]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
bitset (_Base_bitset<>_Base_bitset(unsigned long long)): Convert __val to _WordT.
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
c02e2d5c 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
e855c69d
AB
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
0cbd9993 24#include "rtl-error.h"
e855c69d
AB
25#include "tm_p.h"
26#include "hard-reg-set.h"
27#include "regs.h"
28#include "function.h"
29#include "flags.h"
30#include "insn-config.h"
31#include "insn-attr.h"
32#include "except.h"
e855c69d
AB
33#include "recog.h"
34#include "params.h"
35#include "target.h"
36#include "output.h"
37#include "timevar.h"
38#include "tree-pass.h"
39#include "sched-int.h"
40#include "ggc.h"
41#include "tree.h"
42#include "vec.h"
43#include "langhooks.h"
44#include "rtlhooks-def.h"
45#include "output.h"
5936d944 46#include "emit-rtl.h"
e855c69d
AB
47
48#ifdef INSN_SCHEDULING
49#include "sel-sched-ir.h"
50#include "sel-sched-dump.h"
51#include "sel-sched.h"
52#include "dbgcnt.h"
53
54/* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
b8698a0f 58 o the scheduler works after register allocation (but can be also tuned
e855c69d
AB
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
b8698a0f
L
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
e855c69d
AB
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
b8698a0f 77 at some point in the control flow graph. The data may be its usefulness,
e855c69d
AB
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
b8698a0f 81 Availability set (av_set) is a set of expressions at a given control flow
e855c69d 82 point. It is represented as av_set_t. The expressions in av sets are kept
b8698a0f 83 sorted in the terms of expr_greater_p function. It allows to truncate
e855c69d 84 the set while leaving the best expressions.
b8698a0f 85
e855c69d
AB
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
b8698a0f 92 the fence group when a jump is scheduled. A boundary is represented
e855c69d
AB
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
b8698a0f 99 The regions are formed starting from innermost loops, so that when the inner
e855c69d 100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
b8698a0f 101 outer loop. The rest of acyclic regions are found using extend_rgns:
e855c69d 102 the blocks that are not yet allocated to any regions are traversed in top-down
b8698a0f 103 order, and a block is added to a region to which all its predecessors belong;
e855c69d
AB
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
b8698a0f
L
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
e855c69d 111 required to schedule any of the expressions, we advance the current cycle
b8698a0f 112 appropriately. So, the final group does not exactly correspond to a VLIW
e855c69d
AB
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
b8698a0f 116 so we feel like advancing a scheduling point.
e855c69d
AB
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
b8698a0f
L
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
e855c69d
AB
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
b8698a0f 131 and moving to another fence. The first two restrictions are lifted during
e855c69d
AB
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
b8698a0f
L
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
e855c69d
AB
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
b8698a0f 144 only registers which are from the same regclass as the original one and
e855c69d
AB
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
b8698a0f 152 We run the move_op routine to perform the same type of code motion paths
e855c69d
AB
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
b8698a0f 155 instruction that gave birth to a chosen expression. We undo
e855c69d 156 the transformations performed on an expression via the history saved in it.
b8698a0f
L
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
e855c69d
AB
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
b8698a0f
L
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
e855c69d
AB
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
b8698a0f
L
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e855c69d
AB
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
b8698a0f 184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e855c69d 185 reused in all of the schedulers. We have split up the initialization of data
b8698a0f 186 of such parts into different functions prefixed with scheduler type and
e855c69d
AB
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
b8698a0f
L
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
e855c69d 191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
b8698a0f 192
e855c69d
AB
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
b8698a0f
L
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
e855c69d
AB
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
b8698a0f
L
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
e855c69d
AB
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
b8698a0f 216 insns that are definitely completed the execution. The results of
e855c69d
AB
217 tick_check_p checks are also cached in a vector on each fence.
218
b8698a0f 219 We keep a valid liveness set on each insn in a region to avoid the high
e855c69d
AB
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
b8698a0f 223 sets. The updates happen in two cases: when fill_insns terminates,
e855c69d
AB
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
b8698a0f 230
e855c69d
AB
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
b8698a0f
L
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e855c69d 242
b8698a0f
L
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e855c69d
AB
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
b8698a0f 247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e855c69d
AB
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
b8698a0f 250
e855c69d
AB
251*/
252
253/* True when pipelining is enabled. */
254bool pipelining_p;
255
256/* True if bookkeeping is enabled. */
257bool bookkeeping_p;
258
259/* Maximum number of insns that are eligible for renaming. */
260int max_insns_to_rename;
261\f
262
263/* Definitions of local types and macros. */
264
265/* Represents possible outcomes of moving an expression through an insn. */
b8698a0f
L
266enum MOVEUP_EXPR_CODE
267 {
e855c69d 268 /* The expression is not changed. */
b8698a0f 269 MOVEUP_EXPR_SAME,
e855c69d
AB
270
271 /* Not changed, but requires a new destination register. */
b8698a0f 272 MOVEUP_EXPR_AS_RHS,
e855c69d
AB
273
274 /* Cannot be moved. */
b8698a0f 275 MOVEUP_EXPR_NULL,
e855c69d
AB
276
277 /* Changed (substituted or speculated). */
b8698a0f 278 MOVEUP_EXPR_CHANGED
e855c69d
AB
279 };
280
281/* The container to be passed into rtx search & replace functions. */
282struct rtx_search_arg
283{
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurence counter. */
288 int n;
289};
290
291typedef struct rtx_search_arg *rtx_search_arg_p;
292
b8698a0f 293/* This struct contains precomputed hard reg sets that are needed when
e855c69d 294 computing registers available for renaming. */
b8698a0f 295struct hard_regs_data
e855c69d 296{
b8698a0f 297 /* For every mode, this stores registers available for use with
e855c69d
AB
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
b8698a0f 309 /* For every mode, this stores registers not available due to
e855c69d
AB
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316#ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319#endif
320};
321
322/* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324struct reg_rename
325{
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334};
335
b8698a0f 336/* A global structure that contains the needed information about harg
e855c69d
AB
337 regs. */
338static struct hard_regs_data sel_hrd;
339\f
340
b8698a0f
L
341/* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
e855c69d
AB
346 read-only. */
347struct cmpd_local_params
348{
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
b8698a0f 363 /* True when we have removed last insn in the block which was
e855c69d
AB
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366};
367
368/* Stores the static parameters for move_op_* calls. */
369struct moveop_static_params
370{
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381#ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384#endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388};
389
390/* Stores the static parameters for fur_* calls. */
391struct fur_static_params
392{
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401};
402
403typedef struct fur_static_params *fur_static_params_p;
404typedef struct cmpd_local_params *cmpd_local_params_p;
405typedef struct moveop_static_params *moveop_static_params_p;
406
407/* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409struct code_motion_path_driver_info_def
410{
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
b8698a0f 432 /* Called on the ascending pass, before returning from the current basic
e855c69d
AB
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
b8698a0f 436 /* When processing successors in move_op we need only descend into
e855c69d
AB
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442};
443
444/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448/* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
c32e2175 450extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e855c69d 451
b8698a0f
L
452/* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
e855c69d
AB
454 sched-deps.c. */
455int sched_emulate_haifa_p;
456
457/* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461int global_level;
462
463/* Current fences. */
464flist_t fences;
465
466/* True when separable insns should be scheduled as RHSes. */
467static bool enable_schedule_as_rhs_p;
468
469/* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
b8698a0f 471 we haven't scheduled anything on the previous fence.
e855c69d 472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
b8698a0f 473 have more conservative value than the one returned by the
e855c69d
AB
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475static bool scheduled_something_on_previous_fence;
476
477/* All newly emitted insns will have their uids greater than this value. */
478static int first_emitted_uid;
479
480/* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482static bitmap_head _forced_ebb_heads;
483bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485/* Blocks that need to be rescheduled after pipelining. */
486bitmap blocks_to_reschedule = NULL;
487
488/* True when the first lv set should be ignored when updating liveness. */
489static bool ignore_first = false;
490
491/* Number of insns max_issue has initialized data structures for. */
492static int max_issue_size = 0;
493
494/* Whether we can issue more instructions. */
495static int can_issue_more;
496
497/* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499static int max_ws;
500
501/* Number of insns scheduled in current region. */
502static int num_insns_scheduled;
503
504/* A vector of expressions is used to be able to sort them. */
505DEF_VEC_P(expr_t);
506DEF_VEC_ALLOC_P(expr_t,heap);
507static VEC(expr_t, heap) *vec_av_set = NULL;
508
509/* A vector of vinsns is used to hold temporary lists of vinsns. */
510DEF_VEC_P(vinsn_t);
511DEF_VEC_ALLOC_P(vinsn_t,heap);
512typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514/* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
b8698a0f 520/* This vector has vinsns which are scheduled with renaming on the first fence
e855c69d
AB
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525/* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527DEF_VEC_P(insn_t);
528DEF_VEC_ALLOC_P(insn_t,heap);
529static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
b8698a0f
L
531/* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
e855c69d
AB
533static bitmap current_originators = NULL;
534static bitmap current_copies = NULL;
535
536/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538static bitmap code_motion_visited_blocks = NULL;
539
540/* Variables to accumulate different statistics. */
541
542/* The number of bookkeeping copies created. */
543static int stat_bookkeeping_copies;
544
545/* The number of insns that required bookkeeiping for their scheduling. */
546static int stat_insns_needed_bookkeeping;
547
548/* The number of insns that got renamed. */
549static int stat_renamed_scheduled;
550
551/* The number of substitutions made during scheduling. */
552static int stat_substitutions_total;
553\f
554
555/* Forward declarations of static functions. */
556static bool rtx_ok_for_substitution_p (rtx, rtx);
557static int sel_rank_for_schedule (const void *, const void *);
558static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
b5b8b0ac 559static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e855c69d
AB
560
561static rtx get_dest_from_orig_ops (av_set_t);
562static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
b8698a0f 563static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e855c69d 564 def_list_t *);
72a54528
AM
565static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
e855c69d
AB
568static void sel_sched_region_1 (void);
569static void sel_sched_region_2 (int);
570static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572static void debug_state (state_t);
573\f
574
575/* Functions that work with fences. */
576
577/* Advance one cycle on FENCE. */
578static void
579advance_one_cycle (fence_t fence)
580{
581 unsigned i;
582 int cycle;
583 rtx insn;
b8698a0f 584
e855c69d
AB
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
136e01a3 590 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607}
608
609/* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611static bool
612in_fallthru_bb_p (rtx insn, rtx succ)
613{
614 basic_block bb = BLOCK_FOR_INSN (insn);
0fd4b31d 615 edge e;
e855c69d
AB
616
617 if (bb == BLOCK_FOR_INSN (succ))
618 return true;
619
0fd4b31d
NF
620 e = find_fallthru_edge_from (bb);
621 if (e)
622 bb = e->dest;
e855c69d
AB
623 else
624 return false;
625
626 while (sel_bb_empty_p (bb))
627 bb = bb->next_bb;
628
629 return bb == BLOCK_FOR_INSN (succ);
630}
631
b8698a0f 632/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e855c69d
AB
633 When a successor will continue a ebb, transfer all parameters of a fence
634 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
635 of scheduling helping to distinguish between the old and the new code. */
636static void
637extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
638 int orig_max_seqno)
639{
640 bool was_here_p = false;
641 insn_t insn = NULL_RTX;
642 insn_t succ;
643 succ_iterator si;
644 ilist_iterator ii;
645 fence_t fence = FLIST_FENCE (old_fences);
646 basic_block bb;
647
648 /* Get the only element of FENCE_BNDS (fence). */
649 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
650 {
651 gcc_assert (!was_here_p);
652 was_here_p = true;
653 }
654 gcc_assert (was_here_p && insn != NULL_RTX);
655
b8698a0f 656 /* When in the "middle" of the block, just move this fence
e855c69d
AB
657 to the new list. */
658 bb = BLOCK_FOR_INSN (insn);
659 if (! sel_bb_end_p (insn)
b8698a0f 660 || (single_succ_p (bb)
e855c69d
AB
661 && single_pred_p (single_succ (bb))))
662 {
663 insn_t succ;
664
b8698a0f 665 succ = (sel_bb_end_p (insn)
e855c69d
AB
666 ? sel_bb_head (single_succ (bb))
667 : NEXT_INSN (insn));
668
b8698a0f 669 if (INSN_SEQNO (succ) > 0
e855c69d
AB
670 && INSN_SEQNO (succ) <= orig_max_seqno
671 && INSN_SCHED_TIMES (succ) <= 0)
672 {
673 FENCE_INSN (fence) = succ;
674 move_fence_to_fences (old_fences, new_fences);
675
676 if (sched_verbose >= 1)
b8698a0f 677 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e855c69d
AB
678 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
679 }
680 return;
681 }
682
683 /* Otherwise copy fence's structures to (possibly) multiple successors. */
684 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
685 {
686 int seqno = INSN_SEQNO (succ);
687
688 if (0 < seqno && seqno <= orig_max_seqno
689 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
690 {
691 bool b = (in_same_ebb_p (insn, succ)
b8698a0f 692 || in_fallthru_bb_p (insn, succ));
e855c69d
AB
693
694 if (sched_verbose >= 1)
b8698a0f
L
695 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
696 INSN_UID (insn), INSN_UID (succ),
e855c69d
AB
697 BLOCK_NUM (succ), b ? "continue" : "reset");
698
699 if (b)
700 add_dirty_fence_to_fences (new_fences, succ, fence);
701 else
702 {
703 /* Mark block of the SUCC as head of the new ebb. */
704 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
705 add_clean_fence_to_fences (new_fences, succ, fence);
706 }
707 }
708 }
709}
710\f
711
712/* Functions to support substitution. */
713
b8698a0f
L
714/* Returns whether INSN with dependence status DS is eligible for
715 substitution, i.e. it's a copy operation x := y, and RHS that is
e855c69d
AB
716 moved up through this insn should be substituted. */
717static bool
718can_substitute_through_p (insn_t insn, ds_t ds)
719{
720 /* We can substitute only true dependencies. */
721 if ((ds & DEP_OUTPUT)
722 || (ds & DEP_ANTI)
723 || ! INSN_RHS (insn)
724 || ! INSN_LHS (insn))
725 return false;
726
b8698a0f 727 /* Now we just need to make sure the INSN_RHS consists of only one
e855c69d 728 simple REG rtx. */
b8698a0f 729 if (REG_P (INSN_LHS (insn))
e855c69d 730 && REG_P (INSN_RHS (insn)))
b8698a0f 731 return true;
e855c69d
AB
732 return false;
733}
734
b8698a0f 735/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
e855c69d
AB
736 source (if INSN is eligible for substitution). Returns TRUE if
737 substitution was actually performed, FALSE otherwise. Substitution might
738 be not performed because it's either EXPR' vinsn doesn't contain INSN's
b8698a0f 739 destination or the resulting insn is invalid for the target machine.
e855c69d
AB
740 When UNDO is true, perform unsubstitution instead (the difference is in
741 the part of rtx on which validate_replace_rtx is called). */
742static bool
743substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
744{
745 rtx *where;
746 bool new_insn_valid;
747 vinsn_t *vi = &EXPR_VINSN (expr);
748 bool has_rhs = VINSN_RHS (*vi) != NULL;
749 rtx old, new_rtx;
750
751 /* Do not try to replace in SET_DEST. Although we'll choose new
b8698a0f 752 register for the RHS, we don't want to change RHS' original reg.
e855c69d 753 If the insn is not SET, we may still be able to substitute something
b8698a0f 754 in it, and if we're here (don't have deps), it doesn't write INSN's
e855c69d
AB
755 dest. */
756 where = (has_rhs
757 ? &VINSN_RHS (*vi)
758 : &PATTERN (VINSN_INSN_RTX (*vi)));
759 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
760
761 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
762 if (rtx_ok_for_substitution_p (old, *where))
763 {
764 rtx new_insn;
765 rtx *where_replace;
766
767 /* We should copy these rtxes before substitution. */
768 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
769 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
770
b8698a0f 771 /* Where we'll replace.
e855c69d
AB
772 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
773 used instead of SET_SRC. */
774 where_replace = (has_rhs
775 ? &SET_SRC (PATTERN (new_insn))
776 : &PATTERN (new_insn));
777
b8698a0f
L
778 new_insn_valid
779 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e855c69d
AB
780 new_insn);
781
782 /* ??? Actually, constrain_operands result depends upon choice of
783 destination register. E.g. if we allow single register to be an rhs,
b8698a0f 784 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e855c69d
AB
785 in invalid insn dx=dx, so we'll loose this rhs here.
786 Just can't come up with significant testcase for this, so just
787 leaving it for now. */
788 if (new_insn_valid)
789 {
b8698a0f 790 change_vinsn_in_expr (expr,
e855c69d
AB
791 create_vinsn_from_insn_rtx (new_insn, false));
792
b8698a0f 793 /* Do not allow clobbering the address register of speculative
e855c69d
AB
794 insns. */
795 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
b8698a0f 796 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
e855c69d
AB
797 expr_dest_regno (expr)))
798 EXPR_TARGET_AVAILABLE (expr) = false;
799
800 return true;
801 }
802 else
803 return false;
804 }
805 else
806 return false;
807}
808
809/* Helper function for count_occurences_equiv. */
b8698a0f 810static int
e855c69d
AB
811count_occurrences_1 (rtx *cur_rtx, void *arg)
812{
813 rtx_search_arg_p p = (rtx_search_arg_p) arg;
814
815 /* The last param FOR_GCSE is true, because otherwise it performs excessive
816 substitutions like
817 r8 = r33
818 r16 = r33
819 for the last insn it presumes r33 equivalent to r8, so it changes it to
820 r33. Actually, there's no change, but it spoils debugging. */
821 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
822 {
823 /* Bail out if we occupy more than one register. */
824 if (REG_P (*cur_rtx)
72a54528 825 && HARD_REGISTER_P (*cur_rtx)
e855c69d
AB
826 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
827 {
828 p->n = 0;
829 return 1;
830 }
831
832 p->n++;
833
834 /* Do not traverse subexprs. */
835 return -1;
836 }
837
838 if (GET_CODE (*cur_rtx) == SUBREG
839 && REG_P (p->x)
5e841c82
AB
840 && (!REG_P (SUBREG_REG (*cur_rtx))
841 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
e855c69d
AB
842 {
843 /* ??? Do not support substituting regs inside subregs. In that case,
b8698a0f 844 simplify_subreg will be called by validate_replace_rtx, and
e855c69d
AB
845 unsubstitution will fail later. */
846 p->n = 0;
847 return 1;
848 }
849
850 /* Continue search. */
851 return 0;
852}
853
b8698a0f 854/* Return the number of places WHAT appears within WHERE.
e855c69d 855 Bail out when we found a reference occupying several hard registers. */
b8698a0f 856static int
e855c69d
AB
857count_occurrences_equiv (rtx what, rtx where)
858{
859 struct rtx_search_arg arg;
860
861 arg.x = what;
862 arg.n = 0;
863
864 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
865
866 return arg.n;
867}
868
869/* Returns TRUE if WHAT is found in WHERE rtx tree. */
870static bool
871rtx_ok_for_substitution_p (rtx what, rtx where)
872{
873 return (count_occurrences_equiv (what, where) > 0);
874}
875\f
876
877/* Functions to support register renaming. */
878
879/* Substitute VI's set source with REGNO. Returns newly created pattern
880 that has REGNO as its source. */
881static rtx
882create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
883{
884 rtx lhs_rtx;
885 rtx pattern;
886 rtx insn_rtx;
887
888 lhs_rtx = copy_rtx (VINSN_LHS (vi));
889
890 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
891 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
892
893 return insn_rtx;
894}
895
b8698a0f 896/* Returns whether INSN's src can be replaced with register number
e855c69d
AB
897 NEW_SRC_REG. E.g. the following insn is valid for i386:
898
b8698a0f 899 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e855c69d
AB
900 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
901 (reg:SI 0 ax [orig:770 c1 ] [770]))
902 (const_int 288 [0x120])) [0 str S1 A8])
903 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
904 (nil))
905
906 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
b8698a0f 907 because of operand constraints:
e855c69d
AB
908
909 (define_insn "*movqi_1"
910 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
911 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
912 )]
b8698a0f
L
913
914 So do constrain_operands here, before choosing NEW_SRC_REG as best
e855c69d
AB
915 reg for rhs. */
916
917static bool
918replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
919{
920 vinsn_t vi = INSN_VINSN (insn);
921 enum machine_mode mode;
922 rtx dst_loc;
923 bool res;
924
925 gcc_assert (VINSN_SEPARABLE_P (vi));
926
927 get_dest_and_mode (insn, &dst_loc, &mode);
928 gcc_assert (mode == GET_MODE (new_src_reg));
929
930 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
931 return true;
932
933 /* See whether SET_SRC can be replaced with this register. */
934 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
935 res = verify_changes (0);
936 cancel_changes (0);
937
938 return res;
939}
940
941/* Returns whether INSN still be valid after replacing it's DEST with
942 register NEW_REG. */
943static bool
944replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
945{
946 vinsn_t vi = INSN_VINSN (insn);
947 bool res;
948
949 /* We should deal here only with separable insns. */
950 gcc_assert (VINSN_SEPARABLE_P (vi));
951 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
952
953 /* See whether SET_DEST can be replaced with this register. */
954 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
955 res = verify_changes (0);
956 cancel_changes (0);
957
958 return res;
959}
960
961/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
962static rtx
963create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
964{
965 rtx rhs_rtx;
966 rtx pattern;
967 rtx insn_rtx;
968
969 rhs_rtx = copy_rtx (VINSN_RHS (vi));
970
971 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
972 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
973
974 return insn_rtx;
975}
976
b8698a0f 977/* Substitute lhs in the given expression EXPR for the register with number
e855c69d
AB
978 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
979static void
980replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
981{
982 rtx insn_rtx;
983 vinsn_t vinsn;
984
985 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
986 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
987
988 change_vinsn_in_expr (expr, vinsn);
989 EXPR_WAS_RENAMED (expr) = 1;
990 EXPR_TARGET_AVAILABLE (expr) = 1;
991}
992
993/* Returns whether VI writes either one of the USED_REGS registers or,
994 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
995static bool
b8698a0f 996vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e855c69d
AB
997 HARD_REG_SET unavailable_hard_regs)
998{
999 unsigned regno;
1000 reg_set_iterator rsi;
1001
1002 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1003 {
1004 if (REGNO_REG_SET_P (used_regs, regno))
1005 return true;
1006 if (HARD_REGISTER_NUM_P (regno)
1007 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1008 return true;
1009 }
1010
1011 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1012 {
1013 if (REGNO_REG_SET_P (used_regs, regno))
1014 return true;
1015 if (HARD_REGISTER_NUM_P (regno)
1016 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1017 return true;
1018 }
1019
1020 return false;
1021}
1022
b8698a0f 1023/* Returns register class of the output register in INSN.
e855c69d
AB
1024 Returns NO_REGS for call insns because some targets have constraints on
1025 destination register of a call insn.
b8698a0f 1026
e855c69d
AB
1027 Code adopted from regrename.c::build_def_use. */
1028static enum reg_class
1029get_reg_class (rtx insn)
1030{
1031 int alt, i, n_ops;
1032
1033 extract_insn (insn);
1034 if (! constrain_operands (1))
1035 fatal_insn_not_found (insn);
1036 preprocess_constraints ();
1037 alt = which_alternative;
1038 n_ops = recog_data.n_operands;
1039
1040 for (i = 0; i < n_ops; ++i)
1041 {
1042 int matches = recog_op_alt[i][alt].matches;
1043 if (matches >= 0)
1044 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1045 }
1046
1047 if (asm_noperands (PATTERN (insn)) > 0)
1048 {
1049 for (i = 0; i < n_ops; i++)
1050 if (recog_data.operand_type[i] == OP_OUT)
1051 {
1052 rtx *loc = recog_data.operand_loc[i];
1053 rtx op = *loc;
1054 enum reg_class cl = recog_op_alt[i][alt].cl;
1055
1056 if (REG_P (op)
1057 && REGNO (op) == ORIGINAL_REGNO (op))
1058 continue;
1059
1060 return cl;
1061 }
1062 }
1063 else if (!CALL_P (insn))
1064 {
1065 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1066 {
1067 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1068 enum reg_class cl = recog_op_alt[opn][alt].cl;
b8698a0f 1069
e855c69d
AB
1070 if (recog_data.operand_type[opn] == OP_OUT ||
1071 recog_data.operand_type[opn] == OP_INOUT)
1072 return cl;
1073 }
1074 }
1075
1076/* Insns like
1077 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1078 may result in returning NO_REGS, cause flags is written implicitly through
1079 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1080 return NO_REGS;
1081}
1082
1083#ifdef HARD_REGNO_RENAME_OK
1084/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1085static void
1086init_hard_regno_rename (int regno)
1087{
1088 int cur_reg;
1089
1090 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1091
1092 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1093 {
1094 /* We are not interested in renaming in other regs. */
1095 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1096 continue;
1097
1098 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1099 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1100 }
1101}
1102#endif
1103
b8698a0f 1104/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e855c69d
AB
1105 data first. */
1106static inline bool
a20d7130 1107sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d
AB
1108{
1109#ifdef HARD_REGNO_RENAME_OK
1110 /* Check whether this is all calculated. */
1111 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113
1114 init_hard_regno_rename (from);
1115
1116 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1117#else
1118 return true;
1119#endif
1120}
1121
1122/* Calculate set of registers that are capable of holding MODE. */
1123static void
1124init_regs_for_mode (enum machine_mode mode)
1125{
1126 int cur_reg;
b8698a0f 1127
e855c69d
AB
1128 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1130
1131 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1132 {
1133 int nregs = hard_regno_nregs[cur_reg][mode];
1134 int i;
b8698a0f 1135
e855c69d
AB
1136 for (i = nregs - 1; i >= 0; --i)
1137 if (fixed_regs[cur_reg + i]
1138 || global_regs[cur_reg + i]
b8698a0f 1139 /* Can't use regs which aren't saved by
e855c69d
AB
1140 the prologue. */
1141 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1142#ifdef LEAF_REGISTERS
1143 /* We can't use a non-leaf register if we're in a
1144 leaf function. */
1145 || (current_function_is_leaf
1146 && !LEAF_REGISTERS[cur_reg + i])
1147#endif
1148 )
1149 break;
b8698a0f
L
1150
1151 if (i >= 0)
e855c69d 1152 continue;
b8698a0f 1153
e855c69d
AB
1154 /* See whether it accepts all modes that occur in
1155 original insns. */
1156 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1157 continue;
b8698a0f 1158
e855c69d 1159 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
b8698a0f 1160 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e855c69d 1161 cur_reg);
b8698a0f
L
1162
1163 /* If the CUR_REG passed all the checks above,
e855c69d
AB
1164 then it's ok. */
1165 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1166 }
1167
1168 sel_hrd.regs_for_mode_ok[mode] = true;
1169}
1170
1171/* Init all register sets gathered in HRD. */
1172static void
1173init_hard_regs_data (void)
1174{
1175 int cur_reg = 0;
32e8bb8e 1176 int cur_mode = 0;
e855c69d
AB
1177
1178 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1179 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1180 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1181 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
b8698a0f
L
1182
1183 /* Initialize registers that are valid based on mode when this is
e855c69d
AB
1184 really needed. */
1185 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1186 sel_hrd.regs_for_mode_ok[cur_mode] = false;
b8698a0f 1187
e855c69d
AB
1188 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1189 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1190 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1191
1192#ifdef STACK_REGS
1193 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1194
1195 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1196 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1197#endif
b8698a0f 1198}
e855c69d 1199
b8698a0f 1200/* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
1201 for renaming rhs in INSN due to hardware restrictions (register class,
1202 modes compatibility etc). This doesn't affect original insn's dest reg,
1203 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1204 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1205 Registers that are in used_regs are always marked in
1206 unavailable_hard_regs as well. */
1207
1208static void
1209mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1210 regset used_regs ATTRIBUTE_UNUSED)
1211{
1212 enum machine_mode mode;
1213 enum reg_class cl = NO_REGS;
1214 rtx orig_dest;
1215 unsigned cur_reg, regno;
1216 hard_reg_set_iterator hrsi;
1217
1218 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1219 gcc_assert (reg_rename_p);
1220
1221 orig_dest = SET_DEST (PATTERN (def->orig_insn));
b8698a0f 1222
e855c69d
AB
1223 /* We have decided not to rename 'mem = something;' insns, as 'something'
1224 is usually a register. */
1225 if (!REG_P (orig_dest))
1226 return;
1227
1228 regno = REGNO (orig_dest);
1229
1230 /* If before reload, don't try to work with pseudos. */
1231 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1232 return;
1233
0c94f956
AM
1234 if (reload_completed)
1235 cl = get_reg_class (def->orig_insn);
e855c69d 1236
0c94f956
AM
1237 /* Stop if the original register is one of the fixed_regs, global_regs or
1238 frame pointer, or we could not discover its class. */
b8698a0f 1239 if (fixed_regs[regno]
e855c69d 1240 || global_regs[regno]
e3339d0f 1241#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
0c94f956 1242 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
e855c69d 1243#else
0c94f956 1244 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
e855c69d 1245#endif
0c94f956 1246 || (reload_completed && cl == NO_REGS))
e855c69d
AB
1247 {
1248 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1249
1250 /* Give a chance for original register, if it isn't in used_regs. */
1251 if (!def->crosses_call)
1252 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1253
1254 return;
1255 }
1256
1257 /* If something allocated on stack in this function, mark frame pointer
b8698a0f 1258 register unavailable, considering also modes.
e855c69d
AB
1259 FIXME: it is enough to do this once per all original defs. */
1260 if (frame_pointer_needed)
1261 {
1262 int i;
1263
1264 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
b8698a0f 1265 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1266 FRAME_POINTER_REGNUM + i);
1267
e3339d0f 1268#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
e855c69d 1269 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
b8698a0f 1270 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1271 HARD_FRAME_POINTER_REGNUM + i);
1272#endif
1273 }
1274
1275#ifdef STACK_REGS
1276 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1277 is equivalent to as if all stack regs were in this set.
1278 I.e. no stack register can be renamed, and even if it's an original
b8698a0f
L
1279 register here we make sure it won't be lifted over it's previous def
1280 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e855c69d
AB
1281 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1282 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
b8698a0f
L
1283 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1284 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d 1285 sel_hrd.stack_regs);
b8698a0f 1286#endif
e855c69d 1287
b8698a0f 1288 /* If there's a call on this path, make regs from call_used_reg_set
e855c69d
AB
1289 unavailable. */
1290 if (def->crosses_call)
b8698a0f 1291 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1292 call_used_reg_set);
1293
b8698a0f 1294 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e855c69d
AB
1295 but not register classes. */
1296 if (!reload_completed)
1297 return;
1298
b8698a0f 1299 /* Leave regs as 'available' only from the current
e855c69d 1300 register class. */
e855c69d
AB
1301 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1302 reg_class_contents[cl]);
1303
0c94f956
AM
1304 mode = GET_MODE (orig_dest);
1305
e855c69d
AB
1306 /* Leave only registers available for this mode. */
1307 if (!sel_hrd.regs_for_mode_ok[mode])
1308 init_regs_for_mode (mode);
b8698a0f 1309 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1310 sel_hrd.regs_for_mode[mode]);
1311
1312 /* Exclude registers that are partially call clobbered. */
1313 if (def->crosses_call
1314 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
b8698a0f 1315 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1316 sel_hrd.regs_for_call_clobbered[mode]);
1317
1318 /* Leave only those that are ok to rename. */
1319 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1320 0, cur_reg, hrsi)
1321 {
1322 int nregs;
1323 int i;
1324
1325 nregs = hard_regno_nregs[cur_reg][mode];
1326 gcc_assert (nregs > 0);
1327
1328 for (i = nregs - 1; i >= 0; --i)
1329 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1330 break;
1331
b8698a0f
L
1332 if (i >= 0)
1333 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e855c69d
AB
1334 cur_reg);
1335 }
1336
b8698a0f 1337 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1338 reg_rename_p->unavailable_hard_regs);
1339
1340 /* Regno is always ok from the renaming part of view, but it really
1341 could be in *unavailable_hard_regs already, so set it here instead
1342 of there. */
1343 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1344}
1345
1346/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1347 best register more recently than REG2. */
1348static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1349
1350/* Indicates the number of times renaming happened before the current one. */
1351static int reg_rename_this_tick;
1352
b8698a0f 1353/* Choose the register among free, that is suitable for storing
e855c69d
AB
1354 the rhs value.
1355
1356 ORIGINAL_INSNS is the list of insns where the operation (rhs)
b8698a0f
L
1357 originally appears. There could be multiple original operations
1358 for single rhs since we moving it up and merging along different
e855c69d
AB
1359 paths.
1360
1361 Some code is adapted from regrename.c (regrename_optimize).
1362 If original register is available, function returns it.
1363 Otherwise it performs the checks, so the new register should
1364 comply with the following:
b8698a0f 1365 - it should not violate any live ranges (such registers are in
e855c69d
AB
1366 REG_RENAME_P->available_for_renaming set);
1367 - it should not be in the HARD_REGS_USED regset;
1368 - it should be in the class compatible with original uses;
1369 - it should not be clobbered through reference with different mode;
b8698a0f 1370 - if we're in the leaf function, then the new register should
e855c69d
AB
1371 not be in the LEAF_REGISTERS;
1372 - etc.
1373
1374 If several registers meet the conditions, the register with smallest
1375 tick is returned to achieve more even register allocation.
1376
1377 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1378
1379 If no register satisfies the above conditions, NULL_RTX is returned. */
1380static rtx
b8698a0f
L
1381choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1382 struct reg_rename *reg_rename_p,
e855c69d
AB
1383 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1384{
1385 int best_new_reg;
1386 unsigned cur_reg;
1387 enum machine_mode mode = VOIDmode;
1388 unsigned regno, i, n;
1389 hard_reg_set_iterator hrsi;
1390 def_list_iterator di;
1391 def_t def;
1392
1393 /* If original register is available, return it. */
1394 *is_orig_reg_p_ptr = true;
1395
1396 FOR_EACH_DEF (def, di, original_insns)
1397 {
1398 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1399
1400 gcc_assert (REG_P (orig_dest));
1401
b8698a0f 1402 /* Check that all original operations have the same mode.
e855c69d 1403 This is done for the next loop; if we'd return from this
b8698a0f 1404 loop, we'd check only part of them, but in this case
e855c69d
AB
1405 it doesn't matter. */
1406 if (mode == VOIDmode)
1407 mode = GET_MODE (orig_dest);
1408 gcc_assert (mode == GET_MODE (orig_dest));
1409
1410 regno = REGNO (orig_dest);
1411 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1412 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1413 break;
1414
1415 /* All hard registers are available. */
1416 if (i == n)
1417 {
1418 gcc_assert (mode != VOIDmode);
b8698a0f 1419
e855c69d
AB
1420 /* Hard registers should not be shared. */
1421 return gen_rtx_REG (mode, regno);
1422 }
1423 }
b8698a0f 1424
e855c69d
AB
1425 *is_orig_reg_p_ptr = false;
1426 best_new_reg = -1;
b8698a0f
L
1427
1428 /* Among all available regs choose the register that was
e855c69d
AB
1429 allocated earliest. */
1430 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1431 0, cur_reg, hrsi)
1432 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1433 {
a9ced68b
AM
1434 /* Check that all hard regs for mode are available. */
1435 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1436 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1437 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1438 cur_reg + i))
1439 break;
1440
1441 if (i < n)
1442 continue;
1443
e855c69d
AB
1444 /* All hard registers are available. */
1445 if (best_new_reg < 0
1446 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1447 {
1448 best_new_reg = cur_reg;
b8698a0f 1449
e855c69d
AB
1450 /* Return immediately when we know there's no better reg. */
1451 if (! reg_rename_tick[best_new_reg])
1452 break;
1453 }
1454 }
1455
1456 if (best_new_reg >= 0)
1457 {
1458 /* Use the check from the above loop. */
1459 gcc_assert (mode != VOIDmode);
1460 return gen_rtx_REG (mode, best_new_reg);
1461 }
1462
1463 return NULL_RTX;
1464}
1465
1466/* A wrapper around choose_best_reg_1 () to verify that we make correct
1467 assumptions about available registers in the function. */
1468static rtx
b8698a0f 1469choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e855c69d
AB
1470 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1471{
b8698a0f 1472 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e855c69d
AB
1473 original_insns, is_orig_reg_p_ptr);
1474
a9ced68b 1475 /* FIXME loop over hard_regno_nregs here. */
e855c69d
AB
1476 gcc_assert (best_reg == NULL_RTX
1477 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1478
1479 return best_reg;
1480}
1481
b8698a0f 1482/* Choose the pseudo register for storing rhs value. As this is supposed
e855c69d 1483 to work before reload, we return either the original register or make
b8698a0f
L
1484 the new one. The parameters are the same that in choose_nest_reg_1
1485 functions, except that USED_REGS may contain pseudos.
e855c69d
AB
1486 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1487
b8698a0f
L
1488 TODO: take into account register pressure while doing this. Up to this
1489 moment, this function would never return NULL for pseudos, but we should
e855c69d
AB
1490 not rely on this. */
1491static rtx
b8698a0f
L
1492choose_best_pseudo_reg (regset used_regs,
1493 struct reg_rename *reg_rename_p,
e855c69d
AB
1494 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1495{
1496 def_list_iterator i;
1497 def_t def;
1498 enum machine_mode mode = VOIDmode;
1499 bool bad_hard_regs = false;
b8698a0f 1500
e855c69d
AB
1501 /* We should not use this after reload. */
1502 gcc_assert (!reload_completed);
1503
1504 /* If original register is available, return it. */
1505 *is_orig_reg_p_ptr = true;
1506
1507 FOR_EACH_DEF (def, i, original_insns)
1508 {
1509 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1510 int orig_regno;
b8698a0f 1511
e855c69d 1512 gcc_assert (REG_P (dest));
b8698a0f 1513
e855c69d
AB
1514 /* Check that all original operations have the same mode. */
1515 if (mode == VOIDmode)
1516 mode = GET_MODE (dest);
1517 else
1518 gcc_assert (mode == GET_MODE (dest));
1519 orig_regno = REGNO (dest);
b8698a0f 1520
e855c69d
AB
1521 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1522 {
1523 if (orig_regno < FIRST_PSEUDO_REGISTER)
1524 {
1525 gcc_assert (df_regs_ever_live_p (orig_regno));
b8698a0f
L
1526
1527 /* For hard registers, we have to check hardware imposed
e855c69d 1528 limitations (frame/stack registers, calls crossed). */
b8698a0f 1529 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1530 orig_regno))
1531 {
b8698a0f
L
1532 /* Don't let register cross a call if it doesn't already
1533 cross one. This condition is written in accordance with
e855c69d 1534 that in sched-deps.c sched_analyze_reg(). */
b8698a0f 1535 if (!reg_rename_p->crosses_call
e855c69d 1536 || REG_N_CALLS_CROSSED (orig_regno) > 0)
b8698a0f 1537 return gen_rtx_REG (mode, orig_regno);
e855c69d 1538 }
b8698a0f 1539
e855c69d
AB
1540 bad_hard_regs = true;
1541 }
1542 else
1543 return dest;
1544 }
1545 }
1546
1547 *is_orig_reg_p_ptr = false;
b8698a0f 1548
e855c69d
AB
1549 /* We had some original hard registers that couldn't be used.
1550 Those were likely special. Don't try to create a pseudo. */
1551 if (bad_hard_regs)
1552 return NULL_RTX;
b8698a0f
L
1553
1554 /* We haven't found a register from original operations. Get a new one.
e855c69d
AB
1555 FIXME: control register pressure somehow. */
1556 {
1557 rtx new_reg = gen_reg_rtx (mode);
1558
1559 gcc_assert (mode != VOIDmode);
1560
1561 max_regno = max_reg_num ();
1562 maybe_extend_reg_info_p ();
1563 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1564
1565 return new_reg;
1566 }
1567}
1568
1569/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1570 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1571static void
b8698a0f 1572verify_target_availability (expr_t expr, regset used_regs,
e855c69d
AB
1573 struct reg_rename *reg_rename_p)
1574{
1575 unsigned n, i, regno;
1576 enum machine_mode mode;
1577 bool target_available, live_available, hard_available;
1578
1579 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1580 return;
b8698a0f 1581
e855c69d
AB
1582 regno = expr_dest_regno (expr);
1583 mode = GET_MODE (EXPR_LHS (expr));
1584 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1585 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1586
1587 live_available = hard_available = true;
1588 for (i = 0; i < n; i++)
1589 {
1590 if (bitmap_bit_p (used_regs, regno + i))
1591 live_available = false;
1592 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1593 hard_available = false;
1594 }
1595
b8698a0f 1596 /* When target is not available, it may be due to hard register
e855c69d
AB
1597 restrictions, e.g. crosses calls, so we check hard_available too. */
1598 if (target_available)
1599 gcc_assert (live_available);
1600 else
b8698a0f 1601 /* Check only if we haven't scheduled something on the previous fence,
e855c69d
AB
1602 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1603 and having more than one fence, we may end having targ_un in a block
b8698a0f 1604 in which successors target register is actually available.
e855c69d
AB
1605
1606 The last condition handles the case when a dependence from a call insn
b8698a0f
L
1607 was created in sched-deps.c for insns with destination registers that
1608 never crossed a call before, but do cross one after our code motion.
e855c69d 1609
b8698a0f
L
1610 FIXME: in the latter case, we just uselessly called find_used_regs,
1611 because we can't move this expression with any other register
e855c69d 1612 as well. */
b8698a0f
L
1613 gcc_assert (scheduled_something_on_previous_fence || !live_available
1614 || !hard_available
1615 || (!reload_completed && reg_rename_p->crosses_call
e855c69d
AB
1616 && REG_N_CALLS_CROSSED (regno) == 0));
1617}
1618
b8698a0f
L
1619/* Collect unavailable registers due to liveness for EXPR from BNDS
1620 into USED_REGS. Save additional information about available
e855c69d
AB
1621 registers and unavailable due to hardware restriction registers
1622 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1623 list. */
1624static void
1625collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1626 struct reg_rename *reg_rename_p,
1627 def_list_t *original_insns)
1628{
1629 for (; bnds; bnds = BLIST_NEXT (bnds))
1630 {
1631 bool res;
1632 av_set_t orig_ops = NULL;
1633 bnd_t bnd = BLIST_BND (bnds);
1634
1635 /* If the chosen best expr doesn't belong to current boundary,
1636 skip it. */
1637 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1638 continue;
1639
1640 /* Put in ORIG_OPS all exprs from this boundary that became
1641 RES on top. */
1642 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1643
1644 /* Compute used regs and OR it into the USED_REGS. */
1645 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1646 reg_rename_p, original_insns);
1647
1648 /* FIXME: the assert is true until we'd have several boundaries. */
1649 gcc_assert (res);
1650 av_set_clear (&orig_ops);
1651 }
1652}
1653
1654/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1655 If BEST_REG is valid, replace LHS of EXPR with it. */
1656static bool
1657try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1658{
e855c69d
AB
1659 /* Try whether we'll be able to generate the insn
1660 'dest := best_reg' at the place of the original operation. */
1661 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1662 {
1663 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1664
1665 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1666
0666ff4e
AB
1667 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1668 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1669 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e855c69d
AB
1670 return false;
1671 }
1672
1673 /* Make sure that EXPR has the right destination
1674 register. */
0666ff4e
AB
1675 if (expr_dest_regno (expr) != REGNO (best_reg))
1676 replace_dest_with_reg_in_expr (expr, best_reg);
1677 else
1678 EXPR_TARGET_AVAILABLE (expr) = 1;
1679
e855c69d
AB
1680 return true;
1681}
1682
b8698a0f
L
1683/* Select and assign best register to EXPR searching from BNDS.
1684 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e855c69d
AB
1685 Return FALSE if no register can be chosen, which could happen when:
1686 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1687 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1688 that are used on the moving path. */
1689static bool
1690find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1691{
1692 static struct reg_rename reg_rename_data;
1693
1694 regset used_regs;
1695 def_list_t original_insns = NULL;
1696 bool reg_ok;
1697
1698 *is_orig_reg_p = false;
1699
1700 /* Don't bother to do anything if this insn doesn't set any registers. */
1701 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1702 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1703 return true;
1704
1705 used_regs = get_clear_regset_from_pool ();
1706 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1707
1708 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1709 &original_insns);
1710
1711#ifdef ENABLE_CHECKING
1712 /* If after reload, make sure we're working with hard regs here. */
b8698a0f 1713 if (reload_completed)
e855c69d
AB
1714 {
1715 reg_set_iterator rsi;
1716 unsigned i;
b8698a0f 1717
e855c69d
AB
1718 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1719 gcc_unreachable ();
1720 }
1721#endif
1722
1723 if (EXPR_SEPARABLE_P (expr))
1724 {
1725 rtx best_reg = NULL_RTX;
1726 /* Check that we have computed availability of a target register
1727 correctly. */
1728 verify_target_availability (expr, used_regs, &reg_rename_data);
1729
1730 /* Turn everything in hard regs after reload. */
1731 if (reload_completed)
1732 {
1733 HARD_REG_SET hard_regs_used;
1734 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1735
1736 /* Join hard registers unavailable due to register class
1737 restrictions and live range intersection. */
1738 IOR_HARD_REG_SET (hard_regs_used,
1739 reg_rename_data.unavailable_hard_regs);
1740
1741 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1742 original_insns, is_orig_reg_p);
1743 }
1744 else
1745 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1746 original_insns, is_orig_reg_p);
1747
1748 if (!best_reg)
1749 reg_ok = false;
1750 else if (*is_orig_reg_p)
1751 {
1752 /* In case of unification BEST_REG may be different from EXPR's LHS
1753 when EXPR's LHS is unavailable, and there is another LHS among
1754 ORIGINAL_INSNS. */
1755 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1756 }
1757 else
1758 {
1759 /* Forbid renaming of low-cost insns. */
1760 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1761 reg_ok = false;
1762 else
1763 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1764 }
1765 }
1766 else
1767 {
1768 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1769 any of the HARD_REGS_USED set. */
1770 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1771 reg_rename_data.unavailable_hard_regs))
1772 {
1773 reg_ok = false;
1774 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1775 }
1776 else
1777 {
1778 reg_ok = true;
1779 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1780 }
1781 }
1782
1783 ilist_clear (&original_insns);
1784 return_regset_to_pool (used_regs);
1785
1786 return reg_ok;
1787}
1788\f
1789
1790/* Return true if dependence described by DS can be overcomed. */
1791static bool
1792can_speculate_dep_p (ds_t ds)
1793{
1794 if (spec_info == NULL)
1795 return false;
1796
1797 /* Leave only speculative data. */
1798 ds &= SPECULATIVE;
1799
1800 if (ds == 0)
1801 return false;
1802
1803 {
1804 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1805 that we can overcome. */
1806 ds_t spec_mask = spec_info->mask;
1807
1808 if ((ds & spec_mask) != ds)
1809 return false;
1810 }
1811
1812 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1813 return false;
1814
1815 return true;
1816}
1817
1818/* Get a speculation check instruction.
1819 C_EXPR is a speculative expression,
1820 CHECK_DS describes speculations that should be checked,
1821 ORIG_INSN is the original non-speculative insn in the stream. */
1822static insn_t
1823create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1824{
1825 rtx check_pattern;
1826 rtx insn_rtx;
1827 insn_t insn;
1828 basic_block recovery_block;
1829 rtx label;
1830
1831 /* Create a recovery block if target is going to emit branchy check, or if
1832 ORIG_INSN was speculative already. */
388092d5 1833 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1834 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1835 {
1836 recovery_block = sel_create_recovery_block (orig_insn);
1837 label = BB_HEAD (recovery_block);
1838 }
1839 else
1840 {
1841 recovery_block = NULL;
1842 label = NULL_RTX;
1843 }
1844
1845 /* Get pattern of the check. */
1846 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1847 check_ds);
1848
1849 gcc_assert (check_pattern != NULL);
1850
1851 /* Emit check. */
1852 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1853
1854 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1855 INSN_SEQNO (orig_insn), orig_insn);
1856
1857 /* Make check to be non-speculative. */
1858 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1859 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1860
1861 /* Decrease priority of check by difference of load/check instruction
1862 latencies. */
1863 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1864 - sel_vinsn_cost (INSN_VINSN (insn)));
1865
1866 /* Emit copy of original insn (though with replaced target register,
1867 if needed) to the recovery block. */
1868 if (recovery_block != NULL)
1869 {
1870 rtx twin_rtx;
e855c69d
AB
1871
1872 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1873 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1124098b
JJ
1874 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1875 INSN_EXPR (orig_insn),
1876 INSN_SEQNO (insn),
1877 bb_note (recovery_block));
e855c69d
AB
1878 }
1879
1880 /* If we've generated a data speculation check, make sure
1881 that all the bookkeeping instruction we'll create during
1882 this move_op () will allocate an ALAT entry so that the
1883 check won't fail.
1884 In case of control speculation we must convert C_EXPR to control
1885 speculative mode, because failing to do so will bring us an exception
1886 thrown by the non-control-speculative load. */
1887 check_ds = ds_get_max_dep_weak (check_ds);
1888 speculate_expr (c_expr, check_ds);
b8698a0f 1889
e855c69d
AB
1890 return insn;
1891}
1892
1893/* True when INSN is a "regN = regN" copy. */
1894static bool
1895identical_copy_p (rtx insn)
1896{
1897 rtx lhs, rhs, pat;
1898
1899 pat = PATTERN (insn);
1900
1901 if (GET_CODE (pat) != SET)
1902 return false;
1903
1904 lhs = SET_DEST (pat);
1905 if (!REG_P (lhs))
1906 return false;
1907
1908 rhs = SET_SRC (pat);
1909 if (!REG_P (rhs))
1910 return false;
1911
1912 return REGNO (lhs) == REGNO (rhs);
1913}
1914
b8698a0f 1915/* Undo all transformations on *AV_PTR that were done when
e855c69d
AB
1916 moving through INSN. */
1917static void
1918undo_transformations (av_set_t *av_ptr, rtx insn)
1919{
1920 av_set_iterator av_iter;
1921 expr_t expr;
1922 av_set_t new_set = NULL;
1923
b8698a0f 1924 /* First, kill any EXPR that uses registers set by an insn. This is
e855c69d
AB
1925 required for correctness. */
1926 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1927 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
b8698a0f 1928 && bitmap_intersect_p (INSN_REG_SETS (insn),
e855c69d
AB
1929 VINSN_REG_USES (EXPR_VINSN (expr)))
1930 /* When an insn looks like 'r1 = r1', we could substitute through
1931 it, but the above condition will still hold. This happened with
b8698a0f 1932 gcc.c-torture/execute/961125-1.c. */
e855c69d
AB
1933 && !identical_copy_p (insn))
1934 {
1935 if (sched_verbose >= 6)
b8698a0f 1936 sel_print ("Expr %d removed due to use/set conflict\n",
e855c69d
AB
1937 INSN_UID (EXPR_INSN_RTX (expr)));
1938 av_set_iter_remove (&av_iter);
1939 }
1940
1941 /* Undo transformations looking at the history vector. */
1942 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1943 {
1944 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1945 insn, EXPR_VINSN (expr), true);
1946
1947 if (index >= 0)
1948 {
1949 expr_history_def *phist;
1950
b8698a0f 1951 phist = VEC_index (expr_history_def,
e855c69d
AB
1952 EXPR_HISTORY_OF_CHANGES (expr),
1953 index);
1954
b8698a0f 1955 switch (phist->type)
e855c69d
AB
1956 {
1957 case TRANS_SPECULATION:
1958 {
1959 ds_t old_ds, new_ds;
b8698a0f 1960
e855c69d 1961 /* Compute the difference between old and new speculative
b8698a0f 1962 statuses: that's what we need to check.
e855c69d
AB
1963 Earlier we used to assert that the status will really
1964 change. This no longer works because only the probability
1965 bits in the status may have changed during compute_av_set,
b8698a0f
L
1966 and in the case of merging different probabilities of the
1967 same speculative status along different paths we do not
e855c69d
AB
1968 record this in the history vector. */
1969 old_ds = phist->spec_ds;
1970 new_ds = EXPR_SPEC_DONE_DS (expr);
1971
1972 old_ds &= SPECULATIVE;
1973 new_ds &= SPECULATIVE;
1974 new_ds &= ~old_ds;
b8698a0f 1975
e855c69d
AB
1976 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1977 break;
1978 }
1979 case TRANS_SUBSTITUTION:
1980 {
1981 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1982 vinsn_t new_vi;
1983 bool add = true;
b8698a0f 1984
e855c69d 1985 new_vi = phist->old_expr_vinsn;
b8698a0f
L
1986
1987 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e855c69d
AB
1988 == EXPR_SEPARABLE_P (expr));
1989 copy_expr (tmp_expr, expr);
1990
b8698a0f 1991 if (vinsn_equal_p (phist->new_expr_vinsn,
e855c69d
AB
1992 EXPR_VINSN (tmp_expr)))
1993 change_vinsn_in_expr (tmp_expr, new_vi);
1994 else
1995 /* This happens when we're unsubstituting on a bookkeeping
1996 copy, which was in turn substituted. The history is wrong
1997 in this case. Do it the hard way. */
1998 add = substitute_reg_in_expr (tmp_expr, insn, true);
1999 if (add)
2000 av_set_add (&new_set, tmp_expr);
2001 clear_expr (tmp_expr);
2002 break;
2003 }
2004 default:
2005 gcc_unreachable ();
2006 }
2007 }
b8698a0f 2008
e855c69d
AB
2009 }
2010
2011 av_set_union_and_clear (av_ptr, &new_set, NULL);
2012}
2013\f
2014
2015/* Moveup_* helpers for code motion and computing av sets. */
2016
2017/* Propagates EXPR inside an insn group through THROUGH_INSN.
b8698a0f 2018 The difference from the below function is that only substitution is
e855c69d
AB
2019 performed. */
2020static enum MOVEUP_EXPR_CODE
2021moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2022{
2023 vinsn_t vi = EXPR_VINSN (expr);
2024 ds_t *has_dep_p;
2025 ds_t full_ds;
2026
2027 /* Do this only inside insn group. */
2028 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2029
2030 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2031 if (full_ds == 0)
2032 return MOVEUP_EXPR_SAME;
2033
2034 /* Substitution is the possible choice in this case. */
2035 if (has_dep_p[DEPS_IN_RHS])
2036 {
2037 /* Can't substitute UNIQUE VINSNs. */
2038 gcc_assert (!VINSN_UNIQUE_P (vi));
b8698a0f
L
2039
2040 if (can_substitute_through_p (through_insn,
e855c69d
AB
2041 has_dep_p[DEPS_IN_RHS])
2042 && substitute_reg_in_expr (expr, through_insn, false))
2043 {
2044 EXPR_WAS_SUBSTITUTED (expr) = true;
2045 return MOVEUP_EXPR_CHANGED;
2046 }
2047
2048 /* Don't care about this, as even true dependencies may be allowed
2049 in an insn group. */
2050 return MOVEUP_EXPR_SAME;
2051 }
2052
2053 /* This can catch output dependencies in COND_EXECs. */
2054 if (has_dep_p[DEPS_IN_INSN])
2055 return MOVEUP_EXPR_NULL;
b8698a0f 2056
e855c69d
AB
2057 /* This is either an output or an anti dependence, which usually have
2058 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2059 will fix this. */
2060 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2061 return MOVEUP_EXPR_AS_RHS;
2062}
2063
2064/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2065#define CANT_MOVE_TRAPPING(expr, through_insn) \
2066 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2067 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2068 && !sel_insn_is_speculation_check (through_insn))
2069
2070/* True when a conflict on a target register was found during moveup_expr. */
2071static bool was_target_conflict = false;
2072
b5b8b0ac
AO
2073/* Return true when moving a debug INSN across THROUGH_INSN will
2074 create a bookkeeping block. We don't want to create such blocks,
2075 for they would cause codegen differences between compilations with
2076 and without debug info. */
2077
2078static bool
2079moving_insn_creates_bookkeeping_block_p (insn_t insn,
2080 insn_t through_insn)
2081{
2082 basic_block bbi, bbt;
2083 edge e1, e2;
2084 edge_iterator ei1, ei2;
2085
2086 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2087 {
2088 if (sched_verbose >= 9)
2089 sel_print ("no bookkeeping required: ");
2090 return FALSE;
2091 }
2092
2093 bbi = BLOCK_FOR_INSN (insn);
2094
2095 if (EDGE_COUNT (bbi->preds) == 1)
2096 {
2097 if (sched_verbose >= 9)
2098 sel_print ("only one pred edge: ");
2099 return TRUE;
2100 }
2101
2102 bbt = BLOCK_FOR_INSN (through_insn);
2103
2104 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2105 {
2106 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2107 {
2108 if (find_block_for_bookkeeping (e1, e2, TRUE))
2109 {
2110 if (sched_verbose >= 9)
2111 sel_print ("found existing block: ");
2112 return FALSE;
2113 }
2114 }
2115 }
2116
2117 if (sched_verbose >= 9)
2118 sel_print ("would create bookkeeping block: ");
2119
2120 return TRUE;
2121}
2122
e855c69d 2123/* Modifies EXPR so it can be moved through the THROUGH_INSN,
b8698a0f
L
2124 performing necessary transformations. Record the type of transformation
2125 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e855c69d 2126 permit all dependencies except true ones, and try to remove those
b8698a0f
L
2127 too via forward substitution. All cases when a non-eliminable
2128 non-zero cost dependency exists inside an insn group will be fixed
e855c69d
AB
2129 in tick_check_p instead. */
2130static enum MOVEUP_EXPR_CODE
2131moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2132 enum local_trans_type *ptrans_type)
2133{
2134 vinsn_t vi = EXPR_VINSN (expr);
2135 insn_t insn = VINSN_INSN_RTX (vi);
2136 bool was_changed = false;
2137 bool as_rhs = false;
2138 ds_t *has_dep_p;
2139 ds_t full_ds;
2140
2141 /* When inside_insn_group, delegate to the helper. */
2142 if (inside_insn_group)
2143 return moveup_expr_inside_insn_group (expr, through_insn);
2144
2145 /* Deal with unique insns and control dependencies. */
2146 if (VINSN_UNIQUE_P (vi))
2147 {
2148 /* We can move jumps without side-effects or jumps that are
2149 mutually exclusive with instruction THROUGH_INSN (all in cases
2150 dependencies allow to do so and jump is not speculative). */
2151 if (control_flow_insn_p (insn))
2152 {
2153 basic_block fallthru_bb;
2154
b8698a0f 2155 /* Do not move checks and do not move jumps through other
e855c69d
AB
2156 jumps. */
2157 if (control_flow_insn_p (through_insn)
2158 || sel_insn_is_speculation_check (insn))
2159 return MOVEUP_EXPR_NULL;
2160
2161 /* Don't move jumps through CFG joins. */
2162 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2163 return MOVEUP_EXPR_NULL;
2164
b8698a0f 2165 /* The jump should have a clear fallthru block, and
e855c69d
AB
2166 this block should be in the current region. */
2167 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2168 || ! in_current_region_p (fallthru_bb))
2169 return MOVEUP_EXPR_NULL;
b8698a0f
L
2170
2171 /* And it should be mutually exclusive with through_insn, or
e855c69d
AB
2172 be an unconditional jump. */
2173 if (! any_uncondjump_p (insn)
b5b8b0ac
AO
2174 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2175 && ! DEBUG_INSN_P (through_insn))
e855c69d
AB
2176 return MOVEUP_EXPR_NULL;
2177 }
2178
2179 /* Don't move what we can't move. */
2180 if (EXPR_CANT_MOVE (expr)
2181 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 return MOVEUP_EXPR_NULL;
2183
2184 /* Don't move SCHED_GROUP instruction through anything.
2185 If we don't force this, then it will be possible to start
2186 scheduling a sched_group before all its dependencies are
2187 resolved.
2188 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189 as late as possible through rank_for_schedule. */
2190 if (SCHED_GROUP_P (insn))
2191 return MOVEUP_EXPR_NULL;
2192 }
2193 else
2194 gcc_assert (!control_flow_insn_p (insn));
2195
b5b8b0ac
AO
2196 /* Don't move debug insns if this would require bookkeeping. */
2197 if (DEBUG_INSN_P (insn)
2198 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200 return MOVEUP_EXPR_NULL;
2201
e855c69d
AB
2202 /* Deal with data dependencies. */
2203 was_target_conflict = false;
2204 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205 if (full_ds == 0)
2206 {
2207 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 return MOVEUP_EXPR_SAME;
2209 }
2210 else
2211 {
b8698a0f 2212 /* We can move UNIQUE insn up only as a whole and unchanged,
e855c69d
AB
2213 so it shouldn't have any dependencies. */
2214 if (VINSN_UNIQUE_P (vi))
2215 return MOVEUP_EXPR_NULL;
2216 }
2217
2218 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219 {
2220 int res;
2221
2222 res = speculate_expr (expr, full_ds);
2223 if (res >= 0)
2224 {
2225 /* Speculation was successful. */
2226 full_ds = 0;
2227 was_changed = (res > 0);
2228 if (res == 2)
2229 was_target_conflict = true;
2230 if (ptrans_type)
2231 *ptrans_type = TRANS_SPECULATION;
2232 sel_clear_has_dependence ();
2233 }
2234 }
2235
2236 if (has_dep_p[DEPS_IN_INSN])
2237 /* We have some dependency that cannot be discarded. */
2238 return MOVEUP_EXPR_NULL;
2239
2240 if (has_dep_p[DEPS_IN_LHS])
b8698a0f 2241 {
e855c69d 2242 /* Only separable insns can be moved up with the new register.
b8698a0f 2243 Anyways, we should mark that the original register is
e855c69d
AB
2244 unavailable. */
2245 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246 return MOVEUP_EXPR_NULL;
2247
2248 EXPR_TARGET_AVAILABLE (expr) = false;
2249 was_target_conflict = true;
2250 as_rhs = true;
2251 }
2252
2253 /* At this point we have either separable insns, that will be lifted
2254 up only as RHSes, or non-separable insns with no dependency in lhs.
2255 If dependency is in RHS, then try to perform substitution and move up
2256 substituted RHS:
2257
2258 Ex. 1: Ex.2
2259 y = x; y = x;
2260 z = y*2; y = y*2;
2261
b8698a0f 2262 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e855c69d
AB
2263 moved above y=x assignment as z=x*2.
2264
b8698a0f 2265 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e855c69d
AB
2266 side can be moved because of the output dependency. The operation was
2267 cropped to its rhs above. */
2268 if (has_dep_p[DEPS_IN_RHS])
2269 {
2270 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2271
2272 /* Can't substitute UNIQUE VINSNs. */
2273 gcc_assert (!VINSN_UNIQUE_P (vi));
2274
2275 if (can_speculate_dep_p (*rhs_dsp))
2276 {
2277 int res;
b8698a0f 2278
e855c69d
AB
2279 res = speculate_expr (expr, *rhs_dsp);
2280 if (res >= 0)
2281 {
2282 /* Speculation was successful. */
2283 *rhs_dsp = 0;
2284 was_changed = (res > 0);
2285 if (res == 2)
2286 was_target_conflict = true;
2287 if (ptrans_type)
2288 *ptrans_type = TRANS_SPECULATION;
2289 }
2290 else
2291 return MOVEUP_EXPR_NULL;
2292 }
2293 else if (can_substitute_through_p (through_insn,
2294 *rhs_dsp)
2295 && substitute_reg_in_expr (expr, through_insn, false))
2296 {
2297 /* ??? We cannot perform substitution AND speculation on the same
2298 insn. */
2299 gcc_assert (!was_changed);
2300 was_changed = true;
2301 if (ptrans_type)
2302 *ptrans_type = TRANS_SUBSTITUTION;
2303 EXPR_WAS_SUBSTITUTED (expr) = true;
2304 }
2305 else
2306 return MOVEUP_EXPR_NULL;
2307 }
2308
2309 /* Don't move trapping insns through jumps.
2310 This check should be at the end to give a chance to control speculation
2311 to perform its duties. */
2312 if (CANT_MOVE_TRAPPING (expr, through_insn))
2313 return MOVEUP_EXPR_NULL;
2314
b8698a0f
L
2315 return (was_changed
2316 ? MOVEUP_EXPR_CHANGED
2317 : (as_rhs
e855c69d
AB
2318 ? MOVEUP_EXPR_AS_RHS
2319 : MOVEUP_EXPR_SAME));
2320}
2321
b8698a0f 2322/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d
AB
2323 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2324 that can exist within a parallel group. Write to RES the resulting
2325 code for moveup_expr. */
b8698a0f 2326static bool
e855c69d
AB
2327try_bitmap_cache (expr_t expr, insn_t insn,
2328 bool inside_insn_group,
2329 enum MOVEUP_EXPR_CODE *res)
2330{
2331 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
b8698a0f 2332
e855c69d
AB
2333 /* First check whether we've analyzed this situation already. */
2334 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2335 {
2336 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2337 {
2338 if (sched_verbose >= 6)
2339 sel_print ("removed (cached)\n");
2340 *res = MOVEUP_EXPR_NULL;
2341 return true;
2342 }
2343 else
2344 {
2345 if (sched_verbose >= 6)
2346 sel_print ("unchanged (cached)\n");
2347 *res = MOVEUP_EXPR_SAME;
2348 return true;
2349 }
2350 }
2351 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2352 {
2353 if (inside_insn_group)
2354 {
2355 if (sched_verbose >= 6)
2356 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2357 *res = MOVEUP_EXPR_SAME;
2358 return true;
b8698a0f 2359
e855c69d
AB
2360 }
2361 else
2362 EXPR_TARGET_AVAILABLE (expr) = false;
2363
b8698a0f
L
2364 /* This is the only case when propagation result can change over time,
2365 as we can dynamically switch off scheduling as RHS. In this case,
e855c69d
AB
2366 just check the flag to reach the correct decision. */
2367 if (enable_schedule_as_rhs_p)
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (as RHS, cached)\n");
2371 *res = MOVEUP_EXPR_AS_RHS;
2372 return true;
2373 }
2374 else
2375 {
2376 if (sched_verbose >= 6)
2377 sel_print ("removed (cached as RHS, but renaming"
2378 " is now disabled)\n");
2379 *res = MOVEUP_EXPR_NULL;
2380 return true;
2381 }
2382 }
2383
2384 return false;
2385}
2386
b8698a0f 2387/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d 2388 if successful. Write to RES the resulting code for moveup_expr. */
b8698a0f 2389static bool
e855c69d
AB
2390try_transformation_cache (expr_t expr, insn_t insn,
2391 enum MOVEUP_EXPR_CODE *res)
2392{
b8698a0f 2393 struct transformed_insns *pti
e855c69d
AB
2394 = (struct transformed_insns *)
2395 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
b8698a0f 2396 &EXPR_VINSN (expr),
e855c69d
AB
2397 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2398 if (pti)
2399 {
b8698a0f
L
2400 /* This EXPR was already moved through this insn and was
2401 changed as a result. Fetch the proper data from
e855c69d 2402 the hashtable. */
b8698a0f
L
2403 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2404 INSN_UID (insn), pti->type,
2405 pti->vinsn_old, pti->vinsn_new,
e855c69d 2406 EXPR_SPEC_DONE_DS (expr));
b8698a0f 2407
e855c69d
AB
2408 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2409 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2410 change_vinsn_in_expr (expr, pti->vinsn_new);
2411 if (pti->was_target_conflict)
2412 EXPR_TARGET_AVAILABLE (expr) = false;
2413 if (pti->type == TRANS_SPECULATION)
2414 {
e855c69d
AB
2415 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2416 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2417 }
2418
2419 if (sched_verbose >= 6)
2420 {
2421 sel_print ("changed (cached): ");
2422 dump_expr (expr);
2423 sel_print ("\n");
2424 }
2425
2426 *res = MOVEUP_EXPR_CHANGED;
2427 return true;
2428 }
2429
2430 return false;
2431}
2432
2433/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2434static void
b8698a0f 2435update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e855c69d
AB
2436 enum MOVEUP_EXPR_CODE res)
2437{
2438 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2439
b8698a0f 2440 /* Do not cache result of propagating jumps through an insn group,
e855c69d
AB
2441 as it is always true, which is not useful outside the group. */
2442 if (inside_insn_group)
2443 return;
b8698a0f 2444
e855c69d
AB
2445 if (res == MOVEUP_EXPR_NULL)
2446 {
2447 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2448 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2449 }
2450 else if (res == MOVEUP_EXPR_SAME)
2451 {
2452 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2453 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2454 }
2455 else if (res == MOVEUP_EXPR_AS_RHS)
2456 {
2457 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2459 }
2460 else
2461 gcc_unreachable ();
2462}
2463
2464/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2465 and transformation type TRANS_TYPE. */
2466static void
b8698a0f 2467update_transformation_cache (expr_t expr, insn_t insn,
e855c69d 2468 bool inside_insn_group,
b8698a0f 2469 enum local_trans_type trans_type,
e855c69d
AB
2470 vinsn_t expr_old_vinsn)
2471{
2472 struct transformed_insns *pti;
2473
2474 if (inside_insn_group)
2475 return;
b8698a0f 2476
e855c69d
AB
2477 pti = XNEW (struct transformed_insns);
2478 pti->vinsn_old = expr_old_vinsn;
2479 pti->vinsn_new = EXPR_VINSN (expr);
2480 pti->type = trans_type;
2481 pti->was_target_conflict = was_target_conflict;
2482 pti->ds = EXPR_SPEC_DONE_DS (expr);
2483 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2484 vinsn_attach (pti->vinsn_old);
2485 vinsn_attach (pti->vinsn_new);
b8698a0f 2486 *((struct transformed_insns **)
e855c69d
AB
2487 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2488 pti, VINSN_HASH_RTX (expr_old_vinsn),
2489 INSERT)) = pti;
2490}
2491
b8698a0f 2492/* Same as moveup_expr, but first looks up the result of
e855c69d
AB
2493 transformation in caches. */
2494static enum MOVEUP_EXPR_CODE
2495moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2496{
2497 enum MOVEUP_EXPR_CODE res;
2498 bool got_answer = false;
2499
2500 if (sched_verbose >= 6)
2501 {
b8698a0f 2502 sel_print ("Moving ");
e855c69d
AB
2503 dump_expr (expr);
2504 sel_print (" through %d: ", INSN_UID (insn));
2505 }
2506
b5b8b0ac
AO
2507 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2508 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2509 == EXPR_INSN_RTX (expr)))
2510 /* Don't use cached information for debug insns that are heads of
2511 basic blocks. */;
2512 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e855c69d
AB
2513 /* When inside insn group, we do not want remove stores conflicting
2514 with previosly issued loads. */
2515 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2516 else if (try_transformation_cache (expr, insn, &res))
2517 got_answer = true;
2518
2519 if (! got_answer)
2520 {
2521 /* Invoke moveup_expr and record the results. */
2522 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2523 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2524 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2525 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2526 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2527
b8698a0f 2528 /* ??? Invent something better than this. We can't allow old_vinsn
e855c69d
AB
2529 to go, we need it for the history vector. */
2530 vinsn_attach (expr_old_vinsn);
2531
2532 res = moveup_expr (expr, insn, inside_insn_group,
2533 &trans_type);
2534 switch (res)
2535 {
2536 case MOVEUP_EXPR_NULL:
2537 update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 if (sched_verbose >= 6)
2539 sel_print ("removed\n");
2540 break;
2541
2542 case MOVEUP_EXPR_SAME:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("unchanged\n");
2546 break;
2547
2548 case MOVEUP_EXPR_AS_RHS:
2549 gcc_assert (!unique_p || inside_insn_group);
2550 update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 if (sched_verbose >= 6)
2552 sel_print ("unchanged (as RHS)\n");
2553 break;
2554
2555 case MOVEUP_EXPR_CHANGED:
2556 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2557 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
b8698a0f
L
2558 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2559 INSN_UID (insn), trans_type,
2560 expr_old_vinsn, EXPR_VINSN (expr),
e855c69d
AB
2561 expr_old_spec_ds);
2562 update_transformation_cache (expr, insn, inside_insn_group,
2563 trans_type, expr_old_vinsn);
2564 if (sched_verbose >= 6)
2565 {
2566 sel_print ("changed: ");
2567 dump_expr (expr);
2568 sel_print ("\n");
2569 }
2570 break;
2571 default:
2572 gcc_unreachable ();
2573 }
2574
2575 vinsn_detach (expr_old_vinsn);
2576 }
2577
2578 return res;
2579}
2580
b8698a0f 2581/* Moves an av set AVP up through INSN, performing necessary
e855c69d
AB
2582 transformations. */
2583static void
2584moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2585{
2586 av_set_iterator i;
2587 expr_t expr;
2588
b8698a0f
L
2589 FOR_EACH_EXPR_1 (expr, i, avp)
2590 {
2591
e855c69d
AB
2592 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2593 {
2594 case MOVEUP_EXPR_SAME:
2595 case MOVEUP_EXPR_AS_RHS:
2596 break;
2597
2598 case MOVEUP_EXPR_NULL:
2599 av_set_iter_remove (&i);
2600 break;
2601
2602 case MOVEUP_EXPR_CHANGED:
2603 expr = merge_with_other_exprs (avp, &i, expr);
2604 break;
b8698a0f 2605
e855c69d
AB
2606 default:
2607 gcc_unreachable ();
2608 }
2609 }
2610}
2611
2612/* Moves AVP set along PATH. */
2613static void
2614moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2615{
2616 int last_cycle;
b8698a0f 2617
e855c69d
AB
2618 if (sched_verbose >= 6)
2619 sel_print ("Moving expressions up in the insn group...\n");
2620 if (! path)
2621 return;
2622 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
b8698a0f 2623 while (path
e855c69d
AB
2624 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2625 {
2626 moveup_set_expr (avp, ILIST_INSN (path), true);
2627 path = ILIST_NEXT (path);
2628 }
2629}
2630
2631/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2632static bool
2633equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2634{
2635 expr_def _tmp, *tmp = &_tmp;
2636 int last_cycle;
2637 bool res = true;
2638
2639 copy_expr_onside (tmp, expr);
2640 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
b8698a0f 2641 while (path
e855c69d
AB
2642 && res
2643 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2644 {
b8698a0f 2645 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e855c69d
AB
2646 != MOVEUP_EXPR_NULL);
2647 path = ILIST_NEXT (path);
2648 }
2649
2650 if (res)
2651 {
2652 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2653 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2654
2655 if (tmp_vinsn != expr_vliw_vinsn)
2656 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2657 }
2658
2659 clear_expr (tmp);
2660 return res;
2661}
2662\f
2663
2664/* Functions that compute av and lv sets. */
2665
b8698a0f 2666/* Returns true if INSN is not a downward continuation of the given path P in
e855c69d
AB
2667 the current stage. */
2668static bool
2669is_ineligible_successor (insn_t insn, ilist_t p)
2670{
2671 insn_t prev_insn;
2672
2673 /* Check if insn is not deleted. */
2674 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2677 gcc_unreachable ();
2678
2679 /* If it's the first insn visited, then the successor is ok. */
2680 if (!p)
2681 return false;
2682
2683 prev_insn = ILIST_INSN (p);
2684
2685 if (/* a backward edge. */
2686 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2687 /* is already visited. */
2688 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2689 && (ilist_is_in_p (p, insn)
b8698a0f
L
2690 /* We can reach another fence here and still seqno of insn
2691 would be equal to seqno of prev_insn. This is possible
e855c69d
AB
2692 when prev_insn is a previously created bookkeeping copy.
2693 In that case it'd get a seqno of insn. Thus, check here
2694 whether insn is in current fence too. */
2695 || IN_CURRENT_FENCE_P (insn)))
2696 /* Was already scheduled on this round. */
2697 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2698 && IN_CURRENT_FENCE_P (insn))
b8698a0f
L
2699 /* An insn from another fence could also be
2700 scheduled earlier even if this insn is not in
e855c69d
AB
2701 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2702 || (!pipelining_p
2703 && INSN_SCHED_TIMES (insn) > 0))
2704 return true;
2705 else
2706 return false;
2707}
2708
b8698a0f
L
2709/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2710 of handling multiple successors and properly merging its av_sets. P is
2711 the current path traversed. WS is the size of lookahead window.
e855c69d
AB
2712 Return the av set computed. */
2713static av_set_t
2714compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2715{
2716 struct succs_info *sinfo;
2717 av_set_t expr_in_all_succ_branches = NULL;
2718 int is;
2719 insn_t succ, zero_succ = NULL;
2720 av_set_t av1 = NULL;
2721
2722 gcc_assert (sel_bb_end_p (insn));
2723
b8698a0f 2724 /* Find different kind of successors needed for correct computing of
e855c69d
AB
2725 SPEC and TARGET_AVAILABLE attributes. */
2726 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2727
2728 /* Debug output. */
2729 if (sched_verbose >= 6)
2730 {
2731 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2732 dump_insn_vector (sinfo->succs_ok);
2733 sel_print ("\n");
2734 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2735 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2736 }
2737
2738 /* Add insn to to the tail of current path. */
2739 ilist_add (&p, insn);
2740
ac47786e 2741 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
e855c69d
AB
2742 {
2743 av_set_t succ_set;
2744
2745 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2746 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2747
b8698a0f
L
2748 av_set_split_usefulness (succ_set,
2749 VEC_index (int, sinfo->probs_ok, is),
e855c69d
AB
2750 sinfo->all_prob);
2751
c6486552 2752 if (sinfo->all_succs_n > 1)
e855c69d 2753 {
b8698a0f 2754 /* Find EXPR'es that came from *all* successors and save them
e855c69d
AB
2755 into expr_in_all_succ_branches. This set will be used later
2756 for calculating speculation attributes of EXPR'es. */
2757 if (is == 0)
2758 {
2759 expr_in_all_succ_branches = av_set_copy (succ_set);
2760
2761 /* Remember the first successor for later. */
2762 zero_succ = succ;
2763 }
2764 else
2765 {
2766 av_set_iterator i;
2767 expr_t expr;
b8698a0f 2768
e855c69d
AB
2769 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2770 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2771 av_set_iter_remove (&i);
2772 }
2773 }
2774
2775 /* Union the av_sets. Check liveness restrictions on target registers
2776 in special case of two successors. */
2777 if (sinfo->succs_ok_n == 2 && is == 1)
2778 {
2779 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2780 basic_block bb1 = BLOCK_FOR_INSN (succ);
2781
2782 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
b8698a0f 2783 av_set_union_and_live (&av1, &succ_set,
e855c69d
AB
2784 BB_LV_SET (bb0),
2785 BB_LV_SET (bb1),
2786 insn);
2787 }
2788 else
2789 av_set_union_and_clear (&av1, &succ_set, insn);
2790 }
2791
b8698a0f 2792 /* Check liveness restrictions via hard way when there are more than
e855c69d
AB
2793 two successors. */
2794 if (sinfo->succs_ok_n > 2)
ac47786e 2795 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
e855c69d
AB
2796 {
2797 basic_block succ_bb = BLOCK_FOR_INSN (succ);
b8698a0f 2798
e855c69d 2799 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
b8698a0f 2800 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
e855c69d
AB
2801 BB_LV_SET (succ_bb));
2802 }
b8698a0f
L
2803
2804 /* Finally, check liveness restrictions on paths leaving the region. */
e855c69d 2805 if (sinfo->all_succs_n > sinfo->succs_ok_n)
ac47786e 2806 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
b8698a0f 2807 mark_unavailable_targets
e855c69d
AB
2808 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2809
2810 if (sinfo->all_succs_n > 1)
2811 {
2812 av_set_iterator i;
2813 expr_t expr;
2814
b8698a0f 2815 /* Increase the spec attribute of all EXPR'es that didn't come
e855c69d
AB
2816 from all successors. */
2817 FOR_EACH_EXPR (expr, i, av1)
2818 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2819 EXPR_SPEC (expr)++;
2820
2821 av_set_clear (&expr_in_all_succ_branches);
b8698a0f
L
2822
2823 /* Do not move conditional branches through other
2824 conditional branches. So, remove all conditional
e855c69d
AB
2825 branches from av_set if current operator is a conditional
2826 branch. */
2827 av_set_substract_cond_branches (&av1);
2828 }
b8698a0f 2829
e855c69d
AB
2830 ilist_remove (&p);
2831 free_succs_info (sinfo);
2832
2833 if (sched_verbose >= 6)
2834 {
2835 sel_print ("av_succs (%d): ", INSN_UID (insn));
2836 dump_av_set (av1);
2837 sel_print ("\n");
2838 }
2839
2840 return av1;
2841}
2842
b8698a0f
L
2843/* This function computes av_set for the FIRST_INSN by dragging valid
2844 av_set through all basic block insns either from the end of basic block
2845 (computed using compute_av_set_at_bb_end) or from the insn on which
e855c69d
AB
2846 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2847 below the basic block and handling conditional branches.
2848 FIRST_INSN - the basic block head, P - path consisting of the insns
2849 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2850 and bb ends are added to the path), WS - current window size,
2851 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2852static av_set_t
b8698a0f 2853compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e855c69d
AB
2854 bool need_copy_p)
2855{
2856 insn_t cur_insn;
2857 int end_ws = ws;
2858 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2859 insn_t after_bb_end = NEXT_INSN (bb_end);
2860 insn_t last_insn;
2861 av_set_t av = NULL;
2862 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2863
2864 /* Return NULL if insn is not on the legitimate downward path. */
2865 if (is_ineligible_successor (first_insn, p))
2866 {
2867 if (sched_verbose >= 6)
2868 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2869
2870 return NULL;
2871 }
2872
b8698a0f 2873 /* If insn already has valid av(insn) computed, just return it. */
e855c69d
AB
2874 if (AV_SET_VALID_P (first_insn))
2875 {
2876 av_set_t av_set;
2877
2878 if (sel_bb_head_p (first_insn))
2879 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2880 else
2881 av_set = NULL;
2882
2883 if (sched_verbose >= 6)
2884 {
2885 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2886 dump_av_set (av_set);
2887 sel_print ("\n");
2888 }
2889
2890 return need_copy_p ? av_set_copy (av_set) : av_set;
2891 }
2892
2893 ilist_add (&p, first_insn);
2894
2895 /* As the result after this loop have completed, in LAST_INSN we'll
b8698a0f
L
2896 have the insn which has valid av_set to start backward computation
2897 from: it either will be NULL because on it the window size was exceeded
2898 or other valid av_set as returned by compute_av_set for the last insn
e855c69d
AB
2899 of the basic block. */
2900 for (last_insn = first_insn; last_insn != after_bb_end;
2901 last_insn = NEXT_INSN (last_insn))
2902 {
2903 /* We may encounter valid av_set not only on bb_head, but also on
2904 those insns on which previously MAX_WS was exceeded. */
2905 if (AV_SET_VALID_P (last_insn))
2906 {
2907 if (sched_verbose >= 6)
2908 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2909 break;
2910 }
2911
2912 /* The special case: the last insn of the BB may be an
2913 ineligible_successor due to its SEQ_NO that was set on
2914 it as a bookkeeping. */
b8698a0f 2915 if (last_insn != first_insn
e855c69d
AB
2916 && is_ineligible_successor (last_insn, p))
2917 {
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
b8698a0f 2920 break;
e855c69d
AB
2921 }
2922
b5b8b0ac
AO
2923 if (DEBUG_INSN_P (last_insn))
2924 continue;
2925
e855c69d
AB
2926 if (end_ws > max_ws)
2927 {
b8698a0f 2928 /* We can reach max lookahead size at bb_header, so clean av_set
e855c69d
AB
2929 first. */
2930 INSN_WS_LEVEL (last_insn) = global_level;
2931
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d is beyond the software lookahead window size\n",
2934 INSN_UID (last_insn));
2935 break;
2936 }
2937
2938 end_ws++;
2939 }
2940
2941 /* Get the valid av_set into AV above the LAST_INSN to start backward
2942 computation from. It either will be empty av_set or av_set computed from
2943 the successors on the last insn of the current bb. */
2944 if (last_insn != after_bb_end)
2945 {
2946 av = NULL;
2947
b8698a0f 2948 /* This is needed only to obtain av_sets that are identical to
e855c69d
AB
2949 those computed by the old compute_av_set version. */
2950 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2951 av_set_add (&av, INSN_EXPR (last_insn));
2952 }
2953 else
2954 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2955 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2956
2957 /* Compute av_set in AV starting from below the LAST_INSN up to
2958 location above the FIRST_INSN. */
2959 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
b8698a0f 2960 cur_insn = PREV_INSN (cur_insn))
e855c69d
AB
2961 if (!INSN_NOP_P (cur_insn))
2962 {
2963 expr_t expr;
b8698a0f 2964
e855c69d 2965 moveup_set_expr (&av, cur_insn, false);
b8698a0f
L
2966
2967 /* If the expression for CUR_INSN is already in the set,
e855c69d 2968 replace it by the new one. */
b8698a0f 2969 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e855c69d
AB
2970 if (expr != NULL)
2971 {
2972 clear_expr (expr);
2973 copy_expr (expr, INSN_EXPR (cur_insn));
2974 }
2975 else
2976 av_set_add (&av, INSN_EXPR (cur_insn));
2977 }
2978
2979 /* Clear stale bb_av_set. */
2980 if (sel_bb_head_p (first_insn))
2981 {
2982 av_set_clear (&BB_AV_SET (cur_bb));
2983 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2984 BB_AV_LEVEL (cur_bb) = global_level;
2985 }
2986
2987 if (sched_verbose >= 6)
2988 {
2989 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2990 dump_av_set (av);
2991 sel_print ("\n");
2992 }
2993
2994 ilist_remove (&p);
2995 return av;
2996}
2997
2998/* Compute av set before INSN.
2999 INSN - the current operation (actual rtx INSN)
3000 P - the current path, which is list of insns visited so far
3001 WS - software lookahead window size.
3002 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3003 if we want to save computed av_set in s_i_d, we should make a copy of it.
3004
3005 In the resulting set we will have only expressions that don't have delay
3006 stalls and nonsubstitutable dependences. */
3007static av_set_t
3008compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3009{
3010 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3011}
3012
3013/* Propagate a liveness set LV through INSN. */
3014static void
3015propagate_lv_set (regset lv, insn_t insn)
3016{
3017 gcc_assert (INSN_P (insn));
3018
3019 if (INSN_NOP_P (insn))
3020 return;
3021
02b47899 3022 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
3023}
3024
3025/* Return livness set at the end of BB. */
3026static regset
3027compute_live_after_bb (basic_block bb)
3028{
3029 edge e;
3030 edge_iterator ei;
3031 regset lv = get_clear_regset_from_pool ();
3032
3033 gcc_assert (!ignore_first);
3034
3035 FOR_EACH_EDGE (e, ei, bb->succs)
3036 if (sel_bb_empty_p (e->dest))
3037 {
3038 if (! BB_LV_SET_VALID_P (e->dest))
3039 {
3040 gcc_unreachable ();
3041 gcc_assert (BB_LV_SET (e->dest) == NULL);
3042 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3043 BB_LV_SET_VALID_P (e->dest) = true;
3044 }
3045 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3046 }
3047 else
3048 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3049
3050 return lv;
3051}
3052
3053/* Compute the set of all live registers at the point before INSN and save
3054 it at INSN if INSN is bb header. */
3055regset
3056compute_live (insn_t insn)
3057{
3058 basic_block bb = BLOCK_FOR_INSN (insn);
3059 insn_t final, temp;
3060 regset lv;
3061
3062 /* Return the valid set if we're already on it. */
3063 if (!ignore_first)
3064 {
3065 regset src = NULL;
b8698a0f 3066
e855c69d
AB
3067 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3068 src = BB_LV_SET (bb);
b8698a0f 3069 else
e855c69d
AB
3070 {
3071 gcc_assert (in_current_region_p (bb));
3072 if (INSN_LIVE_VALID_P (insn))
3073 src = INSN_LIVE (insn);
3074 }
b8698a0f 3075
e855c69d
AB
3076 if (src)
3077 {
3078 lv = get_regset_from_pool ();
3079 COPY_REG_SET (lv, src);
3080
3081 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3082 {
3083 COPY_REG_SET (BB_LV_SET (bb), lv);
3084 BB_LV_SET_VALID_P (bb) = true;
3085 }
b8698a0f 3086
e855c69d
AB
3087 return_regset_to_pool (lv);
3088 return lv;
3089 }
3090 }
3091
3092 /* We've skipped the wrong lv_set. Don't skip the right one. */
3093 ignore_first = false;
3094 gcc_assert (in_current_region_p (bb));
3095
b8698a0f
L
3096 /* Find a valid LV set in this block or below, if needed.
3097 Start searching from the next insn: either ignore_first is true, or
e855c69d
AB
3098 INSN doesn't have a correct live set. */
3099 temp = NEXT_INSN (insn);
3100 final = NEXT_INSN (BB_END (bb));
3101 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3102 temp = NEXT_INSN (temp);
3103 if (temp == final)
3104 {
3105 lv = compute_live_after_bb (bb);
3106 temp = PREV_INSN (temp);
3107 }
3108 else
3109 {
3110 lv = get_regset_from_pool ();
3111 COPY_REG_SET (lv, INSN_LIVE (temp));
3112 }
3113
3114 /* Put correct lv sets on the insns which have bad sets. */
3115 final = PREV_INSN (insn);
3116 while (temp != final)
3117 {
3118 propagate_lv_set (lv, temp);
3119 COPY_REG_SET (INSN_LIVE (temp), lv);
3120 INSN_LIVE_VALID_P (temp) = true;
3121 temp = PREV_INSN (temp);
3122 }
3123
3124 /* Also put it in a BB. */
3125 if (sel_bb_head_p (insn))
3126 {
3127 basic_block bb = BLOCK_FOR_INSN (insn);
b8698a0f 3128
e855c69d
AB
3129 COPY_REG_SET (BB_LV_SET (bb), lv);
3130 BB_LV_SET_VALID_P (bb) = true;
3131 }
b8698a0f 3132
e855c69d
AB
3133 /* We return LV to the pool, but will not clear it there. Thus we can
3134 legimatelly use LV till the next use of regset_pool_get (). */
3135 return_regset_to_pool (lv);
3136 return lv;
3137}
3138
3139/* Update liveness sets for INSN. */
3140static inline void
3141update_liveness_on_insn (rtx insn)
3142{
3143 ignore_first = true;
3144 compute_live (insn);
3145}
3146
3147/* Compute liveness below INSN and write it into REGS. */
3148static inline void
3149compute_live_below_insn (rtx insn, regset regs)
3150{
3151 rtx succ;
3152 succ_iterator si;
b8698a0f
L
3153
3154 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e855c69d
AB
3155 IOR_REG_SET (regs, compute_live (succ));
3156}
3157
3158/* Update the data gathered in av and lv sets starting from INSN. */
3159static void
3160update_data_sets (rtx insn)
3161{
3162 update_liveness_on_insn (insn);
3163 if (sel_bb_head_p (insn))
3164 {
3165 gcc_assert (AV_LEVEL (insn) != 0);
3166 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3167 compute_av_set (insn, NULL, 0, 0);
3168 }
3169}
3170\f
3171
3172/* Helper for move_op () and find_used_regs ().
3173 Return speculation type for which a check should be created on the place
3174 of INSN. EXPR is one of the original ops we are searching for. */
3175static ds_t
3176get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3177{
3178 ds_t to_check_ds;
3179 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3180
3181 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3182
3183 if (targetm.sched.get_insn_checked_ds)
3184 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3185
3186 if (spec_info != NULL
3187 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3188 already_checked_ds |= BEGIN_CONTROL;
3189
3190 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3191
3192 to_check_ds &= ~already_checked_ds;
3193
3194 return to_check_ds;
3195}
3196
b8698a0f 3197/* Find the set of registers that are unavailable for storing expres
e855c69d
AB
3198 while moving ORIG_OPS up on the path starting from INSN due to
3199 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3200
3201 All the original operations found during the traversal are saved in the
3202 ORIGINAL_INSNS list.
3203
3204 REG_RENAME_P denotes the set of hardware registers that
3205 can not be used with renaming due to the register class restrictions,
b8698a0f 3206 mode restrictions and other (the register we'll choose should be
e855c69d
AB
3207 compatible class with the original uses, shouldn't be in call_used_regs,
3208 should be HARD_REGNO_RENAME_OK etc).
3209
3210 Returns TRUE if we've found all original insns, FALSE otherwise.
3211
3212 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
b8698a0f
L
3213 to traverse the code motion paths. This helper function finds registers
3214 that are not available for storing expres while moving ORIG_OPS up on the
e855c69d
AB
3215 path starting from INSN. A register considered as used on the moving path,
3216 if one of the following conditions is not satisfied:
3217
b8698a0f
L
3218 (1) a register not set or read on any path from xi to an instance of
3219 the original operation,
3220 (2) not among the live registers of the point immediately following the
e855c69d
AB
3221 first original operation on a given downward path, except for the
3222 original target register of the operation,
b8698a0f 3223 (3) not live on the other path of any conditional branch that is passed
e855c69d
AB
3224 by the operation, in case original operations are not present on
3225 both paths of the conditional branch.
3226
3227 All the original operations found during the traversal are saved in the
3228 ORIGINAL_INSNS list.
3229
b8698a0f
L
3230 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3231 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e855c69d
AB
3232 to unavailable hard regs at the point original operation is found. */
3233
3234static bool
3235find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3236 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3237{
3238 def_list_iterator i;
3239 def_t def;
3240 int res;
3241 bool needs_spec_check_p = false;
3242 expr_t expr;
3243 av_set_iterator expr_iter;
3244 struct fur_static_params sparams;
3245 struct cmpd_local_params lparams;
3246
3247 /* We haven't visited any blocks yet. */
3248 bitmap_clear (code_motion_visited_blocks);
3249
3250 /* Init parameters for code_motion_path_driver. */
3251 sparams.crosses_call = false;
3252 sparams.original_insns = original_insns;
3253 sparams.used_regs = used_regs;
b8698a0f 3254
e855c69d
AB
3255 /* Set the appropriate hooks and data. */
3256 code_motion_path_driver_info = &fur_hooks;
b8698a0f 3257
e855c69d
AB
3258 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3259
3260 reg_rename_p->crosses_call |= sparams.crosses_call;
3261
3262 gcc_assert (res == 1);
3263 gcc_assert (original_insns && *original_insns);
3264
3265 /* ??? We calculate whether an expression needs a check when computing
3266 av sets. This information is not as precise as it could be due to
3267 merging this bit in merge_expr. We can do better in find_used_regs,
b8698a0f 3268 but we want to avoid multiple traversals of the same code motion
e855c69d
AB
3269 paths. */
3270 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3271 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3272
b8698a0f 3273 /* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
3274 for renaming expr in INSN due to hardware restrictions (register class,
3275 modes compatibility etc). */
3276 FOR_EACH_DEF (def, i, *original_insns)
3277 {
3278 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3279
3280 if (VINSN_SEPARABLE_P (vinsn))
3281 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3282
b8698a0f 3283 /* Do not allow clobbering of ld.[sa] address in case some of the
e855c69d
AB
3284 original operations need a check. */
3285 if (needs_spec_check_p)
3286 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3287 }
3288
3289 return true;
3290}
3291\f
3292
3293/* Functions to choose the best insn from available ones. */
3294
3295/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3296static int
3297sel_target_adjust_priority (expr_t expr)
3298{
3299 int priority = EXPR_PRIORITY (expr);
3300 int new_priority;
3301
3302 if (targetm.sched.adjust_priority)
3303 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3304 else
3305 new_priority = priority;
3306
3307 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3308 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3309
3310 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3311
136e01a3
AB
3312 if (sched_verbose >= 4)
3313 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
b8698a0f 3314 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e855c69d
AB
3315 EXPR_PRIORITY_ADJ (expr), new_priority);
3316
3317 return new_priority;
3318}
3319
3320/* Rank two available exprs for schedule. Never return 0 here. */
b8698a0f 3321static int
e855c69d
AB
3322sel_rank_for_schedule (const void *x, const void *y)
3323{
3324 expr_t tmp = *(const expr_t *) y;
3325 expr_t tmp2 = *(const expr_t *) x;
3326 insn_t tmp_insn, tmp2_insn;
3327 vinsn_t tmp_vinsn, tmp2_vinsn;
3328 int val;
3329
3330 tmp_vinsn = EXPR_VINSN (tmp);
3331 tmp2_vinsn = EXPR_VINSN (tmp2);
3332 tmp_insn = EXPR_INSN_RTX (tmp);
3333 tmp2_insn = EXPR_INSN_RTX (tmp2);
b8698a0f 3334
b5b8b0ac
AO
3335 /* Schedule debug insns as early as possible. */
3336 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3337 return -1;
3338 else if (DEBUG_INSN_P (tmp2_insn))
3339 return 1;
3340
e855c69d
AB
3341 /* Prefer SCHED_GROUP_P insns to any others. */
3342 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3343 {
b8698a0f 3344 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e855c69d
AB
3345 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3346
3347 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3348 cannot be cloned. */
3349 if (VINSN_UNIQUE_P (tmp2_vinsn))
3350 return 1;
3351 return -1;
3352 }
3353
3354 /* Discourage scheduling of speculative checks. */
3355 val = (sel_insn_is_speculation_check (tmp_insn)
3356 - sel_insn_is_speculation_check (tmp2_insn));
3357 if (val)
3358 return val;
3359
3360 /* Prefer not scheduled insn over scheduled one. */
3361 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3362 {
3363 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3364 if (val)
3365 return val;
3366 }
3367
3368 /* Prefer jump over non-jump instruction. */
3369 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3370 return -1;
3371 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3372 return 1;
3373
3374 /* Prefer an expr with greater priority. */
3375 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3376 {
3377 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3378 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3379
3380 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3381 }
3382 else
b8698a0f 3383 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
e855c69d
AB
3384 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3385 if (val)
3386 return val;
3387
3388 if (spec_info != NULL && spec_info->mask != 0)
3389 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3390 {
3391 ds_t ds1, ds2;
3392 dw_t dw1, dw2;
3393 int dw;
3394
3395 ds1 = EXPR_SPEC_DONE_DS (tmp);
3396 if (ds1)
3397 dw1 = ds_weak (ds1);
3398 else
3399 dw1 = NO_DEP_WEAK;
3400
3401 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3402 if (ds2)
3403 dw2 = ds_weak (ds2);
3404 else
3405 dw2 = NO_DEP_WEAK;
3406
3407 dw = dw2 - dw1;
3408 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3409 return dw;
3410 }
3411
e855c69d 3412 /* Prefer an old insn to a bookkeeping insn. */
b8698a0f 3413 if (INSN_UID (tmp_insn) < first_emitted_uid
e855c69d
AB
3414 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3415 return -1;
b8698a0f 3416 if (INSN_UID (tmp_insn) >= first_emitted_uid
e855c69d
AB
3417 && INSN_UID (tmp2_insn) < first_emitted_uid)
3418 return 1;
3419
b8698a0f 3420 /* Prefer an insn with smaller UID, as a last resort.
e855c69d
AB
3421 We can't safely use INSN_LUID as it is defined only for those insns
3422 that are in the stream. */
3423 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3424}
3425
b8698a0f 3426/* Filter out expressions from av set pointed to by AV_PTR
e855c69d
AB
3427 that are pipelined too many times. */
3428static void
3429process_pipelined_exprs (av_set_t *av_ptr)
3430{
3431 expr_t expr;
3432 av_set_iterator si;
3433
3434 /* Don't pipeline already pipelined code as that would increase
b8698a0f 3435 number of unnecessary register moves. */
e855c69d
AB
3436 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3437 {
3438 if (EXPR_SCHED_TIMES (expr)
3439 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3440 av_set_iter_remove (&si);
3441 }
3442}
3443
3444/* Filter speculative insns from AV_PTR if we don't want them. */
3445static void
3446process_spec_exprs (av_set_t *av_ptr)
3447{
3448 bool try_data_p = true;
3449 bool try_control_p = true;
3450 expr_t expr;
3451 av_set_iterator si;
3452
3453 if (spec_info == NULL)
3454 return;
3455
3456 /* Scan *AV_PTR to find out if we want to consider speculative
3457 instructions for scheduling. */
3458 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3459 {
3460 ds_t ds;
3461
3462 ds = EXPR_SPEC_DONE_DS (expr);
3463
3464 /* The probability of a success is too low - don't speculate. */
3465 if ((ds & SPECULATIVE)
3466 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3467 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3468 || (pipelining_p && false
3469 && (ds & DATA_SPEC)
3470 && (ds & CONTROL_SPEC))))
3471 {
3472 av_set_iter_remove (&si);
3473 continue;
3474 }
3475
3476 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3477 && !(ds & BEGIN_DATA))
3478 try_data_p = false;
3479
3480 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3481 && !(ds & BEGIN_CONTROL))
3482 try_control_p = false;
3483 }
3484
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3486 {
3487 ds_t ds;
3488
3489 ds = EXPR_SPEC_DONE_DS (expr);
3490
3491 if (ds & SPECULATIVE)
3492 {
3493 if ((ds & BEGIN_DATA) && !try_data_p)
3494 /* We don't want any data speculative instructions right
3495 now. */
3496 av_set_iter_remove (&si);
3497
3498 if ((ds & BEGIN_CONTROL) && !try_control_p)
3499 /* We don't want any control speculative instructions right
3500 now. */
3501 av_set_iter_remove (&si);
3502 }
3503 }
3504}
3505
b8698a0f
L
3506/* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
e855c69d
AB
3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510static expr_t
3511process_use_exprs (av_set_t *av_ptr)
3512{
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3517
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 {
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 {
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 {
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3529
3530 av_set_iter_remove (&si);
3531 }
3532 else
3533 {
3534 gcc_assert (pipelining_p);
3535
3536 uses_present_p = true;
3537 }
3538 }
3539 else
3540 try_uses_p = false;
3541 }
3542
3543 if (uses_present_p)
3544 {
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3548 {
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3552 }
3553 else
3554 {
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 {
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3561
3562 av_set_iter_remove (&si);
3563 }
3564 }
3565 }
3566
3567 return NULL;
3568}
3569
3570/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3571static bool
3572vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3573{
3574 vinsn_t vinsn;
3575 int n;
3576
ac47786e 3577 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
e855c69d
AB
3578 if (VINSN_SEPARABLE_P (vinsn))
3579 {
3580 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3581 return true;
3582 }
3583 else
3584 {
3585 /* For non-separable instructions, the blocking insn can have
3586 another pattern due to substitution, and we can't choose
3587 different register as in the above case. Check all registers
3588 being written instead. */
b8698a0f 3589 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
e855c69d
AB
3590 VINSN_REG_SETS (EXPR_VINSN (expr))))
3591 return true;
3592 }
3593
3594 return false;
3595}
3596
3597#ifdef ENABLE_CHECKING
3598/* Return true if either of expressions from ORIG_OPS can be blocked
3599 by previously created bookkeeping code. STATIC_PARAMS points to static
3600 parameters of move_op. */
3601static bool
3602av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3603{
3604 expr_t expr;
3605 av_set_iterator iter;
3606 moveop_static_params_p sparams;
3607
3608 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609 created while scheduling on another fence. */
3610 FOR_EACH_EXPR (expr, iter, orig_ops)
3611 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612 return true;
3613
3614 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615 sparams = (moveop_static_params_p) static_params;
3616
3617 /* Expressions can be also blocked by bookkeeping created during current
3618 move_op. */
3619 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622 return true;
3623
3624 /* Expressions in ORIG_OPS may have wrong destination register due to
3625 renaming. Check with the right register instead. */
3626 if (sparams->dest && REG_P (sparams->dest))
3627 {
3628 unsigned regno = REGNO (sparams->dest);
3629 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3630
3631 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3632 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3633 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3634 return true;
3635 }
3636
3637 return false;
3638}
3639#endif
3640
3641/* Clear VINSN_VEC and detach vinsns. */
3642static void
3643vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644{
3645 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3646 if (len > 0)
3647 {
3648 vinsn_t vinsn;
3649 int n;
b8698a0f 3650
ac47786e 3651 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
e855c69d
AB
3652 vinsn_detach (vinsn);
3653 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654 }
3655}
3656
3657/* Add the vinsn of EXPR to the VINSN_VEC. */
3658static void
3659vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660{
3661 vinsn_attach (EXPR_VINSN (expr));
3662 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3663}
3664
b8698a0f 3665/* Free the vector representing blocked expressions. */
e855c69d
AB
3666static void
3667vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3668{
3669 if (*vinsn_vec)
3670 VEC_free (vinsn_t, heap, *vinsn_vec);
3671}
3672
3673/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3674
3675void sel_add_to_insn_priority (rtx insn, int amount)
3676{
3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3678
3679 if (sched_verbose >= 2)
b8698a0f 3680 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e855c69d
AB
3681 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683}
3684
b8698a0f 3685/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e855c69d
AB
3686 true if there is something to schedule. BNDS and FENCE are current
3687 boundaries and fence, respectively. If we need to stall for some cycles
b8698a0f 3688 before an expr from AV would become available, write this number to
e855c69d
AB
3689 *PNEED_STALL. */
3690static bool
3691fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692 int *pneed_stall)
3693{
3694 av_set_iterator si;
3695 expr_t expr;
3696 int sched_next_worked = 0, stalled, n;
3697 static int av_max_prio, est_ticks_till_branch;
3698 int min_need_stall = -1;
3699 deps_t dc = BND_DC (BLIST_BND (bnds));
3700
3701 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702 already scheduled. */
3703 if (av == NULL)
3704 return false;
3705
3706 /* Empty vector from the previous stuff. */
3707 if (VEC_length (expr_t, vec_av_set) > 0)
3708 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3709
3710 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711 for each insn. */
3712 gcc_assert (VEC_empty (expr_t, vec_av_set));
3713 FOR_EACH_EXPR (expr, si, av)
b8698a0f 3714 {
e855c69d
AB
3715 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3716
3717 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3718
3719 /* Adjust priority using target backend hook. */
3720 sel_target_adjust_priority (expr);
3721 }
3722
3723 /* Sort the vector. */
5095da95 3724 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
e855c69d
AB
3725
3726 /* We record maximal priority of insns in av set for current instruction
3727 group. */
3728 if (FENCE_STARTS_CYCLE_P (fence))
3729 av_max_prio = est_ticks_till_branch = INT_MIN;
3730
3731 /* Filter out inappropriate expressions. Loop's direction is reversed to
3732 visit "best" instructions first. We assume that VEC_unordered_remove
3733 moves last element in place of one being deleted. */
3734 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3735 {
3736 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3737 insn_t insn = EXPR_INSN_RTX (expr);
3738 char target_available;
3739 bool is_orig_reg_p = true;
3740 int need_cycles, new_prio;
3741
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 {
3745 VEC_unordered_remove (expr_t, vec_av_set, n);
3746 continue;
3747 }
3748
b8698a0f 3749 /* Set number of sched_next insns (just in case there
e855c69d
AB
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
b8698a0f
L
3753
3754 /* Check all liveness requirements and try renaming.
e855c69d
AB
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3757
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3761 target_available = -1;
3762
3763 /* If the availability of the EXPR is invalidated by the insertion of
3764 bookkeeping earlier, make sure that we won't choose this expr for
3765 scheduling if it's not separable, and if it is separable, then
3766 we have to recompute the set of available registers for it. */
3767 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 {
3769 VEC_unordered_remove (expr_t, vec_av_set, n);
3770 if (sched_verbose >= 4)
3771 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772 INSN_UID (insn));
3773 continue;
3774 }
b8698a0f 3775
e855c69d
AB
3776 if (target_available == true)
3777 {
3778 /* Do nothing -- we can use an existing register. */
3779 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780 }
b8698a0f 3781 else if (/* Non-separable instruction will never
e855c69d
AB
3782 get another register. */
3783 (target_available == false
3784 && !EXPR_SEPARABLE_P (expr))
3785 /* Don't try to find a register for low-priority expression. */
3786 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3787 /* ??? FIXME: Don't try to rename data speculation. */
3788 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790 {
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792 if (sched_verbose >= 4)
b8698a0f 3793 sel_print ("Expr %d has no suitable target register\n",
e855c69d
AB
3794 INSN_UID (insn));
3795 continue;
3796 }
3797
3798 /* Filter expressions that need to be renamed or speculated when
3799 pipelining, because compensating register copies or speculation
3800 checks are likely to be placed near the beginning of the loop,
3801 causing a stall. */
3802 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3803 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3804 {
3805 /* Estimation of number of cycles until loop branch for
3806 renaming/speculation to be successful. */
3807 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3808
3809 if ((int) current_loop_nest->ninsns < 9)
3810 {
3811 VEC_unordered_remove (expr_t, vec_av_set, n);
3812 if (sched_verbose >= 4)
3813 sel_print ("Pipelining expr %d will likely cause stall\n",
3814 INSN_UID (insn));
3815 continue;
3816 }
3817
3818 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3819 < need_n_ticks_till_branch * issue_rate / 2
3820 && est_ticks_till_branch < need_n_ticks_till_branch)
3821 {
3822 VEC_unordered_remove (expr_t, vec_av_set, n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3827 }
3828 }
3829
3830 /* We want to schedule speculation checks as late as possible. Discard
3831 them from av set if there are instructions with higher priority. */
3832 if (sel_insn_is_speculation_check (insn)
3833 && EXPR_PRIORITY (expr) < av_max_prio)
3834 {
3835 stalled++;
3836 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3837 VEC_unordered_remove (expr_t, vec_av_set, n);
3838 if (sched_verbose >= 4)
3839 sel_print ("Delaying speculation check %d until its first use\n",
3840 INSN_UID (insn));
3841 continue;
3842 }
3843
3844 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3845 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3846 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3847
3848 /* Don't allow any insns whose data is not yet ready.
3849 Check first whether we've already tried them and failed. */
3850 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3851 {
3852 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3853 - FENCE_CYCLE (fence));
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 est_ticks_till_branch = MAX (est_ticks_till_branch,
3856 EXPR_PRIORITY (expr) + need_cycles);
3857
3858 if (need_cycles > 0)
3859 {
3860 stalled++;
b8698a0f 3861 min_need_stall = (min_need_stall < 0
e855c69d
AB
3862 ? need_cycles
3863 : MIN (min_need_stall, need_cycles));
3864 VEC_unordered_remove (expr_t, vec_av_set, n);
3865
3866 if (sched_verbose >= 4)
b8698a0f 3867 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e855c69d
AB
3868 INSN_UID (insn),
3869 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3870 continue;
3871 }
3872 }
3873
b8698a0f 3874 /* Now resort to dependence analysis to find whether EXPR might be
e855c69d
AB
3875 stalled due to dependencies from FENCE's context. */
3876 need_cycles = tick_check_p (expr, dc, fence);
3877 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3878
3879 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3880 est_ticks_till_branch = MAX (est_ticks_till_branch,
3881 new_prio);
3882
3883 if (need_cycles > 0)
3884 {
3885 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3886 {
3887 int new_size = INSN_UID (insn) * 3 / 2;
b8698a0f
L
3888
3889 FENCE_READY_TICKS (fence)
e855c69d
AB
3890 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3891 new_size, FENCE_READY_TICKS_SIZE (fence),
3892 sizeof (int));
3893 }
b8698a0f
L
3894 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3895 = FENCE_CYCLE (fence) + need_cycles;
3896
e855c69d 3897 stalled++;
b8698a0f 3898 min_need_stall = (min_need_stall < 0
e855c69d
AB
3899 ? need_cycles
3900 : MIN (min_need_stall, need_cycles));
3901
3902 VEC_unordered_remove (expr_t, vec_av_set, n);
b8698a0f 3903
e855c69d 3904 if (sched_verbose >= 4)
b8698a0f 3905 sel_print ("Expr %d is not ready yet until cycle %d\n",
e855c69d
AB
3906 INSN_UID (insn),
3907 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908 continue;
3909 }
3910
3911 if (sched_verbose >= 4)
3912 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3913 min_need_stall = 0;
3914 }
3915
3916 /* Clear SCHED_NEXT. */
3917 if (FENCE_SCHED_NEXT (fence))
3918 {
3919 gcc_assert (sched_next_worked == 1);
3920 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3921 }
3922
3923 /* No need to stall if this variable was not initialized. */
3924 if (min_need_stall < 0)
3925 min_need_stall = 0;
3926
3927 if (VEC_empty (expr_t, vec_av_set))
3928 {
3929 /* We need to set *pneed_stall here, because later we skip this code
3930 when ready list is empty. */
3931 *pneed_stall = min_need_stall;
3932 return false;
3933 }
3934 else
3935 gcc_assert (min_need_stall == 0);
3936
3937 /* Sort the vector. */
5095da95 3938 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
b8698a0f 3939
e855c69d
AB
3940 if (sched_verbose >= 4)
3941 {
b8698a0f 3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
e855c69d
AB
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
ac47786e 3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
e855c69d
AB
3946 dump_expr (expr);
3947 sel_print ("\n");
3948 }
3949
3950 *pneed_stall = 0;
3951 return true;
3952}
3953
3954/* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956static void
3957convert_vec_av_set_to_ready (void)
3958{
3959 int n;
3960 expr_t expr;
3961
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
b8698a0f 3965
e855c69d
AB
3966 gcc_assert (ready.n_ready > 0);
3967
3968 if (ready.n_ready > max_issue_size)
3969 {
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3972 }
b8698a0f 3973
ac47786e 3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
e855c69d
AB
3975 {
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3978
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3981 }
3982}
3983
3984/* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
b8698a0f
L
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
e855c69d
AB
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989static expr_t
3990fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3992{
3993 expr_t expr;
3994
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3997
b8698a0f 3998 /* Process expressions required special handling, i.e. pipelined,
e855c69d
AB
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4002
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4006 {
4007 *pneed_stall = 0;
4008 return expr;
4009 }
4010
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013 {
4014 ready.n_ready = 0;
4015 return NULL;
4016 }
4017
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4021}
4022
4023/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024static bool
4025sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026{
b8698a0f
L
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e855c69d
AB
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4032
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4035
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4041 {
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4046 }
4047
4048 return res;
4049}
4050
4051/* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053static int
4054invoke_reorder_hooks (fence_t fence)
4055{
4056 int issue_more;
4057 bool ran_hook = false;
4058
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4062 {
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4066 {
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4071
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4076
4077 if (pipelining_p)
4078 ++ready.n_ready;
4079
4080 ran_hook = true;
4081 }
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4085 }
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088 {
4089 if (ready.n_ready == 1)
b8698a0f 4090 issue_more =
e855c69d
AB
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4095 {
4096 if (pipelining_p)
4097 --ready.n_ready;
4098
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104
4105 if (pipelining_p)
4106 ++ready.n_ready;
4107 }
4108
4109 ran_hook = true;
4110 }
b8698a0f 4111 else
136e01a3 4112 issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
4113
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4117 {
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4121
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124 {
4125 expr_t tmp;
4126
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4131
b8698a0f 4132 tmp = vec[i];
e855c69d
AB
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4135 }
4136 }
4137
4138 return issue_more;
4139}
4140
b8698a0f
L
4141/* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e855c69d
AB
4144 ready.vec otherwise. */
4145static inline expr_t
4146find_expr_for_ready (int index, bool follow_ready_element)
4147{
4148 expr_t expr;
4149 int real_index;
4150
4151 real_index = follow_ready_element ? ready.first - index : index;
4152
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155
4156 return expr;
4157}
4158
4159/* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161static int
4162invoke_dfa_lookahead_guard (void)
4163{
4164 int i, n;
b8698a0f 4165 bool have_hook
e855c69d
AB
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4170
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4172 {
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4176
b8698a0f 4177 /* In this loop insn is Ith element of the ready list given by
e855c69d
AB
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
b8698a0f 4180
e855c69d
AB
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
b8698a0f 4185
e855c69d 4186 gcc_assert (INSN_CODE (insn) >= 0);
b8698a0f
L
4187
4188 /* Only insns with ready_try = 0 can get here
e855c69d
AB
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4194
4195 expr = find_expr_for_ready (i, true);
b8698a0f 4196
e855c69d
AB
4197 if (sched_verbose >= 2)
4198 {
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4201 }
4202 }
4203
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4207}
4208
4209/* Calculate the number of privileged insns and return it. */
4210static int
4211calculate_privileged_insns (void)
4212{
4213 expr_t cur_expr, min_spec_expr = NULL;
e855c69d
AB
4214 int privileged_n = 0, i;
4215
4216 for (i = 0; i < ready.n_ready; i++)
4217 {
4218 if (ready_try[i])
4219 continue;
4220
4221 if (! min_spec_expr)
1124098b 4222 min_spec_expr = find_expr_for_ready (i, true);
b8698a0f 4223
e855c69d
AB
4224 cur_expr = find_expr_for_ready (i, true);
4225
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4228
4229 ++privileged_n;
4230 }
4231
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4234
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4239}
4240
b8698a0f 4241/* Call the rest of the hooks after the choice was made. Return
e855c69d
AB
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245static int
4246invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247{
4248 gcc_assert (INSN_P (best_insn));
4249
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
b8698a0f 4252
e855c69d
AB
4253 if (targetm.sched.variable_issue)
4254 {
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
b8698a0f 4256 issue_more =
e855c69d
AB
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 }
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266}
4267
4268/* Estimate the cost of issuing INSN on DFA state STATE. */
4269static int
4270estimate_insn_cost (rtx insn, state_t state)
4271{
4272 static state_t temp = NULL;
4273 int cost;
4274
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4277
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4280
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4286}
4287
b8698a0f 4288/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e855c69d
AB
4289 This function properly handles ASMs, USEs etc. */
4290static int
4291get_expr_cost (expr_t expr, fence_t fence)
4292{
4293 rtx insn = EXPR_INSN_RTX (expr);
4294
4295 if (recog_memoized (insn) < 0)
4296 {
b8698a0f 4297 if (!FENCE_STARTS_CYCLE_P (fence)
e855c69d
AB
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4308 }
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4311}
4312
b8698a0f 4313/* Find the best insn for scheduling, either via max_issue or just take
e855c69d
AB
4314 the most prioritized available. */
4315static int
4316choose_best_insn (fence_t fence, int privileged_n, int *index)
4317{
4318 int can_issue = 0;
4319
4320 if (dfa_lookahead > 0)
4321 {
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 can_issue = max_issue (&ready, privileged_n,
4324 FENCE_STATE (fence), index);
4325 if (sched_verbose >= 2)
4326 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327 can_issue, FENCE_ISSUED_INSNS (fence));
4328 }
4329 else
4330 {
4331 /* We can't use max_issue; just return the first available element. */
4332 int i;
4333
4334 for (i = 0; i < ready.n_ready; i++)
4335 {
4336 expr_t expr = find_expr_for_ready (i, true);
4337
4338 if (get_expr_cost (expr, fence) < 1)
4339 {
4340 can_issue = can_issue_more;
4341 *index = i;
4342
4343 if (sched_verbose >= 2)
4344 sel_print ("using %dth insn from the ready list\n", i + 1);
4345
4346 break;
4347 }
4348 }
4349
4350 if (i == ready.n_ready)
4351 {
4352 can_issue = 0;
4353 *index = -1;
4354 }
4355 }
4356
4357 return can_issue;
4358}
4359
b8698a0f
L
4360/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361 BNDS and FENCE are current boundaries and scheduling fence respectively.
4362 Return the expr found and NULL if nothing can be issued atm.
4363 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e855c69d
AB
4364static expr_t
4365find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366 int *pneed_stall)
4367{
4368 expr_t best;
b8698a0f 4369
e855c69d
AB
4370 /* Choose the best insn for scheduling via:
4371 1) sorting the ready list based on priority;
4372 2) calling the reorder hook;
4373 3) calling max_issue. */
4374 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375 if (best == NULL && ready.n_ready > 0)
4376 {
1124098b 4377 int privileged_n, index;
e855c69d
AB
4378
4379 can_issue_more = invoke_reorder_hooks (fence);
4380 if (can_issue_more > 0)
4381 {
b8698a0f 4382 /* Try choosing the best insn until we find one that is could be
e855c69d
AB
4383 scheduled due to liveness restrictions on its destination register.
4384 In the future, we'd like to choose once and then just probe insns
4385 in the order of their priority. */
1124098b 4386 invoke_dfa_lookahead_guard ();
e855c69d
AB
4387 privileged_n = calculate_privileged_insns ();
4388 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389 if (can_issue_more)
4390 best = find_expr_for_ready (index, true);
4391 }
b8698a0f 4392 /* We had some available insns, so if we can't issue them,
e855c69d
AB
4393 we have a stall. */
4394 if (can_issue_more == 0)
4395 {
4396 best = NULL;
4397 *pneed_stall = 1;
4398 }
4399 }
4400
4401 if (best != NULL)
4402 {
4403 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404 can_issue_more);
4405 if (can_issue_more == 0)
4406 *pneed_stall = 1;
4407 }
b8698a0f 4408
e855c69d
AB
4409 if (sched_verbose >= 2)
4410 {
4411 if (best != NULL)
4412 {
4413 sel_print ("Best expression (vliw form): ");
4414 dump_expr (best);
4415 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4416 }
4417 else
4418 sel_print ("No best expr found!\n");
4419 }
4420
4421 return best;
4422}
4423\f
4424
4425/* Functions that implement the core of the scheduler. */
4426
4427
b8698a0f 4428/* Emit an instruction from EXPR with SEQNO and VINSN after
e855c69d
AB
4429 PLACE_TO_INSERT. */
4430static insn_t
b8698a0f 4431emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
4432 insn_t place_to_insert)
4433{
4434 /* This assert fails when we have identical instructions
4435 one of which dominates the other. In this case move_op ()
4436 finds the first instruction and doesn't search for second one.
4437 The solution would be to compute av_set after the first found
4438 insn and, if insn present in that set, continue searching.
4439 For now we workaround this issue in move_op. */
4440 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4441
4442 if (EXPR_WAS_RENAMED (expr))
4443 {
4444 unsigned regno = expr_dest_regno (expr);
b8698a0f 4445
e855c69d
AB
4446 if (HARD_REGISTER_NUM_P (regno))
4447 {
4448 df_set_regs_ever_live (regno, true);
4449 reg_rename_tick[regno] = ++reg_rename_this_tick;
4450 }
4451 }
b8698a0f
L
4452
4453 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e855c69d
AB
4454 place_to_insert);
4455}
4456
4457/* Return TRUE if BB can hold bookkeeping code. */
4458static bool
4459block_valid_for_bookkeeping_p (basic_block bb)
4460{
4461 insn_t bb_end = BB_END (bb);
4462
4463 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4464 return false;
4465
4466 if (INSN_P (bb_end))
4467 {
4468 if (INSN_SCHED_TIMES (bb_end) > 0)
4469 return false;
4470 }
4471 else
4472 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4473
4474 return true;
4475}
4476
4477/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4478 into E2->dest, except from E1->src (there may be a sequence of empty basic
4479 blocks between E1->src and E2->dest). Return found block, or NULL if new
b5b8b0ac
AO
4480 one must be created. If LAX holds, don't assume there is a simple path
4481 from E1->src to E2->dest. */
e855c69d 4482static basic_block
b5b8b0ac 4483find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e855c69d
AB
4484{
4485 basic_block candidate_block = NULL;
4486 edge e;
4487
4488 /* Loop over edges from E1 to E2, inclusive. */
b5b8b0ac 4489 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
e855c69d
AB
4490 {
4491 if (EDGE_COUNT (e->dest->preds) == 2)
4492 {
4493 if (candidate_block == NULL)
4494 candidate_block = (EDGE_PRED (e->dest, 0) == e
4495 ? EDGE_PRED (e->dest, 1)->src
4496 : EDGE_PRED (e->dest, 0)->src);
4497 else
4498 /* Found additional edge leading to path from e1 to e2
4499 from aside. */
4500 return NULL;
4501 }
4502 else if (EDGE_COUNT (e->dest->preds) > 2)
4503 /* Several edges leading to path from e1 to e2 from aside. */
4504 return NULL;
4505
4506 if (e == e2)
b5b8b0ac
AO
4507 return ((!lax || candidate_block)
4508 && block_valid_for_bookkeeping_p (candidate_block)
e855c69d
AB
4509 ? candidate_block
4510 : NULL);
b5b8b0ac
AO
4511
4512 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4513 return NULL;
e855c69d 4514 }
b5b8b0ac
AO
4515
4516 if (lax)
4517 return NULL;
4518
e855c69d
AB
4519 gcc_unreachable ();
4520}
4521
4522/* Create new basic block for bookkeeping code for path(s) incoming into
4523 E2->dest, except from E1->src. Return created block. */
4524static basic_block
4525create_block_for_bookkeeping (edge e1, edge e2)
4526{
4527 basic_block new_bb, bb = e2->dest;
4528
4529 /* Check that we don't spoil the loop structure. */
4530 if (current_loop_nest)
4531 {
4532 basic_block latch = current_loop_nest->latch;
4533
4534 /* We do not split header. */
4535 gcc_assert (e2->dest != current_loop_nest->header);
4536
4537 /* We do not redirect the only edge to the latch block. */
4538 gcc_assert (e1->dest != latch
4539 || !single_pred_p (latch)
4540 || e1 != single_pred_edge (latch));
4541 }
4542
4543 /* Split BB to insert BOOK_INSN there. */
4544 new_bb = sched_split_block (bb, NULL);
4545
4546 /* Move note_list from the upper bb. */
4547 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4548 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4549 BB_NOTE_LIST (bb) = NULL_RTX;
4550
4551 gcc_assert (e2->dest == bb);
4552
4553 /* Skip block for bookkeeping copy when leaving E1->src. */
4554 if (e1->flags & EDGE_FALLTHRU)
4555 sel_redirect_edge_and_branch_force (e1, new_bb);
4556 else
4557 sel_redirect_edge_and_branch (e1, new_bb);
4558
4559 gcc_assert (e1->dest == new_bb);
4560 gcc_assert (sel_bb_empty_p (bb));
4561
b5b8b0ac
AO
4562 /* To keep basic block numbers in sync between debug and non-debug
4563 compilations, we have to rotate blocks here. Consider that we
4564 started from (a,b)->d, (c,d)->e, and d contained only debug
4565 insns. It would have been removed before if the debug insns
4566 weren't there, so we'd have split e rather than d. So what we do
4567 now is to swap the block numbers of new_bb and
4568 single_succ(new_bb) == e, so that the insns that were in e before
4569 get the new block number. */
4570
4571 if (MAY_HAVE_DEBUG_INSNS)
4572 {
4573 basic_block succ;
4574 insn_t insn = sel_bb_head (new_bb);
4575 insn_t last;
4576
4577 if (DEBUG_INSN_P (insn)
4578 && single_succ_p (new_bb)
4579 && (succ = single_succ (new_bb))
4580 && succ != EXIT_BLOCK_PTR
4581 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4582 {
4583 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4584 insn = NEXT_INSN (insn);
4585
4586 if (insn == last)
4587 {
4588 sel_global_bb_info_def gbi;
4589 sel_region_bb_info_def rbi;
4590 int i;
4591
4592 if (sched_verbose >= 2)
4593 sel_print ("Swapping block ids %i and %i\n",
4594 new_bb->index, succ->index);
4595
4596 i = new_bb->index;
4597 new_bb->index = succ->index;
4598 succ->index = i;
4599
4600 SET_BASIC_BLOCK (new_bb->index, new_bb);
4601 SET_BASIC_BLOCK (succ->index, succ);
4602
4603 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4605 sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607
4608 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4610 sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612
4613 i = BLOCK_TO_BB (new_bb->index);
4614 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4615 BLOCK_TO_BB (succ->index) = i;
4616
4617 i = CONTAINING_RGN (new_bb->index);
4618 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4619 CONTAINING_RGN (succ->index) = i;
4620
4621 for (i = 0; i < current_nr_blocks; i++)
4622 if (BB_TO_BLOCK (i) == succ->index)
4623 BB_TO_BLOCK (i) = new_bb->index;
4624 else if (BB_TO_BLOCK (i) == new_bb->index)
4625 BB_TO_BLOCK (i) = succ->index;
4626
4627 FOR_BB_INSNS (new_bb, insn)
4628 if (INSN_P (insn))
4629 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4630
4631 FOR_BB_INSNS (succ, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4634
fcaa4ca4
NF
4635 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4636 bitmap_set_bit (code_motion_visited_blocks, succ->index);
b5b8b0ac
AO
4637
4638 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4639 && LABEL_P (BB_HEAD (succ)));
4640
4641 if (sched_verbose >= 4)
4642 sel_print ("Swapping code labels %i and %i\n",
4643 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4644 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4645
4646 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4647 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4648 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4650 }
4651 }
4652 }
4653
e855c69d
AB
4654 return bb;
4655}
4656
4657/* Return insn after which we must insert bookkeeping code for path(s) incoming
4658 into E2->dest, except from E1->src. */
4659static insn_t
4660find_place_for_bookkeeping (edge e1, edge e2)
4661{
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
b5b8b0ac 4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e855c69d 4666
b5b8b0ac
AO
4667 if (book_block)
4668 {
4669 place_to_insert = BB_END (book_block);
4670
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4676 {
4677 rtx insn = sel_bb_head (book_block);
e855c69d 4678
b5b8b0ac
AO
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4682
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4685 }
4686 }
4687
4688 if (!book_block)
4689 {
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4695 }
4696 else
4697 {
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4700 }
e855c69d
AB
4701
4702 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4703 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4704 place_to_insert = PREV_INSN (place_to_insert);
4705
4706 return place_to_insert;
4707}
4708
4709/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4710 for JOIN_POINT. */
4711static int
4712find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4713{
4714 int seqno;
4715 rtx next;
4716
4717 /* Check if we are about to insert bookkeeping copy before a jump, and use
4718 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4719 next = NEXT_INSN (place_to_insert);
b8698a0f 4720 if (INSN_P (next)
e855c69d
AB
4721 && JUMP_P (next)
4722 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4723 {
4724 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4725 seqno = INSN_SEQNO (next);
4726 }
e855c69d
AB
4727 else if (INSN_SEQNO (join_point) > 0)
4728 seqno = INSN_SEQNO (join_point);
4729 else
da7ba240
AB
4730 {
4731 seqno = get_seqno_by_preds (place_to_insert);
4732
b8698a0f
L
4733 /* Sometimes the fences can move in such a way that there will be
4734 no instructions with positive seqno around this bookkeeping.
da7ba240
AB
4735 This means that there will be no way to get to it by a regular
4736 fence movement. Never mind because we pick up such pieces for
4737 rescheduling anyways, so any positive value will do for now. */
4738 if (seqno < 0)
4739 {
4740 gcc_assert (pipelining_p);
4741 seqno = 1;
4742 }
4743 }
b8698a0f 4744
e855c69d
AB
4745 gcc_assert (seqno > 0);
4746 return seqno;
4747}
4748
4749/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4750 NEW_SEQNO to it. Return created insn. */
4751static insn_t
4752emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4753{
4754 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4755
4756 vinsn_t new_vinsn
4757 = create_vinsn_from_insn_rtx (new_insn_rtx,
4758 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4759
4760 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4761 place_to_insert);
4762
4763 INSN_SCHED_TIMES (new_insn) = 0;
4764 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4765
4766 return new_insn;
4767}
4768
4769/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4770 E2->dest, except from E1->src (there may be a sequence of empty blocks
4771 between E1->src and E2->dest). Return block containing the copy.
4772 All scheduler data is initialized for the newly created insn. */
4773static basic_block
4774generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4775{
4776 insn_t join_point, place_to_insert, new_insn;
4777 int new_seqno;
4778 bool need_to_exchange_data_sets;
4779
4780 if (sched_verbose >= 4)
4781 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4782 e2->dest->index);
4783
4784 join_point = sel_bb_head (e2->dest);
4785 place_to_insert = find_place_for_bookkeeping (e1, e2);
b5b8b0ac
AO
4786 if (!place_to_insert)
4787 return NULL;
e855c69d
AB
4788 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4789 need_to_exchange_data_sets
4790 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4791
4792 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4793
4794 /* When inserting bookkeeping insn in new block, av sets should be
4795 following: old basic block (that now holds bookkeeping) data sets are
4796 the same as was before generation of bookkeeping, and new basic block
4797 (that now hold all other insns of old basic block) data sets are
4798 invalid. So exchange data sets for these basic blocks as sel_split_block
4799 mistakenly exchanges them in this case. Cannot do it earlier because
4800 when single instruction is added to new basic block it should hold NULL
4801 lv_set. */
4802 if (need_to_exchange_data_sets)
4803 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4804 BLOCK_FOR_INSN (join_point));
4805
4806 stat_bookkeeping_copies++;
4807 return BLOCK_FOR_INSN (new_insn);
4808}
4809
b8698a0f 4810/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e855c69d
AB
4811 on FENCE, but we are unable to copy them. */
4812static void
4813remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4814{
4815 expr_t expr;
4816 av_set_iterator i;
4817
b8698a0f
L
4818 /* An expression does not need bookkeeping if it is available on all paths
4819 from current block to original block and current block dominates
4820 original block. We check availability on all paths by examining
4821 EXPR_SPEC; this is not equivalent, because it may be positive even
4822 if expr is available on all paths (but if expr is not available on
e855c69d
AB
4823 any path, EXPR_SPEC will be positive). */
4824
4825 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4826 {
4827 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4828 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4829 && (EXPR_SPEC (expr)
4830 || !EXPR_ORIG_BB_INDEX (expr)
4831 || !dominated_by_p (CDI_DOMINATORS,
4832 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4833 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4834 {
4835 if (sched_verbose >= 4)
4836 sel_print ("Expr %d removed because it would need bookkeeping, which "
4837 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4838 av_set_iter_remove (&i);
4839 }
4840 }
4841}
4842
4843/* Moving conditional jump through some instructions.
4844
4845 Consider example:
4846
4847 ... <- current scheduling point
4848 NOTE BASIC BLOCK: <- bb header
4849 (p8) add r14=r14+0x9;;
4850 (p8) mov [r14]=r23
4851 (!p8) jump L1;;
4852 NOTE BASIC BLOCK:
4853 ...
4854
b8698a0f 4855 We can schedule jump one cycle earlier, than mov, because they cannot be
e855c69d
AB
4856 executed together as their predicates are mutually exclusive.
4857
b8698a0f
L
4858 This is done in this way: first, new fallthrough basic block is created
4859 after jump (it is always can be done, because there already should be a
e855c69d 4860 fallthrough block, where control flow goes in case of predicate being true -
b8698a0f
L
4861 in our example; otherwise there should be a dependence between those
4862 instructions and jump and we cannot schedule jump right now);
4863 next, all instructions between jump and current scheduling point are moved
e855c69d
AB
4864 to this new block. And the result is this:
4865
4866 NOTE BASIC BLOCK:
4867 (!p8) jump L1 <- current scheduling point
4868 NOTE BASIC BLOCK: <- bb header
4869 (p8) add r14=r14+0x9;;
4870 (p8) mov [r14]=r23
4871 NOTE BASIC BLOCK:
4872 ...
4873*/
4874static void
4875move_cond_jump (rtx insn, bnd_t bnd)
4876{
4877 edge ft_edge;
324d3f45
AM
4878 basic_block block_from, block_next, block_new, block_bnd, bb;
4879 rtx next, prev, link, head;
e855c69d 4880
e855c69d 4881 block_from = BLOCK_FOR_INSN (insn);
324d3f45
AM
4882 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4883 prev = BND_TO (bnd);
e855c69d 4884
324d3f45
AM
4885#ifdef ENABLE_CHECKING
4886 /* Moving of jump should not cross any other jumps or beginnings of new
4887 basic blocks. The only exception is when we move a jump through
4888 mutually exclusive insns along fallthru edges. */
4889 if (block_from != block_bnd)
4890 {
4891 bb = block_from;
4892 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4893 link = PREV_INSN (link))
4894 {
4895 if (INSN_P (link))
4896 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4897 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4898 {
4899 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4900 bb = BLOCK_FOR_INSN (link);
4901 }
4902 }
4903 }
4904#endif
e855c69d
AB
4905
4906 /* Jump is moved to the boundary. */
e855c69d
AB
4907 next = PREV_INSN (insn);
4908 BND_TO (bnd) = insn;
4909
0fd4b31d 4910 ft_edge = find_fallthru_edge_from (block_from);
e855c69d
AB
4911 block_next = ft_edge->dest;
4912 /* There must be a fallthrough block (or where should go
4913 control flow in case of false jump predicate otherwise?). */
4914 gcc_assert (block_next);
4915
4916 /* Create new empty basic block after source block. */
4917 block_new = sel_split_edge (ft_edge);
4918 gcc_assert (block_new->next_bb == block_next
4919 && block_from->next_bb == block_new);
4920
324d3f45
AM
4921 /* Move all instructions except INSN to BLOCK_NEW. */
4922 bb = block_bnd;
4923 head = BB_HEAD (block_new);
4924 while (bb != block_from->next_bb)
e855c69d 4925 {
324d3f45
AM
4926 rtx from, to;
4927 from = bb == block_bnd ? prev : sel_bb_head (bb);
4928 to = bb == block_from ? next : sel_bb_end (bb);
e855c69d 4929
324d3f45
AM
4930 /* The jump being moved can be the first insn in the block.
4931 In this case we don't have to move anything in this block. */
4932 if (NEXT_INSN (to) != from)
4933 {
4934 reorder_insns (from, to, head);
4935
4936 for (link = to; link != head; link = PREV_INSN (link))
4937 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4938 head = to;
4939 }
e855c69d 4940
324d3f45
AM
4941 /* Cleanup possibly empty blocks left. */
4942 block_next = bb->next_bb;
4943 if (bb != block_from)
65592aad 4944 tidy_control_flow (bb, false);
324d3f45
AM
4945 bb = block_next;
4946 }
e855c69d
AB
4947
4948 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4949 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e855c69d
AB
4950
4951 gcc_assert (!sel_bb_empty_p (block_from)
4952 && !sel_bb_empty_p (block_new));
4953
4954 /* Update data sets for BLOCK_NEW to represent that INSN and
4955 instructions from the other branch of INSN is no longer
4956 available at BLOCK_NEW. */
4957 BB_AV_LEVEL (block_new) = global_level;
4958 gcc_assert (BB_LV_SET (block_new) == NULL);
4959 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4960 update_data_sets (sel_bb_head (block_new));
4961
4962 /* INSN is a new basic block header - so prepare its data
4963 structures and update availability and liveness sets. */
4964 update_data_sets (insn);
4965
4966 if (sched_verbose >= 4)
4967 sel_print ("Moving jump %d\n", INSN_UID (insn));
4968}
4969
4970/* Remove nops generated during move_op for preventing removal of empty
4971 basic blocks. */
4972static void
b5b8b0ac 4973remove_temp_moveop_nops (bool full_tidying)
e855c69d
AB
4974{
4975 int i;
4976 insn_t insn;
b8698a0f 4977
ac47786e 4978 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
e855c69d
AB
4979 {
4980 gcc_assert (INSN_NOP_P (insn));
b5b8b0ac 4981 return_nop_to_pool (insn, full_tidying);
e855c69d
AB
4982 }
4983
4984 /* Empty the vector. */
4985 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
b8698a0f 4986 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
e855c69d
AB
4987 VEC_length (insn_t, vec_temp_moveop_nops));
4988}
4989
4990/* Records the maximal UID before moving up an instruction. Used for
4991 distinguishing between bookkeeping copies and original insns. */
4992static int max_uid_before_move_op = 0;
4993
4994/* Remove from AV_VLIW_P all instructions but next when debug counter
4995 tells us so. Next instruction is fetched from BNDS. */
4996static void
4997remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4998{
4999 if (! dbg_cnt (sel_sched_insn_cnt))
5000 /* Leave only the next insn in av_vliw. */
5001 {
5002 av_set_iterator av_it;
5003 expr_t expr;
5004 bnd_t bnd = BLIST_BND (bnds);
5005 insn_t next = BND_TO (bnd);
5006
5007 gcc_assert (BLIST_NEXT (bnds) == NULL);
5008
5009 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5010 if (EXPR_INSN_RTX (expr) != next)
5011 av_set_iter_remove (&av_it);
5012 }
5013}
5014
b8698a0f 5015/* Compute available instructions on BNDS. FENCE is the current fence. Write
e855c69d
AB
5016 the computed set to *AV_VLIW_P. */
5017static void
5018compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5019{
5020 if (sched_verbose >= 2)
5021 {
5022 sel_print ("Boundaries: ");
5023 dump_blist (bnds);
5024 sel_print ("\n");
5025 }
5026
5027 for (; bnds; bnds = BLIST_NEXT (bnds))
5028 {
5029 bnd_t bnd = BLIST_BND (bnds);
5030 av_set_t av1_copy;
5031 insn_t bnd_to = BND_TO (bnd);
5032
5033 /* Rewind BND->TO to the basic block header in case some bookkeeping
5034 instructions were inserted before BND->TO and it needs to be
5035 adjusted. */
5036 if (sel_bb_head_p (bnd_to))
5037 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5038 else
5039 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5040 {
5041 bnd_to = PREV_INSN (bnd_to);
5042 if (sel_bb_head_p (bnd_to))
5043 break;
5044 }
5045
5046 if (BND_TO (bnd) != bnd_to)
5047 {
5048 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5049 FENCE_INSN (fence) = bnd_to;
5050 BND_TO (bnd) = bnd_to;
5051 }
5052
5053 av_set_clear (&BND_AV (bnd));
5054 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5055
5056 av_set_clear (&BND_AV1 (bnd));
5057 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5058
5059 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
b8698a0f 5060
e855c69d
AB
5061 av1_copy = av_set_copy (BND_AV1 (bnd));
5062 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5063 }
5064
5065 if (sched_verbose >= 2)
5066 {
5067 sel_print ("Available exprs (vliw form): ");
5068 dump_av_set (*av_vliw_p);
5069 sel_print ("\n");
5070 }
5071}
5072
b8698a0f
L
5073/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5074 expression. When FOR_MOVEOP is true, also replace the register of
e855c69d
AB
5075 expressions found with the register from EXPR_VLIW. */
5076static av_set_t
5077find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5078{
5079 av_set_t expr_seq = NULL;
5080 expr_t expr;
5081 av_set_iterator i;
b8698a0f 5082
e855c69d
AB
5083 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5084 {
5085 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5086 {
5087 if (for_moveop)
5088 {
b8698a0f
L
5089 /* The sequential expression has the right form to pass
5090 to move_op except when renaming happened. Put the
e855c69d
AB
5091 correct register in EXPR then. */
5092 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5093 {
5094 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5095 {
5096 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5097 stat_renamed_scheduled++;
5098 }
b8698a0f
L
5099 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5100 This is needed when renaming came up with original
e855c69d 5101 register. */
b8698a0f 5102 else if (EXPR_TARGET_AVAILABLE (expr)
e855c69d
AB
5103 != EXPR_TARGET_AVAILABLE (expr_vliw))
5104 {
5105 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5106 EXPR_TARGET_AVAILABLE (expr) = 1;
5107 }
5108 }
5109 if (EXPR_WAS_SUBSTITUTED (expr))
5110 stat_substitutions_total++;
5111 }
5112
5113 av_set_add (&expr_seq, expr);
b8698a0f
L
5114
5115 /* With substitution inside insn group, it is possible
5116 that more than one expression in expr_seq will correspond
5117 to expr_vliw. In this case, choose one as the attempt to
e855c69d
AB
5118 move both leads to miscompiles. */
5119 break;
5120 }
5121 }
5122
5123 if (for_moveop && sched_verbose >= 2)
5124 {
5125 sel_print ("Best expression(s) (sequential form): ");
5126 dump_av_set (expr_seq);
5127 sel_print ("\n");
5128 }
b8698a0f 5129
e855c69d
AB
5130 return expr_seq;
5131}
5132
5133
5134/* Move nop to previous block. */
5135static void ATTRIBUTE_UNUSED
5136move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5137{
5138 insn_t prev_insn, next_insn, note;
5139
b8698a0f 5140 gcc_assert (sel_bb_head_p (nop)
e855c69d
AB
5141 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5142 note = bb_note (BLOCK_FOR_INSN (nop));
5143 prev_insn = sel_bb_end (prev_bb);
5144 next_insn = NEXT_INSN (nop);
5145 gcc_assert (prev_insn != NULL_RTX
5146 && PREV_INSN (note) == prev_insn);
5147
5148 NEXT_INSN (prev_insn) = nop;
5149 PREV_INSN (nop) = prev_insn;
5150
5151 PREV_INSN (note) = nop;
5152 NEXT_INSN (note) = next_insn;
5153
5154 NEXT_INSN (nop) = note;
5155 PREV_INSN (next_insn) = note;
5156
5157 BB_END (prev_bb) = nop;
5158 BLOCK_FOR_INSN (nop) = prev_bb;
5159}
5160
5161/* Prepare a place to insert the chosen expression on BND. */
5162static insn_t
5163prepare_place_to_insert (bnd_t bnd)
5164{
5165 insn_t place_to_insert;
5166
5167 /* Init place_to_insert before calling move_op, as the later
5168 can possibly remove BND_TO (bnd). */
5169 if (/* If this is not the first insn scheduled. */
5170 BND_PTR (bnd))
5171 {
5172 /* Add it after last scheduled. */
5173 place_to_insert = ILIST_INSN (BND_PTR (bnd));
b5b8b0ac
AO
5174 if (DEBUG_INSN_P (place_to_insert))
5175 {
5176 ilist_t l = BND_PTR (bnd);
5177 while ((l = ILIST_NEXT (l)) &&
5178 DEBUG_INSN_P (ILIST_INSN (l)))
5179 ;
5180 if (!l)
5181 place_to_insert = NULL;
5182 }
e855c69d
AB
5183 }
5184 else
b5b8b0ac
AO
5185 place_to_insert = NULL;
5186
5187 if (!place_to_insert)
e855c69d
AB
5188 {
5189 /* Add it before BND_TO. The difference is in the
5190 basic block, where INSN will be added. */
5191 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5192 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5193 == BLOCK_FOR_INSN (BND_TO (bnd)));
5194 }
5195
5196 return place_to_insert;
5197}
5198
b8698a0f 5199/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e855c69d 5200 Return the expression to emit in C_EXPR. */
72a54528 5201static bool
b8698a0f 5202move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e855c69d
AB
5203 av_set_t expr_seq, expr_t c_expr)
5204{
72a54528 5205 bool b, should_move;
e855c69d
AB
5206 unsigned book_uid;
5207 bitmap_iterator bi;
5208 int n_bookkeeping_copies_before_moveop;
5209
5210 /* Make a move. This call will remove the original operation,
5211 insert all necessary bookkeeping instructions and update the
5212 data sets. After that all we have to do is add the operation
5213 at before BND_TO (BND). */
5214 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5215 max_uid_before_move_op = get_max_uid ();
5216 bitmap_clear (current_copies);
5217 bitmap_clear (current_originators);
5218
b8698a0f 5219 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 5220 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d 5221
b8698a0f 5222 /* We should be able to find the expression we've chosen for
e855c69d 5223 scheduling. */
72a54528 5224 gcc_assert (b);
b8698a0f 5225
e855c69d
AB
5226 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5227 stat_insns_needed_bookkeeping++;
b8698a0f 5228
e855c69d
AB
5229 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5230 {
14f30b87
AM
5231 unsigned uid;
5232 bitmap_iterator bi;
5233
e855c69d
AB
5234 /* We allocate these bitmaps lazily. */
5235 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5236 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
b8698a0f
L
5237
5238 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e855c69d 5239 current_originators);
14f30b87
AM
5240
5241 /* Transitively add all originators' originators. */
5242 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5243 if (INSN_ORIGINATORS_BY_UID (uid))
5244 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5245 INSN_ORIGINATORS_BY_UID (uid));
e855c69d 5246 }
72a54528
AM
5247
5248 return should_move;
e855c69d
AB
5249}
5250
5251
5252/* Debug a DFA state as an array of bytes. */
5253static void
5254debug_state (state_t state)
5255{
5256 unsigned char *p;
5257 unsigned int i, size = dfa_state_size;
5258
5259 sel_print ("state (%u):", size);
5260 for (i = 0, p = (unsigned char *) state; i < size; i++)
5261 sel_print (" %d", p[i]);
5262 sel_print ("\n");
5263}
5264
b8698a0f 5265/* Advance state on FENCE with INSN. Return true if INSN is
e855c69d
AB
5266 an ASM, and we should advance state once more. */
5267static bool
5268advance_state_on_fence (fence_t fence, insn_t insn)
5269{
5270 bool asm_p;
5271
5272 if (recog_memoized (insn) >= 0)
5273 {
5274 int res;
5275 state_t temp_state = alloca (dfa_state_size);
b8698a0f 5276
e855c69d
AB
5277 gcc_assert (!INSN_ASM_P (insn));
5278 asm_p = false;
5279
5280 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5281 res = state_transition (FENCE_STATE (fence), insn);
5282 gcc_assert (res < 0);
5283
5284 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5285 {
5286 FENCE_ISSUED_INSNS (fence)++;
5287
5288 /* We should never issue more than issue_rate insns. */
5289 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5290 gcc_unreachable ();
5291 }
b8698a0f 5292 }
e855c69d
AB
5293 else
5294 {
b8698a0f 5295 /* This could be an ASM insn which we'd like to schedule
e855c69d
AB
5296 on the next cycle. */
5297 asm_p = INSN_ASM_P (insn);
5298 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5299 advance_one_cycle (fence);
5300 }
5301
5302 if (sched_verbose >= 2)
5303 debug_state (FENCE_STATE (fence));
b5b8b0ac
AO
5304 if (!DEBUG_INSN_P (insn))
5305 FENCE_STARTS_CYCLE_P (fence) = 0;
136e01a3 5306 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
5307 return asm_p;
5308}
5309
5310/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5311 is nonzero if we need to stall after issuing INSN. */
5312static void
5313update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5314{
5315 bool asm_p;
b8698a0f 5316
e855c69d
AB
5317 /* First, reflect that something is scheduled on this fence. */
5318 asm_p = advance_state_on_fence (fence, insn);
5319 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5320 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5321 if (SCHED_GROUP_P (insn))
5322 {
5323 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5324 SCHED_GROUP_P (insn) = 0;
5325 }
5326 else
5327 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5328 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5329 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5330
5331 /* Set instruction scheduling info. This will be used in bundling,
5332 pipelining, tick computations etc. */
5333 ++INSN_SCHED_TIMES (insn);
5334 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5335 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5336 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5337 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5338
5339 /* This does not account for adjust_cost hooks, just add the biggest
b8698a0f 5340 constant the hook may add to the latency. TODO: make this
e855c69d 5341 a target dependent constant. */
b8698a0f
L
5342 INSN_READY_CYCLE (insn)
5343 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e855c69d
AB
5344 ? 1
5345 : maximal_insn_latency (insn) + 1);
5346
5347 /* Change these fields last, as they're used above. */
5348 FENCE_AFTER_STALL_P (fence) = 0;
5349 if (asm_p || need_stall)
5350 advance_one_cycle (fence);
b8698a0f 5351
e855c69d
AB
5352 /* Indicate that we've scheduled something on this fence. */
5353 FENCE_SCHEDULED_P (fence) = true;
5354 scheduled_something_on_previous_fence = true;
5355
5356 /* Print debug information when insn's fields are updated. */
5357 if (sched_verbose >= 2)
5358 {
5359 sel_print ("Scheduling insn: ");
5360 dump_insn_1 (insn, 1);
5361 sel_print ("\n");
5362 }
5363}
5364
b5b8b0ac
AO
5365/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5366 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5367 return it. */
e855c69d 5368static blist_t *
b5b8b0ac 5369update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e855c69d
AB
5370 blist_t *bnds_tailp)
5371{
5372 succ_iterator si;
5373 insn_t succ;
5374
5375 advance_deps_context (BND_DC (bnd), insn);
b8698a0f 5376 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
5377 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5378 {
5379 ilist_t ptr = ilist_copy (BND_PTR (bnd));
b8698a0f 5380
e855c69d 5381 ilist_add (&ptr, insn);
b5b8b0ac
AO
5382
5383 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5384 && is_ineligible_successor (succ, ptr))
5385 {
5386 ilist_clear (&ptr);
5387 continue;
5388 }
5389
5390 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5391 {
5392 if (sched_verbose >= 9)
5393 sel_print ("Updating fence insn from %i to %i\n",
5394 INSN_UID (insn), INSN_UID (succ));
5395 FENCE_INSN (fence) = succ;
5396 }
e855c69d
AB
5397 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5398 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5399 }
b8698a0f 5400
e855c69d
AB
5401 blist_remove (bndsp);
5402 return bnds_tailp;
5403}
5404
5405/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5406static insn_t
5407schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5408{
5409 av_set_t expr_seq;
5410 expr_t c_expr = XALLOCA (expr_def);
5411 insn_t place_to_insert;
5412 insn_t insn;
72a54528 5413 bool should_move;
e855c69d
AB
5414
5415 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5416
5417 /* In case of scheduling a jump skipping some other instructions,
b8698a0f 5418 prepare CFG. After this, jump is at the boundary and can be
e855c69d
AB
5419 scheduled as usual insn by MOVE_OP. */
5420 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5421 {
5422 insn = EXPR_INSN_RTX (expr_vliw);
b8698a0f 5423
e855c69d 5424 /* Speculative jumps are not handled. */
b8698a0f 5425 if (insn != BND_TO (bnd)
e855c69d
AB
5426 && !sel_insn_is_speculation_check (insn))
5427 move_cond_jump (insn, bnd);
5428 }
5429
e855c69d
AB
5430 /* Find a place for C_EXPR to schedule. */
5431 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5432 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d 5433 clear_expr (c_expr);
b8698a0f
L
5434
5435 /* Add the instruction. The corner case to care about is when
5436 the expr_seq set has more than one expr, and we chose the one that
5437 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e855c69d
AB
5438 we can't use it. Generate the new vinsn. */
5439 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5440 {
5441 vinsn_t vinsn_new;
b8698a0f 5442
e855c69d
AB
5443 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5444 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5445 should_move = false;
e855c69d 5446 }
72a54528
AM
5447 if (should_move)
5448 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5449 else
b8698a0f 5450 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e855c69d 5451 place_to_insert);
e855c69d
AB
5452
5453 /* Return the nops generated for preserving of data sets back
5454 into pool. */
5455 if (INSN_NOP_P (place_to_insert))
b5b8b0ac
AO
5456 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5457 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e855c69d
AB
5458
5459 av_set_clear (&expr_seq);
b8698a0f
L
5460
5461 /* Save the expression scheduled so to reset target availability if we'll
e855c69d
AB
5462 meet it later on the same fence. */
5463 if (EXPR_WAS_RENAMED (expr_vliw))
5464 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5465
5466 /* Check that the recent movement didn't destroyed loop
5467 structure. */
5468 gcc_assert (!pipelining_p
5469 || current_loop_nest == NULL
5470 || loop_latch_edge (current_loop_nest));
5471 return insn;
5472}
5473
5474/* Stall for N cycles on FENCE. */
5475static void
5476stall_for_cycles (fence_t fence, int n)
5477{
5478 int could_more;
b8698a0f 5479
e855c69d
AB
5480 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5481 while (n--)
5482 advance_one_cycle (fence);
5483 if (could_more)
5484 FENCE_AFTER_STALL_P (fence) = 1;
5485}
5486
b8698a0f
L
5487/* Gather a parallel group of insns at FENCE and assign their seqno
5488 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e855c69d
AB
5489 list for later recalculation of seqnos. */
5490static void
5491fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5492{
5493 blist_t bnds = NULL, *bnds_tailp;
5494 av_set_t av_vliw = NULL;
5495 insn_t insn = FENCE_INSN (fence);
5496
5497 if (sched_verbose >= 2)
b8698a0f 5498 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e855c69d
AB
5499 INSN_UID (insn), FENCE_CYCLE (fence));
5500
5501 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5502 bnds_tailp = &BLIST_NEXT (bnds);
5503 set_target_context (FENCE_TC (fence));
136e01a3 5504 can_issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
5505 target_bb = INSN_BB (insn);
5506
5507 /* Do while we can add any operation to the current group. */
5508 do
5509 {
5510 blist_t *bnds_tailp1, *bndsp;
5511 expr_t expr_vliw;
5512 int need_stall;
5513 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5514 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5515 int max_stall = pipelining_p ? 1 : 3;
b5b8b0ac
AO
5516 bool last_insn_was_debug = false;
5517 bool was_debug_bb_end_p = false;
5518
e855c69d
AB
5519 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5520 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5521 remove_insns_for_debug (bnds, &av_vliw);
5522
5523 /* Return early if we have nothing to schedule. */
5524 if (av_vliw == NULL)
5525 break;
5526
5527 /* Choose the best expression and, if needed, destination register
5528 for it. */
5529 do
5530 {
5531 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5532 if (!expr_vliw && need_stall)
5533 {
5534 /* All expressions required a stall. Do not recompute av sets
5535 as we'll get the same answer (modulo the insns between
5536 the fence and its boundary, which will not be available for
5537 pipelining). */
5538 gcc_assert (! expr_vliw && stall_iterations < 2);
5539 was_stall++;
5540 /* If we are going to stall for too long, break to recompute av
5541 sets and bring more insns for pipelining. */
5542 if (need_stall <= 3)
5543 stall_for_cycles (fence, need_stall);
5544 else
5545 {
5546 stall_for_cycles (fence, 1);
5547 break;
5548 }
5549 }
5550 }
5551 while (! expr_vliw && need_stall);
b8698a0f 5552
e855c69d
AB
5553 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5554 if (!expr_vliw)
5555 {
5556 av_set_clear (&av_vliw);
5557 break;
5558 }
5559
5560 bndsp = &bnds;
5561 bnds_tailp1 = bnds_tailp;
5562
5563 do
b8698a0f 5564 /* This code will be executed only once until we'd have several
e855c69d
AB
5565 boundaries per fence. */
5566 {
5567 bnd_t bnd = BLIST_BND (*bndsp);
5568
5569 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5570 {
5571 bndsp = &BLIST_NEXT (*bndsp);
5572 continue;
5573 }
b8698a0f 5574
e855c69d 5575 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
b5b8b0ac
AO
5576 last_insn_was_debug = DEBUG_INSN_P (insn);
5577 if (last_insn_was_debug)
5578 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e855c69d 5579 update_fence_and_insn (fence, insn, need_stall);
b5b8b0ac 5580 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e855c69d
AB
5581
5582 /* Add insn to the list of scheduled on this cycle instructions. */
5583 ilist_add (*scheduled_insns_tailpp, insn);
5584 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5585 }
5586 while (*bndsp != *bnds_tailp1);
5587
5588 av_set_clear (&av_vliw);
b5b8b0ac
AO
5589 if (!last_insn_was_debug)
5590 scheduled_insns++;
e855c69d
AB
5591
5592 /* We currently support information about candidate blocks only for
5593 one 'target_bb' block. Hence we can't schedule after jump insn,
5594 as this will bring two boundaries and, hence, necessity to handle
5595 information for two or more blocks concurrently. */
b5b8b0ac 5596 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
b8698a0f
L
5597 || (was_stall
5598 && (was_stall >= max_stall
e855c69d
AB
5599 || scheduled_insns >= max_insns)))
5600 break;
5601 }
5602 while (bnds);
5603
5604 gcc_assert (!FENCE_BNDS (fence));
b8698a0f 5605
e855c69d
AB
5606 /* Update boundaries of the FENCE. */
5607 while (bnds)
5608 {
5609 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5610
5611 if (ptr)
5612 {
5613 insn = ILIST_INSN (ptr);
5614
5615 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5616 ilist_add (&FENCE_BNDS (fence), insn);
5617 }
b8698a0f 5618
e855c69d
AB
5619 blist_remove (&bnds);
5620 }
5621
5622 /* Update target context on the fence. */
5623 reset_target_context (FENCE_TC (fence), false);
5624}
5625
5626/* All exprs in ORIG_OPS must have the same destination register or memory.
5627 Return that destination. */
5628static rtx
5629get_dest_from_orig_ops (av_set_t orig_ops)
5630{
5631 rtx dest = NULL_RTX;
5632 av_set_iterator av_it;
5633 expr_t expr;
5634 bool first_p = true;
5635
5636 FOR_EACH_EXPR (expr, av_it, orig_ops)
5637 {
5638 rtx x = EXPR_LHS (expr);
5639
5640 if (first_p)
5641 {
5642 first_p = false;
5643 dest = x;
5644 }
5645 else
5646 gcc_assert (dest == x
5647 || (dest != NULL_RTX && x != NULL_RTX
5648 && rtx_equal_p (dest, x)));
5649 }
5650
5651 return dest;
5652}
5653
5654/* Update data sets for the bookkeeping block and record those expressions
5655 which become no longer available after inserting this bookkeeping. */
5656static void
5657update_and_record_unavailable_insns (basic_block book_block)
5658{
5659 av_set_iterator i;
5660 av_set_t old_av_set = NULL;
5661 expr_t cur_expr;
5662 rtx bb_end = sel_bb_end (book_block);
5663
b8698a0f 5664 /* First, get correct liveness in the bookkeeping block. The problem is
e855c69d
AB
5665 the range between the bookeeping insn and the end of block. */
5666 update_liveness_on_insn (bb_end);
5667 if (control_flow_insn_p (bb_end))
5668 update_liveness_on_insn (PREV_INSN (bb_end));
5669
5670 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5671 fence above, where we may choose to schedule an insn which is
5672 actually blocked from moving up with the bookkeeping we create here. */
5673 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5674 {
5675 old_av_set = av_set_copy (BB_AV_SET (book_block));
5676 update_data_sets (sel_bb_head (book_block));
b8698a0f 5677
e855c69d
AB
5678 /* Traverse all the expressions in the old av_set and check whether
5679 CUR_EXPR is in new AV_SET. */
5680 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5681 {
b8698a0f 5682 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e855c69d
AB
5683 EXPR_VINSN (cur_expr));
5684
b8698a0f
L
5685 if (! new_expr
5686 /* In this case, we can just turn off the E_T_A bit, but we can't
e855c69d 5687 represent this information with the current vector. */
b8698a0f 5688 || EXPR_TARGET_AVAILABLE (new_expr)
e855c69d
AB
5689 != EXPR_TARGET_AVAILABLE (cur_expr))
5690 /* Unfortunately, the below code could be also fired up on
5691 separable insns.
5692 FIXME: add an example of how this could happen. */
5693 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5694 }
5695
5696 av_set_clear (&old_av_set);
5697 }
5698}
5699
b8698a0f 5700/* The main effect of this function is that sparams->c_expr is merged
e855c69d
AB
5701 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5702 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
b8698a0f
L
5703 lparams->c_expr_merged is copied back to sparams->c_expr after all
5704 successors has been traversed. lparams->c_expr_local is an expr allocated
5705 on stack in the caller function, and is used if there is more than one
5706 successor.
e855c69d
AB
5707
5708 SUCC is one of the SUCCS_NORMAL successors of INSN,
5709 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5710 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5711static void
b8698a0f
L
5712move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5713 insn_t succ ATTRIBUTE_UNUSED,
5714 int moveop_drv_call_res,
e855c69d
AB
5715 cmpd_local_params_p lparams, void *static_params)
5716{
5717 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5718
5719 /* Nothing to do, if original expr wasn't found below. */
5720 if (moveop_drv_call_res != 1)
5721 return;
5722
5723 /* If this is a first successor. */
5724 if (!lparams->c_expr_merged)
5725 {
5726 lparams->c_expr_merged = sparams->c_expr;
5727 sparams->c_expr = lparams->c_expr_local;
5728 }
5729 else
5730 {
5731 /* We must merge all found expressions to get reasonable
5732 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5733 do so then we can first find the expr with epsilon
5734 speculation success probability and only then with the
5735 good probability. As a result the insn will get epsilon
5736 probability and will never be scheduled because of
5737 weakness_cutoff in find_best_expr.
5738
b8698a0f 5739 We call merge_expr_data here instead of merge_expr
e855c69d
AB
5740 because due to speculation C_EXPR and X may have the
5741 same insns with different speculation types. And as of
b8698a0f 5742 now such insns are considered non-equal.
e855c69d 5743
b8698a0f
L
5744 However, EXPR_SCHED_TIMES is different -- we must get
5745 SCHED_TIMES from a real insn, not a bookkeeping copy.
e855c69d 5746 We force this here. Instead, we may consider merging
b8698a0f 5747 SCHED_TIMES to the maximum instead of minimum in the
e855c69d
AB
5748 below function. */
5749 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5750
5751 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5752 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5753 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5754
5755 clear_expr (sparams->c_expr);
5756 }
5757}
5758
5759/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5760
5761 SUCC is one of the SUCCS_NORMAL successors of INSN,
5762 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5763 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5764 STATIC_PARAMS contain USED_REGS set. */
5765static void
b8698a0f
L
5766fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5767 int moveop_drv_call_res,
5768 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5769 void *static_params)
5770{
5771 regset succ_live;
5772 fur_static_params_p sparams = (fur_static_params_p) static_params;
5773
5774 /* Here we compute live regsets only for branches that do not lie
b8698a0f 5775 on the code motion paths. These branches correspond to value
e855c69d
AB
5776 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5777 for such branches code_motion_path_driver is not called. */
5778 if (moveop_drv_call_res != 0)
5779 return;
5780
5781 /* Mark all registers that do not meet the following condition:
5782 (3) not live on the other path of any conditional branch
5783 that is passed by the operation, in case original
5784 operations are not present on both paths of the
5785 conditional branch. */
5786 succ_live = compute_live (succ);
5787 IOR_REG_SET (sparams->used_regs, succ_live);
5788}
5789
5790/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5791 into SP->CEXPR. */
5792static void
5793move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
b8698a0f 5794{
e855c69d
AB
5795 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5796
5797 sp->c_expr = lp->c_expr_merged;
5798}
5799
5800/* Track bookkeeping copies created, insns scheduled, and blocks for
5801 rescheduling when INSN is found by move_op. */
5802static void
5803track_scheduled_insns_and_blocks (rtx insn)
5804{
5805 /* Even if this insn can be a copy that will be removed during current move_op,
5806 we still need to count it as an originator. */
5807 bitmap_set_bit (current_originators, INSN_UID (insn));
5808
fcaa4ca4 5809 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e855c69d
AB
5810 {
5811 /* Note that original block needs to be rescheduled, as we pulled an
5812 instruction out of it. */
5813 if (INSN_SCHED_TIMES (insn) > 0)
5814 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
b5b8b0ac 5815 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e855c69d
AB
5816 num_insns_scheduled++;
5817 }
e855c69d
AB
5818
5819 /* For instructions we must immediately remove insn from the
5820 stream, so subsequent update_data_sets () won't include this
5821 insn into av_set.
5822 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5823 if (INSN_UID (insn) > max_uid_before_move_op)
5824 stat_bookkeeping_copies--;
5825}
5826
b8698a0f 5827/* Emit a register-register copy for INSN if needed. Return true if
e855c69d
AB
5828 emitted one. PARAMS is the move_op static parameters. */
5829static bool
b8698a0f 5830maybe_emit_renaming_copy (rtx insn,
e855c69d
AB
5831 moveop_static_params_p params)
5832{
5833 bool insn_emitted = false;
f07013eb 5834 rtx cur_reg;
e855c69d 5835
f07013eb
AM
5836 /* Bail out early when expression can not be renamed at all. */
5837 if (!EXPR_SEPARABLE_P (params->c_expr))
5838 return false;
5839
5840 cur_reg = expr_dest_reg (params->c_expr);
5841 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e855c69d
AB
5842
5843 /* If original operation has expr and the register chosen for
5844 that expr is not original operation's dest reg, substitute
5845 operation's right hand side with the register chosen. */
f07013eb 5846 if (REGNO (params->dest) != REGNO (cur_reg))
e855c69d
AB
5847 {
5848 insn_t reg_move_insn, reg_move_insn_rtx;
b8698a0f
L
5849
5850 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e855c69d 5851 params->dest);
b8698a0f
L
5852 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5853 INSN_EXPR (insn),
5854 INSN_SEQNO (insn),
e855c69d
AB
5855 insn);
5856 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5857 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
b8698a0f 5858
e855c69d
AB
5859 insn_emitted = true;
5860 params->was_renamed = true;
5861 }
b8698a0f 5862
e855c69d
AB
5863 return insn_emitted;
5864}
5865
b8698a0f
L
5866/* Emit a speculative check for INSN speculated as EXPR if needed.
5867 Return true if we've emitted one. PARAMS is the move_op static
e855c69d
AB
5868 parameters. */
5869static bool
5870maybe_emit_speculative_check (rtx insn, expr_t expr,
5871 moveop_static_params_p params)
5872{
5873 bool insn_emitted = false;
5874 insn_t x;
5875 ds_t check_ds;
5876
5877 check_ds = get_spec_check_type_for_insn (insn, expr);
5878 if (check_ds != 0)
5879 {
5880 /* A speculation check should be inserted. */
5881 x = create_speculation_check (params->c_expr, check_ds, insn);
5882 insn_emitted = true;
5883 }
5884 else
5885 {
5886 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5887 x = insn;
5888 }
b8698a0f 5889
e855c69d
AB
5890 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5891 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5892 return insn_emitted;
5893}
5894
b8698a0f
L
5895/* Handle transformations that leave an insn in place of original
5896 insn such as renaming/speculation. Return true if one of such
e855c69d
AB
5897 transformations actually happened, and we have emitted this insn. */
5898static bool
b8698a0f 5899handle_emitting_transformations (rtx insn, expr_t expr,
e855c69d
AB
5900 moveop_static_params_p params)
5901{
5902 bool insn_emitted = false;
5903
5904 insn_emitted = maybe_emit_renaming_copy (insn, params);
5905 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5906
5907 return insn_emitted;
b8698a0f 5908}
e855c69d 5909
b5b8b0ac
AO
5910/* If INSN is the only insn in the basic block (not counting JUMP,
5911 which may be a jump to next insn, and DEBUG_INSNs), we want to
5912 leave a NOP there till the return to fill_insns. */
5913
5914static bool
5915need_nop_to_preserve_insn_bb (rtx insn)
e855c69d 5916{
b5b8b0ac 5917 insn_t bb_head, bb_end, bb_next, in_next;
e855c69d
AB
5918 basic_block bb = BLOCK_FOR_INSN (insn);
5919
e855c69d
AB
5920 bb_head = sel_bb_head (bb);
5921 bb_end = sel_bb_end (bb);
e855c69d 5922
b5b8b0ac
AO
5923 if (bb_head == bb_end)
5924 return true;
5925
5926 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5927 bb_head = NEXT_INSN (bb_head);
5928
5929 if (bb_head == bb_end)
5930 return true;
5931
5932 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5933 bb_end = PREV_INSN (bb_end);
5934
5935 if (bb_head == bb_end)
5936 return true;
5937
5938 bb_next = NEXT_INSN (bb_head);
5939 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5940 bb_next = NEXT_INSN (bb_next);
5941
5942 if (bb_next == bb_end && JUMP_P (bb_end))
5943 return true;
5944
5945 in_next = NEXT_INSN (insn);
5946 while (DEBUG_INSN_P (in_next))
5947 in_next = NEXT_INSN (in_next);
5948
5949 if (IN_CURRENT_FENCE_P (in_next))
5950 return true;
5951
5952 return false;
5953}
5954
5955/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5956 is not removed but reused when INSN is re-emitted. */
5957static void
5958remove_insn_from_stream (rtx insn, bool only_disconnect)
5959{
e855c69d
AB
5960 /* If there's only one insn in the BB, make sure that a nop is
5961 inserted into it, so the basic block won't disappear when we'll
5962 delete INSN below with sel_remove_insn. It should also survive
b8698a0f 5963 till the return to fill_insns. */
b5b8b0ac 5964 if (need_nop_to_preserve_insn_bb (insn))
e855c69d 5965 {
b5b8b0ac 5966 insn_t nop = get_nop_from_pool (insn);
e855c69d
AB
5967 gcc_assert (INSN_NOP_P (nop));
5968 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5969 }
5970
5971 sel_remove_insn (insn, only_disconnect, false);
5972}
5973
5974/* This function is called when original expr is found.
b8698a0f 5975 INSN - current insn traversed, EXPR - the corresponding expr found.
e855c69d
AB
5976 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5977 is static parameters of move_op. */
5978static void
b8698a0f
L
5979move_op_orig_expr_found (insn_t insn, expr_t expr,
5980 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5981 void *static_params)
5982{
5983 bool only_disconnect, insn_emitted;
5984 moveop_static_params_p params = (moveop_static_params_p) static_params;
b8698a0f 5985
e855c69d
AB
5986 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5987 track_scheduled_insns_and_blocks (insn);
5988 insn_emitted = handle_emitting_transformations (insn, expr, params);
5989 only_disconnect = (params->uid == INSN_UID (insn)
5990 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
72a54528
AM
5991
5992 /* Mark that we've disconnected an insn. */
5993 if (only_disconnect)
5994 params->uid = -1;
e855c69d
AB
5995 remove_insn_from_stream (insn, only_disconnect);
5996}
5997
5998/* The function is called when original expr is found.
5999 INSN - current insn traversed, EXPR - the corresponding expr found,
6000 crosses_call and original_insns in STATIC_PARAMS are updated. */
6001static void
6002fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6003 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6004 void *static_params)
6005{
6006 fur_static_params_p params = (fur_static_params_p) static_params;
6007 regset tmp;
6008
6009 if (CALL_P (insn))
6010 params->crosses_call = true;
6011
6012 def_list_add (params->original_insns, insn, params->crosses_call);
6013
6014 /* Mark the registers that do not meet the following condition:
b8698a0f
L
6015 (2) not among the live registers of the point
6016 immediately following the first original operation on
e855c69d
AB
6017 a given downward path, except for the original target
6018 register of the operation. */
6019 tmp = get_clear_regset_from_pool ();
6020 compute_live_below_insn (insn, tmp);
6021 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6022 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6023 IOR_REG_SET (params->used_regs, tmp);
6024 return_regset_to_pool (tmp);
6025
6026 /* (*1) We need to add to USED_REGS registers that are read by
6027 INSN's lhs. This may lead to choosing wrong src register.
6028 E.g. (scheduling const expr enabled):
6029
6030 429: ax=0x0 <- Can't use AX for this expr (0x0)
6031 433: dx=[bp-0x18]
6032 427: [ax+dx+0x1]=ax
6033 REG_DEAD: ax
6034 168: di=dx
6035 REG_DEAD: dx
6036 */
b8698a0f 6037 /* FIXME: see comment above and enable MEM_P
e855c69d
AB
6038 in vinsn_separable_p. */
6039 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6040 || !MEM_P (INSN_LHS (insn)));
6041}
6042
6043/* This function is called on the ascending pass, before returning from
6044 current basic block. */
6045static void
b8698a0f 6046move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e855c69d
AB
6047 void *static_params)
6048{
6049 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6050 basic_block book_block = NULL;
6051
b8698a0f 6052 /* When we have removed the boundary insn for scheduling, which also
e855c69d 6053 happened to be the end insn in its bb, we don't need to update sets. */
b8698a0f 6054 if (!lparams->removed_last_insn
e855c69d
AB
6055 && lparams->e1
6056 && sel_bb_head_p (insn))
6057 {
6058 /* We should generate bookkeeping code only if we are not at the
6059 top level of the move_op. */
6060 if (sel_num_cfg_preds_gt_1 (insn))
6061 book_block = generate_bookkeeping_insn (sparams->c_expr,
6062 lparams->e1, lparams->e2);
6063 /* Update data sets for the current insn. */
6064 update_data_sets (insn);
6065 }
b8698a0f 6066
e855c69d 6067 /* If bookkeeping code was inserted, we need to update av sets of basic
b8698a0f 6068 block that received bookkeeping. After generation of bookkeeping insn,
e855c69d 6069 bookkeeping block does not contain valid av set because we are not following
b8698a0f 6070 the original algorithm in every detail with regards to e.g. renaming
e855c69d 6071 simple reg-reg copies. Consider example:
b8698a0f 6072
e855c69d
AB
6073 bookkeeping block scheduling fence
6074 \ /
6075 \ join /
6076 ----------
6077 | |
6078 ----------
6079 / \
6080 / \
6081 r1 := r2 r1 := r3
6082
b8698a0f 6083 We try to schedule insn "r1 := r3" on the current
e855c69d
AB
6084 scheduling fence. Also, note that av set of bookkeeping block
6085 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6086 been scheduled, the CFG is as follows:
6087
6088 r1 := r3 r1 := r3
6089 bookkeeping block scheduling fence
6090 \ /
6091 \ join /
6092 ----------
6093 | |
6094 ----------
6095 / \
6096 / \
6097 r1 := r2
6098
6099 Here, insn "r1 := r3" was scheduled at the current scheduling point
6100 and bookkeeping code was generated at the bookeeping block. This
6101 way insn "r1 := r2" is no longer available as a whole instruction
6102 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
b8698a0f 6103 This situation is handled by calling update_data_sets.
e855c69d
AB
6104
6105 Since update_data_sets is called only on the bookkeeping block, and
b8698a0f 6106 it also may have predecessors with av_sets, containing instructions that
e855c69d
AB
6107 are no longer available, we save all such expressions that become
6108 unavailable during data sets update on the bookkeeping block in
b8698a0f
L
6109 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6110 expressions for scheduling. This allows us to avoid recomputation of
e855c69d 6111 av_sets outside the code motion path. */
b8698a0f 6112
e855c69d
AB
6113 if (book_block)
6114 update_and_record_unavailable_insns (book_block);
6115
6116 /* If INSN was previously marked for deletion, it's time to do it. */
6117 if (lparams->removed_last_insn)
6118 insn = PREV_INSN (insn);
b8698a0f 6119
e855c69d
AB
6120 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6121 kill a block with a single nop in which the insn should be emitted. */
6122 if (lparams->e1)
6123 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6124}
6125
6126/* This function is called on the ascending pass, before returning from the
6127 current basic block. */
6128static void
b8698a0f
L
6129fur_at_first_insn (insn_t insn,
6130 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
6131 void *static_params ATTRIBUTE_UNUSED)
6132{
6133 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6134 || AV_LEVEL (insn) == -1);
6135}
6136
6137/* Called on the backward stage of recursion to call moveup_expr for insn
6138 and sparams->c_expr. */
6139static void
6140move_op_ascend (insn_t insn, void *static_params)
6141{
6142 enum MOVEUP_EXPR_CODE res;
6143 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6144
6145 if (! INSN_NOP_P (insn))
6146 {
6147 res = moveup_expr_cached (sparams->c_expr, insn, false);
6148 gcc_assert (res != MOVEUP_EXPR_NULL);
6149 }
6150
6151 /* Update liveness for this insn as it was invalidated. */
6152 update_liveness_on_insn (insn);
6153}
6154
b8698a0f
L
6155/* This function is called on enter to the basic block.
6156 Returns TRUE if this block already have been visited and
e855c69d
AB
6157 code_motion_path_driver should return 1, FALSE otherwise. */
6158static int
b8698a0f 6159fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e855c69d
AB
6160 void *static_params, bool visited_p)
6161{
6162 fur_static_params_p sparams = (fur_static_params_p) static_params;
6163
6164 if (visited_p)
6165 {
6166 /* If we have found something below this block, there should be at
6167 least one insn in ORIGINAL_INSNS. */
6168 gcc_assert (*sparams->original_insns);
6169
6170 /* Adjust CROSSES_CALL, since we may have come to this block along
6171 different path. */
6172 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6173 |= sparams->crosses_call;
6174 }
6175 else
6176 local_params->old_original_insns = *sparams->original_insns;
6177
6178 return 1;
6179}
6180
6181/* Same as above but for move_op. */
6182static int
b8698a0f
L
6183move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6184 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e855c69d
AB
6185 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6186{
6187 if (visited_p)
6188 return -1;
6189 return 1;
6190}
6191
b8698a0f 6192/* This function is called while descending current basic block if current
e855c69d
AB
6193 insn is not the original EXPR we're searching for.
6194
b8698a0f 6195 Return value: FALSE, if code_motion_path_driver should perform a local
e855c69d
AB
6196 cleanup and return 0 itself;
6197 TRUE, if code_motion_path_driver should continue. */
6198static bool
6199move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6200 void *static_params)
6201{
6202 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6203
6204#ifdef ENABLE_CHECKING
6205 sparams->failed_insn = insn;
6206#endif
6207
6208 /* If we're scheduling separate expr, in order to generate correct code
b8698a0f 6209 we need to stop the search at bookkeeping code generated with the
e855c69d
AB
6210 same destination register or memory. */
6211 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6212 return false;
6213 return true;
6214}
6215
b8698a0f 6216/* This function is called while descending current basic block if current
e855c69d
AB
6217 insn is not the original EXPR we're searching for.
6218
6219 Return value: TRUE (code_motion_path_driver should continue). */
6220static bool
6221fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6222{
6223 bool mutexed;
6224 expr_t r;
6225 av_set_iterator avi;
6226 fur_static_params_p sparams = (fur_static_params_p) static_params;
6227
6228 if (CALL_P (insn))
6229 sparams->crosses_call = true;
b5b8b0ac
AO
6230 else if (DEBUG_INSN_P (insn))
6231 return true;
e855c69d
AB
6232
6233 /* If current insn we are looking at cannot be executed together
6234 with original insn, then we can skip it safely.
6235
6236 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6237 INSN = (!p6) r14 = r14 + 1;
6238
6239 Here we can schedule ORIG_OP with lhs = r14, though only
6240 looking at the set of used and set registers of INSN we must
6241 forbid it. So, add set/used in INSN registers to the
6242 untouchable set only if there is an insn in ORIG_OPS that can
6243 affect INSN. */
6244 mutexed = true;
6245 FOR_EACH_EXPR (r, avi, orig_ops)
6246 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6247 {
6248 mutexed = false;
6249 break;
6250 }
6251
6252 /* Mark all registers that do not meet the following condition:
6253 (1) Not set or read on any path from xi to an instance of the
6254 original operation. */
6255 if (!mutexed)
6256 {
6257 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6258 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6259 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6260 }
6261
6262 return true;
6263}
6264
6265/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6266struct code_motion_path_driver_info_def move_op_hooks = {
6267 move_op_on_enter,
6268 move_op_orig_expr_found,
6269 move_op_orig_expr_not_found,
6270 move_op_merge_succs,
6271 move_op_after_merge_succs,
6272 move_op_ascend,
6273 move_op_at_first_insn,
6274 SUCCS_NORMAL,
6275 "move_op"
6276};
6277
b8698a0f 6278/* Hooks and data to perform find_used_regs operations
e855c69d
AB
6279 with code_motion_path_driver. */
6280struct code_motion_path_driver_info_def fur_hooks = {
6281 fur_on_enter,
6282 fur_orig_expr_found,
6283 fur_orig_expr_not_found,
6284 fur_merge_succs,
6285 NULL, /* fur_after_merge_succs */
6286 NULL, /* fur_ascend */
6287 fur_at_first_insn,
6288 SUCCS_ALL,
6289 "find_used_regs"
6290};
6291
6292/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
b8698a0f
L
6293 code_motion_path_driver is called recursively. Original operation
6294 was found at least on one path that is starting with one of INSN's
e855c69d
AB
6295 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6296 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
b8698a0f 6297 of either move_op or find_used_regs depending on the caller.
e855c69d
AB
6298
6299 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6300 know for sure at this point. */
6301static int
b8698a0f 6302code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e855c69d
AB
6303 ilist_t path, void *static_params)
6304{
6305 int res = 0;
6306 succ_iterator succ_i;
6307 rtx succ;
6308 basic_block bb;
6309 int old_index;
6310 unsigned old_succs;
6311
6312 struct cmpd_local_params lparams;
6313 expr_def _x;
6314
6315 lparams.c_expr_local = &_x;
6316 lparams.c_expr_merged = NULL;
6317
6318 /* We need to process only NORMAL succs for move_op, and collect live
b8698a0f
L
6319 registers from ALL branches (including those leading out of the
6320 region) for find_used_regs.
e855c69d
AB
6321
6322 In move_op, there can be a case when insn's bb number has changed
b8698a0f
L
6323 due to created bookkeeping. This happens very rare, as we need to
6324 move expression from the beginning to the end of the same block.
6325 Rescan successors in this case. */
e855c69d
AB
6326
6327 rescan:
6328 bb = BLOCK_FOR_INSN (insn);
b8698a0f 6329 old_index = bb->index;
e855c69d 6330 old_succs = EDGE_COUNT (bb->succs);
b8698a0f 6331
e855c69d
AB
6332 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6333 {
6334 int b;
6335
6336 lparams.e1 = succ_i.e1;
6337 lparams.e2 = succ_i.e2;
6338
6339 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6340 current region). */
6341 if (succ_i.current_flags == SUCCS_NORMAL)
b8698a0f 6342 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e855c69d
AB
6343 static_params);
6344 else
6345 b = 0;
6346
6347 /* Merge c_expres found or unify live register sets from different
6348 successors. */
6349 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6350 static_params);
6351 if (b == 1)
6352 res = b;
6353 else if (b == -1 && res != 1)
6354 res = b;
6355
6356 /* We have simplified the control flow below this point. In this case,
6357 the iterator becomes invalid. We need to try again. */
6358 if (BLOCK_FOR_INSN (insn)->index != old_index
6359 || EDGE_COUNT (bb->succs) != old_succs)
6360 goto rescan;
6361 }
6362
cefb375a 6363#ifdef ENABLE_CHECKING
b8698a0f 6364 /* Here, RES==1 if original expr was found at least for one of the
e855c69d 6365 successors. After the loop, RES may happen to have zero value
b8698a0f
L
6366 only if at some point the expr searched is present in av_set, but is
6367 not found below. In most cases, this situation is an error.
e855c69d
AB
6368 The exception is when the original operation is blocked by
6369 bookkeeping generated for another fence or for another path in current
6370 move_op. */
cefb375a
NF
6371 gcc_assert (res == 1
6372 || (res == 0
6373 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6374 static_params))
6375 || res == -1);
6376#endif
b8698a0f 6377
e855c69d 6378 /* Merge data, clean up, etc. */
72a54528 6379 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6380 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6381
6382 return res;
6383}
6384
6385
b8698a0f
L
6386/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6387 is the pointer to the av set with expressions we were looking for,
e855c69d
AB
6388 PATH_P is the pointer to the traversed path. */
6389static inline void
6390code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6391{
6392 ilist_remove (path_p);
6393 av_set_clear (orig_ops_p);
6394}
6395
b8698a0f
L
6396/* The driver function that implements move_op or find_used_regs
6397 functionality dependent whether code_motion_path_driver_INFO is set to
6398 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e855c69d
AB
6399 of code (CFG traversal etc) that are shared among both functions. INSN
6400 is the insn we're starting the search from, ORIG_OPS are the expressions
6401 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6402 parameters of the driver, and STATIC_PARAMS are static parameters of
b8698a0f 6403 the caller.
e855c69d
AB
6404
6405 Returns whether original instructions were found. Note that top-level
6406 code_motion_path_driver always returns true. */
72a54528 6407static int
b8698a0f
L
6408code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6409 cmpd_local_params_p local_params_in,
e855c69d
AB
6410 void *static_params)
6411{
6412 expr_t expr = NULL;
6413 basic_block bb = BLOCK_FOR_INSN (insn);
6414 insn_t first_insn, bb_tail, before_first;
6415 bool removed_last_insn = false;
6416
6417 if (sched_verbose >= 6)
6418 {
6419 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6420 dump_insn (insn);
6421 sel_print (",");
6422 dump_av_set (orig_ops);
6423 sel_print (")\n");
6424 }
6425
6426 gcc_assert (orig_ops);
6427
6428 /* If no original operations exist below this insn, return immediately. */
6429 if (is_ineligible_successor (insn, path))
6430 {
6431 if (sched_verbose >= 6)
6432 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6433 return false;
6434 }
b8698a0f 6435
e855c69d
AB
6436 /* The block can have invalid av set, in which case it was created earlier
6437 during move_op. Return immediately. */
6438 if (sel_bb_head_p (insn))
6439 {
6440 if (! AV_SET_VALID_P (insn))
6441 {
6442 if (sched_verbose >= 6)
6443 sel_print ("Returned from block %d as it had invalid av set\n",
6444 bb->index);
6445 return false;
6446 }
6447
6448 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6449 {
6450 /* We have already found an original operation on this branch, do not
6451 go any further and just return TRUE here. If we don't stop here,
b8698a0f 6452 function can have exponential behaviour even on the small code
e855c69d
AB
6453 with many different paths (e.g. with data speculation and
6454 recovery blocks). */
6455 if (sched_verbose >= 6)
6456 sel_print ("Block %d already visited in this traversal\n", bb->index);
6457 if (code_motion_path_driver_info->on_enter)
b8698a0f 6458 return code_motion_path_driver_info->on_enter (insn,
e855c69d 6459 local_params_in,
b8698a0f 6460 static_params,
e855c69d
AB
6461 true);
6462 }
6463 }
b8698a0f 6464
e855c69d
AB
6465 if (code_motion_path_driver_info->on_enter)
6466 code_motion_path_driver_info->on_enter (insn, local_params_in,
6467 static_params, false);
6468 orig_ops = av_set_copy (orig_ops);
6469
6470 /* Filter the orig_ops set. */
6471 if (AV_SET_VALID_P (insn))
6472 av_set_intersect (&orig_ops, AV_SET (insn));
6473
6474 /* If no more original ops, return immediately. */
6475 if (!orig_ops)
6476 {
6477 if (sched_verbose >= 6)
6478 sel_print ("No intersection with av set of block %d\n", bb->index);
6479 return false;
6480 }
6481
6482 /* For non-speculative insns we have to leave only one form of the
b8698a0f 6483 original operation, because if we don't, we may end up with
e855c69d
AB
6484 different C_EXPRes and, consequently, with bookkeepings for different
6485 expression forms along the same code motion path. That may lead to
b8698a0f
L
6486 generation of incorrect code. So for each code motion we stick to
6487 the single form of the instruction, except for speculative insns
6488 which we need to keep in different forms with all speculation
e855c69d
AB
6489 types. */
6490 av_set_leave_one_nonspec (&orig_ops);
6491
6492 /* It is not possible that all ORIG_OPS are filtered out. */
6493 gcc_assert (orig_ops);
6494
6495 /* It is enough to place only heads and tails of visited basic blocks into
6496 the PATH. */
6497 ilist_add (&path, insn);
6498 first_insn = insn;
6499 bb_tail = sel_bb_end (bb);
6500
6501 /* Descend the basic block in search of the original expr; this part
b8698a0f 6502 corresponds to the part of the original move_op procedure executed
e855c69d
AB
6503 before the recursive call. */
6504 for (;;)
6505 {
6506 /* Look at the insn and decide if it could be an ancestor of currently
6507 scheduling operation. If it is so, then the insn "dest = op" could
6508 either be replaced with "dest = reg", because REG now holds the result
6509 of OP, or just removed, if we've scheduled the insn as a whole.
6510
6511 If this insn doesn't contain currently scheduling OP, then proceed
6512 with searching and look at its successors. Operations we're searching
b8698a0f 6513 for could have changed when moving up through this insn via
e855c69d
AB
6514 substituting. In this case, perform unsubstitution on them first.
6515
6516 When traversing the DAG below this insn is finished, insert
6517 bookkeeping code, if the insn is a joint point, and remove
6518 leftovers. */
6519
6520 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6521 if (expr)
6522 {
6523 insn_t last_insn = PREV_INSN (insn);
6524
6525 /* We have found the original operation. */
6526 if (sched_verbose >= 6)
6527 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6528
b8698a0f 6529 code_motion_path_driver_info->orig_expr_found
e855c69d
AB
6530 (insn, expr, local_params_in, static_params);
6531
6532 /* Step back, so on the way back we'll start traversing from the
b8698a0f 6533 previous insn (or we'll see that it's bb_note and skip that
e855c69d
AB
6534 loop). */
6535 if (insn == first_insn)
6536 {
6537 first_insn = NEXT_INSN (last_insn);
6538 removed_last_insn = sel_bb_end_p (last_insn);
6539 }
6540 insn = last_insn;
6541 break;
6542 }
6543 else
6544 {
6545 /* We haven't found the original expr, continue descending the basic
6546 block. */
b8698a0f 6547 if (code_motion_path_driver_info->orig_expr_not_found
e855c69d
AB
6548 (insn, orig_ops, static_params))
6549 {
b8698a0f 6550 /* Av set ops could have been changed when moving through this
e855c69d
AB
6551 insn. To find them below it, we have to un-substitute them. */
6552 undo_transformations (&orig_ops, insn);
6553 }
6554 else
6555 {
6556 /* Clean up and return, if the hook tells us to do so. It may
b8698a0f 6557 happen if we've encountered the previously created
e855c69d
AB
6558 bookkeeping. */
6559 code_motion_path_driver_cleanup (&orig_ops, &path);
6560 return -1;
6561 }
6562
6563 gcc_assert (orig_ops);
6564 }
6565
6566 /* Stop at insn if we got to the end of BB. */
6567 if (insn == bb_tail)
6568 break;
6569
6570 insn = NEXT_INSN (insn);
6571 }
6572
b8698a0f 6573 /* Here INSN either points to the insn before the original insn (may be
e855c69d
AB
6574 bb_note, if original insn was a bb_head) or to the bb_end. */
6575 if (!expr)
6576 {
6577 int res;
6578
6579 gcc_assert (insn == sel_bb_end (bb));
6580
6581 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6582 it's already in PATH then). */
6583 if (insn != first_insn)
6584 ilist_add (&path, insn);
6585
b8698a0f
L
6586 /* Process_successors should be able to find at least one
6587 successor for which code_motion_path_driver returns TRUE. */
6588 res = code_motion_process_successors (insn, orig_ops,
e855c69d
AB
6589 path, static_params);
6590
6591 /* Remove bb tail from path. */
6592 if (insn != first_insn)
6593 ilist_remove (&path);
6594
6595 if (res != 1)
6596 {
6597 /* This is the case when one of the original expr is no longer available
b8698a0f 6598 due to bookkeeping created on this branch with the same register.
e855c69d 6599 In the original algorithm, which doesn't have update_data_sets call
b8698a0f
L
6600 on a bookkeeping block, it would simply result in returning
6601 FALSE when we've encountered a previously generated bookkeeping
e855c69d
AB
6602 insn in moveop_orig_expr_not_found. */
6603 code_motion_path_driver_cleanup (&orig_ops, &path);
6604 return res;
6605 }
6606 }
6607
6608 /* Don't need it any more. */
6609 av_set_clear (&orig_ops);
6610
b8698a0f 6611 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e855c69d
AB
6612 the beginning of the basic block. */
6613 before_first = PREV_INSN (first_insn);
6614 while (insn != before_first)
b8698a0f 6615 {
e855c69d
AB
6616 if (code_motion_path_driver_info->ascend)
6617 code_motion_path_driver_info->ascend (insn, static_params);
6618
6619 insn = PREV_INSN (insn);
6620 }
b8698a0f 6621
e855c69d
AB
6622 /* Now we're at the bb head. */
6623 insn = first_insn;
6624 ilist_remove (&path);
6625 local_params_in->removed_last_insn = removed_last_insn;
6626 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
b8698a0f 6627
e855c69d
AB
6628 /* This should be the very last operation as at bb head we could change
6629 the numbering by creating bookkeeping blocks. */
6630 if (removed_last_insn)
6631 insn = PREV_INSN (insn);
6632 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6633 return true;
6634}
6635
b8698a0f 6636/* Move up the operations from ORIG_OPS set traversing the dag starting
e855c69d
AB
6637 from INSN. PATH represents the edges traversed so far.
6638 DEST is the register chosen for scheduling the current expr. Insert
6639 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
b8698a0f 6640 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6641 Set *SHOULD_MOVE to indicate whether we have only disconnected
6642 one of the insns found.
e855c69d 6643
b8698a0f 6644 Returns whether original instructions were found, which is asserted
e855c69d
AB
6645 to be true in the caller. */
6646static bool
6647move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6648 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6649{
6650 struct moveop_static_params sparams;
6651 struct cmpd_local_params lparams;
6652 bool res;
6653
b8698a0f 6654 /* Init params for code_motion_path_driver. */
e855c69d
AB
6655 sparams.dest = dest;
6656 sparams.c_expr = c_expr;
6657 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6658#ifdef ENABLE_CHECKING
6659 sparams.failed_insn = NULL;
6660#endif
6661 sparams.was_renamed = false;
6662 lparams.e1 = NULL;
6663
6664 /* We haven't visited any blocks yet. */
6665 bitmap_clear (code_motion_visited_blocks);
b8698a0f 6666
e855c69d
AB
6667 /* Set appropriate hooks and data. */
6668 code_motion_path_driver_info = &move_op_hooks;
6669 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6670
6671 if (sparams.was_renamed)
6672 EXPR_WAS_RENAMED (expr_vliw) = true;
6673
72a54528
AM
6674 *should_move = (sparams.uid == -1);
6675
e855c69d
AB
6676 return res;
6677}
6678\f
6679
6680/* Functions that work with regions. */
6681
6682/* Current number of seqno used in init_seqno and init_seqno_1. */
6683static int cur_seqno;
6684
b8698a0f
L
6685/* A helper for init_seqno. Traverse the region starting from BB and
6686 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e855c69d
AB
6687 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6688static void
6689init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6690{
6691 int bbi = BLOCK_TO_BB (bb->index);
6692 insn_t insn, note = bb_note (bb);
6693 insn_t succ_insn;
6694 succ_iterator si;
6695
6696 SET_BIT (visited_bbs, bbi);
6697 if (blocks_to_reschedule)
6698 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6699
b8698a0f 6700 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e855c69d
AB
6701 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6702 {
6703 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6704 int succ_bbi = BLOCK_TO_BB (succ->index);
6705
6706 gcc_assert (in_current_region_p (succ));
6707
6708 if (!TEST_BIT (visited_bbs, succ_bbi))
6709 {
6710 gcc_assert (succ_bbi > bbi);
6711
6712 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6713 }
6714 }
6715
6716 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6717 INSN_SEQNO (insn) = cur_seqno--;
6718}
6719
6720/* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
b8698a0f 6721 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
e855c69d
AB
6722 which we're rescheduling when pipelining, FROM is the block where
6723 traversing region begins (it may not be the head of the region when
b8698a0f 6724 pipelining, but the head of the loop instead).
e855c69d
AB
6725
6726 Returns the maximal seqno found. */
6727static int
6728init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6729{
6730 sbitmap visited_bbs;
6731 bitmap_iterator bi;
6732 unsigned bbi;
6733
6734 visited_bbs = sbitmap_alloc (current_nr_blocks);
6735
6736 if (blocks_to_reschedule)
6737 {
6738 sbitmap_ones (visited_bbs);
6739 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6740 {
6741 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6742 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6743 }
6744 }
6745 else
6746 {
6747 sbitmap_zero (visited_bbs);
6748 from = EBB_FIRST_BB (0);
6749 }
6750
6751 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6752 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6753 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6754
6755 sbitmap_free (visited_bbs);
6756 return sched_max_luid - 1;
6757}
6758
6759/* Initialize scheduling parameters for current region. */
6760static void
6761sel_setup_region_sched_flags (void)
6762{
6763 enable_schedule_as_rhs_p = 1;
6764 bookkeeping_p = 1;
b8698a0f 6765 pipelining_p = (bookkeeping_p
e855c69d
AB
6766 && (flag_sel_sched_pipelining != 0)
6767 && current_loop_nest != NULL);
6768 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6769 max_ws = MAX_WS;
6770}
6771
6772/* Return true if all basic blocks of current region are empty. */
6773static bool
6774current_region_empty_p (void)
6775{
6776 int i;
6777 for (i = 0; i < current_nr_blocks; i++)
6778 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6779 return false;
6780
6781 return true;
6782}
6783
6784/* Prepare and verify loop nest for pipelining. */
6785static void
6786setup_current_loop_nest (int rgn)
6787{
6788 current_loop_nest = get_loop_nest_for_rgn (rgn);
6789
6790 if (!current_loop_nest)
6791 return;
6792
6793 /* If this loop has any saved loop preheaders from nested loops,
6794 add these basic blocks to the current region. */
6795 sel_add_loop_preheaders ();
6796
6797 /* Check that we're starting with a valid information. */
6798 gcc_assert (loop_latch_edge (current_loop_nest));
6799 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6800}
6801
e855c69d
AB
6802/* Compute instruction priorities for current region. */
6803static void
6804sel_compute_priorities (int rgn)
6805{
6806 sched_rgn_compute_dependencies (rgn);
6807
6808 /* Compute insn priorities in haifa style. Then free haifa style
6809 dependencies that we've calculated for this. */
6810 compute_priorities ();
6811
6812 if (sched_verbose >= 5)
6813 debug_rgn_dependencies (0);
6814
6815 free_rgn_deps ();
6816}
6817
6818/* Init scheduling data for RGN. Returns true when this region should not
6819 be scheduled. */
6820static bool
6821sel_region_init (int rgn)
6822{
6823 int i;
6824 bb_vec_t bbs;
6825
6826 rgn_setup_region (rgn);
6827
b8698a0f 6828 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e855c69d
AB
6829 do region initialization here so the region can be bundled correctly,
6830 but we'll skip the scheduling in sel_sched_region (). */
6831 if (current_region_empty_p ())
6832 return true;
6833
6834 if (flag_sel_sched_pipelining)
6835 setup_current_loop_nest (rgn);
6836
6837 sel_setup_region_sched_flags ();
6838
6839 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6840
6841 for (i = 0; i < current_nr_blocks; i++)
6842 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6843
6844 sel_init_bbs (bbs, NULL);
6845
6846 /* Initialize luids and dependence analysis which both sel-sched and haifa
6847 need. */
6848 sched_init_luids (bbs, NULL, NULL, NULL);
6849 sched_deps_init (false);
6850
6851 /* Initialize haifa data. */
6852 rgn_setup_sched_infos ();
6853 sel_set_sched_flags ();
6854 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6855
6856 sel_compute_priorities (rgn);
6857 init_deps_global ();
6858
6859 /* Main initialization. */
6860 sel_setup_sched_infos ();
6861 sel_init_global_and_expr (bbs);
6862
6863 VEC_free (basic_block, heap, bbs);
6864
6865 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6866
6867 /* Init correct liveness sets on each instruction of a single-block loop.
6868 This is the only situation when we can't update liveness when calling
6869 compute_live for the first insn of the loop. */
6870 if (current_loop_nest)
6871 {
6872 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6873 ? 1
6874 : 0);
6875
6876 if (current_nr_blocks == header + 1)
b8698a0f 6877 update_liveness_on_insn
e855c69d
AB
6878 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6879 }
b8698a0f 6880
e855c69d
AB
6881 /* Set hooks so that no newly generated insn will go out unnoticed. */
6882 sel_register_cfg_hooks ();
6883
38f8b050
JR
6884 /* !!! We call target.sched.init () for the whole region, but we invoke
6885 targetm.sched.finish () for every ebb. */
6886 if (targetm.sched.init)
e855c69d 6887 /* None of the arguments are actually used in any target. */
38f8b050 6888 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
6889
6890 first_emitted_uid = get_max_uid () + 1;
6891 preheader_removed = false;
6892
6893 /* Reset register allocation ticks array. */
6894 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6895 reg_rename_this_tick = 0;
6896
6897 bitmap_initialize (forced_ebb_heads, 0);
6898 bitmap_clear (forced_ebb_heads);
6899
6900 setup_nop_vinsn ();
6901 current_copies = BITMAP_ALLOC (NULL);
6902 current_originators = BITMAP_ALLOC (NULL);
6903 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6904
6905 return false;
6906}
6907
6908/* Simplify insns after the scheduling. */
6909static void
6910simplify_changed_insns (void)
6911{
6912 int i;
6913
6914 for (i = 0; i < current_nr_blocks; i++)
6915 {
6916 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6917 rtx insn;
6918
6919 FOR_BB_INSNS (bb, insn)
6920 if (INSN_P (insn))
6921 {
6922 expr_t expr = INSN_EXPR (insn);
6923
b8698a0f 6924 if (EXPR_WAS_SUBSTITUTED (expr))
e855c69d
AB
6925 validate_simplify_insn (insn);
6926 }
6927 }
6928}
6929
6930/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6931 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6932 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6933static void
6934find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6935{
6936 insn_t head, tail;
6937 basic_block bb1 = bb;
6938 if (sched_verbose >= 2)
6939 sel_print ("Finishing schedule in bbs: ");
6940
6941 do
6942 {
6943 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6944
6945 if (sched_verbose >= 2)
6946 sel_print ("%d; ", bb1->index);
6947 }
6948 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6949
6950 if (sched_verbose >= 2)
6951 sel_print ("\n");
6952
6953 get_ebb_head_tail (bb, bb1, &head, &tail);
6954
6955 current_sched_info->head = head;
6956 current_sched_info->tail = tail;
6957 current_sched_info->prev_head = PREV_INSN (head);
6958 current_sched_info->next_tail = NEXT_INSN (tail);
6959}
6960
6961/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6962static void
6963reset_sched_cycles_in_current_ebb (void)
6964{
6965 int last_clock = 0;
6966 int haifa_last_clock = -1;
6967 int haifa_clock = 0;
6968 insn_t insn;
6969
38f8b050 6970 if (targetm.sched.init)
e855c69d
AB
6971 {
6972 /* None of the arguments are actually used in any target.
6973 NB: We should have md_reset () hook for cases like this. */
38f8b050 6974 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
6975 }
6976
6977 state_reset (curr_state);
6978 advance_state (curr_state);
b8698a0f 6979
e855c69d
AB
6980 for (insn = current_sched_info->head;
6981 insn != current_sched_info->next_tail;
6982 insn = NEXT_INSN (insn))
6983 {
6984 int cost, haifa_cost;
6985 int sort_p;
6986 bool asm_p, real_insn, after_stall;
6987 int clock;
6988
6989 if (!INSN_P (insn))
6990 continue;
6991
6992 asm_p = false;
6993 real_insn = recog_memoized (insn) >= 0;
6994 clock = INSN_SCHED_CYCLE (insn);
6995
6996 cost = clock - last_clock;
6997
6998 /* Initialize HAIFA_COST. */
6999 if (! real_insn)
7000 {
7001 asm_p = INSN_ASM_P (insn);
7002
7003 if (asm_p)
7004 /* This is asm insn which *had* to be scheduled first
7005 on the cycle. */
7006 haifa_cost = 1;
7007 else
b8698a0f 7008 /* This is a use/clobber insn. It should not change
e855c69d
AB
7009 cost. */
7010 haifa_cost = 0;
7011 }
7012 else
7013 haifa_cost = estimate_insn_cost (insn, curr_state);
7014
7015 /* Stall for whatever cycles we've stalled before. */
7016 after_stall = 0;
7017 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7018 {
7019 haifa_cost = cost;
7020 after_stall = 1;
7021 }
7022
7023 if (haifa_cost > 0)
7024 {
7025 int i = 0;
7026
7027 while (haifa_cost--)
7028 {
7029 advance_state (curr_state);
7030 i++;
7031
7032 if (sched_verbose >= 2)
7033 {
7034 sel_print ("advance_state (state_transition)\n");
7035 debug_state (curr_state);
7036 }
7037
b8698a0f
L
7038 /* The DFA may report that e.g. insn requires 2 cycles to be
7039 issued, but on the next cycle it says that insn is ready
e855c69d
AB
7040 to go. Check this here. */
7041 if (!after_stall
b8698a0f 7042 && real_insn
e855c69d
AB
7043 && haifa_cost > 0
7044 && estimate_insn_cost (insn, curr_state) == 0)
7045 break;
7046 }
7047
7048 haifa_clock += i;
7049 }
7050 else
7051 gcc_assert (haifa_cost == 0);
7052
7053 if (sched_verbose >= 2)
7054 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7055
7056 if (targetm.sched.dfa_new_cycle)
7057 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7058 haifa_last_clock, haifa_clock,
7059 &sort_p))
7060 {
7061 advance_state (curr_state);
7062 haifa_clock++;
7063 if (sched_verbose >= 2)
7064 {
7065 sel_print ("advance_state (dfa_new_cycle)\n");
7066 debug_state (curr_state);
7067 }
7068 }
7069
7070 if (real_insn)
7071 {
7072 cost = state_transition (curr_state, insn);
7073
7074 if (sched_verbose >= 2)
7075 debug_state (curr_state);
7076
7077 gcc_assert (cost < 0);
7078 }
7079
7080 if (targetm.sched.variable_issue)
7081 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7082
7083 INSN_SCHED_CYCLE (insn) = haifa_clock;
7084
7085 last_clock = clock;
7086 haifa_last_clock = haifa_clock;
7087 }
7088}
7089
7090/* Put TImode markers on insns starting a new issue group. */
7091static void
7092put_TImodes (void)
7093{
7094 int last_clock = -1;
7095 insn_t insn;
7096
7097 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7098 insn = NEXT_INSN (insn))
7099 {
7100 int cost, clock;
7101
7102 if (!INSN_P (insn))
7103 continue;
7104
7105 clock = INSN_SCHED_CYCLE (insn);
7106 cost = (last_clock == -1) ? 1 : clock - last_clock;
7107
7108 gcc_assert (cost >= 0);
7109
7110 if (issue_rate > 1
7111 && GET_CODE (PATTERN (insn)) != USE
7112 && GET_CODE (PATTERN (insn)) != CLOBBER)
7113 {
7114 if (reload_completed && cost > 0)
7115 PUT_MODE (insn, TImode);
7116
7117 last_clock = clock;
7118 }
7119
7120 if (sched_verbose >= 2)
7121 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7122 }
7123}
7124
b8698a0f 7125/* Perform MD_FINISH on EBBs comprising current region. When
e855c69d
AB
7126 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7127 to produce correct sched cycles on insns. */
7128static void
7129sel_region_target_finish (bool reset_sched_cycles_p)
7130{
7131 int i;
7132 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7133
7134 for (i = 0; i < current_nr_blocks; i++)
7135 {
7136 if (bitmap_bit_p (scheduled_blocks, i))
7137 continue;
7138
7139 /* While pipelining outer loops, skip bundling for loop
7140 preheaders. Those will be rescheduled in the outer loop. */
7141 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7142 continue;
7143
7144 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7145
7146 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7147 continue;
7148
7149 if (reset_sched_cycles_p)
7150 reset_sched_cycles_in_current_ebb ();
7151
38f8b050
JR
7152 if (targetm.sched.init)
7153 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7154
7155 put_TImodes ();
7156
38f8b050 7157 if (targetm.sched.finish)
e855c69d 7158 {
38f8b050 7159 targetm.sched.finish (sched_dump, sched_verbose);
e855c69d
AB
7160
7161 /* Extend luids so that insns generated by the target will
7162 get zero luid. */
7163 sched_init_luids (NULL, NULL, NULL, NULL);
7164 }
7165 }
7166
7167 BITMAP_FREE (scheduled_blocks);
7168}
7169
7170/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
b8698a0f 7171 is true, make an additional pass emulating scheduler to get correct insn
e855c69d
AB
7172 cycles for md_finish calls. */
7173static void
7174sel_region_finish (bool reset_sched_cycles_p)
7175{
7176 simplify_changed_insns ();
7177 sched_finish_ready_list ();
7178 free_nop_pool ();
7179
7180 /* Free the vectors. */
7181 if (vec_av_set)
7182 VEC_free (expr_t, heap, vec_av_set);
7183 BITMAP_FREE (current_copies);
7184 BITMAP_FREE (current_originators);
7185 BITMAP_FREE (code_motion_visited_blocks);
7186 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7187 vinsn_vec_free (&vec_target_unavailable_vinsns);
7188
7189 /* If LV_SET of the region head should be updated, do it now because
7190 there will be no other chance. */
7191 {
7192 succ_iterator si;
7193 insn_t insn;
7194
7195 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7196 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7197 {
7198 basic_block bb = BLOCK_FOR_INSN (insn);
7199
7200 if (!BB_LV_SET_VALID_P (bb))
7201 compute_live (insn);
7202 }
7203 }
7204
7205 /* Emulate the Haifa scheduler for bundling. */
7206 if (reload_completed)
7207 sel_region_target_finish (reset_sched_cycles_p);
7208
7209 sel_finish_global_and_expr ();
7210
7211 bitmap_clear (forced_ebb_heads);
7212
7213 free_nop_vinsn ();
7214
7215 finish_deps_global ();
7216 sched_finish_luids ();
7217
7218 sel_finish_bbs ();
7219 BITMAP_FREE (blocks_to_reschedule);
7220
7221 sel_unregister_cfg_hooks ();
7222
7223 max_issue_size = 0;
7224}
7225\f
7226
7227/* Functions that implement the scheduler driver. */
7228
7229/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7230 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7231 of insns scheduled -- these would be postprocessed later. */
7232static void
7233schedule_on_fences (flist_t fences, int max_seqno,
7234 ilist_t **scheduled_insns_tailpp)
7235{
7236 flist_t old_fences = fences;
7237
7238 if (sched_verbose >= 1)
7239 {
7240 sel_print ("\nScheduling on fences: ");
7241 dump_flist (fences);
7242 sel_print ("\n");
7243 }
7244
7245 scheduled_something_on_previous_fence = false;
7246 for (; fences; fences = FLIST_NEXT (fences))
7247 {
7248 fence_t fence = NULL;
7249 int seqno = 0;
7250 flist_t fences2;
7251 bool first_p = true;
b8698a0f 7252
e855c69d
AB
7253 /* Choose the next fence group to schedule.
7254 The fact that insn can be scheduled only once
7255 on the cycle is guaranteed by two properties:
7256 1. seqnos of parallel groups decrease with each iteration.
7257 2. If is_ineligible_successor () sees the larger seqno, it
7258 checks if candidate insn is_in_current_fence_p (). */
7259 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7260 {
7261 fence_t f = FLIST_FENCE (fences2);
7262
7263 if (!FENCE_PROCESSED_P (f))
7264 {
7265 int i = INSN_SEQNO (FENCE_INSN (f));
7266
7267 if (first_p || i > seqno)
7268 {
7269 seqno = i;
7270 fence = f;
7271 first_p = false;
7272 }
7273 else
7274 /* ??? Seqnos of different groups should be different. */
7275 gcc_assert (1 || i != seqno);
7276 }
7277 }
7278
7279 gcc_assert (fence);
7280
7281 /* As FENCE is nonnull, SEQNO is initialized. */
7282 seqno -= max_seqno + 1;
7283 fill_insns (fence, seqno, scheduled_insns_tailpp);
7284 FENCE_PROCESSED_P (fence) = true;
7285 }
7286
7287 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
b8698a0f 7288 don't need to keep bookkeeping-invalidated and target-unavailable
e855c69d
AB
7289 vinsns any more. */
7290 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7291 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7292}
7293
7294/* Calculate MIN_SEQNO and MAX_SEQNO. */
7295static void
7296find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7297{
7298 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7299
7300 /* The first element is already processed. */
7301 while ((fences = FLIST_NEXT (fences)))
7302 {
7303 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
b8698a0f 7304
e855c69d
AB
7305 if (*min_seqno > seqno)
7306 *min_seqno = seqno;
7307 else if (*max_seqno < seqno)
7308 *max_seqno = seqno;
7309 }
7310}
7311
7312/* Calculate new fences from FENCES. */
b8698a0f 7313static flist_t
e855c69d
AB
7314calculate_new_fences (flist_t fences, int orig_max_seqno)
7315{
7316 flist_t old_fences = fences;
7317 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7318
7319 flist_tail_init (new_fences);
7320 for (; fences; fences = FLIST_NEXT (fences))
7321 {
7322 fence_t fence = FLIST_FENCE (fences);
7323 insn_t insn;
b8698a0f 7324
e855c69d
AB
7325 if (!FENCE_BNDS (fence))
7326 {
7327 /* This fence doesn't have any successors. */
7328 if (!FENCE_SCHEDULED_P (fence))
7329 {
7330 /* Nothing was scheduled on this fence. */
7331 int seqno;
7332
7333 insn = FENCE_INSN (fence);
7334 seqno = INSN_SEQNO (insn);
7335 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7336
7337 if (sched_verbose >= 1)
b8698a0f 7338 sel_print ("Fence %d[%d] has not changed\n",
e855c69d
AB
7339 INSN_UID (insn),
7340 BLOCK_NUM (insn));
7341 move_fence_to_fences (fences, new_fences);
7342 }
7343 }
7344 else
7345 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7346 }
7347
7348 flist_clear (&old_fences);
7349 return FLIST_TAIL_HEAD (new_fences);
7350}
7351
7352/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7353 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7354 the highest seqno used in a region. Return the updated highest seqno. */
7355static int
b8698a0f
L
7356update_seqnos_and_stage (int min_seqno, int max_seqno,
7357 int highest_seqno_in_use,
e855c69d
AB
7358 ilist_t *pscheduled_insns)
7359{
7360 int new_hs;
7361 ilist_iterator ii;
7362 insn_t insn;
b8698a0f 7363
e855c69d
AB
7364 /* Actually, new_hs is the seqno of the instruction, that was
7365 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7366 if (*pscheduled_insns)
7367 {
7368 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7369 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7370 gcc_assert (new_hs > highest_seqno_in_use);
7371 }
7372 else
7373 new_hs = highest_seqno_in_use;
7374
7375 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7376 {
7377 gcc_assert (INSN_SEQNO (insn) < 0);
7378 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7379 gcc_assert (INSN_SEQNO (insn) <= new_hs);
bcf33775
AB
7380
7381 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7382 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7383 require > 1GB of memory e.g. on limit-fnargs.c. */
7384 if (! pipelining_p)
7385 free_data_for_scheduled_insn (insn);
e855c69d
AB
7386 }
7387
7388 ilist_clear (pscheduled_insns);
7389 global_level++;
7390
7391 return new_hs;
7392}
7393
b8698a0f
L
7394/* The main driver for scheduling a region. This function is responsible
7395 for correct propagation of fences (i.e. scheduling points) and creating
7396 a group of parallel insns at each of them. It also supports
e855c69d
AB
7397 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7398 of scheduling. */
7399static void
7400sel_sched_region_2 (int orig_max_seqno)
7401{
7402 int highest_seqno_in_use = orig_max_seqno;
7403
7404 stat_bookkeeping_copies = 0;
7405 stat_insns_needed_bookkeeping = 0;
7406 stat_renamed_scheduled = 0;
7407 stat_substitutions_total = 0;
7408 num_insns_scheduled = 0;
7409
7410 while (fences)
7411 {
7412 int min_seqno, max_seqno;
7413 ilist_t scheduled_insns = NULL;
7414 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7415
7416 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7417 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7418 fences = calculate_new_fences (fences, orig_max_seqno);
7419 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7420 highest_seqno_in_use,
7421 &scheduled_insns);
7422 }
7423
7424 if (sched_verbose >= 1)
7425 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7426 "bookkeeping, %d insns renamed, %d insns substituted\n",
7427 stat_bookkeeping_copies,
7428 stat_insns_needed_bookkeeping,
7429 stat_renamed_scheduled,
7430 stat_substitutions_total);
7431}
7432
b8698a0f
L
7433/* Schedule a region. When pipelining, search for possibly never scheduled
7434 bookkeeping code and schedule it. Reschedule pipelined code without
e855c69d
AB
7435 pipelining after. */
7436static void
7437sel_sched_region_1 (void)
7438{
7439 int number_of_insns;
7440 int orig_max_seqno;
7441
b8698a0f 7442 /* Remove empty blocks that might be in the region from the beginning.
e855c69d 7443 We need to do save sched_max_luid before that, as it actually shows
b8698a0f 7444 the number of insns in the region, and purge_empty_blocks can
e855c69d
AB
7445 alter it. */
7446 number_of_insns = sched_max_luid - 1;
7447 purge_empty_blocks ();
7448
7449 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7450 gcc_assert (orig_max_seqno >= 1);
7451
7452 /* When pipelining outer loops, create fences on the loop header,
7453 not preheader. */
7454 fences = NULL;
7455 if (current_loop_nest)
7456 init_fences (BB_END (EBB_FIRST_BB (0)));
7457 else
7458 init_fences (bb_note (EBB_FIRST_BB (0)));
7459 global_level = 1;
7460
7461 sel_sched_region_2 (orig_max_seqno);
7462
7463 gcc_assert (fences == NULL);
7464
7465 if (pipelining_p)
7466 {
7467 int i;
7468 basic_block bb;
7469 struct flist_tail_def _new_fences;
7470 flist_tail_t new_fences = &_new_fences;
7471 bool do_p = true;
7472
7473 pipelining_p = false;
7474 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7475 bookkeeping_p = false;
7476 enable_schedule_as_rhs_p = false;
7477
7478 /* Schedule newly created code, that has not been scheduled yet. */
7479 do_p = true;
7480
7481 while (do_p)
7482 {
7483 do_p = false;
7484
7485 for (i = 0; i < current_nr_blocks; i++)
7486 {
7487 basic_block bb = EBB_FIRST_BB (i);
7488
7489 if (sel_bb_empty_p (bb))
7490 {
7491 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7492 continue;
7493 }
7494
7495 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7496 {
7497 clear_outdated_rtx_info (bb);
7498 if (sel_insn_is_speculation_check (BB_END (bb))
7499 && JUMP_P (BB_END (bb)))
7500 bitmap_set_bit (blocks_to_reschedule,
7501 BRANCH_EDGE (bb)->dest->index);
7502 }
7503 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7504 bitmap_set_bit (blocks_to_reschedule, bb->index);
7505 }
7506
7507 for (i = 0; i < current_nr_blocks; i++)
7508 {
7509 bb = EBB_FIRST_BB (i);
7510
b8698a0f 7511 /* While pipelining outer loops, skip bundling for loop
e855c69d
AB
7512 preheaders. Those will be rescheduled in the outer
7513 loop. */
7514 if (sel_is_loop_preheader_p (bb))
7515 {
7516 clear_outdated_rtx_info (bb);
7517 continue;
7518 }
b8698a0f 7519
fcaa4ca4 7520 if (bitmap_clear_bit (blocks_to_reschedule, bb->index))
e855c69d
AB
7521 {
7522 flist_tail_init (new_fences);
7523
7524 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7525
7526 /* Mark BB as head of the new ebb. */
7527 bitmap_set_bit (forced_ebb_heads, bb->index);
7528
e855c69d
AB
7529 gcc_assert (fences == NULL);
7530
7531 init_fences (bb_note (bb));
b8698a0f 7532
e855c69d 7533 sel_sched_region_2 (orig_max_seqno);
b8698a0f 7534
e855c69d
AB
7535 do_p = true;
7536 break;
7537 }
7538 }
7539 }
7540 }
7541}
7542
7543/* Schedule the RGN region. */
7544void
7545sel_sched_region (int rgn)
7546{
7547 bool schedule_p;
7548 bool reset_sched_cycles_p;
7549
7550 if (sel_region_init (rgn))
7551 return;
7552
7553 if (sched_verbose >= 1)
7554 sel_print ("Scheduling region %d\n", rgn);
7555
7556 schedule_p = (!sched_is_disabled_for_current_region_p ()
7557 && dbg_cnt (sel_sched_region_cnt));
7558 reset_sched_cycles_p = pipelining_p;
7559 if (schedule_p)
7560 sel_sched_region_1 ();
7561 else
7562 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7563 reset_sched_cycles_p = true;
b8698a0f 7564
e855c69d
AB
7565 sel_region_finish (reset_sched_cycles_p);
7566}
7567
7568/* Perform global init for the scheduler. */
7569static void
7570sel_global_init (void)
7571{
7572 calculate_dominance_info (CDI_DOMINATORS);
7573 alloc_sched_pools ();
7574
7575 /* Setup the infos for sched_init. */
7576 sel_setup_sched_infos ();
7577 setup_sched_dump ();
7578
7579 sched_rgn_init (false);
7580 sched_init ();
7581
7582 sched_init_bbs ();
7583 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7584 after_recovery = 0;
b8698a0f 7585 can_issue_more = issue_rate;
e855c69d
AB
7586
7587 sched_extend_target ();
7588 sched_deps_init (true);
7589 setup_nop_and_exit_insns ();
7590 sel_extend_global_bb_info ();
7591 init_lv_sets ();
7592 init_hard_regs_data ();
7593}
7594
7595/* Free the global data of the scheduler. */
7596static void
7597sel_global_finish (void)
7598{
7599 free_bb_note_pool ();
7600 free_lv_sets ();
7601 sel_finish_global_bb_info ();
7602
7603 free_regset_pool ();
7604 free_nop_and_exit_insns ();
7605
7606 sched_rgn_finish ();
7607 sched_deps_finish ();
7608 sched_finish ();
7609
7610 if (current_loops)
7611 sel_finish_pipelining ();
7612
7613 free_sched_pools ();
7614 free_dominance_info (CDI_DOMINATORS);
7615}
7616
7617/* Return true when we need to skip selective scheduling. Used for debugging. */
7618bool
7619maybe_skip_selective_scheduling (void)
7620{
7621 return ! dbg_cnt (sel_sched_cnt);
7622}
7623
7624/* The entry point. */
7625void
7626run_selective_scheduling (void)
7627{
7628 int rgn;
7629
7630 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7631 return;
7632
7633 sel_global_init ();
7634
7635 for (rgn = 0; rgn < nr_regions; rgn++)
7636 sel_sched_region (rgn);
7637
7638 sel_global_finish ();
7639}
7640
7641#endif