 VINSN_REG_USES (EXPR_VINSN (expr)))
1880 /* When an insn looks like 'r1 = r1', we could substitute through
1881 it, but the above condition will still hold. This happened with
b8698a0f 1882 gcc.c-torture/execute/961125-1.c. */
e855c69d
AB
1883 && !identical_copy_p (insn))
1884 {
1885 if (sched_verbose >= 6)
b8698a0f 1886 sel_print ("Expr %d removed due to use/set conflict\n",
e855c69d
AB
1887 INSN_UID (EXPR_INSN_RTX (expr)));
1888 av_set_iter_remove (&av_iter);
1889 }
1890
1891 /* Undo transformations looking at the history vector. */
1892 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1893 {
1894 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1895 insn, EXPR_VINSN (expr), true);
1896
1897 if (index >= 0)
1898 {
1899 expr_history_def *phist;
1900
9771b263 1901 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
e855c69d 1902
b8698a0f 1903 switch (phist->type)
e855c69d
AB
1904 {
1905 case TRANS_SPECULATION:
1906 {
1907 ds_t old_ds, new_ds;
b8698a0f 1908
e855c69d 1909 /* Compute the difference between old and new speculative
b8698a0f 1910 statuses: that's what we need to check.
e855c69d
AB
1911 Earlier we used to assert that the status will really
1912 change. This no longer works because only the probability
1913 bits in the status may have changed during compute_av_set,
b8698a0f
L
1914 and in the case of merging different probabilities of the
1915 same speculative status along different paths we do not
e855c69d
AB
1916 record this in the history vector. */
1917 old_ds = phist->spec_ds;
1918 new_ds = EXPR_SPEC_DONE_DS (expr);
1919
1920 old_ds &= SPECULATIVE;
1921 new_ds &= SPECULATIVE;
1922 new_ds &= ~old_ds;
b8698a0f 1923
e855c69d
AB
1924 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1925 break;
1926 }
1927 case TRANS_SUBSTITUTION:
1928 {
1929 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1930 vinsn_t new_vi;
1931 bool add = true;
b8698a0f 1932
e855c69d 1933 new_vi = phist->old_expr_vinsn;
b8698a0f
L
1934
1935 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e855c69d
AB
1936 == EXPR_SEPARABLE_P (expr));
1937 copy_expr (tmp_expr, expr);
1938
b8698a0f 1939 if (vinsn_equal_p (phist->new_expr_vinsn,
e855c69d
AB
1940 EXPR_VINSN (tmp_expr)))
1941 change_vinsn_in_expr (tmp_expr, new_vi);
1942 else
1943 /* This happens when we're unsubstituting on a bookkeeping
1944 copy, which was in turn substituted. The history is wrong
1945 in this case. Do it the hard way. */
1946 add = substitute_reg_in_expr (tmp_expr, insn, true);
1947 if (add)
1948 av_set_add (&new_set, tmp_expr);
1949 clear_expr (tmp_expr);
1950 break;
1951 }
1952 default:
1953 gcc_unreachable ();
1954 }
1955 }
b8698a0f 1956
e855c69d
AB
1957 }
1958
1959 av_set_union_and_clear (av_ptr, &new_set, NULL);
1960}
1961\f
1962
1963/* Moveup_* helpers for code motion and computing av sets. */
1964
1965/* Propagates EXPR inside an insn group through THROUGH_INSN.
b8698a0f 1966 The difference from the below function is that only substitution is
e855c69d
AB
1967 performed. */
1968static enum MOVEUP_EXPR_CODE
1969moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1970{
1971 vinsn_t vi = EXPR_VINSN (expr);
1972 ds_t *has_dep_p;
1973 ds_t full_ds;
1974
1975 /* Do this only inside insn group. */
1976 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1977
1978 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1979 if (full_ds == 0)
1980 return MOVEUP_EXPR_SAME;
1981
1982 /* Substitution is the possible choice in this case. */
1983 if (has_dep_p[DEPS_IN_RHS])
1984 {
1985 /* Can't substitute UNIQUE VINSNs. */
1986 gcc_assert (!VINSN_UNIQUE_P (vi));
b8698a0f
L
1987
1988 if (can_substitute_through_p (through_insn,
e855c69d
AB
1989 has_dep_p[DEPS_IN_RHS])
1990 && substitute_reg_in_expr (expr, through_insn, false))
1991 {
1992 EXPR_WAS_SUBSTITUTED (expr) = true;
1993 return MOVEUP_EXPR_CHANGED;
1994 }
1995
1996 /* Don't care about this, as even true dependencies may be allowed
1997 in an insn group. */
1998 return MOVEUP_EXPR_SAME;
1999 }
2000
2001 /* This can catch output dependencies in COND_EXECs. */
2002 if (has_dep_p[DEPS_IN_INSN])
2003 return MOVEUP_EXPR_NULL;
b8698a0f 2004
e855c69d
AB
2005 /* This is either an output or an anti dependence, which usually have
2006 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2007 will fix this. */
2008 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2009 return MOVEUP_EXPR_AS_RHS;
2010}
2011
2012/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2013#define CANT_MOVE_TRAPPING(expr, through_insn) \
2014 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2015 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2016 && !sel_insn_is_speculation_check (through_insn))
2017
2018/* True when a conflict on a target register was found during moveup_expr. */
2019static bool was_target_conflict = false;
2020
b5b8b0ac
AO
2021/* Return true when moving a debug INSN across THROUGH_INSN will
2022 create a bookkeeping block. We don't want to create such blocks,
2023 for they would cause codegen differences between compilations with
2024 and without debug info. */
2025
2026static bool
2027moving_insn_creates_bookkeeping_block_p (insn_t insn,
2028 insn_t through_insn)
2029{
2030 basic_block bbi, bbt;
2031 edge e1, e2;
2032 edge_iterator ei1, ei2;
2033
2034 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2035 {
2036 if (sched_verbose >= 9)
2037 sel_print ("no bookkeeping required: ");
2038 return FALSE;
2039 }
2040
2041 bbi = BLOCK_FOR_INSN (insn);
2042
2043 if (EDGE_COUNT (bbi->preds) == 1)
2044 {
2045 if (sched_verbose >= 9)
2046 sel_print ("only one pred edge: ");
2047 return TRUE;
2048 }
2049
2050 bbt = BLOCK_FOR_INSN (through_insn);
2051
2052 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2053 {
2054 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2055 {
2056 if (find_block_for_bookkeeping (e1, e2, TRUE))
2057 {
2058 if (sched_verbose >= 9)
2059 sel_print ("found existing block: ");
2060 return FALSE;
2061 }
2062 }
2063 }
2064
2065 if (sched_verbose >= 9)
2066 sel_print ("would create bookkeeping block: ");
2067
2068 return TRUE;
2069}
2070
b4979ab9
AB
2071/* Return true when the conflict with newly created implicit clobbers
2072 between EXPR and THROUGH_INSN is found because of renaming. */
2073static bool
2074implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2075{
2076 HARD_REG_SET temp;
eec818f4
DM
2077 rtx_insn *insn;
2078 rtx reg, rhs, pat;
b4979ab9
AB
2079 hard_reg_set_iterator hrsi;
2080 unsigned regno;
2081 bool valid;
2082
2083 /* Make a new pseudo register. */
2084 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2085 max_regno = max_reg_num ();
2086 maybe_extend_reg_info_p ();
2087
2088 /* Validate a change and bail out early. */
2089 insn = EXPR_INSN_RTX (expr);
2090 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2091 valid = verify_changes (0);
2092 cancel_changes (0);
2093 if (!valid)
2094 {
2095 if (sched_verbose >= 6)
2096 sel_print ("implicit clobbers failed validation, ");
2097 return true;
2098 }
2099
2100 /* Make a new insn with it. */
2101 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
f7df4a84 2102 pat = gen_rtx_SET (reg, rhs);
b4979ab9
AB
2103 start_sequence ();
2104 insn = emit_insn (pat);
2105 end_sequence ();
2106
2107 /* Calculate implicit clobbers. */
2108 extract_insn (insn);
1145837d 2109 preprocess_constraints (insn);
8f3f5ac0
L
2110 alternative_mask prefrred = get_preferred_alternatives (insn);
2111 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
b4979ab9
AB
2112 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2113
2114 /* If any implicit clobber registers intersect with regular ones in
2115 through_insn, we have a dependency and thus bail out. */
2116 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2117 {
2118 vinsn_t vi = INSN_VINSN (through_insn);
2119 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2120 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2122 return true;
2123 }
2124
2125 return false;
2126}
2127
e855c69d 2128/* Modifies EXPR so it can be moved through the THROUGH_INSN,
b8698a0f
L
2129 performing necessary transformations. Record the type of transformation
2130 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e855c69d 2131 permit all dependencies except true ones, and try to remove those
b8698a0f
L
2132 too via forward substitution. All cases when a non-eliminable
2133 non-zero cost dependency exists inside an insn group will be fixed
e855c69d
AB
2134 in tick_check_p instead. */
2135static enum MOVEUP_EXPR_CODE
2136moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2137 enum local_trans_type *ptrans_type)
2138{
2139 vinsn_t vi = EXPR_VINSN (expr);
2140 insn_t insn = VINSN_INSN_RTX (vi);
2141 bool was_changed = false;
2142 bool as_rhs = false;
2143 ds_t *has_dep_p;
2144 ds_t full_ds;
2145
48bb58b1
AO
2146 /* ??? We use dependencies of non-debug insns on debug insns to
2147 indicate that the debug insns need to be reset if the non-debug
2148 insn is pulled ahead of it. It's hard to figure out how to
2149 introduce such a notion in sel-sched, but it already fails to
2150 support debug insns in other ways, so we just go ahead and
2151 let the deug insns go corrupt for now. */
2152 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2153 return MOVEUP_EXPR_SAME;
2154
e855c69d
AB
2155 /* When inside_insn_group, delegate to the helper. */
2156 if (inside_insn_group)
2157 return moveup_expr_inside_insn_group (expr, through_insn);
2158
2159 /* Deal with unique insns and control dependencies. */
2160 if (VINSN_UNIQUE_P (vi))
2161 {
2162 /* We can move jumps without side-effects or jumps that are
2163 mutually exclusive with instruction THROUGH_INSN (all in cases
2164 dependencies allow to do so and jump is not speculative). */
2165 if (control_flow_insn_p (insn))
2166 {
2167 basic_block fallthru_bb;
2168
b8698a0f 2169 /* Do not move checks and do not move jumps through other
e855c69d
AB
2170 jumps. */
2171 if (control_flow_insn_p (through_insn)
2172 || sel_insn_is_speculation_check (insn))
2173 return MOVEUP_EXPR_NULL;
2174
2175 /* Don't move jumps through CFG joins. */
2176 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2177 return MOVEUP_EXPR_NULL;
2178
b8698a0f 2179 /* The jump should have a clear fallthru block, and
e855c69d
AB
2180 this block should be in the current region. */
2181 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2182 || ! in_current_region_p (fallthru_bb))
2183 return MOVEUP_EXPR_NULL;
b8698a0f 2184
eb277bf1
AM
2185 /* And it should be mutually exclusive with through_insn. */
2186 if (! sched_insns_conditions_mutex_p (insn, through_insn)
b5b8b0ac 2187 && ! DEBUG_INSN_P (through_insn))
e855c69d
AB
2188 return MOVEUP_EXPR_NULL;
2189 }
2190
2191 /* Don't move what we can't move. */
2192 if (EXPR_CANT_MOVE (expr)
2193 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2194 return MOVEUP_EXPR_NULL;
2195
2196 /* Don't move SCHED_GROUP instruction through anything.
2197 If we don't force this, then it will be possible to start
2198 scheduling a sched_group before all its dependencies are
2199 resolved.
2200 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2201 as late as possible through rank_for_schedule. */
2202 if (SCHED_GROUP_P (insn))
2203 return MOVEUP_EXPR_NULL;
2204 }
2205 else
2206 gcc_assert (!control_flow_insn_p (insn));
2207
b5b8b0ac
AO
2208 /* Don't move debug insns if this would require bookkeeping. */
2209 if (DEBUG_INSN_P (insn)
2210 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2211 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2212 return MOVEUP_EXPR_NULL;
2213
e855c69d
AB
2214 /* Deal with data dependencies. */
2215 was_target_conflict = false;
2216 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2217 if (full_ds == 0)
2218 {
2219 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2220 return MOVEUP_EXPR_SAME;
2221 }
2222 else
2223 {
b8698a0f 2224 /* We can move UNIQUE insn up only as a whole and unchanged,
e855c69d
AB
2225 so it shouldn't have any dependencies. */
2226 if (VINSN_UNIQUE_P (vi))
2227 return MOVEUP_EXPR_NULL;
2228 }
2229
2230 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2231 {
2232 int res;
2233
2234 res = speculate_expr (expr, full_ds);
2235 if (res >= 0)
2236 {
2237 /* Speculation was successful. */
2238 full_ds = 0;
2239 was_changed = (res > 0);
2240 if (res == 2)
2241 was_target_conflict = true;
2242 if (ptrans_type)
2243 *ptrans_type = TRANS_SPECULATION;
2244 sel_clear_has_dependence ();
2245 }
2246 }
2247
2248 if (has_dep_p[DEPS_IN_INSN])
2249 /* We have some dependency that cannot be discarded. */
2250 return MOVEUP_EXPR_NULL;
2251
2252 if (has_dep_p[DEPS_IN_LHS])
b8698a0f 2253 {
e855c69d 2254 /* Only separable insns can be moved up with the new register.
b8698a0f 2255 Anyways, we should mark that the original register is
e855c69d
AB
2256 unavailable. */
2257 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2258 return MOVEUP_EXPR_NULL;
2259
b4979ab9
AB
2260 /* When renaming a hard register to a pseudo before reload, extra
2261 dependencies can occur from the implicit clobbers of the insn.
2262 Filter out such cases here. */
2263 if (!reload_completed && REG_P (EXPR_LHS (expr))
2264 && HARD_REGISTER_P (EXPR_LHS (expr))
2265 && implicit_clobber_conflict_p (through_insn, expr))
2266 {
2267 if (sched_verbose >= 6)
2268 sel_print ("implicit clobbers conflict detected, ");
2269 return MOVEUP_EXPR_NULL;
2270 }
e855c69d
AB
2271 EXPR_TARGET_AVAILABLE (expr) = false;
2272 was_target_conflict = true;
2273 as_rhs = true;
2274 }
2275
2276 /* At this point we have either separable insns, that will be lifted
2277 up only as RHSes, or non-separable insns with no dependency in lhs.
2278 If dependency is in RHS, then try to perform substitution and move up
2279 substituted RHS:
2280
2281 Ex. 1: Ex.2
2282 y = x; y = x;
2283 z = y*2; y = y*2;
2284
b8698a0f 2285 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e855c69d
AB
2286 moved above y=x assignment as z=x*2.
2287
b8698a0f 2288 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e855c69d
AB
2289 side can be moved because of the output dependency. The operation was
2290 cropped to its rhs above. */
2291 if (has_dep_p[DEPS_IN_RHS])
2292 {
2293 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2294
2295 /* Can't substitute UNIQUE VINSNs. */
2296 gcc_assert (!VINSN_UNIQUE_P (vi));
2297
2298 if (can_speculate_dep_p (*rhs_dsp))
2299 {
2300 int res;
b8698a0f 2301
e855c69d
AB
2302 res = speculate_expr (expr, *rhs_dsp);
2303 if (res >= 0)
2304 {
2305 /* Speculation was successful. */
2306 *rhs_dsp = 0;
2307 was_changed = (res > 0);
2308 if (res == 2)
2309 was_target_conflict = true;
2310 if (ptrans_type)
2311 *ptrans_type = TRANS_SPECULATION;
2312 }
2313 else
2314 return MOVEUP_EXPR_NULL;
2315 }
2316 else if (can_substitute_through_p (through_insn,
2317 *rhs_dsp)
2318 && substitute_reg_in_expr (expr, through_insn, false))
2319 {
2320 /* ??? We cannot perform substitution AND speculation on the same
2321 insn. */
2322 gcc_assert (!was_changed);
2323 was_changed = true;
2324 if (ptrans_type)
2325 *ptrans_type = TRANS_SUBSTITUTION;
2326 EXPR_WAS_SUBSTITUTED (expr) = true;
2327 }
2328 else
2329 return MOVEUP_EXPR_NULL;
2330 }
2331
2332 /* Don't move trapping insns through jumps.
2333 This check should be at the end to give a chance to control speculation
2334 to perform its duties. */
2335 if (CANT_MOVE_TRAPPING (expr, through_insn))
2336 return MOVEUP_EXPR_NULL;
2337
b8698a0f
L
2338 return (was_changed
2339 ? MOVEUP_EXPR_CHANGED
2340 : (as_rhs
e855c69d
AB
2341 ? MOVEUP_EXPR_AS_RHS
2342 : MOVEUP_EXPR_SAME));
2343}
2344
b8698a0f 2345/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d
AB
2346 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2347 that can exist within a parallel group. Write to RES the resulting
2348 code for moveup_expr. */
b8698a0f 2349static bool
e855c69d
AB
2350try_bitmap_cache (expr_t expr, insn_t insn,
2351 bool inside_insn_group,
2352 enum MOVEUP_EXPR_CODE *res)
2353{
2354 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
b8698a0f 2355
e855c69d
AB
2356 /* First check whether we've analyzed this situation already. */
2357 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2358 {
2359 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2360 {
2361 if (sched_verbose >= 6)
2362 sel_print ("removed (cached)\n");
2363 *res = MOVEUP_EXPR_NULL;
2364 return true;
2365 }
2366 else
2367 {
2368 if (sched_verbose >= 6)
2369 sel_print ("unchanged (cached)\n");
2370 *res = MOVEUP_EXPR_SAME;
2371 return true;
2372 }
2373 }
2374 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2375 {
2376 if (inside_insn_group)
2377 {
2378 if (sched_verbose >= 6)
2379 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2380 *res = MOVEUP_EXPR_SAME;
2381 return true;
b8698a0f 2382
e855c69d
AB
2383 }
2384 else
2385 EXPR_TARGET_AVAILABLE (expr) = false;
2386
b8698a0f
L
2387 /* This is the only case when propagation result can change over time,
2388 as we can dynamically switch off scheduling as RHS. In this case,
e855c69d
AB
2389 just check the flag to reach the correct decision. */
2390 if (enable_schedule_as_rhs_p)
2391 {
2392 if (sched_verbose >= 6)
2393 sel_print ("unchanged (as RHS, cached)\n");
2394 *res = MOVEUP_EXPR_AS_RHS;
2395 return true;
2396 }
2397 else
2398 {
2399 if (sched_verbose >= 6)
2400 sel_print ("removed (cached as RHS, but renaming"
2401 " is now disabled)\n");
2402 *res = MOVEUP_EXPR_NULL;
2403 return true;
2404 }
2405 }
2406
2407 return false;
2408}
2409
b8698a0f 2410/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d 2411 if successful. Write to RES the resulting code for moveup_expr. */
b8698a0f 2412static bool
e855c69d
AB
2413try_transformation_cache (expr_t expr, insn_t insn,
2414 enum MOVEUP_EXPR_CODE *res)
2415{
b8698a0f 2416 struct transformed_insns *pti
e855c69d
AB
2417 = (struct transformed_insns *)
2418 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
b8698a0f 2419 &EXPR_VINSN (expr),
e855c69d
AB
2420 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2421 if (pti)
2422 {
b8698a0f
L
2423 /* This EXPR was already moved through this insn and was
2424 changed as a result. Fetch the proper data from
e855c69d 2425 the hashtable. */
b8698a0f
L
2426 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2427 INSN_UID (insn), pti->type,
2428 pti->vinsn_old, pti->vinsn_new,
e855c69d 2429 EXPR_SPEC_DONE_DS (expr));
b8698a0f 2430
e855c69d
AB
2431 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2432 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2433 change_vinsn_in_expr (expr, pti->vinsn_new);
2434 if (pti->was_target_conflict)
2435 EXPR_TARGET_AVAILABLE (expr) = false;
2436 if (pti->type == TRANS_SPECULATION)
2437 {
e855c69d
AB
2438 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2439 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2440 }
2441
2442 if (sched_verbose >= 6)
2443 {
2444 sel_print ("changed (cached): ");
2445 dump_expr (expr);
2446 sel_print ("\n");
2447 }
2448
2449 *res = MOVEUP_EXPR_CHANGED;
2450 return true;
2451 }
2452
2453 return false;
2454}
2455
2456/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2457static void
b8698a0f 2458update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e855c69d
AB
2459 enum MOVEUP_EXPR_CODE res)
2460{
2461 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2462
b8698a0f 2463 /* Do not cache result of propagating jumps through an insn group,
e855c69d
AB
2464 as it is always true, which is not useful outside the group. */
2465 if (inside_insn_group)
2466 return;
b8698a0f 2467
e855c69d
AB
2468 if (res == MOVEUP_EXPR_NULL)
2469 {
2470 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2471 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2472 }
2473 else if (res == MOVEUP_EXPR_SAME)
2474 {
2475 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2476 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2477 }
2478 else if (res == MOVEUP_EXPR_AS_RHS)
2479 {
2480 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2481 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2482 }
2483 else
2484 gcc_unreachable ();
2485}
2486
2487/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2488 and transformation type TRANS_TYPE. */
2489static void
b8698a0f 2490update_transformation_cache (expr_t expr, insn_t insn,
e855c69d 2491 bool inside_insn_group,
b8698a0f 2492 enum local_trans_type trans_type,
e855c69d
AB
2493 vinsn_t expr_old_vinsn)
2494{
2495 struct transformed_insns *pti;
2496
2497 if (inside_insn_group)
2498 return;
b8698a0f 2499
e855c69d
AB
2500 pti = XNEW (struct transformed_insns);
2501 pti->vinsn_old = expr_old_vinsn;
2502 pti->vinsn_new = EXPR_VINSN (expr);
2503 pti->type = trans_type;
2504 pti->was_target_conflict = was_target_conflict;
2505 pti->ds = EXPR_SPEC_DONE_DS (expr);
2506 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2507 vinsn_attach (pti->vinsn_old);
2508 vinsn_attach (pti->vinsn_new);
b8698a0f 2509 *((struct transformed_insns **)
e855c69d
AB
2510 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2511 pti, VINSN_HASH_RTX (expr_old_vinsn),
2512 INSERT)) = pti;
2513}
2514
b8698a0f 2515/* Same as moveup_expr, but first looks up the result of
e855c69d
AB
2516 transformation in caches. */
2517static enum MOVEUP_EXPR_CODE
2518moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2519{
2520 enum MOVEUP_EXPR_CODE res;
2521 bool got_answer = false;
2522
2523 if (sched_verbose >= 6)
2524 {
b8698a0f 2525 sel_print ("Moving ");
e855c69d
AB
2526 dump_expr (expr);
2527 sel_print (" through %d: ", INSN_UID (insn));
2528 }
2529
b5b8b0ac
AO
2530 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2531 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2532 == EXPR_INSN_RTX (expr)))
2533 /* Don't use cached information for debug insns that are heads of
2534 basic blocks. */;
2535 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e855c69d
AB
2536 /* When inside insn group, we do not want remove stores conflicting
2537 with previosly issued loads. */
2538 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2539 else if (try_transformation_cache (expr, insn, &res))
2540 got_answer = true;
2541
2542 if (! got_answer)
2543 {
2544 /* Invoke moveup_expr and record the results. */
2545 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2546 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2547 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2548 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2549 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2550
b8698a0f 2551 /* ??? Invent something better than this. We can't allow old_vinsn
e855c69d
AB
2552 to go, we need it for the history vector. */
2553 vinsn_attach (expr_old_vinsn);
2554
2555 res = moveup_expr (expr, insn, inside_insn_group,
2556 &trans_type);
2557 switch (res)
2558 {
2559 case MOVEUP_EXPR_NULL:
2560 update_bitmap_cache (expr, insn, inside_insn_group, res);
2561 if (sched_verbose >= 6)
2562 sel_print ("removed\n");
2563 break;
2564
2565 case MOVEUP_EXPR_SAME:
2566 update_bitmap_cache (expr, insn, inside_insn_group, res);
2567 if (sched_verbose >= 6)
2568 sel_print ("unchanged\n");
2569 break;
2570
2571 case MOVEUP_EXPR_AS_RHS:
2572 gcc_assert (!unique_p || inside_insn_group);
2573 update_bitmap_cache (expr, insn, inside_insn_group, res);
2574 if (sched_verbose >= 6)
2575 sel_print ("unchanged (as RHS)\n");
2576 break;
2577
2578 case MOVEUP_EXPR_CHANGED:
2579 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2580 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
b8698a0f
L
2581 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2582 INSN_UID (insn), trans_type,
2583 expr_old_vinsn, EXPR_VINSN (expr),
e855c69d
AB
2584 expr_old_spec_ds);
2585 update_transformation_cache (expr, insn, inside_insn_group,
2586 trans_type, expr_old_vinsn);
2587 if (sched_verbose >= 6)
2588 {
2589 sel_print ("changed: ");
2590 dump_expr (expr);
2591 sel_print ("\n");
2592 }
2593 break;
2594 default:
2595 gcc_unreachable ();
2596 }
2597
2598 vinsn_detach (expr_old_vinsn);
2599 }
2600
2601 return res;
2602}
2603
b8698a0f 2604/* Moves an av set AVP up through INSN, performing necessary
e855c69d
AB
2605 transformations. */
2606static void
2607moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2608{
2609 av_set_iterator i;
2610 expr_t expr;
2611
b8698a0f
L
2612 FOR_EACH_EXPR_1 (expr, i, avp)
2613 {
2614
e855c69d
AB
2615 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2616 {
2617 case MOVEUP_EXPR_SAME:
2618 case MOVEUP_EXPR_AS_RHS:
2619 break;
2620
2621 case MOVEUP_EXPR_NULL:
2622 av_set_iter_remove (&i);
2623 break;
2624
2625 case MOVEUP_EXPR_CHANGED:
2626 expr = merge_with_other_exprs (avp, &i, expr);
2627 break;
b8698a0f 2628
e855c69d
AB
2629 default:
2630 gcc_unreachable ();
2631 }
2632 }
2633}
2634
2635/* Moves AVP set along PATH. */
2636static void
2637moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2638{
2639 int last_cycle;
b8698a0f 2640
e855c69d
AB
2641 if (sched_verbose >= 6)
2642 sel_print ("Moving expressions up in the insn group...\n");
2643 if (! path)
2644 return;
2645 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
b8698a0f 2646 while (path
e855c69d
AB
2647 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2648 {
2649 moveup_set_expr (avp, ILIST_INSN (path), true);
2650 path = ILIST_NEXT (path);
2651 }
2652}
2653
2654/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2655static bool
2656equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2657{
2658 expr_def _tmp, *tmp = &_tmp;
2659 int last_cycle;
2660 bool res = true;
2661
2662 copy_expr_onside (tmp, expr);
2663 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
b8698a0f 2664 while (path
e855c69d
AB
2665 && res
2666 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2667 {
b8698a0f 2668 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e855c69d
AB
2669 != MOVEUP_EXPR_NULL);
2670 path = ILIST_NEXT (path);
2671 }
2672
2673 if (res)
2674 {
2675 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2676 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2677
2678 if (tmp_vinsn != expr_vliw_vinsn)
2679 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2680 }
2681
2682 clear_expr (tmp);
2683 return res;
2684}
2685\f
2686
2687/* Functions that compute av and lv sets. */
2688
b8698a0f 2689/* Returns true if INSN is not a downward continuation of the given path P in
e855c69d
AB
2690 the current stage. */
2691static bool
2692is_ineligible_successor (insn_t insn, ilist_t p)
2693{
2694 insn_t prev_insn;
2695
2696 /* Check if insn is not deleted. */
2697 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2698 gcc_unreachable ();
2699 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701
2702 /* If it's the first insn visited, then the successor is ok. */
2703 if (!p)
2704 return false;
2705
2706 prev_insn = ILIST_INSN (p);
2707
2708 if (/* a backward edge. */
2709 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2710 /* is already visited. */
2711 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2712 && (ilist_is_in_p (p, insn)
b8698a0f
L
2713 /* We can reach another fence here and still seqno of insn
2714 would be equal to seqno of prev_insn. This is possible
e855c69d
AB
2715 when prev_insn is a previously created bookkeeping copy.
2716 In that case it'd get a seqno of insn. Thus, check here
2717 whether insn is in current fence too. */
2718 || IN_CURRENT_FENCE_P (insn)))
2719 /* Was already scheduled on this round. */
2720 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2721 && IN_CURRENT_FENCE_P (insn))
b8698a0f
L
2722 /* An insn from another fence could also be
2723 scheduled earlier even if this insn is not in
e855c69d
AB
2724 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2725 || (!pipelining_p
2726 && INSN_SCHED_TIMES (insn) > 0))
2727 return true;
2728 else
2729 return false;
2730}
2731
b8698a0f
L
2732/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2733 of handling multiple successors and properly merging its av_sets. P is
2734 the current path traversed. WS is the size of lookahead window.
e855c69d
AB
2735 Return the av set computed. */
2736static av_set_t
2737compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2738{
2739 struct succs_info *sinfo;
2740 av_set_t expr_in_all_succ_branches = NULL;
2741 int is;
2742 insn_t succ, zero_succ = NULL;
2743 av_set_t av1 = NULL;
2744
2745 gcc_assert (sel_bb_end_p (insn));
2746
b8698a0f 2747 /* Find different kind of successors needed for correct computing of
e855c69d
AB
2748 SPEC and TARGET_AVAILABLE attributes. */
2749 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2750
2751 /* Debug output. */
2752 if (sched_verbose >= 6)
2753 {
2754 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2755 dump_insn_vector (sinfo->succs_ok);
2756 sel_print ("\n");
2757 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2758 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2759 }
2760
dd5a833e 2761 /* Add insn to the tail of current path. */
e855c69d
AB
2762 ilist_add (&p, insn);
2763
9771b263 2764 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e855c69d
AB
2765 {
2766 av_set_t succ_set;
2767
2768 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2769 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2770
b8698a0f 2771 av_set_split_usefulness (succ_set,
9771b263 2772 sinfo->probs_ok[is],
e855c69d
AB
2773 sinfo->all_prob);
2774
c6486552 2775 if (sinfo->all_succs_n > 1)
e855c69d 2776 {
b8698a0f 2777 /* Find EXPR'es that came from *all* successors and save them
e855c69d
AB
2778 into expr_in_all_succ_branches. This set will be used later
2779 for calculating speculation attributes of EXPR'es. */
2780 if (is == 0)
2781 {
2782 expr_in_all_succ_branches = av_set_copy (succ_set);
2783
2784 /* Remember the first successor for later. */
2785 zero_succ = succ;
2786 }
2787 else
2788 {
2789 av_set_iterator i;
2790 expr_t expr;
b8698a0f 2791
e855c69d
AB
2792 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2793 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2794 av_set_iter_remove (&i);
2795 }
2796 }
2797
2798 /* Union the av_sets. Check liveness restrictions on target registers
2799 in special case of two successors. */
2800 if (sinfo->succs_ok_n == 2 && is == 1)
2801 {
2802 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2803 basic_block bb1 = BLOCK_FOR_INSN (succ);
2804
2805 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
b8698a0f 2806 av_set_union_and_live (&av1, &succ_set,
e855c69d
AB
2807 BB_LV_SET (bb0),
2808 BB_LV_SET (bb1),
2809 insn);
2810 }
2811 else
2812 av_set_union_and_clear (&av1, &succ_set, insn);
2813 }
2814
b8698a0f 2815 /* Check liveness restrictions via hard way when there are more than
e855c69d
AB
2816 two successors. */
2817 if (sinfo->succs_ok_n > 2)
9771b263 2818 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
e855c69d
AB
2819 {
2820 basic_block succ_bb = BLOCK_FOR_INSN (succ);
b8698a0f 2821
e855c69d 2822 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
b8698a0f 2823 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
e855c69d
AB
2824 BB_LV_SET (succ_bb));
2825 }
b8698a0f
L
2826
2827 /* Finally, check liveness restrictions on paths leaving the region. */
e855c69d 2828 if (sinfo->all_succs_n > sinfo->succs_ok_n)
9771b263 2829 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
b8698a0f 2830 mark_unavailable_targets
e855c69d
AB
2831 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2832
2833 if (sinfo->all_succs_n > 1)
2834 {
2835 av_set_iterator i;
2836 expr_t expr;
2837
b8698a0f 2838 /* Increase the spec attribute of all EXPR'es that didn't come
e855c69d
AB
2839 from all successors. */
2840 FOR_EACH_EXPR (expr, i, av1)
2841 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2842 EXPR_SPEC (expr)++;
2843
2844 av_set_clear (&expr_in_all_succ_branches);
b8698a0f
L
2845
2846 /* Do not move conditional branches through other
2847 conditional branches. So, remove all conditional
e855c69d
AB
2848 branches from av_set if current operator is a conditional
2849 branch. */
2850 av_set_substract_cond_branches (&av1);
2851 }
b8698a0f 2852
e855c69d
AB
2853 ilist_remove (&p);
2854 free_succs_info (sinfo);
2855
2856 if (sched_verbose >= 6)
2857 {
2858 sel_print ("av_succs (%d): ", INSN_UID (insn));
2859 dump_av_set (av1);
2860 sel_print ("\n");
2861 }
2862
2863 return av1;
2864}
2865
b8698a0f
L
2866/* This function computes av_set for the FIRST_INSN by dragging valid
2867 av_set through all basic block insns either from the end of basic block
2868 (computed using compute_av_set_at_bb_end) or from the insn on which
e855c69d
AB
2869 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2870 below the basic block and handling conditional branches.
2871 FIRST_INSN - the basic block head, P - path consisting of the insns
2872 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2873 and bb ends are added to the path), WS - current window size,
2874 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2875static av_set_t
b8698a0f 2876compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e855c69d
AB
2877 bool need_copy_p)
2878{
2879 insn_t cur_insn;
2880 int end_ws = ws;
2881 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2882 insn_t after_bb_end = NEXT_INSN (bb_end);
2883 insn_t last_insn;
2884 av_set_t av = NULL;
2885 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2886
2887 /* Return NULL if insn is not on the legitimate downward path. */
2888 if (is_ineligible_successor (first_insn, p))
2889 {
2890 if (sched_verbose >= 6)
2891 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2892
2893 return NULL;
2894 }
2895
b8698a0f 2896 /* If insn already has valid av(insn) computed, just return it. */
e855c69d
AB
2897 if (AV_SET_VALID_P (first_insn))
2898 {
2899 av_set_t av_set;
2900
2901 if (sel_bb_head_p (first_insn))
2902 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2903 else
2904 av_set = NULL;
2905
2906 if (sched_verbose >= 6)
2907 {
2908 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2909 dump_av_set (av_set);
2910 sel_print ("\n");
2911 }
2912
2913 return need_copy_p ? av_set_copy (av_set) : av_set;
2914 }
2915
2916 ilist_add (&p, first_insn);
2917
2918 /* As the result after this loop have completed, in LAST_INSN we'll
b8698a0f
L
2919 have the insn which has valid av_set to start backward computation
2920 from: it either will be NULL because on it the window size was exceeded
2921 or other valid av_set as returned by compute_av_set for the last insn
e855c69d
AB
2922 of the basic block. */
2923 for (last_insn = first_insn; last_insn != after_bb_end;
2924 last_insn = NEXT_INSN (last_insn))
2925 {
2926 /* We may encounter valid av_set not only on bb_head, but also on
2927 those insns on which previously MAX_WS was exceeded. */
2928 if (AV_SET_VALID_P (last_insn))
2929 {
2930 if (sched_verbose >= 6)
2931 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2932 break;
2933 }
2934
2935 /* The special case: the last insn of the BB may be an
2936 ineligible_successor due to its SEQ_NO that was set on
2937 it as a bookkeeping. */
b8698a0f 2938 if (last_insn != first_insn
e855c69d
AB
2939 && is_ineligible_successor (last_insn, p))
2940 {
2941 if (sched_verbose >= 6)
2942 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
b8698a0f 2943 break;
e855c69d
AB
2944 }
2945
b5b8b0ac
AO
2946 if (DEBUG_INSN_P (last_insn))
2947 continue;
2948
e855c69d
AB
2949 if (end_ws > max_ws)
2950 {
b8698a0f 2951 /* We can reach max lookahead size at bb_header, so clean av_set
e855c69d
AB
2952 first. */
2953 INSN_WS_LEVEL (last_insn) = global_level;
2954
2955 if (sched_verbose >= 6)
2956 sel_print ("Insn %d is beyond the software lookahead window size\n",
2957 INSN_UID (last_insn));
2958 break;
2959 }
2960
2961 end_ws++;
2962 }
2963
2964 /* Get the valid av_set into AV above the LAST_INSN to start backward
2965 computation from. It either will be empty av_set or av_set computed from
2966 the successors on the last insn of the current bb. */
2967 if (last_insn != after_bb_end)
2968 {
2969 av = NULL;
2970
b8698a0f 2971 /* This is needed only to obtain av_sets that are identical to
e855c69d
AB
2972 those computed by the old compute_av_set version. */
2973 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2974 av_set_add (&av, INSN_EXPR (last_insn));
2975 }
2976 else
2977 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2978 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2979
2980 /* Compute av_set in AV starting from below the LAST_INSN up to
2981 location above the FIRST_INSN. */
2982 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
b8698a0f 2983 cur_insn = PREV_INSN (cur_insn))
e855c69d
AB
2984 if (!INSN_NOP_P (cur_insn))
2985 {
2986 expr_t expr;
b8698a0f 2987
e855c69d 2988 moveup_set_expr (&av, cur_insn, false);
b8698a0f
L
2989
2990 /* If the expression for CUR_INSN is already in the set,
e855c69d 2991 replace it by the new one. */
b8698a0f 2992 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e855c69d
AB
2993 if (expr != NULL)
2994 {
2995 clear_expr (expr);
2996 copy_expr (expr, INSN_EXPR (cur_insn));
2997 }
2998 else
2999 av_set_add (&av, INSN_EXPR (cur_insn));
3000 }
3001
3002 /* Clear stale bb_av_set. */
3003 if (sel_bb_head_p (first_insn))
3004 {
3005 av_set_clear (&BB_AV_SET (cur_bb));
3006 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3007 BB_AV_LEVEL (cur_bb) = global_level;
3008 }
3009
3010 if (sched_verbose >= 6)
3011 {
3012 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3013 dump_av_set (av);
3014 sel_print ("\n");
3015 }
3016
3017 ilist_remove (&p);
3018 return av;
3019}
3020
3021/* Compute av set before INSN.
3022 INSN - the current operation (actual rtx INSN)
3023 P - the current path, which is list of insns visited so far
3024 WS - software lookahead window size.
3025 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3026 if we want to save computed av_set in s_i_d, we should make a copy of it.
3027
3028 In the resulting set we will have only expressions that don't have delay
3029 stalls and nonsubstitutable dependences. */
3030static av_set_t
3031compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3032{
3033 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3034}
3035
3036/* Propagate a liveness set LV through INSN. */
3037static void
3038propagate_lv_set (regset lv, insn_t insn)
3039{
3040 gcc_assert (INSN_P (insn));
3041
3042 if (INSN_NOP_P (insn))
3043 return;
3044
02b47899 3045 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
3046}
3047
3048/* Return livness set at the end of BB. */
3049static regset
3050compute_live_after_bb (basic_block bb)
3051{
3052 edge e;
3053 edge_iterator ei;
3054 regset lv = get_clear_regset_from_pool ();
3055
3056 gcc_assert (!ignore_first);
3057
3058 FOR_EACH_EDGE (e, ei, bb->succs)
3059 if (sel_bb_empty_p (e->dest))
3060 {
3061 if (! BB_LV_SET_VALID_P (e->dest))
3062 {
3063 gcc_unreachable ();
3064 gcc_assert (BB_LV_SET (e->dest) == NULL);
3065 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3066 BB_LV_SET_VALID_P (e->dest) = true;
3067 }
3068 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3069 }
3070 else
3071 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3072
3073 return lv;
3074}
3075
3076/* Compute the set of all live registers at the point before INSN and save
3077 it at INSN if INSN is bb header. */
3078regset
3079compute_live (insn_t insn)
3080{
3081 basic_block bb = BLOCK_FOR_INSN (insn);
3082 insn_t final, temp;
3083 regset lv;
3084
3085 /* Return the valid set if we're already on it. */
3086 if (!ignore_first)
3087 {
3088 regset src = NULL;
b8698a0f 3089
e855c69d
AB
3090 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3091 src = BB_LV_SET (bb);
b8698a0f 3092 else
e855c69d
AB
3093 {
3094 gcc_assert (in_current_region_p (bb));
3095 if (INSN_LIVE_VALID_P (insn))
3096 src = INSN_LIVE (insn);
3097 }
b8698a0f 3098
e855c69d
AB
3099 if (src)
3100 {
3101 lv = get_regset_from_pool ();
3102 COPY_REG_SET (lv, src);
3103
3104 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3105 {
3106 COPY_REG_SET (BB_LV_SET (bb), lv);
3107 BB_LV_SET_VALID_P (bb) = true;
3108 }
b8698a0f 3109
e855c69d
AB
3110 return_regset_to_pool (lv);
3111 return lv;
3112 }
3113 }
3114
3115 /* We've skipped the wrong lv_set. Don't skip the right one. */
3116 ignore_first = false;
3117 gcc_assert (in_current_region_p (bb));
3118
b8698a0f
L
3119 /* Find a valid LV set in this block or below, if needed.
3120 Start searching from the next insn: either ignore_first is true, or
e855c69d
AB
3121 INSN doesn't have a correct live set. */
3122 temp = NEXT_INSN (insn);
3123 final = NEXT_INSN (BB_END (bb));
3124 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3125 temp = NEXT_INSN (temp);
3126 if (temp == final)
3127 {
3128 lv = compute_live_after_bb (bb);
3129 temp = PREV_INSN (temp);
3130 }
3131 else
3132 {
3133 lv = get_regset_from_pool ();
3134 COPY_REG_SET (lv, INSN_LIVE (temp));
3135 }
3136
3137 /* Put correct lv sets on the insns which have bad sets. */
3138 final = PREV_INSN (insn);
3139 while (temp != final)
3140 {
3141 propagate_lv_set (lv, temp);
3142 COPY_REG_SET (INSN_LIVE (temp), lv);
3143 INSN_LIVE_VALID_P (temp) = true;
3144 temp = PREV_INSN (temp);
3145 }
3146
3147 /* Also put it in a BB. */
3148 if (sel_bb_head_p (insn))
3149 {
3150 basic_block bb = BLOCK_FOR_INSN (insn);
b8698a0f 3151
e855c69d
AB
3152 COPY_REG_SET (BB_LV_SET (bb), lv);
3153 BB_LV_SET_VALID_P (bb) = true;
3154 }
b8698a0f 3155
e855c69d
AB
3156 /* We return LV to the pool, but will not clear it there. Thus we can
3157 legimatelly use LV till the next use of regset_pool_get (). */
3158 return_regset_to_pool (lv);
3159 return lv;
3160}
3161
3162/* Update liveness sets for INSN. */
3163static inline void
6144a836 3164update_liveness_on_insn (rtx_insn *insn)
e855c69d
AB
3165{
3166 ignore_first = true;
3167 compute_live (insn);
3168}
3169
3170/* Compute liveness below INSN and write it into REGS. */
3171static inline void
6144a836 3172compute_live_below_insn (rtx_insn *insn, regset regs)
e855c69d 3173{
6144a836 3174 rtx_insn *succ;
e855c69d 3175 succ_iterator si;
b8698a0f
L
3176
3177 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e855c69d
AB
3178 IOR_REG_SET (regs, compute_live (succ));
3179}
3180
3181/* Update the data gathered in av and lv sets starting from INSN. */
3182static void
6144a836 3183update_data_sets (rtx_insn *insn)
e855c69d
AB
3184{
3185 update_liveness_on_insn (insn);
3186 if (sel_bb_head_p (insn))
3187 {
3188 gcc_assert (AV_LEVEL (insn) != 0);
3189 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3190 compute_av_set (insn, NULL, 0, 0);
3191 }
3192}
3193\f
3194
3195/* Helper for move_op () and find_used_regs ().
3196 Return speculation type for which a check should be created on the place
3197 of INSN. EXPR is one of the original ops we are searching for. */
3198static ds_t
3199get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3200{
3201 ds_t to_check_ds;
3202 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3203
3204 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3205
3206 if (targetm.sched.get_insn_checked_ds)
3207 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3208
3209 if (spec_info != NULL
3210 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3211 already_checked_ds |= BEGIN_CONTROL;
3212
3213 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3214
3215 to_check_ds &= ~already_checked_ds;
3216
3217 return to_check_ds;
3218}
3219
b8698a0f 3220/* Find the set of registers that are unavailable for storing expres
e855c69d
AB
3221 while moving ORIG_OPS up on the path starting from INSN due to
3222 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3223
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3226
3227 REG_RENAME_P denotes the set of hardware registers that
3228 can not be used with renaming due to the register class restrictions,
b8698a0f 3229 mode restrictions and other (the register we'll choose should be
e855c69d
AB
3230 compatible class with the original uses, shouldn't be in call_used_regs,
3231 should be HARD_REGNO_RENAME_OK etc).
3232
3233 Returns TRUE if we've found all original insns, FALSE otherwise.
3234
3235 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
b8698a0f
L
3236 to traverse the code motion paths. This helper function finds registers
3237 that are not available for storing expres while moving ORIG_OPS up on the
e855c69d
AB
3238 path starting from INSN. A register considered as used on the moving path,
3239 if one of the following conditions is not satisfied:
3240
b8698a0f
L
3241 (1) a register not set or read on any path from xi to an instance of
3242 the original operation,
3243 (2) not among the live registers of the point immediately following the
e855c69d
AB
3244 first original operation on a given downward path, except for the
3245 original target register of the operation,
b8698a0f 3246 (3) not live on the other path of any conditional branch that is passed
e855c69d
AB
3247 by the operation, in case original operations are not present on
3248 both paths of the conditional branch.
3249
3250 All the original operations found during the traversal are saved in the
3251 ORIGINAL_INSNS list.
3252
b8698a0f
L
3253 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3254 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e855c69d
AB
3255 to unavailable hard regs at the point original operation is found. */
3256
3257static bool
3258find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3259 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3260{
3261 def_list_iterator i;
3262 def_t def;
3263 int res;
3264 bool needs_spec_check_p = false;
3265 expr_t expr;
3266 av_set_iterator expr_iter;
3267 struct fur_static_params sparams;
3268 struct cmpd_local_params lparams;
3269
3270 /* We haven't visited any blocks yet. */
3271 bitmap_clear (code_motion_visited_blocks);
3272
3273 /* Init parameters for code_motion_path_driver. */
3274 sparams.crosses_call = false;
3275 sparams.original_insns = original_insns;
3276 sparams.used_regs = used_regs;
b8698a0f 3277
e855c69d
AB
3278 /* Set the appropriate hooks and data. */
3279 code_motion_path_driver_info = &fur_hooks;
b8698a0f 3280
e855c69d
AB
3281 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3282
3283 reg_rename_p->crosses_call |= sparams.crosses_call;
3284
3285 gcc_assert (res == 1);
3286 gcc_assert (original_insns && *original_insns);
3287
3288 /* ??? We calculate whether an expression needs a check when computing
3289 av sets. This information is not as precise as it could be due to
3290 merging this bit in merge_expr. We can do better in find_used_regs,
b8698a0f 3291 but we want to avoid multiple traversals of the same code motion
e855c69d
AB
3292 paths. */
3293 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3294 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3295
b8698a0f 3296 /* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
3297 for renaming expr in INSN due to hardware restrictions (register class,
3298 modes compatibility etc). */
3299 FOR_EACH_DEF (def, i, *original_insns)
3300 {
3301 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3302
3303 if (VINSN_SEPARABLE_P (vinsn))
3304 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3305
b8698a0f 3306 /* Do not allow clobbering of ld.[sa] address in case some of the
e855c69d
AB
3307 original operations need a check. */
3308 if (needs_spec_check_p)
3309 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3310 }
3311
3312 return true;
3313}
3314\f
3315
3316/* Functions to choose the best insn from available ones. */
3317
3318/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3319static int
3320sel_target_adjust_priority (expr_t expr)
3321{
3322 int priority = EXPR_PRIORITY (expr);
3323 int new_priority;
3324
3325 if (targetm.sched.adjust_priority)
3326 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3327 else
3328 new_priority = priority;
3329
3330 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3331 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3332
3333 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3334
136e01a3
AB
3335 if (sched_verbose >= 4)
3336 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
b8698a0f 3337 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e855c69d
AB
3338 EXPR_PRIORITY_ADJ (expr), new_priority);
3339
3340 return new_priority;
3341}
3342
3343/* Rank two available exprs for schedule. Never return 0 here. */
b8698a0f 3344static int
e855c69d
AB
3345sel_rank_for_schedule (const void *x, const void *y)
3346{
3347 expr_t tmp = *(const expr_t *) y;
3348 expr_t tmp2 = *(const expr_t *) x;
3349 insn_t tmp_insn, tmp2_insn;
3350 vinsn_t tmp_vinsn, tmp2_vinsn;
3351 int val;
3352
3353 tmp_vinsn = EXPR_VINSN (tmp);
3354 tmp2_vinsn = EXPR_VINSN (tmp2);
3355 tmp_insn = EXPR_INSN_RTX (tmp);
3356 tmp2_insn = EXPR_INSN_RTX (tmp2);
b8698a0f 3357
b5b8b0ac
AO
3358 /* Schedule debug insns as early as possible. */
3359 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3360 return -1;
3361 else if (DEBUG_INSN_P (tmp2_insn))
3362 return 1;
3363
e855c69d
AB
3364 /* Prefer SCHED_GROUP_P insns to any others. */
3365 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3366 {
b8698a0f 3367 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e855c69d
AB
3368 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3369
3370 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3371 cannot be cloned. */
3372 if (VINSN_UNIQUE_P (tmp2_vinsn))
3373 return 1;
3374 return -1;
3375 }
3376
3377 /* Discourage scheduling of speculative checks. */
3378 val = (sel_insn_is_speculation_check (tmp_insn)
3379 - sel_insn_is_speculation_check (tmp2_insn));
3380 if (val)
3381 return val;
3382
3383 /* Prefer not scheduled insn over scheduled one. */
3384 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3385 {
3386 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3387 if (val)
3388 return val;
3389 }
3390
3391 /* Prefer jump over non-jump instruction. */
3392 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3393 return -1;
3394 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3395 return 1;
3396
3397 /* Prefer an expr with greater priority. */
3398 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3399 {
3400 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3401 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3402
3403 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3404 }
3405 else
b8698a0f 3406 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
e855c69d
AB
3407 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3408 if (val)
3409 return val;
3410
3411 if (spec_info != NULL && spec_info->mask != 0)
3412 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3413 {
3414 ds_t ds1, ds2;
3415 dw_t dw1, dw2;
3416 int dw;
3417
3418 ds1 = EXPR_SPEC_DONE_DS (tmp);
3419 if (ds1)
3420 dw1 = ds_weak (ds1);
3421 else
3422 dw1 = NO_DEP_WEAK;
3423
3424 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3425 if (ds2)
3426 dw2 = ds_weak (ds2);
3427 else
3428 dw2 = NO_DEP_WEAK;
3429
3430 dw = dw2 - dw1;
3431 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3432 return dw;
3433 }
3434
e855c69d 3435 /* Prefer an old insn to a bookkeeping insn. */
b8698a0f 3436 if (INSN_UID (tmp_insn) < first_emitted_uid
e855c69d
AB
3437 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3438 return -1;
b8698a0f 3439 if (INSN_UID (tmp_insn) >= first_emitted_uid
e855c69d
AB
3440 && INSN_UID (tmp2_insn) < first_emitted_uid)
3441 return 1;
3442
b8698a0f 3443 /* Prefer an insn with smaller UID, as a last resort.
e855c69d
AB
3444 We can't safely use INSN_LUID as it is defined only for those insns
3445 that are in the stream. */
3446 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3447}
3448
b8698a0f 3449/* Filter out expressions from av set pointed to by AV_PTR
e855c69d
AB
3450 that are pipelined too many times. */
3451static void
3452process_pipelined_exprs (av_set_t *av_ptr)
3453{
3454 expr_t expr;
3455 av_set_iterator si;
3456
3457 /* Don't pipeline already pipelined code as that would increase
b8698a0f 3458 number of unnecessary register moves. */
e855c69d
AB
3459 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3460 {
3461 if (EXPR_SCHED_TIMES (expr)
3462 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3463 av_set_iter_remove (&si);
3464 }
3465}
3466
3467/* Filter speculative insns from AV_PTR if we don't want them. */
3468static void
3469process_spec_exprs (av_set_t *av_ptr)
3470{
e855c69d
AB
3471 expr_t expr;
3472 av_set_iterator si;
3473
3474 if (spec_info == NULL)
3475 return;
3476
3477 /* Scan *AV_PTR to find out if we want to consider speculative
3478 instructions for scheduling. */
3479 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3480 {
3481 ds_t ds;
3482
3483 ds = EXPR_SPEC_DONE_DS (expr);
3484
3485 /* The probability of a success is too low - don't speculate. */
3486 if ((ds & SPECULATIVE)
3487 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3488 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3489 || (pipelining_p && false
3490 && (ds & DATA_SPEC)
3491 && (ds & CONTROL_SPEC))))
3492 {
3493 av_set_iter_remove (&si);
3494 continue;
3495 }
e855c69d
AB
3496 }
3497}
3498
b8698a0f
L
3499/* Search for any use-like insns in AV_PTR and decide on scheduling
3500 them. Return one when found, and NULL otherwise.
e855c69d
AB
3501 Note that we check here whether a USE could be scheduled to avoid
3502 an infinite loop later. */
3503static expr_t
3504process_use_exprs (av_set_t *av_ptr)
3505{
3506 expr_t expr;
3507 av_set_iterator si;
3508 bool uses_present_p = false;
3509 bool try_uses_p = true;
3510
3511 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3512 {
3513 /* This will also initialize INSN_CODE for later use. */
3514 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3515 {
3516 /* If we have a USE in *AV_PTR that was not scheduled yet,
3517 do so because it will do good only. */
3518 if (EXPR_SCHED_TIMES (expr) <= 0)
3519 {
3520 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3521 return expr;
3522
3523 av_set_iter_remove (&si);
3524 }
3525 else
3526 {
3527 gcc_assert (pipelining_p);
3528
3529 uses_present_p = true;
3530 }
3531 }
3532 else
3533 try_uses_p = false;
3534 }
3535
3536 if (uses_present_p)
3537 {
3538 /* If we don't want to schedule any USEs right now and we have some
3539 in *AV_PTR, remove them, else just return the first one found. */
3540 if (!try_uses_p)
3541 {
3542 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3543 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3544 av_set_iter_remove (&si);
3545 }
3546 else
3547 {
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 {
3550 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3551
3552 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3553 return expr;
3554
3555 av_set_iter_remove (&si);
3556 }
3557 }
3558 }
3559
3560 return NULL;
3561}
3562
0c02ab39
AB
3563/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3564 EXPR's history of changes. */
e855c69d
AB
3565static bool
3566vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3567{
0c02ab39 3568 vinsn_t vinsn, expr_vinsn;
e855c69d 3569 int n;
0c02ab39 3570 unsigned i;
e855c69d 3571
0c02ab39
AB
3572 /* Start with checking expr itself and then proceed with all the old forms
3573 of expr taken from its history vector. */
3574 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3575 expr_vinsn;
9771b263
DN
3576 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3577 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
0c02ab39 3578 : NULL))
9771b263 3579 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
0c02ab39
AB
3580 if (VINSN_SEPARABLE_P (vinsn))
3581 {
3582 if (vinsn_equal_p (vinsn, expr_vinsn))
3583 return true;
3584 }
3585 else
3586 {
3587 /* For non-separable instructions, the blocking insn can have
3588 another pattern due to substitution, and we can't choose
3589 different register as in the above case. Check all registers
3590 being written instead. */
3591 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3592 VINSN_REG_SETS (expr_vinsn)))
3593 return true;
3594 }
e855c69d
AB
3595
3596 return false;
3597}
3598
e855c69d
AB
3599/* Return true if either of expressions from ORIG_OPS can be blocked
3600 by previously created bookkeeping code. STATIC_PARAMS points to static
3601 parameters of move_op. */
3602static bool
3603av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3604{
3605 expr_t expr;
3606 av_set_iterator iter;
3607 moveop_static_params_p sparams;
3608
3609 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3610 created while scheduling on another fence. */
3611 FOR_EACH_EXPR (expr, iter, orig_ops)
3612 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3613 return true;
3614
3615 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3616 sparams = (moveop_static_params_p) static_params;
3617
3618 /* Expressions can be also blocked by bookkeeping created during current
3619 move_op. */
3620 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3621 FOR_EACH_EXPR (expr, iter, orig_ops)
3622 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3623 return true;
3624
3625 /* Expressions in ORIG_OPS may have wrong destination register due to
3626 renaming. Check with the right register instead. */
3627 if (sparams->dest && REG_P (sparams->dest))
3628 {
cf3d5824 3629 rtx reg = sparams->dest;
e855c69d
AB
3630 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3631
cf3d5824
SG
3632 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3633 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3634 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
e855c69d
AB
3635 return true;
3636 }
3637
3638 return false;
3639}
e855c69d
AB
3640
3641/* Clear VINSN_VEC and detach vinsns. */
3642static void
3643vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644{
9771b263 3645 unsigned len = vinsn_vec->length ();
e855c69d
AB
3646 if (len > 0)
3647 {
3648 vinsn_t vinsn;
3649 int n;
b8698a0f 3650
9771b263 3651 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
e855c69d 3652 vinsn_detach (vinsn);
9771b263 3653 vinsn_vec->block_remove (0, len);
e855c69d
AB
3654 }
3655}
3656
3657/* Add the vinsn of EXPR to the VINSN_VEC. */
3658static void
3659vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660{
3661 vinsn_attach (EXPR_VINSN (expr));
9771b263 3662 vinsn_vec->safe_push (EXPR_VINSN (expr));
e855c69d
AB
3663}
3664
b8698a0f 3665/* Free the vector representing blocked expressions. */
e855c69d 3666static void
9771b263 3667vinsn_vec_free (vinsn_vec_t &vinsn_vec)
e855c69d 3668{
9771b263 3669 vinsn_vec.release ();
e855c69d
AB
3670}
3671
3672/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3673
3674void sel_add_to_insn_priority (rtx insn, int amount)
3675{
3676 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3677
3678 if (sched_verbose >= 2)
b8698a0f 3679 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e855c69d
AB
3680 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3681 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3682}
3683
b8698a0f 3684/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e855c69d
AB
3685 true if there is something to schedule. BNDS and FENCE are current
3686 boundaries and fence, respectively. If we need to stall for some cycles
b8698a0f 3687 before an expr from AV would become available, write this number to
e855c69d
AB
3688 *PNEED_STALL. */
3689static bool
3690fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3691 int *pneed_stall)
3692{
3693 av_set_iterator si;
3694 expr_t expr;
3695 int sched_next_worked = 0, stalled, n;
3696 static int av_max_prio, est_ticks_till_branch;
3697 int min_need_stall = -1;
3698 deps_t dc = BND_DC (BLIST_BND (bnds));
3699
3700 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3701 already scheduled. */
3702 if (av == NULL)
3703 return false;
3704
3705 /* Empty vector from the previous stuff. */
9771b263
DN
3706 if (vec_av_set.length () > 0)
3707 vec_av_set.block_remove (0, vec_av_set.length ());
e855c69d
AB
3708
3709 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3710 for each insn. */
9771b263 3711 gcc_assert (vec_av_set.is_empty ());
e855c69d 3712 FOR_EACH_EXPR (expr, si, av)
b8698a0f 3713 {
9771b263 3714 vec_av_set.safe_push (expr);
e855c69d
AB
3715
3716 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3717
3718 /* Adjust priority using target backend hook. */
3719 sel_target_adjust_priority (expr);
3720 }
3721
3722 /* Sort the vector. */
9771b263 3723 vec_av_set.qsort (sel_rank_for_schedule);
e855c69d
AB
3724
3725 /* We record maximal priority of insns in av set for current instruction
3726 group. */
3727 if (FENCE_STARTS_CYCLE_P (fence))
3728 av_max_prio = est_ticks_till_branch = INT_MIN;
3729
3730 /* Filter out inappropriate expressions. Loop's direction is reversed to
9771b263 3731 visit "best" instructions first. We assume that vec::unordered_remove
e855c69d 3732 moves last element in place of one being deleted. */
9771b263 3733 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
e855c69d 3734 {
9771b263 3735 expr_t expr = vec_av_set[n];
e855c69d 3736 insn_t insn = EXPR_INSN_RTX (expr);
f3764768 3737 signed char target_available;
e855c69d
AB
3738 bool is_orig_reg_p = true;
3739 int need_cycles, new_prio;
c64476f1 3740 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
e855c69d
AB
3741
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 {
9771b263 3745 vec_av_set.unordered_remove (n);
e855c69d
AB
3746 continue;
3747 }
3748
b8698a0f 3749 /* Set number of sched_next insns (just in case there
e855c69d
AB
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
b8698a0f
L
3753
3754 /* Check all liveness requirements and try renaming.
e855c69d
AB
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3757
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
c1c99405
AB
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3761 && !fence_insn_p)
e855c69d
AB
3762 target_available = -1;
3763
3764 /* If the availability of the EXPR is invalidated by the insertion of
3765 bookkeeping earlier, make sure that we won't choose this expr for
3766 scheduling if it's not separable, and if it is separable, then
3767 we have to recompute the set of available registers for it. */
3768 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3769 {
9771b263 3770 vec_av_set.unordered_remove (n);
e855c69d
AB
3771 if (sched_verbose >= 4)
3772 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3773 INSN_UID (insn));
3774 continue;
3775 }
b8698a0f 3776
e855c69d
AB
3777 if (target_available == true)
3778 {
3779 /* Do nothing -- we can use an existing register. */
3780 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3781 }
b8698a0f 3782 else if (/* Non-separable instruction will never
e855c69d
AB
3783 get another register. */
3784 (target_available == false
3785 && !EXPR_SEPARABLE_P (expr))
3786 /* Don't try to find a register for low-priority expression. */
9771b263 3787 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
e855c69d
AB
3788 /* ??? FIXME: Don't try to rename data speculation. */
3789 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3790 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3791 {
9771b263 3792 vec_av_set.unordered_remove (n);
e855c69d 3793 if (sched_verbose >= 4)
b8698a0f 3794 sel_print ("Expr %d has no suitable target register\n",
e855c69d 3795 INSN_UID (insn));
c64476f1
AB
3796
3797 /* A fence insn should not get here. */
3798 gcc_assert (!fence_insn_p);
3799 continue;
e855c69d
AB
3800 }
3801
c64476f1
AB
3802 /* At this point a fence insn should always be available. */
3803 gcc_assert (!fence_insn_p
3804 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3805
e855c69d
AB
3806 /* Filter expressions that need to be renamed or speculated when
3807 pipelining, because compensating register copies or speculation
3808 checks are likely to be placed near the beginning of the loop,
3809 causing a stall. */
3810 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3811 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3812 {
3813 /* Estimation of number of cycles until loop branch for
3814 renaming/speculation to be successful. */
3815 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3816
3817 if ((int) current_loop_nest->ninsns < 9)
3818 {
9771b263 3819 vec_av_set.unordered_remove (n);
e855c69d
AB
3820 if (sched_verbose >= 4)
3821 sel_print ("Pipelining expr %d will likely cause stall\n",
3822 INSN_UID (insn));
3823 continue;
3824 }
3825
3826 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3827 < need_n_ticks_till_branch * issue_rate / 2
3828 && est_ticks_till_branch < need_n_ticks_till_branch)
3829 {
9771b263 3830 vec_av_set.unordered_remove (n);
e855c69d
AB
3831 if (sched_verbose >= 4)
3832 sel_print ("Pipelining expr %d will likely cause stall\n",
3833 INSN_UID (insn));
3834 continue;
3835 }
3836 }
3837
3838 /* We want to schedule speculation checks as late as possible. Discard
3839 them from av set if there are instructions with higher priority. */
3840 if (sel_insn_is_speculation_check (insn)
3841 && EXPR_PRIORITY (expr) < av_max_prio)
3842 {
3843 stalled++;
3844 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
9771b263 3845 vec_av_set.unordered_remove (n);
e855c69d
AB
3846 if (sched_verbose >= 4)
3847 sel_print ("Delaying speculation check %d until its first use\n",
3848 INSN_UID (insn));
3849 continue;
3850 }
3851
3852 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3853 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3854 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3855
3856 /* Don't allow any insns whose data is not yet ready.
3857 Check first whether we've already tried them and failed. */
3858 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3859 {
3860 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3861 - FENCE_CYCLE (fence));
3862 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3863 est_ticks_till_branch = MAX (est_ticks_till_branch,
3864 EXPR_PRIORITY (expr) + need_cycles);
3865
3866 if (need_cycles > 0)
3867 {
3868 stalled++;
b8698a0f 3869 min_need_stall = (min_need_stall < 0
e855c69d
AB
3870 ? need_cycles
3871 : MIN (min_need_stall, need_cycles));
9771b263 3872 vec_av_set.unordered_remove (n);
e855c69d
AB
3873
3874 if (sched_verbose >= 4)
b8698a0f 3875 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e855c69d
AB
3876 INSN_UID (insn),
3877 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3878 continue;
3879 }
3880 }
3881
b8698a0f 3882 /* Now resort to dependence analysis to find whether EXPR might be
e855c69d
AB
3883 stalled due to dependencies from FENCE's context. */
3884 need_cycles = tick_check_p (expr, dc, fence);
3885 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3886
3887 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3888 est_ticks_till_branch = MAX (est_ticks_till_branch,
3889 new_prio);
3890
3891 if (need_cycles > 0)
3892 {
3893 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3894 {
3895 int new_size = INSN_UID (insn) * 3 / 2;
b8698a0f
L
3896
3897 FENCE_READY_TICKS (fence)
e855c69d
AB
3898 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3899 new_size, FENCE_READY_TICKS_SIZE (fence),
3900 sizeof (int));
3901 }
b8698a0f
L
3902 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3903 = FENCE_CYCLE (fence) + need_cycles;
3904
e855c69d 3905 stalled++;
b8698a0f 3906 min_need_stall = (min_need_stall < 0
e855c69d
AB
3907 ? need_cycles
3908 : MIN (min_need_stall, need_cycles));
3909
9771b263 3910 vec_av_set.unordered_remove (n);
b8698a0f 3911
e855c69d 3912 if (sched_verbose >= 4)
b8698a0f 3913 sel_print ("Expr %d is not ready yet until cycle %d\n",
e855c69d
AB
3914 INSN_UID (insn),
3915 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3916 continue;
3917 }
3918
3919 if (sched_verbose >= 4)
3920 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3921 min_need_stall = 0;
3922 }
3923
3924 /* Clear SCHED_NEXT. */
3925 if (FENCE_SCHED_NEXT (fence))
3926 {
3927 gcc_assert (sched_next_worked == 1);
6144a836 3928 FENCE_SCHED_NEXT (fence) = NULL;
e855c69d
AB
3929 }
3930
3931 /* No need to stall if this variable was not initialized. */
3932 if (min_need_stall < 0)
3933 min_need_stall = 0;
3934
9771b263 3935 if (vec_av_set.is_empty ())
e855c69d
AB
3936 {
3937 /* We need to set *pneed_stall here, because later we skip this code
3938 when ready list is empty. */
3939 *pneed_stall = min_need_stall;
3940 return false;
3941 }
3942 else
3943 gcc_assert (min_need_stall == 0);
3944
3945 /* Sort the vector. */
9771b263 3946 vec_av_set.qsort (sel_rank_for_schedule);
b8698a0f 3947
e855c69d
AB
3948 if (sched_verbose >= 4)
3949 {
b8698a0f 3950 sel_print ("Total ready exprs: %d, stalled: %d\n",
9771b263
DN
3951 vec_av_set.length (), stalled);
3952 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3953 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e855c69d
AB
3954 dump_expr (expr);
3955 sel_print ("\n");
3956 }
3957
3958 *pneed_stall = 0;
3959 return true;
3960}
3961
3962/* Convert a vectored and sorted av set to the ready list that
3963 the rest of the backend wants to see. */
3964static void
3965convert_vec_av_set_to_ready (void)
3966{
3967 int n;
3968 expr_t expr;
3969
3970 /* Allocate and fill the ready list from the sorted vector. */
9771b263 3971 ready.n_ready = vec_av_set.length ();
e855c69d 3972 ready.first = ready.n_ready - 1;
b8698a0f 3973
e855c69d
AB
3974 gcc_assert (ready.n_ready > 0);
3975
3976 if (ready.n_ready > max_issue_size)
3977 {
3978 max_issue_size = ready.n_ready;
3979 sched_extend_ready_list (ready.n_ready);
3980 }
b8698a0f 3981
9771b263 3982 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
e855c69d
AB
3983 {
3984 vinsn_t vi = EXPR_VINSN (expr);
3985 insn_t insn = VINSN_INSN_RTX (vi);
3986
3987 ready_try[n] = 0;
6144a836 3988 ready.vec[n] = insn;
e855c69d
AB
3989 }
3990}
3991
3992/* Initialize ready list from *AV_PTR for the max_issue () call.
3993 If any unrecognizable insn found in *AV_PTR, return it (and skip
b8698a0f
L
3994 max_issue). BND and FENCE are current boundary and fence,
3995 respectively. If we need to stall for some cycles before an expr
e855c69d
AB
3996 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3997static expr_t
3998fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3999 int *pneed_stall)
4000{
4001 expr_t expr;
4002
4003 /* We do not support multiple boundaries per fence. */
4004 gcc_assert (BLIST_NEXT (bnds) == NULL);
4005
b8698a0f 4006 /* Process expressions required special handling, i.e. pipelined,
e855c69d
AB
4007 speculative and recog() < 0 expressions first. */
4008 process_pipelined_exprs (av_ptr);
4009 process_spec_exprs (av_ptr);
4010
4011 /* A USE could be scheduled immediately. */
4012 expr = process_use_exprs (av_ptr);
4013 if (expr)
4014 {
4015 *pneed_stall = 0;
4016 return expr;
4017 }
4018
4019 /* Turn the av set to a vector for sorting. */
4020 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4021 {
4022 ready.n_ready = 0;
4023 return NULL;
4024 }
4025
4026 /* Build the final ready list. */
4027 convert_vec_av_set_to_ready ();
4028 return NULL;
4029}
4030
4031/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4032static bool
4033sel_dfa_new_cycle (insn_t insn, fence_t fence)
4034{
b8698a0f
L
4035 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4036 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e855c69d
AB
4037 : FENCE_CYCLE (fence) - 1;
4038 bool res = false;
4039 int sort_p = 0;
4040
4041 if (!targetm.sched.dfa_new_cycle)
4042 return false;
4043
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045
4046 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4047 insn, last_scheduled_cycle,
4048 FENCE_CYCLE (fence), &sort_p))
4049 {
4050 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4051 advance_one_cycle (fence);
4052 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4053 res = true;
4054 }
4055
4056 return res;
4057}
4058
4059/* Invoke reorder* target hooks on the ready list. Return the number of insns
4060 we can issue. FENCE is the current fence. */
4061static int
4062invoke_reorder_hooks (fence_t fence)
4063{
4064 int issue_more;
4065 bool ran_hook = false;
4066
4067 /* Call the reorder hook at the beginning of the cycle, and call
4068 the reorder2 hook in the middle of the cycle. */
4069 if (FENCE_ISSUED_INSNS (fence) == 0)
4070 {
4071 if (targetm.sched.reorder
4072 && !SCHED_GROUP_P (ready_element (&ready, 0))
4073 && ready.n_ready > 1)
4074 {
4075 /* Don't give reorder the most prioritized insn as it can break
4076 pipelining. */
4077 if (pipelining_p)
4078 --ready.n_ready;
4079
4080 issue_more
4081 = targetm.sched.reorder (sched_dump, sched_verbose,
4082 ready_lastpos (&ready),
4083 &ready.n_ready, FENCE_CYCLE (fence));
4084
4085 if (pipelining_p)
4086 ++ready.n_ready;
4087
4088 ran_hook = true;
4089 }
4090 else
4091 /* Initialize can_issue_more for variable_issue. */
4092 issue_more = issue_rate;
4093 }
4094 else if (targetm.sched.reorder2
4095 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4096 {
4097 if (ready.n_ready == 1)
b8698a0f 4098 issue_more =
e855c69d
AB
4099 targetm.sched.reorder2 (sched_dump, sched_verbose,
4100 ready_lastpos (&ready),
4101 &ready.n_ready, FENCE_CYCLE (fence));
4102 else
4103 {
4104 if (pipelining_p)
4105 --ready.n_ready;
4106
4107 issue_more =
4108 targetm.sched.reorder2 (sched_dump, sched_verbose,
4109 ready.n_ready
4110 ? ready_lastpos (&ready) : NULL,
4111 &ready.n_ready, FENCE_CYCLE (fence));
4112
4113 if (pipelining_p)
4114 ++ready.n_ready;
4115 }
4116
4117 ran_hook = true;
4118 }
b8698a0f 4119 else
136e01a3 4120 issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
4121
4122 /* Ensure that ready list and vec_av_set are in line with each other,
4123 i.e. vec_av_set[i] == ready_element (&ready, i). */
4124 if (issue_more && ran_hook)
4125 {
4126 int i, j, n;
ce1ce33a 4127 rtx_insn **arr = ready.vec;
9771b263 4128 expr_t *vec = vec_av_set.address ();
e855c69d
AB
4129
4130 for (i = 0, n = ready.n_ready; i < n; i++)
4131 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4132 {
e855c69d
AB
4133 for (j = i; j < n; j++)
4134 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4135 break;
4136 gcc_assert (j < n);
4137
fab27f52 4138 std::swap (vec[i], vec[j]);
e855c69d
AB
4139 }
4140 }
4141
4142 return issue_more;
4143}
4144
073a8998 4145/* Return an EXPR corresponding to INDEX element of ready list, if
b8698a0f
L
4146 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4147 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e855c69d
AB
4148 ready.vec otherwise. */
4149static inline expr_t
4150find_expr_for_ready (int index, bool follow_ready_element)
4151{
4152 expr_t expr;
4153 int real_index;
4154
4155 real_index = follow_ready_element ? ready.first - index : index;
4156
9771b263 4157 expr = vec_av_set[real_index];
e855c69d
AB
4158 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4159
4160 return expr;
4161}
4162
4163/* Calculate insns worth trying via lookahead_guard hook. Return a number
4164 of such insns found. */
4165static int
4166invoke_dfa_lookahead_guard (void)
4167{
4168 int i, n;
b8698a0f 4169 bool have_hook
e855c69d
AB
4170 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4171
4172 if (sched_verbose >= 2)
4173 sel_print ("ready after reorder: ");
4174
4175 for (i = 0, n = 0; i < ready.n_ready; i++)
4176 {
4177 expr_t expr;
4178 insn_t insn;
4179 int r;
4180
b8698a0f 4181 /* In this loop insn is Ith element of the ready list given by
e855c69d
AB
4182 ready_element, not Ith element of ready.vec. */
4183 insn = ready_element (&ready, i);
b8698a0f 4184
e855c69d
AB
4185 if (! have_hook || i == 0)
4186 r = 0;
4187 else
4960a0cb 4188 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
b8698a0f 4189
e855c69d 4190 gcc_assert (INSN_CODE (insn) >= 0);
b8698a0f
L
4191
4192 /* Only insns with ready_try = 0 can get here
e855c69d
AB
4193 from fill_ready_list. */
4194 gcc_assert (ready_try [i] == 0);
4195 ready_try[i] = r;
4196 if (!r)
4197 n++;
4198
4199 expr = find_expr_for_ready (i, true);
b8698a0f 4200
e855c69d
AB
4201 if (sched_verbose >= 2)
4202 {
4203 dump_vinsn (EXPR_VINSN (expr));
4204 sel_print (":%d; ", ready_try[i]);
4205 }
4206 }
4207
4208 if (sched_verbose >= 2)
4209 sel_print ("\n");
4210 return n;
4211}
4212
4213/* Calculate the number of privileged insns and return it. */
4214static int
4215calculate_privileged_insns (void)
4216{
4217 expr_t cur_expr, min_spec_expr = NULL;
e855c69d
AB
4218 int privileged_n = 0, i;
4219
4220 for (i = 0; i < ready.n_ready; i++)
4221 {
4222 if (ready_try[i])
4223 continue;
4224
4225 if (! min_spec_expr)
1124098b 4226 min_spec_expr = find_expr_for_ready (i, true);
b8698a0f 4227
e855c69d
AB
4228 cur_expr = find_expr_for_ready (i, true);
4229
4230 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4231 break;
4232
4233 ++privileged_n;
4234 }
4235
4236 if (i == ready.n_ready)
4237 privileged_n = 0;
4238
4239 if (sched_verbose >= 2)
4240 sel_print ("privileged_n: %d insns with SPEC %d\n",
4241 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4242 return privileged_n;
4243}
4244
b8698a0f 4245/* Call the rest of the hooks after the choice was made. Return
e855c69d
AB
4246 the number of insns that still can be issued given that the current
4247 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4248 and the insn chosen for scheduling, respectively. */
4249static int
6144a836 4250invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
e855c69d
AB
4251{
4252 gcc_assert (INSN_P (best_insn));
4253
4254 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4255 sel_dfa_new_cycle (best_insn, fence);
b8698a0f 4256
e855c69d
AB
4257 if (targetm.sched.variable_issue)
4258 {
4259 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
b8698a0f 4260 issue_more =
e855c69d
AB
4261 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4262 issue_more);
4263 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4264 }
81fa2944
AB
4265 else if (!DEBUG_INSN_P (best_insn)
4266 && GET_CODE (PATTERN (best_insn)) != USE
4267 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
e855c69d
AB
4268 issue_more--;
4269
4270 return issue_more;
4271}
4272
d66b8f4b 4273/* Estimate the cost of issuing INSN on DFA state STATE. */
e855c69d 4274static int
84034c69 4275estimate_insn_cost (rtx_insn *insn, state_t state)
e855c69d
AB
4276{
4277 static state_t temp = NULL;
4278 int cost;
4279
4280 if (!temp)
4281 temp = xmalloc (dfa_state_size);
4282
4283 memcpy (temp, state, dfa_state_size);
4284 cost = state_transition (temp, insn);
4285
4286 if (cost < 0)
4287 return 0;
4288 else if (cost == 0)
4289 return 1;
4290 return cost;
4291}
4292
b8698a0f 4293/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e855c69d
AB
4294 This function properly handles ASMs, USEs etc. */
4295static int
4296get_expr_cost (expr_t expr, fence_t fence)
4297{
eec818f4 4298 rtx_insn *insn = EXPR_INSN_RTX (expr);
e855c69d
AB
4299
4300 if (recog_memoized (insn) < 0)
4301 {
b8698a0f 4302 if (!FENCE_STARTS_CYCLE_P (fence)
e855c69d
AB
4303 && INSN_ASM_P (insn))
4304 /* This is asm insn which is tryed to be issued on the
4305 cycle not first. Issue it on the next cycle. */
4306 return 1;
4307 else
4308 /* A USE insn, or something else we don't need to
4309 understand. We can't pass these directly to
4310 state_transition because it will trigger a
4311 fatal error for unrecognizable insns. */
4312 return 0;
4313 }
4314 else
d66b8f4b 4315 return estimate_insn_cost (insn, FENCE_STATE (fence));
e855c69d
AB
4316}
4317
b8698a0f 4318/* Find the best insn for scheduling, either via max_issue or just take
e855c69d
AB
4319 the most prioritized available. */
4320static int
4321choose_best_insn (fence_t fence, int privileged_n, int *index)
4322{
4323 int can_issue = 0;
4324
4325 if (dfa_lookahead > 0)
4326 {
4327 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
894fd6f2 4328 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
e855c69d 4329 can_issue = max_issue (&ready, privileged_n,
894fd6f2 4330 FENCE_STATE (fence), true, index);
e855c69d
AB
4331 if (sched_verbose >= 2)
4332 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4333 can_issue, FENCE_ISSUED_INSNS (fence));
4334 }
4335 else
4336 {
4337 /* We can't use max_issue; just return the first available element. */
4338 int i;
4339
4340 for (i = 0; i < ready.n_ready; i++)
4341 {
4342 expr_t expr = find_expr_for_ready (i, true);
4343
4344 if (get_expr_cost (expr, fence) < 1)
4345 {
4346 can_issue = can_issue_more;
4347 *index = i;
4348
4349 if (sched_verbose >= 2)
4350 sel_print ("using %dth insn from the ready list\n", i + 1);
4351
4352 break;
4353 }
4354 }
4355
4356 if (i == ready.n_ready)
4357 {
4358 can_issue = 0;
4359 *index = -1;
4360 }
4361 }
4362
4363 return can_issue;
4364}
4365
b8698a0f
L
4366/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4367 BNDS and FENCE are current boundaries and scheduling fence respectively.
4368 Return the expr found and NULL if nothing can be issued atm.
4369 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e855c69d
AB
4370static expr_t
4371find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4372 int *pneed_stall)
4373{
4374 expr_t best;
b8698a0f 4375
e855c69d
AB
4376 /* Choose the best insn for scheduling via:
4377 1) sorting the ready list based on priority;
4378 2) calling the reorder hook;
4379 3) calling max_issue. */
4380 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4381 if (best == NULL && ready.n_ready > 0)
4382 {
1124098b 4383 int privileged_n, index;
e855c69d
AB
4384
4385 can_issue_more = invoke_reorder_hooks (fence);
4386 if (can_issue_more > 0)
4387 {
b8698a0f 4388 /* Try choosing the best insn until we find one that is could be
e855c69d
AB
4389 scheduled due to liveness restrictions on its destination register.
4390 In the future, we'd like to choose once and then just probe insns
4391 in the order of their priority. */
1124098b 4392 invoke_dfa_lookahead_guard ();
e855c69d
AB
4393 privileged_n = calculate_privileged_insns ();
4394 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4395 if (can_issue_more)
4396 best = find_expr_for_ready (index, true);
4397 }
b8698a0f 4398 /* We had some available insns, so if we can't issue them,
e855c69d
AB
4399 we have a stall. */
4400 if (can_issue_more == 0)
4401 {
4402 best = NULL;
4403 *pneed_stall = 1;
4404 }
4405 }
4406
4407 if (best != NULL)
4408 {
4409 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4410 can_issue_more);
06f0c25f
AB
4411 if (targetm.sched.variable_issue
4412 && can_issue_more == 0)
e855c69d
AB
4413 *pneed_stall = 1;
4414 }
b8698a0f 4415
e855c69d
AB
4416 if (sched_verbose >= 2)
4417 {
4418 if (best != NULL)
4419 {
4420 sel_print ("Best expression (vliw form): ");
4421 dump_expr (best);
4422 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4423 }
4424 else
4425 sel_print ("No best expr found!\n");
4426 }
4427
4428 return best;
4429}
4430\f
4431
4432/* Functions that implement the core of the scheduler. */
4433
4434
b8698a0f 4435/* Emit an instruction from EXPR with SEQNO and VINSN after
e855c69d
AB
4436 PLACE_TO_INSERT. */
4437static insn_t
b8698a0f 4438emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
4439 insn_t place_to_insert)
4440{
4441 /* This assert fails when we have identical instructions
4442 one of which dominates the other. In this case move_op ()
4443 finds the first instruction and doesn't search for second one.
4444 The solution would be to compute av_set after the first found
4445 insn and, if insn present in that set, continue searching.
4446 For now we workaround this issue in move_op. */
4447 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4448
4449 if (EXPR_WAS_RENAMED (expr))
4450 {
4451 unsigned regno = expr_dest_regno (expr);
b8698a0f 4452
e855c69d
AB
4453 if (HARD_REGISTER_NUM_P (regno))
4454 {
4455 df_set_regs_ever_live (regno, true);
4456 reg_rename_tick[regno] = ++reg_rename_this_tick;
4457 }
4458 }
b8698a0f
L
4459
4460 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e855c69d
AB
4461 place_to_insert);
4462}
4463
4464/* Return TRUE if BB can hold bookkeeping code. */
4465static bool
4466block_valid_for_bookkeeping_p (basic_block bb)
4467{
4468 insn_t bb_end = BB_END (bb);
4469
4470 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4471 return false;
4472
4473 if (INSN_P (bb_end))
4474 {
4475 if (INSN_SCHED_TIMES (bb_end) > 0)
4476 return false;
4477 }
4478 else
4479 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4480
4481 return true;
4482}
4483
4484/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4485 into E2->dest, except from E1->src (there may be a sequence of empty basic
4486 blocks between E1->src and E2->dest). Return found block, or NULL if new
b5b8b0ac
AO
4487 one must be created. If LAX holds, don't assume there is a simple path
4488 from E1->src to E2->dest. */
e855c69d 4489static basic_block
b5b8b0ac 4490find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e855c69d
AB
4491{
4492 basic_block candidate_block = NULL;
4493 edge e;
4494
4495 /* Loop over edges from E1 to E2, inclusive. */
fefa31b5
DM
4496 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4497 EDGE_SUCC (e->dest, 0))
e855c69d
AB
4498 {
4499 if (EDGE_COUNT (e->dest->preds) == 2)
4500 {
4501 if (candidate_block == NULL)
4502 candidate_block = (EDGE_PRED (e->dest, 0) == e
4503 ? EDGE_PRED (e->dest, 1)->src
4504 : EDGE_PRED (e->dest, 0)->src);
4505 else
4506 /* Found additional edge leading to path from e1 to e2
4507 from aside. */
4508 return NULL;
4509 }
4510 else if (EDGE_COUNT (e->dest->preds) > 2)
4511 /* Several edges leading to path from e1 to e2 from aside. */
4512 return NULL;
4513
4514 if (e == e2)
b5b8b0ac
AO
4515 return ((!lax || candidate_block)
4516 && block_valid_for_bookkeeping_p (candidate_block)
e855c69d
AB
4517 ? candidate_block
4518 : NULL);
b5b8b0ac
AO
4519
4520 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4521 return NULL;
e855c69d 4522 }
b5b8b0ac
AO
4523
4524 if (lax)
4525 return NULL;
4526
e855c69d
AB
4527 gcc_unreachable ();
4528}
4529
4530/* Create new basic block for bookkeeping code for path(s) incoming into
4531 E2->dest, except from E1->src. Return created block. */
4532static basic_block
4533create_block_for_bookkeeping (edge e1, edge e2)
4534{
4535 basic_block new_bb, bb = e2->dest;
4536
4537 /* Check that we don't spoil the loop structure. */
4538 if (current_loop_nest)
4539 {
4540 basic_block latch = current_loop_nest->latch;
4541
4542 /* We do not split header. */
4543 gcc_assert (e2->dest != current_loop_nest->header);
4544
4545 /* We do not redirect the only edge to the latch block. */
4546 gcc_assert (e1->dest != latch
4547 || !single_pred_p (latch)
4548 || e1 != single_pred_edge (latch));
4549 }
4550
4551 /* Split BB to insert BOOK_INSN there. */
4552 new_bb = sched_split_block (bb, NULL);
4553
4554 /* Move note_list from the upper bb. */
4555 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
b311fd0f
DM
4556 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4557 BB_NOTE_LIST (bb) = NULL;
e855c69d
AB
4558
4559 gcc_assert (e2->dest == bb);
4560
4561 /* Skip block for bookkeeping copy when leaving E1->src. */
4562 if (e1->flags & EDGE_FALLTHRU)
4563 sel_redirect_edge_and_branch_force (e1, new_bb);
4564 else
4565 sel_redirect_edge_and_branch (e1, new_bb);
4566
4567 gcc_assert (e1->dest == new_bb);
4568 gcc_assert (sel_bb_empty_p (bb));
4569
b5b8b0ac
AO
4570 /* To keep basic block numbers in sync between debug and non-debug
4571 compilations, we have to rotate blocks here. Consider that we
4572 started from (a,b)->d, (c,d)->e, and d contained only debug
4573 insns. It would have been removed before if the debug insns
4574 weren't there, so we'd have split e rather than d. So what we do
4575 now is to swap the block numbers of new_bb and
4576 single_succ(new_bb) == e, so that the insns that were in e before
4577 get the new block number. */
4578
4579 if (MAY_HAVE_DEBUG_INSNS)
4580 {
4581 basic_block succ;
4582 insn_t insn = sel_bb_head (new_bb);
4583 insn_t last;
4584
4585 if (DEBUG_INSN_P (insn)
4586 && single_succ_p (new_bb)
4587 && (succ = single_succ (new_bb))
fefa31b5 4588 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
b5b8b0ac
AO
4589 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4590 {
4591 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4592 insn = NEXT_INSN (insn);
4593
4594 if (insn == last)
4595 {
4596 sel_global_bb_info_def gbi;
4597 sel_region_bb_info_def rbi;
b5b8b0ac
AO
4598
4599 if (sched_verbose >= 2)
4600 sel_print ("Swapping block ids %i and %i\n",
4601 new_bb->index, succ->index);
4602
fab27f52 4603 std::swap (new_bb->index, succ->index);
b5b8b0ac 4604
557c4b49
DM
4605 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4606 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
b5b8b0ac
AO
4607
4608 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4609 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4610 sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4612
4613 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4614 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4615 sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4617
fab27f52
MM
4618 std::swap (BLOCK_TO_BB (new_bb->index),
4619 BLOCK_TO_BB (succ->index));
b5b8b0ac 4620
fab27f52
MM
4621 std::swap (CONTAINING_RGN (new_bb->index),
4622 CONTAINING_RGN (succ->index));
b5b8b0ac 4623
fab27f52 4624 for (int i = 0; i < current_nr_blocks; i++)
b5b8b0ac
AO
4625 if (BB_TO_BLOCK (i) == succ->index)
4626 BB_TO_BLOCK (i) = new_bb->index;
4627 else if (BB_TO_BLOCK (i) == new_bb->index)
4628 BB_TO_BLOCK (i) = succ->index;
4629
4630 FOR_BB_INSNS (new_bb, insn)
4631 if (INSN_P (insn))
4632 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4633
4634 FOR_BB_INSNS (succ, insn)
4635 if (INSN_P (insn))
4636 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4637
fcaa4ca4
NF
4638 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4639 bitmap_set_bit (code_motion_visited_blocks, succ->index);
b5b8b0ac
AO
4640
4641 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4642 && LABEL_P (BB_HEAD (succ)));
4643
4644 if (sched_verbose >= 4)
4645 sel_print ("Swapping code labels %i and %i\n",
4646 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4647 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4648
fab27f52
MM
4649 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4650 CODE_LABEL_NUMBER (BB_HEAD (succ)));
b5b8b0ac
AO
4651 }
4652 }
4653 }
4654
e855c69d
AB
4655 return bb;
4656}
4657
4658/* Return insn after which we must insert bookkeeping code for path(s) incoming
6fc5966f
AM
4659 into E2->dest, except from E1->src. If the returned insn immediately
4660 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
e855c69d 4661static insn_t
6fc5966f 4662find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
e855c69d
AB
4663{
4664 insn_t place_to_insert;
4665 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4666 create new basic block, but insert bookkeeping there. */
b5b8b0ac 4667 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e855c69d 4668
b5b8b0ac
AO
4669 if (book_block)
4670 {
4671 place_to_insert = BB_END (book_block);
4672
4673 /* Don't use a block containing only debug insns for
4674 bookkeeping, this causes scheduling differences between debug
4675 and non-debug compilations, for the block would have been
4676 removed already. */
4677 if (DEBUG_INSN_P (place_to_insert))
4678 {
5a59b408 4679 rtx_insn *insn = sel_bb_head (book_block);
e855c69d 4680
b5b8b0ac
AO
4681 while (insn != place_to_insert &&
4682 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4683 insn = NEXT_INSN (insn);
4684
4685 if (insn == place_to_insert)
4686 book_block = NULL;
4687 }
4688 }
4689
4690 if (!book_block)
4691 {
4692 book_block = create_block_for_bookkeeping (e1, e2);
4693 place_to_insert = BB_END (book_block);
4694 if (sched_verbose >= 9)
4695 sel_print ("New block is %i, split from bookkeeping block %i\n",
4696 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4697 }
4698 else
4699 {
4700 if (sched_verbose >= 9)
4701 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4702 }
e855c69d 4703
6fc5966f
AM
4704 *fence_to_rewind = NULL;
4705 /* If basic block ends with a jump, insert bookkeeping code right before it.
4706 Notice if we are crossing a fence when taking PREV_INSN. */
e855c69d 4707 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
6fc5966f
AM
4708 {
4709 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4710 place_to_insert = PREV_INSN (place_to_insert);
4711 }
e855c69d
AB
4712
4713 return place_to_insert;
4714}
4715
4716/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4717 for JOIN_POINT. */
4718static int
4719find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4720{
4721 int seqno;
e855c69d
AB
4722
4723 /* Check if we are about to insert bookkeeping copy before a jump, and use
4724 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
e67d1102 4725 rtx_insn *next = NEXT_INSN (place_to_insert);
b8698a0f 4726 if (INSN_P (next)
e855c69d
AB
4727 && JUMP_P (next)
4728 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4729 {
4730 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4731 seqno = INSN_SEQNO (next);
4732 }
e855c69d
AB
4733 else if (INSN_SEQNO (join_point) > 0)
4734 seqno = INSN_SEQNO (join_point);
4735 else
da7ba240
AB
4736 {
4737 seqno = get_seqno_by_preds (place_to_insert);
4738
b8698a0f
L
4739 /* Sometimes the fences can move in such a way that there will be
4740 no instructions with positive seqno around this bookkeeping.
da7ba240
AB
4741 This means that there will be no way to get to it by a regular
4742 fence movement. Never mind because we pick up such pieces for
4743 rescheduling anyways, so any positive value will do for now. */
4744 if (seqno < 0)
4745 {
4746 gcc_assert (pipelining_p);
4747 seqno = 1;
4748 }
4749 }
b8698a0f 4750
e855c69d
AB
4751 gcc_assert (seqno > 0);
4752 return seqno;
4753}
4754
4755/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4756 NEW_SEQNO to it. Return created insn. */
4757static insn_t
4758emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4759{
eec818f4 4760 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
e855c69d
AB
4761
4762 vinsn_t new_vinsn
4763 = create_vinsn_from_insn_rtx (new_insn_rtx,
4764 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4765
4766 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4767 place_to_insert);
4768
4769 INSN_SCHED_TIMES (new_insn) = 0;
4770 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4771
4772 return new_insn;
4773}
4774
4775/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4776 E2->dest, except from E1->src (there may be a sequence of empty blocks
4777 between E1->src and E2->dest). Return block containing the copy.
4778 All scheduler data is initialized for the newly created insn. */
4779static basic_block
4780generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4781{
4782 insn_t join_point, place_to_insert, new_insn;
4783 int new_seqno;
4784 bool need_to_exchange_data_sets;
6fc5966f 4785 fence_t fence_to_rewind;
e855c69d
AB
4786
4787 if (sched_verbose >= 4)
4788 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4789 e2->dest->index);
4790
4791 join_point = sel_bb_head (e2->dest);
6fc5966f 4792 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
e855c69d
AB
4793 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4794 need_to_exchange_data_sets
4795 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4796
4797 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4798
6fc5966f
AM
4799 if (fence_to_rewind)
4800 FENCE_INSN (fence_to_rewind) = new_insn;
4801
e855c69d
AB
4802 /* When inserting bookkeeping insn in new block, av sets should be
4803 following: old basic block (that now holds bookkeeping) data sets are
4804 the same as was before generation of bookkeeping, and new basic block
4805 (that now hold all other insns of old basic block) data sets are
4806 invalid. So exchange data sets for these basic blocks as sel_split_block
4807 mistakenly exchanges them in this case. Cannot do it earlier because
4808 when single instruction is added to new basic block it should hold NULL
4809 lv_set. */
4810 if (need_to_exchange_data_sets)
4811 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4812 BLOCK_FOR_INSN (join_point));
4813
4814 stat_bookkeeping_copies++;
4815 return BLOCK_FOR_INSN (new_insn);
4816}
4817
b8698a0f 4818/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e855c69d
AB
4819 on FENCE, but we are unable to copy them. */
4820static void
4821remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4822{
4823 expr_t expr;
4824 av_set_iterator i;
4825
b8698a0f
L
4826 /* An expression does not need bookkeeping if it is available on all paths
4827 from current block to original block and current block dominates
4828 original block. We check availability on all paths by examining
4829 EXPR_SPEC; this is not equivalent, because it may be positive even
4830 if expr is available on all paths (but if expr is not available on
e855c69d
AB
4831 any path, EXPR_SPEC will be positive). */
4832
4833 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4834 {
4835 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4836 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4837 && (EXPR_SPEC (expr)
4838 || !EXPR_ORIG_BB_INDEX (expr)
4839 || !dominated_by_p (CDI_DOMINATORS,
06e28de2
DM
4840 BASIC_BLOCK_FOR_FN (cfun,
4841 EXPR_ORIG_BB_INDEX (expr)),
e855c69d
AB
4842 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4843 {
4844 if (sched_verbose >= 4)
4845 sel_print ("Expr %d removed because it would need bookkeeping, which "
4846 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4847 av_set_iter_remove (&i);
4848 }
4849 }
4850}
4851
4852/* Moving conditional jump through some instructions.
4853
4854 Consider example:
4855
4856 ... <- current scheduling point
4857 NOTE BASIC BLOCK: <- bb header
4858 (p8) add r14=r14+0x9;;
4859 (p8) mov [r14]=r23
4860 (!p8) jump L1;;
4861 NOTE BASIC BLOCK:
4862 ...
4863
b8698a0f 4864 We can schedule jump one cycle earlier, than mov, because they cannot be
e855c69d
AB
4865 executed together as their predicates are mutually exclusive.
4866
b8698a0f
L
4867 This is done in this way: first, new fallthrough basic block is created
4868 after jump (it is always can be done, because there already should be a
e855c69d 4869 fallthrough block, where control flow goes in case of predicate being true -
b8698a0f
L
4870 in our example; otherwise there should be a dependence between those
4871 instructions and jump and we cannot schedule jump right now);
4872 next, all instructions between jump and current scheduling point are moved
e855c69d
AB
4873 to this new block. And the result is this:
4874
4875 NOTE BASIC BLOCK:
4876 (!p8) jump L1 <- current scheduling point
4877 NOTE BASIC BLOCK: <- bb header
4878 (p8) add r14=r14+0x9;;
4879 (p8) mov [r14]=r23
4880 NOTE BASIC BLOCK:
4881 ...
4882*/
4883static void
6144a836 4884move_cond_jump (rtx_insn *insn, bnd_t bnd)
e855c69d
AB
4885{
4886 edge ft_edge;
324d3f45 4887 basic_block block_from, block_next, block_new, block_bnd, bb;
eec818f4 4888 rtx_insn *next, *prev, *link, *head;
e855c69d 4889
e855c69d 4890 block_from = BLOCK_FOR_INSN (insn);
324d3f45
AM
4891 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4892 prev = BND_TO (bnd);
e855c69d 4893
324d3f45
AM
4894 /* Moving of jump should not cross any other jumps or beginnings of new
4895 basic blocks. The only exception is when we move a jump through
4896 mutually exclusive insns along fallthru edges. */
b2b29377 4897 if (flag_checking && block_from != block_bnd)
324d3f45
AM
4898 {
4899 bb = block_from;
4900 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4901 link = PREV_INSN (link))
4902 {
4903 if (INSN_P (link))
4904 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4905 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4906 {
4907 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4908 bb = BLOCK_FOR_INSN (link);
4909 }
4910 }
4911 }
e855c69d
AB
4912
4913 /* Jump is moved to the boundary. */
e855c69d 4914 next = PREV_INSN (insn);
6144a836 4915 BND_TO (bnd) = insn;
e855c69d 4916
0fd4b31d 4917 ft_edge = find_fallthru_edge_from (block_from);
e855c69d
AB
4918 block_next = ft_edge->dest;
4919 /* There must be a fallthrough block (or where should go
4920 control flow in case of false jump predicate otherwise?). */
4921 gcc_assert (block_next);
4922
4923 /* Create new empty basic block after source block. */
4924 block_new = sel_split_edge (ft_edge);
4925 gcc_assert (block_new->next_bb == block_next
4926 && block_from->next_bb == block_new);
4927
324d3f45
AM
4928 /* Move all instructions except INSN to BLOCK_NEW. */
4929 bb = block_bnd;
4930 head = BB_HEAD (block_new);
4931 while (bb != block_from->next_bb)
e855c69d 4932 {
eec818f4 4933 rtx_insn *from, *to;
324d3f45
AM
4934 from = bb == block_bnd ? prev : sel_bb_head (bb);
4935 to = bb == block_from ? next : sel_bb_end (bb);
e855c69d 4936
324d3f45
AM
4937 /* The jump being moved can be the first insn in the block.
4938 In this case we don't have to move anything in this block. */
4939 if (NEXT_INSN (to) != from)
4940 {
4941 reorder_insns (from, to, head);
4942
4943 for (link = to; link != head; link = PREV_INSN (link))
4944 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4945 head = to;
4946 }
e855c69d 4947
324d3f45
AM
4948 /* Cleanup possibly empty blocks left. */
4949 block_next = bb->next_bb;
4950 if (bb != block_from)
65592aad 4951 tidy_control_flow (bb, false);
324d3f45
AM
4952 bb = block_next;
4953 }
e855c69d
AB
4954
4955 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4956 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e855c69d
AB
4957
4958 gcc_assert (!sel_bb_empty_p (block_from)
4959 && !sel_bb_empty_p (block_new));
4960
4961 /* Update data sets for BLOCK_NEW to represent that INSN and
4962 instructions from the other branch of INSN is no longer
4963 available at BLOCK_NEW. */
4964 BB_AV_LEVEL (block_new) = global_level;
4965 gcc_assert (BB_LV_SET (block_new) == NULL);
4966 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4967 update_data_sets (sel_bb_head (block_new));
4968
4969 /* INSN is a new basic block header - so prepare its data
4970 structures and update availability and liveness sets. */
4971 update_data_sets (insn);
4972
4973 if (sched_verbose >= 4)
4974 sel_print ("Moving jump %d\n", INSN_UID (insn));
4975}
4976
4977/* Remove nops generated during move_op for preventing removal of empty
4978 basic blocks. */
4979static void
b5b8b0ac 4980remove_temp_moveop_nops (bool full_tidying)
e855c69d
AB
4981{
4982 int i;
4983 insn_t insn;
b8698a0f 4984
9771b263 4985 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
e855c69d
AB
4986 {
4987 gcc_assert (INSN_NOP_P (insn));
b5b8b0ac 4988 return_nop_to_pool (insn, full_tidying);
e855c69d
AB
4989 }
4990
4991 /* Empty the vector. */
9771b263
DN
4992 if (vec_temp_moveop_nops.length () > 0)
4993 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
e855c69d
AB
4994}
4995
4996/* Records the maximal UID before moving up an instruction. Used for
4997 distinguishing between bookkeeping copies and original insns. */
4998static int max_uid_before_move_op = 0;
4999
5000/* Remove from AV_VLIW_P all instructions but next when debug counter
5001 tells us so. Next instruction is fetched from BNDS. */
5002static void
5003remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5004{
5005 if (! dbg_cnt (sel_sched_insn_cnt))
5006 /* Leave only the next insn in av_vliw. */
5007 {
5008 av_set_iterator av_it;
5009 expr_t expr;
5010 bnd_t bnd = BLIST_BND (bnds);
5011 insn_t next = BND_TO (bnd);
5012
5013 gcc_assert (BLIST_NEXT (bnds) == NULL);
5014
5015 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5016 if (EXPR_INSN_RTX (expr) != next)
5017 av_set_iter_remove (&av_it);
5018 }
5019}
5020
b8698a0f 5021/* Compute available instructions on BNDS. FENCE is the current fence. Write
e855c69d
AB
5022 the computed set to *AV_VLIW_P. */
5023static void
5024compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5025{
5026 if (sched_verbose >= 2)
5027 {
5028 sel_print ("Boundaries: ");
5029 dump_blist (bnds);
5030 sel_print ("\n");
5031 }
5032
5033 for (; bnds; bnds = BLIST_NEXT (bnds))
5034 {
5035 bnd_t bnd = BLIST_BND (bnds);
5036 av_set_t av1_copy;
5037 insn_t bnd_to = BND_TO (bnd);
5038
5039 /* Rewind BND->TO to the basic block header in case some bookkeeping
5040 instructions were inserted before BND->TO and it needs to be
5041 adjusted. */
5042 if (sel_bb_head_p (bnd_to))
5043 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5044 else
5045 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5046 {
5047 bnd_to = PREV_INSN (bnd_to);
5048 if (sel_bb_head_p (bnd_to))
5049 break;
5050 }
5051
5052 if (BND_TO (bnd) != bnd_to)
5053 {
5054 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5055 FENCE_INSN (fence) = bnd_to;
6144a836 5056 BND_TO (bnd) = bnd_to;
e855c69d
AB
5057 }
5058
5059 av_set_clear (&BND_AV (bnd));
5060 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5061
5062 av_set_clear (&BND_AV1 (bnd));
5063 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5064
5065 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
b8698a0f 5066
e855c69d
AB
5067 av1_copy = av_set_copy (BND_AV1 (bnd));
5068 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5069 }
5070
5071 if (sched_verbose >= 2)
5072 {
5073 sel_print ("Available exprs (vliw form): ");
5074 dump_av_set (*av_vliw_p);
5075 sel_print ("\n");
5076 }
5077}
5078
b8698a0f
L
5079/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5080 expression. When FOR_MOVEOP is true, also replace the register of
e855c69d
AB
5081 expressions found with the register from EXPR_VLIW. */
5082static av_set_t
5083find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5084{
5085 av_set_t expr_seq = NULL;
5086 expr_t expr;
5087 av_set_iterator i;
b8698a0f 5088
e855c69d
AB
5089 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5090 {
5091 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5092 {
5093 if (for_moveop)
5094 {
b8698a0f
L
5095 /* The sequential expression has the right form to pass
5096 to move_op except when renaming happened. Put the
e855c69d
AB
5097 correct register in EXPR then. */
5098 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5099 {
5100 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5101 {
5102 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5103 stat_renamed_scheduled++;
5104 }
b8698a0f
L
5105 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5106 This is needed when renaming came up with original
e855c69d 5107 register. */
b8698a0f 5108 else if (EXPR_TARGET_AVAILABLE (expr)
e855c69d
AB
5109 != EXPR_TARGET_AVAILABLE (expr_vliw))
5110 {
5111 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5112 EXPR_TARGET_AVAILABLE (expr) = 1;
5113 }
5114 }
5115 if (EXPR_WAS_SUBSTITUTED (expr))
5116 stat_substitutions_total++;
5117 }
5118
5119 av_set_add (&expr_seq, expr);
b8698a0f
L
5120
5121 /* With substitution inside insn group, it is possible
5122 that more than one expression in expr_seq will correspond
5123 to expr_vliw. In this case, choose one as the attempt to
e855c69d
AB
5124 move both leads to miscompiles. */
5125 break;
5126 }
5127 }
5128
5129 if (for_moveop && sched_verbose >= 2)
5130 {
5131 sel_print ("Best expression(s) (sequential form): ");
5132 dump_av_set (expr_seq);
5133 sel_print ("\n");
5134 }
b8698a0f 5135
e855c69d
AB
5136 return expr_seq;
5137}
5138
5139
5140/* Move nop to previous block. */
5141static void ATTRIBUTE_UNUSED
5142move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5143{
e67d1102 5144 insn_t prev_insn, next_insn;
e855c69d 5145
b8698a0f 5146 gcc_assert (sel_bb_head_p (nop)
e855c69d 5147 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
e67d1102 5148 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
e855c69d
AB
5149 prev_insn = sel_bb_end (prev_bb);
5150 next_insn = NEXT_INSN (nop);
5151 gcc_assert (prev_insn != NULL_RTX
5152 && PREV_INSN (note) == prev_insn);
5153
0f82e5c9
DM
5154 SET_NEXT_INSN (prev_insn) = nop;
5155 SET_PREV_INSN (nop) = prev_insn;
e855c69d 5156
0f82e5c9
DM
5157 SET_PREV_INSN (note) = nop;
5158 SET_NEXT_INSN (note) = next_insn;
e855c69d 5159
0f82e5c9
DM
5160 SET_NEXT_INSN (nop) = note;
5161 SET_PREV_INSN (next_insn) = note;
e855c69d 5162
1130d5e3 5163 BB_END (prev_bb) = nop;
e855c69d
AB
5164 BLOCK_FOR_INSN (nop) = prev_bb;
5165}
5166
5167/* Prepare a place to insert the chosen expression on BND. */
5168static insn_t
5169prepare_place_to_insert (bnd_t bnd)
5170{
5171 insn_t place_to_insert;
5172
5173 /* Init place_to_insert before calling move_op, as the later
5174 can possibly remove BND_TO (bnd). */
5175 if (/* If this is not the first insn scheduled. */
5176 BND_PTR (bnd))
5177 {
5178 /* Add it after last scheduled. */
5179 place_to_insert = ILIST_INSN (BND_PTR (bnd));
b5b8b0ac
AO
5180 if (DEBUG_INSN_P (place_to_insert))
5181 {
5182 ilist_t l = BND_PTR (bnd);
5183 while ((l = ILIST_NEXT (l)) &&
5184 DEBUG_INSN_P (ILIST_INSN (l)))
5185 ;
5186 if (!l)
5187 place_to_insert = NULL;
5188 }
e855c69d
AB
5189 }
5190 else
b5b8b0ac
AO
5191 place_to_insert = NULL;
5192
5193 if (!place_to_insert)
e855c69d
AB
5194 {
5195 /* Add it before BND_TO. The difference is in the
5196 basic block, where INSN will be added. */
5197 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5198 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5199 == BLOCK_FOR_INSN (BND_TO (bnd)));
5200 }
5201
5202 return place_to_insert;
5203}
5204
b8698a0f 5205/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e855c69d 5206 Return the expression to emit in C_EXPR. */
72a54528 5207static bool
b8698a0f 5208move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e855c69d
AB
5209 av_set_t expr_seq, expr_t c_expr)
5210{
72a54528 5211 bool b, should_move;
e855c69d
AB
5212 unsigned book_uid;
5213 bitmap_iterator bi;
5214 int n_bookkeeping_copies_before_moveop;
5215
5216 /* Make a move. This call will remove the original operation,
5217 insert all necessary bookkeeping instructions and update the
5218 data sets. After that all we have to do is add the operation
5219 at before BND_TO (BND). */
5220 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5221 max_uid_before_move_op = get_max_uid ();
5222 bitmap_clear (current_copies);
5223 bitmap_clear (current_originators);
5224
b8698a0f 5225 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 5226 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d 5227
b8698a0f 5228 /* We should be able to find the expression we've chosen for
e855c69d 5229 scheduling. */
72a54528 5230 gcc_assert (b);
b8698a0f 5231
e855c69d
AB
5232 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5233 stat_insns_needed_bookkeeping++;
b8698a0f 5234
e855c69d
AB
5235 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5236 {
14f30b87
AM
5237 unsigned uid;
5238 bitmap_iterator bi;
5239
e855c69d
AB
5240 /* We allocate these bitmaps lazily. */
5241 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5242 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
b8698a0f
L
5243
5244 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e855c69d 5245 current_originators);
14f30b87
AM
5246
5247 /* Transitively add all originators' originators. */
5248 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5249 if (INSN_ORIGINATORS_BY_UID (uid))
5250 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5251 INSN_ORIGINATORS_BY_UID (uid));
e855c69d 5252 }
72a54528
AM
5253
5254 return should_move;
e855c69d
AB
5255}
5256
5257
5258/* Debug a DFA state as an array of bytes. */
5259static void
5260debug_state (state_t state)
5261{
5262 unsigned char *p;
5263 unsigned int i, size = dfa_state_size;
5264
5265 sel_print ("state (%u):", size);
5266 for (i = 0, p = (unsigned char *) state; i < size; i++)
5267 sel_print (" %d", p[i]);
5268 sel_print ("\n");
5269}
5270
b8698a0f 5271/* Advance state on FENCE with INSN. Return true if INSN is
e855c69d
AB
5272 an ASM, and we should advance state once more. */
5273static bool
5274advance_state_on_fence (fence_t fence, insn_t insn)
5275{
5276 bool asm_p;
5277
5278 if (recog_memoized (insn) >= 0)
5279 {
5280 int res;
5281 state_t temp_state = alloca (dfa_state_size);
b8698a0f 5282
e855c69d
AB
5283 gcc_assert (!INSN_ASM_P (insn));
5284 asm_p = false;
5285
5286 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5287 res = state_transition (FENCE_STATE (fence), insn);
5288 gcc_assert (res < 0);
5289
5290 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5291 {
5292 FENCE_ISSUED_INSNS (fence)++;
5293
5294 /* We should never issue more than issue_rate insns. */
5295 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5296 gcc_unreachable ();
5297 }
b8698a0f 5298 }
e855c69d
AB
5299 else
5300 {
b8698a0f 5301 /* This could be an ASM insn which we'd like to schedule
e855c69d
AB
5302 on the next cycle. */
5303 asm_p = INSN_ASM_P (insn);
5304 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5305 advance_one_cycle (fence);
5306 }
5307
5308 if (sched_verbose >= 2)
5309 debug_state (FENCE_STATE (fence));
b5b8b0ac
AO
5310 if (!DEBUG_INSN_P (insn))
5311 FENCE_STARTS_CYCLE_P (fence) = 0;
136e01a3 5312 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
5313 return asm_p;
5314}
5315
5316/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5317 is nonzero if we need to stall after issuing INSN. */
5318static void
5319update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5320{
5321 bool asm_p;
b8698a0f 5322
e855c69d
AB
5323 /* First, reflect that something is scheduled on this fence. */
5324 asm_p = advance_state_on_fence (fence, insn);
5325 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
9771b263 5326 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
e855c69d
AB
5327 if (SCHED_GROUP_P (insn))
5328 {
5329 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5330 SCHED_GROUP_P (insn) = 0;
5331 }
5332 else
6144a836 5333 FENCE_SCHED_NEXT (fence) = NULL;
e855c69d
AB
5334 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5335 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5336
5337 /* Set instruction scheduling info. This will be used in bundling,
5338 pipelining, tick computations etc. */
5339 ++INSN_SCHED_TIMES (insn);
5340 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5341 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5342 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5343 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5344
5345 /* This does not account for adjust_cost hooks, just add the biggest
b8698a0f 5346 constant the hook may add to the latency. TODO: make this
e855c69d 5347 a target dependent constant. */
b8698a0f
L
5348 INSN_READY_CYCLE (insn)
5349 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e855c69d
AB
5350 ? 1
5351 : maximal_insn_latency (insn) + 1);
5352
5353 /* Change these fields last, as they're used above. */
5354 FENCE_AFTER_STALL_P (fence) = 0;
5355 if (asm_p || need_stall)
5356 advance_one_cycle (fence);
b8698a0f 5357
e855c69d
AB
5358 /* Indicate that we've scheduled something on this fence. */
5359 FENCE_SCHEDULED_P (fence) = true;
5360 scheduled_something_on_previous_fence = true;
5361
5362 /* Print debug information when insn's fields are updated. */
5363 if (sched_verbose >= 2)
5364 {
5365 sel_print ("Scheduling insn: ");
5366 dump_insn_1 (insn, 1);
5367 sel_print ("\n");
5368 }
5369}
5370
b5b8b0ac
AO
5371/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5372 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5373 return it. */
e855c69d 5374static blist_t *
b5b8b0ac 5375update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e855c69d
AB
5376 blist_t *bnds_tailp)
5377{
5378 succ_iterator si;
5379 insn_t succ;
5380
5381 advance_deps_context (BND_DC (bnd), insn);
b8698a0f 5382 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
5383 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5384 {
5385 ilist_t ptr = ilist_copy (BND_PTR (bnd));
b8698a0f 5386
e855c69d 5387 ilist_add (&ptr, insn);
b5b8b0ac
AO
5388
5389 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5390 && is_ineligible_successor (succ, ptr))
5391 {
5392 ilist_clear (&ptr);
5393 continue;
5394 }
5395
5396 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5397 {
5398 if (sched_verbose >= 9)
5399 sel_print ("Updating fence insn from %i to %i\n",
5400 INSN_UID (insn), INSN_UID (succ));
5401 FENCE_INSN (fence) = succ;
5402 }
e855c69d
AB
5403 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5404 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5405 }
b8698a0f 5406
e855c69d
AB
5407 blist_remove (bndsp);
5408 return bnds_tailp;
5409}
5410
5411/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5412static insn_t
5413schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5414{
5415 av_set_t expr_seq;
5416 expr_t c_expr = XALLOCA (expr_def);
5417 insn_t place_to_insert;
5418 insn_t insn;
72a54528 5419 bool should_move;
e855c69d
AB
5420
5421 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5422
5423 /* In case of scheduling a jump skipping some other instructions,
b8698a0f 5424 prepare CFG. After this, jump is at the boundary and can be
e855c69d
AB
5425 scheduled as usual insn by MOVE_OP. */
5426 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5427 {
5428 insn = EXPR_INSN_RTX (expr_vliw);
b8698a0f 5429
e855c69d 5430 /* Speculative jumps are not handled. */
b8698a0f 5431 if (insn != BND_TO (bnd)
e855c69d
AB
5432 && !sel_insn_is_speculation_check (insn))
5433 move_cond_jump (insn, bnd);
5434 }
5435
e855c69d
AB
5436 /* Find a place for C_EXPR to schedule. */
5437 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5438 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d 5439 clear_expr (c_expr);
b8698a0f
L
5440
5441 /* Add the instruction. The corner case to care about is when
5442 the expr_seq set has more than one expr, and we chose the one that
5443 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e855c69d
AB
5444 we can't use it. Generate the new vinsn. */
5445 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5446 {
5447 vinsn_t vinsn_new;
b8698a0f 5448
e855c69d
AB
5449 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5450 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5451 should_move = false;
e855c69d 5452 }
72a54528
AM
5453 if (should_move)
5454 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5455 else
b8698a0f 5456 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e855c69d 5457 place_to_insert);
e855c69d
AB
5458
5459 /* Return the nops generated for preserving of data sets back
5460 into pool. */
5461 if (INSN_NOP_P (place_to_insert))
b5b8b0ac
AO
5462 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5463 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e855c69d
AB
5464
5465 av_set_clear (&expr_seq);
b8698a0f
L
5466
5467 /* Save the expression scheduled so to reset target availability if we'll
e855c69d
AB
5468 meet it later on the same fence. */
5469 if (EXPR_WAS_RENAMED (expr_vliw))
5470 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5471
5472 /* Check that the recent movement didn't destroyed loop
5473 structure. */
5474 gcc_assert (!pipelining_p
5475 || current_loop_nest == NULL
5476 || loop_latch_edge (current_loop_nest));
5477 return insn;
5478}
5479
5480/* Stall for N cycles on FENCE. */
5481static void
5482stall_for_cycles (fence_t fence, int n)
5483{
5484 int could_more;
b8698a0f 5485
e855c69d
AB
5486 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5487 while (n--)
5488 advance_one_cycle (fence);
5489 if (could_more)
5490 FENCE_AFTER_STALL_P (fence) = 1;
5491}
5492
b8698a0f
L
5493/* Gather a parallel group of insns at FENCE and assign their seqno
5494 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e855c69d
AB
5495 list for later recalculation of seqnos. */
5496static void
5497fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5498{
5499 blist_t bnds = NULL, *bnds_tailp;
5500 av_set_t av_vliw = NULL;
5501 insn_t insn = FENCE_INSN (fence);
5502
5503 if (sched_verbose >= 2)
b8698a0f 5504 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e855c69d
AB
5505 INSN_UID (insn), FENCE_CYCLE (fence));
5506
5507 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5508 bnds_tailp = &BLIST_NEXT (bnds);
5509 set_target_context (FENCE_TC (fence));
136e01a3 5510 can_issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
5511 target_bb = INSN_BB (insn);
5512
5513 /* Do while we can add any operation to the current group. */
5514 do
5515 {
5516 blist_t *bnds_tailp1, *bndsp;
5517 expr_t expr_vliw;
09a2806f 5518 int need_stall = false;
06f0c25f 5519 int was_stall = 0, scheduled_insns = 0;
e855c69d
AB
5520 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5521 int max_stall = pipelining_p ? 1 : 3;
b5b8b0ac
AO
5522 bool last_insn_was_debug = false;
5523 bool was_debug_bb_end_p = false;
5524
e855c69d
AB
5525 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5526 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5527 remove_insns_for_debug (bnds, &av_vliw);
5528
5529 /* Return early if we have nothing to schedule. */
5530 if (av_vliw == NULL)
5531 break;
5532
5533 /* Choose the best expression and, if needed, destination register
5534 for it. */
5535 do
5536 {
5537 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
06f0c25f 5538 if (! expr_vliw && need_stall)
e855c69d
AB
5539 {
5540 /* All expressions required a stall. Do not recompute av sets
5541 as we'll get the same answer (modulo the insns between
5542 the fence and its boundary, which will not be available for
06f0c25f
AB
5543 pipelining).
5544 If we are going to stall for too long, break to recompute av
e855c69d 5545 sets and bring more insns for pipelining. */
06f0c25f 5546 was_stall++;
e855c69d
AB
5547 if (need_stall <= 3)
5548 stall_for_cycles (fence, need_stall);
5549 else
5550 {
5551 stall_for_cycles (fence, 1);
5552 break;
5553 }
5554 }
5555 }
5556 while (! expr_vliw && need_stall);
b8698a0f 5557
e855c69d
AB
5558 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5559 if (!expr_vliw)
5560 {
5561 av_set_clear (&av_vliw);
5562 break;
5563 }
5564
5565 bndsp = &bnds;
5566 bnds_tailp1 = bnds_tailp;
5567
5568 do
b8698a0f 5569 /* This code will be executed only once until we'd have several
e855c69d
AB
5570 boundaries per fence. */
5571 {
5572 bnd_t bnd = BLIST_BND (*bndsp);
5573
5574 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5575 {
5576 bndsp = &BLIST_NEXT (*bndsp);
5577 continue;
5578 }
b8698a0f 5579
e855c69d 5580 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
b5b8b0ac
AO
5581 last_insn_was_debug = DEBUG_INSN_P (insn);
5582 if (last_insn_was_debug)
5583 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e855c69d 5584 update_fence_and_insn (fence, insn, need_stall);
b5b8b0ac 5585 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e855c69d
AB
5586
5587 /* Add insn to the list of scheduled on this cycle instructions. */
5588 ilist_add (*scheduled_insns_tailpp, insn);
5589 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5590 }
5591 while (*bndsp != *bnds_tailp1);
5592
5593 av_set_clear (&av_vliw);
b5b8b0ac
AO
5594 if (!last_insn_was_debug)
5595 scheduled_insns++;
e855c69d
AB
5596
5597 /* We currently support information about candidate blocks only for
5598 one 'target_bb' block. Hence we can't schedule after jump insn,
5599 as this will bring two boundaries and, hence, necessity to handle
5600 information for two or more blocks concurrently. */
b5b8b0ac 5601 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
b8698a0f
L
5602 || (was_stall
5603 && (was_stall >= max_stall
e855c69d
AB
5604 || scheduled_insns >= max_insns)))
5605 break;
5606 }
5607 while (bnds);
5608
5609 gcc_assert (!FENCE_BNDS (fence));
b8698a0f 5610
e855c69d
AB
5611 /* Update boundaries of the FENCE. */
5612 while (bnds)
5613 {
5614 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5615
5616 if (ptr)
5617 {
5618 insn = ILIST_INSN (ptr);
5619
5620 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5621 ilist_add (&FENCE_BNDS (fence), insn);
5622 }
b8698a0f 5623
e855c69d
AB
5624 blist_remove (&bnds);
5625 }
5626
5627 /* Update target context on the fence. */
5628 reset_target_context (FENCE_TC (fence), false);
5629}
5630
5631/* All exprs in ORIG_OPS must have the same destination register or memory.
5632 Return that destination. */
5633static rtx
5634get_dest_from_orig_ops (av_set_t orig_ops)
5635{
5636 rtx dest = NULL_RTX;
5637 av_set_iterator av_it;
5638 expr_t expr;
5639 bool first_p = true;
5640
5641 FOR_EACH_EXPR (expr, av_it, orig_ops)
5642 {
5643 rtx x = EXPR_LHS (expr);
5644
5645 if (first_p)
5646 {
5647 first_p = false;
5648 dest = x;
5649 }
5650 else
5651 gcc_assert (dest == x
5652 || (dest != NULL_RTX && x != NULL_RTX
5653 && rtx_equal_p (dest, x)));
5654 }
5655
5656 return dest;
5657}
5658
5659/* Update data sets for the bookkeeping block and record those expressions
5660 which become no longer available after inserting this bookkeeping. */
5661static void
5662update_and_record_unavailable_insns (basic_block book_block)
5663{
5664 av_set_iterator i;
5665 av_set_t old_av_set = NULL;
5666 expr_t cur_expr;
6144a836 5667 rtx_insn *bb_end = sel_bb_end (book_block);
e855c69d 5668
b8698a0f 5669 /* First, get correct liveness in the bookkeeping block. The problem is
e855c69d
AB
5670 the range between the bookeeping insn and the end of block. */
5671 update_liveness_on_insn (bb_end);
5672 if (control_flow_insn_p (bb_end))
5673 update_liveness_on_insn (PREV_INSN (bb_end));
5674
5675 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5676 fence above, where we may choose to schedule an insn which is
5677 actually blocked from moving up with the bookkeeping we create here. */
5678 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5679 {
5680 old_av_set = av_set_copy (BB_AV_SET (book_block));
5681 update_data_sets (sel_bb_head (book_block));
b8698a0f 5682
e855c69d
AB
5683 /* Traverse all the expressions in the old av_set and check whether
5684 CUR_EXPR is in new AV_SET. */
5685 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5686 {
b8698a0f 5687 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e855c69d
AB
5688 EXPR_VINSN (cur_expr));
5689
b8698a0f
L
5690 if (! new_expr
5691 /* In this case, we can just turn off the E_T_A bit, but we can't
e855c69d 5692 represent this information with the current vector. */
b8698a0f 5693 || EXPR_TARGET_AVAILABLE (new_expr)
e855c69d
AB
5694 != EXPR_TARGET_AVAILABLE (cur_expr))
5695 /* Unfortunately, the below code could be also fired up on
0c02ab39
AB
5696 separable insns, e.g. when moving insns through the new
5697 speculation check as in PR 53701. */
e855c69d
AB
5698 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5699 }
5700
5701 av_set_clear (&old_av_set);
5702 }
5703}
5704
b8698a0f 5705/* The main effect of this function is that sparams->c_expr is merged
e855c69d
AB
5706 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5707 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
b8698a0f
L
5708 lparams->c_expr_merged is copied back to sparams->c_expr after all
5709 successors has been traversed. lparams->c_expr_local is an expr allocated
5710 on stack in the caller function, and is used if there is more than one
5711 successor.
e855c69d
AB
5712
5713 SUCC is one of the SUCCS_NORMAL successors of INSN,
5714 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5715 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5716static void
b8698a0f
L
5717move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5718 insn_t succ ATTRIBUTE_UNUSED,
5719 int moveop_drv_call_res,
e855c69d
AB
5720 cmpd_local_params_p lparams, void *static_params)
5721{
5722 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5723
5724 /* Nothing to do, if original expr wasn't found below. */
5725 if (moveop_drv_call_res != 1)
5726 return;
5727
5728 /* If this is a first successor. */
5729 if (!lparams->c_expr_merged)
5730 {
5731 lparams->c_expr_merged = sparams->c_expr;
5732 sparams->c_expr = lparams->c_expr_local;
5733 }
5734 else
5735 {
5736 /* We must merge all found expressions to get reasonable
5737 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5738 do so then we can first find the expr with epsilon
5739 speculation success probability and only then with the
5740 good probability. As a result the insn will get epsilon
5741 probability and will never be scheduled because of
5742 weakness_cutoff in find_best_expr.
5743
b8698a0f 5744 We call merge_expr_data here instead of merge_expr
e855c69d
AB
5745 because due to speculation C_EXPR and X may have the
5746 same insns with different speculation types. And as of
b8698a0f 5747 now such insns are considered non-equal.
e855c69d 5748
b8698a0f
L
5749 However, EXPR_SCHED_TIMES is different -- we must get
5750 SCHED_TIMES from a real insn, not a bookkeeping copy.
e855c69d 5751 We force this here. Instead, we may consider merging
b8698a0f 5752 SCHED_TIMES to the maximum instead of minimum in the
e855c69d
AB
5753 below function. */
5754 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5755
5756 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5757 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5758 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5759
5760 clear_expr (sparams->c_expr);
5761 }
5762}
5763
5764/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5765
5766 SUCC is one of the SUCCS_NORMAL successors of INSN,
5767 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5768 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5769 STATIC_PARAMS contain USED_REGS set. */
5770static void
b8698a0f
L
5771fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5772 int moveop_drv_call_res,
5773 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5774 void *static_params)
5775{
5776 regset succ_live;
5777 fur_static_params_p sparams = (fur_static_params_p) static_params;
5778
5779 /* Here we compute live regsets only for branches that do not lie
b8698a0f 5780 on the code motion paths. These branches correspond to value
e855c69d
AB
5781 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5782 for such branches code_motion_path_driver is not called. */
5783 if (moveop_drv_call_res != 0)
5784 return;
5785
5786 /* Mark all registers that do not meet the following condition:
5787 (3) not live on the other path of any conditional branch
5788 that is passed by the operation, in case original
5789 operations are not present on both paths of the
5790 conditional branch. */
5791 succ_live = compute_live (succ);
5792 IOR_REG_SET (sparams->used_regs, succ_live);
5793}
5794
5795/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5796 into SP->CEXPR. */
5797static void
5798move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
b8698a0f 5799{
e855c69d
AB
5800 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5801
5802 sp->c_expr = lp->c_expr_merged;
5803}
5804
5805/* Track bookkeeping copies created, insns scheduled, and blocks for
5806 rescheduling when INSN is found by move_op. */
5807static void
90831096 5808track_scheduled_insns_and_blocks (rtx_insn *insn)
e855c69d
AB
5809{
5810 /* Even if this insn can be a copy that will be removed during current move_op,
5811 we still need to count it as an originator. */
5812 bitmap_set_bit (current_originators, INSN_UID (insn));
5813
fcaa4ca4 5814 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e855c69d
AB
5815 {
5816 /* Note that original block needs to be rescheduled, as we pulled an
5817 instruction out of it. */
5818 if (INSN_SCHED_TIMES (insn) > 0)
5819 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
b5b8b0ac 5820 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e855c69d
AB
5821 num_insns_scheduled++;
5822 }
e855c69d
AB
5823
5824 /* For instructions we must immediately remove insn from the
5825 stream, so subsequent update_data_sets () won't include this
5826 insn into av_set.
5827 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5828 if (INSN_UID (insn) > max_uid_before_move_op)
5829 stat_bookkeeping_copies--;
5830}
5831
b8698a0f 5832/* Emit a register-register copy for INSN if needed. Return true if
e855c69d
AB
5833 emitted one. PARAMS is the move_op static parameters. */
5834static bool
6144a836 5835maybe_emit_renaming_copy (rtx_insn *insn,
e855c69d
AB
5836 moveop_static_params_p params)
5837{
5838 bool insn_emitted = false;
f07013eb 5839 rtx cur_reg;
e855c69d 5840
f07013eb
AM
5841 /* Bail out early when expression can not be renamed at all. */
5842 if (!EXPR_SEPARABLE_P (params->c_expr))
5843 return false;
5844
5845 cur_reg = expr_dest_reg (params->c_expr);
5846 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e855c69d
AB
5847
5848 /* If original operation has expr and the register chosen for
5849 that expr is not original operation's dest reg, substitute
5850 operation's right hand side with the register chosen. */
f07013eb 5851 if (REGNO (params->dest) != REGNO (cur_reg))
e855c69d
AB
5852 {
5853 insn_t reg_move_insn, reg_move_insn_rtx;
b8698a0f
L
5854
5855 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e855c69d 5856 params->dest);
b8698a0f
L
5857 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5858 INSN_EXPR (insn),
5859 INSN_SEQNO (insn),
e855c69d
AB
5860 insn);
5861 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5862 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
b8698a0f 5863
e855c69d
AB
5864 insn_emitted = true;
5865 params->was_renamed = true;
5866 }
b8698a0f 5867
e855c69d
AB
5868 return insn_emitted;
5869}
5870
b8698a0f
L
5871/* Emit a speculative check for INSN speculated as EXPR if needed.
5872 Return true if we've emitted one. PARAMS is the move_op static
e855c69d
AB
5873 parameters. */
5874static bool
6144a836 5875maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
e855c69d
AB
5876 moveop_static_params_p params)
5877{
5878 bool insn_emitted = false;
5879 insn_t x;
5880 ds_t check_ds;
5881
5882 check_ds = get_spec_check_type_for_insn (insn, expr);
5883 if (check_ds != 0)
5884 {
5885 /* A speculation check should be inserted. */
5886 x = create_speculation_check (params->c_expr, check_ds, insn);
5887 insn_emitted = true;
5888 }
5889 else
5890 {
5891 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5892 x = insn;
5893 }
b8698a0f 5894
e855c69d
AB
5895 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5896 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5897 return insn_emitted;
5898}
5899
b8698a0f
L
5900/* Handle transformations that leave an insn in place of original
5901 insn such as renaming/speculation. Return true if one of such
e855c69d
AB
5902 transformations actually happened, and we have emitted this insn. */
5903static bool
6144a836 5904handle_emitting_transformations (rtx_insn *insn, expr_t expr,
e855c69d
AB
5905 moveop_static_params_p params)
5906{
5907 bool insn_emitted = false;
5908
5909 insn_emitted = maybe_emit_renaming_copy (insn, params);
5910 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5911
5912 return insn_emitted;
b8698a0f 5913}
e855c69d 5914
b5b8b0ac
AO
5915/* If INSN is the only insn in the basic block (not counting JUMP,
5916 which may be a jump to next insn, and DEBUG_INSNs), we want to
5917 leave a NOP there till the return to fill_insns. */
5918
5919static bool
5a59b408 5920need_nop_to_preserve_insn_bb (rtx_insn *insn)
e855c69d 5921{
b5b8b0ac 5922 insn_t bb_head, bb_end, bb_next, in_next;
e855c69d
AB
5923 basic_block bb = BLOCK_FOR_INSN (insn);
5924
e855c69d
AB
5925 bb_head = sel_bb_head (bb);
5926 bb_end = sel_bb_end (bb);
e855c69d 5927
b5b8b0ac
AO
5928 if (bb_head == bb_end)
5929 return true;
5930
5931 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5932 bb_head = NEXT_INSN (bb_head);
5933
5934 if (bb_head == bb_end)
5935 return true;
5936
5937 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5938 bb_end = PREV_INSN (bb_end);
5939
5940 if (bb_head == bb_end)
5941 return true;
5942
5943 bb_next = NEXT_INSN (bb_head);
5944 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5945 bb_next = NEXT_INSN (bb_next);
5946
5947 if (bb_next == bb_end && JUMP_P (bb_end))
5948 return true;
5949
5950 in_next = NEXT_INSN (insn);
5951 while (DEBUG_INSN_P (in_next))
5952 in_next = NEXT_INSN (in_next);
5953
5954 if (IN_CURRENT_FENCE_P (in_next))
5955 return true;
5956
5957 return false;
5958}
5959
5960/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5961 is not removed but reused when INSN is re-emitted. */
5962static void
6144a836 5963remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
b5b8b0ac 5964{
e855c69d
AB
5965 /* If there's only one insn in the BB, make sure that a nop is
5966 inserted into it, so the basic block won't disappear when we'll
5967 delete INSN below with sel_remove_insn. It should also survive
b8698a0f 5968 till the return to fill_insns. */
b5b8b0ac 5969 if (need_nop_to_preserve_insn_bb (insn))
e855c69d 5970 {
b5b8b0ac 5971 insn_t nop = get_nop_from_pool (insn);
e855c69d 5972 gcc_assert (INSN_NOP_P (nop));
9771b263 5973 vec_temp_moveop_nops.safe_push (nop);
e855c69d
AB
5974 }
5975
5976 sel_remove_insn (insn, only_disconnect, false);
5977}
5978
5979/* This function is called when original expr is found.
b8698a0f 5980 INSN - current insn traversed, EXPR - the corresponding expr found.
e855c69d
AB
5981 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5982 is static parameters of move_op. */
5983static void
b8698a0f
L
5984move_op_orig_expr_found (insn_t insn, expr_t expr,
5985 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5986 void *static_params)
5987{
54b8379a 5988 bool only_disconnect;
e855c69d 5989 moveop_static_params_p params = (moveop_static_params_p) static_params;
b8698a0f 5990
e855c69d
AB
5991 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5992 track_scheduled_insns_and_blocks (insn);
54b8379a
AB
5993 handle_emitting_transformations (insn, expr, params);
5994 only_disconnect = params->uid == INSN_UID (insn);
72a54528
AM
5995
5996 /* Mark that we've disconnected an insn. */
5997 if (only_disconnect)
5998 params->uid = -1;
e855c69d
AB
5999 remove_insn_from_stream (insn, only_disconnect);
6000}
6001
6002/* The function is called when original expr is found.
6003 INSN - current insn traversed, EXPR - the corresponding expr found,
6004 crosses_call and original_insns in STATIC_PARAMS are updated. */
6005static void
6006fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6007 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6008 void *static_params)
6009{
6010 fur_static_params_p params = (fur_static_params_p) static_params;
6011 regset tmp;
6012
6013 if (CALL_P (insn))
6014 params->crosses_call = true;
6015
6016 def_list_add (params->original_insns, insn, params->crosses_call);
6017
6018 /* Mark the registers that do not meet the following condition:
b8698a0f
L
6019 (2) not among the live registers of the point
6020 immediately following the first original operation on
e855c69d
AB
6021 a given downward path, except for the original target
6022 register of the operation. */
6023 tmp = get_clear_regset_from_pool ();
6024 compute_live_below_insn (insn, tmp);
6025 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6026 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6027 IOR_REG_SET (params->used_regs, tmp);
6028 return_regset_to_pool (tmp);
6029
6030 /* (*1) We need to add to USED_REGS registers that are read by
6031 INSN's lhs. This may lead to choosing wrong src register.
6032 E.g. (scheduling const expr enabled):
6033
6034 429: ax=0x0 <- Can't use AX for this expr (0x0)
6035 433: dx=[bp-0x18]
6036 427: [ax+dx+0x1]=ax
6037 REG_DEAD: ax
6038 168: di=dx
6039 REG_DEAD: dx
6040 */
b8698a0f 6041 /* FIXME: see comment above and enable MEM_P
e855c69d
AB
6042 in vinsn_separable_p. */
6043 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6044 || !MEM_P (INSN_LHS (insn)));
6045}
6046
6047/* This function is called on the ascending pass, before returning from
6048 current basic block. */
6049static void
b8698a0f 6050move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e855c69d
AB
6051 void *static_params)
6052{
6053 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6054 basic_block book_block = NULL;
6055
b8698a0f 6056 /* When we have removed the boundary insn for scheduling, which also
e855c69d 6057 happened to be the end insn in its bb, we don't need to update sets. */
b8698a0f 6058 if (!lparams->removed_last_insn
e855c69d
AB
6059 && lparams->e1
6060 && sel_bb_head_p (insn))
6061 {
6062 /* We should generate bookkeeping code only if we are not at the
6063 top level of the move_op. */
6064 if (sel_num_cfg_preds_gt_1 (insn))
6065 book_block = generate_bookkeeping_insn (sparams->c_expr,
6066 lparams->e1, lparams->e2);
6067 /* Update data sets for the current insn. */
6068 update_data_sets (insn);
6069 }
b8698a0f 6070
e855c69d 6071 /* If bookkeeping code was inserted, we need to update av sets of basic
b8698a0f 6072 block that received bookkeeping. After generation of bookkeeping insn,
e855c69d 6073 bookkeeping block does not contain valid av set because we are not following
b8698a0f 6074 the original algorithm in every detail with regards to e.g. renaming
e855c69d 6075 simple reg-reg copies. Consider example:
b8698a0f 6076
e855c69d
AB
6077 bookkeeping block scheduling fence
6078 \ /
6079 \ join /
6080 ----------
6081 | |
6082 ----------
6083 / \
6084 / \
6085 r1 := r2 r1 := r3
6086
b8698a0f 6087 We try to schedule insn "r1 := r3" on the current
e855c69d
AB
6088 scheduling fence. Also, note that av set of bookkeeping block
6089 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6090 been scheduled, the CFG is as follows:
6091
6092 r1 := r3 r1 := r3
6093 bookkeeping block scheduling fence
6094 \ /
6095 \ join /
6096 ----------
6097 | |
6098 ----------
6099 / \
6100 / \
6101 r1 := r2
6102
6103 Here, insn "r1 := r3" was scheduled at the current scheduling point
6104 and bookkeeping code was generated at the bookeeping block. This
6105 way insn "r1 := r2" is no longer available as a whole instruction
6106 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
b8698a0f 6107 This situation is handled by calling update_data_sets.
e855c69d
AB
6108
6109 Since update_data_sets is called only on the bookkeeping block, and
b8698a0f 6110 it also may have predecessors with av_sets, containing instructions that
e855c69d
AB
6111 are no longer available, we save all such expressions that become
6112 unavailable during data sets update on the bookkeeping block in
b8698a0f
L
6113 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6114 expressions for scheduling. This allows us to avoid recomputation of
e855c69d 6115 av_sets outside the code motion path. */
b8698a0f 6116
e855c69d
AB
6117 if (book_block)
6118 update_and_record_unavailable_insns (book_block);
6119
6120 /* If INSN was previously marked for deletion, it's time to do it. */
6121 if (lparams->removed_last_insn)
6122 insn = PREV_INSN (insn);
b8698a0f 6123
e855c69d
AB
6124 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6125 kill a block with a single nop in which the insn should be emitted. */
6126 if (lparams->e1)
6127 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6128}
6129
6130/* This function is called on the ascending pass, before returning from the
6131 current basic block. */
6132static void
b8698a0f
L
6133fur_at_first_insn (insn_t insn,
6134 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
6135 void *static_params ATTRIBUTE_UNUSED)
6136{
6137 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6138 || AV_LEVEL (insn) == -1);
6139}
6140
6141/* Called on the backward stage of recursion to call moveup_expr for insn
6142 and sparams->c_expr. */
6143static void
6144move_op_ascend (insn_t insn, void *static_params)
6145{
6146 enum MOVEUP_EXPR_CODE res;
6147 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6148
6149 if (! INSN_NOP_P (insn))
6150 {
6151 res = moveup_expr_cached (sparams->c_expr, insn, false);
6152 gcc_assert (res != MOVEUP_EXPR_NULL);
6153 }
6154
6155 /* Update liveness for this insn as it was invalidated. */
6156 update_liveness_on_insn (insn);
6157}
6158
b8698a0f
L
6159/* This function is called on enter to the basic block.
6160 Returns TRUE if this block already have been visited and
e855c69d
AB
6161 code_motion_path_driver should return 1, FALSE otherwise. */
6162static int
b8698a0f 6163fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e855c69d
AB
6164 void *static_params, bool visited_p)
6165{
6166 fur_static_params_p sparams = (fur_static_params_p) static_params;
6167
6168 if (visited_p)
6169 {
6170 /* If we have found something below this block, there should be at
6171 least one insn in ORIGINAL_INSNS. */
6172 gcc_assert (*sparams->original_insns);
6173
6174 /* Adjust CROSSES_CALL, since we may have come to this block along
6175 different path. */
6176 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6177 |= sparams->crosses_call;
6178 }
6179 else
6180 local_params->old_original_insns = *sparams->original_insns;
6181
6182 return 1;
6183}
6184
6185/* Same as above but for move_op. */
6186static int
b8698a0f
L
6187move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6188 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e855c69d
AB
6189 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6190{
6191 if (visited_p)
6192 return -1;
6193 return 1;
6194}
6195
b8698a0f 6196/* This function is called while descending current basic block if current
e855c69d
AB
6197 insn is not the original EXPR we're searching for.
6198
b8698a0f 6199 Return value: FALSE, if code_motion_path_driver should perform a local
e855c69d
AB
6200 cleanup and return 0 itself;
6201 TRUE, if code_motion_path_driver should continue. */
6202static bool
6203move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6204 void *static_params)
6205{
6206 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6207
e855c69d 6208 sparams->failed_insn = insn;
e855c69d
AB
6209
6210 /* If we're scheduling separate expr, in order to generate correct code
b8698a0f 6211 we need to stop the search at bookkeeping code generated with the
e855c69d
AB
6212 same destination register or memory. */
6213 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6214 return false;
6215 return true;
6216}
6217
b8698a0f 6218/* This function is called while descending current basic block if current
e855c69d
AB
6219 insn is not the original EXPR we're searching for.
6220
6221 Return value: TRUE (code_motion_path_driver should continue). */
6222static bool
6223fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6224{
6225 bool mutexed;
6226 expr_t r;
6227 av_set_iterator avi;
6228 fur_static_params_p sparams = (fur_static_params_p) static_params;
6229
6230 if (CALL_P (insn))
6231 sparams->crosses_call = true;
b5b8b0ac
AO
6232 else if (DEBUG_INSN_P (insn))
6233 return true;
e855c69d
AB
6234
6235 /* If current insn we are looking at cannot be executed together
6236 with original insn, then we can skip it safely.
6237
6238 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6239 INSN = (!p6) r14 = r14 + 1;
6240
6241 Here we can schedule ORIG_OP with lhs = r14, though only
6242 looking at the set of used and set registers of INSN we must
6243 forbid it. So, add set/used in INSN registers to the
6244 untouchable set only if there is an insn in ORIG_OPS that can
6245 affect INSN. */
6246 mutexed = true;
6247 FOR_EACH_EXPR (r, avi, orig_ops)
6248 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6249 {
6250 mutexed = false;
6251 break;
6252 }
6253
6254 /* Mark all registers that do not meet the following condition:
6255 (1) Not set or read on any path from xi to an instance of the
6256 original operation. */
6257 if (!mutexed)
6258 {
6259 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6260 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6262 }
6263
6264 return true;
6265}
6266
6267/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6268struct code_motion_path_driver_info_def move_op_hooks = {
6269 move_op_on_enter,
6270 move_op_orig_expr_found,
6271 move_op_orig_expr_not_found,
6272 move_op_merge_succs,
6273 move_op_after_merge_succs,
6274 move_op_ascend,
6275 move_op_at_first_insn,
6276 SUCCS_NORMAL,
6277 "move_op"
6278};
6279
b8698a0f 6280/* Hooks and data to perform find_used_regs operations
e855c69d
AB
6281 with code_motion_path_driver. */
6282struct code_motion_path_driver_info_def fur_hooks = {
6283 fur_on_enter,
6284 fur_orig_expr_found,
6285 fur_orig_expr_not_found,
6286 fur_merge_succs,
6287 NULL, /* fur_after_merge_succs */
6288 NULL, /* fur_ascend */
6289 fur_at_first_insn,
6290 SUCCS_ALL,
6291 "find_used_regs"
6292};
6293
6294/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
b8698a0f
L
6295 code_motion_path_driver is called recursively. Original operation
6296 was found at least on one path that is starting with one of INSN's
e855c69d
AB
6297 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6298 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
b8698a0f 6299 of either move_op or find_used_regs depending on the caller.
e855c69d
AB
6300
6301 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6302 know for sure at this point. */
6303static int
b8698a0f 6304code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e855c69d
AB
6305 ilist_t path, void *static_params)
6306{
6307 int res = 0;
6308 succ_iterator succ_i;
6144a836 6309 insn_t succ;
e855c69d
AB
6310 basic_block bb;
6311 int old_index;
6312 unsigned old_succs;
6313
6314 struct cmpd_local_params lparams;
6315 expr_def _x;
6316
6317 lparams.c_expr_local = &_x;
6318 lparams.c_expr_merged = NULL;
6319
6320 /* We need to process only NORMAL succs for move_op, and collect live
b8698a0f
L
6321 registers from ALL branches (including those leading out of the
6322 region) for find_used_regs.
e855c69d
AB
6323
6324 In move_op, there can be a case when insn's bb number has changed
b8698a0f
L
6325 due to created bookkeeping. This happens very rare, as we need to
6326 move expression from the beginning to the end of the same block.
6327 Rescan successors in this case. */
e855c69d
AB
6328
6329 rescan:
6330 bb = BLOCK_FOR_INSN (insn);
b8698a0f 6331 old_index = bb->index;
e855c69d 6332 old_succs = EDGE_COUNT (bb->succs);
b8698a0f 6333
e855c69d
AB
6334 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6335 {
6336 int b;
6337
6338 lparams.e1 = succ_i.e1;
6339 lparams.e2 = succ_i.e2;
6340
6341 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6342 current region). */
6343 if (succ_i.current_flags == SUCCS_NORMAL)
b8698a0f 6344 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e855c69d
AB
6345 static_params);
6346 else
6347 b = 0;
6348
6349 /* Merge c_expres found or unify live register sets from different
6350 successors. */
6351 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6352 static_params);
6353 if (b == 1)
6354 res = b;
6355 else if (b == -1 && res != 1)
6356 res = b;
6357
6358 /* We have simplified the control flow below this point. In this case,
e839e2a9
AB
6359 the iterator becomes invalid. We need to try again.
6360 If we have removed the insn itself, it could be only an
6361 unconditional jump. Thus, do not rescan but break immediately --
6362 we have already visited the only successor block. */
6363 if (!BLOCK_FOR_INSN (insn))
6364 {
6365 if (sched_verbose >= 6)
6366 sel_print ("Not doing rescan: already visited the only successor"
6367 " of block %d\n", old_index);
6368 break;
6369 }
e855c69d
AB
6370 if (BLOCK_FOR_INSN (insn)->index != old_index
6371 || EDGE_COUNT (bb->succs) != old_succs)
7c1f0b40 6372 {
e839e2a9
AB
6373 if (sched_verbose >= 6)
6374 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6375 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
7c1f0b40
DM
6376 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6377 goto rescan;
6378 }
e855c69d
AB
6379 }
6380
b8698a0f 6381 /* Here, RES==1 if original expr was found at least for one of the
e855c69d 6382 successors. After the loop, RES may happen to have zero value
b8698a0f
L
6383 only if at some point the expr searched is present in av_set, but is
6384 not found below. In most cases, this situation is an error.
e855c69d
AB
6385 The exception is when the original operation is blocked by
6386 bookkeeping generated for another fence or for another path in current
6387 move_op. */
b2b29377
MM
6388 gcc_checking_assert (res == 1
6389 || (res == 0
6390 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6391 || res == -1);
b8698a0f 6392
e855c69d 6393 /* Merge data, clean up, etc. */
72a54528 6394 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6395 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6396
6397 return res;
6398}
6399
6400
b8698a0f
L
6401/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6402 is the pointer to the av set with expressions we were looking for,
e855c69d
AB
6403 PATH_P is the pointer to the traversed path. */
6404static inline void
6405code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6406{
6407 ilist_remove (path_p);
6408 av_set_clear (orig_ops_p);
6409}
6410
b8698a0f
L
6411/* The driver function that implements move_op or find_used_regs
6412 functionality dependent whether code_motion_path_driver_INFO is set to
6413 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e855c69d
AB
6414 of code (CFG traversal etc) that are shared among both functions. INSN
6415 is the insn we're starting the search from, ORIG_OPS are the expressions
6416 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6417 parameters of the driver, and STATIC_PARAMS are static parameters of
b8698a0f 6418 the caller.
e855c69d
AB
6419
6420 Returns whether original instructions were found. Note that top-level
6421 code_motion_path_driver always returns true. */
72a54528 6422static int
b8698a0f
L
6423code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6424 cmpd_local_params_p local_params_in,
e855c69d
AB
6425 void *static_params)
6426{
6427 expr_t expr = NULL;
6428 basic_block bb = BLOCK_FOR_INSN (insn);
6429 insn_t first_insn, bb_tail, before_first;
6430 bool removed_last_insn = false;
6431
6432 if (sched_verbose >= 6)
6433 {
6434 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6435 dump_insn (insn);
6436 sel_print (",");
6437 dump_av_set (orig_ops);
6438 sel_print (")\n");
6439 }
6440
6441 gcc_assert (orig_ops);
6442
6443 /* If no original operations exist below this insn, return immediately. */
6444 if (is_ineligible_successor (insn, path))
6445 {
6446 if (sched_verbose >= 6)
6447 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6448 return false;
6449 }
b8698a0f 6450
e855c69d
AB
6451 /* The block can have invalid av set, in which case it was created earlier
6452 during move_op. Return immediately. */
6453 if (sel_bb_head_p (insn))
6454 {
6455 if (! AV_SET_VALID_P (insn))
6456 {
6457 if (sched_verbose >= 6)
6458 sel_print ("Returned from block %d as it had invalid av set\n",
6459 bb->index);
6460 return false;
6461 }
6462
6463 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6464 {
6465 /* We have already found an original operation on this branch, do not
6466 go any further and just return TRUE here. If we don't stop here,
9c582551 6467 function can have exponential behavior even on the small code
e855c69d
AB
6468 with many different paths (e.g. with data speculation and
6469 recovery blocks). */
6470 if (sched_verbose >= 6)
6471 sel_print ("Block %d already visited in this traversal\n", bb->index);
6472 if (code_motion_path_driver_info->on_enter)
b8698a0f 6473 return code_motion_path_driver_info->on_enter (insn,
e855c69d 6474 local_params_in,
b8698a0f 6475 static_params,
e855c69d
AB
6476 true);
6477 }
6478 }
b8698a0f 6479
e855c69d
AB
6480 if (code_motion_path_driver_info->on_enter)
6481 code_motion_path_driver_info->on_enter (insn, local_params_in,
6482 static_params, false);
6483 orig_ops = av_set_copy (orig_ops);
6484
6485 /* Filter the orig_ops set. */
6486 if (AV_SET_VALID_P (insn))
5d369d58 6487 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
e855c69d
AB
6488
6489 /* If no more original ops, return immediately. */
6490 if (!orig_ops)
6491 {
6492 if (sched_verbose >= 6)
6493 sel_print ("No intersection with av set of block %d\n", bb->index);
6494 return false;
6495 }
6496
6497 /* For non-speculative insns we have to leave only one form of the
b8698a0f 6498 original operation, because if we don't, we may end up with
e855c69d
AB
6499 different C_EXPRes and, consequently, with bookkeepings for different
6500 expression forms along the same code motion path. That may lead to
b8698a0f
L
6501 generation of incorrect code. So for each code motion we stick to
6502 the single form of the instruction, except for speculative insns
6503 which we need to keep in different forms with all speculation
e855c69d
AB
6504 types. */
6505 av_set_leave_one_nonspec (&orig_ops);
6506
6507 /* It is not possible that all ORIG_OPS are filtered out. */
6508 gcc_assert (orig_ops);
6509
6510 /* It is enough to place only heads and tails of visited basic blocks into
6511 the PATH. */
6512 ilist_add (&path, insn);
6513 first_insn = insn;
6514 bb_tail = sel_bb_end (bb);
6515
6516 /* Descend the basic block in search of the original expr; this part
b8698a0f 6517 corresponds to the part of the original move_op procedure executed
e855c69d
AB
6518 before the recursive call. */
6519 for (;;)
6520 {
6521 /* Look at the insn and decide if it could be an ancestor of currently
6522 scheduling operation. If it is so, then the insn "dest = op" could
6523 either be replaced with "dest = reg", because REG now holds the result
6524 of OP, or just removed, if we've scheduled the insn as a whole.
6525
6526 If this insn doesn't contain currently scheduling OP, then proceed
6527 with searching and look at its successors. Operations we're searching
b8698a0f 6528 for could have changed when moving up through this insn via
e855c69d
AB
6529 substituting. In this case, perform unsubstitution on them first.
6530
6531 When traversing the DAG below this insn is finished, insert
6532 bookkeeping code, if the insn is a joint point, and remove
6533 leftovers. */
6534
6535 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6536 if (expr)
6537 {
6538 insn_t last_insn = PREV_INSN (insn);
6539
6540 /* We have found the original operation. */
6541 if (sched_verbose >= 6)
6542 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6543
b8698a0f 6544 code_motion_path_driver_info->orig_expr_found
e855c69d
AB
6545 (insn, expr, local_params_in, static_params);
6546
6547 /* Step back, so on the way back we'll start traversing from the
b8698a0f 6548 previous insn (or we'll see that it's bb_note and skip that
e855c69d
AB
6549 loop). */
6550 if (insn == first_insn)
6551 {
6552 first_insn = NEXT_INSN (last_insn);
6553 removed_last_insn = sel_bb_end_p (last_insn);
6554 }
6555 insn = last_insn;
6556 break;
6557 }
6558 else
6559 {
6560 /* We haven't found the original expr, continue descending the basic
6561 block. */
b8698a0f 6562 if (code_motion_path_driver_info->orig_expr_not_found
e855c69d
AB
6563 (insn, orig_ops, static_params))
6564 {
b8698a0f 6565 /* Av set ops could have been changed when moving through this
e855c69d
AB
6566 insn. To find them below it, we have to un-substitute them. */
6567 undo_transformations (&orig_ops, insn);
6568 }
6569 else
6570 {
6571 /* Clean up and return, if the hook tells us to do so. It may
b8698a0f 6572 happen if we've encountered the previously created
e855c69d
AB
6573 bookkeeping. */
6574 code_motion_path_driver_cleanup (&orig_ops, &path);
6575 return -1;
6576 }
6577
6578 gcc_assert (orig_ops);
6579 }
6580
6581 /* Stop at insn if we got to the end of BB. */
6582 if (insn == bb_tail)
6583 break;
6584
6585 insn = NEXT_INSN (insn);
6586 }
6587
b8698a0f 6588 /* Here INSN either points to the insn before the original insn (may be
e855c69d
AB
6589 bb_note, if original insn was a bb_head) or to the bb_end. */
6590 if (!expr)
6591 {
6592 int res;
5a59b408 6593 rtx_insn *last_insn = PREV_INSN (insn);
7c1f0b40 6594 bool added_to_path;
e855c69d
AB
6595
6596 gcc_assert (insn == sel_bb_end (bb));
6597
6598 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6599 it's already in PATH then). */
6600 if (insn != first_insn)
7c1f0b40
DM
6601 {
6602 ilist_add (&path, insn);
6603 added_to_path = true;
6604 }
6605 else
6606 added_to_path = false;
e855c69d 6607
b8698a0f
L
6608 /* Process_successors should be able to find at least one
6609 successor for which code_motion_path_driver returns TRUE. */
6610 res = code_motion_process_successors (insn, orig_ops,
e855c69d
AB
6611 path, static_params);
6612
7c1f0b40
DM
6613 /* Jump in the end of basic block could have been removed or replaced
6614 during code_motion_process_successors, so recompute insn as the
6615 last insn in bb. */
6616 if (NEXT_INSN (last_insn) != insn)
6617 {
6618 insn = sel_bb_end (bb);
6619 first_insn = sel_bb_head (bb);
6620 }
6621
e855c69d 6622 /* Remove bb tail from path. */
7c1f0b40 6623 if (added_to_path)
e855c69d
AB
6624 ilist_remove (&path);
6625
6626 if (res != 1)
6627 {
6628 /* This is the case when one of the original expr is no longer available
b8698a0f 6629 due to bookkeeping created on this branch with the same register.
e855c69d 6630 In the original algorithm, which doesn't have update_data_sets call
b8698a0f
L
6631 on a bookkeeping block, it would simply result in returning
6632 FALSE when we've encountered a previously generated bookkeeping
e855c69d
AB
6633 insn in moveop_orig_expr_not_found. */
6634 code_motion_path_driver_cleanup (&orig_ops, &path);
6635 return res;
6636 }
6637 }
6638
6639 /* Don't need it any more. */
6640 av_set_clear (&orig_ops);
6641
b8698a0f 6642 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e855c69d
AB
6643 the beginning of the basic block. */
6644 before_first = PREV_INSN (first_insn);
6645 while (insn != before_first)
b8698a0f 6646 {
e855c69d
AB
6647 if (code_motion_path_driver_info->ascend)
6648 code_motion_path_driver_info->ascend (insn, static_params);
6649
6650 insn = PREV_INSN (insn);
6651 }
b8698a0f 6652
e855c69d
AB
6653 /* Now we're at the bb head. */
6654 insn = first_insn;
6655 ilist_remove (&path);
6656 local_params_in->removed_last_insn = removed_last_insn;
6657 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
b8698a0f 6658
e855c69d
AB
6659 /* This should be the very last operation as at bb head we could change
6660 the numbering by creating bookkeeping blocks. */
6661 if (removed_last_insn)
6662 insn = PREV_INSN (insn);
861ec4f3
AB
6663
6664 /* If we have simplified the control flow and removed the first jump insn,
6665 there's no point in marking this block in the visited blocks bitmap. */
6666 if (BLOCK_FOR_INSN (insn))
6667 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
e855c69d
AB
6668 return true;
6669}
6670
b8698a0f 6671/* Move up the operations from ORIG_OPS set traversing the dag starting
e855c69d
AB
6672 from INSN. PATH represents the edges traversed so far.
6673 DEST is the register chosen for scheduling the current expr. Insert
6674 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
b8698a0f 6675 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6676 Set *SHOULD_MOVE to indicate whether we have only disconnected
6677 one of the insns found.
e855c69d 6678
b8698a0f 6679 Returns whether original instructions were found, which is asserted
e855c69d
AB
6680 to be true in the caller. */
6681static bool
6682move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6683 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6684{
6685 struct moveop_static_params sparams;
6686 struct cmpd_local_params lparams;
6c8e9fc9 6687 int res;
e855c69d 6688
b8698a0f 6689 /* Init params for code_motion_path_driver. */
e855c69d
AB
6690 sparams.dest = dest;
6691 sparams.c_expr = c_expr;
6692 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
e855c69d 6693 sparams.failed_insn = NULL;
e855c69d
AB
6694 sparams.was_renamed = false;
6695 lparams.e1 = NULL;
6696
6697 /* We haven't visited any blocks yet. */
6698 bitmap_clear (code_motion_visited_blocks);
b8698a0f 6699
e855c69d
AB
6700 /* Set appropriate hooks and data. */
6701 code_motion_path_driver_info = &move_op_hooks;
6702 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6703
6c8e9fc9
AM
6704 gcc_assert (res != -1);
6705
e855c69d
AB
6706 if (sparams.was_renamed)
6707 EXPR_WAS_RENAMED (expr_vliw) = true;
6708
72a54528
AM
6709 *should_move = (sparams.uid == -1);
6710
e855c69d
AB
6711 return res;
6712}
6713\f
6714
6715/* Functions that work with regions. */
6716
6717/* Current number of seqno used in init_seqno and init_seqno_1. */
6718static int cur_seqno;
6719
b8698a0f
L
6720/* A helper for init_seqno. Traverse the region starting from BB and
6721 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e855c69d
AB
6722 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6723static void
6724init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6725{
6726 int bbi = BLOCK_TO_BB (bb->index);
e67d1102 6727 insn_t insn;
e855c69d
AB
6728 insn_t succ_insn;
6729 succ_iterator si;
6730
e67d1102 6731 rtx_note *note = bb_note (bb);
d7c028c0 6732 bitmap_set_bit (visited_bbs, bbi);
e855c69d
AB
6733 if (blocks_to_reschedule)
6734 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6735
b8698a0f 6736 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e855c69d
AB
6737 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6738 {
6739 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6740 int succ_bbi = BLOCK_TO_BB (succ->index);
6741
6742 gcc_assert (in_current_region_p (succ));
6743
d7c028c0 6744 if (!bitmap_bit_p (visited_bbs, succ_bbi))
e855c69d
AB
6745 {
6746 gcc_assert (succ_bbi > bbi);
6747
6748 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6749 }
06f0c25f
AB
6750 else if (blocks_to_reschedule)
6751 bitmap_set_bit (forced_ebb_heads, succ->index);
e855c69d
AB
6752 }
6753
6754 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6755 INSN_SEQNO (insn) = cur_seqno--;
6756}
6757
1f3b2b4e
AM
6758/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6759 blocks on which we're rescheduling when pipelining, FROM is the block where
e855c69d 6760 traversing region begins (it may not be the head of the region when
b8698a0f 6761 pipelining, but the head of the loop instead).
e855c69d
AB
6762
6763 Returns the maximal seqno found. */
6764static int
1f3b2b4e 6765init_seqno (bitmap blocks_to_reschedule, basic_block from)
e855c69d
AB
6766{
6767 sbitmap visited_bbs;
6768 bitmap_iterator bi;
6769 unsigned bbi;
6770
6771 visited_bbs = sbitmap_alloc (current_nr_blocks);
6772
6773 if (blocks_to_reschedule)
6774 {
f61e445a 6775 bitmap_ones (visited_bbs);
e855c69d
AB
6776 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6777 {
6778 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
d7c028c0 6779 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
e855c69d
AB
6780 }
6781 }
6782 else
6783 {
f61e445a 6784 bitmap_clear (visited_bbs);
e855c69d
AB
6785 from = EBB_FIRST_BB (0);
6786 }
6787
1f3b2b4e 6788 cur_seqno = sched_max_luid - 1;
e855c69d 6789 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
1f3b2b4e
AM
6790
6791 /* cur_seqno may be positive if the number of instructions is less than
6792 sched_max_luid - 1 (when rescheduling or if some instructions have been
6793 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6794 gcc_assert (cur_seqno >= 0);
e855c69d
AB
6795
6796 sbitmap_free (visited_bbs);
6797 return sched_max_luid - 1;
6798}
6799
6800/* Initialize scheduling parameters for current region. */
6801static void
6802sel_setup_region_sched_flags (void)
6803{
6804 enable_schedule_as_rhs_p = 1;
6805 bookkeeping_p = 1;
b8698a0f 6806 pipelining_p = (bookkeeping_p
e855c69d 6807 && (flag_sel_sched_pipelining != 0)
07643d76
AM
6808 && current_loop_nest != NULL
6809 && loop_has_exit_edges (current_loop_nest));
e855c69d
AB
6810 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6811 max_ws = MAX_WS;
6812}
6813
6814/* Return true if all basic blocks of current region are empty. */
6815static bool
6816current_region_empty_p (void)
6817{
6818 int i;
6819 for (i = 0; i < current_nr_blocks; i++)
06e28de2 6820 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
e855c69d
AB
6821 return false;
6822
6823 return true;
6824}
6825
6826/* Prepare and verify loop nest for pipelining. */
6827static void
ea4d630f 6828setup_current_loop_nest (int rgn, bb_vec_t *bbs)
e855c69d
AB
6829{
6830 current_loop_nest = get_loop_nest_for_rgn (rgn);
6831
6832 if (!current_loop_nest)
6833 return;
6834
6835 /* If this loop has any saved loop preheaders from nested loops,
6836 add these basic blocks to the current region. */
ea4d630f 6837 sel_add_loop_preheaders (bbs);
e855c69d
AB
6838
6839 /* Check that we're starting with a valid information. */
6840 gcc_assert (loop_latch_edge (current_loop_nest));
6841 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6842}
6843
e855c69d
AB
6844/* Compute instruction priorities for current region. */
6845static void
6846sel_compute_priorities (int rgn)
6847{
6848 sched_rgn_compute_dependencies (rgn);
6849
6850 /* Compute insn priorities in haifa style. Then free haifa style
6851 dependencies that we've calculated for this. */
6852 compute_priorities ();
6853
6854 if (sched_verbose >= 5)
6855 debug_rgn_dependencies (0);
6856
6857 free_rgn_deps ();
6858}
6859
6860/* Init scheduling data for RGN. Returns true when this region should not
6861 be scheduled. */
6862static bool
6863sel_region_init (int rgn)
6864{
6865 int i;
6866 bb_vec_t bbs;
6867
6868 rgn_setup_region (rgn);
6869
b8698a0f 6870 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e855c69d
AB
6871 do region initialization here so the region can be bundled correctly,
6872 but we'll skip the scheduling in sel_sched_region (). */
6873 if (current_region_empty_p ())
6874 return true;
6875
9771b263 6876 bbs.create (current_nr_blocks);
e855c69d
AB
6877
6878 for (i = 0; i < current_nr_blocks; i++)
06e28de2 6879 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
e855c69d 6880
a95b23b4 6881 sel_init_bbs (bbs);
e855c69d 6882
ea4d630f
AM
6883 if (flag_sel_sched_pipelining)
6884 setup_current_loop_nest (rgn, &bbs);
6885
9d40778b
AM
6886 sel_setup_region_sched_flags ();
6887
e855c69d
AB
6888 /* Initialize luids and dependence analysis which both sel-sched and haifa
6889 need. */
a95b23b4 6890 sched_init_luids (bbs);
e855c69d
AB
6891 sched_deps_init (false);
6892
6893 /* Initialize haifa data. */
6894 rgn_setup_sched_infos ();
6895 sel_set_sched_flags ();
a95b23b4 6896 haifa_init_h_i_d (bbs);
e855c69d
AB
6897
6898 sel_compute_priorities (rgn);
6899 init_deps_global ();
6900
6901 /* Main initialization. */
6902 sel_setup_sched_infos ();
6903 sel_init_global_and_expr (bbs);
6904
9771b263 6905 bbs.release ();
e855c69d
AB
6906
6907 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6908
6909 /* Init correct liveness sets on each instruction of a single-block loop.
6910 This is the only situation when we can't update liveness when calling
6911 compute_live for the first insn of the loop. */
6912 if (current_loop_nest)
6913 {
06e28de2
DM
6914 int header =
6915 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6916 ? 1
6917 : 0);
e855c69d
AB
6918
6919 if (current_nr_blocks == header + 1)
b8698a0f 6920 update_liveness_on_insn
06e28de2 6921 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
e855c69d 6922 }
b8698a0f 6923
e855c69d
AB
6924 /* Set hooks so that no newly generated insn will go out unnoticed. */
6925 sel_register_cfg_hooks ();
6926
38f8b050
JR
6927 /* !!! We call target.sched.init () for the whole region, but we invoke
6928 targetm.sched.finish () for every ebb. */
6929 if (targetm.sched.init)
e855c69d 6930 /* None of the arguments are actually used in any target. */
38f8b050 6931 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
6932
6933 first_emitted_uid = get_max_uid () + 1;
6934 preheader_removed = false;
6935
6936 /* Reset register allocation ticks array. */
6937 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6938 reg_rename_this_tick = 0;
6939
6940 bitmap_initialize (forced_ebb_heads, 0);
6941 bitmap_clear (forced_ebb_heads);
6942
6943 setup_nop_vinsn ();
6944 current_copies = BITMAP_ALLOC (NULL);
6945 current_originators = BITMAP_ALLOC (NULL);
6946 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6947
6948 return false;
6949}
6950
6951/* Simplify insns after the scheduling. */
6952static void
6953simplify_changed_insns (void)
6954{
6955 int i;
6956
6957 for (i = 0; i < current_nr_blocks; i++)
6958 {
06e28de2 6959 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
5a59b408 6960 rtx_insn *insn;
e855c69d
AB
6961
6962 FOR_BB_INSNS (bb, insn)
6963 if (INSN_P (insn))
6964 {
6965 expr_t expr = INSN_EXPR (insn);
6966
b8698a0f 6967 if (EXPR_WAS_SUBSTITUTED (expr))
e855c69d
AB
6968 validate_simplify_insn (insn);
6969 }
6970 }
6971}
6972
6973/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6974 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6975 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6976static void
6977find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6978{
52d251b5 6979 rtx_insn *head, *tail;
e855c69d
AB
6980 basic_block bb1 = bb;
6981 if (sched_verbose >= 2)
6982 sel_print ("Finishing schedule in bbs: ");
6983
6984 do
6985 {
6986 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6987
6988 if (sched_verbose >= 2)
6989 sel_print ("%d; ", bb1->index);
6990 }
6991 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6992
6993 if (sched_verbose >= 2)
6994 sel_print ("\n");
6995
6996 get_ebb_head_tail (bb, bb1, &head, &tail);
6997
6998 current_sched_info->head = head;
6999 current_sched_info->tail = tail;
7000 current_sched_info->prev_head = PREV_INSN (head);
7001 current_sched_info->next_tail = NEXT_INSN (tail);
7002}
7003
7004/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7005static void
7006reset_sched_cycles_in_current_ebb (void)
7007{
7008 int last_clock = 0;
7009 int haifa_last_clock = -1;
7010 int haifa_clock = 0;
06f0c25f 7011 int issued_insns = 0;
e855c69d
AB
7012 insn_t insn;
7013
38f8b050 7014 if (targetm.sched.init)
e855c69d
AB
7015 {
7016 /* None of the arguments are actually used in any target.
7017 NB: We should have md_reset () hook for cases like this. */
38f8b050 7018 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7019 }
7020
7021 state_reset (curr_state);
7022 advance_state (curr_state);
b8698a0f 7023
e855c69d
AB
7024 for (insn = current_sched_info->head;
7025 insn != current_sched_info->next_tail;
7026 insn = NEXT_INSN (insn))
7027 {
7028 int cost, haifa_cost;
7029 int sort_p;
d66b8f4b 7030 bool asm_p, real_insn, after_stall, all_issued;
e855c69d
AB
7031 int clock;
7032
7033 if (!INSN_P (insn))
7034 continue;
7035
7036 asm_p = false;
7037 real_insn = recog_memoized (insn) >= 0;
7038 clock = INSN_SCHED_CYCLE (insn);
7039
7040 cost = clock - last_clock;
7041
7042 /* Initialize HAIFA_COST. */
7043 if (! real_insn)
7044 {
7045 asm_p = INSN_ASM_P (insn);
7046
7047 if (asm_p)
7048 /* This is asm insn which *had* to be scheduled first
7049 on the cycle. */
7050 haifa_cost = 1;
7051 else
b8698a0f 7052 /* This is a use/clobber insn. It should not change
e855c69d
AB
7053 cost. */
7054 haifa_cost = 0;
7055 }
7056 else
d66b8f4b 7057 haifa_cost = estimate_insn_cost (insn, curr_state);
e855c69d
AB
7058
7059 /* Stall for whatever cycles we've stalled before. */
7060 after_stall = 0;
7061 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7062 {
7063 haifa_cost = cost;
7064 after_stall = 1;
7065 }
9b0f04e7
AB
7066 all_issued = issued_insns == issue_rate;
7067 if (haifa_cost == 0 && all_issued)
06f0c25f 7068 haifa_cost = 1;
e855c69d
AB
7069 if (haifa_cost > 0)
7070 {
7071 int i = 0;
7072
7073 while (haifa_cost--)
7074 {
7075 advance_state (curr_state);
06f0c25f 7076 issued_insns = 0;
e855c69d
AB
7077 i++;
7078
7079 if (sched_verbose >= 2)
7080 {
7081 sel_print ("advance_state (state_transition)\n");
7082 debug_state (curr_state);
7083 }
7084
b8698a0f
L
7085 /* The DFA may report that e.g. insn requires 2 cycles to be
7086 issued, but on the next cycle it says that insn is ready
e855c69d
AB
7087 to go. Check this here. */
7088 if (!after_stall
b8698a0f 7089 && real_insn
e855c69d 7090 && haifa_cost > 0
d66b8f4b 7091 && estimate_insn_cost (insn, curr_state) == 0)
e855c69d 7092 break;
d7f672ec
AB
7093
7094 /* When the data dependency stall is longer than the DFA stall,
9b0f04e7
AB
7095 and when we have issued exactly issue_rate insns and stalled,
7096 it could be that after this longer stall the insn will again
d7f672ec
AB
7097 become unavailable to the DFA restrictions. Looks strange
7098 but happens e.g. on x86-64. So recheck DFA on the last
7099 iteration. */
9b0f04e7 7100 if ((after_stall || all_issued)
d7f672ec
AB
7101 && real_insn
7102 && haifa_cost == 0)
d66b8f4b 7103 haifa_cost = estimate_insn_cost (insn, curr_state);
d7f672ec 7104 }
e855c69d
AB
7105
7106 haifa_clock += i;
06f0c25f
AB
7107 if (sched_verbose >= 2)
7108 sel_print ("haifa clock: %d\n", haifa_clock);
e855c69d
AB
7109 }
7110 else
7111 gcc_assert (haifa_cost == 0);
7112
7113 if (sched_verbose >= 2)
7114 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7115
7116 if (targetm.sched.dfa_new_cycle)
7117 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7118 haifa_last_clock, haifa_clock,
7119 &sort_p))
7120 {
7121 advance_state (curr_state);
06f0c25f 7122 issued_insns = 0;
e855c69d
AB
7123 haifa_clock++;
7124 if (sched_verbose >= 2)
7125 {
7126 sel_print ("advance_state (dfa_new_cycle)\n");
7127 debug_state (curr_state);
06f0c25f 7128 sel_print ("haifa clock: %d\n", haifa_clock + 1);
e855c69d
AB
7129 }
7130 }
7131
7132 if (real_insn)
7133 {
d66b8f4b
AB
7134 static state_t temp = NULL;
7135
7136 if (!temp)
7137 temp = xmalloc (dfa_state_size);
7138 memcpy (temp, curr_state, dfa_state_size);
7139
e855c69d 7140 cost = state_transition (curr_state, insn);
d66b8f4b 7141 if (memcmp (temp, curr_state, dfa_state_size))
3f1960ac 7142 issued_insns++;
e855c69d
AB
7143
7144 if (sched_verbose >= 2)
06f0c25f
AB
7145 {
7146 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7147 haifa_clock + 1);
7148 debug_state (curr_state);
7149 }
e855c69d
AB
7150 gcc_assert (cost < 0);
7151 }
7152
7153 if (targetm.sched.variable_issue)
7154 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7155
7156 INSN_SCHED_CYCLE (insn) = haifa_clock;
7157
7158 last_clock = clock;
7159 haifa_last_clock = haifa_clock;
7160 }
7161}
7162
7163/* Put TImode markers on insns starting a new issue group. */
7164static void
7165put_TImodes (void)
7166{
7167 int last_clock = -1;
7168 insn_t insn;
7169
7170 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7171 insn = NEXT_INSN (insn))
7172 {
7173 int cost, clock;
7174
7175 if (!INSN_P (insn))
7176 continue;
7177
7178 clock = INSN_SCHED_CYCLE (insn);
7179 cost = (last_clock == -1) ? 1 : clock - last_clock;
7180
7181 gcc_assert (cost >= 0);
7182
7183 if (issue_rate > 1
7184 && GET_CODE (PATTERN (insn)) != USE
7185 && GET_CODE (PATTERN (insn)) != CLOBBER)
7186 {
7187 if (reload_completed && cost > 0)
7188 PUT_MODE (insn, TImode);
7189
7190 last_clock = clock;
7191 }
7192
7193 if (sched_verbose >= 2)
7194 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7195 }
7196}
7197
b8698a0f 7198/* Perform MD_FINISH on EBBs comprising current region. When
e855c69d
AB
7199 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7200 to produce correct sched cycles on insns. */
7201static void
7202sel_region_target_finish (bool reset_sched_cycles_p)
7203{
7204 int i;
7205 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7206
7207 for (i = 0; i < current_nr_blocks; i++)
7208 {
7209 if (bitmap_bit_p (scheduled_blocks, i))
7210 continue;
7211
7212 /* While pipelining outer loops, skip bundling for loop
7213 preheaders. Those will be rescheduled in the outer loop. */
7214 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7215 continue;
7216
7217 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7218
7219 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7220 continue;
7221
7222 if (reset_sched_cycles_p)
7223 reset_sched_cycles_in_current_ebb ();
7224
38f8b050
JR
7225 if (targetm.sched.init)
7226 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7227
7228 put_TImodes ();
7229
38f8b050 7230 if (targetm.sched.finish)
e855c69d 7231 {
38f8b050 7232 targetm.sched.finish (sched_dump, sched_verbose);
e855c69d
AB
7233
7234 /* Extend luids so that insns generated by the target will
7235 get zero luid. */
a95b23b4 7236 sched_extend_luids ();
e855c69d
AB
7237 }
7238 }
7239
7240 BITMAP_FREE (scheduled_blocks);
7241}
7242
7243/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
b8698a0f 7244 is true, make an additional pass emulating scheduler to get correct insn
e855c69d
AB
7245 cycles for md_finish calls. */
7246static void
7247sel_region_finish (bool reset_sched_cycles_p)
7248{
7249 simplify_changed_insns ();
7250 sched_finish_ready_list ();
7251 free_nop_pool ();
7252
7253 /* Free the vectors. */
9771b263 7254 vec_av_set.release ();
e855c69d
AB
7255 BITMAP_FREE (current_copies);
7256 BITMAP_FREE (current_originators);
7257 BITMAP_FREE (code_motion_visited_blocks);
9771b263
DN
7258 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7259 vinsn_vec_free (vec_target_unavailable_vinsns);
e855c69d
AB
7260
7261 /* If LV_SET of the region head should be updated, do it now because
7262 there will be no other chance. */
7263 {
7264 succ_iterator si;
7265 insn_t insn;
7266
7267 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7268 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7269 {
7270 basic_block bb = BLOCK_FOR_INSN (insn);
7271
7272 if (!BB_LV_SET_VALID_P (bb))
7273 compute_live (insn);
7274 }
7275 }
7276
7277 /* Emulate the Haifa scheduler for bundling. */
7278 if (reload_completed)
7279 sel_region_target_finish (reset_sched_cycles_p);
7280
7281 sel_finish_global_and_expr ();
7282
7283 bitmap_clear (forced_ebb_heads);
7284
7285 free_nop_vinsn ();
7286
7287 finish_deps_global ();
7288 sched_finish_luids ();
9771b263 7289 h_d_i_d.release ();
e855c69d
AB
7290
7291 sel_finish_bbs ();
7292 BITMAP_FREE (blocks_to_reschedule);
7293
7294 sel_unregister_cfg_hooks ();
7295
7296 max_issue_size = 0;
7297}
7298\f
7299
7300/* Functions that implement the scheduler driver. */
7301
7302/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7303 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7304 of insns scheduled -- these would be postprocessed later. */
7305static void
7306schedule_on_fences (flist_t fences, int max_seqno,
7307 ilist_t **scheduled_insns_tailpp)
7308{
7309 flist_t old_fences = fences;
7310
7311 if (sched_verbose >= 1)
7312 {
7313 sel_print ("\nScheduling on fences: ");
7314 dump_flist (fences);
7315 sel_print ("\n");
7316 }
7317
7318 scheduled_something_on_previous_fence = false;
7319 for (; fences; fences = FLIST_NEXT (fences))
7320 {
7321 fence_t fence = NULL;
7322 int seqno = 0;
7323 flist_t fences2;
7324 bool first_p = true;
b8698a0f 7325
e855c69d
AB
7326 /* Choose the next fence group to schedule.
7327 The fact that insn can be scheduled only once
7328 on the cycle is guaranteed by two properties:
7329 1. seqnos of parallel groups decrease with each iteration.
7330 2. If is_ineligible_successor () sees the larger seqno, it
7331 checks if candidate insn is_in_current_fence_p (). */
7332 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7333 {
7334 fence_t f = FLIST_FENCE (fences2);
7335
7336 if (!FENCE_PROCESSED_P (f))
7337 {
7338 int i = INSN_SEQNO (FENCE_INSN (f));
7339
7340 if (first_p || i > seqno)
7341 {
7342 seqno = i;
7343 fence = f;
7344 first_p = false;
7345 }
7346 else
7347 /* ??? Seqnos of different groups should be different. */
7348 gcc_assert (1 || i != seqno);
7349 }
7350 }
7351
7352 gcc_assert (fence);
7353
7354 /* As FENCE is nonnull, SEQNO is initialized. */
7355 seqno -= max_seqno + 1;
7356 fill_insns (fence, seqno, scheduled_insns_tailpp);
7357 FENCE_PROCESSED_P (fence) = true;
7358 }
7359
7360 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
b8698a0f 7361 don't need to keep bookkeeping-invalidated and target-unavailable
e855c69d
AB
7362 vinsns any more. */
7363 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7364 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7365}
7366
7367/* Calculate MIN_SEQNO and MAX_SEQNO. */
7368static void
7369find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7370{
7371 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7372
7373 /* The first element is already processed. */
7374 while ((fences = FLIST_NEXT (fences)))
7375 {
7376 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
b8698a0f 7377
e855c69d
AB
7378 if (*min_seqno > seqno)
7379 *min_seqno = seqno;
7380 else if (*max_seqno < seqno)
7381 *max_seqno = seqno;
7382 }
7383}
7384
41b2d514 7385/* Calculate new fences from FENCES. Write the current time to PTIME. */
b8698a0f 7386static flist_t
41b2d514 7387calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
e855c69d
AB
7388{
7389 flist_t old_fences = fences;
7390 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
41b2d514 7391 int max_time = 0;
e855c69d
AB
7392
7393 flist_tail_init (new_fences);
7394 for (; fences; fences = FLIST_NEXT (fences))
7395 {
7396 fence_t fence = FLIST_FENCE (fences);
7397 insn_t insn;
b8698a0f 7398
e855c69d
AB
7399 if (!FENCE_BNDS (fence))
7400 {
7401 /* This fence doesn't have any successors. */
7402 if (!FENCE_SCHEDULED_P (fence))
7403 {
7404 /* Nothing was scheduled on this fence. */
7405 int seqno;
7406
7407 insn = FENCE_INSN (fence);
7408 seqno = INSN_SEQNO (insn);
7409 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7410
7411 if (sched_verbose >= 1)
b8698a0f 7412 sel_print ("Fence %d[%d] has not changed\n",
e855c69d
AB
7413 INSN_UID (insn),
7414 BLOCK_NUM (insn));
7415 move_fence_to_fences (fences, new_fences);
7416 }
7417 }
7418 else
7419 extract_new_fences_from (fences, new_fences, orig_max_seqno);
41b2d514 7420 max_time = MAX (max_time, FENCE_CYCLE (fence));
e855c69d
AB
7421 }
7422
7423 flist_clear (&old_fences);
41b2d514 7424 *ptime = max_time;
e855c69d
AB
7425 return FLIST_TAIL_HEAD (new_fences);
7426}
7427
7428/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7429 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7430 the highest seqno used in a region. Return the updated highest seqno. */
7431static int
b8698a0f
L
7432update_seqnos_and_stage (int min_seqno, int max_seqno,
7433 int highest_seqno_in_use,
e855c69d
AB
7434 ilist_t *pscheduled_insns)
7435{
7436 int new_hs;
7437 ilist_iterator ii;
7438 insn_t insn;
b8698a0f 7439
e855c69d
AB
7440 /* Actually, new_hs is the seqno of the instruction, that was
7441 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7442 if (*pscheduled_insns)
7443 {
7444 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7445 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7446 gcc_assert (new_hs > highest_seqno_in_use);
7447 }
7448 else
7449 new_hs = highest_seqno_in_use;
7450
7451 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7452 {
7453 gcc_assert (INSN_SEQNO (insn) < 0);
7454 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7455 gcc_assert (INSN_SEQNO (insn) <= new_hs);
bcf33775
AB
7456
7457 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7458 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7459 require > 1GB of memory e.g. on limit-fnargs.c. */
7460 if (! pipelining_p)
7461 free_data_for_scheduled_insn (insn);
e855c69d
AB
7462 }
7463
7464 ilist_clear (pscheduled_insns);
7465 global_level++;
7466
7467 return new_hs;
7468}
7469
b8698a0f
L
7470/* The main driver for scheduling a region. This function is responsible
7471 for correct propagation of fences (i.e. scheduling points) and creating
7472 a group of parallel insns at each of them. It also supports
e855c69d
AB
7473 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7474 of scheduling. */
7475static void
7476sel_sched_region_2 (int orig_max_seqno)
7477{
7478 int highest_seqno_in_use = orig_max_seqno;
41b2d514 7479 int max_time = 0;
e855c69d
AB
7480
7481 stat_bookkeeping_copies = 0;
7482 stat_insns_needed_bookkeeping = 0;
7483 stat_renamed_scheduled = 0;
7484 stat_substitutions_total = 0;
7485 num_insns_scheduled = 0;
7486
7487 while (fences)
7488 {
7489 int min_seqno, max_seqno;
7490 ilist_t scheduled_insns = NULL;
7491 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7492
7493 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7494 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
41b2d514 7495 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
e855c69d
AB
7496 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7497 highest_seqno_in_use,
7498 &scheduled_insns);
7499 }
7500
7501 if (sched_verbose >= 1)
41b2d514
AB
7502 {
7503 sel_print ("Total scheduling time: %d cycles\n", max_time);
7504 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7505 "bookkeeping, %d insns renamed, %d insns substituted\n",
7506 stat_bookkeeping_copies,
7507 stat_insns_needed_bookkeeping,
7508 stat_renamed_scheduled,
7509 stat_substitutions_total);
7510 }
e855c69d
AB
7511}
7512
b8698a0f
L
7513/* Schedule a region. When pipelining, search for possibly never scheduled
7514 bookkeeping code and schedule it. Reschedule pipelined code without
e855c69d
AB
7515 pipelining after. */
7516static void
7517sel_sched_region_1 (void)
7518{
e855c69d
AB
7519 int orig_max_seqno;
7520
1f3b2b4e 7521 /* Remove empty blocks that might be in the region from the beginning. */
e855c69d
AB
7522 purge_empty_blocks ();
7523
1f3b2b4e 7524 orig_max_seqno = init_seqno (NULL, NULL);
e855c69d
AB
7525 gcc_assert (orig_max_seqno >= 1);
7526
7527 /* When pipelining outer loops, create fences on the loop header,
7528 not preheader. */
7529 fences = NULL;
7530 if (current_loop_nest)
7531 init_fences (BB_END (EBB_FIRST_BB (0)));
7532 else
7533 init_fences (bb_note (EBB_FIRST_BB (0)));
7534 global_level = 1;
7535
7536 sel_sched_region_2 (orig_max_seqno);
7537
7538 gcc_assert (fences == NULL);
7539
7540 if (pipelining_p)
7541 {
7542 int i;
7543 basic_block bb;
7544 struct flist_tail_def _new_fences;
7545 flist_tail_t new_fences = &_new_fences;
7546 bool do_p = true;
7547
7548 pipelining_p = false;
7549 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7550 bookkeeping_p = false;
7551 enable_schedule_as_rhs_p = false;
7552
7553 /* Schedule newly created code, that has not been scheduled yet. */
7554 do_p = true;
7555
7556 while (do_p)
7557 {
7558 do_p = false;
7559
7560 for (i = 0; i < current_nr_blocks; i++)
7561 {
7562 basic_block bb = EBB_FIRST_BB (i);
7563
e855c69d
AB
7564 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7565 {
d7f672ec
AB
7566 if (! bb_ends_ebb_p (bb))
7567 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7568 if (sel_bb_empty_p (bb))
7569 {
7570 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7571 continue;
7572 }
e855c69d
AB
7573 clear_outdated_rtx_info (bb);
7574 if (sel_insn_is_speculation_check (BB_END (bb))
7575 && JUMP_P (BB_END (bb)))
7576 bitmap_set_bit (blocks_to_reschedule,
7577 BRANCH_EDGE (bb)->dest->index);
7578 }
d7f672ec
AB
7579 else if (! sel_bb_empty_p (bb)
7580 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
e855c69d
AB
7581 bitmap_set_bit (blocks_to_reschedule, bb->index);
7582 }
7583
7584 for (i = 0; i < current_nr_blocks; i++)
7585 {
7586 bb = EBB_FIRST_BB (i);
7587
b8698a0f 7588 /* While pipelining outer loops, skip bundling for loop
e855c69d
AB
7589 preheaders. Those will be rescheduled in the outer
7590 loop. */
7591 if (sel_is_loop_preheader_p (bb))
7592 {
7593 clear_outdated_rtx_info (bb);
7594 continue;
7595 }
b8698a0f 7596
06f0c25f 7597 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
e855c69d
AB
7598 {
7599 flist_tail_init (new_fences);
7600
1f3b2b4e 7601 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
e855c69d
AB
7602
7603 /* Mark BB as head of the new ebb. */
7604 bitmap_set_bit (forced_ebb_heads, bb->index);
7605
e855c69d
AB
7606 gcc_assert (fences == NULL);
7607
7608 init_fences (bb_note (bb));
b8698a0f 7609
e855c69d 7610 sel_sched_region_2 (orig_max_seqno);
b8698a0f 7611
e855c69d
AB
7612 do_p = true;
7613 break;
7614 }
7615 }
7616 }
7617 }
7618}
7619
7620/* Schedule the RGN region. */
7621void
7622sel_sched_region (int rgn)
7623{
7624 bool schedule_p;
7625 bool reset_sched_cycles_p;
7626
7627 if (sel_region_init (rgn))
7628 return;
7629
7630 if (sched_verbose >= 1)
7631 sel_print ("Scheduling region %d\n", rgn);
7632
7633 schedule_p = (!sched_is_disabled_for_current_region_p ()
7634 && dbg_cnt (sel_sched_region_cnt));
7635 reset_sched_cycles_p = pipelining_p;
7636 if (schedule_p)
7637 sel_sched_region_1 ();
7638 else
7639 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7640 reset_sched_cycles_p = true;
b8698a0f 7641
e855c69d
AB
7642 sel_region_finish (reset_sched_cycles_p);
7643}
7644
7645/* Perform global init for the scheduler. */
7646static void
7647sel_global_init (void)
7648{
7649 calculate_dominance_info (CDI_DOMINATORS);
7650 alloc_sched_pools ();
7651
7652 /* Setup the infos for sched_init. */
7653 sel_setup_sched_infos ();
7654 setup_sched_dump ();
7655
7861732f 7656 sched_rgn_init (false);
d51e8a2d 7657 sched_init ();
e855c69d
AB
7658
7659 sched_init_bbs ();
7660 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7661 after_recovery = 0;
b8698a0f 7662 can_issue_more = issue_rate;
e855c69d
AB
7663
7664 sched_extend_target ();
7665 sched_deps_init (true);
7666 setup_nop_and_exit_insns ();
7667 sel_extend_global_bb_info ();
7668 init_lv_sets ();
7669 init_hard_regs_data ();
7670}
7671
7672/* Free the global data of the scheduler. */
7673static void
7674sel_global_finish (void)
7675{
7676 free_bb_note_pool ();
7677 free_lv_sets ();
7678 sel_finish_global_bb_info ();
7679
7680 free_regset_pool ();
7681 free_nop_and_exit_insns ();
7682
7683 sched_rgn_finish ();
7684 sched_deps_finish ();
7685 sched_finish ();
7686
7687 if (current_loops)
7688 sel_finish_pipelining ();
7689
7690 free_sched_pools ();
7691 free_dominance_info (CDI_DOMINATORS);
7692}
7693
7694/* Return true when we need to skip selective scheduling. Used for debugging. */
7695bool
7696maybe_skip_selective_scheduling (void)
7697{
7698 return ! dbg_cnt (sel_sched_cnt);
7699}
7700
7701/* The entry point. */
7702void
7703run_selective_scheduling (void)
7704{
7705 int rgn;
7706
0cae8d31 7707 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
e855c69d
AB
7708 return;
7709
7710 sel_global_init ();
7711
7712 for (rgn = 0; rgn < nr_regions; rgn++)
7713 sel_sched_region (rgn);
7714
7715 sel_global_finish ();
7716}
7717
7718#endif