]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
re PR middle-end/55150 (Crash in copy_rtx)
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
7861732f 2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
9b0f04e7 3 Free Software Foundation, Inc.
e855c69d
AB
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
0cbd9993 25#include "rtl-error.h"
e855c69d
AB
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
e855c69d
AB
34#include "recog.h"
35#include "params.h"
36#include "target.h"
37#include "output.h"
e855c69d
AB
38#include "sched-int.h"
39#include "ggc.h"
40#include "tree.h"
41#include "vec.h"
42#include "langhooks.h"
43#include "rtlhooks-def.h"
5936d944 44#include "emit-rtl.h"
e855c69d
AB
45
46#ifdef INSN_SCHEDULING
47#include "sel-sched-ir.h"
48#include "sel-sched-dump.h"
49#include "sel-sched.h"
50#include "dbgcnt.h"
51
52/* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
55
b8698a0f 56 o the scheduler works after register allocation (but can be also tuned
e855c69d
AB
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
65
66 Terminology
67 ===========
68
b8698a0f
L
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
e855c69d
AB
72 different expressions. A vinsn is described by vinsn_t type.
73
74 An expression is a vinsn with additional data characterizing its properties
b8698a0f 75 at some point in the control flow graph. The data may be its usefulness,
e855c69d
AB
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
78
b8698a0f 79 Availability set (av_set) is a set of expressions at a given control flow
e855c69d 80 point. It is represented as av_set_t. The expressions in av sets are kept
b8698a0f 81 sorted in the terms of expr_greater_p function. It allows to truncate
e855c69d 82 the set while leaving the best expressions.
b8698a0f 83
e855c69d
AB
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
87
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
b8698a0f 90 the fence group when a jump is scheduled. A boundary is represented
e855c69d
AB
91 via bnd_t.
92
93 High-level overview
94 ===================
95
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
b8698a0f 97 The regions are formed starting from innermost loops, so that when the inner
e855c69d 98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
b8698a0f 99 outer loop. The rest of acyclic regions are found using extend_rgns:
e855c69d 100 the blocks that are not yet allocated to any regions are traversed in top-down
b8698a0f 101 order, and a block is added to a region to which all its predecessors belong;
e855c69d
AB
102 otherwise, the block starts its own region.
103
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
b8698a0f
L
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
e855c69d 109 required to schedule any of the expressions, we advance the current cycle
b8698a0f 110 appropriately. So, the final group does not exactly correspond to a VLIW
e855c69d
AB
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
b8698a0f 114 so we feel like advancing a scheduling point.
e855c69d
AB
115
116 Computing available expressions
117 ===============================
118
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
b8698a0f
L
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
e855c69d
AB
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
125
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
b8698a0f 129 and moving to another fence. The first two restrictions are lifted during
e855c69d
AB
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
132
133 Choosing the best expression
134 ============================
135
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
b8698a0f
L
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
e855c69d
AB
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
b8698a0f 142 only registers which are from the same regclass as the original one and
e855c69d
AB
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
146
147 Scheduling the best expression
148 ==============================
149
b8698a0f 150 We run the move_op routine to perform the same type of code motion paths
e855c69d
AB
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
b8698a0f 153 instruction that gave birth to a chosen expression. We undo
e855c69d 154 the transformations performed on an expression via the history saved in it.
b8698a0f
L
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
e855c69d
AB
158 traversal. We update the saved av sets and liveness sets on the way up, too.
159
160 Finalizing the schedule
161 =======================
162
b8698a0f
L
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
e855c69d
AB
166
167 Dependence analysis changes
168 ===========================
169
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
b8698a0f
L
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e855c69d
AB
177 init_global_and_expr_for_insn).
178
179 Initialization changes
180 ======================
181
b8698a0f 182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e855c69d 183 reused in all of the schedulers. We have split up the initialization of data
b8698a0f 184 of such parts into different functions prefixed with scheduler type and
e855c69d
AB
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
b8698a0f
L
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
e855c69d 189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
b8698a0f 190
e855c69d
AB
191 Target contexts
192 ===============
193
194 As we now have multiple-point scheduling, this would not work with backends
b8698a0f
L
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
e855c69d
AB
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
201
202 Various speedups
203 ================
204
205 As the correct data dependence graph is not supported during scheduling (which
b8698a0f
L
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
e855c69d
AB
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
211
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
b8698a0f 214 insns that are definitely completed the execution. The results of
e855c69d
AB
215 tick_check_p checks are also cached in a vector on each fence.
216
b8698a0f 217 We keep a valid liveness set on each insn in a region to avoid the high
e855c69d
AB
218 cost of recomputation on large basic blocks.
219
220 Finally, we try to minimize the number of needed updates to the availability
b8698a0f 221 sets. The updates happen in two cases: when fill_insns terminates,
e855c69d
AB
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
b8698a0f 228
e855c69d
AB
229
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
234
235
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
b8698a0f
L
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e855c69d 240
b8698a0f
L
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e855c69d
AB
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
244
b8698a0f 245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e855c69d
AB
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
b8698a0f 248
e855c69d
AB
249*/
250
251/* True when pipelining is enabled. */
252bool pipelining_p;
253
254/* True if bookkeeping is enabled. */
255bool bookkeeping_p;
256
257/* Maximum number of insns that are eligible for renaming. */
258int max_insns_to_rename;
259\f
260
261/* Definitions of local types and macros. */
262
263/* Represents possible outcomes of moving an expression through an insn. */
b8698a0f
L
264enum MOVEUP_EXPR_CODE
265 {
e855c69d 266 /* The expression is not changed. */
b8698a0f 267 MOVEUP_EXPR_SAME,
e855c69d
AB
268
269 /* Not changed, but requires a new destination register. */
b8698a0f 270 MOVEUP_EXPR_AS_RHS,
e855c69d
AB
271
272 /* Cannot be moved. */
b8698a0f 273 MOVEUP_EXPR_NULL,
e855c69d
AB
274
275 /* Changed (substituted or speculated). */
b8698a0f 276 MOVEUP_EXPR_CHANGED
e855c69d
AB
277 };
278
279/* The container to be passed into rtx search & replace functions. */
280struct rtx_search_arg
281{
282 /* What we are searching for. */
283 rtx x;
284
073a8998 285 /* The occurrence counter. */
e855c69d
AB
286 int n;
287};
288
289typedef struct rtx_search_arg *rtx_search_arg_p;
290
b8698a0f 291/* This struct contains precomputed hard reg sets that are needed when
e855c69d 292 computing registers available for renaming. */
b8698a0f 293struct hard_regs_data
e855c69d 294{
b8698a0f 295 /* For every mode, this stores registers available for use with
e855c69d
AB
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
298
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
301
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
306
b8698a0f 307 /* For every mode, this stores registers not available due to
e855c69d
AB
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
310
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
313
314#ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317#endif
318};
319
320/* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322struct reg_rename
323{
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
326
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
329
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
332};
333
b8698a0f 334/* A global structure that contains the needed information about harg
e855c69d
AB
335 regs. */
336static struct hard_regs_data sel_hrd;
337\f
338
b8698a0f
L
339/* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
e855c69d
AB
344 read-only. */
345struct cmpd_local_params
346{
347 /* Local params used in move_op_* functions. */
348
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
351
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
354
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
359
360 /* Local params used in move_op_* functions. */
b8698a0f 361 /* True when we have removed last insn in the block which was
e855c69d
AB
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
364};
365
366/* Stores the static parameters for move_op_* calls. */
367struct moveop_static_params
368{
369 /* Destination register. */
370 rtx dest;
371
372 /* Current C_EXPR. */
373 expr_t c_expr;
374
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
378
379#ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382#endif
383
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
386};
387
388/* Stores the static parameters for fur_* calls. */
389struct fur_static_params
390{
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
393
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
396
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
399};
400
401typedef struct fur_static_params *fur_static_params_p;
402typedef struct cmpd_local_params *cmpd_local_params_p;
403typedef struct moveop_static_params *moveop_static_params_p;
404
405/* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407struct code_motion_path_driver_info_def
408{
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
411
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
414
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
418
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
421
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
425
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
429
b8698a0f 430 /* Called on the ascending pass, before returning from the current basic
e855c69d
AB
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
433
b8698a0f 434 /* When processing successors in move_op we need only descend into
e855c69d
AB
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
437
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
440};
441
442/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444struct code_motion_path_driver_info_def *code_motion_path_driver_info;
445
446/* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
c32e2175 448extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e855c69d 449
b8698a0f
L
450/* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
e855c69d
AB
452 sched-deps.c. */
453int sched_emulate_haifa_p;
454
455/* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459int global_level;
460
461/* Current fences. */
462flist_t fences;
463
464/* True when separable insns should be scheduled as RHSes. */
465static bool enable_schedule_as_rhs_p;
466
467/* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
b8698a0f 469 we haven't scheduled anything on the previous fence.
e855c69d 470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
b8698a0f 471 have more conservative value than the one returned by the
e855c69d
AB
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473static bool scheduled_something_on_previous_fence;
474
475/* All newly emitted insns will have their uids greater than this value. */
476static int first_emitted_uid;
477
478/* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480static bitmap_head _forced_ebb_heads;
481bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
482
483/* Blocks that need to be rescheduled after pipelining. */
484bitmap blocks_to_reschedule = NULL;
485
486/* True when the first lv set should be ignored when updating liveness. */
487static bool ignore_first = false;
488
489/* Number of insns max_issue has initialized data structures for. */
490static int max_issue_size = 0;
491
492/* Whether we can issue more instructions. */
493static int can_issue_more;
494
495/* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497static int max_ws;
498
499/* Number of insns scheduled in current region. */
500static int num_insns_scheduled;
501
502/* A vector of expressions is used to be able to sort them. */
503DEF_VEC_P(expr_t);
504DEF_VEC_ALLOC_P(expr_t,heap);
505static VEC(expr_t, heap) *vec_av_set = NULL;
506
507/* A vector of vinsns is used to hold temporary lists of vinsns. */
508DEF_VEC_P(vinsn_t);
509DEF_VEC_ALLOC_P(vinsn_t,heap);
510typedef VEC(vinsn_t, heap) *vinsn_vec_t;
511
512/* This vector has the exprs which may still present in av_sets, but actually
513 can't be moved up due to bookkeeping created during code motion to another
514 fence. See comment near the call to update_and_record_unavailable_insns
515 for the detailed explanations. */
516static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
517
b8698a0f 518/* This vector has vinsns which are scheduled with renaming on the first fence
e855c69d
AB
519 and then seen on the second. For expressions with such vinsns, target
520 availability information may be wrong. */
521static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
522
523/* Vector to store temporary nops inserted in move_op to prevent removal
524 of empty bbs. */
525DEF_VEC_P(insn_t);
526DEF_VEC_ALLOC_P(insn_t,heap);
527static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
528
b8698a0f
L
529/* These bitmaps record original instructions scheduled on the current
530 iteration and bookkeeping copies created by them. */
e855c69d
AB
531static bitmap current_originators = NULL;
532static bitmap current_copies = NULL;
533
534/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
535 visit them afterwards. */
536static bitmap code_motion_visited_blocks = NULL;
537
538/* Variables to accumulate different statistics. */
539
540/* The number of bookkeeping copies created. */
541static int stat_bookkeeping_copies;
542
543/* The number of insns that required bookkeeiping for their scheduling. */
544static int stat_insns_needed_bookkeeping;
545
546/* The number of insns that got renamed. */
547static int stat_renamed_scheduled;
548
549/* The number of substitutions made during scheduling. */
550static int stat_substitutions_total;
551\f
552
553/* Forward declarations of static functions. */
554static bool rtx_ok_for_substitution_p (rtx, rtx);
555static int sel_rank_for_schedule (const void *, const void *);
556static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
b5b8b0ac 557static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e855c69d
AB
558
559static rtx get_dest_from_orig_ops (av_set_t);
560static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
b8698a0f 561static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e855c69d 562 def_list_t *);
72a54528
AM
563static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
564static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
565 cmpd_local_params_p, void *);
e855c69d
AB
566static void sel_sched_region_1 (void);
567static void sel_sched_region_2 (int);
568static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
569
570static void debug_state (state_t);
571\f
572
573/* Functions that work with fences. */
574
575/* Advance one cycle on FENCE. */
576static void
577advance_one_cycle (fence_t fence)
578{
579 unsigned i;
580 int cycle;
581 rtx insn;
b8698a0f 582
e855c69d
AB
583 advance_state (FENCE_STATE (fence));
584 cycle = ++FENCE_CYCLE (fence);
585 FENCE_ISSUED_INSNS (fence) = 0;
586 FENCE_STARTS_CYCLE_P (fence) = 1;
587 can_issue_more = issue_rate;
136e01a3 588 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
589
590 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
591 {
592 if (INSN_READY_CYCLE (insn) < cycle)
593 {
594 remove_from_deps (FENCE_DC (fence), insn);
595 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
596 continue;
597 }
598 i++;
599 }
600 if (sched_verbose >= 2)
601 {
602 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
603 debug_state (FENCE_STATE (fence));
604 }
605}
606
607/* Returns true when SUCC in a fallthru bb of INSN, possibly
608 skipping empty basic blocks. */
609static bool
610in_fallthru_bb_p (rtx insn, rtx succ)
611{
612 basic_block bb = BLOCK_FOR_INSN (insn);
0fd4b31d 613 edge e;
e855c69d
AB
614
615 if (bb == BLOCK_FOR_INSN (succ))
616 return true;
617
0fd4b31d
NF
618 e = find_fallthru_edge_from (bb);
619 if (e)
620 bb = e->dest;
e855c69d
AB
621 else
622 return false;
623
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
626
627 return bb == BLOCK_FOR_INSN (succ);
628}
629
b8698a0f 630/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e855c69d
AB
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634static void
635extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
637{
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
645
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
648 {
649 gcc_assert (!was_here_p);
650 was_here_p = true;
651 }
652 gcc_assert (was_here_p && insn != NULL_RTX);
653
b8698a0f 654 /* When in the "middle" of the block, just move this fence
e855c69d
AB
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
b8698a0f 658 || (single_succ_p (bb)
e855c69d
AB
659 && single_pred_p (single_succ (bb))))
660 {
661 insn_t succ;
662
b8698a0f 663 succ = (sel_bb_end_p (insn)
e855c69d
AB
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
666
b8698a0f 667 if (INSN_SEQNO (succ) > 0
e855c69d
AB
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
670 {
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
673
674 if (sched_verbose >= 1)
b8698a0f 675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e855c69d
AB
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
677 }
678 return;
679 }
680
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
683 {
684 int seqno = INSN_SEQNO (succ);
685
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
688 {
689 bool b = (in_same_ebb_p (insn, succ)
b8698a0f 690 || in_fallthru_bb_p (insn, succ));
e855c69d
AB
691
692 if (sched_verbose >= 1)
b8698a0f
L
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
e855c69d
AB
695 BLOCK_NUM (succ), b ? "continue" : "reset");
696
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
700 {
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
704 }
705 }
706 }
707}
708\f
709
710/* Functions to support substitution. */
711
b8698a0f
L
712/* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
e855c69d
AB
714 moved up through this insn should be substituted. */
715static bool
716can_substitute_through_p (insn_t insn, ds_t ds)
717{
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
724
b8698a0f 725 /* Now we just need to make sure the INSN_RHS consists of only one
e855c69d 726 simple REG rtx. */
b8698a0f 727 if (REG_P (INSN_LHS (insn))
e855c69d 728 && REG_P (INSN_RHS (insn)))
b8698a0f 729 return true;
e855c69d
AB
730 return false;
731}
732
073a8998 733/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
e855c69d
AB
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
b8698a0f 737 destination or the resulting insn is invalid for the target machine.
e855c69d
AB
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740static bool
741substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
742{
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
748
749 /* Do not try to replace in SET_DEST. Although we'll choose new
b8698a0f 750 register for the RHS, we don't want to change RHS' original reg.
e855c69d 751 If the insn is not SET, we may still be able to substitute something
b8698a0f 752 in it, and if we're here (don't have deps), it doesn't write INSN's
e855c69d
AB
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
758
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
761 {
762 rtx new_insn;
763 rtx *where_replace;
764
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
768
b8698a0f 769 /* Where we'll replace.
e855c69d
AB
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
775
b8698a0f
L
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e855c69d
AB
778 new_insn);
779
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
b8698a0f 782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e855c69d
AB
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
787 {
b8698a0f 788 change_vinsn_in_expr (expr,
e855c69d
AB
789 create_vinsn_from_insn_rtx (new_insn, false));
790
b8698a0f 791 /* Do not allow clobbering the address register of speculative
e855c69d
AB
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
cf3d5824
SG
794 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_reg (expr)))
e855c69d
AB
796 EXPR_TARGET_AVAILABLE (expr) = false;
797
798 return true;
799 }
800 else
801 return false;
802 }
803 else
804 return false;
805}
806
807/* Helper function for count_occurences_equiv. */
b8698a0f 808static int
e855c69d
AB
809count_occurrences_1 (rtx *cur_rtx, void *arg)
810{
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
812
ea3f6aa8 813 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
e855c69d 814 {
ea3f6aa8
AM
815 /* Bail out if mode is different or more than one register is used. */
816 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
817 || (HARD_REGISTER_P (*cur_rtx)
818 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
e855c69d
AB
819 {
820 p->n = 0;
821 return 1;
822 }
823
824 p->n++;
825
826 /* Do not traverse subexprs. */
827 return -1;
828 }
829
830 if (GET_CODE (*cur_rtx) == SUBREG
5e841c82
AB
831 && (!REG_P (SUBREG_REG (*cur_rtx))
832 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
e855c69d
AB
833 {
834 /* ??? Do not support substituting regs inside subregs. In that case,
b8698a0f 835 simplify_subreg will be called by validate_replace_rtx, and
e855c69d
AB
836 unsubstitution will fail later. */
837 p->n = 0;
838 return 1;
839 }
840
841 /* Continue search. */
842 return 0;
843}
844
b8698a0f 845/* Return the number of places WHAT appears within WHERE.
e855c69d 846 Bail out when we found a reference occupying several hard registers. */
b8698a0f 847static int
e855c69d
AB
848count_occurrences_equiv (rtx what, rtx where)
849{
850 struct rtx_search_arg arg;
851
ea3f6aa8 852 gcc_assert (REG_P (what));
e855c69d
AB
853 arg.x = what;
854 arg.n = 0;
855
856 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
857
858 return arg.n;
859}
860
861/* Returns TRUE if WHAT is found in WHERE rtx tree. */
862static bool
863rtx_ok_for_substitution_p (rtx what, rtx where)
864{
865 return (count_occurrences_equiv (what, where) > 0);
866}
867\f
868
869/* Functions to support register renaming. */
870
871/* Substitute VI's set source with REGNO. Returns newly created pattern
872 that has REGNO as its source. */
873static rtx
874create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
875{
876 rtx lhs_rtx;
877 rtx pattern;
878 rtx insn_rtx;
879
880 lhs_rtx = copy_rtx (VINSN_LHS (vi));
881
882 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
883 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
884
885 return insn_rtx;
886}
887
b8698a0f 888/* Returns whether INSN's src can be replaced with register number
e855c69d
AB
889 NEW_SRC_REG. E.g. the following insn is valid for i386:
890
b8698a0f 891 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e855c69d
AB
892 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
893 (reg:SI 0 ax [orig:770 c1 ] [770]))
894 (const_int 288 [0x120])) [0 str S1 A8])
895 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
896 (nil))
897
898 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
b8698a0f 899 because of operand constraints:
e855c69d
AB
900
901 (define_insn "*movqi_1"
902 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
903 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
904 )]
b8698a0f
L
905
906 So do constrain_operands here, before choosing NEW_SRC_REG as best
e855c69d
AB
907 reg for rhs. */
908
909static bool
910replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
911{
912 vinsn_t vi = INSN_VINSN (insn);
913 enum machine_mode mode;
914 rtx dst_loc;
915 bool res;
916
917 gcc_assert (VINSN_SEPARABLE_P (vi));
918
919 get_dest_and_mode (insn, &dst_loc, &mode);
920 gcc_assert (mode == GET_MODE (new_src_reg));
921
922 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
923 return true;
924
925 /* See whether SET_SRC can be replaced with this register. */
926 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
927 res = verify_changes (0);
928 cancel_changes (0);
929
930 return res;
931}
932
933/* Returns whether INSN still be valid after replacing it's DEST with
934 register NEW_REG. */
935static bool
936replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
937{
938 vinsn_t vi = INSN_VINSN (insn);
939 bool res;
940
941 /* We should deal here only with separable insns. */
942 gcc_assert (VINSN_SEPARABLE_P (vi));
943 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
944
945 /* See whether SET_DEST can be replaced with this register. */
946 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
947 res = verify_changes (0);
948 cancel_changes (0);
949
950 return res;
951}
952
953/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
954static rtx
955create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
956{
957 rtx rhs_rtx;
958 rtx pattern;
959 rtx insn_rtx;
960
961 rhs_rtx = copy_rtx (VINSN_RHS (vi));
962
963 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
964 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
965
966 return insn_rtx;
967}
968
b8698a0f 969/* Substitute lhs in the given expression EXPR for the register with number
e855c69d
AB
970 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
971static void
972replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
973{
974 rtx insn_rtx;
975 vinsn_t vinsn;
976
977 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
978 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
979
980 change_vinsn_in_expr (expr, vinsn);
981 EXPR_WAS_RENAMED (expr) = 1;
982 EXPR_TARGET_AVAILABLE (expr) = 1;
983}
984
985/* Returns whether VI writes either one of the USED_REGS registers or,
986 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
987static bool
b8698a0f 988vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e855c69d
AB
989 HARD_REG_SET unavailable_hard_regs)
990{
991 unsigned regno;
992 reg_set_iterator rsi;
993
994 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
995 {
996 if (REGNO_REG_SET_P (used_regs, regno))
997 return true;
998 if (HARD_REGISTER_NUM_P (regno)
999 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1000 return true;
1001 }
1002
1003 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1004 {
1005 if (REGNO_REG_SET_P (used_regs, regno))
1006 return true;
1007 if (HARD_REGISTER_NUM_P (regno)
1008 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1009 return true;
1010 }
1011
1012 return false;
1013}
1014
b8698a0f 1015/* Returns register class of the output register in INSN.
e855c69d
AB
1016 Returns NO_REGS for call insns because some targets have constraints on
1017 destination register of a call insn.
b8698a0f 1018
e855c69d
AB
1019 Code adopted from regrename.c::build_def_use. */
1020static enum reg_class
1021get_reg_class (rtx insn)
1022{
1023 int alt, i, n_ops;
1024
1025 extract_insn (insn);
1026 if (! constrain_operands (1))
1027 fatal_insn_not_found (insn);
1028 preprocess_constraints ();
1029 alt = which_alternative;
1030 n_ops = recog_data.n_operands;
1031
1032 for (i = 0; i < n_ops; ++i)
1033 {
1034 int matches = recog_op_alt[i][alt].matches;
1035 if (matches >= 0)
1036 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1037 }
1038
1039 if (asm_noperands (PATTERN (insn)) > 0)
1040 {
1041 for (i = 0; i < n_ops; i++)
1042 if (recog_data.operand_type[i] == OP_OUT)
1043 {
1044 rtx *loc = recog_data.operand_loc[i];
1045 rtx op = *loc;
1046 enum reg_class cl = recog_op_alt[i][alt].cl;
1047
1048 if (REG_P (op)
1049 && REGNO (op) == ORIGINAL_REGNO (op))
1050 continue;
1051
1052 return cl;
1053 }
1054 }
1055 else if (!CALL_P (insn))
1056 {
1057 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1058 {
1059 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1060 enum reg_class cl = recog_op_alt[opn][alt].cl;
b8698a0f 1061
e855c69d
AB
1062 if (recog_data.operand_type[opn] == OP_OUT ||
1063 recog_data.operand_type[opn] == OP_INOUT)
1064 return cl;
1065 }
1066 }
1067
1068/* Insns like
1069 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1070 may result in returning NO_REGS, cause flags is written implicitly through
1071 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1072 return NO_REGS;
1073}
1074
1075#ifdef HARD_REGNO_RENAME_OK
1076/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1077static void
1078init_hard_regno_rename (int regno)
1079{
1080 int cur_reg;
1081
1082 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1083
1084 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1085 {
1086 /* We are not interested in renaming in other regs. */
1087 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1088 continue;
1089
1090 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1091 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1092 }
1093}
1094#endif
1095
b8698a0f 1096/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e855c69d
AB
1097 data first. */
1098static inline bool
a20d7130 1099sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d
AB
1100{
1101#ifdef HARD_REGNO_RENAME_OK
1102 /* Check whether this is all calculated. */
1103 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1104 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1105
1106 init_hard_regno_rename (from);
1107
1108 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1109#else
1110 return true;
1111#endif
1112}
1113
1114/* Calculate set of registers that are capable of holding MODE. */
1115static void
1116init_regs_for_mode (enum machine_mode mode)
1117{
1118 int cur_reg;
b8698a0f 1119
e855c69d
AB
1120 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1121 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1122
1123 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1124 {
1125 int nregs = hard_regno_nregs[cur_reg][mode];
1126 int i;
b8698a0f 1127
e855c69d
AB
1128 for (i = nregs - 1; i >= 0; --i)
1129 if (fixed_regs[cur_reg + i]
1130 || global_regs[cur_reg + i]
b8698a0f 1131 /* Can't use regs which aren't saved by
e855c69d
AB
1132 the prologue. */
1133 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
8fd0a474
AM
1134 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1135 it affects aliasing globally and invalidates all AV sets. */
1136 || get_reg_base_value (cur_reg + i)
e855c69d
AB
1137#ifdef LEAF_REGISTERS
1138 /* We can't use a non-leaf register if we're in a
1139 leaf function. */
416ff32e 1140 || (crtl->is_leaf
e855c69d
AB
1141 && !LEAF_REGISTERS[cur_reg + i])
1142#endif
1143 )
1144 break;
b8698a0f
L
1145
1146 if (i >= 0)
e855c69d 1147 continue;
b8698a0f 1148
e855c69d
AB
1149 /* See whether it accepts all modes that occur in
1150 original insns. */
1151 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1152 continue;
b8698a0f 1153
e855c69d 1154 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
b8698a0f 1155 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e855c69d 1156 cur_reg);
b8698a0f
L
1157
1158 /* If the CUR_REG passed all the checks above,
e855c69d
AB
1159 then it's ok. */
1160 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1161 }
1162
1163 sel_hrd.regs_for_mode_ok[mode] = true;
1164}
1165
1166/* Init all register sets gathered in HRD. */
1167static void
1168init_hard_regs_data (void)
1169{
1170 int cur_reg = 0;
32e8bb8e 1171 int cur_mode = 0;
e855c69d
AB
1172
1173 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1174 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1175 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1176 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
b8698a0f
L
1177
1178 /* Initialize registers that are valid based on mode when this is
e855c69d
AB
1179 really needed. */
1180 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1181 sel_hrd.regs_for_mode_ok[cur_mode] = false;
b8698a0f 1182
e855c69d
AB
1183 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1184 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1185 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1186
1187#ifdef STACK_REGS
1188 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1189
1190 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1191 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1192#endif
b8698a0f 1193}
e855c69d 1194
b8698a0f 1195/* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
1196 for renaming rhs in INSN due to hardware restrictions (register class,
1197 modes compatibility etc). This doesn't affect original insn's dest reg,
1198 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1199 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1200 Registers that are in used_regs are always marked in
1201 unavailable_hard_regs as well. */
1202
1203static void
1204mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1205 regset used_regs ATTRIBUTE_UNUSED)
1206{
1207 enum machine_mode mode;
1208 enum reg_class cl = NO_REGS;
1209 rtx orig_dest;
1210 unsigned cur_reg, regno;
1211 hard_reg_set_iterator hrsi;
1212
1213 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1214 gcc_assert (reg_rename_p);
1215
1216 orig_dest = SET_DEST (PATTERN (def->orig_insn));
b8698a0f 1217
e855c69d
AB
1218 /* We have decided not to rename 'mem = something;' insns, as 'something'
1219 is usually a register. */
1220 if (!REG_P (orig_dest))
1221 return;
1222
1223 regno = REGNO (orig_dest);
1224
1225 /* If before reload, don't try to work with pseudos. */
1226 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1227 return;
1228
0c94f956
AM
1229 if (reload_completed)
1230 cl = get_reg_class (def->orig_insn);
e855c69d 1231
0c94f956
AM
1232 /* Stop if the original register is one of the fixed_regs, global_regs or
1233 frame pointer, or we could not discover its class. */
b8698a0f 1234 if (fixed_regs[regno]
e855c69d 1235 || global_regs[regno]
e3339d0f 1236#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
0c94f956 1237 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
e855c69d 1238#else
0c94f956 1239 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
e855c69d 1240#endif
0c94f956 1241 || (reload_completed && cl == NO_REGS))
e855c69d
AB
1242 {
1243 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1244
1245 /* Give a chance for original register, if it isn't in used_regs. */
1246 if (!def->crosses_call)
1247 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1248
1249 return;
1250 }
1251
1252 /* If something allocated on stack in this function, mark frame pointer
b8698a0f 1253 register unavailable, considering also modes.
e855c69d
AB
1254 FIXME: it is enough to do this once per all original defs. */
1255 if (frame_pointer_needed)
1256 {
d108e679
AS
1257 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1258 Pmode, FRAME_POINTER_REGNUM);
e855c69d 1259
d108e679
AS
1260 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1261 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1262 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
e855c69d
AB
1263 }
1264
1265#ifdef STACK_REGS
1266 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1267 is equivalent to as if all stack regs were in this set.
1268 I.e. no stack register can be renamed, and even if it's an original
b8698a0f
L
1269 register here we make sure it won't be lifted over it's previous def
1270 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e855c69d
AB
1271 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1272 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
b8698a0f
L
1273 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1274 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d 1275 sel_hrd.stack_regs);
b8698a0f 1276#endif
e855c69d 1277
b8698a0f 1278 /* If there's a call on this path, make regs from call_used_reg_set
e855c69d
AB
1279 unavailable. */
1280 if (def->crosses_call)
b8698a0f 1281 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1282 call_used_reg_set);
1283
b8698a0f 1284 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e855c69d
AB
1285 but not register classes. */
1286 if (!reload_completed)
1287 return;
1288
b8698a0f 1289 /* Leave regs as 'available' only from the current
e855c69d 1290 register class. */
e855c69d
AB
1291 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1292 reg_class_contents[cl]);
1293
0c94f956
AM
1294 mode = GET_MODE (orig_dest);
1295
e855c69d
AB
1296 /* Leave only registers available for this mode. */
1297 if (!sel_hrd.regs_for_mode_ok[mode])
1298 init_regs_for_mode (mode);
b8698a0f 1299 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1300 sel_hrd.regs_for_mode[mode]);
1301
1302 /* Exclude registers that are partially call clobbered. */
1303 if (def->crosses_call
1304 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
b8698a0f 1305 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1306 sel_hrd.regs_for_call_clobbered[mode]);
1307
1308 /* Leave only those that are ok to rename. */
1309 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1310 0, cur_reg, hrsi)
1311 {
1312 int nregs;
1313 int i;
1314
1315 nregs = hard_regno_nregs[cur_reg][mode];
1316 gcc_assert (nregs > 0);
1317
1318 for (i = nregs - 1; i >= 0; --i)
1319 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1320 break;
1321
b8698a0f
L
1322 if (i >= 0)
1323 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e855c69d
AB
1324 cur_reg);
1325 }
1326
b8698a0f 1327 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1328 reg_rename_p->unavailable_hard_regs);
1329
1330 /* Regno is always ok from the renaming part of view, but it really
1331 could be in *unavailable_hard_regs already, so set it here instead
1332 of there. */
1333 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1334}
1335
1336/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1337 best register more recently than REG2. */
1338static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1339
1340/* Indicates the number of times renaming happened before the current one. */
1341static int reg_rename_this_tick;
1342
b8698a0f 1343/* Choose the register among free, that is suitable for storing
e855c69d
AB
1344 the rhs value.
1345
1346 ORIGINAL_INSNS is the list of insns where the operation (rhs)
b8698a0f
L
1347 originally appears. There could be multiple original operations
1348 for single rhs since we moving it up and merging along different
e855c69d
AB
1349 paths.
1350
1351 Some code is adapted from regrename.c (regrename_optimize).
1352 If original register is available, function returns it.
1353 Otherwise it performs the checks, so the new register should
1354 comply with the following:
b8698a0f 1355 - it should not violate any live ranges (such registers are in
e855c69d
AB
1356 REG_RENAME_P->available_for_renaming set);
1357 - it should not be in the HARD_REGS_USED regset;
1358 - it should be in the class compatible with original uses;
1359 - it should not be clobbered through reference with different mode;
b8698a0f 1360 - if we're in the leaf function, then the new register should
e855c69d
AB
1361 not be in the LEAF_REGISTERS;
1362 - etc.
1363
1364 If several registers meet the conditions, the register with smallest
1365 tick is returned to achieve more even register allocation.
1366
1367 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1368
1369 If no register satisfies the above conditions, NULL_RTX is returned. */
1370static rtx
b8698a0f
L
1371choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1372 struct reg_rename *reg_rename_p,
e855c69d
AB
1373 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1374{
1375 int best_new_reg;
1376 unsigned cur_reg;
1377 enum machine_mode mode = VOIDmode;
1378 unsigned regno, i, n;
1379 hard_reg_set_iterator hrsi;
1380 def_list_iterator di;
1381 def_t def;
1382
1383 /* If original register is available, return it. */
1384 *is_orig_reg_p_ptr = true;
1385
1386 FOR_EACH_DEF (def, di, original_insns)
1387 {
1388 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1389
1390 gcc_assert (REG_P (orig_dest));
1391
b8698a0f 1392 /* Check that all original operations have the same mode.
e855c69d 1393 This is done for the next loop; if we'd return from this
b8698a0f 1394 loop, we'd check only part of them, but in this case
e855c69d
AB
1395 it doesn't matter. */
1396 if (mode == VOIDmode)
1397 mode = GET_MODE (orig_dest);
1398 gcc_assert (mode == GET_MODE (orig_dest));
1399
1400 regno = REGNO (orig_dest);
1401 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1402 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1403 break;
1404
1405 /* All hard registers are available. */
1406 if (i == n)
1407 {
1408 gcc_assert (mode != VOIDmode);
b8698a0f 1409
e855c69d
AB
1410 /* Hard registers should not be shared. */
1411 return gen_rtx_REG (mode, regno);
1412 }
1413 }
b8698a0f 1414
e855c69d
AB
1415 *is_orig_reg_p_ptr = false;
1416 best_new_reg = -1;
b8698a0f
L
1417
1418 /* Among all available regs choose the register that was
e855c69d
AB
1419 allocated earliest. */
1420 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1421 0, cur_reg, hrsi)
1422 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1423 {
a9ced68b
AM
1424 /* Check that all hard regs for mode are available. */
1425 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1426 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1427 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1428 cur_reg + i))
1429 break;
1430
1431 if (i < n)
1432 continue;
1433
e855c69d
AB
1434 /* All hard registers are available. */
1435 if (best_new_reg < 0
1436 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1437 {
1438 best_new_reg = cur_reg;
b8698a0f 1439
e855c69d
AB
1440 /* Return immediately when we know there's no better reg. */
1441 if (! reg_rename_tick[best_new_reg])
1442 break;
1443 }
1444 }
1445
1446 if (best_new_reg >= 0)
1447 {
1448 /* Use the check from the above loop. */
1449 gcc_assert (mode != VOIDmode);
1450 return gen_rtx_REG (mode, best_new_reg);
1451 }
1452
1453 return NULL_RTX;
1454}
1455
1456/* A wrapper around choose_best_reg_1 () to verify that we make correct
1457 assumptions about available registers in the function. */
1458static rtx
b8698a0f 1459choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e855c69d
AB
1460 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1461{
b8698a0f 1462 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e855c69d
AB
1463 original_insns, is_orig_reg_p_ptr);
1464
a9ced68b 1465 /* FIXME loop over hard_regno_nregs here. */
e855c69d
AB
1466 gcc_assert (best_reg == NULL_RTX
1467 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1468
1469 return best_reg;
1470}
1471
b8698a0f 1472/* Choose the pseudo register for storing rhs value. As this is supposed
e855c69d 1473 to work before reload, we return either the original register or make
b8698a0f
L
1474 the new one. The parameters are the same that in choose_nest_reg_1
1475 functions, except that USED_REGS may contain pseudos.
e855c69d
AB
1476 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1477
b8698a0f
L
1478 TODO: take into account register pressure while doing this. Up to this
1479 moment, this function would never return NULL for pseudos, but we should
e855c69d
AB
1480 not rely on this. */
1481static rtx
b8698a0f
L
1482choose_best_pseudo_reg (regset used_regs,
1483 struct reg_rename *reg_rename_p,
e855c69d
AB
1484 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1485{
1486 def_list_iterator i;
1487 def_t def;
1488 enum machine_mode mode = VOIDmode;
1489 bool bad_hard_regs = false;
b8698a0f 1490
e855c69d
AB
1491 /* We should not use this after reload. */
1492 gcc_assert (!reload_completed);
1493
1494 /* If original register is available, return it. */
1495 *is_orig_reg_p_ptr = true;
1496
1497 FOR_EACH_DEF (def, i, original_insns)
1498 {
1499 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1500 int orig_regno;
b8698a0f 1501
e855c69d 1502 gcc_assert (REG_P (dest));
b8698a0f 1503
e855c69d
AB
1504 /* Check that all original operations have the same mode. */
1505 if (mode == VOIDmode)
1506 mode = GET_MODE (dest);
1507 else
1508 gcc_assert (mode == GET_MODE (dest));
1509 orig_regno = REGNO (dest);
b8698a0f 1510
e855c69d
AB
1511 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1512 {
1513 if (orig_regno < FIRST_PSEUDO_REGISTER)
1514 {
1515 gcc_assert (df_regs_ever_live_p (orig_regno));
b8698a0f
L
1516
1517 /* For hard registers, we have to check hardware imposed
e855c69d 1518 limitations (frame/stack registers, calls crossed). */
b8698a0f 1519 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1520 orig_regno))
1521 {
b8698a0f
L
1522 /* Don't let register cross a call if it doesn't already
1523 cross one. This condition is written in accordance with
e855c69d 1524 that in sched-deps.c sched_analyze_reg(). */
b8698a0f 1525 if (!reg_rename_p->crosses_call
e855c69d 1526 || REG_N_CALLS_CROSSED (orig_regno) > 0)
b8698a0f 1527 return gen_rtx_REG (mode, orig_regno);
e855c69d 1528 }
b8698a0f 1529
e855c69d
AB
1530 bad_hard_regs = true;
1531 }
1532 else
1533 return dest;
1534 }
1535 }
1536
1537 *is_orig_reg_p_ptr = false;
b8698a0f 1538
e855c69d
AB
1539 /* We had some original hard registers that couldn't be used.
1540 Those were likely special. Don't try to create a pseudo. */
1541 if (bad_hard_regs)
1542 return NULL_RTX;
b8698a0f
L
1543
1544 /* We haven't found a register from original operations. Get a new one.
e855c69d
AB
1545 FIXME: control register pressure somehow. */
1546 {
1547 rtx new_reg = gen_reg_rtx (mode);
1548
1549 gcc_assert (mode != VOIDmode);
1550
1551 max_regno = max_reg_num ();
1552 maybe_extend_reg_info_p ();
1553 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1554
1555 return new_reg;
1556 }
1557}
1558
1559/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1560 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1561static void
b8698a0f 1562verify_target_availability (expr_t expr, regset used_regs,
e855c69d
AB
1563 struct reg_rename *reg_rename_p)
1564{
1565 unsigned n, i, regno;
1566 enum machine_mode mode;
1567 bool target_available, live_available, hard_available;
1568
1569 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1570 return;
b8698a0f 1571
e855c69d
AB
1572 regno = expr_dest_regno (expr);
1573 mode = GET_MODE (EXPR_LHS (expr));
1574 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
944499ed 1575 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
e855c69d
AB
1576
1577 live_available = hard_available = true;
1578 for (i = 0; i < n; i++)
1579 {
1580 if (bitmap_bit_p (used_regs, regno + i))
1581 live_available = false;
1582 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1583 hard_available = false;
1584 }
1585
b8698a0f 1586 /* When target is not available, it may be due to hard register
e855c69d
AB
1587 restrictions, e.g. crosses calls, so we check hard_available too. */
1588 if (target_available)
1589 gcc_assert (live_available);
1590 else
b8698a0f 1591 /* Check only if we haven't scheduled something on the previous fence,
e855c69d
AB
1592 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1593 and having more than one fence, we may end having targ_un in a block
b8698a0f 1594 in which successors target register is actually available.
e855c69d
AB
1595
1596 The last condition handles the case when a dependence from a call insn
b8698a0f
L
1597 was created in sched-deps.c for insns with destination registers that
1598 never crossed a call before, but do cross one after our code motion.
e855c69d 1599
b8698a0f
L
1600 FIXME: in the latter case, we just uselessly called find_used_regs,
1601 because we can't move this expression with any other register
e855c69d 1602 as well. */
b8698a0f
L
1603 gcc_assert (scheduled_something_on_previous_fence || !live_available
1604 || !hard_available
1605 || (!reload_completed && reg_rename_p->crosses_call
e855c69d
AB
1606 && REG_N_CALLS_CROSSED (regno) == 0));
1607}
1608
b8698a0f
L
1609/* Collect unavailable registers due to liveness for EXPR from BNDS
1610 into USED_REGS. Save additional information about available
e855c69d
AB
1611 registers and unavailable due to hardware restriction registers
1612 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1613 list. */
1614static void
1615collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1616 struct reg_rename *reg_rename_p,
1617 def_list_t *original_insns)
1618{
1619 for (; bnds; bnds = BLIST_NEXT (bnds))
1620 {
1621 bool res;
1622 av_set_t orig_ops = NULL;
1623 bnd_t bnd = BLIST_BND (bnds);
1624
1625 /* If the chosen best expr doesn't belong to current boundary,
1626 skip it. */
1627 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1628 continue;
1629
1630 /* Put in ORIG_OPS all exprs from this boundary that became
1631 RES on top. */
1632 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1633
1634 /* Compute used regs and OR it into the USED_REGS. */
1635 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1636 reg_rename_p, original_insns);
1637
1638 /* FIXME: the assert is true until we'd have several boundaries. */
1639 gcc_assert (res);
1640 av_set_clear (&orig_ops);
1641 }
1642}
1643
1644/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1645 If BEST_REG is valid, replace LHS of EXPR with it. */
1646static bool
1647try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1648{
e855c69d
AB
1649 /* Try whether we'll be able to generate the insn
1650 'dest := best_reg' at the place of the original operation. */
1651 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1652 {
1653 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1654
1655 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1656
0666ff4e
AB
1657 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1658 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1659 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e855c69d
AB
1660 return false;
1661 }
1662
1663 /* Make sure that EXPR has the right destination
1664 register. */
0666ff4e
AB
1665 if (expr_dest_regno (expr) != REGNO (best_reg))
1666 replace_dest_with_reg_in_expr (expr, best_reg);
1667 else
1668 EXPR_TARGET_AVAILABLE (expr) = 1;
1669
e855c69d
AB
1670 return true;
1671}
1672
b8698a0f
L
1673/* Select and assign best register to EXPR searching from BNDS.
1674 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e855c69d
AB
1675 Return FALSE if no register can be chosen, which could happen when:
1676 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1677 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1678 that are used on the moving path. */
1679static bool
1680find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1681{
1682 static struct reg_rename reg_rename_data;
1683
1684 regset used_regs;
1685 def_list_t original_insns = NULL;
1686 bool reg_ok;
1687
1688 *is_orig_reg_p = false;
1689
1690 /* Don't bother to do anything if this insn doesn't set any registers. */
1691 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1692 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1693 return true;
1694
1695 used_regs = get_clear_regset_from_pool ();
1696 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1697
1698 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1699 &original_insns);
1700
1701#ifdef ENABLE_CHECKING
1702 /* If after reload, make sure we're working with hard regs here. */
b8698a0f 1703 if (reload_completed)
e855c69d
AB
1704 {
1705 reg_set_iterator rsi;
1706 unsigned i;
b8698a0f 1707
e855c69d
AB
1708 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1709 gcc_unreachable ();
1710 }
1711#endif
1712
1713 if (EXPR_SEPARABLE_P (expr))
1714 {
1715 rtx best_reg = NULL_RTX;
1716 /* Check that we have computed availability of a target register
1717 correctly. */
1718 verify_target_availability (expr, used_regs, &reg_rename_data);
1719
1720 /* Turn everything in hard regs after reload. */
1721 if (reload_completed)
1722 {
1723 HARD_REG_SET hard_regs_used;
1724 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1725
1726 /* Join hard registers unavailable due to register class
1727 restrictions and live range intersection. */
1728 IOR_HARD_REG_SET (hard_regs_used,
1729 reg_rename_data.unavailable_hard_regs);
1730
1731 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1732 original_insns, is_orig_reg_p);
1733 }
1734 else
1735 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1736 original_insns, is_orig_reg_p);
1737
1738 if (!best_reg)
1739 reg_ok = false;
1740 else if (*is_orig_reg_p)
1741 {
1742 /* In case of unification BEST_REG may be different from EXPR's LHS
1743 when EXPR's LHS is unavailable, and there is another LHS among
1744 ORIGINAL_INSNS. */
1745 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1746 }
1747 else
1748 {
1749 /* Forbid renaming of low-cost insns. */
1750 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1751 reg_ok = false;
1752 else
1753 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1754 }
1755 }
1756 else
1757 {
1758 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1759 any of the HARD_REGS_USED set. */
1760 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1761 reg_rename_data.unavailable_hard_regs))
1762 {
1763 reg_ok = false;
1764 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1765 }
1766 else
1767 {
1768 reg_ok = true;
1769 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1770 }
1771 }
1772
1773 ilist_clear (&original_insns);
1774 return_regset_to_pool (used_regs);
1775
1776 return reg_ok;
1777}
1778\f
1779
1780/* Return true if dependence described by DS can be overcomed. */
1781static bool
1782can_speculate_dep_p (ds_t ds)
1783{
1784 if (spec_info == NULL)
1785 return false;
1786
1787 /* Leave only speculative data. */
1788 ds &= SPECULATIVE;
1789
1790 if (ds == 0)
1791 return false;
1792
1793 {
1794 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1795 that we can overcome. */
1796 ds_t spec_mask = spec_info->mask;
1797
1798 if ((ds & spec_mask) != ds)
1799 return false;
1800 }
1801
1802 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1803 return false;
1804
1805 return true;
1806}
1807
1808/* Get a speculation check instruction.
1809 C_EXPR is a speculative expression,
1810 CHECK_DS describes speculations that should be checked,
1811 ORIG_INSN is the original non-speculative insn in the stream. */
1812static insn_t
1813create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1814{
1815 rtx check_pattern;
1816 rtx insn_rtx;
1817 insn_t insn;
1818 basic_block recovery_block;
1819 rtx label;
1820
1821 /* Create a recovery block if target is going to emit branchy check, or if
1822 ORIG_INSN was speculative already. */
388092d5 1823 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1824 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1825 {
1826 recovery_block = sel_create_recovery_block (orig_insn);
1827 label = BB_HEAD (recovery_block);
1828 }
1829 else
1830 {
1831 recovery_block = NULL;
1832 label = NULL_RTX;
1833 }
1834
1835 /* Get pattern of the check. */
1836 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1837 check_ds);
1838
1839 gcc_assert (check_pattern != NULL);
1840
1841 /* Emit check. */
1842 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1843
1844 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1845 INSN_SEQNO (orig_insn), orig_insn);
1846
1847 /* Make check to be non-speculative. */
1848 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1849 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1850
1851 /* Decrease priority of check by difference of load/check instruction
1852 latencies. */
1853 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1854 - sel_vinsn_cost (INSN_VINSN (insn)));
1855
1856 /* Emit copy of original insn (though with replaced target register,
1857 if needed) to the recovery block. */
1858 if (recovery_block != NULL)
1859 {
1860 rtx twin_rtx;
e855c69d
AB
1861
1862 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1863 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1124098b
JJ
1864 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1865 INSN_EXPR (orig_insn),
1866 INSN_SEQNO (insn),
1867 bb_note (recovery_block));
e855c69d
AB
1868 }
1869
1870 /* If we've generated a data speculation check, make sure
1871 that all the bookkeeping instruction we'll create during
1872 this move_op () will allocate an ALAT entry so that the
1873 check won't fail.
1874 In case of control speculation we must convert C_EXPR to control
1875 speculative mode, because failing to do so will bring us an exception
1876 thrown by the non-control-speculative load. */
1877 check_ds = ds_get_max_dep_weak (check_ds);
1878 speculate_expr (c_expr, check_ds);
b8698a0f 1879
e855c69d
AB
1880 return insn;
1881}
1882
1883/* True when INSN is a "regN = regN" copy. */
1884static bool
1885identical_copy_p (rtx insn)
1886{
1887 rtx lhs, rhs, pat;
1888
1889 pat = PATTERN (insn);
1890
1891 if (GET_CODE (pat) != SET)
1892 return false;
1893
1894 lhs = SET_DEST (pat);
1895 if (!REG_P (lhs))
1896 return false;
1897
1898 rhs = SET_SRC (pat);
1899 if (!REG_P (rhs))
1900 return false;
1901
1902 return REGNO (lhs) == REGNO (rhs);
1903}
1904
b8698a0f 1905/* Undo all transformations on *AV_PTR that were done when
e855c69d
AB
1906 moving through INSN. */
1907static void
1908undo_transformations (av_set_t *av_ptr, rtx insn)
1909{
1910 av_set_iterator av_iter;
1911 expr_t expr;
1912 av_set_t new_set = NULL;
1913
b8698a0f 1914 /* First, kill any EXPR that uses registers set by an insn. This is
e855c69d
AB
1915 required for correctness. */
1916 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1917 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
b8698a0f 1918 && bitmap_intersect_p (INSN_REG_SETS (insn),
e855c69d
AB
1919 VINSN_REG_USES (EXPR_VINSN (expr)))
1920 /* When an insn looks like 'r1 = r1', we could substitute through
1921 it, but the above condition will still hold. This happened with
b8698a0f 1922 gcc.c-torture/execute/961125-1.c. */
e855c69d
AB
1923 && !identical_copy_p (insn))
1924 {
1925 if (sched_verbose >= 6)
b8698a0f 1926 sel_print ("Expr %d removed due to use/set conflict\n",
e855c69d
AB
1927 INSN_UID (EXPR_INSN_RTX (expr)));
1928 av_set_iter_remove (&av_iter);
1929 }
1930
1931 /* Undo transformations looking at the history vector. */
1932 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1933 {
1934 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1935 insn, EXPR_VINSN (expr), true);
1936
1937 if (index >= 0)
1938 {
1939 expr_history_def *phist;
1940
0823efed
DN
1941 phist = &VEC_index (expr_history_def,
1942 EXPR_HISTORY_OF_CHANGES (expr),
1943 index);
e855c69d 1944
b8698a0f 1945 switch (phist->type)
e855c69d
AB
1946 {
1947 case TRANS_SPECULATION:
1948 {
1949 ds_t old_ds, new_ds;
b8698a0f 1950
e855c69d 1951 /* Compute the difference between old and new speculative
b8698a0f 1952 statuses: that's what we need to check.
e855c69d
AB
1953 Earlier we used to assert that the status will really
1954 change. This no longer works because only the probability
1955 bits in the status may have changed during compute_av_set,
b8698a0f
L
1956 and in the case of merging different probabilities of the
1957 same speculative status along different paths we do not
e855c69d
AB
1958 record this in the history vector. */
1959 old_ds = phist->spec_ds;
1960 new_ds = EXPR_SPEC_DONE_DS (expr);
1961
1962 old_ds &= SPECULATIVE;
1963 new_ds &= SPECULATIVE;
1964 new_ds &= ~old_ds;
b8698a0f 1965
e855c69d
AB
1966 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1967 break;
1968 }
1969 case TRANS_SUBSTITUTION:
1970 {
1971 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1972 vinsn_t new_vi;
1973 bool add = true;
b8698a0f 1974
e855c69d 1975 new_vi = phist->old_expr_vinsn;
b8698a0f
L
1976
1977 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e855c69d
AB
1978 == EXPR_SEPARABLE_P (expr));
1979 copy_expr (tmp_expr, expr);
1980
b8698a0f 1981 if (vinsn_equal_p (phist->new_expr_vinsn,
e855c69d
AB
1982 EXPR_VINSN (tmp_expr)))
1983 change_vinsn_in_expr (tmp_expr, new_vi);
1984 else
1985 /* This happens when we're unsubstituting on a bookkeeping
1986 copy, which was in turn substituted. The history is wrong
1987 in this case. Do it the hard way. */
1988 add = substitute_reg_in_expr (tmp_expr, insn, true);
1989 if (add)
1990 av_set_add (&new_set, tmp_expr);
1991 clear_expr (tmp_expr);
1992 break;
1993 }
1994 default:
1995 gcc_unreachable ();
1996 }
1997 }
b8698a0f 1998
e855c69d
AB
1999 }
2000
2001 av_set_union_and_clear (av_ptr, &new_set, NULL);
2002}
2003\f
2004
2005/* Moveup_* helpers for code motion and computing av sets. */
2006
2007/* Propagates EXPR inside an insn group through THROUGH_INSN.
b8698a0f 2008 The difference from the below function is that only substitution is
e855c69d
AB
2009 performed. */
2010static enum MOVEUP_EXPR_CODE
2011moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2012{
2013 vinsn_t vi = EXPR_VINSN (expr);
2014 ds_t *has_dep_p;
2015 ds_t full_ds;
2016
2017 /* Do this only inside insn group. */
2018 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2019
2020 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2021 if (full_ds == 0)
2022 return MOVEUP_EXPR_SAME;
2023
2024 /* Substitution is the possible choice in this case. */
2025 if (has_dep_p[DEPS_IN_RHS])
2026 {
2027 /* Can't substitute UNIQUE VINSNs. */
2028 gcc_assert (!VINSN_UNIQUE_P (vi));
b8698a0f
L
2029
2030 if (can_substitute_through_p (through_insn,
e855c69d
AB
2031 has_dep_p[DEPS_IN_RHS])
2032 && substitute_reg_in_expr (expr, through_insn, false))
2033 {
2034 EXPR_WAS_SUBSTITUTED (expr) = true;
2035 return MOVEUP_EXPR_CHANGED;
2036 }
2037
2038 /* Don't care about this, as even true dependencies may be allowed
2039 in an insn group. */
2040 return MOVEUP_EXPR_SAME;
2041 }
2042
2043 /* This can catch output dependencies in COND_EXECs. */
2044 if (has_dep_p[DEPS_IN_INSN])
2045 return MOVEUP_EXPR_NULL;
b8698a0f 2046
e855c69d
AB
2047 /* This is either an output or an anti dependence, which usually have
2048 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2049 will fix this. */
2050 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2051 return MOVEUP_EXPR_AS_RHS;
2052}
2053
2054/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2055#define CANT_MOVE_TRAPPING(expr, through_insn) \
2056 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2057 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2058 && !sel_insn_is_speculation_check (through_insn))
2059
2060/* True when a conflict on a target register was found during moveup_expr. */
2061static bool was_target_conflict = false;
2062
b5b8b0ac
AO
2063/* Return true when moving a debug INSN across THROUGH_INSN will
2064 create a bookkeeping block. We don't want to create such blocks,
2065 for they would cause codegen differences between compilations with
2066 and without debug info. */
2067
2068static bool
2069moving_insn_creates_bookkeeping_block_p (insn_t insn,
2070 insn_t through_insn)
2071{
2072 basic_block bbi, bbt;
2073 edge e1, e2;
2074 edge_iterator ei1, ei2;
2075
2076 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2077 {
2078 if (sched_verbose >= 9)
2079 sel_print ("no bookkeeping required: ");
2080 return FALSE;
2081 }
2082
2083 bbi = BLOCK_FOR_INSN (insn);
2084
2085 if (EDGE_COUNT (bbi->preds) == 1)
2086 {
2087 if (sched_verbose >= 9)
2088 sel_print ("only one pred edge: ");
2089 return TRUE;
2090 }
2091
2092 bbt = BLOCK_FOR_INSN (through_insn);
2093
2094 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2095 {
2096 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2097 {
2098 if (find_block_for_bookkeeping (e1, e2, TRUE))
2099 {
2100 if (sched_verbose >= 9)
2101 sel_print ("found existing block: ");
2102 return FALSE;
2103 }
2104 }
2105 }
2106
2107 if (sched_verbose >= 9)
2108 sel_print ("would create bookkeeping block: ");
2109
2110 return TRUE;
2111}
2112
e855c69d 2113/* Modifies EXPR so it can be moved through the THROUGH_INSN,
b8698a0f
L
2114 performing necessary transformations. Record the type of transformation
2115 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e855c69d 2116 permit all dependencies except true ones, and try to remove those
b8698a0f
L
2117 too via forward substitution. All cases when a non-eliminable
2118 non-zero cost dependency exists inside an insn group will be fixed
e855c69d
AB
2119 in tick_check_p instead. */
2120static enum MOVEUP_EXPR_CODE
2121moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2122 enum local_trans_type *ptrans_type)
2123{
2124 vinsn_t vi = EXPR_VINSN (expr);
2125 insn_t insn = VINSN_INSN_RTX (vi);
2126 bool was_changed = false;
2127 bool as_rhs = false;
2128 ds_t *has_dep_p;
2129 ds_t full_ds;
2130
48bb58b1
AO
2131 /* ??? We use dependencies of non-debug insns on debug insns to
2132 indicate that the debug insns need to be reset if the non-debug
2133 insn is pulled ahead of it. It's hard to figure out how to
2134 introduce such a notion in sel-sched, but it already fails to
2135 support debug insns in other ways, so we just go ahead and
2136 let the deug insns go corrupt for now. */
2137 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2138 return MOVEUP_EXPR_SAME;
2139
e855c69d
AB
2140 /* When inside_insn_group, delegate to the helper. */
2141 if (inside_insn_group)
2142 return moveup_expr_inside_insn_group (expr, through_insn);
2143
2144 /* Deal with unique insns and control dependencies. */
2145 if (VINSN_UNIQUE_P (vi))
2146 {
2147 /* We can move jumps without side-effects or jumps that are
2148 mutually exclusive with instruction THROUGH_INSN (all in cases
2149 dependencies allow to do so and jump is not speculative). */
2150 if (control_flow_insn_p (insn))
2151 {
2152 basic_block fallthru_bb;
2153
b8698a0f 2154 /* Do not move checks and do not move jumps through other
e855c69d
AB
2155 jumps. */
2156 if (control_flow_insn_p (through_insn)
2157 || sel_insn_is_speculation_check (insn))
2158 return MOVEUP_EXPR_NULL;
2159
2160 /* Don't move jumps through CFG joins. */
2161 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2162 return MOVEUP_EXPR_NULL;
2163
b8698a0f 2164 /* The jump should have a clear fallthru block, and
e855c69d
AB
2165 this block should be in the current region. */
2166 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2167 || ! in_current_region_p (fallthru_bb))
2168 return MOVEUP_EXPR_NULL;
b8698a0f 2169
eb277bf1
AM
2170 /* And it should be mutually exclusive with through_insn. */
2171 if (! sched_insns_conditions_mutex_p (insn, through_insn)
b5b8b0ac 2172 && ! DEBUG_INSN_P (through_insn))
e855c69d
AB
2173 return MOVEUP_EXPR_NULL;
2174 }
2175
2176 /* Don't move what we can't move. */
2177 if (EXPR_CANT_MOVE (expr)
2178 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2179 return MOVEUP_EXPR_NULL;
2180
2181 /* Don't move SCHED_GROUP instruction through anything.
2182 If we don't force this, then it will be possible to start
2183 scheduling a sched_group before all its dependencies are
2184 resolved.
2185 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2186 as late as possible through rank_for_schedule. */
2187 if (SCHED_GROUP_P (insn))
2188 return MOVEUP_EXPR_NULL;
2189 }
2190 else
2191 gcc_assert (!control_flow_insn_p (insn));
2192
b5b8b0ac
AO
2193 /* Don't move debug insns if this would require bookkeeping. */
2194 if (DEBUG_INSN_P (insn)
2195 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2196 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2197 return MOVEUP_EXPR_NULL;
2198
e855c69d
AB
2199 /* Deal with data dependencies. */
2200 was_target_conflict = false;
2201 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2202 if (full_ds == 0)
2203 {
2204 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2205 return MOVEUP_EXPR_SAME;
2206 }
2207 else
2208 {
b8698a0f 2209 /* We can move UNIQUE insn up only as a whole and unchanged,
e855c69d
AB
2210 so it shouldn't have any dependencies. */
2211 if (VINSN_UNIQUE_P (vi))
2212 return MOVEUP_EXPR_NULL;
2213 }
2214
2215 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2216 {
2217 int res;
2218
2219 res = speculate_expr (expr, full_ds);
2220 if (res >= 0)
2221 {
2222 /* Speculation was successful. */
2223 full_ds = 0;
2224 was_changed = (res > 0);
2225 if (res == 2)
2226 was_target_conflict = true;
2227 if (ptrans_type)
2228 *ptrans_type = TRANS_SPECULATION;
2229 sel_clear_has_dependence ();
2230 }
2231 }
2232
2233 if (has_dep_p[DEPS_IN_INSN])
2234 /* We have some dependency that cannot be discarded. */
2235 return MOVEUP_EXPR_NULL;
2236
2237 if (has_dep_p[DEPS_IN_LHS])
b8698a0f 2238 {
e855c69d 2239 /* Only separable insns can be moved up with the new register.
b8698a0f 2240 Anyways, we should mark that the original register is
e855c69d
AB
2241 unavailable. */
2242 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2243 return MOVEUP_EXPR_NULL;
2244
2245 EXPR_TARGET_AVAILABLE (expr) = false;
2246 was_target_conflict = true;
2247 as_rhs = true;
2248 }
2249
2250 /* At this point we have either separable insns, that will be lifted
2251 up only as RHSes, or non-separable insns with no dependency in lhs.
2252 If dependency is in RHS, then try to perform substitution and move up
2253 substituted RHS:
2254
2255 Ex. 1: Ex.2
2256 y = x; y = x;
2257 z = y*2; y = y*2;
2258
b8698a0f 2259 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e855c69d
AB
2260 moved above y=x assignment as z=x*2.
2261
b8698a0f 2262 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e855c69d
AB
2263 side can be moved because of the output dependency. The operation was
2264 cropped to its rhs above. */
2265 if (has_dep_p[DEPS_IN_RHS])
2266 {
2267 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2268
2269 /* Can't substitute UNIQUE VINSNs. */
2270 gcc_assert (!VINSN_UNIQUE_P (vi));
2271
2272 if (can_speculate_dep_p (*rhs_dsp))
2273 {
2274 int res;
b8698a0f 2275
e855c69d
AB
2276 res = speculate_expr (expr, *rhs_dsp);
2277 if (res >= 0)
2278 {
2279 /* Speculation was successful. */
2280 *rhs_dsp = 0;
2281 was_changed = (res > 0);
2282 if (res == 2)
2283 was_target_conflict = true;
2284 if (ptrans_type)
2285 *ptrans_type = TRANS_SPECULATION;
2286 }
2287 else
2288 return MOVEUP_EXPR_NULL;
2289 }
2290 else if (can_substitute_through_p (through_insn,
2291 *rhs_dsp)
2292 && substitute_reg_in_expr (expr, through_insn, false))
2293 {
2294 /* ??? We cannot perform substitution AND speculation on the same
2295 insn. */
2296 gcc_assert (!was_changed);
2297 was_changed = true;
2298 if (ptrans_type)
2299 *ptrans_type = TRANS_SUBSTITUTION;
2300 EXPR_WAS_SUBSTITUTED (expr) = true;
2301 }
2302 else
2303 return MOVEUP_EXPR_NULL;
2304 }
2305
2306 /* Don't move trapping insns through jumps.
2307 This check should be at the end to give a chance to control speculation
2308 to perform its duties. */
2309 if (CANT_MOVE_TRAPPING (expr, through_insn))
2310 return MOVEUP_EXPR_NULL;
2311
b8698a0f
L
2312 return (was_changed
2313 ? MOVEUP_EXPR_CHANGED
2314 : (as_rhs
e855c69d
AB
2315 ? MOVEUP_EXPR_AS_RHS
2316 : MOVEUP_EXPR_SAME));
2317}
2318
b8698a0f 2319/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d
AB
2320 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2321 that can exist within a parallel group. Write to RES the resulting
2322 code for moveup_expr. */
b8698a0f 2323static bool
e855c69d
AB
2324try_bitmap_cache (expr_t expr, insn_t insn,
2325 bool inside_insn_group,
2326 enum MOVEUP_EXPR_CODE *res)
2327{
2328 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
b8698a0f 2329
e855c69d
AB
2330 /* First check whether we've analyzed this situation already. */
2331 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2332 {
2333 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2334 {
2335 if (sched_verbose >= 6)
2336 sel_print ("removed (cached)\n");
2337 *res = MOVEUP_EXPR_NULL;
2338 return true;
2339 }
2340 else
2341 {
2342 if (sched_verbose >= 6)
2343 sel_print ("unchanged (cached)\n");
2344 *res = MOVEUP_EXPR_SAME;
2345 return true;
2346 }
2347 }
2348 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2349 {
2350 if (inside_insn_group)
2351 {
2352 if (sched_verbose >= 6)
2353 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2354 *res = MOVEUP_EXPR_SAME;
2355 return true;
b8698a0f 2356
e855c69d
AB
2357 }
2358 else
2359 EXPR_TARGET_AVAILABLE (expr) = false;
2360
b8698a0f
L
2361 /* This is the only case when propagation result can change over time,
2362 as we can dynamically switch off scheduling as RHS. In this case,
e855c69d
AB
2363 just check the flag to reach the correct decision. */
2364 if (enable_schedule_as_rhs_p)
2365 {
2366 if (sched_verbose >= 6)
2367 sel_print ("unchanged (as RHS, cached)\n");
2368 *res = MOVEUP_EXPR_AS_RHS;
2369 return true;
2370 }
2371 else
2372 {
2373 if (sched_verbose >= 6)
2374 sel_print ("removed (cached as RHS, but renaming"
2375 " is now disabled)\n");
2376 *res = MOVEUP_EXPR_NULL;
2377 return true;
2378 }
2379 }
2380
2381 return false;
2382}
2383
b8698a0f 2384/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d 2385 if successful. Write to RES the resulting code for moveup_expr. */
b8698a0f 2386static bool
e855c69d
AB
2387try_transformation_cache (expr_t expr, insn_t insn,
2388 enum MOVEUP_EXPR_CODE *res)
2389{
b8698a0f 2390 struct transformed_insns *pti
e855c69d
AB
2391 = (struct transformed_insns *)
2392 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
b8698a0f 2393 &EXPR_VINSN (expr),
e855c69d
AB
2394 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2395 if (pti)
2396 {
b8698a0f
L
2397 /* This EXPR was already moved through this insn and was
2398 changed as a result. Fetch the proper data from
e855c69d 2399 the hashtable. */
b8698a0f
L
2400 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2401 INSN_UID (insn), pti->type,
2402 pti->vinsn_old, pti->vinsn_new,
e855c69d 2403 EXPR_SPEC_DONE_DS (expr));
b8698a0f 2404
e855c69d
AB
2405 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2406 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2407 change_vinsn_in_expr (expr, pti->vinsn_new);
2408 if (pti->was_target_conflict)
2409 EXPR_TARGET_AVAILABLE (expr) = false;
2410 if (pti->type == TRANS_SPECULATION)
2411 {
e855c69d
AB
2412 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2413 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2414 }
2415
2416 if (sched_verbose >= 6)
2417 {
2418 sel_print ("changed (cached): ");
2419 dump_expr (expr);
2420 sel_print ("\n");
2421 }
2422
2423 *res = MOVEUP_EXPR_CHANGED;
2424 return true;
2425 }
2426
2427 return false;
2428}
2429
2430/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2431static void
b8698a0f 2432update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e855c69d
AB
2433 enum MOVEUP_EXPR_CODE res)
2434{
2435 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2436
b8698a0f 2437 /* Do not cache result of propagating jumps through an insn group,
e855c69d
AB
2438 as it is always true, which is not useful outside the group. */
2439 if (inside_insn_group)
2440 return;
b8698a0f 2441
e855c69d
AB
2442 if (res == MOVEUP_EXPR_NULL)
2443 {
2444 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2445 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2446 }
2447 else if (res == MOVEUP_EXPR_SAME)
2448 {
2449 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2450 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2451 }
2452 else if (res == MOVEUP_EXPR_AS_RHS)
2453 {
2454 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2455 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2456 }
2457 else
2458 gcc_unreachable ();
2459}
2460
2461/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2462 and transformation type TRANS_TYPE. */
2463static void
b8698a0f 2464update_transformation_cache (expr_t expr, insn_t insn,
e855c69d 2465 bool inside_insn_group,
b8698a0f 2466 enum local_trans_type trans_type,
e855c69d
AB
2467 vinsn_t expr_old_vinsn)
2468{
2469 struct transformed_insns *pti;
2470
2471 if (inside_insn_group)
2472 return;
b8698a0f 2473
e855c69d
AB
2474 pti = XNEW (struct transformed_insns);
2475 pti->vinsn_old = expr_old_vinsn;
2476 pti->vinsn_new = EXPR_VINSN (expr);
2477 pti->type = trans_type;
2478 pti->was_target_conflict = was_target_conflict;
2479 pti->ds = EXPR_SPEC_DONE_DS (expr);
2480 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2481 vinsn_attach (pti->vinsn_old);
2482 vinsn_attach (pti->vinsn_new);
b8698a0f 2483 *((struct transformed_insns **)
e855c69d
AB
2484 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2485 pti, VINSN_HASH_RTX (expr_old_vinsn),
2486 INSERT)) = pti;
2487}
2488
b8698a0f 2489/* Same as moveup_expr, but first looks up the result of
e855c69d
AB
2490 transformation in caches. */
2491static enum MOVEUP_EXPR_CODE
2492moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2493{
2494 enum MOVEUP_EXPR_CODE res;
2495 bool got_answer = false;
2496
2497 if (sched_verbose >= 6)
2498 {
b8698a0f 2499 sel_print ("Moving ");
e855c69d
AB
2500 dump_expr (expr);
2501 sel_print (" through %d: ", INSN_UID (insn));
2502 }
2503
b5b8b0ac
AO
2504 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2505 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2506 == EXPR_INSN_RTX (expr)))
2507 /* Don't use cached information for debug insns that are heads of
2508 basic blocks. */;
2509 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e855c69d
AB
2510 /* When inside insn group, we do not want remove stores conflicting
2511 with previosly issued loads. */
2512 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2513 else if (try_transformation_cache (expr, insn, &res))
2514 got_answer = true;
2515
2516 if (! got_answer)
2517 {
2518 /* Invoke moveup_expr and record the results. */
2519 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2520 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2521 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2522 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2523 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2524
b8698a0f 2525 /* ??? Invent something better than this. We can't allow old_vinsn
e855c69d
AB
2526 to go, we need it for the history vector. */
2527 vinsn_attach (expr_old_vinsn);
2528
2529 res = moveup_expr (expr, insn, inside_insn_group,
2530 &trans_type);
2531 switch (res)
2532 {
2533 case MOVEUP_EXPR_NULL:
2534 update_bitmap_cache (expr, insn, inside_insn_group, res);
2535 if (sched_verbose >= 6)
2536 sel_print ("removed\n");
2537 break;
2538
2539 case MOVEUP_EXPR_SAME:
2540 update_bitmap_cache (expr, insn, inside_insn_group, res);
2541 if (sched_verbose >= 6)
2542 sel_print ("unchanged\n");
2543 break;
2544
2545 case MOVEUP_EXPR_AS_RHS:
2546 gcc_assert (!unique_p || inside_insn_group);
2547 update_bitmap_cache (expr, insn, inside_insn_group, res);
2548 if (sched_verbose >= 6)
2549 sel_print ("unchanged (as RHS)\n");
2550 break;
2551
2552 case MOVEUP_EXPR_CHANGED:
2553 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2554 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
b8698a0f
L
2555 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2556 INSN_UID (insn), trans_type,
2557 expr_old_vinsn, EXPR_VINSN (expr),
e855c69d
AB
2558 expr_old_spec_ds);
2559 update_transformation_cache (expr, insn, inside_insn_group,
2560 trans_type, expr_old_vinsn);
2561 if (sched_verbose >= 6)
2562 {
2563 sel_print ("changed: ");
2564 dump_expr (expr);
2565 sel_print ("\n");
2566 }
2567 break;
2568 default:
2569 gcc_unreachable ();
2570 }
2571
2572 vinsn_detach (expr_old_vinsn);
2573 }
2574
2575 return res;
2576}
2577
b8698a0f 2578/* Moves an av set AVP up through INSN, performing necessary
e855c69d
AB
2579 transformations. */
2580static void
2581moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2582{
2583 av_set_iterator i;
2584 expr_t expr;
2585
b8698a0f
L
2586 FOR_EACH_EXPR_1 (expr, i, avp)
2587 {
2588
e855c69d
AB
2589 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2590 {
2591 case MOVEUP_EXPR_SAME:
2592 case MOVEUP_EXPR_AS_RHS:
2593 break;
2594
2595 case MOVEUP_EXPR_NULL:
2596 av_set_iter_remove (&i);
2597 break;
2598
2599 case MOVEUP_EXPR_CHANGED:
2600 expr = merge_with_other_exprs (avp, &i, expr);
2601 break;
b8698a0f 2602
e855c69d
AB
2603 default:
2604 gcc_unreachable ();
2605 }
2606 }
2607}
2608
2609/* Moves AVP set along PATH. */
2610static void
2611moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2612{
2613 int last_cycle;
b8698a0f 2614
e855c69d
AB
2615 if (sched_verbose >= 6)
2616 sel_print ("Moving expressions up in the insn group...\n");
2617 if (! path)
2618 return;
2619 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
b8698a0f 2620 while (path
e855c69d
AB
2621 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2622 {
2623 moveup_set_expr (avp, ILIST_INSN (path), true);
2624 path = ILIST_NEXT (path);
2625 }
2626}
2627
2628/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2629static bool
2630equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2631{
2632 expr_def _tmp, *tmp = &_tmp;
2633 int last_cycle;
2634 bool res = true;
2635
2636 copy_expr_onside (tmp, expr);
2637 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
b8698a0f 2638 while (path
e855c69d
AB
2639 && res
2640 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2641 {
b8698a0f 2642 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e855c69d
AB
2643 != MOVEUP_EXPR_NULL);
2644 path = ILIST_NEXT (path);
2645 }
2646
2647 if (res)
2648 {
2649 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2650 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2651
2652 if (tmp_vinsn != expr_vliw_vinsn)
2653 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2654 }
2655
2656 clear_expr (tmp);
2657 return res;
2658}
2659\f
2660
2661/* Functions that compute av and lv sets. */
2662
b8698a0f 2663/* Returns true if INSN is not a downward continuation of the given path P in
e855c69d
AB
2664 the current stage. */
2665static bool
2666is_ineligible_successor (insn_t insn, ilist_t p)
2667{
2668 insn_t prev_insn;
2669
2670 /* Check if insn is not deleted. */
2671 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2672 gcc_unreachable ();
2673 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2674 gcc_unreachable ();
2675
2676 /* If it's the first insn visited, then the successor is ok. */
2677 if (!p)
2678 return false;
2679
2680 prev_insn = ILIST_INSN (p);
2681
2682 if (/* a backward edge. */
2683 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2684 /* is already visited. */
2685 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2686 && (ilist_is_in_p (p, insn)
b8698a0f
L
2687 /* We can reach another fence here and still seqno of insn
2688 would be equal to seqno of prev_insn. This is possible
e855c69d
AB
2689 when prev_insn is a previously created bookkeeping copy.
2690 In that case it'd get a seqno of insn. Thus, check here
2691 whether insn is in current fence too. */
2692 || IN_CURRENT_FENCE_P (insn)))
2693 /* Was already scheduled on this round. */
2694 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2695 && IN_CURRENT_FENCE_P (insn))
b8698a0f
L
2696 /* An insn from another fence could also be
2697 scheduled earlier even if this insn is not in
e855c69d
AB
2698 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2699 || (!pipelining_p
2700 && INSN_SCHED_TIMES (insn) > 0))
2701 return true;
2702 else
2703 return false;
2704}
2705
b8698a0f
L
2706/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2707 of handling multiple successors and properly merging its av_sets. P is
2708 the current path traversed. WS is the size of lookahead window.
e855c69d
AB
2709 Return the av set computed. */
2710static av_set_t
2711compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2712{
2713 struct succs_info *sinfo;
2714 av_set_t expr_in_all_succ_branches = NULL;
2715 int is;
2716 insn_t succ, zero_succ = NULL;
2717 av_set_t av1 = NULL;
2718
2719 gcc_assert (sel_bb_end_p (insn));
2720
b8698a0f 2721 /* Find different kind of successors needed for correct computing of
e855c69d
AB
2722 SPEC and TARGET_AVAILABLE attributes. */
2723 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2724
2725 /* Debug output. */
2726 if (sched_verbose >= 6)
2727 {
2728 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2729 dump_insn_vector (sinfo->succs_ok);
2730 sel_print ("\n");
2731 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2732 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2733 }
2734
dd5a833e 2735 /* Add insn to the tail of current path. */
e855c69d
AB
2736 ilist_add (&p, insn);
2737
ac47786e 2738 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
e855c69d
AB
2739 {
2740 av_set_t succ_set;
2741
2742 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2743 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2744
b8698a0f
L
2745 av_set_split_usefulness (succ_set,
2746 VEC_index (int, sinfo->probs_ok, is),
e855c69d
AB
2747 sinfo->all_prob);
2748
c6486552 2749 if (sinfo->all_succs_n > 1)
e855c69d 2750 {
b8698a0f 2751 /* Find EXPR'es that came from *all* successors and save them
e855c69d
AB
2752 into expr_in_all_succ_branches. This set will be used later
2753 for calculating speculation attributes of EXPR'es. */
2754 if (is == 0)
2755 {
2756 expr_in_all_succ_branches = av_set_copy (succ_set);
2757
2758 /* Remember the first successor for later. */
2759 zero_succ = succ;
2760 }
2761 else
2762 {
2763 av_set_iterator i;
2764 expr_t expr;
b8698a0f 2765
e855c69d
AB
2766 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2767 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2768 av_set_iter_remove (&i);
2769 }
2770 }
2771
2772 /* Union the av_sets. Check liveness restrictions on target registers
2773 in special case of two successors. */
2774 if (sinfo->succs_ok_n == 2 && is == 1)
2775 {
2776 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2777 basic_block bb1 = BLOCK_FOR_INSN (succ);
2778
2779 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
b8698a0f 2780 av_set_union_and_live (&av1, &succ_set,
e855c69d
AB
2781 BB_LV_SET (bb0),
2782 BB_LV_SET (bb1),
2783 insn);
2784 }
2785 else
2786 av_set_union_and_clear (&av1, &succ_set, insn);
2787 }
2788
b8698a0f 2789 /* Check liveness restrictions via hard way when there are more than
e855c69d
AB
2790 two successors. */
2791 if (sinfo->succs_ok_n > 2)
ac47786e 2792 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
e855c69d
AB
2793 {
2794 basic_block succ_bb = BLOCK_FOR_INSN (succ);
b8698a0f 2795
e855c69d 2796 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
b8698a0f 2797 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
e855c69d
AB
2798 BB_LV_SET (succ_bb));
2799 }
b8698a0f
L
2800
2801 /* Finally, check liveness restrictions on paths leaving the region. */
e855c69d 2802 if (sinfo->all_succs_n > sinfo->succs_ok_n)
ac47786e 2803 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
b8698a0f 2804 mark_unavailable_targets
e855c69d
AB
2805 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2806
2807 if (sinfo->all_succs_n > 1)
2808 {
2809 av_set_iterator i;
2810 expr_t expr;
2811
b8698a0f 2812 /* Increase the spec attribute of all EXPR'es that didn't come
e855c69d
AB
2813 from all successors. */
2814 FOR_EACH_EXPR (expr, i, av1)
2815 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2816 EXPR_SPEC (expr)++;
2817
2818 av_set_clear (&expr_in_all_succ_branches);
b8698a0f
L
2819
2820 /* Do not move conditional branches through other
2821 conditional branches. So, remove all conditional
e855c69d
AB
2822 branches from av_set if current operator is a conditional
2823 branch. */
2824 av_set_substract_cond_branches (&av1);
2825 }
b8698a0f 2826
e855c69d
AB
2827 ilist_remove (&p);
2828 free_succs_info (sinfo);
2829
2830 if (sched_verbose >= 6)
2831 {
2832 sel_print ("av_succs (%d): ", INSN_UID (insn));
2833 dump_av_set (av1);
2834 sel_print ("\n");
2835 }
2836
2837 return av1;
2838}
2839
b8698a0f
L
2840/* This function computes av_set for the FIRST_INSN by dragging valid
2841 av_set through all basic block insns either from the end of basic block
2842 (computed using compute_av_set_at_bb_end) or from the insn on which
e855c69d
AB
2843 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2844 below the basic block and handling conditional branches.
2845 FIRST_INSN - the basic block head, P - path consisting of the insns
2846 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2847 and bb ends are added to the path), WS - current window size,
2848 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2849static av_set_t
b8698a0f 2850compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e855c69d
AB
2851 bool need_copy_p)
2852{
2853 insn_t cur_insn;
2854 int end_ws = ws;
2855 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2856 insn_t after_bb_end = NEXT_INSN (bb_end);
2857 insn_t last_insn;
2858 av_set_t av = NULL;
2859 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2860
2861 /* Return NULL if insn is not on the legitimate downward path. */
2862 if (is_ineligible_successor (first_insn, p))
2863 {
2864 if (sched_verbose >= 6)
2865 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2866
2867 return NULL;
2868 }
2869
b8698a0f 2870 /* If insn already has valid av(insn) computed, just return it. */
e855c69d
AB
2871 if (AV_SET_VALID_P (first_insn))
2872 {
2873 av_set_t av_set;
2874
2875 if (sel_bb_head_p (first_insn))
2876 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2877 else
2878 av_set = NULL;
2879
2880 if (sched_verbose >= 6)
2881 {
2882 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2883 dump_av_set (av_set);
2884 sel_print ("\n");
2885 }
2886
2887 return need_copy_p ? av_set_copy (av_set) : av_set;
2888 }
2889
2890 ilist_add (&p, first_insn);
2891
2892 /* As the result after this loop have completed, in LAST_INSN we'll
b8698a0f
L
2893 have the insn which has valid av_set to start backward computation
2894 from: it either will be NULL because on it the window size was exceeded
2895 or other valid av_set as returned by compute_av_set for the last insn
e855c69d
AB
2896 of the basic block. */
2897 for (last_insn = first_insn; last_insn != after_bb_end;
2898 last_insn = NEXT_INSN (last_insn))
2899 {
2900 /* We may encounter valid av_set not only on bb_head, but also on
2901 those insns on which previously MAX_WS was exceeded. */
2902 if (AV_SET_VALID_P (last_insn))
2903 {
2904 if (sched_verbose >= 6)
2905 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2906 break;
2907 }
2908
2909 /* The special case: the last insn of the BB may be an
2910 ineligible_successor due to its SEQ_NO that was set on
2911 it as a bookkeeping. */
b8698a0f 2912 if (last_insn != first_insn
e855c69d
AB
2913 && is_ineligible_successor (last_insn, p))
2914 {
2915 if (sched_verbose >= 6)
2916 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
b8698a0f 2917 break;
e855c69d
AB
2918 }
2919
b5b8b0ac
AO
2920 if (DEBUG_INSN_P (last_insn))
2921 continue;
2922
e855c69d
AB
2923 if (end_ws > max_ws)
2924 {
b8698a0f 2925 /* We can reach max lookahead size at bb_header, so clean av_set
e855c69d
AB
2926 first. */
2927 INSN_WS_LEVEL (last_insn) = global_level;
2928
2929 if (sched_verbose >= 6)
2930 sel_print ("Insn %d is beyond the software lookahead window size\n",
2931 INSN_UID (last_insn));
2932 break;
2933 }
2934
2935 end_ws++;
2936 }
2937
2938 /* Get the valid av_set into AV above the LAST_INSN to start backward
2939 computation from. It either will be empty av_set or av_set computed from
2940 the successors on the last insn of the current bb. */
2941 if (last_insn != after_bb_end)
2942 {
2943 av = NULL;
2944
b8698a0f 2945 /* This is needed only to obtain av_sets that are identical to
e855c69d
AB
2946 those computed by the old compute_av_set version. */
2947 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2948 av_set_add (&av, INSN_EXPR (last_insn));
2949 }
2950 else
2951 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2952 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2953
2954 /* Compute av_set in AV starting from below the LAST_INSN up to
2955 location above the FIRST_INSN. */
2956 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
b8698a0f 2957 cur_insn = PREV_INSN (cur_insn))
e855c69d
AB
2958 if (!INSN_NOP_P (cur_insn))
2959 {
2960 expr_t expr;
b8698a0f 2961
e855c69d 2962 moveup_set_expr (&av, cur_insn, false);
b8698a0f
L
2963
2964 /* If the expression for CUR_INSN is already in the set,
e855c69d 2965 replace it by the new one. */
b8698a0f 2966 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e855c69d
AB
2967 if (expr != NULL)
2968 {
2969 clear_expr (expr);
2970 copy_expr (expr, INSN_EXPR (cur_insn));
2971 }
2972 else
2973 av_set_add (&av, INSN_EXPR (cur_insn));
2974 }
2975
2976 /* Clear stale bb_av_set. */
2977 if (sel_bb_head_p (first_insn))
2978 {
2979 av_set_clear (&BB_AV_SET (cur_bb));
2980 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2981 BB_AV_LEVEL (cur_bb) = global_level;
2982 }
2983
2984 if (sched_verbose >= 6)
2985 {
2986 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2987 dump_av_set (av);
2988 sel_print ("\n");
2989 }
2990
2991 ilist_remove (&p);
2992 return av;
2993}
2994
2995/* Compute av set before INSN.
2996 INSN - the current operation (actual rtx INSN)
2997 P - the current path, which is list of insns visited so far
2998 WS - software lookahead window size.
2999 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3000 if we want to save computed av_set in s_i_d, we should make a copy of it.
3001
3002 In the resulting set we will have only expressions that don't have delay
3003 stalls and nonsubstitutable dependences. */
3004static av_set_t
3005compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3006{
3007 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3008}
3009
3010/* Propagate a liveness set LV through INSN. */
3011static void
3012propagate_lv_set (regset lv, insn_t insn)
3013{
3014 gcc_assert (INSN_P (insn));
3015
3016 if (INSN_NOP_P (insn))
3017 return;
3018
02b47899 3019 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
3020}
3021
3022/* Return livness set at the end of BB. */
3023static regset
3024compute_live_after_bb (basic_block bb)
3025{
3026 edge e;
3027 edge_iterator ei;
3028 regset lv = get_clear_regset_from_pool ();
3029
3030 gcc_assert (!ignore_first);
3031
3032 FOR_EACH_EDGE (e, ei, bb->succs)
3033 if (sel_bb_empty_p (e->dest))
3034 {
3035 if (! BB_LV_SET_VALID_P (e->dest))
3036 {
3037 gcc_unreachable ();
3038 gcc_assert (BB_LV_SET (e->dest) == NULL);
3039 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3040 BB_LV_SET_VALID_P (e->dest) = true;
3041 }
3042 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3043 }
3044 else
3045 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3046
3047 return lv;
3048}
3049
3050/* Compute the set of all live registers at the point before INSN and save
3051 it at INSN if INSN is bb header. */
3052regset
3053compute_live (insn_t insn)
3054{
3055 basic_block bb = BLOCK_FOR_INSN (insn);
3056 insn_t final, temp;
3057 regset lv;
3058
3059 /* Return the valid set if we're already on it. */
3060 if (!ignore_first)
3061 {
3062 regset src = NULL;
b8698a0f 3063
e855c69d
AB
3064 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3065 src = BB_LV_SET (bb);
b8698a0f 3066 else
e855c69d
AB
3067 {
3068 gcc_assert (in_current_region_p (bb));
3069 if (INSN_LIVE_VALID_P (insn))
3070 src = INSN_LIVE (insn);
3071 }
b8698a0f 3072
e855c69d
AB
3073 if (src)
3074 {
3075 lv = get_regset_from_pool ();
3076 COPY_REG_SET (lv, src);
3077
3078 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3079 {
3080 COPY_REG_SET (BB_LV_SET (bb), lv);
3081 BB_LV_SET_VALID_P (bb) = true;
3082 }
b8698a0f 3083
e855c69d
AB
3084 return_regset_to_pool (lv);
3085 return lv;
3086 }
3087 }
3088
3089 /* We've skipped the wrong lv_set. Don't skip the right one. */
3090 ignore_first = false;
3091 gcc_assert (in_current_region_p (bb));
3092
b8698a0f
L
3093 /* Find a valid LV set in this block or below, if needed.
3094 Start searching from the next insn: either ignore_first is true, or
e855c69d
AB
3095 INSN doesn't have a correct live set. */
3096 temp = NEXT_INSN (insn);
3097 final = NEXT_INSN (BB_END (bb));
3098 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3099 temp = NEXT_INSN (temp);
3100 if (temp == final)
3101 {
3102 lv = compute_live_after_bb (bb);
3103 temp = PREV_INSN (temp);
3104 }
3105 else
3106 {
3107 lv = get_regset_from_pool ();
3108 COPY_REG_SET (lv, INSN_LIVE (temp));
3109 }
3110
3111 /* Put correct lv sets on the insns which have bad sets. */
3112 final = PREV_INSN (insn);
3113 while (temp != final)
3114 {
3115 propagate_lv_set (lv, temp);
3116 COPY_REG_SET (INSN_LIVE (temp), lv);
3117 INSN_LIVE_VALID_P (temp) = true;
3118 temp = PREV_INSN (temp);
3119 }
3120
3121 /* Also put it in a BB. */
3122 if (sel_bb_head_p (insn))
3123 {
3124 basic_block bb = BLOCK_FOR_INSN (insn);
b8698a0f 3125
e855c69d
AB
3126 COPY_REG_SET (BB_LV_SET (bb), lv);
3127 BB_LV_SET_VALID_P (bb) = true;
3128 }
b8698a0f 3129
e855c69d
AB
3130 /* We return LV to the pool, but will not clear it there. Thus we can
3131 legimatelly use LV till the next use of regset_pool_get (). */
3132 return_regset_to_pool (lv);
3133 return lv;
3134}
3135
3136/* Update liveness sets for INSN. */
3137static inline void
3138update_liveness_on_insn (rtx insn)
3139{
3140 ignore_first = true;
3141 compute_live (insn);
3142}
3143
3144/* Compute liveness below INSN and write it into REGS. */
3145static inline void
3146compute_live_below_insn (rtx insn, regset regs)
3147{
3148 rtx succ;
3149 succ_iterator si;
b8698a0f
L
3150
3151 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e855c69d
AB
3152 IOR_REG_SET (regs, compute_live (succ));
3153}
3154
3155/* Update the data gathered in av and lv sets starting from INSN. */
3156static void
3157update_data_sets (rtx insn)
3158{
3159 update_liveness_on_insn (insn);
3160 if (sel_bb_head_p (insn))
3161 {
3162 gcc_assert (AV_LEVEL (insn) != 0);
3163 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3164 compute_av_set (insn, NULL, 0, 0);
3165 }
3166}
3167\f
3168
3169/* Helper for move_op () and find_used_regs ().
3170 Return speculation type for which a check should be created on the place
3171 of INSN. EXPR is one of the original ops we are searching for. */
3172static ds_t
3173get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3174{
3175 ds_t to_check_ds;
3176 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3177
3178 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3179
3180 if (targetm.sched.get_insn_checked_ds)
3181 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3182
3183 if (spec_info != NULL
3184 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3185 already_checked_ds |= BEGIN_CONTROL;
3186
3187 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3188
3189 to_check_ds &= ~already_checked_ds;
3190
3191 return to_check_ds;
3192}
3193
b8698a0f 3194/* Find the set of registers that are unavailable for storing expres
e855c69d
AB
3195 while moving ORIG_OPS up on the path starting from INSN due to
3196 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3197
3198 All the original operations found during the traversal are saved in the
3199 ORIGINAL_INSNS list.
3200
3201 REG_RENAME_P denotes the set of hardware registers that
3202 can not be used with renaming due to the register class restrictions,
b8698a0f 3203 mode restrictions and other (the register we'll choose should be
e855c69d
AB
3204 compatible class with the original uses, shouldn't be in call_used_regs,
3205 should be HARD_REGNO_RENAME_OK etc).
3206
3207 Returns TRUE if we've found all original insns, FALSE otherwise.
3208
3209 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
b8698a0f
L
3210 to traverse the code motion paths. This helper function finds registers
3211 that are not available for storing expres while moving ORIG_OPS up on the
e855c69d
AB
3212 path starting from INSN. A register considered as used on the moving path,
3213 if one of the following conditions is not satisfied:
3214
b8698a0f
L
3215 (1) a register not set or read on any path from xi to an instance of
3216 the original operation,
3217 (2) not among the live registers of the point immediately following the
e855c69d
AB
3218 first original operation on a given downward path, except for the
3219 original target register of the operation,
b8698a0f 3220 (3) not live on the other path of any conditional branch that is passed
e855c69d
AB
3221 by the operation, in case original operations are not present on
3222 both paths of the conditional branch.
3223
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3226
b8698a0f
L
3227 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3228 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e855c69d
AB
3229 to unavailable hard regs at the point original operation is found. */
3230
3231static bool
3232find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3233 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3234{
3235 def_list_iterator i;
3236 def_t def;
3237 int res;
3238 bool needs_spec_check_p = false;
3239 expr_t expr;
3240 av_set_iterator expr_iter;
3241 struct fur_static_params sparams;
3242 struct cmpd_local_params lparams;
3243
3244 /* We haven't visited any blocks yet. */
3245 bitmap_clear (code_motion_visited_blocks);
3246
3247 /* Init parameters for code_motion_path_driver. */
3248 sparams.crosses_call = false;
3249 sparams.original_insns = original_insns;
3250 sparams.used_regs = used_regs;
b8698a0f 3251
e855c69d
AB
3252 /* Set the appropriate hooks and data. */
3253 code_motion_path_driver_info = &fur_hooks;
b8698a0f 3254
e855c69d
AB
3255 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3256
3257 reg_rename_p->crosses_call |= sparams.crosses_call;
3258
3259 gcc_assert (res == 1);
3260 gcc_assert (original_insns && *original_insns);
3261
3262 /* ??? We calculate whether an expression needs a check when computing
3263 av sets. This information is not as precise as it could be due to
3264 merging this bit in merge_expr. We can do better in find_used_regs,
b8698a0f 3265 but we want to avoid multiple traversals of the same code motion
e855c69d
AB
3266 paths. */
3267 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3268 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3269
b8698a0f 3270 /* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
3271 for renaming expr in INSN due to hardware restrictions (register class,
3272 modes compatibility etc). */
3273 FOR_EACH_DEF (def, i, *original_insns)
3274 {
3275 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3276
3277 if (VINSN_SEPARABLE_P (vinsn))
3278 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3279
b8698a0f 3280 /* Do not allow clobbering of ld.[sa] address in case some of the
e855c69d
AB
3281 original operations need a check. */
3282 if (needs_spec_check_p)
3283 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3284 }
3285
3286 return true;
3287}
3288\f
3289
3290/* Functions to choose the best insn from available ones. */
3291
3292/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3293static int
3294sel_target_adjust_priority (expr_t expr)
3295{
3296 int priority = EXPR_PRIORITY (expr);
3297 int new_priority;
3298
3299 if (targetm.sched.adjust_priority)
3300 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3301 else
3302 new_priority = priority;
3303
3304 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3305 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3306
3307 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3308
136e01a3
AB
3309 if (sched_verbose >= 4)
3310 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
b8698a0f 3311 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e855c69d
AB
3312 EXPR_PRIORITY_ADJ (expr), new_priority);
3313
3314 return new_priority;
3315}
3316
3317/* Rank two available exprs for schedule. Never return 0 here. */
b8698a0f 3318static int
e855c69d
AB
3319sel_rank_for_schedule (const void *x, const void *y)
3320{
3321 expr_t tmp = *(const expr_t *) y;
3322 expr_t tmp2 = *(const expr_t *) x;
3323 insn_t tmp_insn, tmp2_insn;
3324 vinsn_t tmp_vinsn, tmp2_vinsn;
3325 int val;
3326
3327 tmp_vinsn = EXPR_VINSN (tmp);
3328 tmp2_vinsn = EXPR_VINSN (tmp2);
3329 tmp_insn = EXPR_INSN_RTX (tmp);
3330 tmp2_insn = EXPR_INSN_RTX (tmp2);
b8698a0f 3331
b5b8b0ac
AO
3332 /* Schedule debug insns as early as possible. */
3333 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3334 return -1;
3335 else if (DEBUG_INSN_P (tmp2_insn))
3336 return 1;
3337
e855c69d
AB
3338 /* Prefer SCHED_GROUP_P insns to any others. */
3339 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3340 {
b8698a0f 3341 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e855c69d
AB
3342 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3343
3344 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3345 cannot be cloned. */
3346 if (VINSN_UNIQUE_P (tmp2_vinsn))
3347 return 1;
3348 return -1;
3349 }
3350
3351 /* Discourage scheduling of speculative checks. */
3352 val = (sel_insn_is_speculation_check (tmp_insn)
3353 - sel_insn_is_speculation_check (tmp2_insn));
3354 if (val)
3355 return val;
3356
3357 /* Prefer not scheduled insn over scheduled one. */
3358 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3359 {
3360 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3361 if (val)
3362 return val;
3363 }
3364
3365 /* Prefer jump over non-jump instruction. */
3366 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3367 return -1;
3368 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3369 return 1;
3370
3371 /* Prefer an expr with greater priority. */
3372 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3373 {
3374 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3375 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3376
3377 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3378 }
3379 else
b8698a0f 3380 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
e855c69d
AB
3381 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3382 if (val)
3383 return val;
3384
3385 if (spec_info != NULL && spec_info->mask != 0)
3386 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3387 {
3388 ds_t ds1, ds2;
3389 dw_t dw1, dw2;
3390 int dw;
3391
3392 ds1 = EXPR_SPEC_DONE_DS (tmp);
3393 if (ds1)
3394 dw1 = ds_weak (ds1);
3395 else
3396 dw1 = NO_DEP_WEAK;
3397
3398 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3399 if (ds2)
3400 dw2 = ds_weak (ds2);
3401 else
3402 dw2 = NO_DEP_WEAK;
3403
3404 dw = dw2 - dw1;
3405 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3406 return dw;
3407 }
3408
e855c69d 3409 /* Prefer an old insn to a bookkeeping insn. */
b8698a0f 3410 if (INSN_UID (tmp_insn) < first_emitted_uid
e855c69d
AB
3411 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3412 return -1;
b8698a0f 3413 if (INSN_UID (tmp_insn) >= first_emitted_uid
e855c69d
AB
3414 && INSN_UID (tmp2_insn) < first_emitted_uid)
3415 return 1;
3416
b8698a0f 3417 /* Prefer an insn with smaller UID, as a last resort.
e855c69d
AB
3418 We can't safely use INSN_LUID as it is defined only for those insns
3419 that are in the stream. */
3420 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3421}
3422
b8698a0f 3423/* Filter out expressions from av set pointed to by AV_PTR
e855c69d
AB
3424 that are pipelined too many times. */
3425static void
3426process_pipelined_exprs (av_set_t *av_ptr)
3427{
3428 expr_t expr;
3429 av_set_iterator si;
3430
3431 /* Don't pipeline already pipelined code as that would increase
b8698a0f 3432 number of unnecessary register moves. */
e855c69d
AB
3433 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3434 {
3435 if (EXPR_SCHED_TIMES (expr)
3436 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3437 av_set_iter_remove (&si);
3438 }
3439}
3440
3441/* Filter speculative insns from AV_PTR if we don't want them. */
3442static void
3443process_spec_exprs (av_set_t *av_ptr)
3444{
3445 bool try_data_p = true;
3446 bool try_control_p = true;
3447 expr_t expr;
3448 av_set_iterator si;
3449
3450 if (spec_info == NULL)
3451 return;
3452
3453 /* Scan *AV_PTR to find out if we want to consider speculative
3454 instructions for scheduling. */
3455 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3456 {
3457 ds_t ds;
3458
3459 ds = EXPR_SPEC_DONE_DS (expr);
3460
3461 /* The probability of a success is too low - don't speculate. */
3462 if ((ds & SPECULATIVE)
3463 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3464 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3465 || (pipelining_p && false
3466 && (ds & DATA_SPEC)
3467 && (ds & CONTROL_SPEC))))
3468 {
3469 av_set_iter_remove (&si);
3470 continue;
3471 }
3472
3473 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3474 && !(ds & BEGIN_DATA))
3475 try_data_p = false;
3476
3477 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3478 && !(ds & BEGIN_CONTROL))
3479 try_control_p = false;
3480 }
3481
3482 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3483 {
3484 ds_t ds;
3485
3486 ds = EXPR_SPEC_DONE_DS (expr);
3487
3488 if (ds & SPECULATIVE)
3489 {
3490 if ((ds & BEGIN_DATA) && !try_data_p)
3491 /* We don't want any data speculative instructions right
3492 now. */
3493 av_set_iter_remove (&si);
3494
3495 if ((ds & BEGIN_CONTROL) && !try_control_p)
3496 /* We don't want any control speculative instructions right
3497 now. */
3498 av_set_iter_remove (&si);
3499 }
3500 }
3501}
3502
b8698a0f
L
3503/* Search for any use-like insns in AV_PTR and decide on scheduling
3504 them. Return one when found, and NULL otherwise.
e855c69d
AB
3505 Note that we check here whether a USE could be scheduled to avoid
3506 an infinite loop later. */
3507static expr_t
3508process_use_exprs (av_set_t *av_ptr)
3509{
3510 expr_t expr;
3511 av_set_iterator si;
3512 bool uses_present_p = false;
3513 bool try_uses_p = true;
3514
3515 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3516 {
3517 /* This will also initialize INSN_CODE for later use. */
3518 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3519 {
3520 /* If we have a USE in *AV_PTR that was not scheduled yet,
3521 do so because it will do good only. */
3522 if (EXPR_SCHED_TIMES (expr) <= 0)
3523 {
3524 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3525 return expr;
3526
3527 av_set_iter_remove (&si);
3528 }
3529 else
3530 {
3531 gcc_assert (pipelining_p);
3532
3533 uses_present_p = true;
3534 }
3535 }
3536 else
3537 try_uses_p = false;
3538 }
3539
3540 if (uses_present_p)
3541 {
3542 /* If we don't want to schedule any USEs right now and we have some
3543 in *AV_PTR, remove them, else just return the first one found. */
3544 if (!try_uses_p)
3545 {
3546 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3547 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3548 av_set_iter_remove (&si);
3549 }
3550 else
3551 {
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3553 {
3554 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3555
3556 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3557 return expr;
3558
3559 av_set_iter_remove (&si);
3560 }
3561 }
3562 }
3563
3564 return NULL;
3565}
3566
0c02ab39
AB
3567/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3568 EXPR's history of changes. */
e855c69d
AB
3569static bool
3570vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3571{
0c02ab39 3572 vinsn_t vinsn, expr_vinsn;
e855c69d 3573 int n;
0c02ab39 3574 unsigned i;
e855c69d 3575
0c02ab39
AB
3576 /* Start with checking expr itself and then proceed with all the old forms
3577 of expr taken from its history vector. */
3578 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3579 expr_vinsn;
3580 expr_vinsn = (i < VEC_length (expr_history_def,
3581 EXPR_HISTORY_OF_CHANGES (expr))
3582 ? VEC_index (expr_history_def,
3583 EXPR_HISTORY_OF_CHANGES (expr),
0823efed 3584 i++).old_expr_vinsn
0c02ab39
AB
3585 : NULL))
3586 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3587 if (VINSN_SEPARABLE_P (vinsn))
3588 {
3589 if (vinsn_equal_p (vinsn, expr_vinsn))
3590 return true;
3591 }
3592 else
3593 {
3594 /* For non-separable instructions, the blocking insn can have
3595 another pattern due to substitution, and we can't choose
3596 different register as in the above case. Check all registers
3597 being written instead. */
3598 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3599 VINSN_REG_SETS (expr_vinsn)))
3600 return true;
3601 }
e855c69d
AB
3602
3603 return false;
3604}
3605
3606#ifdef ENABLE_CHECKING
3607/* Return true if either of expressions from ORIG_OPS can be blocked
3608 by previously created bookkeeping code. STATIC_PARAMS points to static
3609 parameters of move_op. */
3610static bool
3611av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3612{
3613 expr_t expr;
3614 av_set_iterator iter;
3615 moveop_static_params_p sparams;
3616
3617 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3618 created while scheduling on another fence. */
3619 FOR_EACH_EXPR (expr, iter, orig_ops)
3620 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3621 return true;
3622
3623 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3624 sparams = (moveop_static_params_p) static_params;
3625
3626 /* Expressions can be also blocked by bookkeeping created during current
3627 move_op. */
3628 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3629 FOR_EACH_EXPR (expr, iter, orig_ops)
3630 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3631 return true;
3632
3633 /* Expressions in ORIG_OPS may have wrong destination register due to
3634 renaming. Check with the right register instead. */
3635 if (sparams->dest && REG_P (sparams->dest))
3636 {
cf3d5824 3637 rtx reg = sparams->dest;
e855c69d
AB
3638 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3639
cf3d5824
SG
3640 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3641 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3642 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
e855c69d
AB
3643 return true;
3644 }
3645
3646 return false;
3647}
3648#endif
3649
3650/* Clear VINSN_VEC and detach vinsns. */
3651static void
3652vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3653{
3654 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3655 if (len > 0)
3656 {
3657 vinsn_t vinsn;
3658 int n;
b8698a0f 3659
ac47786e 3660 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
e855c69d
AB
3661 vinsn_detach (vinsn);
3662 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3663 }
3664}
3665
3666/* Add the vinsn of EXPR to the VINSN_VEC. */
3667static void
3668vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3669{
3670 vinsn_attach (EXPR_VINSN (expr));
3671 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3672}
3673
b8698a0f 3674/* Free the vector representing blocked expressions. */
e855c69d
AB
3675static void
3676vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3677{
3678 if (*vinsn_vec)
3679 VEC_free (vinsn_t, heap, *vinsn_vec);
3680}
3681
3682/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3683
3684void sel_add_to_insn_priority (rtx insn, int amount)
3685{
3686 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3687
3688 if (sched_verbose >= 2)
b8698a0f 3689 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e855c69d
AB
3690 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3691 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3692}
3693
b8698a0f 3694/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e855c69d
AB
3695 true if there is something to schedule. BNDS and FENCE are current
3696 boundaries and fence, respectively. If we need to stall for some cycles
b8698a0f 3697 before an expr from AV would become available, write this number to
e855c69d
AB
3698 *PNEED_STALL. */
3699static bool
3700fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3701 int *pneed_stall)
3702{
3703 av_set_iterator si;
3704 expr_t expr;
3705 int sched_next_worked = 0, stalled, n;
3706 static int av_max_prio, est_ticks_till_branch;
3707 int min_need_stall = -1;
3708 deps_t dc = BND_DC (BLIST_BND (bnds));
3709
3710 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3711 already scheduled. */
3712 if (av == NULL)
3713 return false;
3714
3715 /* Empty vector from the previous stuff. */
3716 if (VEC_length (expr_t, vec_av_set) > 0)
3717 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3718
3719 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3720 for each insn. */
3721 gcc_assert (VEC_empty (expr_t, vec_av_set));
3722 FOR_EACH_EXPR (expr, si, av)
b8698a0f 3723 {
e855c69d
AB
3724 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3725
3726 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3727
3728 /* Adjust priority using target backend hook. */
3729 sel_target_adjust_priority (expr);
3730 }
3731
3732 /* Sort the vector. */
5095da95 3733 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
e855c69d
AB
3734
3735 /* We record maximal priority of insns in av set for current instruction
3736 group. */
3737 if (FENCE_STARTS_CYCLE_P (fence))
3738 av_max_prio = est_ticks_till_branch = INT_MIN;
3739
3740 /* Filter out inappropriate expressions. Loop's direction is reversed to
3741 visit "best" instructions first. We assume that VEC_unordered_remove
3742 moves last element in place of one being deleted. */
3743 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3744 {
3745 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3746 insn_t insn = EXPR_INSN_RTX (expr);
f3764768 3747 signed char target_available;
e855c69d
AB
3748 bool is_orig_reg_p = true;
3749 int need_cycles, new_prio;
3750
3751 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3752 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3753 {
3754 VEC_unordered_remove (expr_t, vec_av_set, n);
3755 continue;
3756 }
3757
b8698a0f 3758 /* Set number of sched_next insns (just in case there
e855c69d
AB
3759 could be several). */
3760 if (FENCE_SCHED_NEXT (fence))
3761 sched_next_worked++;
b8698a0f
L
3762
3763 /* Check all liveness requirements and try renaming.
e855c69d
AB
3764 FIXME: try to minimize calls to this. */
3765 target_available = EXPR_TARGET_AVAILABLE (expr);
3766
3767 /* If insn was already scheduled on the current fence,
3768 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3769 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3770 target_available = -1;
3771
3772 /* If the availability of the EXPR is invalidated by the insertion of
3773 bookkeeping earlier, make sure that we won't choose this expr for
3774 scheduling if it's not separable, and if it is separable, then
3775 we have to recompute the set of available registers for it. */
3776 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3777 {
3778 VEC_unordered_remove (expr_t, vec_av_set, n);
3779 if (sched_verbose >= 4)
3780 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3781 INSN_UID (insn));
3782 continue;
3783 }
b8698a0f 3784
e855c69d
AB
3785 if (target_available == true)
3786 {
3787 /* Do nothing -- we can use an existing register. */
3788 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3789 }
b8698a0f 3790 else if (/* Non-separable instruction will never
e855c69d
AB
3791 get another register. */
3792 (target_available == false
3793 && !EXPR_SEPARABLE_P (expr))
3794 /* Don't try to find a register for low-priority expression. */
3795 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3796 /* ??? FIXME: Don't try to rename data speculation. */
3797 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3798 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3799 {
3800 VEC_unordered_remove (expr_t, vec_av_set, n);
3801 if (sched_verbose >= 4)
b8698a0f 3802 sel_print ("Expr %d has no suitable target register\n",
e855c69d
AB
3803 INSN_UID (insn));
3804 continue;
3805 }
3806
3807 /* Filter expressions that need to be renamed or speculated when
3808 pipelining, because compensating register copies or speculation
3809 checks are likely to be placed near the beginning of the loop,
3810 causing a stall. */
3811 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3812 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3813 {
3814 /* Estimation of number of cycles until loop branch for
3815 renaming/speculation to be successful. */
3816 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3817
3818 if ((int) current_loop_nest->ninsns < 9)
3819 {
3820 VEC_unordered_remove (expr_t, vec_av_set, n);
3821 if (sched_verbose >= 4)
3822 sel_print ("Pipelining expr %d will likely cause stall\n",
3823 INSN_UID (insn));
3824 continue;
3825 }
3826
3827 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3828 < need_n_ticks_till_branch * issue_rate / 2
3829 && est_ticks_till_branch < need_n_ticks_till_branch)
3830 {
3831 VEC_unordered_remove (expr_t, vec_av_set, n);
3832 if (sched_verbose >= 4)
3833 sel_print ("Pipelining expr %d will likely cause stall\n",
3834 INSN_UID (insn));
3835 continue;
3836 }
3837 }
3838
3839 /* We want to schedule speculation checks as late as possible. Discard
3840 them from av set if there are instructions with higher priority. */
3841 if (sel_insn_is_speculation_check (insn)
3842 && EXPR_PRIORITY (expr) < av_max_prio)
3843 {
3844 stalled++;
3845 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3846 VEC_unordered_remove (expr_t, vec_av_set, n);
3847 if (sched_verbose >= 4)
3848 sel_print ("Delaying speculation check %d until its first use\n",
3849 INSN_UID (insn));
3850 continue;
3851 }
3852
3853 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3856
3857 /* Don't allow any insns whose data is not yet ready.
3858 Check first whether we've already tried them and failed. */
3859 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3860 {
3861 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3862 - FENCE_CYCLE (fence));
3863 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3864 est_ticks_till_branch = MAX (est_ticks_till_branch,
3865 EXPR_PRIORITY (expr) + need_cycles);
3866
3867 if (need_cycles > 0)
3868 {
3869 stalled++;
b8698a0f 3870 min_need_stall = (min_need_stall < 0
e855c69d
AB
3871 ? need_cycles
3872 : MIN (min_need_stall, need_cycles));
3873 VEC_unordered_remove (expr_t, vec_av_set, n);
3874
3875 if (sched_verbose >= 4)
b8698a0f 3876 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e855c69d
AB
3877 INSN_UID (insn),
3878 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3879 continue;
3880 }
3881 }
3882
b8698a0f 3883 /* Now resort to dependence analysis to find whether EXPR might be
e855c69d
AB
3884 stalled due to dependencies from FENCE's context. */
3885 need_cycles = tick_check_p (expr, dc, fence);
3886 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3887
3888 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3889 est_ticks_till_branch = MAX (est_ticks_till_branch,
3890 new_prio);
3891
3892 if (need_cycles > 0)
3893 {
3894 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3895 {
3896 int new_size = INSN_UID (insn) * 3 / 2;
b8698a0f
L
3897
3898 FENCE_READY_TICKS (fence)
e855c69d
AB
3899 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3900 new_size, FENCE_READY_TICKS_SIZE (fence),
3901 sizeof (int));
3902 }
b8698a0f
L
3903 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3904 = FENCE_CYCLE (fence) + need_cycles;
3905
e855c69d 3906 stalled++;
b8698a0f 3907 min_need_stall = (min_need_stall < 0
e855c69d
AB
3908 ? need_cycles
3909 : MIN (min_need_stall, need_cycles));
3910
3911 VEC_unordered_remove (expr_t, vec_av_set, n);
b8698a0f 3912
e855c69d 3913 if (sched_verbose >= 4)
b8698a0f 3914 sel_print ("Expr %d is not ready yet until cycle %d\n",
e855c69d
AB
3915 INSN_UID (insn),
3916 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3917 continue;
3918 }
3919
3920 if (sched_verbose >= 4)
3921 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3922 min_need_stall = 0;
3923 }
3924
3925 /* Clear SCHED_NEXT. */
3926 if (FENCE_SCHED_NEXT (fence))
3927 {
3928 gcc_assert (sched_next_worked == 1);
3929 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3930 }
3931
3932 /* No need to stall if this variable was not initialized. */
3933 if (min_need_stall < 0)
3934 min_need_stall = 0;
3935
3936 if (VEC_empty (expr_t, vec_av_set))
3937 {
3938 /* We need to set *pneed_stall here, because later we skip this code
3939 when ready list is empty. */
3940 *pneed_stall = min_need_stall;
3941 return false;
3942 }
3943 else
3944 gcc_assert (min_need_stall == 0);
3945
3946 /* Sort the vector. */
5095da95 3947 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
b8698a0f 3948
e855c69d
AB
3949 if (sched_verbose >= 4)
3950 {
b8698a0f 3951 sel_print ("Total ready exprs: %d, stalled: %d\n",
e855c69d
AB
3952 VEC_length (expr_t, vec_av_set), stalled);
3953 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
ac47786e 3954 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
e855c69d
AB
3955 dump_expr (expr);
3956 sel_print ("\n");
3957 }
3958
3959 *pneed_stall = 0;
3960 return true;
3961}
3962
3963/* Convert a vectored and sorted av set to the ready list that
3964 the rest of the backend wants to see. */
3965static void
3966convert_vec_av_set_to_ready (void)
3967{
3968 int n;
3969 expr_t expr;
3970
3971 /* Allocate and fill the ready list from the sorted vector. */
3972 ready.n_ready = VEC_length (expr_t, vec_av_set);
3973 ready.first = ready.n_ready - 1;
b8698a0f 3974
e855c69d
AB
3975 gcc_assert (ready.n_ready > 0);
3976
3977 if (ready.n_ready > max_issue_size)
3978 {
3979 max_issue_size = ready.n_ready;
3980 sched_extend_ready_list (ready.n_ready);
3981 }
b8698a0f 3982
ac47786e 3983 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
e855c69d
AB
3984 {
3985 vinsn_t vi = EXPR_VINSN (expr);
3986 insn_t insn = VINSN_INSN_RTX (vi);
3987
3988 ready_try[n] = 0;
3989 ready.vec[n] = insn;
3990 }
3991}
3992
3993/* Initialize ready list from *AV_PTR for the max_issue () call.
3994 If any unrecognizable insn found in *AV_PTR, return it (and skip
b8698a0f
L
3995 max_issue). BND and FENCE are current boundary and fence,
3996 respectively. If we need to stall for some cycles before an expr
e855c69d
AB
3997 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3998static expr_t
3999fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4000 int *pneed_stall)
4001{
4002 expr_t expr;
4003
4004 /* We do not support multiple boundaries per fence. */
4005 gcc_assert (BLIST_NEXT (bnds) == NULL);
4006
b8698a0f 4007 /* Process expressions required special handling, i.e. pipelined,
e855c69d
AB
4008 speculative and recog() < 0 expressions first. */
4009 process_pipelined_exprs (av_ptr);
4010 process_spec_exprs (av_ptr);
4011
4012 /* A USE could be scheduled immediately. */
4013 expr = process_use_exprs (av_ptr);
4014 if (expr)
4015 {
4016 *pneed_stall = 0;
4017 return expr;
4018 }
4019
4020 /* Turn the av set to a vector for sorting. */
4021 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4022 {
4023 ready.n_ready = 0;
4024 return NULL;
4025 }
4026
4027 /* Build the final ready list. */
4028 convert_vec_av_set_to_ready ();
4029 return NULL;
4030}
4031
4032/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4033static bool
4034sel_dfa_new_cycle (insn_t insn, fence_t fence)
4035{
b8698a0f
L
4036 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4037 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e855c69d
AB
4038 : FENCE_CYCLE (fence) - 1;
4039 bool res = false;
4040 int sort_p = 0;
4041
4042 if (!targetm.sched.dfa_new_cycle)
4043 return false;
4044
4045 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4046
4047 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4048 insn, last_scheduled_cycle,
4049 FENCE_CYCLE (fence), &sort_p))
4050 {
4051 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4052 advance_one_cycle (fence);
4053 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4054 res = true;
4055 }
4056
4057 return res;
4058}
4059
4060/* Invoke reorder* target hooks on the ready list. Return the number of insns
4061 we can issue. FENCE is the current fence. */
4062static int
4063invoke_reorder_hooks (fence_t fence)
4064{
4065 int issue_more;
4066 bool ran_hook = false;
4067
4068 /* Call the reorder hook at the beginning of the cycle, and call
4069 the reorder2 hook in the middle of the cycle. */
4070 if (FENCE_ISSUED_INSNS (fence) == 0)
4071 {
4072 if (targetm.sched.reorder
4073 && !SCHED_GROUP_P (ready_element (&ready, 0))
4074 && ready.n_ready > 1)
4075 {
4076 /* Don't give reorder the most prioritized insn as it can break
4077 pipelining. */
4078 if (pipelining_p)
4079 --ready.n_ready;
4080
4081 issue_more
4082 = targetm.sched.reorder (sched_dump, sched_verbose,
4083 ready_lastpos (&ready),
4084 &ready.n_ready, FENCE_CYCLE (fence));
4085
4086 if (pipelining_p)
4087 ++ready.n_ready;
4088
4089 ran_hook = true;
4090 }
4091 else
4092 /* Initialize can_issue_more for variable_issue. */
4093 issue_more = issue_rate;
4094 }
4095 else if (targetm.sched.reorder2
4096 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4097 {
4098 if (ready.n_ready == 1)
b8698a0f 4099 issue_more =
e855c69d
AB
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready_lastpos (&ready),
4102 &ready.n_ready, FENCE_CYCLE (fence));
4103 else
4104 {
4105 if (pipelining_p)
4106 --ready.n_ready;
4107
4108 issue_more =
4109 targetm.sched.reorder2 (sched_dump, sched_verbose,
4110 ready.n_ready
4111 ? ready_lastpos (&ready) : NULL,
4112 &ready.n_ready, FENCE_CYCLE (fence));
4113
4114 if (pipelining_p)
4115 ++ready.n_ready;
4116 }
4117
4118 ran_hook = true;
4119 }
b8698a0f 4120 else
136e01a3 4121 issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
4122
4123 /* Ensure that ready list and vec_av_set are in line with each other,
4124 i.e. vec_av_set[i] == ready_element (&ready, i). */
4125 if (issue_more && ran_hook)
4126 {
4127 int i, j, n;
4128 rtx *arr = ready.vec;
4129 expr_t *vec = VEC_address (expr_t, vec_av_set);
4130
4131 for (i = 0, n = ready.n_ready; i < n; i++)
4132 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4133 {
4134 expr_t tmp;
4135
4136 for (j = i; j < n; j++)
4137 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4138 break;
4139 gcc_assert (j < n);
4140
b8698a0f 4141 tmp = vec[i];
e855c69d
AB
4142 vec[i] = vec[j];
4143 vec[j] = tmp;
4144 }
4145 }
4146
4147 return issue_more;
4148}
4149
073a8998 4150/* Return an EXPR corresponding to INDEX element of ready list, if
b8698a0f
L
4151 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4152 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e855c69d
AB
4153 ready.vec otherwise. */
4154static inline expr_t
4155find_expr_for_ready (int index, bool follow_ready_element)
4156{
4157 expr_t expr;
4158 int real_index;
4159
4160 real_index = follow_ready_element ? ready.first - index : index;
4161
4162 expr = VEC_index (expr_t, vec_av_set, real_index);
4163 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4164
4165 return expr;
4166}
4167
4168/* Calculate insns worth trying via lookahead_guard hook. Return a number
4169 of such insns found. */
4170static int
4171invoke_dfa_lookahead_guard (void)
4172{
4173 int i, n;
b8698a0f 4174 bool have_hook
e855c69d
AB
4175 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4176
4177 if (sched_verbose >= 2)
4178 sel_print ("ready after reorder: ");
4179
4180 for (i = 0, n = 0; i < ready.n_ready; i++)
4181 {
4182 expr_t expr;
4183 insn_t insn;
4184 int r;
4185
b8698a0f 4186 /* In this loop insn is Ith element of the ready list given by
e855c69d
AB
4187 ready_element, not Ith element of ready.vec. */
4188 insn = ready_element (&ready, i);
b8698a0f 4189
e855c69d
AB
4190 if (! have_hook || i == 0)
4191 r = 0;
4192 else
4193 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
b8698a0f 4194
e855c69d 4195 gcc_assert (INSN_CODE (insn) >= 0);
b8698a0f
L
4196
4197 /* Only insns with ready_try = 0 can get here
e855c69d
AB
4198 from fill_ready_list. */
4199 gcc_assert (ready_try [i] == 0);
4200 ready_try[i] = r;
4201 if (!r)
4202 n++;
4203
4204 expr = find_expr_for_ready (i, true);
b8698a0f 4205
e855c69d
AB
4206 if (sched_verbose >= 2)
4207 {
4208 dump_vinsn (EXPR_VINSN (expr));
4209 sel_print (":%d; ", ready_try[i]);
4210 }
4211 }
4212
4213 if (sched_verbose >= 2)
4214 sel_print ("\n");
4215 return n;
4216}
4217
4218/* Calculate the number of privileged insns and return it. */
4219static int
4220calculate_privileged_insns (void)
4221{
4222 expr_t cur_expr, min_spec_expr = NULL;
e855c69d
AB
4223 int privileged_n = 0, i;
4224
4225 for (i = 0; i < ready.n_ready; i++)
4226 {
4227 if (ready_try[i])
4228 continue;
4229
4230 if (! min_spec_expr)
1124098b 4231 min_spec_expr = find_expr_for_ready (i, true);
b8698a0f 4232
e855c69d
AB
4233 cur_expr = find_expr_for_ready (i, true);
4234
4235 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4236 break;
4237
4238 ++privileged_n;
4239 }
4240
4241 if (i == ready.n_ready)
4242 privileged_n = 0;
4243
4244 if (sched_verbose >= 2)
4245 sel_print ("privileged_n: %d insns with SPEC %d\n",
4246 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4247 return privileged_n;
4248}
4249
b8698a0f 4250/* Call the rest of the hooks after the choice was made. Return
e855c69d
AB
4251 the number of insns that still can be issued given that the current
4252 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4253 and the insn chosen for scheduling, respectively. */
4254static int
4255invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4256{
4257 gcc_assert (INSN_P (best_insn));
4258
4259 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4260 sel_dfa_new_cycle (best_insn, fence);
b8698a0f 4261
e855c69d
AB
4262 if (targetm.sched.variable_issue)
4263 {
4264 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
b8698a0f 4265 issue_more =
e855c69d
AB
4266 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4267 issue_more);
4268 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4269 }
4270 else if (GET_CODE (PATTERN (best_insn)) != USE
4271 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4272 issue_more--;
4273
4274 return issue_more;
4275}
4276
d66b8f4b 4277/* Estimate the cost of issuing INSN on DFA state STATE. */
e855c69d 4278static int
d66b8f4b 4279estimate_insn_cost (rtx insn, state_t state)
e855c69d
AB
4280{
4281 static state_t temp = NULL;
4282 int cost;
4283
4284 if (!temp)
4285 temp = xmalloc (dfa_state_size);
4286
4287 memcpy (temp, state, dfa_state_size);
4288 cost = state_transition (temp, insn);
4289
4290 if (cost < 0)
4291 return 0;
4292 else if (cost == 0)
4293 return 1;
4294 return cost;
4295}
4296
b8698a0f 4297/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e855c69d
AB
4298 This function properly handles ASMs, USEs etc. */
4299static int
4300get_expr_cost (expr_t expr, fence_t fence)
4301{
4302 rtx insn = EXPR_INSN_RTX (expr);
4303
4304 if (recog_memoized (insn) < 0)
4305 {
b8698a0f 4306 if (!FENCE_STARTS_CYCLE_P (fence)
e855c69d
AB
4307 && INSN_ASM_P (insn))
4308 /* This is asm insn which is tryed to be issued on the
4309 cycle not first. Issue it on the next cycle. */
4310 return 1;
4311 else
4312 /* A USE insn, or something else we don't need to
4313 understand. We can't pass these directly to
4314 state_transition because it will trigger a
4315 fatal error for unrecognizable insns. */
4316 return 0;
4317 }
4318 else
d66b8f4b 4319 return estimate_insn_cost (insn, FENCE_STATE (fence));
e855c69d
AB
4320}
4321
b8698a0f 4322/* Find the best insn for scheduling, either via max_issue or just take
e855c69d
AB
4323 the most prioritized available. */
4324static int
4325choose_best_insn (fence_t fence, int privileged_n, int *index)
4326{
4327 int can_issue = 0;
4328
4329 if (dfa_lookahead > 0)
4330 {
4331 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
894fd6f2 4332 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
e855c69d 4333 can_issue = max_issue (&ready, privileged_n,
894fd6f2 4334 FENCE_STATE (fence), true, index);
e855c69d
AB
4335 if (sched_verbose >= 2)
4336 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4337 can_issue, FENCE_ISSUED_INSNS (fence));
4338 }
4339 else
4340 {
4341 /* We can't use max_issue; just return the first available element. */
4342 int i;
4343
4344 for (i = 0; i < ready.n_ready; i++)
4345 {
4346 expr_t expr = find_expr_for_ready (i, true);
4347
4348 if (get_expr_cost (expr, fence) < 1)
4349 {
4350 can_issue = can_issue_more;
4351 *index = i;
4352
4353 if (sched_verbose >= 2)
4354 sel_print ("using %dth insn from the ready list\n", i + 1);
4355
4356 break;
4357 }
4358 }
4359
4360 if (i == ready.n_ready)
4361 {
4362 can_issue = 0;
4363 *index = -1;
4364 }
4365 }
4366
4367 return can_issue;
4368}
4369
b8698a0f
L
4370/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4371 BNDS and FENCE are current boundaries and scheduling fence respectively.
4372 Return the expr found and NULL if nothing can be issued atm.
4373 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e855c69d
AB
4374static expr_t
4375find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4376 int *pneed_stall)
4377{
4378 expr_t best;
b8698a0f 4379
e855c69d
AB
4380 /* Choose the best insn for scheduling via:
4381 1) sorting the ready list based on priority;
4382 2) calling the reorder hook;
4383 3) calling max_issue. */
4384 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4385 if (best == NULL && ready.n_ready > 0)
4386 {
1124098b 4387 int privileged_n, index;
e855c69d
AB
4388
4389 can_issue_more = invoke_reorder_hooks (fence);
4390 if (can_issue_more > 0)
4391 {
b8698a0f 4392 /* Try choosing the best insn until we find one that is could be
e855c69d
AB
4393 scheduled due to liveness restrictions on its destination register.
4394 In the future, we'd like to choose once and then just probe insns
4395 in the order of their priority. */
1124098b 4396 invoke_dfa_lookahead_guard ();
e855c69d
AB
4397 privileged_n = calculate_privileged_insns ();
4398 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4399 if (can_issue_more)
4400 best = find_expr_for_ready (index, true);
4401 }
b8698a0f 4402 /* We had some available insns, so if we can't issue them,
e855c69d
AB
4403 we have a stall. */
4404 if (can_issue_more == 0)
4405 {
4406 best = NULL;
4407 *pneed_stall = 1;
4408 }
4409 }
4410
4411 if (best != NULL)
4412 {
4413 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4414 can_issue_more);
06f0c25f
AB
4415 if (targetm.sched.variable_issue
4416 && can_issue_more == 0)
e855c69d
AB
4417 *pneed_stall = 1;
4418 }
b8698a0f 4419
e855c69d
AB
4420 if (sched_verbose >= 2)
4421 {
4422 if (best != NULL)
4423 {
4424 sel_print ("Best expression (vliw form): ");
4425 dump_expr (best);
4426 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4427 }
4428 else
4429 sel_print ("No best expr found!\n");
4430 }
4431
4432 return best;
4433}
4434\f
4435
4436/* Functions that implement the core of the scheduler. */
4437
4438
b8698a0f 4439/* Emit an instruction from EXPR with SEQNO and VINSN after
e855c69d
AB
4440 PLACE_TO_INSERT. */
4441static insn_t
b8698a0f 4442emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
4443 insn_t place_to_insert)
4444{
4445 /* This assert fails when we have identical instructions
4446 one of which dominates the other. In this case move_op ()
4447 finds the first instruction and doesn't search for second one.
4448 The solution would be to compute av_set after the first found
4449 insn and, if insn present in that set, continue searching.
4450 For now we workaround this issue in move_op. */
4451 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4452
4453 if (EXPR_WAS_RENAMED (expr))
4454 {
4455 unsigned regno = expr_dest_regno (expr);
b8698a0f 4456
e855c69d
AB
4457 if (HARD_REGISTER_NUM_P (regno))
4458 {
4459 df_set_regs_ever_live (regno, true);
4460 reg_rename_tick[regno] = ++reg_rename_this_tick;
4461 }
4462 }
b8698a0f
L
4463
4464 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e855c69d
AB
4465 place_to_insert);
4466}
4467
4468/* Return TRUE if BB can hold bookkeeping code. */
4469static bool
4470block_valid_for_bookkeeping_p (basic_block bb)
4471{
4472 insn_t bb_end = BB_END (bb);
4473
4474 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4475 return false;
4476
4477 if (INSN_P (bb_end))
4478 {
4479 if (INSN_SCHED_TIMES (bb_end) > 0)
4480 return false;
4481 }
4482 else
4483 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4484
4485 return true;
4486}
4487
4488/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4489 into E2->dest, except from E1->src (there may be a sequence of empty basic
4490 blocks between E1->src and E2->dest). Return found block, or NULL if new
b5b8b0ac
AO
4491 one must be created. If LAX holds, don't assume there is a simple path
4492 from E1->src to E2->dest. */
e855c69d 4493static basic_block
b5b8b0ac 4494find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e855c69d
AB
4495{
4496 basic_block candidate_block = NULL;
4497 edge e;
4498
4499 /* Loop over edges from E1 to E2, inclusive. */
b5b8b0ac 4500 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
e855c69d
AB
4501 {
4502 if (EDGE_COUNT (e->dest->preds) == 2)
4503 {
4504 if (candidate_block == NULL)
4505 candidate_block = (EDGE_PRED (e->dest, 0) == e
4506 ? EDGE_PRED (e->dest, 1)->src
4507 : EDGE_PRED (e->dest, 0)->src);
4508 else
4509 /* Found additional edge leading to path from e1 to e2
4510 from aside. */
4511 return NULL;
4512 }
4513 else if (EDGE_COUNT (e->dest->preds) > 2)
4514 /* Several edges leading to path from e1 to e2 from aside. */
4515 return NULL;
4516
4517 if (e == e2)
b5b8b0ac
AO
4518 return ((!lax || candidate_block)
4519 && block_valid_for_bookkeeping_p (candidate_block)
e855c69d
AB
4520 ? candidate_block
4521 : NULL);
b5b8b0ac
AO
4522
4523 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4524 return NULL;
e855c69d 4525 }
b5b8b0ac
AO
4526
4527 if (lax)
4528 return NULL;
4529
e855c69d
AB
4530 gcc_unreachable ();
4531}
4532
4533/* Create new basic block for bookkeeping code for path(s) incoming into
4534 E2->dest, except from E1->src. Return created block. */
4535static basic_block
4536create_block_for_bookkeeping (edge e1, edge e2)
4537{
4538 basic_block new_bb, bb = e2->dest;
4539
4540 /* Check that we don't spoil the loop structure. */
4541 if (current_loop_nest)
4542 {
4543 basic_block latch = current_loop_nest->latch;
4544
4545 /* We do not split header. */
4546 gcc_assert (e2->dest != current_loop_nest->header);
4547
4548 /* We do not redirect the only edge to the latch block. */
4549 gcc_assert (e1->dest != latch
4550 || !single_pred_p (latch)
4551 || e1 != single_pred_edge (latch));
4552 }
4553
4554 /* Split BB to insert BOOK_INSN there. */
4555 new_bb = sched_split_block (bb, NULL);
4556
4557 /* Move note_list from the upper bb. */
4558 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4559 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4560 BB_NOTE_LIST (bb) = NULL_RTX;
4561
4562 gcc_assert (e2->dest == bb);
4563
4564 /* Skip block for bookkeeping copy when leaving E1->src. */
4565 if (e1->flags & EDGE_FALLTHRU)
4566 sel_redirect_edge_and_branch_force (e1, new_bb);
4567 else
4568 sel_redirect_edge_and_branch (e1, new_bb);
4569
4570 gcc_assert (e1->dest == new_bb);
4571 gcc_assert (sel_bb_empty_p (bb));
4572
b5b8b0ac
AO
4573 /* To keep basic block numbers in sync between debug and non-debug
4574 compilations, we have to rotate blocks here. Consider that we
4575 started from (a,b)->d, (c,d)->e, and d contained only debug
4576 insns. It would have been removed before if the debug insns
4577 weren't there, so we'd have split e rather than d. So what we do
4578 now is to swap the block numbers of new_bb and
4579 single_succ(new_bb) == e, so that the insns that were in e before
4580 get the new block number. */
4581
4582 if (MAY_HAVE_DEBUG_INSNS)
4583 {
4584 basic_block succ;
4585 insn_t insn = sel_bb_head (new_bb);
4586 insn_t last;
4587
4588 if (DEBUG_INSN_P (insn)
4589 && single_succ_p (new_bb)
4590 && (succ = single_succ (new_bb))
4591 && succ != EXIT_BLOCK_PTR
4592 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4593 {
4594 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4595 insn = NEXT_INSN (insn);
4596
4597 if (insn == last)
4598 {
4599 sel_global_bb_info_def gbi;
4600 sel_region_bb_info_def rbi;
4601 int i;
4602
4603 if (sched_verbose >= 2)
4604 sel_print ("Swapping block ids %i and %i\n",
4605 new_bb->index, succ->index);
4606
4607 i = new_bb->index;
4608 new_bb->index = succ->index;
4609 succ->index = i;
4610
4611 SET_BASIC_BLOCK (new_bb->index, new_bb);
4612 SET_BASIC_BLOCK (succ->index, succ);
4613
4614 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4615 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4616 sizeof (gbi));
4617 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4618
4619 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4620 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4621 sizeof (rbi));
4622 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4623
4624 i = BLOCK_TO_BB (new_bb->index);
4625 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4626 BLOCK_TO_BB (succ->index) = i;
4627
4628 i = CONTAINING_RGN (new_bb->index);
4629 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4630 CONTAINING_RGN (succ->index) = i;
4631
4632 for (i = 0; i < current_nr_blocks; i++)
4633 if (BB_TO_BLOCK (i) == succ->index)
4634 BB_TO_BLOCK (i) = new_bb->index;
4635 else if (BB_TO_BLOCK (i) == new_bb->index)
4636 BB_TO_BLOCK (i) = succ->index;
4637
4638 FOR_BB_INSNS (new_bb, insn)
4639 if (INSN_P (insn))
4640 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4641
4642 FOR_BB_INSNS (succ, insn)
4643 if (INSN_P (insn))
4644 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4645
fcaa4ca4
NF
4646 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4647 bitmap_set_bit (code_motion_visited_blocks, succ->index);
b5b8b0ac
AO
4648
4649 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4650 && LABEL_P (BB_HEAD (succ)));
4651
4652 if (sched_verbose >= 4)
4653 sel_print ("Swapping code labels %i and %i\n",
4654 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4655 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4656
4657 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4658 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4659 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4660 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4661 }
4662 }
4663 }
4664
e855c69d
AB
4665 return bb;
4666}
4667
4668/* Return insn after which we must insert bookkeeping code for path(s) incoming
6fc5966f
AM
4669 into E2->dest, except from E1->src. If the returned insn immediately
4670 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
e855c69d 4671static insn_t
6fc5966f 4672find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
e855c69d
AB
4673{
4674 insn_t place_to_insert;
4675 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4676 create new basic block, but insert bookkeeping there. */
b5b8b0ac 4677 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e855c69d 4678
b5b8b0ac
AO
4679 if (book_block)
4680 {
4681 place_to_insert = BB_END (book_block);
4682
4683 /* Don't use a block containing only debug insns for
4684 bookkeeping, this causes scheduling differences between debug
4685 and non-debug compilations, for the block would have been
4686 removed already. */
4687 if (DEBUG_INSN_P (place_to_insert))
4688 {
4689 rtx insn = sel_bb_head (book_block);
e855c69d 4690
b5b8b0ac
AO
4691 while (insn != place_to_insert &&
4692 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4693 insn = NEXT_INSN (insn);
4694
4695 if (insn == place_to_insert)
4696 book_block = NULL;
4697 }
4698 }
4699
4700 if (!book_block)
4701 {
4702 book_block = create_block_for_bookkeeping (e1, e2);
4703 place_to_insert = BB_END (book_block);
4704 if (sched_verbose >= 9)
4705 sel_print ("New block is %i, split from bookkeeping block %i\n",
4706 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4707 }
4708 else
4709 {
4710 if (sched_verbose >= 9)
4711 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4712 }
e855c69d 4713
6fc5966f
AM
4714 *fence_to_rewind = NULL;
4715 /* If basic block ends with a jump, insert bookkeeping code right before it.
4716 Notice if we are crossing a fence when taking PREV_INSN. */
e855c69d 4717 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
6fc5966f
AM
4718 {
4719 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4720 place_to_insert = PREV_INSN (place_to_insert);
4721 }
e855c69d
AB
4722
4723 return place_to_insert;
4724}
4725
4726/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4727 for JOIN_POINT. */
4728static int
4729find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4730{
4731 int seqno;
4732 rtx next;
4733
4734 /* Check if we are about to insert bookkeeping copy before a jump, and use
4735 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4736 next = NEXT_INSN (place_to_insert);
b8698a0f 4737 if (INSN_P (next)
e855c69d
AB
4738 && JUMP_P (next)
4739 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4740 {
4741 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4742 seqno = INSN_SEQNO (next);
4743 }
e855c69d
AB
4744 else if (INSN_SEQNO (join_point) > 0)
4745 seqno = INSN_SEQNO (join_point);
4746 else
da7ba240
AB
4747 {
4748 seqno = get_seqno_by_preds (place_to_insert);
4749
b8698a0f
L
4750 /* Sometimes the fences can move in such a way that there will be
4751 no instructions with positive seqno around this bookkeeping.
da7ba240
AB
4752 This means that there will be no way to get to it by a regular
4753 fence movement. Never mind because we pick up such pieces for
4754 rescheduling anyways, so any positive value will do for now. */
4755 if (seqno < 0)
4756 {
4757 gcc_assert (pipelining_p);
4758 seqno = 1;
4759 }
4760 }
b8698a0f 4761
e855c69d
AB
4762 gcc_assert (seqno > 0);
4763 return seqno;
4764}
4765
4766/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4767 NEW_SEQNO to it. Return created insn. */
4768static insn_t
4769emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4770{
4771 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4772
4773 vinsn_t new_vinsn
4774 = create_vinsn_from_insn_rtx (new_insn_rtx,
4775 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4776
4777 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4778 place_to_insert);
4779
4780 INSN_SCHED_TIMES (new_insn) = 0;
4781 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4782
4783 return new_insn;
4784}
4785
4786/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4787 E2->dest, except from E1->src (there may be a sequence of empty blocks
4788 between E1->src and E2->dest). Return block containing the copy.
4789 All scheduler data is initialized for the newly created insn. */
4790static basic_block
4791generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4792{
4793 insn_t join_point, place_to_insert, new_insn;
4794 int new_seqno;
4795 bool need_to_exchange_data_sets;
6fc5966f 4796 fence_t fence_to_rewind;
e855c69d
AB
4797
4798 if (sched_verbose >= 4)
4799 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4800 e2->dest->index);
4801
4802 join_point = sel_bb_head (e2->dest);
6fc5966f 4803 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
e855c69d
AB
4804 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4805 need_to_exchange_data_sets
4806 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4807
4808 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4809
6fc5966f
AM
4810 if (fence_to_rewind)
4811 FENCE_INSN (fence_to_rewind) = new_insn;
4812
e855c69d
AB
4813 /* When inserting bookkeeping insn in new block, av sets should be
4814 following: old basic block (that now holds bookkeeping) data sets are
4815 the same as was before generation of bookkeeping, and new basic block
4816 (that now hold all other insns of old basic block) data sets are
4817 invalid. So exchange data sets for these basic blocks as sel_split_block
4818 mistakenly exchanges them in this case. Cannot do it earlier because
4819 when single instruction is added to new basic block it should hold NULL
4820 lv_set. */
4821 if (need_to_exchange_data_sets)
4822 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4823 BLOCK_FOR_INSN (join_point));
4824
4825 stat_bookkeeping_copies++;
4826 return BLOCK_FOR_INSN (new_insn);
4827}
4828
b8698a0f 4829/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e855c69d
AB
4830 on FENCE, but we are unable to copy them. */
4831static void
4832remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4833{
4834 expr_t expr;
4835 av_set_iterator i;
4836
b8698a0f
L
4837 /* An expression does not need bookkeeping if it is available on all paths
4838 from current block to original block and current block dominates
4839 original block. We check availability on all paths by examining
4840 EXPR_SPEC; this is not equivalent, because it may be positive even
4841 if expr is available on all paths (but if expr is not available on
e855c69d
AB
4842 any path, EXPR_SPEC will be positive). */
4843
4844 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4845 {
4846 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4847 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4848 && (EXPR_SPEC (expr)
4849 || !EXPR_ORIG_BB_INDEX (expr)
4850 || !dominated_by_p (CDI_DOMINATORS,
4851 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4852 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4853 {
4854 if (sched_verbose >= 4)
4855 sel_print ("Expr %d removed because it would need bookkeeping, which "
4856 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4857 av_set_iter_remove (&i);
4858 }
4859 }
4860}
4861
4862/* Moving conditional jump through some instructions.
4863
4864 Consider example:
4865
4866 ... <- current scheduling point
4867 NOTE BASIC BLOCK: <- bb header
4868 (p8) add r14=r14+0x9;;
4869 (p8) mov [r14]=r23
4870 (!p8) jump L1;;
4871 NOTE BASIC BLOCK:
4872 ...
4873
b8698a0f 4874 We can schedule jump one cycle earlier, than mov, because they cannot be
e855c69d
AB
4875 executed together as their predicates are mutually exclusive.
4876
b8698a0f
L
4877 This is done in this way: first, new fallthrough basic block is created
4878 after jump (it is always can be done, because there already should be a
e855c69d 4879 fallthrough block, where control flow goes in case of predicate being true -
b8698a0f
L
4880 in our example; otherwise there should be a dependence between those
4881 instructions and jump and we cannot schedule jump right now);
4882 next, all instructions between jump and current scheduling point are moved
e855c69d
AB
4883 to this new block. And the result is this:
4884
4885 NOTE BASIC BLOCK:
4886 (!p8) jump L1 <- current scheduling point
4887 NOTE BASIC BLOCK: <- bb header
4888 (p8) add r14=r14+0x9;;
4889 (p8) mov [r14]=r23
4890 NOTE BASIC BLOCK:
4891 ...
4892*/
4893static void
4894move_cond_jump (rtx insn, bnd_t bnd)
4895{
4896 edge ft_edge;
324d3f45
AM
4897 basic_block block_from, block_next, block_new, block_bnd, bb;
4898 rtx next, prev, link, head;
e855c69d 4899
e855c69d 4900 block_from = BLOCK_FOR_INSN (insn);
324d3f45
AM
4901 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4902 prev = BND_TO (bnd);
e855c69d 4903
324d3f45
AM
4904#ifdef ENABLE_CHECKING
4905 /* Moving of jump should not cross any other jumps or beginnings of new
4906 basic blocks. The only exception is when we move a jump through
4907 mutually exclusive insns along fallthru edges. */
4908 if (block_from != block_bnd)
4909 {
4910 bb = block_from;
4911 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4912 link = PREV_INSN (link))
4913 {
4914 if (INSN_P (link))
4915 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4916 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4917 {
4918 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4919 bb = BLOCK_FOR_INSN (link);
4920 }
4921 }
4922 }
4923#endif
e855c69d
AB
4924
4925 /* Jump is moved to the boundary. */
e855c69d
AB
4926 next = PREV_INSN (insn);
4927 BND_TO (bnd) = insn;
4928
0fd4b31d 4929 ft_edge = find_fallthru_edge_from (block_from);
e855c69d
AB
4930 block_next = ft_edge->dest;
4931 /* There must be a fallthrough block (or where should go
4932 control flow in case of false jump predicate otherwise?). */
4933 gcc_assert (block_next);
4934
4935 /* Create new empty basic block after source block. */
4936 block_new = sel_split_edge (ft_edge);
4937 gcc_assert (block_new->next_bb == block_next
4938 && block_from->next_bb == block_new);
4939
324d3f45
AM
4940 /* Move all instructions except INSN to BLOCK_NEW. */
4941 bb = block_bnd;
4942 head = BB_HEAD (block_new);
4943 while (bb != block_from->next_bb)
e855c69d 4944 {
324d3f45
AM
4945 rtx from, to;
4946 from = bb == block_bnd ? prev : sel_bb_head (bb);
4947 to = bb == block_from ? next : sel_bb_end (bb);
e855c69d 4948
324d3f45
AM
4949 /* The jump being moved can be the first insn in the block.
4950 In this case we don't have to move anything in this block. */
4951 if (NEXT_INSN (to) != from)
4952 {
4953 reorder_insns (from, to, head);
4954
4955 for (link = to; link != head; link = PREV_INSN (link))
4956 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4957 head = to;
4958 }
e855c69d 4959
324d3f45
AM
4960 /* Cleanup possibly empty blocks left. */
4961 block_next = bb->next_bb;
4962 if (bb != block_from)
65592aad 4963 tidy_control_flow (bb, false);
324d3f45
AM
4964 bb = block_next;
4965 }
e855c69d
AB
4966
4967 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4968 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e855c69d
AB
4969
4970 gcc_assert (!sel_bb_empty_p (block_from)
4971 && !sel_bb_empty_p (block_new));
4972
4973 /* Update data sets for BLOCK_NEW to represent that INSN and
4974 instructions from the other branch of INSN is no longer
4975 available at BLOCK_NEW. */
4976 BB_AV_LEVEL (block_new) = global_level;
4977 gcc_assert (BB_LV_SET (block_new) == NULL);
4978 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4979 update_data_sets (sel_bb_head (block_new));
4980
4981 /* INSN is a new basic block header - so prepare its data
4982 structures and update availability and liveness sets. */
4983 update_data_sets (insn);
4984
4985 if (sched_verbose >= 4)
4986 sel_print ("Moving jump %d\n", INSN_UID (insn));
4987}
4988
4989/* Remove nops generated during move_op for preventing removal of empty
4990 basic blocks. */
4991static void
b5b8b0ac 4992remove_temp_moveop_nops (bool full_tidying)
e855c69d
AB
4993{
4994 int i;
4995 insn_t insn;
b8698a0f 4996
ac47786e 4997 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
e855c69d
AB
4998 {
4999 gcc_assert (INSN_NOP_P (insn));
b5b8b0ac 5000 return_nop_to_pool (insn, full_tidying);
e855c69d
AB
5001 }
5002
5003 /* Empty the vector. */
5004 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
b8698a0f 5005 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
e855c69d
AB
5006 VEC_length (insn_t, vec_temp_moveop_nops));
5007}
5008
5009/* Records the maximal UID before moving up an instruction. Used for
5010 distinguishing between bookkeeping copies and original insns. */
5011static int max_uid_before_move_op = 0;
5012
5013/* Remove from AV_VLIW_P all instructions but next when debug counter
5014 tells us so. Next instruction is fetched from BNDS. */
5015static void
5016remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5017{
5018 if (! dbg_cnt (sel_sched_insn_cnt))
5019 /* Leave only the next insn in av_vliw. */
5020 {
5021 av_set_iterator av_it;
5022 expr_t expr;
5023 bnd_t bnd = BLIST_BND (bnds);
5024 insn_t next = BND_TO (bnd);
5025
5026 gcc_assert (BLIST_NEXT (bnds) == NULL);
5027
5028 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5029 if (EXPR_INSN_RTX (expr) != next)
5030 av_set_iter_remove (&av_it);
5031 }
5032}
5033
b8698a0f 5034/* Compute available instructions on BNDS. FENCE is the current fence. Write
e855c69d
AB
5035 the computed set to *AV_VLIW_P. */
5036static void
5037compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5038{
5039 if (sched_verbose >= 2)
5040 {
5041 sel_print ("Boundaries: ");
5042 dump_blist (bnds);
5043 sel_print ("\n");
5044 }
5045
5046 for (; bnds; bnds = BLIST_NEXT (bnds))
5047 {
5048 bnd_t bnd = BLIST_BND (bnds);
5049 av_set_t av1_copy;
5050 insn_t bnd_to = BND_TO (bnd);
5051
5052 /* Rewind BND->TO to the basic block header in case some bookkeeping
5053 instructions were inserted before BND->TO and it needs to be
5054 adjusted. */
5055 if (sel_bb_head_p (bnd_to))
5056 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5057 else
5058 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5059 {
5060 bnd_to = PREV_INSN (bnd_to);
5061 if (sel_bb_head_p (bnd_to))
5062 break;
5063 }
5064
5065 if (BND_TO (bnd) != bnd_to)
5066 {
5067 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5068 FENCE_INSN (fence) = bnd_to;
5069 BND_TO (bnd) = bnd_to;
5070 }
5071
5072 av_set_clear (&BND_AV (bnd));
5073 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5074
5075 av_set_clear (&BND_AV1 (bnd));
5076 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5077
5078 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
b8698a0f 5079
e855c69d
AB
5080 av1_copy = av_set_copy (BND_AV1 (bnd));
5081 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5082 }
5083
5084 if (sched_verbose >= 2)
5085 {
5086 sel_print ("Available exprs (vliw form): ");
5087 dump_av_set (*av_vliw_p);
5088 sel_print ("\n");
5089 }
5090}
5091
b8698a0f
L
5092/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5093 expression. When FOR_MOVEOP is true, also replace the register of
e855c69d
AB
5094 expressions found with the register from EXPR_VLIW. */
5095static av_set_t
5096find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5097{
5098 av_set_t expr_seq = NULL;
5099 expr_t expr;
5100 av_set_iterator i;
b8698a0f 5101
e855c69d
AB
5102 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5103 {
5104 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5105 {
5106 if (for_moveop)
5107 {
b8698a0f
L
5108 /* The sequential expression has the right form to pass
5109 to move_op except when renaming happened. Put the
e855c69d
AB
5110 correct register in EXPR then. */
5111 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5112 {
5113 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5114 {
5115 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5116 stat_renamed_scheduled++;
5117 }
b8698a0f
L
5118 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5119 This is needed when renaming came up with original
e855c69d 5120 register. */
b8698a0f 5121 else if (EXPR_TARGET_AVAILABLE (expr)
e855c69d
AB
5122 != EXPR_TARGET_AVAILABLE (expr_vliw))
5123 {
5124 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5125 EXPR_TARGET_AVAILABLE (expr) = 1;
5126 }
5127 }
5128 if (EXPR_WAS_SUBSTITUTED (expr))
5129 stat_substitutions_total++;
5130 }
5131
5132 av_set_add (&expr_seq, expr);
b8698a0f
L
5133
5134 /* With substitution inside insn group, it is possible
5135 that more than one expression in expr_seq will correspond
5136 to expr_vliw. In this case, choose one as the attempt to
e855c69d
AB
5137 move both leads to miscompiles. */
5138 break;
5139 }
5140 }
5141
5142 if (for_moveop && sched_verbose >= 2)
5143 {
5144 sel_print ("Best expression(s) (sequential form): ");
5145 dump_av_set (expr_seq);
5146 sel_print ("\n");
5147 }
b8698a0f 5148
e855c69d
AB
5149 return expr_seq;
5150}
5151
5152
5153/* Move nop to previous block. */
5154static void ATTRIBUTE_UNUSED
5155move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5156{
5157 insn_t prev_insn, next_insn, note;
5158
b8698a0f 5159 gcc_assert (sel_bb_head_p (nop)
e855c69d
AB
5160 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5161 note = bb_note (BLOCK_FOR_INSN (nop));
5162 prev_insn = sel_bb_end (prev_bb);
5163 next_insn = NEXT_INSN (nop);
5164 gcc_assert (prev_insn != NULL_RTX
5165 && PREV_INSN (note) == prev_insn);
5166
5167 NEXT_INSN (prev_insn) = nop;
5168 PREV_INSN (nop) = prev_insn;
5169
5170 PREV_INSN (note) = nop;
5171 NEXT_INSN (note) = next_insn;
5172
5173 NEXT_INSN (nop) = note;
5174 PREV_INSN (next_insn) = note;
5175
5176 BB_END (prev_bb) = nop;
5177 BLOCK_FOR_INSN (nop) = prev_bb;
5178}
5179
5180/* Prepare a place to insert the chosen expression on BND. */
5181static insn_t
5182prepare_place_to_insert (bnd_t bnd)
5183{
5184 insn_t place_to_insert;
5185
5186 /* Init place_to_insert before calling move_op, as the later
5187 can possibly remove BND_TO (bnd). */
5188 if (/* If this is not the first insn scheduled. */
5189 BND_PTR (bnd))
5190 {
5191 /* Add it after last scheduled. */
5192 place_to_insert = ILIST_INSN (BND_PTR (bnd));
b5b8b0ac
AO
5193 if (DEBUG_INSN_P (place_to_insert))
5194 {
5195 ilist_t l = BND_PTR (bnd);
5196 while ((l = ILIST_NEXT (l)) &&
5197 DEBUG_INSN_P (ILIST_INSN (l)))
5198 ;
5199 if (!l)
5200 place_to_insert = NULL;
5201 }
e855c69d
AB
5202 }
5203 else
b5b8b0ac
AO
5204 place_to_insert = NULL;
5205
5206 if (!place_to_insert)
e855c69d
AB
5207 {
5208 /* Add it before BND_TO. The difference is in the
5209 basic block, where INSN will be added. */
5210 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5211 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5212 == BLOCK_FOR_INSN (BND_TO (bnd)));
5213 }
5214
5215 return place_to_insert;
5216}
5217
b8698a0f 5218/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e855c69d 5219 Return the expression to emit in C_EXPR. */
72a54528 5220static bool
b8698a0f 5221move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e855c69d
AB
5222 av_set_t expr_seq, expr_t c_expr)
5223{
72a54528 5224 bool b, should_move;
e855c69d
AB
5225 unsigned book_uid;
5226 bitmap_iterator bi;
5227 int n_bookkeeping_copies_before_moveop;
5228
5229 /* Make a move. This call will remove the original operation,
5230 insert all necessary bookkeeping instructions and update the
5231 data sets. After that all we have to do is add the operation
5232 at before BND_TO (BND). */
5233 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5234 max_uid_before_move_op = get_max_uid ();
5235 bitmap_clear (current_copies);
5236 bitmap_clear (current_originators);
5237
b8698a0f 5238 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 5239 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d 5240
b8698a0f 5241 /* We should be able to find the expression we've chosen for
e855c69d 5242 scheduling. */
72a54528 5243 gcc_assert (b);
b8698a0f 5244
e855c69d
AB
5245 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5246 stat_insns_needed_bookkeeping++;
b8698a0f 5247
e855c69d
AB
5248 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5249 {
14f30b87
AM
5250 unsigned uid;
5251 bitmap_iterator bi;
5252
e855c69d
AB
5253 /* We allocate these bitmaps lazily. */
5254 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5255 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
b8698a0f
L
5256
5257 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e855c69d 5258 current_originators);
14f30b87
AM
5259
5260 /* Transitively add all originators' originators. */
5261 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5262 if (INSN_ORIGINATORS_BY_UID (uid))
5263 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5264 INSN_ORIGINATORS_BY_UID (uid));
e855c69d 5265 }
72a54528
AM
5266
5267 return should_move;
e855c69d
AB
5268}
5269
5270
5271/* Debug a DFA state as an array of bytes. */
5272static void
5273debug_state (state_t state)
5274{
5275 unsigned char *p;
5276 unsigned int i, size = dfa_state_size;
5277
5278 sel_print ("state (%u):", size);
5279 for (i = 0, p = (unsigned char *) state; i < size; i++)
5280 sel_print (" %d", p[i]);
5281 sel_print ("\n");
5282}
5283
b8698a0f 5284/* Advance state on FENCE with INSN. Return true if INSN is
e855c69d
AB
5285 an ASM, and we should advance state once more. */
5286static bool
5287advance_state_on_fence (fence_t fence, insn_t insn)
5288{
5289 bool asm_p;
5290
5291 if (recog_memoized (insn) >= 0)
5292 {
5293 int res;
5294 state_t temp_state = alloca (dfa_state_size);
b8698a0f 5295
e855c69d
AB
5296 gcc_assert (!INSN_ASM_P (insn));
5297 asm_p = false;
5298
5299 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5300 res = state_transition (FENCE_STATE (fence), insn);
5301 gcc_assert (res < 0);
5302
5303 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5304 {
5305 FENCE_ISSUED_INSNS (fence)++;
5306
5307 /* We should never issue more than issue_rate insns. */
5308 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5309 gcc_unreachable ();
5310 }
b8698a0f 5311 }
e855c69d
AB
5312 else
5313 {
b8698a0f 5314 /* This could be an ASM insn which we'd like to schedule
e855c69d
AB
5315 on the next cycle. */
5316 asm_p = INSN_ASM_P (insn);
5317 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5318 advance_one_cycle (fence);
5319 }
5320
5321 if (sched_verbose >= 2)
5322 debug_state (FENCE_STATE (fence));
b5b8b0ac
AO
5323 if (!DEBUG_INSN_P (insn))
5324 FENCE_STARTS_CYCLE_P (fence) = 0;
136e01a3 5325 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
5326 return asm_p;
5327}
5328
5329/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5330 is nonzero if we need to stall after issuing INSN. */
5331static void
5332update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5333{
5334 bool asm_p;
b8698a0f 5335
e855c69d
AB
5336 /* First, reflect that something is scheduled on this fence. */
5337 asm_p = advance_state_on_fence (fence, insn);
5338 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5339 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5340 if (SCHED_GROUP_P (insn))
5341 {
5342 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5343 SCHED_GROUP_P (insn) = 0;
5344 }
5345 else
5346 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5347 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5348 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5349
5350 /* Set instruction scheduling info. This will be used in bundling,
5351 pipelining, tick computations etc. */
5352 ++INSN_SCHED_TIMES (insn);
5353 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5354 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5355 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5356 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5357
5358 /* This does not account for adjust_cost hooks, just add the biggest
b8698a0f 5359 constant the hook may add to the latency. TODO: make this
e855c69d 5360 a target dependent constant. */
b8698a0f
L
5361 INSN_READY_CYCLE (insn)
5362 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e855c69d
AB
5363 ? 1
5364 : maximal_insn_latency (insn) + 1);
5365
5366 /* Change these fields last, as they're used above. */
5367 FENCE_AFTER_STALL_P (fence) = 0;
5368 if (asm_p || need_stall)
5369 advance_one_cycle (fence);
b8698a0f 5370
e855c69d
AB
5371 /* Indicate that we've scheduled something on this fence. */
5372 FENCE_SCHEDULED_P (fence) = true;
5373 scheduled_something_on_previous_fence = true;
5374
5375 /* Print debug information when insn's fields are updated. */
5376 if (sched_verbose >= 2)
5377 {
5378 sel_print ("Scheduling insn: ");
5379 dump_insn_1 (insn, 1);
5380 sel_print ("\n");
5381 }
5382}
5383
b5b8b0ac
AO
5384/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5385 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5386 return it. */
e855c69d 5387static blist_t *
b5b8b0ac 5388update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e855c69d
AB
5389 blist_t *bnds_tailp)
5390{
5391 succ_iterator si;
5392 insn_t succ;
5393
5394 advance_deps_context (BND_DC (bnd), insn);
b8698a0f 5395 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
5396 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5397 {
5398 ilist_t ptr = ilist_copy (BND_PTR (bnd));
b8698a0f 5399
e855c69d 5400 ilist_add (&ptr, insn);
b5b8b0ac
AO
5401
5402 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5403 && is_ineligible_successor (succ, ptr))
5404 {
5405 ilist_clear (&ptr);
5406 continue;
5407 }
5408
5409 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5410 {
5411 if (sched_verbose >= 9)
5412 sel_print ("Updating fence insn from %i to %i\n",
5413 INSN_UID (insn), INSN_UID (succ));
5414 FENCE_INSN (fence) = succ;
5415 }
e855c69d
AB
5416 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5417 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5418 }
b8698a0f 5419
e855c69d
AB
5420 blist_remove (bndsp);
5421 return bnds_tailp;
5422}
5423
5424/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5425static insn_t
5426schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5427{
5428 av_set_t expr_seq;
5429 expr_t c_expr = XALLOCA (expr_def);
5430 insn_t place_to_insert;
5431 insn_t insn;
72a54528 5432 bool should_move;
e855c69d
AB
5433
5434 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5435
5436 /* In case of scheduling a jump skipping some other instructions,
b8698a0f 5437 prepare CFG. After this, jump is at the boundary and can be
e855c69d
AB
5438 scheduled as usual insn by MOVE_OP. */
5439 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5440 {
5441 insn = EXPR_INSN_RTX (expr_vliw);
b8698a0f 5442
e855c69d 5443 /* Speculative jumps are not handled. */
b8698a0f 5444 if (insn != BND_TO (bnd)
e855c69d
AB
5445 && !sel_insn_is_speculation_check (insn))
5446 move_cond_jump (insn, bnd);
5447 }
5448
e855c69d
AB
5449 /* Find a place for C_EXPR to schedule. */
5450 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5451 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d 5452 clear_expr (c_expr);
b8698a0f
L
5453
5454 /* Add the instruction. The corner case to care about is when
5455 the expr_seq set has more than one expr, and we chose the one that
5456 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e855c69d
AB
5457 we can't use it. Generate the new vinsn. */
5458 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5459 {
5460 vinsn_t vinsn_new;
b8698a0f 5461
e855c69d
AB
5462 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5463 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5464 should_move = false;
e855c69d 5465 }
72a54528
AM
5466 if (should_move)
5467 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5468 else
b8698a0f 5469 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e855c69d 5470 place_to_insert);
e855c69d
AB
5471
5472 /* Return the nops generated for preserving of data sets back
5473 into pool. */
5474 if (INSN_NOP_P (place_to_insert))
b5b8b0ac
AO
5475 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5476 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e855c69d
AB
5477
5478 av_set_clear (&expr_seq);
b8698a0f
L
5479
5480 /* Save the expression scheduled so to reset target availability if we'll
e855c69d
AB
5481 meet it later on the same fence. */
5482 if (EXPR_WAS_RENAMED (expr_vliw))
5483 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5484
5485 /* Check that the recent movement didn't destroyed loop
5486 structure. */
5487 gcc_assert (!pipelining_p
5488 || current_loop_nest == NULL
5489 || loop_latch_edge (current_loop_nest));
5490 return insn;
5491}
5492
5493/* Stall for N cycles on FENCE. */
5494static void
5495stall_for_cycles (fence_t fence, int n)
5496{
5497 int could_more;
b8698a0f 5498
e855c69d
AB
5499 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5500 while (n--)
5501 advance_one_cycle (fence);
5502 if (could_more)
5503 FENCE_AFTER_STALL_P (fence) = 1;
5504}
5505
b8698a0f
L
5506/* Gather a parallel group of insns at FENCE and assign their seqno
5507 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e855c69d
AB
5508 list for later recalculation of seqnos. */
5509static void
5510fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5511{
5512 blist_t bnds = NULL, *bnds_tailp;
5513 av_set_t av_vliw = NULL;
5514 insn_t insn = FENCE_INSN (fence);
5515
5516 if (sched_verbose >= 2)
b8698a0f 5517 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e855c69d
AB
5518 INSN_UID (insn), FENCE_CYCLE (fence));
5519
5520 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5521 bnds_tailp = &BLIST_NEXT (bnds);
5522 set_target_context (FENCE_TC (fence));
136e01a3 5523 can_issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
5524 target_bb = INSN_BB (insn);
5525
5526 /* Do while we can add any operation to the current group. */
5527 do
5528 {
5529 blist_t *bnds_tailp1, *bndsp;
5530 expr_t expr_vliw;
09a2806f 5531 int need_stall = false;
06f0c25f 5532 int was_stall = 0, scheduled_insns = 0;
e855c69d
AB
5533 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5534 int max_stall = pipelining_p ? 1 : 3;
b5b8b0ac
AO
5535 bool last_insn_was_debug = false;
5536 bool was_debug_bb_end_p = false;
5537
e855c69d
AB
5538 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5539 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5540 remove_insns_for_debug (bnds, &av_vliw);
5541
5542 /* Return early if we have nothing to schedule. */
5543 if (av_vliw == NULL)
5544 break;
5545
5546 /* Choose the best expression and, if needed, destination register
5547 for it. */
5548 do
5549 {
5550 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
06f0c25f 5551 if (! expr_vliw && need_stall)
e855c69d
AB
5552 {
5553 /* All expressions required a stall. Do not recompute av sets
5554 as we'll get the same answer (modulo the insns between
5555 the fence and its boundary, which will not be available for
06f0c25f
AB
5556 pipelining).
5557 If we are going to stall for too long, break to recompute av
e855c69d 5558 sets and bring more insns for pipelining. */
06f0c25f 5559 was_stall++;
e855c69d
AB
5560 if (need_stall <= 3)
5561 stall_for_cycles (fence, need_stall);
5562 else
5563 {
5564 stall_for_cycles (fence, 1);
5565 break;
5566 }
5567 }
5568 }
5569 while (! expr_vliw && need_stall);
b8698a0f 5570
e855c69d
AB
5571 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5572 if (!expr_vliw)
5573 {
5574 av_set_clear (&av_vliw);
5575 break;
5576 }
5577
5578 bndsp = &bnds;
5579 bnds_tailp1 = bnds_tailp;
5580
5581 do
b8698a0f 5582 /* This code will be executed only once until we'd have several
e855c69d
AB
5583 boundaries per fence. */
5584 {
5585 bnd_t bnd = BLIST_BND (*bndsp);
5586
5587 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5588 {
5589 bndsp = &BLIST_NEXT (*bndsp);
5590 continue;
5591 }
b8698a0f 5592
e855c69d 5593 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
b5b8b0ac
AO
5594 last_insn_was_debug = DEBUG_INSN_P (insn);
5595 if (last_insn_was_debug)
5596 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e855c69d 5597 update_fence_and_insn (fence, insn, need_stall);
b5b8b0ac 5598 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e855c69d
AB
5599
5600 /* Add insn to the list of scheduled on this cycle instructions. */
5601 ilist_add (*scheduled_insns_tailpp, insn);
5602 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5603 }
5604 while (*bndsp != *bnds_tailp1);
5605
5606 av_set_clear (&av_vliw);
b5b8b0ac
AO
5607 if (!last_insn_was_debug)
5608 scheduled_insns++;
e855c69d
AB
5609
5610 /* We currently support information about candidate blocks only for
5611 one 'target_bb' block. Hence we can't schedule after jump insn,
5612 as this will bring two boundaries and, hence, necessity to handle
5613 information for two or more blocks concurrently. */
b5b8b0ac 5614 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
b8698a0f
L
5615 || (was_stall
5616 && (was_stall >= max_stall
e855c69d
AB
5617 || scheduled_insns >= max_insns)))
5618 break;
5619 }
5620 while (bnds);
5621
5622 gcc_assert (!FENCE_BNDS (fence));
b8698a0f 5623
e855c69d
AB
5624 /* Update boundaries of the FENCE. */
5625 while (bnds)
5626 {
5627 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5628
5629 if (ptr)
5630 {
5631 insn = ILIST_INSN (ptr);
5632
5633 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5634 ilist_add (&FENCE_BNDS (fence), insn);
5635 }
b8698a0f 5636
e855c69d
AB
5637 blist_remove (&bnds);
5638 }
5639
5640 /* Update target context on the fence. */
5641 reset_target_context (FENCE_TC (fence), false);
5642}
5643
5644/* All exprs in ORIG_OPS must have the same destination register or memory.
5645 Return that destination. */
5646static rtx
5647get_dest_from_orig_ops (av_set_t orig_ops)
5648{
5649 rtx dest = NULL_RTX;
5650 av_set_iterator av_it;
5651 expr_t expr;
5652 bool first_p = true;
5653
5654 FOR_EACH_EXPR (expr, av_it, orig_ops)
5655 {
5656 rtx x = EXPR_LHS (expr);
5657
5658 if (first_p)
5659 {
5660 first_p = false;
5661 dest = x;
5662 }
5663 else
5664 gcc_assert (dest == x
5665 || (dest != NULL_RTX && x != NULL_RTX
5666 && rtx_equal_p (dest, x)));
5667 }
5668
5669 return dest;
5670}
5671
5672/* Update data sets for the bookkeeping block and record those expressions
5673 which become no longer available after inserting this bookkeeping. */
5674static void
5675update_and_record_unavailable_insns (basic_block book_block)
5676{
5677 av_set_iterator i;
5678 av_set_t old_av_set = NULL;
5679 expr_t cur_expr;
5680 rtx bb_end = sel_bb_end (book_block);
5681
b8698a0f 5682 /* First, get correct liveness in the bookkeeping block. The problem is
e855c69d
AB
5683 the range between the bookeeping insn and the end of block. */
5684 update_liveness_on_insn (bb_end);
5685 if (control_flow_insn_p (bb_end))
5686 update_liveness_on_insn (PREV_INSN (bb_end));
5687
5688 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5689 fence above, where we may choose to schedule an insn which is
5690 actually blocked from moving up with the bookkeeping we create here. */
5691 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5692 {
5693 old_av_set = av_set_copy (BB_AV_SET (book_block));
5694 update_data_sets (sel_bb_head (book_block));
b8698a0f 5695
e855c69d
AB
5696 /* Traverse all the expressions in the old av_set and check whether
5697 CUR_EXPR is in new AV_SET. */
5698 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5699 {
b8698a0f 5700 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e855c69d
AB
5701 EXPR_VINSN (cur_expr));
5702
b8698a0f
L
5703 if (! new_expr
5704 /* In this case, we can just turn off the E_T_A bit, but we can't
e855c69d 5705 represent this information with the current vector. */
b8698a0f 5706 || EXPR_TARGET_AVAILABLE (new_expr)
e855c69d
AB
5707 != EXPR_TARGET_AVAILABLE (cur_expr))
5708 /* Unfortunately, the below code could be also fired up on
0c02ab39
AB
5709 separable insns, e.g. when moving insns through the new
5710 speculation check as in PR 53701. */
e855c69d
AB
5711 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5712 }
5713
5714 av_set_clear (&old_av_set);
5715 }
5716}
5717
b8698a0f 5718/* The main effect of this function is that sparams->c_expr is merged
e855c69d
AB
5719 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5720 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
b8698a0f
L
5721 lparams->c_expr_merged is copied back to sparams->c_expr after all
5722 successors has been traversed. lparams->c_expr_local is an expr allocated
5723 on stack in the caller function, and is used if there is more than one
5724 successor.
e855c69d
AB
5725
5726 SUCC is one of the SUCCS_NORMAL successors of INSN,
5727 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5728 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5729static void
b8698a0f
L
5730move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5731 insn_t succ ATTRIBUTE_UNUSED,
5732 int moveop_drv_call_res,
e855c69d
AB
5733 cmpd_local_params_p lparams, void *static_params)
5734{
5735 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5736
5737 /* Nothing to do, if original expr wasn't found below. */
5738 if (moveop_drv_call_res != 1)
5739 return;
5740
5741 /* If this is a first successor. */
5742 if (!lparams->c_expr_merged)
5743 {
5744 lparams->c_expr_merged = sparams->c_expr;
5745 sparams->c_expr = lparams->c_expr_local;
5746 }
5747 else
5748 {
5749 /* We must merge all found expressions to get reasonable
5750 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5751 do so then we can first find the expr with epsilon
5752 speculation success probability and only then with the
5753 good probability. As a result the insn will get epsilon
5754 probability and will never be scheduled because of
5755 weakness_cutoff in find_best_expr.
5756
b8698a0f 5757 We call merge_expr_data here instead of merge_expr
e855c69d
AB
5758 because due to speculation C_EXPR and X may have the
5759 same insns with different speculation types. And as of
b8698a0f 5760 now such insns are considered non-equal.
e855c69d 5761
b8698a0f
L
5762 However, EXPR_SCHED_TIMES is different -- we must get
5763 SCHED_TIMES from a real insn, not a bookkeeping copy.
e855c69d 5764 We force this here. Instead, we may consider merging
b8698a0f 5765 SCHED_TIMES to the maximum instead of minimum in the
e855c69d
AB
5766 below function. */
5767 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5768
5769 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5770 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5771 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5772
5773 clear_expr (sparams->c_expr);
5774 }
5775}
5776
5777/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5778
5779 SUCC is one of the SUCCS_NORMAL successors of INSN,
5780 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5781 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5782 STATIC_PARAMS contain USED_REGS set. */
5783static void
b8698a0f
L
5784fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5785 int moveop_drv_call_res,
5786 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5787 void *static_params)
5788{
5789 regset succ_live;
5790 fur_static_params_p sparams = (fur_static_params_p) static_params;
5791
5792 /* Here we compute live regsets only for branches that do not lie
b8698a0f 5793 on the code motion paths. These branches correspond to value
e855c69d
AB
5794 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5795 for such branches code_motion_path_driver is not called. */
5796 if (moveop_drv_call_res != 0)
5797 return;
5798
5799 /* Mark all registers that do not meet the following condition:
5800 (3) not live on the other path of any conditional branch
5801 that is passed by the operation, in case original
5802 operations are not present on both paths of the
5803 conditional branch. */
5804 succ_live = compute_live (succ);
5805 IOR_REG_SET (sparams->used_regs, succ_live);
5806}
5807
5808/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5809 into SP->CEXPR. */
5810static void
5811move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
b8698a0f 5812{
e855c69d
AB
5813 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5814
5815 sp->c_expr = lp->c_expr_merged;
5816}
5817
5818/* Track bookkeeping copies created, insns scheduled, and blocks for
5819 rescheduling when INSN is found by move_op. */
5820static void
5821track_scheduled_insns_and_blocks (rtx insn)
5822{
5823 /* Even if this insn can be a copy that will be removed during current move_op,
5824 we still need to count it as an originator. */
5825 bitmap_set_bit (current_originators, INSN_UID (insn));
5826
fcaa4ca4 5827 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e855c69d
AB
5828 {
5829 /* Note that original block needs to be rescheduled, as we pulled an
5830 instruction out of it. */
5831 if (INSN_SCHED_TIMES (insn) > 0)
5832 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
b5b8b0ac 5833 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e855c69d
AB
5834 num_insns_scheduled++;
5835 }
e855c69d
AB
5836
5837 /* For instructions we must immediately remove insn from the
5838 stream, so subsequent update_data_sets () won't include this
5839 insn into av_set.
5840 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5841 if (INSN_UID (insn) > max_uid_before_move_op)
5842 stat_bookkeeping_copies--;
5843}
5844
b8698a0f 5845/* Emit a register-register copy for INSN if needed. Return true if
e855c69d
AB
5846 emitted one. PARAMS is the move_op static parameters. */
5847static bool
b8698a0f 5848maybe_emit_renaming_copy (rtx insn,
e855c69d
AB
5849 moveop_static_params_p params)
5850{
5851 bool insn_emitted = false;
f07013eb 5852 rtx cur_reg;
e855c69d 5853
f07013eb
AM
5854 /* Bail out early when expression can not be renamed at all. */
5855 if (!EXPR_SEPARABLE_P (params->c_expr))
5856 return false;
5857
5858 cur_reg = expr_dest_reg (params->c_expr);
5859 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e855c69d
AB
5860
5861 /* If original operation has expr and the register chosen for
5862 that expr is not original operation's dest reg, substitute
5863 operation's right hand side with the register chosen. */
f07013eb 5864 if (REGNO (params->dest) != REGNO (cur_reg))
e855c69d
AB
5865 {
5866 insn_t reg_move_insn, reg_move_insn_rtx;
b8698a0f
L
5867
5868 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e855c69d 5869 params->dest);
b8698a0f
L
5870 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5871 INSN_EXPR (insn),
5872 INSN_SEQNO (insn),
e855c69d
AB
5873 insn);
5874 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5875 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
b8698a0f 5876
e855c69d
AB
5877 insn_emitted = true;
5878 params->was_renamed = true;
5879 }
b8698a0f 5880
e855c69d
AB
5881 return insn_emitted;
5882}
5883
b8698a0f
L
5884/* Emit a speculative check for INSN speculated as EXPR if needed.
5885 Return true if we've emitted one. PARAMS is the move_op static
e855c69d
AB
5886 parameters. */
5887static bool
5888maybe_emit_speculative_check (rtx insn, expr_t expr,
5889 moveop_static_params_p params)
5890{
5891 bool insn_emitted = false;
5892 insn_t x;
5893 ds_t check_ds;
5894
5895 check_ds = get_spec_check_type_for_insn (insn, expr);
5896 if (check_ds != 0)
5897 {
5898 /* A speculation check should be inserted. */
5899 x = create_speculation_check (params->c_expr, check_ds, insn);
5900 insn_emitted = true;
5901 }
5902 else
5903 {
5904 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5905 x = insn;
5906 }
b8698a0f 5907
e855c69d
AB
5908 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5909 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5910 return insn_emitted;
5911}
5912
b8698a0f
L
5913/* Handle transformations that leave an insn in place of original
5914 insn such as renaming/speculation. Return true if one of such
e855c69d
AB
5915 transformations actually happened, and we have emitted this insn. */
5916static bool
b8698a0f 5917handle_emitting_transformations (rtx insn, expr_t expr,
e855c69d
AB
5918 moveop_static_params_p params)
5919{
5920 bool insn_emitted = false;
5921
5922 insn_emitted = maybe_emit_renaming_copy (insn, params);
5923 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5924
5925 return insn_emitted;
b8698a0f 5926}
e855c69d 5927
b5b8b0ac
AO
5928/* If INSN is the only insn in the basic block (not counting JUMP,
5929 which may be a jump to next insn, and DEBUG_INSNs), we want to
5930 leave a NOP there till the return to fill_insns. */
5931
5932static bool
5933need_nop_to_preserve_insn_bb (rtx insn)
e855c69d 5934{
b5b8b0ac 5935 insn_t bb_head, bb_end, bb_next, in_next;
e855c69d
AB
5936 basic_block bb = BLOCK_FOR_INSN (insn);
5937
e855c69d
AB
5938 bb_head = sel_bb_head (bb);
5939 bb_end = sel_bb_end (bb);
e855c69d 5940
b5b8b0ac
AO
5941 if (bb_head == bb_end)
5942 return true;
5943
5944 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5945 bb_head = NEXT_INSN (bb_head);
5946
5947 if (bb_head == bb_end)
5948 return true;
5949
5950 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5951 bb_end = PREV_INSN (bb_end);
5952
5953 if (bb_head == bb_end)
5954 return true;
5955
5956 bb_next = NEXT_INSN (bb_head);
5957 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5958 bb_next = NEXT_INSN (bb_next);
5959
5960 if (bb_next == bb_end && JUMP_P (bb_end))
5961 return true;
5962
5963 in_next = NEXT_INSN (insn);
5964 while (DEBUG_INSN_P (in_next))
5965 in_next = NEXT_INSN (in_next);
5966
5967 if (IN_CURRENT_FENCE_P (in_next))
5968 return true;
5969
5970 return false;
5971}
5972
5973/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5974 is not removed but reused when INSN is re-emitted. */
5975static void
5976remove_insn_from_stream (rtx insn, bool only_disconnect)
5977{
e855c69d
AB
5978 /* If there's only one insn in the BB, make sure that a nop is
5979 inserted into it, so the basic block won't disappear when we'll
5980 delete INSN below with sel_remove_insn. It should also survive
b8698a0f 5981 till the return to fill_insns. */
b5b8b0ac 5982 if (need_nop_to_preserve_insn_bb (insn))
e855c69d 5983 {
b5b8b0ac 5984 insn_t nop = get_nop_from_pool (insn);
e855c69d
AB
5985 gcc_assert (INSN_NOP_P (nop));
5986 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5987 }
5988
5989 sel_remove_insn (insn, only_disconnect, false);
5990}
5991
5992/* This function is called when original expr is found.
b8698a0f 5993 INSN - current insn traversed, EXPR - the corresponding expr found.
e855c69d
AB
5994 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5995 is static parameters of move_op. */
5996static void
b8698a0f
L
5997move_op_orig_expr_found (insn_t insn, expr_t expr,
5998 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5999 void *static_params)
6000{
6001 bool only_disconnect, insn_emitted;
6002 moveop_static_params_p params = (moveop_static_params_p) static_params;
b8698a0f 6003
e855c69d
AB
6004 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6005 track_scheduled_insns_and_blocks (insn);
6006 insn_emitted = handle_emitting_transformations (insn, expr, params);
6007 only_disconnect = (params->uid == INSN_UID (insn)
6008 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
72a54528
AM
6009
6010 /* Mark that we've disconnected an insn. */
6011 if (only_disconnect)
6012 params->uid = -1;
e855c69d
AB
6013 remove_insn_from_stream (insn, only_disconnect);
6014}
6015
6016/* The function is called when original expr is found.
6017 INSN - current insn traversed, EXPR - the corresponding expr found,
6018 crosses_call and original_insns in STATIC_PARAMS are updated. */
6019static void
6020fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6021 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6022 void *static_params)
6023{
6024 fur_static_params_p params = (fur_static_params_p) static_params;
6025 regset tmp;
6026
6027 if (CALL_P (insn))
6028 params->crosses_call = true;
6029
6030 def_list_add (params->original_insns, insn, params->crosses_call);
6031
6032 /* Mark the registers that do not meet the following condition:
b8698a0f
L
6033 (2) not among the live registers of the point
6034 immediately following the first original operation on
e855c69d
AB
6035 a given downward path, except for the original target
6036 register of the operation. */
6037 tmp = get_clear_regset_from_pool ();
6038 compute_live_below_insn (insn, tmp);
6039 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6040 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6041 IOR_REG_SET (params->used_regs, tmp);
6042 return_regset_to_pool (tmp);
6043
6044 /* (*1) We need to add to USED_REGS registers that are read by
6045 INSN's lhs. This may lead to choosing wrong src register.
6046 E.g. (scheduling const expr enabled):
6047
6048 429: ax=0x0 <- Can't use AX for this expr (0x0)
6049 433: dx=[bp-0x18]
6050 427: [ax+dx+0x1]=ax
6051 REG_DEAD: ax
6052 168: di=dx
6053 REG_DEAD: dx
6054 */
b8698a0f 6055 /* FIXME: see comment above and enable MEM_P
e855c69d
AB
6056 in vinsn_separable_p. */
6057 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6058 || !MEM_P (INSN_LHS (insn)));
6059}
6060
6061/* This function is called on the ascending pass, before returning from
6062 current basic block. */
6063static void
b8698a0f 6064move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e855c69d
AB
6065 void *static_params)
6066{
6067 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6068 basic_block book_block = NULL;
6069
b8698a0f 6070 /* When we have removed the boundary insn for scheduling, which also
e855c69d 6071 happened to be the end insn in its bb, we don't need to update sets. */
b8698a0f 6072 if (!lparams->removed_last_insn
e855c69d
AB
6073 && lparams->e1
6074 && sel_bb_head_p (insn))
6075 {
6076 /* We should generate bookkeeping code only if we are not at the
6077 top level of the move_op. */
6078 if (sel_num_cfg_preds_gt_1 (insn))
6079 book_block = generate_bookkeeping_insn (sparams->c_expr,
6080 lparams->e1, lparams->e2);
6081 /* Update data sets for the current insn. */
6082 update_data_sets (insn);
6083 }
b8698a0f 6084
e855c69d 6085 /* If bookkeeping code was inserted, we need to update av sets of basic
b8698a0f 6086 block that received bookkeeping. After generation of bookkeeping insn,
e855c69d 6087 bookkeeping block does not contain valid av set because we are not following
b8698a0f 6088 the original algorithm in every detail with regards to e.g. renaming
e855c69d 6089 simple reg-reg copies. Consider example:
b8698a0f 6090
e855c69d
AB
6091 bookkeeping block scheduling fence
6092 \ /
6093 \ join /
6094 ----------
6095 | |
6096 ----------
6097 / \
6098 / \
6099 r1 := r2 r1 := r3
6100
b8698a0f 6101 We try to schedule insn "r1 := r3" on the current
e855c69d
AB
6102 scheduling fence. Also, note that av set of bookkeeping block
6103 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6104 been scheduled, the CFG is as follows:
6105
6106 r1 := r3 r1 := r3
6107 bookkeeping block scheduling fence
6108 \ /
6109 \ join /
6110 ----------
6111 | |
6112 ----------
6113 / \
6114 / \
6115 r1 := r2
6116
6117 Here, insn "r1 := r3" was scheduled at the current scheduling point
6118 and bookkeeping code was generated at the bookeeping block. This
6119 way insn "r1 := r2" is no longer available as a whole instruction
6120 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
b8698a0f 6121 This situation is handled by calling update_data_sets.
e855c69d
AB
6122
6123 Since update_data_sets is called only on the bookkeeping block, and
b8698a0f 6124 it also may have predecessors with av_sets, containing instructions that
e855c69d
AB
6125 are no longer available, we save all such expressions that become
6126 unavailable during data sets update on the bookkeeping block in
b8698a0f
L
6127 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6128 expressions for scheduling. This allows us to avoid recomputation of
e855c69d 6129 av_sets outside the code motion path. */
b8698a0f 6130
e855c69d
AB
6131 if (book_block)
6132 update_and_record_unavailable_insns (book_block);
6133
6134 /* If INSN was previously marked for deletion, it's time to do it. */
6135 if (lparams->removed_last_insn)
6136 insn = PREV_INSN (insn);
b8698a0f 6137
e855c69d
AB
6138 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6139 kill a block with a single nop in which the insn should be emitted. */
6140 if (lparams->e1)
6141 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6142}
6143
6144/* This function is called on the ascending pass, before returning from the
6145 current basic block. */
6146static void
b8698a0f
L
6147fur_at_first_insn (insn_t insn,
6148 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
6149 void *static_params ATTRIBUTE_UNUSED)
6150{
6151 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6152 || AV_LEVEL (insn) == -1);
6153}
6154
6155/* Called on the backward stage of recursion to call moveup_expr for insn
6156 and sparams->c_expr. */
6157static void
6158move_op_ascend (insn_t insn, void *static_params)
6159{
6160 enum MOVEUP_EXPR_CODE res;
6161 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6162
6163 if (! INSN_NOP_P (insn))
6164 {
6165 res = moveup_expr_cached (sparams->c_expr, insn, false);
6166 gcc_assert (res != MOVEUP_EXPR_NULL);
6167 }
6168
6169 /* Update liveness for this insn as it was invalidated. */
6170 update_liveness_on_insn (insn);
6171}
6172
b8698a0f
L
6173/* This function is called on enter to the basic block.
6174 Returns TRUE if this block already have been visited and
e855c69d
AB
6175 code_motion_path_driver should return 1, FALSE otherwise. */
6176static int
b8698a0f 6177fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e855c69d
AB
6178 void *static_params, bool visited_p)
6179{
6180 fur_static_params_p sparams = (fur_static_params_p) static_params;
6181
6182 if (visited_p)
6183 {
6184 /* If we have found something below this block, there should be at
6185 least one insn in ORIGINAL_INSNS. */
6186 gcc_assert (*sparams->original_insns);
6187
6188 /* Adjust CROSSES_CALL, since we may have come to this block along
6189 different path. */
6190 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6191 |= sparams->crosses_call;
6192 }
6193 else
6194 local_params->old_original_insns = *sparams->original_insns;
6195
6196 return 1;
6197}
6198
6199/* Same as above but for move_op. */
6200static int
b8698a0f
L
6201move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6202 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e855c69d
AB
6203 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6204{
6205 if (visited_p)
6206 return -1;
6207 return 1;
6208}
6209
b8698a0f 6210/* This function is called while descending current basic block if current
e855c69d
AB
6211 insn is not the original EXPR we're searching for.
6212
b8698a0f 6213 Return value: FALSE, if code_motion_path_driver should perform a local
e855c69d
AB
6214 cleanup and return 0 itself;
6215 TRUE, if code_motion_path_driver should continue. */
6216static bool
6217move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6218 void *static_params)
6219{
6220 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6221
6222#ifdef ENABLE_CHECKING
6223 sparams->failed_insn = insn;
6224#endif
6225
6226 /* If we're scheduling separate expr, in order to generate correct code
b8698a0f 6227 we need to stop the search at bookkeeping code generated with the
e855c69d
AB
6228 same destination register or memory. */
6229 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6230 return false;
6231 return true;
6232}
6233
b8698a0f 6234/* This function is called while descending current basic block if current
e855c69d
AB
6235 insn is not the original EXPR we're searching for.
6236
6237 Return value: TRUE (code_motion_path_driver should continue). */
6238static bool
6239fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6240{
6241 bool mutexed;
6242 expr_t r;
6243 av_set_iterator avi;
6244 fur_static_params_p sparams = (fur_static_params_p) static_params;
6245
6246 if (CALL_P (insn))
6247 sparams->crosses_call = true;
b5b8b0ac
AO
6248 else if (DEBUG_INSN_P (insn))
6249 return true;
e855c69d
AB
6250
6251 /* If current insn we are looking at cannot be executed together
6252 with original insn, then we can skip it safely.
6253
6254 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6255 INSN = (!p6) r14 = r14 + 1;
6256
6257 Here we can schedule ORIG_OP with lhs = r14, though only
6258 looking at the set of used and set registers of INSN we must
6259 forbid it. So, add set/used in INSN registers to the
6260 untouchable set only if there is an insn in ORIG_OPS that can
6261 affect INSN. */
6262 mutexed = true;
6263 FOR_EACH_EXPR (r, avi, orig_ops)
6264 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6265 {
6266 mutexed = false;
6267 break;
6268 }
6269
6270 /* Mark all registers that do not meet the following condition:
6271 (1) Not set or read on any path from xi to an instance of the
6272 original operation. */
6273 if (!mutexed)
6274 {
6275 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6276 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6277 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6278 }
6279
6280 return true;
6281}
6282
6283/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6284struct code_motion_path_driver_info_def move_op_hooks = {
6285 move_op_on_enter,
6286 move_op_orig_expr_found,
6287 move_op_orig_expr_not_found,
6288 move_op_merge_succs,
6289 move_op_after_merge_succs,
6290 move_op_ascend,
6291 move_op_at_first_insn,
6292 SUCCS_NORMAL,
6293 "move_op"
6294};
6295
b8698a0f 6296/* Hooks and data to perform find_used_regs operations
e855c69d
AB
6297 with code_motion_path_driver. */
6298struct code_motion_path_driver_info_def fur_hooks = {
6299 fur_on_enter,
6300 fur_orig_expr_found,
6301 fur_orig_expr_not_found,
6302 fur_merge_succs,
6303 NULL, /* fur_after_merge_succs */
6304 NULL, /* fur_ascend */
6305 fur_at_first_insn,
6306 SUCCS_ALL,
6307 "find_used_regs"
6308};
6309
6310/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
b8698a0f
L
6311 code_motion_path_driver is called recursively. Original operation
6312 was found at least on one path that is starting with one of INSN's
e855c69d
AB
6313 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6314 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
b8698a0f 6315 of either move_op or find_used_regs depending on the caller.
e855c69d
AB
6316
6317 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6318 know for sure at this point. */
6319static int
b8698a0f 6320code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e855c69d
AB
6321 ilist_t path, void *static_params)
6322{
6323 int res = 0;
6324 succ_iterator succ_i;
6325 rtx succ;
6326 basic_block bb;
6327 int old_index;
6328 unsigned old_succs;
6329
6330 struct cmpd_local_params lparams;
6331 expr_def _x;
6332
6333 lparams.c_expr_local = &_x;
6334 lparams.c_expr_merged = NULL;
6335
6336 /* We need to process only NORMAL succs for move_op, and collect live
b8698a0f
L
6337 registers from ALL branches (including those leading out of the
6338 region) for find_used_regs.
e855c69d
AB
6339
6340 In move_op, there can be a case when insn's bb number has changed
b8698a0f
L
6341 due to created bookkeeping. This happens very rare, as we need to
6342 move expression from the beginning to the end of the same block.
6343 Rescan successors in this case. */
e855c69d
AB
6344
6345 rescan:
6346 bb = BLOCK_FOR_INSN (insn);
b8698a0f 6347 old_index = bb->index;
e855c69d 6348 old_succs = EDGE_COUNT (bb->succs);
b8698a0f 6349
e855c69d
AB
6350 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6351 {
6352 int b;
6353
6354 lparams.e1 = succ_i.e1;
6355 lparams.e2 = succ_i.e2;
6356
6357 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6358 current region). */
6359 if (succ_i.current_flags == SUCCS_NORMAL)
b8698a0f 6360 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e855c69d
AB
6361 static_params);
6362 else
6363 b = 0;
6364
6365 /* Merge c_expres found or unify live register sets from different
6366 successors. */
6367 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6368 static_params);
6369 if (b == 1)
6370 res = b;
6371 else if (b == -1 && res != 1)
6372 res = b;
6373
6374 /* We have simplified the control flow below this point. In this case,
6375 the iterator becomes invalid. We need to try again. */
6376 if (BLOCK_FOR_INSN (insn)->index != old_index
6377 || EDGE_COUNT (bb->succs) != old_succs)
7c1f0b40
DM
6378 {
6379 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6380 goto rescan;
6381 }
e855c69d
AB
6382 }
6383
cefb375a 6384#ifdef ENABLE_CHECKING
b8698a0f 6385 /* Here, RES==1 if original expr was found at least for one of the
e855c69d 6386 successors. After the loop, RES may happen to have zero value
b8698a0f
L
6387 only if at some point the expr searched is present in av_set, but is
6388 not found below. In most cases, this situation is an error.
e855c69d
AB
6389 The exception is when the original operation is blocked by
6390 bookkeeping generated for another fence or for another path in current
6391 move_op. */
cefb375a
NF
6392 gcc_assert (res == 1
6393 || (res == 0
6394 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6395 static_params))
6396 || res == -1);
6397#endif
b8698a0f 6398
e855c69d 6399 /* Merge data, clean up, etc. */
72a54528 6400 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6401 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6402
6403 return res;
6404}
6405
6406
b8698a0f
L
6407/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6408 is the pointer to the av set with expressions we were looking for,
e855c69d
AB
6409 PATH_P is the pointer to the traversed path. */
6410static inline void
6411code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6412{
6413 ilist_remove (path_p);
6414 av_set_clear (orig_ops_p);
6415}
6416
b8698a0f
L
6417/* The driver function that implements move_op or find_used_regs
6418 functionality dependent whether code_motion_path_driver_INFO is set to
6419 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e855c69d
AB
6420 of code (CFG traversal etc) that are shared among both functions. INSN
6421 is the insn we're starting the search from, ORIG_OPS are the expressions
6422 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6423 parameters of the driver, and STATIC_PARAMS are static parameters of
b8698a0f 6424 the caller.
e855c69d
AB
6425
6426 Returns whether original instructions were found. Note that top-level
6427 code_motion_path_driver always returns true. */
72a54528 6428static int
b8698a0f
L
6429code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6430 cmpd_local_params_p local_params_in,
e855c69d
AB
6431 void *static_params)
6432{
6433 expr_t expr = NULL;
6434 basic_block bb = BLOCK_FOR_INSN (insn);
6435 insn_t first_insn, bb_tail, before_first;
6436 bool removed_last_insn = false;
6437
6438 if (sched_verbose >= 6)
6439 {
6440 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6441 dump_insn (insn);
6442 sel_print (",");
6443 dump_av_set (orig_ops);
6444 sel_print (")\n");
6445 }
6446
6447 gcc_assert (orig_ops);
6448
6449 /* If no original operations exist below this insn, return immediately. */
6450 if (is_ineligible_successor (insn, path))
6451 {
6452 if (sched_verbose >= 6)
6453 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6454 return false;
6455 }
b8698a0f 6456
e855c69d
AB
6457 /* The block can have invalid av set, in which case it was created earlier
6458 during move_op. Return immediately. */
6459 if (sel_bb_head_p (insn))
6460 {
6461 if (! AV_SET_VALID_P (insn))
6462 {
6463 if (sched_verbose >= 6)
6464 sel_print ("Returned from block %d as it had invalid av set\n",
6465 bb->index);
6466 return false;
6467 }
6468
6469 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6470 {
6471 /* We have already found an original operation on this branch, do not
6472 go any further and just return TRUE here. If we don't stop here,
b8698a0f 6473 function can have exponential behaviour even on the small code
e855c69d
AB
6474 with many different paths (e.g. with data speculation and
6475 recovery blocks). */
6476 if (sched_verbose >= 6)
6477 sel_print ("Block %d already visited in this traversal\n", bb->index);
6478 if (code_motion_path_driver_info->on_enter)
b8698a0f 6479 return code_motion_path_driver_info->on_enter (insn,
e855c69d 6480 local_params_in,
b8698a0f 6481 static_params,
e855c69d
AB
6482 true);
6483 }
6484 }
b8698a0f 6485
e855c69d
AB
6486 if (code_motion_path_driver_info->on_enter)
6487 code_motion_path_driver_info->on_enter (insn, local_params_in,
6488 static_params, false);
6489 orig_ops = av_set_copy (orig_ops);
6490
6491 /* Filter the orig_ops set. */
6492 if (AV_SET_VALID_P (insn))
5d369d58 6493 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
e855c69d
AB
6494
6495 /* If no more original ops, return immediately. */
6496 if (!orig_ops)
6497 {
6498 if (sched_verbose >= 6)
6499 sel_print ("No intersection with av set of block %d\n", bb->index);
6500 return false;
6501 }
6502
6503 /* For non-speculative insns we have to leave only one form of the
b8698a0f 6504 original operation, because if we don't, we may end up with
e855c69d
AB
6505 different C_EXPRes and, consequently, with bookkeepings for different
6506 expression forms along the same code motion path. That may lead to
b8698a0f
L
6507 generation of incorrect code. So for each code motion we stick to
6508 the single form of the instruction, except for speculative insns
6509 which we need to keep in different forms with all speculation
e855c69d
AB
6510 types. */
6511 av_set_leave_one_nonspec (&orig_ops);
6512
6513 /* It is not possible that all ORIG_OPS are filtered out. */
6514 gcc_assert (orig_ops);
6515
6516 /* It is enough to place only heads and tails of visited basic blocks into
6517 the PATH. */
6518 ilist_add (&path, insn);
6519 first_insn = insn;
6520 bb_tail = sel_bb_end (bb);
6521
6522 /* Descend the basic block in search of the original expr; this part
b8698a0f 6523 corresponds to the part of the original move_op procedure executed
e855c69d
AB
6524 before the recursive call. */
6525 for (;;)
6526 {
6527 /* Look at the insn and decide if it could be an ancestor of currently
6528 scheduling operation. If it is so, then the insn "dest = op" could
6529 either be replaced with "dest = reg", because REG now holds the result
6530 of OP, or just removed, if we've scheduled the insn as a whole.
6531
6532 If this insn doesn't contain currently scheduling OP, then proceed
6533 with searching and look at its successors. Operations we're searching
b8698a0f 6534 for could have changed when moving up through this insn via
e855c69d
AB
6535 substituting. In this case, perform unsubstitution on them first.
6536
6537 When traversing the DAG below this insn is finished, insert
6538 bookkeeping code, if the insn is a joint point, and remove
6539 leftovers. */
6540
6541 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6542 if (expr)
6543 {
6544 insn_t last_insn = PREV_INSN (insn);
6545
6546 /* We have found the original operation. */
6547 if (sched_verbose >= 6)
6548 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6549
b8698a0f 6550 code_motion_path_driver_info->orig_expr_found
e855c69d
AB
6551 (insn, expr, local_params_in, static_params);
6552
6553 /* Step back, so on the way back we'll start traversing from the
b8698a0f 6554 previous insn (or we'll see that it's bb_note and skip that
e855c69d
AB
6555 loop). */
6556 if (insn == first_insn)
6557 {
6558 first_insn = NEXT_INSN (last_insn);
6559 removed_last_insn = sel_bb_end_p (last_insn);
6560 }
6561 insn = last_insn;
6562 break;
6563 }
6564 else
6565 {
6566 /* We haven't found the original expr, continue descending the basic
6567 block. */
b8698a0f 6568 if (code_motion_path_driver_info->orig_expr_not_found
e855c69d
AB
6569 (insn, orig_ops, static_params))
6570 {
b8698a0f 6571 /* Av set ops could have been changed when moving through this
e855c69d
AB
6572 insn. To find them below it, we have to un-substitute them. */
6573 undo_transformations (&orig_ops, insn);
6574 }
6575 else
6576 {
6577 /* Clean up and return, if the hook tells us to do so. It may
b8698a0f 6578 happen if we've encountered the previously created
e855c69d
AB
6579 bookkeeping. */
6580 code_motion_path_driver_cleanup (&orig_ops, &path);
6581 return -1;
6582 }
6583
6584 gcc_assert (orig_ops);
6585 }
6586
6587 /* Stop at insn if we got to the end of BB. */
6588 if (insn == bb_tail)
6589 break;
6590
6591 insn = NEXT_INSN (insn);
6592 }
6593
b8698a0f 6594 /* Here INSN either points to the insn before the original insn (may be
e855c69d
AB
6595 bb_note, if original insn was a bb_head) or to the bb_end. */
6596 if (!expr)
6597 {
6598 int res;
7c1f0b40
DM
6599 rtx last_insn = PREV_INSN (insn);
6600 bool added_to_path;
e855c69d
AB
6601
6602 gcc_assert (insn == sel_bb_end (bb));
6603
6604 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6605 it's already in PATH then). */
6606 if (insn != first_insn)
7c1f0b40
DM
6607 {
6608 ilist_add (&path, insn);
6609 added_to_path = true;
6610 }
6611 else
6612 added_to_path = false;
e855c69d 6613
b8698a0f
L
6614 /* Process_successors should be able to find at least one
6615 successor for which code_motion_path_driver returns TRUE. */
6616 res = code_motion_process_successors (insn, orig_ops,
e855c69d
AB
6617 path, static_params);
6618
7c1f0b40
DM
6619 /* Jump in the end of basic block could have been removed or replaced
6620 during code_motion_process_successors, so recompute insn as the
6621 last insn in bb. */
6622 if (NEXT_INSN (last_insn) != insn)
6623 {
6624 insn = sel_bb_end (bb);
6625 first_insn = sel_bb_head (bb);
6626 }
6627
e855c69d 6628 /* Remove bb tail from path. */
7c1f0b40 6629 if (added_to_path)
e855c69d
AB
6630 ilist_remove (&path);
6631
6632 if (res != 1)
6633 {
6634 /* This is the case when one of the original expr is no longer available
b8698a0f 6635 due to bookkeeping created on this branch with the same register.
e855c69d 6636 In the original algorithm, which doesn't have update_data_sets call
b8698a0f
L
6637 on a bookkeeping block, it would simply result in returning
6638 FALSE when we've encountered a previously generated bookkeeping
e855c69d
AB
6639 insn in moveop_orig_expr_not_found. */
6640 code_motion_path_driver_cleanup (&orig_ops, &path);
6641 return res;
6642 }
6643 }
6644
6645 /* Don't need it any more. */
6646 av_set_clear (&orig_ops);
6647
b8698a0f 6648 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e855c69d
AB
6649 the beginning of the basic block. */
6650 before_first = PREV_INSN (first_insn);
6651 while (insn != before_first)
b8698a0f 6652 {
e855c69d
AB
6653 if (code_motion_path_driver_info->ascend)
6654 code_motion_path_driver_info->ascend (insn, static_params);
6655
6656 insn = PREV_INSN (insn);
6657 }
b8698a0f 6658
e855c69d
AB
6659 /* Now we're at the bb head. */
6660 insn = first_insn;
6661 ilist_remove (&path);
6662 local_params_in->removed_last_insn = removed_last_insn;
6663 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
b8698a0f 6664
e855c69d
AB
6665 /* This should be the very last operation as at bb head we could change
6666 the numbering by creating bookkeeping blocks. */
6667 if (removed_last_insn)
6668 insn = PREV_INSN (insn);
6669 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6670 return true;
6671}
6672
b8698a0f 6673/* Move up the operations from ORIG_OPS set traversing the dag starting
e855c69d
AB
6674 from INSN. PATH represents the edges traversed so far.
6675 DEST is the register chosen for scheduling the current expr. Insert
6676 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
b8698a0f 6677 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6678 Set *SHOULD_MOVE to indicate whether we have only disconnected
6679 one of the insns found.
e855c69d 6680
b8698a0f 6681 Returns whether original instructions were found, which is asserted
e855c69d
AB
6682 to be true in the caller. */
6683static bool
6684move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6685 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6686{
6687 struct moveop_static_params sparams;
6688 struct cmpd_local_params lparams;
6c8e9fc9 6689 int res;
e855c69d 6690
b8698a0f 6691 /* Init params for code_motion_path_driver. */
e855c69d
AB
6692 sparams.dest = dest;
6693 sparams.c_expr = c_expr;
6694 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6695#ifdef ENABLE_CHECKING
6696 sparams.failed_insn = NULL;
6697#endif
6698 sparams.was_renamed = false;
6699 lparams.e1 = NULL;
6700
6701 /* We haven't visited any blocks yet. */
6702 bitmap_clear (code_motion_visited_blocks);
b8698a0f 6703
e855c69d
AB
6704 /* Set appropriate hooks and data. */
6705 code_motion_path_driver_info = &move_op_hooks;
6706 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6707
6c8e9fc9
AM
6708 gcc_assert (res != -1);
6709
e855c69d
AB
6710 if (sparams.was_renamed)
6711 EXPR_WAS_RENAMED (expr_vliw) = true;
6712
72a54528
AM
6713 *should_move = (sparams.uid == -1);
6714
e855c69d
AB
6715 return res;
6716}
6717\f
6718
6719/* Functions that work with regions. */
6720
6721/* Current number of seqno used in init_seqno and init_seqno_1. */
6722static int cur_seqno;
6723
b8698a0f
L
6724/* A helper for init_seqno. Traverse the region starting from BB and
6725 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e855c69d
AB
6726 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6727static void
6728init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6729{
6730 int bbi = BLOCK_TO_BB (bb->index);
6731 insn_t insn, note = bb_note (bb);
6732 insn_t succ_insn;
6733 succ_iterator si;
6734
6735 SET_BIT (visited_bbs, bbi);
6736 if (blocks_to_reschedule)
6737 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6738
b8698a0f 6739 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e855c69d
AB
6740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6741 {
6742 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6743 int succ_bbi = BLOCK_TO_BB (succ->index);
6744
6745 gcc_assert (in_current_region_p (succ));
6746
6747 if (!TEST_BIT (visited_bbs, succ_bbi))
6748 {
6749 gcc_assert (succ_bbi > bbi);
6750
6751 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6752 }
06f0c25f
AB
6753 else if (blocks_to_reschedule)
6754 bitmap_set_bit (forced_ebb_heads, succ->index);
e855c69d
AB
6755 }
6756
6757 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6758 INSN_SEQNO (insn) = cur_seqno--;
6759}
6760
1f3b2b4e
AM
6761/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6762 blocks on which we're rescheduling when pipelining, FROM is the block where
e855c69d 6763 traversing region begins (it may not be the head of the region when
b8698a0f 6764 pipelining, but the head of the loop instead).
e855c69d
AB
6765
6766 Returns the maximal seqno found. */
6767static int
1f3b2b4e 6768init_seqno (bitmap blocks_to_reschedule, basic_block from)
e855c69d
AB
6769{
6770 sbitmap visited_bbs;
6771 bitmap_iterator bi;
6772 unsigned bbi;
6773
6774 visited_bbs = sbitmap_alloc (current_nr_blocks);
6775
6776 if (blocks_to_reschedule)
6777 {
f61e445a 6778 bitmap_ones (visited_bbs);
e855c69d
AB
6779 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6780 {
6781 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6782 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6783 }
6784 }
6785 else
6786 {
f61e445a 6787 bitmap_clear (visited_bbs);
e855c69d
AB
6788 from = EBB_FIRST_BB (0);
6789 }
6790
1f3b2b4e 6791 cur_seqno = sched_max_luid - 1;
e855c69d 6792 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
1f3b2b4e
AM
6793
6794 /* cur_seqno may be positive if the number of instructions is less than
6795 sched_max_luid - 1 (when rescheduling or if some instructions have been
6796 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6797 gcc_assert (cur_seqno >= 0);
e855c69d
AB
6798
6799 sbitmap_free (visited_bbs);
6800 return sched_max_luid - 1;
6801}
6802
6803/* Initialize scheduling parameters for current region. */
6804static void
6805sel_setup_region_sched_flags (void)
6806{
6807 enable_schedule_as_rhs_p = 1;
6808 bookkeeping_p = 1;
b8698a0f 6809 pipelining_p = (bookkeeping_p
e855c69d 6810 && (flag_sel_sched_pipelining != 0)
07643d76
AM
6811 && current_loop_nest != NULL
6812 && loop_has_exit_edges (current_loop_nest));
e855c69d
AB
6813 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6814 max_ws = MAX_WS;
6815}
6816
6817/* Return true if all basic blocks of current region are empty. */
6818static bool
6819current_region_empty_p (void)
6820{
6821 int i;
6822 for (i = 0; i < current_nr_blocks; i++)
6823 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6824 return false;
6825
6826 return true;
6827}
6828
6829/* Prepare and verify loop nest for pipelining. */
6830static void
ea4d630f 6831setup_current_loop_nest (int rgn, bb_vec_t *bbs)
e855c69d
AB
6832{
6833 current_loop_nest = get_loop_nest_for_rgn (rgn);
6834
6835 if (!current_loop_nest)
6836 return;
6837
6838 /* If this loop has any saved loop preheaders from nested loops,
6839 add these basic blocks to the current region. */
ea4d630f 6840 sel_add_loop_preheaders (bbs);
e855c69d
AB
6841
6842 /* Check that we're starting with a valid information. */
6843 gcc_assert (loop_latch_edge (current_loop_nest));
6844 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6845}
6846
e855c69d
AB
6847/* Compute instruction priorities for current region. */
6848static void
6849sel_compute_priorities (int rgn)
6850{
6851 sched_rgn_compute_dependencies (rgn);
6852
6853 /* Compute insn priorities in haifa style. Then free haifa style
6854 dependencies that we've calculated for this. */
6855 compute_priorities ();
6856
6857 if (sched_verbose >= 5)
6858 debug_rgn_dependencies (0);
6859
6860 free_rgn_deps ();
6861}
6862
6863/* Init scheduling data for RGN. Returns true when this region should not
6864 be scheduled. */
6865static bool
6866sel_region_init (int rgn)
6867{
6868 int i;
6869 bb_vec_t bbs;
6870
6871 rgn_setup_region (rgn);
6872
b8698a0f 6873 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e855c69d
AB
6874 do region initialization here so the region can be bundled correctly,
6875 but we'll skip the scheduling in sel_sched_region (). */
6876 if (current_region_empty_p ())
6877 return true;
6878
e855c69d
AB
6879 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6880
6881 for (i = 0; i < current_nr_blocks; i++)
6882 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6883
a95b23b4 6884 sel_init_bbs (bbs);
e855c69d 6885
ea4d630f
AM
6886 if (flag_sel_sched_pipelining)
6887 setup_current_loop_nest (rgn, &bbs);
6888
9d40778b
AM
6889 sel_setup_region_sched_flags ();
6890
e855c69d
AB
6891 /* Initialize luids and dependence analysis which both sel-sched and haifa
6892 need. */
a95b23b4 6893 sched_init_luids (bbs);
e855c69d
AB
6894 sched_deps_init (false);
6895
6896 /* Initialize haifa data. */
6897 rgn_setup_sched_infos ();
6898 sel_set_sched_flags ();
a95b23b4 6899 haifa_init_h_i_d (bbs);
e855c69d
AB
6900
6901 sel_compute_priorities (rgn);
6902 init_deps_global ();
6903
6904 /* Main initialization. */
6905 sel_setup_sched_infos ();
6906 sel_init_global_and_expr (bbs);
6907
6908 VEC_free (basic_block, heap, bbs);
6909
6910 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6911
6912 /* Init correct liveness sets on each instruction of a single-block loop.
6913 This is the only situation when we can't update liveness when calling
6914 compute_live for the first insn of the loop. */
6915 if (current_loop_nest)
6916 {
6917 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6918 ? 1
6919 : 0);
6920
6921 if (current_nr_blocks == header + 1)
b8698a0f 6922 update_liveness_on_insn
e855c69d
AB
6923 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6924 }
b8698a0f 6925
e855c69d
AB
6926 /* Set hooks so that no newly generated insn will go out unnoticed. */
6927 sel_register_cfg_hooks ();
6928
38f8b050
JR
6929 /* !!! We call target.sched.init () for the whole region, but we invoke
6930 targetm.sched.finish () for every ebb. */
6931 if (targetm.sched.init)
e855c69d 6932 /* None of the arguments are actually used in any target. */
38f8b050 6933 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
6934
6935 first_emitted_uid = get_max_uid () + 1;
6936 preheader_removed = false;
6937
6938 /* Reset register allocation ticks array. */
6939 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6940 reg_rename_this_tick = 0;
6941
6942 bitmap_initialize (forced_ebb_heads, 0);
6943 bitmap_clear (forced_ebb_heads);
6944
6945 setup_nop_vinsn ();
6946 current_copies = BITMAP_ALLOC (NULL);
6947 current_originators = BITMAP_ALLOC (NULL);
6948 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6949
6950 return false;
6951}
6952
6953/* Simplify insns after the scheduling. */
6954static void
6955simplify_changed_insns (void)
6956{
6957 int i;
6958
6959 for (i = 0; i < current_nr_blocks; i++)
6960 {
6961 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6962 rtx insn;
6963
6964 FOR_BB_INSNS (bb, insn)
6965 if (INSN_P (insn))
6966 {
6967 expr_t expr = INSN_EXPR (insn);
6968
b8698a0f 6969 if (EXPR_WAS_SUBSTITUTED (expr))
e855c69d
AB
6970 validate_simplify_insn (insn);
6971 }
6972 }
6973}
6974
6975/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6976 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6977 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6978static void
6979find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6980{
6981 insn_t head, tail;
6982 basic_block bb1 = bb;
6983 if (sched_verbose >= 2)
6984 sel_print ("Finishing schedule in bbs: ");
6985
6986 do
6987 {
6988 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6989
6990 if (sched_verbose >= 2)
6991 sel_print ("%d; ", bb1->index);
6992 }
6993 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6994
6995 if (sched_verbose >= 2)
6996 sel_print ("\n");
6997
6998 get_ebb_head_tail (bb, bb1, &head, &tail);
6999
7000 current_sched_info->head = head;
7001 current_sched_info->tail = tail;
7002 current_sched_info->prev_head = PREV_INSN (head);
7003 current_sched_info->next_tail = NEXT_INSN (tail);
7004}
7005
7006/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7007static void
7008reset_sched_cycles_in_current_ebb (void)
7009{
7010 int last_clock = 0;
7011 int haifa_last_clock = -1;
7012 int haifa_clock = 0;
06f0c25f 7013 int issued_insns = 0;
e855c69d
AB
7014 insn_t insn;
7015
38f8b050 7016 if (targetm.sched.init)
e855c69d
AB
7017 {
7018 /* None of the arguments are actually used in any target.
7019 NB: We should have md_reset () hook for cases like this. */
38f8b050 7020 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7021 }
7022
7023 state_reset (curr_state);
7024 advance_state (curr_state);
b8698a0f 7025
e855c69d
AB
7026 for (insn = current_sched_info->head;
7027 insn != current_sched_info->next_tail;
7028 insn = NEXT_INSN (insn))
7029 {
7030 int cost, haifa_cost;
7031 int sort_p;
d66b8f4b 7032 bool asm_p, real_insn, after_stall, all_issued;
e855c69d
AB
7033 int clock;
7034
7035 if (!INSN_P (insn))
7036 continue;
7037
7038 asm_p = false;
7039 real_insn = recog_memoized (insn) >= 0;
7040 clock = INSN_SCHED_CYCLE (insn);
7041
7042 cost = clock - last_clock;
7043
7044 /* Initialize HAIFA_COST. */
7045 if (! real_insn)
7046 {
7047 asm_p = INSN_ASM_P (insn);
7048
7049 if (asm_p)
7050 /* This is asm insn which *had* to be scheduled first
7051 on the cycle. */
7052 haifa_cost = 1;
7053 else
b8698a0f 7054 /* This is a use/clobber insn. It should not change
e855c69d
AB
7055 cost. */
7056 haifa_cost = 0;
7057 }
7058 else
d66b8f4b 7059 haifa_cost = estimate_insn_cost (insn, curr_state);
e855c69d
AB
7060
7061 /* Stall for whatever cycles we've stalled before. */
7062 after_stall = 0;
7063 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7064 {
7065 haifa_cost = cost;
7066 after_stall = 1;
7067 }
9b0f04e7
AB
7068 all_issued = issued_insns == issue_rate;
7069 if (haifa_cost == 0 && all_issued)
06f0c25f 7070 haifa_cost = 1;
e855c69d
AB
7071 if (haifa_cost > 0)
7072 {
7073 int i = 0;
7074
7075 while (haifa_cost--)
7076 {
7077 advance_state (curr_state);
06f0c25f 7078 issued_insns = 0;
e855c69d
AB
7079 i++;
7080
7081 if (sched_verbose >= 2)
7082 {
7083 sel_print ("advance_state (state_transition)\n");
7084 debug_state (curr_state);
7085 }
7086
b8698a0f
L
7087 /* The DFA may report that e.g. insn requires 2 cycles to be
7088 issued, but on the next cycle it says that insn is ready
e855c69d
AB
7089 to go. Check this here. */
7090 if (!after_stall
b8698a0f 7091 && real_insn
e855c69d 7092 && haifa_cost > 0
d66b8f4b 7093 && estimate_insn_cost (insn, curr_state) == 0)
e855c69d 7094 break;
d7f672ec
AB
7095
7096 /* When the data dependency stall is longer than the DFA stall,
9b0f04e7
AB
7097 and when we have issued exactly issue_rate insns and stalled,
7098 it could be that after this longer stall the insn will again
d7f672ec
AB
7099 become unavailable to the DFA restrictions. Looks strange
7100 but happens e.g. on x86-64. So recheck DFA on the last
7101 iteration. */
9b0f04e7 7102 if ((after_stall || all_issued)
d7f672ec
AB
7103 && real_insn
7104 && haifa_cost == 0)
d66b8f4b 7105 haifa_cost = estimate_insn_cost (insn, curr_state);
d7f672ec 7106 }
e855c69d
AB
7107
7108 haifa_clock += i;
06f0c25f
AB
7109 if (sched_verbose >= 2)
7110 sel_print ("haifa clock: %d\n", haifa_clock);
e855c69d
AB
7111 }
7112 else
7113 gcc_assert (haifa_cost == 0);
7114
7115 if (sched_verbose >= 2)
7116 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7117
7118 if (targetm.sched.dfa_new_cycle)
7119 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7120 haifa_last_clock, haifa_clock,
7121 &sort_p))
7122 {
7123 advance_state (curr_state);
06f0c25f 7124 issued_insns = 0;
e855c69d
AB
7125 haifa_clock++;
7126 if (sched_verbose >= 2)
7127 {
7128 sel_print ("advance_state (dfa_new_cycle)\n");
7129 debug_state (curr_state);
06f0c25f 7130 sel_print ("haifa clock: %d\n", haifa_clock + 1);
e855c69d
AB
7131 }
7132 }
7133
7134 if (real_insn)
7135 {
d66b8f4b
AB
7136 static state_t temp = NULL;
7137
7138 if (!temp)
7139 temp = xmalloc (dfa_state_size);
7140 memcpy (temp, curr_state, dfa_state_size);
7141
e855c69d 7142 cost = state_transition (curr_state, insn);
d66b8f4b 7143 if (memcmp (temp, curr_state, dfa_state_size))
3f1960ac 7144 issued_insns++;
e855c69d
AB
7145
7146 if (sched_verbose >= 2)
06f0c25f
AB
7147 {
7148 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7149 haifa_clock + 1);
7150 debug_state (curr_state);
7151 }
e855c69d
AB
7152 gcc_assert (cost < 0);
7153 }
7154
7155 if (targetm.sched.variable_issue)
7156 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7157
7158 INSN_SCHED_CYCLE (insn) = haifa_clock;
7159
7160 last_clock = clock;
7161 haifa_last_clock = haifa_clock;
7162 }
7163}
7164
7165/* Put TImode markers on insns starting a new issue group. */
7166static void
7167put_TImodes (void)
7168{
7169 int last_clock = -1;
7170 insn_t insn;
7171
7172 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7173 insn = NEXT_INSN (insn))
7174 {
7175 int cost, clock;
7176
7177 if (!INSN_P (insn))
7178 continue;
7179
7180 clock = INSN_SCHED_CYCLE (insn);
7181 cost = (last_clock == -1) ? 1 : clock - last_clock;
7182
7183 gcc_assert (cost >= 0);
7184
7185 if (issue_rate > 1
7186 && GET_CODE (PATTERN (insn)) != USE
7187 && GET_CODE (PATTERN (insn)) != CLOBBER)
7188 {
7189 if (reload_completed && cost > 0)
7190 PUT_MODE (insn, TImode);
7191
7192 last_clock = clock;
7193 }
7194
7195 if (sched_verbose >= 2)
7196 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7197 }
7198}
7199
b8698a0f 7200/* Perform MD_FINISH on EBBs comprising current region. When
e855c69d
AB
7201 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7202 to produce correct sched cycles on insns. */
7203static void
7204sel_region_target_finish (bool reset_sched_cycles_p)
7205{
7206 int i;
7207 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7208
7209 for (i = 0; i < current_nr_blocks; i++)
7210 {
7211 if (bitmap_bit_p (scheduled_blocks, i))
7212 continue;
7213
7214 /* While pipelining outer loops, skip bundling for loop
7215 preheaders. Those will be rescheduled in the outer loop. */
7216 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7217 continue;
7218
7219 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7220
7221 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7222 continue;
7223
7224 if (reset_sched_cycles_p)
7225 reset_sched_cycles_in_current_ebb ();
7226
38f8b050
JR
7227 if (targetm.sched.init)
7228 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7229
7230 put_TImodes ();
7231
38f8b050 7232 if (targetm.sched.finish)
e855c69d 7233 {
38f8b050 7234 targetm.sched.finish (sched_dump, sched_verbose);
e855c69d
AB
7235
7236 /* Extend luids so that insns generated by the target will
7237 get zero luid. */
a95b23b4 7238 sched_extend_luids ();
e855c69d
AB
7239 }
7240 }
7241
7242 BITMAP_FREE (scheduled_blocks);
7243}
7244
7245/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
b8698a0f 7246 is true, make an additional pass emulating scheduler to get correct insn
e855c69d
AB
7247 cycles for md_finish calls. */
7248static void
7249sel_region_finish (bool reset_sched_cycles_p)
7250{
7251 simplify_changed_insns ();
7252 sched_finish_ready_list ();
7253 free_nop_pool ();
7254
7255 /* Free the vectors. */
7256 if (vec_av_set)
7257 VEC_free (expr_t, heap, vec_av_set);
7258 BITMAP_FREE (current_copies);
7259 BITMAP_FREE (current_originators);
7260 BITMAP_FREE (code_motion_visited_blocks);
7261 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7262 vinsn_vec_free (&vec_target_unavailable_vinsns);
7263
7264 /* If LV_SET of the region head should be updated, do it now because
7265 there will be no other chance. */
7266 {
7267 succ_iterator si;
7268 insn_t insn;
7269
7270 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7271 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7272 {
7273 basic_block bb = BLOCK_FOR_INSN (insn);
7274
7275 if (!BB_LV_SET_VALID_P (bb))
7276 compute_live (insn);
7277 }
7278 }
7279
7280 /* Emulate the Haifa scheduler for bundling. */
7281 if (reload_completed)
7282 sel_region_target_finish (reset_sched_cycles_p);
7283
7284 sel_finish_global_and_expr ();
7285
7286 bitmap_clear (forced_ebb_heads);
7287
7288 free_nop_vinsn ();
7289
7290 finish_deps_global ();
7291 sched_finish_luids ();
6c8e9fc9 7292 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
e855c69d
AB
7293
7294 sel_finish_bbs ();
7295 BITMAP_FREE (blocks_to_reschedule);
7296
7297 sel_unregister_cfg_hooks ();
7298
7299 max_issue_size = 0;
7300}
7301\f
7302
7303/* Functions that implement the scheduler driver. */
7304
7305/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7306 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7307 of insns scheduled -- these would be postprocessed later. */
7308static void
7309schedule_on_fences (flist_t fences, int max_seqno,
7310 ilist_t **scheduled_insns_tailpp)
7311{
7312 flist_t old_fences = fences;
7313
7314 if (sched_verbose >= 1)
7315 {
7316 sel_print ("\nScheduling on fences: ");
7317 dump_flist (fences);
7318 sel_print ("\n");
7319 }
7320
7321 scheduled_something_on_previous_fence = false;
7322 for (; fences; fences = FLIST_NEXT (fences))
7323 {
7324 fence_t fence = NULL;
7325 int seqno = 0;
7326 flist_t fences2;
7327 bool first_p = true;
b8698a0f 7328
e855c69d
AB
7329 /* Choose the next fence group to schedule.
7330 The fact that insn can be scheduled only once
7331 on the cycle is guaranteed by two properties:
7332 1. seqnos of parallel groups decrease with each iteration.
7333 2. If is_ineligible_successor () sees the larger seqno, it
7334 checks if candidate insn is_in_current_fence_p (). */
7335 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7336 {
7337 fence_t f = FLIST_FENCE (fences2);
7338
7339 if (!FENCE_PROCESSED_P (f))
7340 {
7341 int i = INSN_SEQNO (FENCE_INSN (f));
7342
7343 if (first_p || i > seqno)
7344 {
7345 seqno = i;
7346 fence = f;
7347 first_p = false;
7348 }
7349 else
7350 /* ??? Seqnos of different groups should be different. */
7351 gcc_assert (1 || i != seqno);
7352 }
7353 }
7354
7355 gcc_assert (fence);
7356
7357 /* As FENCE is nonnull, SEQNO is initialized. */
7358 seqno -= max_seqno + 1;
7359 fill_insns (fence, seqno, scheduled_insns_tailpp);
7360 FENCE_PROCESSED_P (fence) = true;
7361 }
7362
7363 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
b8698a0f 7364 don't need to keep bookkeeping-invalidated and target-unavailable
e855c69d
AB
7365 vinsns any more. */
7366 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7367 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7368}
7369
7370/* Calculate MIN_SEQNO and MAX_SEQNO. */
7371static void
7372find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7373{
7374 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7375
7376 /* The first element is already processed. */
7377 while ((fences = FLIST_NEXT (fences)))
7378 {
7379 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
b8698a0f 7380
e855c69d
AB
7381 if (*min_seqno > seqno)
7382 *min_seqno = seqno;
7383 else if (*max_seqno < seqno)
7384 *max_seqno = seqno;
7385 }
7386}
7387
7388/* Calculate new fences from FENCES. */
b8698a0f 7389static flist_t
e855c69d
AB
7390calculate_new_fences (flist_t fences, int orig_max_seqno)
7391{
7392 flist_t old_fences = fences;
7393 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7394
7395 flist_tail_init (new_fences);
7396 for (; fences; fences = FLIST_NEXT (fences))
7397 {
7398 fence_t fence = FLIST_FENCE (fences);
7399 insn_t insn;
b8698a0f 7400
e855c69d
AB
7401 if (!FENCE_BNDS (fence))
7402 {
7403 /* This fence doesn't have any successors. */
7404 if (!FENCE_SCHEDULED_P (fence))
7405 {
7406 /* Nothing was scheduled on this fence. */
7407 int seqno;
7408
7409 insn = FENCE_INSN (fence);
7410 seqno = INSN_SEQNO (insn);
7411 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7412
7413 if (sched_verbose >= 1)
b8698a0f 7414 sel_print ("Fence %d[%d] has not changed\n",
e855c69d
AB
7415 INSN_UID (insn),
7416 BLOCK_NUM (insn));
7417 move_fence_to_fences (fences, new_fences);
7418 }
7419 }
7420 else
7421 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7422 }
7423
7424 flist_clear (&old_fences);
7425 return FLIST_TAIL_HEAD (new_fences);
7426}
7427
7428/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7429 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7430 the highest seqno used in a region. Return the updated highest seqno. */
7431static int
b8698a0f
L
7432update_seqnos_and_stage (int min_seqno, int max_seqno,
7433 int highest_seqno_in_use,
e855c69d
AB
7434 ilist_t *pscheduled_insns)
7435{
7436 int new_hs;
7437 ilist_iterator ii;
7438 insn_t insn;
b8698a0f 7439
e855c69d
AB
7440 /* Actually, new_hs is the seqno of the instruction, that was
7441 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7442 if (*pscheduled_insns)
7443 {
7444 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7445 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7446 gcc_assert (new_hs > highest_seqno_in_use);
7447 }
7448 else
7449 new_hs = highest_seqno_in_use;
7450
7451 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7452 {
7453 gcc_assert (INSN_SEQNO (insn) < 0);
7454 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7455 gcc_assert (INSN_SEQNO (insn) <= new_hs);
bcf33775
AB
7456
7457 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7458 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7459 require > 1GB of memory e.g. on limit-fnargs.c. */
7460 if (! pipelining_p)
7461 free_data_for_scheduled_insn (insn);
e855c69d
AB
7462 }
7463
7464 ilist_clear (pscheduled_insns);
7465 global_level++;
7466
7467 return new_hs;
7468}
7469
b8698a0f
L
7470/* The main driver for scheduling a region. This function is responsible
7471 for correct propagation of fences (i.e. scheduling points) and creating
7472 a group of parallel insns at each of them. It also supports
e855c69d
AB
7473 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7474 of scheduling. */
7475static void
7476sel_sched_region_2 (int orig_max_seqno)
7477{
7478 int highest_seqno_in_use = orig_max_seqno;
7479
7480 stat_bookkeeping_copies = 0;
7481 stat_insns_needed_bookkeeping = 0;
7482 stat_renamed_scheduled = 0;
7483 stat_substitutions_total = 0;
7484 num_insns_scheduled = 0;
7485
7486 while (fences)
7487 {
7488 int min_seqno, max_seqno;
7489 ilist_t scheduled_insns = NULL;
7490 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7491
7492 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7493 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7494 fences = calculate_new_fences (fences, orig_max_seqno);
7495 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7496 highest_seqno_in_use,
7497 &scheduled_insns);
7498 }
7499
7500 if (sched_verbose >= 1)
7501 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7502 "bookkeeping, %d insns renamed, %d insns substituted\n",
7503 stat_bookkeeping_copies,
7504 stat_insns_needed_bookkeeping,
7505 stat_renamed_scheduled,
7506 stat_substitutions_total);
7507}
7508
b8698a0f
L
7509/* Schedule a region. When pipelining, search for possibly never scheduled
7510 bookkeeping code and schedule it. Reschedule pipelined code without
e855c69d
AB
7511 pipelining after. */
7512static void
7513sel_sched_region_1 (void)
7514{
e855c69d
AB
7515 int orig_max_seqno;
7516
1f3b2b4e 7517 /* Remove empty blocks that might be in the region from the beginning. */
e855c69d
AB
7518 purge_empty_blocks ();
7519
1f3b2b4e 7520 orig_max_seqno = init_seqno (NULL, NULL);
e855c69d
AB
7521 gcc_assert (orig_max_seqno >= 1);
7522
7523 /* When pipelining outer loops, create fences on the loop header,
7524 not preheader. */
7525 fences = NULL;
7526 if (current_loop_nest)
7527 init_fences (BB_END (EBB_FIRST_BB (0)));
7528 else
7529 init_fences (bb_note (EBB_FIRST_BB (0)));
7530 global_level = 1;
7531
7532 sel_sched_region_2 (orig_max_seqno);
7533
7534 gcc_assert (fences == NULL);
7535
7536 if (pipelining_p)
7537 {
7538 int i;
7539 basic_block bb;
7540 struct flist_tail_def _new_fences;
7541 flist_tail_t new_fences = &_new_fences;
7542 bool do_p = true;
7543
7544 pipelining_p = false;
7545 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7546 bookkeeping_p = false;
7547 enable_schedule_as_rhs_p = false;
7548
7549 /* Schedule newly created code, that has not been scheduled yet. */
7550 do_p = true;
7551
7552 while (do_p)
7553 {
7554 do_p = false;
7555
7556 for (i = 0; i < current_nr_blocks; i++)
7557 {
7558 basic_block bb = EBB_FIRST_BB (i);
7559
e855c69d
AB
7560 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7561 {
d7f672ec
AB
7562 if (! bb_ends_ebb_p (bb))
7563 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7564 if (sel_bb_empty_p (bb))
7565 {
7566 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7567 continue;
7568 }
e855c69d
AB
7569 clear_outdated_rtx_info (bb);
7570 if (sel_insn_is_speculation_check (BB_END (bb))
7571 && JUMP_P (BB_END (bb)))
7572 bitmap_set_bit (blocks_to_reschedule,
7573 BRANCH_EDGE (bb)->dest->index);
7574 }
d7f672ec
AB
7575 else if (! sel_bb_empty_p (bb)
7576 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
e855c69d
AB
7577 bitmap_set_bit (blocks_to_reschedule, bb->index);
7578 }
7579
7580 for (i = 0; i < current_nr_blocks; i++)
7581 {
7582 bb = EBB_FIRST_BB (i);
7583
b8698a0f 7584 /* While pipelining outer loops, skip bundling for loop
e855c69d
AB
7585 preheaders. Those will be rescheduled in the outer
7586 loop. */
7587 if (sel_is_loop_preheader_p (bb))
7588 {
7589 clear_outdated_rtx_info (bb);
7590 continue;
7591 }
b8698a0f 7592
06f0c25f 7593 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
e855c69d
AB
7594 {
7595 flist_tail_init (new_fences);
7596
1f3b2b4e 7597 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
e855c69d
AB
7598
7599 /* Mark BB as head of the new ebb. */
7600 bitmap_set_bit (forced_ebb_heads, bb->index);
7601
e855c69d
AB
7602 gcc_assert (fences == NULL);
7603
7604 init_fences (bb_note (bb));
b8698a0f 7605
e855c69d 7606 sel_sched_region_2 (orig_max_seqno);
b8698a0f 7607
e855c69d
AB
7608 do_p = true;
7609 break;
7610 }
7611 }
7612 }
7613 }
7614}
7615
7616/* Schedule the RGN region. */
7617void
7618sel_sched_region (int rgn)
7619{
7620 bool schedule_p;
7621 bool reset_sched_cycles_p;
7622
7623 if (sel_region_init (rgn))
7624 return;
7625
7626 if (sched_verbose >= 1)
7627 sel_print ("Scheduling region %d\n", rgn);
7628
7629 schedule_p = (!sched_is_disabled_for_current_region_p ()
7630 && dbg_cnt (sel_sched_region_cnt));
7631 reset_sched_cycles_p = pipelining_p;
7632 if (schedule_p)
7633 sel_sched_region_1 ();
7634 else
7635 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7636 reset_sched_cycles_p = true;
b8698a0f 7637
e855c69d
AB
7638 sel_region_finish (reset_sched_cycles_p);
7639}
7640
7641/* Perform global init for the scheduler. */
7642static void
7643sel_global_init (void)
7644{
7645 calculate_dominance_info (CDI_DOMINATORS);
7646 alloc_sched_pools ();
7647
7648 /* Setup the infos for sched_init. */
7649 sel_setup_sched_infos ();
7650 setup_sched_dump ();
7651
7861732f 7652 sched_rgn_init (false);
d51e8a2d 7653 sched_init ();
e855c69d
AB
7654
7655 sched_init_bbs ();
7656 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7657 after_recovery = 0;
b8698a0f 7658 can_issue_more = issue_rate;
e855c69d
AB
7659
7660 sched_extend_target ();
7661 sched_deps_init (true);
7662 setup_nop_and_exit_insns ();
7663 sel_extend_global_bb_info ();
7664 init_lv_sets ();
7665 init_hard_regs_data ();
7666}
7667
7668/* Free the global data of the scheduler. */
7669static void
7670sel_global_finish (void)
7671{
7672 free_bb_note_pool ();
7673 free_lv_sets ();
7674 sel_finish_global_bb_info ();
7675
7676 free_regset_pool ();
7677 free_nop_and_exit_insns ();
7678
7679 sched_rgn_finish ();
7680 sched_deps_finish ();
7681 sched_finish ();
7682
7683 if (current_loops)
7684 sel_finish_pipelining ();
7685
7686 free_sched_pools ();
7687 free_dominance_info (CDI_DOMINATORS);
7688}
7689
7690/* Return true when we need to skip selective scheduling. Used for debugging. */
7691bool
7692maybe_skip_selective_scheduling (void)
7693{
7694 return ! dbg_cnt (sel_sched_cnt);
7695}
7696
7697/* The entry point. */
7698void
7699run_selective_scheduling (void)
7700{
7701 int rgn;
7702
7703 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7704 return;
7705
7706 sel_global_init ();
7707
7708 for (rgn = 0; rgn < nr_regions; rgn++)
7709 sel_sched_region (rgn);
7710
7711 sel_global_finish ();
7712}
7713
7714#endif