]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sel-sched.c
* doc/include/texinfo.tex: Update to version 2012-05-16.16.
[thirdparty/gcc.git] / gcc / sel-sched.c
CommitLineData
e855c69d 1/* Instruction scheduling pass. Selective scheduler and pipeliner.
7861732f 2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
9b0f04e7 3 Free Software Foundation, Inc.
e855c69d
AB
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
0cbd9993 25#include "rtl-error.h"
e855c69d
AB
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "regs.h"
29#include "function.h"
30#include "flags.h"
31#include "insn-config.h"
32#include "insn-attr.h"
33#include "except.h"
e855c69d
AB
34#include "recog.h"
35#include "params.h"
36#include "target.h"
37#include "output.h"
38#include "timevar.h"
39#include "tree-pass.h"
40#include "sched-int.h"
41#include "ggc.h"
42#include "tree.h"
43#include "vec.h"
44#include "langhooks.h"
45#include "rtlhooks-def.h"
46#include "output.h"
5936d944 47#include "emit-rtl.h"
e855c69d
AB
48
49#ifdef INSN_SCHEDULING
50#include "sel-sched-ir.h"
51#include "sel-sched-dump.h"
52#include "sel-sched.h"
53#include "dbgcnt.h"
54
55/* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
b8698a0f 59 o the scheduler works after register allocation (but can be also tuned
e855c69d
AB
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
b8698a0f
L
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
e855c69d
AB
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
b8698a0f 78 at some point in the control flow graph. The data may be its usefulness,
e855c69d
AB
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
b8698a0f 82 Availability set (av_set) is a set of expressions at a given control flow
e855c69d 83 point. It is represented as av_set_t. The expressions in av sets are kept
b8698a0f 84 sorted in the terms of expr_greater_p function. It allows to truncate
e855c69d 85 the set while leaving the best expressions.
b8698a0f 86
e855c69d
AB
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
b8698a0f 93 the fence group when a jump is scheduled. A boundary is represented
e855c69d
AB
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
b8698a0f 100 The regions are formed starting from innermost loops, so that when the inner
e855c69d 101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
b8698a0f 102 outer loop. The rest of acyclic regions are found using extend_rgns:
e855c69d 103 the blocks that are not yet allocated to any regions are traversed in top-down
b8698a0f 104 order, and a block is added to a region to which all its predecessors belong;
e855c69d
AB
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
b8698a0f
L
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
e855c69d 112 required to schedule any of the expressions, we advance the current cycle
b8698a0f 113 appropriately. So, the final group does not exactly correspond to a VLIW
e855c69d
AB
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
b8698a0f 117 so we feel like advancing a scheduling point.
e855c69d
AB
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
b8698a0f
L
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
e855c69d
AB
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
b8698a0f 132 and moving to another fence. The first two restrictions are lifted during
e855c69d
AB
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
b8698a0f
L
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
e855c69d
AB
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
b8698a0f 145 only registers which are from the same regclass as the original one and
e855c69d
AB
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
b8698a0f 153 We run the move_op routine to perform the same type of code motion paths
e855c69d
AB
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
b8698a0f 156 instruction that gave birth to a chosen expression. We undo
e855c69d 157 the transformations performed on an expression via the history saved in it.
b8698a0f
L
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
e855c69d
AB
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
b8698a0f
L
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
e855c69d
AB
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
b8698a0f
L
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
e855c69d
AB
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
b8698a0f 185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
e855c69d 186 reused in all of the schedulers. We have split up the initialization of data
b8698a0f 187 of such parts into different functions prefixed with scheduler type and
e855c69d
AB
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
b8698a0f
L
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
e855c69d 192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
b8698a0f 193
e855c69d
AB
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
b8698a0f
L
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
e855c69d
AB
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
b8698a0f
L
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
e855c69d
AB
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
b8698a0f 217 insns that are definitely completed the execution. The results of
e855c69d
AB
218 tick_check_p checks are also cached in a vector on each fence.
219
b8698a0f 220 We keep a valid liveness set on each insn in a region to avoid the high
e855c69d
AB
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
b8698a0f 224 sets. The updates happen in two cases: when fill_insns terminates,
e855c69d
AB
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
b8698a0f 231
e855c69d
AB
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
b8698a0f
L
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
e855c69d 243
b8698a0f
L
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
e855c69d
AB
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
b8698a0f 248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
e855c69d
AB
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
b8698a0f 251
e855c69d
AB
252*/
253
254/* True when pipelining is enabled. */
255bool pipelining_p;
256
257/* True if bookkeeping is enabled. */
258bool bookkeeping_p;
259
260/* Maximum number of insns that are eligible for renaming. */
261int max_insns_to_rename;
262\f
263
264/* Definitions of local types and macros. */
265
266/* Represents possible outcomes of moving an expression through an insn. */
b8698a0f
L
267enum MOVEUP_EXPR_CODE
268 {
e855c69d 269 /* The expression is not changed. */
b8698a0f 270 MOVEUP_EXPR_SAME,
e855c69d
AB
271
272 /* Not changed, but requires a new destination register. */
b8698a0f 273 MOVEUP_EXPR_AS_RHS,
e855c69d
AB
274
275 /* Cannot be moved. */
b8698a0f 276 MOVEUP_EXPR_NULL,
e855c69d
AB
277
278 /* Changed (substituted or speculated). */
b8698a0f 279 MOVEUP_EXPR_CHANGED
e855c69d
AB
280 };
281
282/* The container to be passed into rtx search & replace functions. */
283struct rtx_search_arg
284{
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290};
291
292typedef struct rtx_search_arg *rtx_search_arg_p;
293
b8698a0f 294/* This struct contains precomputed hard reg sets that are needed when
e855c69d 295 computing registers available for renaming. */
b8698a0f 296struct hard_regs_data
e855c69d 297{
b8698a0f 298 /* For every mode, this stores registers available for use with
e855c69d
AB
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
b8698a0f 310 /* For every mode, this stores registers not available due to
e855c69d
AB
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317#ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320#endif
321};
322
323/* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325struct reg_rename
326{
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335};
336
b8698a0f 337/* A global structure that contains the needed information about harg
e855c69d
AB
338 regs. */
339static struct hard_regs_data sel_hrd;
340\f
341
b8698a0f
L
342/* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
e855c69d
AB
347 read-only. */
348struct cmpd_local_params
349{
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
b8698a0f 364 /* True when we have removed last insn in the block which was
e855c69d
AB
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367};
368
369/* Stores the static parameters for move_op_* calls. */
370struct moveop_static_params
371{
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382#ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385#endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389};
390
391/* Stores the static parameters for fur_* calls. */
392struct fur_static_params
393{
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402};
403
404typedef struct fur_static_params *fur_static_params_p;
405typedef struct cmpd_local_params *cmpd_local_params_p;
406typedef struct moveop_static_params *moveop_static_params_p;
407
408/* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410struct code_motion_path_driver_info_def
411{
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
b8698a0f 433 /* Called on the ascending pass, before returning from the current basic
e855c69d
AB
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
b8698a0f 437 /* When processing successors in move_op we need only descend into
e855c69d
AB
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443};
444
445/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449/* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
c32e2175 451extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
e855c69d 452
b8698a0f
L
453/* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
e855c69d
AB
455 sched-deps.c. */
456int sched_emulate_haifa_p;
457
458/* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462int global_level;
463
464/* Current fences. */
465flist_t fences;
466
467/* True when separable insns should be scheduled as RHSes. */
468static bool enable_schedule_as_rhs_p;
469
470/* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
b8698a0f 472 we haven't scheduled anything on the previous fence.
e855c69d 473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
b8698a0f 474 have more conservative value than the one returned by the
e855c69d
AB
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476static bool scheduled_something_on_previous_fence;
477
478/* All newly emitted insns will have their uids greater than this value. */
479static int first_emitted_uid;
480
481/* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483static bitmap_head _forced_ebb_heads;
484bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486/* Blocks that need to be rescheduled after pipelining. */
487bitmap blocks_to_reschedule = NULL;
488
489/* True when the first lv set should be ignored when updating liveness. */
490static bool ignore_first = false;
491
492/* Number of insns max_issue has initialized data structures for. */
493static int max_issue_size = 0;
494
495/* Whether we can issue more instructions. */
496static int can_issue_more;
497
498/* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500static int max_ws;
501
502/* Number of insns scheduled in current region. */
503static int num_insns_scheduled;
504
505/* A vector of expressions is used to be able to sort them. */
506DEF_VEC_P(expr_t);
507DEF_VEC_ALLOC_P(expr_t,heap);
508static VEC(expr_t, heap) *vec_av_set = NULL;
509
510/* A vector of vinsns is used to hold temporary lists of vinsns. */
511DEF_VEC_P(vinsn_t);
512DEF_VEC_ALLOC_P(vinsn_t,heap);
513typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515/* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
b8698a0f 521/* This vector has vinsns which are scheduled with renaming on the first fence
e855c69d
AB
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526/* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528DEF_VEC_P(insn_t);
529DEF_VEC_ALLOC_P(insn_t,heap);
530static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
b8698a0f
L
532/* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
e855c69d
AB
534static bitmap current_originators = NULL;
535static bitmap current_copies = NULL;
536
537/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539static bitmap code_motion_visited_blocks = NULL;
540
541/* Variables to accumulate different statistics. */
542
543/* The number of bookkeeping copies created. */
544static int stat_bookkeeping_copies;
545
546/* The number of insns that required bookkeeiping for their scheduling. */
547static int stat_insns_needed_bookkeeping;
548
549/* The number of insns that got renamed. */
550static int stat_renamed_scheduled;
551
552/* The number of substitutions made during scheduling. */
553static int stat_substitutions_total;
554\f
555
556/* Forward declarations of static functions. */
557static bool rtx_ok_for_substitution_p (rtx, rtx);
558static int sel_rank_for_schedule (const void *, const void *);
559static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
b5b8b0ac 560static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
e855c69d
AB
561
562static rtx get_dest_from_orig_ops (av_set_t);
563static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
b8698a0f 564static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
e855c69d 565 def_list_t *);
72a54528
AM
566static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
e855c69d
AB
569static void sel_sched_region_1 (void);
570static void sel_sched_region_2 (int);
571static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572
573static void debug_state (state_t);
574\f
575
576/* Functions that work with fences. */
577
578/* Advance one cycle on FENCE. */
579static void
580advance_one_cycle (fence_t fence)
581{
582 unsigned i;
583 int cycle;
584 rtx insn;
b8698a0f 585
e855c69d
AB
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
136e01a3 591 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
592
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 {
595 if (INSN_READY_CYCLE (insn) < cycle)
596 {
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
600 }
601 i++;
602 }
603 if (sched_verbose >= 2)
604 {
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
607 }
608}
609
610/* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612static bool
613in_fallthru_bb_p (rtx insn, rtx succ)
614{
615 basic_block bb = BLOCK_FOR_INSN (insn);
0fd4b31d 616 edge e;
e855c69d
AB
617
618 if (bb == BLOCK_FOR_INSN (succ))
619 return true;
620
0fd4b31d
NF
621 e = find_fallthru_edge_from (bb);
622 if (e)
623 bb = e->dest;
e855c69d
AB
624 else
625 return false;
626
627 while (sel_bb_empty_p (bb))
628 bb = bb->next_bb;
629
630 return bb == BLOCK_FOR_INSN (succ);
631}
632
b8698a0f 633/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
e855c69d
AB
634 When a successor will continue a ebb, transfer all parameters of a fence
635 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
636 of scheduling helping to distinguish between the old and the new code. */
637static void
638extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 int orig_max_seqno)
640{
641 bool was_here_p = false;
642 insn_t insn = NULL_RTX;
643 insn_t succ;
644 succ_iterator si;
645 ilist_iterator ii;
646 fence_t fence = FLIST_FENCE (old_fences);
647 basic_block bb;
648
649 /* Get the only element of FENCE_BNDS (fence). */
650 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
651 {
652 gcc_assert (!was_here_p);
653 was_here_p = true;
654 }
655 gcc_assert (was_here_p && insn != NULL_RTX);
656
b8698a0f 657 /* When in the "middle" of the block, just move this fence
e855c69d
AB
658 to the new list. */
659 bb = BLOCK_FOR_INSN (insn);
660 if (! sel_bb_end_p (insn)
b8698a0f 661 || (single_succ_p (bb)
e855c69d
AB
662 && single_pred_p (single_succ (bb))))
663 {
664 insn_t succ;
665
b8698a0f 666 succ = (sel_bb_end_p (insn)
e855c69d
AB
667 ? sel_bb_head (single_succ (bb))
668 : NEXT_INSN (insn));
669
b8698a0f 670 if (INSN_SEQNO (succ) > 0
e855c69d
AB
671 && INSN_SEQNO (succ) <= orig_max_seqno
672 && INSN_SCHED_TIMES (succ) <= 0)
673 {
674 FENCE_INSN (fence) = succ;
675 move_fence_to_fences (old_fences, new_fences);
676
677 if (sched_verbose >= 1)
b8698a0f 678 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
e855c69d
AB
679 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
680 }
681 return;
682 }
683
684 /* Otherwise copy fence's structures to (possibly) multiple successors. */
685 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
686 {
687 int seqno = INSN_SEQNO (succ);
688
689 if (0 < seqno && seqno <= orig_max_seqno
690 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
691 {
692 bool b = (in_same_ebb_p (insn, succ)
b8698a0f 693 || in_fallthru_bb_p (insn, succ));
e855c69d
AB
694
695 if (sched_verbose >= 1)
b8698a0f
L
696 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697 INSN_UID (insn), INSN_UID (succ),
e855c69d
AB
698 BLOCK_NUM (succ), b ? "continue" : "reset");
699
700 if (b)
701 add_dirty_fence_to_fences (new_fences, succ, fence);
702 else
703 {
704 /* Mark block of the SUCC as head of the new ebb. */
705 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706 add_clean_fence_to_fences (new_fences, succ, fence);
707 }
708 }
709 }
710}
711\f
712
713/* Functions to support substitution. */
714
b8698a0f
L
715/* Returns whether INSN with dependence status DS is eligible for
716 substitution, i.e. it's a copy operation x := y, and RHS that is
e855c69d
AB
717 moved up through this insn should be substituted. */
718static bool
719can_substitute_through_p (insn_t insn, ds_t ds)
720{
721 /* We can substitute only true dependencies. */
722 if ((ds & DEP_OUTPUT)
723 || (ds & DEP_ANTI)
724 || ! INSN_RHS (insn)
725 || ! INSN_LHS (insn))
726 return false;
727
b8698a0f 728 /* Now we just need to make sure the INSN_RHS consists of only one
e855c69d 729 simple REG rtx. */
b8698a0f 730 if (REG_P (INSN_LHS (insn))
e855c69d 731 && REG_P (INSN_RHS (insn)))
b8698a0f 732 return true;
e855c69d
AB
733 return false;
734}
735
b8698a0f 736/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
e855c69d
AB
737 source (if INSN is eligible for substitution). Returns TRUE if
738 substitution was actually performed, FALSE otherwise. Substitution might
739 be not performed because it's either EXPR' vinsn doesn't contain INSN's
b8698a0f 740 destination or the resulting insn is invalid for the target machine.
e855c69d
AB
741 When UNDO is true, perform unsubstitution instead (the difference is in
742 the part of rtx on which validate_replace_rtx is called). */
743static bool
744substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
745{
746 rtx *where;
747 bool new_insn_valid;
748 vinsn_t *vi = &EXPR_VINSN (expr);
749 bool has_rhs = VINSN_RHS (*vi) != NULL;
750 rtx old, new_rtx;
751
752 /* Do not try to replace in SET_DEST. Although we'll choose new
b8698a0f 753 register for the RHS, we don't want to change RHS' original reg.
e855c69d 754 If the insn is not SET, we may still be able to substitute something
b8698a0f 755 in it, and if we're here (don't have deps), it doesn't write INSN's
e855c69d
AB
756 dest. */
757 where = (has_rhs
758 ? &VINSN_RHS (*vi)
759 : &PATTERN (VINSN_INSN_RTX (*vi)));
760 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
761
762 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
763 if (rtx_ok_for_substitution_p (old, *where))
764 {
765 rtx new_insn;
766 rtx *where_replace;
767
768 /* We should copy these rtxes before substitution. */
769 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
771
b8698a0f 772 /* Where we'll replace.
e855c69d
AB
773 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 used instead of SET_SRC. */
775 where_replace = (has_rhs
776 ? &SET_SRC (PATTERN (new_insn))
777 : &PATTERN (new_insn));
778
b8698a0f
L
779 new_insn_valid
780 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
e855c69d
AB
781 new_insn);
782
783 /* ??? Actually, constrain_operands result depends upon choice of
784 destination register. E.g. if we allow single register to be an rhs,
b8698a0f 785 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
e855c69d
AB
786 in invalid insn dx=dx, so we'll loose this rhs here.
787 Just can't come up with significant testcase for this, so just
788 leaving it for now. */
789 if (new_insn_valid)
790 {
b8698a0f 791 change_vinsn_in_expr (expr,
e855c69d
AB
792 create_vinsn_from_insn_rtx (new_insn, false));
793
b8698a0f 794 /* Do not allow clobbering the address register of speculative
e855c69d
AB
795 insns. */
796 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
cf3d5824
SG
797 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 expr_dest_reg (expr)))
e855c69d
AB
799 EXPR_TARGET_AVAILABLE (expr) = false;
800
801 return true;
802 }
803 else
804 return false;
805 }
806 else
807 return false;
808}
809
810/* Helper function for count_occurences_equiv. */
b8698a0f 811static int
e855c69d
AB
812count_occurrences_1 (rtx *cur_rtx, void *arg)
813{
814 rtx_search_arg_p p = (rtx_search_arg_p) arg;
815
ea3f6aa8 816 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
e855c69d 817 {
ea3f6aa8
AM
818 /* Bail out if mode is different or more than one register is used. */
819 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
820 || (HARD_REGISTER_P (*cur_rtx)
821 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
e855c69d
AB
822 {
823 p->n = 0;
824 return 1;
825 }
826
827 p->n++;
828
829 /* Do not traverse subexprs. */
830 return -1;
831 }
832
833 if (GET_CODE (*cur_rtx) == SUBREG
5e841c82
AB
834 && (!REG_P (SUBREG_REG (*cur_rtx))
835 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
e855c69d
AB
836 {
837 /* ??? Do not support substituting regs inside subregs. In that case,
b8698a0f 838 simplify_subreg will be called by validate_replace_rtx, and
e855c69d
AB
839 unsubstitution will fail later. */
840 p->n = 0;
841 return 1;
842 }
843
844 /* Continue search. */
845 return 0;
846}
847
b8698a0f 848/* Return the number of places WHAT appears within WHERE.
e855c69d 849 Bail out when we found a reference occupying several hard registers. */
b8698a0f 850static int
e855c69d
AB
851count_occurrences_equiv (rtx what, rtx where)
852{
853 struct rtx_search_arg arg;
854
ea3f6aa8 855 gcc_assert (REG_P (what));
e855c69d
AB
856 arg.x = what;
857 arg.n = 0;
858
859 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
860
861 return arg.n;
862}
863
864/* Returns TRUE if WHAT is found in WHERE rtx tree. */
865static bool
866rtx_ok_for_substitution_p (rtx what, rtx where)
867{
868 return (count_occurrences_equiv (what, where) > 0);
869}
870\f
871
872/* Functions to support register renaming. */
873
874/* Substitute VI's set source with REGNO. Returns newly created pattern
875 that has REGNO as its source. */
876static rtx
877create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
878{
879 rtx lhs_rtx;
880 rtx pattern;
881 rtx insn_rtx;
882
883 lhs_rtx = copy_rtx (VINSN_LHS (vi));
884
885 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
886 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
887
888 return insn_rtx;
889}
890
b8698a0f 891/* Returns whether INSN's src can be replaced with register number
e855c69d
AB
892 NEW_SRC_REG. E.g. the following insn is valid for i386:
893
b8698a0f 894 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
e855c69d
AB
895 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
896 (reg:SI 0 ax [orig:770 c1 ] [770]))
897 (const_int 288 [0x120])) [0 str S1 A8])
898 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
899 (nil))
900
901 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
b8698a0f 902 because of operand constraints:
e855c69d
AB
903
904 (define_insn "*movqi_1"
905 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
906 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
907 )]
b8698a0f
L
908
909 So do constrain_operands here, before choosing NEW_SRC_REG as best
e855c69d
AB
910 reg for rhs. */
911
912static bool
913replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
914{
915 vinsn_t vi = INSN_VINSN (insn);
916 enum machine_mode mode;
917 rtx dst_loc;
918 bool res;
919
920 gcc_assert (VINSN_SEPARABLE_P (vi));
921
922 get_dest_and_mode (insn, &dst_loc, &mode);
923 gcc_assert (mode == GET_MODE (new_src_reg));
924
925 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
926 return true;
927
928 /* See whether SET_SRC can be replaced with this register. */
929 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
930 res = verify_changes (0);
931 cancel_changes (0);
932
933 return res;
934}
935
936/* Returns whether INSN still be valid after replacing it's DEST with
937 register NEW_REG. */
938static bool
939replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
940{
941 vinsn_t vi = INSN_VINSN (insn);
942 bool res;
943
944 /* We should deal here only with separable insns. */
945 gcc_assert (VINSN_SEPARABLE_P (vi));
946 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
947
948 /* See whether SET_DEST can be replaced with this register. */
949 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
950 res = verify_changes (0);
951 cancel_changes (0);
952
953 return res;
954}
955
956/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
957static rtx
958create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
959{
960 rtx rhs_rtx;
961 rtx pattern;
962 rtx insn_rtx;
963
964 rhs_rtx = copy_rtx (VINSN_RHS (vi));
965
966 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
967 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
968
969 return insn_rtx;
970}
971
b8698a0f 972/* Substitute lhs in the given expression EXPR for the register with number
e855c69d
AB
973 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
974static void
975replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
976{
977 rtx insn_rtx;
978 vinsn_t vinsn;
979
980 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
981 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
982
983 change_vinsn_in_expr (expr, vinsn);
984 EXPR_WAS_RENAMED (expr) = 1;
985 EXPR_TARGET_AVAILABLE (expr) = 1;
986}
987
988/* Returns whether VI writes either one of the USED_REGS registers or,
989 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
990static bool
b8698a0f 991vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
e855c69d
AB
992 HARD_REG_SET unavailable_hard_regs)
993{
994 unsigned regno;
995 reg_set_iterator rsi;
996
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
998 {
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1004 }
1005
1006 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1007 {
1008 if (REGNO_REG_SET_P (used_regs, regno))
1009 return true;
1010 if (HARD_REGISTER_NUM_P (regno)
1011 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1012 return true;
1013 }
1014
1015 return false;
1016}
1017
b8698a0f 1018/* Returns register class of the output register in INSN.
e855c69d
AB
1019 Returns NO_REGS for call insns because some targets have constraints on
1020 destination register of a call insn.
b8698a0f 1021
e855c69d
AB
1022 Code adopted from regrename.c::build_def_use. */
1023static enum reg_class
1024get_reg_class (rtx insn)
1025{
1026 int alt, i, n_ops;
1027
1028 extract_insn (insn);
1029 if (! constrain_operands (1))
1030 fatal_insn_not_found (insn);
1031 preprocess_constraints ();
1032 alt = which_alternative;
1033 n_ops = recog_data.n_operands;
1034
1035 for (i = 0; i < n_ops; ++i)
1036 {
1037 int matches = recog_op_alt[i][alt].matches;
1038 if (matches >= 0)
1039 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1040 }
1041
1042 if (asm_noperands (PATTERN (insn)) > 0)
1043 {
1044 for (i = 0; i < n_ops; i++)
1045 if (recog_data.operand_type[i] == OP_OUT)
1046 {
1047 rtx *loc = recog_data.operand_loc[i];
1048 rtx op = *loc;
1049 enum reg_class cl = recog_op_alt[i][alt].cl;
1050
1051 if (REG_P (op)
1052 && REGNO (op) == ORIGINAL_REGNO (op))
1053 continue;
1054
1055 return cl;
1056 }
1057 }
1058 else if (!CALL_P (insn))
1059 {
1060 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1061 {
1062 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1063 enum reg_class cl = recog_op_alt[opn][alt].cl;
b8698a0f 1064
e855c69d
AB
1065 if (recog_data.operand_type[opn] == OP_OUT ||
1066 recog_data.operand_type[opn] == OP_INOUT)
1067 return cl;
1068 }
1069 }
1070
1071/* Insns like
1072 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1073 may result in returning NO_REGS, cause flags is written implicitly through
1074 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1075 return NO_REGS;
1076}
1077
1078#ifdef HARD_REGNO_RENAME_OK
1079/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1080static void
1081init_hard_regno_rename (int regno)
1082{
1083 int cur_reg;
1084
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1086
1087 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1088 {
1089 /* We are not interested in renaming in other regs. */
1090 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1091 continue;
1092
1093 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1094 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1095 }
1096}
1097#endif
1098
b8698a0f 1099/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
e855c69d
AB
1100 data first. */
1101static inline bool
a20d7130 1102sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
e855c69d
AB
1103{
1104#ifdef HARD_REGNO_RENAME_OK
1105 /* Check whether this is all calculated. */
1106 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1107 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1108
1109 init_hard_regno_rename (from);
1110
1111 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1112#else
1113 return true;
1114#endif
1115}
1116
1117/* Calculate set of registers that are capable of holding MODE. */
1118static void
1119init_regs_for_mode (enum machine_mode mode)
1120{
1121 int cur_reg;
b8698a0f 1122
e855c69d
AB
1123 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1125
1126 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1127 {
1128 int nregs = hard_regno_nregs[cur_reg][mode];
1129 int i;
b8698a0f 1130
e855c69d
AB
1131 for (i = nregs - 1; i >= 0; --i)
1132 if (fixed_regs[cur_reg + i]
1133 || global_regs[cur_reg + i]
b8698a0f 1134 /* Can't use regs which aren't saved by
e855c69d
AB
1135 the prologue. */
1136 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
8fd0a474
AM
1137 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1138 it affects aliasing globally and invalidates all AV sets. */
1139 || get_reg_base_value (cur_reg + i)
e855c69d
AB
1140#ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145#endif
1146 )
1147 break;
b8698a0f
L
1148
1149 if (i >= 0)
e855c69d 1150 continue;
b8698a0f 1151
e855c69d
AB
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
b8698a0f 1156
e855c69d 1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
b8698a0f 1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
e855c69d 1159 cur_reg);
b8698a0f
L
1160
1161 /* If the CUR_REG passed all the checks above,
e855c69d
AB
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1164 }
1165
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1167}
1168
1169/* Init all register sets gathered in HRD. */
1170static void
1171init_hard_regs_data (void)
1172{
1173 int cur_reg = 0;
32e8bb8e 1174 int cur_mode = 0;
e855c69d
AB
1175
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
b8698a0f
L
1180
1181 /* Initialize registers that are valid based on mode when this is
e855c69d
AB
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
b8698a0f 1185
e855c69d
AB
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189
1190#ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195#endif
b8698a0f 1196}
e855c69d 1197
b8698a0f 1198/* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1205
1206static void
1207mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1209{
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1215
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1218
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
b8698a0f 1220
e855c69d
AB
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1225
1226 regno = REGNO (orig_dest);
1227
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1231
0c94f956
AM
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
e855c69d 1234
0c94f956
AM
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
b8698a0f 1237 if (fixed_regs[regno]
e855c69d 1238 || global_regs[regno]
e3339d0f 1239#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
0c94f956 1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
e855c69d 1241#else
0c94f956 1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
e855c69d 1243#endif
0c94f956 1244 || (reload_completed && cl == NO_REGS))
e855c69d
AB
1245 {
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251
1252 return;
1253 }
1254
1255 /* If something allocated on stack in this function, mark frame pointer
b8698a0f 1256 register unavailable, considering also modes.
e855c69d
AB
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1259 {
d108e679
AS
1260 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1261 Pmode, FRAME_POINTER_REGNUM);
e855c69d 1262
d108e679
AS
1263 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1264 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1265 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
e855c69d
AB
1266 }
1267
1268#ifdef STACK_REGS
1269 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1270 is equivalent to as if all stack regs were in this set.
1271 I.e. no stack register can be renamed, and even if it's an original
b8698a0f
L
1272 register here we make sure it won't be lifted over it's previous def
1273 (it's previous def will appear as if it's a FIRST_STACK_REG def.
e855c69d
AB
1274 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1275 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
b8698a0f
L
1276 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1277 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d 1278 sel_hrd.stack_regs);
b8698a0f 1279#endif
e855c69d 1280
b8698a0f 1281 /* If there's a call on this path, make regs from call_used_reg_set
e855c69d
AB
1282 unavailable. */
1283 if (def->crosses_call)
b8698a0f 1284 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1285 call_used_reg_set);
1286
b8698a0f 1287 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
e855c69d
AB
1288 but not register classes. */
1289 if (!reload_completed)
1290 return;
1291
b8698a0f 1292 /* Leave regs as 'available' only from the current
e855c69d 1293 register class. */
e855c69d
AB
1294 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295 reg_class_contents[cl]);
1296
0c94f956
AM
1297 mode = GET_MODE (orig_dest);
1298
e855c69d
AB
1299 /* Leave only registers available for this mode. */
1300 if (!sel_hrd.regs_for_mode_ok[mode])
1301 init_regs_for_mode (mode);
b8698a0f 1302 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1303 sel_hrd.regs_for_mode[mode]);
1304
1305 /* Exclude registers that are partially call clobbered. */
1306 if (def->crosses_call
1307 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
b8698a0f 1308 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1309 sel_hrd.regs_for_call_clobbered[mode]);
1310
1311 /* Leave only those that are ok to rename. */
1312 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 0, cur_reg, hrsi)
1314 {
1315 int nregs;
1316 int i;
1317
1318 nregs = hard_regno_nregs[cur_reg][mode];
1319 gcc_assert (nregs > 0);
1320
1321 for (i = nregs - 1; i >= 0; --i)
1322 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1323 break;
1324
b8698a0f
L
1325 if (i >= 0)
1326 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
e855c69d
AB
1327 cur_reg);
1328 }
1329
b8698a0f 1330 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
e855c69d
AB
1331 reg_rename_p->unavailable_hard_regs);
1332
1333 /* Regno is always ok from the renaming part of view, but it really
1334 could be in *unavailable_hard_regs already, so set it here instead
1335 of there. */
1336 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1337}
1338
1339/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1340 best register more recently than REG2. */
1341static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1342
1343/* Indicates the number of times renaming happened before the current one. */
1344static int reg_rename_this_tick;
1345
b8698a0f 1346/* Choose the register among free, that is suitable for storing
e855c69d
AB
1347 the rhs value.
1348
1349 ORIGINAL_INSNS is the list of insns where the operation (rhs)
b8698a0f
L
1350 originally appears. There could be multiple original operations
1351 for single rhs since we moving it up and merging along different
e855c69d
AB
1352 paths.
1353
1354 Some code is adapted from regrename.c (regrename_optimize).
1355 If original register is available, function returns it.
1356 Otherwise it performs the checks, so the new register should
1357 comply with the following:
b8698a0f 1358 - it should not violate any live ranges (such registers are in
e855c69d
AB
1359 REG_RENAME_P->available_for_renaming set);
1360 - it should not be in the HARD_REGS_USED regset;
1361 - it should be in the class compatible with original uses;
1362 - it should not be clobbered through reference with different mode;
b8698a0f 1363 - if we're in the leaf function, then the new register should
e855c69d
AB
1364 not be in the LEAF_REGISTERS;
1365 - etc.
1366
1367 If several registers meet the conditions, the register with smallest
1368 tick is returned to achieve more even register allocation.
1369
1370 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1371
1372 If no register satisfies the above conditions, NULL_RTX is returned. */
1373static rtx
b8698a0f
L
1374choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1375 struct reg_rename *reg_rename_p,
e855c69d
AB
1376 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1377{
1378 int best_new_reg;
1379 unsigned cur_reg;
1380 enum machine_mode mode = VOIDmode;
1381 unsigned regno, i, n;
1382 hard_reg_set_iterator hrsi;
1383 def_list_iterator di;
1384 def_t def;
1385
1386 /* If original register is available, return it. */
1387 *is_orig_reg_p_ptr = true;
1388
1389 FOR_EACH_DEF (def, di, original_insns)
1390 {
1391 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1392
1393 gcc_assert (REG_P (orig_dest));
1394
b8698a0f 1395 /* Check that all original operations have the same mode.
e855c69d 1396 This is done for the next loop; if we'd return from this
b8698a0f 1397 loop, we'd check only part of them, but in this case
e855c69d
AB
1398 it doesn't matter. */
1399 if (mode == VOIDmode)
1400 mode = GET_MODE (orig_dest);
1401 gcc_assert (mode == GET_MODE (orig_dest));
1402
1403 regno = REGNO (orig_dest);
1404 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1405 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1406 break;
1407
1408 /* All hard registers are available. */
1409 if (i == n)
1410 {
1411 gcc_assert (mode != VOIDmode);
b8698a0f 1412
e855c69d
AB
1413 /* Hard registers should not be shared. */
1414 return gen_rtx_REG (mode, regno);
1415 }
1416 }
b8698a0f 1417
e855c69d
AB
1418 *is_orig_reg_p_ptr = false;
1419 best_new_reg = -1;
b8698a0f
L
1420
1421 /* Among all available regs choose the register that was
e855c69d
AB
1422 allocated earliest. */
1423 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1424 0, cur_reg, hrsi)
1425 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1426 {
a9ced68b
AM
1427 /* Check that all hard regs for mode are available. */
1428 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1429 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1430 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1431 cur_reg + i))
1432 break;
1433
1434 if (i < n)
1435 continue;
1436
e855c69d
AB
1437 /* All hard registers are available. */
1438 if (best_new_reg < 0
1439 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1440 {
1441 best_new_reg = cur_reg;
b8698a0f 1442
e855c69d
AB
1443 /* Return immediately when we know there's no better reg. */
1444 if (! reg_rename_tick[best_new_reg])
1445 break;
1446 }
1447 }
1448
1449 if (best_new_reg >= 0)
1450 {
1451 /* Use the check from the above loop. */
1452 gcc_assert (mode != VOIDmode);
1453 return gen_rtx_REG (mode, best_new_reg);
1454 }
1455
1456 return NULL_RTX;
1457}
1458
1459/* A wrapper around choose_best_reg_1 () to verify that we make correct
1460 assumptions about available registers in the function. */
1461static rtx
b8698a0f 1462choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
e855c69d
AB
1463 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1464{
b8698a0f 1465 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
e855c69d
AB
1466 original_insns, is_orig_reg_p_ptr);
1467
a9ced68b 1468 /* FIXME loop over hard_regno_nregs here. */
e855c69d
AB
1469 gcc_assert (best_reg == NULL_RTX
1470 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1471
1472 return best_reg;
1473}
1474
b8698a0f 1475/* Choose the pseudo register for storing rhs value. As this is supposed
e855c69d 1476 to work before reload, we return either the original register or make
b8698a0f
L
1477 the new one. The parameters are the same that in choose_nest_reg_1
1478 functions, except that USED_REGS may contain pseudos.
e855c69d
AB
1479 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1480
b8698a0f
L
1481 TODO: take into account register pressure while doing this. Up to this
1482 moment, this function would never return NULL for pseudos, but we should
e855c69d
AB
1483 not rely on this. */
1484static rtx
b8698a0f
L
1485choose_best_pseudo_reg (regset used_regs,
1486 struct reg_rename *reg_rename_p,
e855c69d
AB
1487 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1488{
1489 def_list_iterator i;
1490 def_t def;
1491 enum machine_mode mode = VOIDmode;
1492 bool bad_hard_regs = false;
b8698a0f 1493
e855c69d
AB
1494 /* We should not use this after reload. */
1495 gcc_assert (!reload_completed);
1496
1497 /* If original register is available, return it. */
1498 *is_orig_reg_p_ptr = true;
1499
1500 FOR_EACH_DEF (def, i, original_insns)
1501 {
1502 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1503 int orig_regno;
b8698a0f 1504
e855c69d 1505 gcc_assert (REG_P (dest));
b8698a0f 1506
e855c69d
AB
1507 /* Check that all original operations have the same mode. */
1508 if (mode == VOIDmode)
1509 mode = GET_MODE (dest);
1510 else
1511 gcc_assert (mode == GET_MODE (dest));
1512 orig_regno = REGNO (dest);
b8698a0f 1513
e855c69d
AB
1514 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1515 {
1516 if (orig_regno < FIRST_PSEUDO_REGISTER)
1517 {
1518 gcc_assert (df_regs_ever_live_p (orig_regno));
b8698a0f
L
1519
1520 /* For hard registers, we have to check hardware imposed
e855c69d 1521 limitations (frame/stack registers, calls crossed). */
b8698a0f 1522 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
e855c69d
AB
1523 orig_regno))
1524 {
b8698a0f
L
1525 /* Don't let register cross a call if it doesn't already
1526 cross one. This condition is written in accordance with
e855c69d 1527 that in sched-deps.c sched_analyze_reg(). */
b8698a0f 1528 if (!reg_rename_p->crosses_call
e855c69d 1529 || REG_N_CALLS_CROSSED (orig_regno) > 0)
b8698a0f 1530 return gen_rtx_REG (mode, orig_regno);
e855c69d 1531 }
b8698a0f 1532
e855c69d
AB
1533 bad_hard_regs = true;
1534 }
1535 else
1536 return dest;
1537 }
1538 }
1539
1540 *is_orig_reg_p_ptr = false;
b8698a0f 1541
e855c69d
AB
1542 /* We had some original hard registers that couldn't be used.
1543 Those were likely special. Don't try to create a pseudo. */
1544 if (bad_hard_regs)
1545 return NULL_RTX;
b8698a0f
L
1546
1547 /* We haven't found a register from original operations. Get a new one.
e855c69d
AB
1548 FIXME: control register pressure somehow. */
1549 {
1550 rtx new_reg = gen_reg_rtx (mode);
1551
1552 gcc_assert (mode != VOIDmode);
1553
1554 max_regno = max_reg_num ();
1555 maybe_extend_reg_info_p ();
1556 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1557
1558 return new_reg;
1559 }
1560}
1561
1562/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1563 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1564static void
b8698a0f 1565verify_target_availability (expr_t expr, regset used_regs,
e855c69d
AB
1566 struct reg_rename *reg_rename_p)
1567{
1568 unsigned n, i, regno;
1569 enum machine_mode mode;
1570 bool target_available, live_available, hard_available;
1571
1572 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1573 return;
b8698a0f 1574
e855c69d
AB
1575 regno = expr_dest_regno (expr);
1576 mode = GET_MODE (EXPR_LHS (expr));
1577 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
944499ed 1578 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
e855c69d
AB
1579
1580 live_available = hard_available = true;
1581 for (i = 0; i < n; i++)
1582 {
1583 if (bitmap_bit_p (used_regs, regno + i))
1584 live_available = false;
1585 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1586 hard_available = false;
1587 }
1588
b8698a0f 1589 /* When target is not available, it may be due to hard register
e855c69d
AB
1590 restrictions, e.g. crosses calls, so we check hard_available too. */
1591 if (target_available)
1592 gcc_assert (live_available);
1593 else
b8698a0f 1594 /* Check only if we haven't scheduled something on the previous fence,
e855c69d
AB
1595 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1596 and having more than one fence, we may end having targ_un in a block
b8698a0f 1597 in which successors target register is actually available.
e855c69d
AB
1598
1599 The last condition handles the case when a dependence from a call insn
b8698a0f
L
1600 was created in sched-deps.c for insns with destination registers that
1601 never crossed a call before, but do cross one after our code motion.
e855c69d 1602
b8698a0f
L
1603 FIXME: in the latter case, we just uselessly called find_used_regs,
1604 because we can't move this expression with any other register
e855c69d 1605 as well. */
b8698a0f
L
1606 gcc_assert (scheduled_something_on_previous_fence || !live_available
1607 || !hard_available
1608 || (!reload_completed && reg_rename_p->crosses_call
e855c69d
AB
1609 && REG_N_CALLS_CROSSED (regno) == 0));
1610}
1611
b8698a0f
L
1612/* Collect unavailable registers due to liveness for EXPR from BNDS
1613 into USED_REGS. Save additional information about available
e855c69d
AB
1614 registers and unavailable due to hardware restriction registers
1615 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1616 list. */
1617static void
1618collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1619 struct reg_rename *reg_rename_p,
1620 def_list_t *original_insns)
1621{
1622 for (; bnds; bnds = BLIST_NEXT (bnds))
1623 {
1624 bool res;
1625 av_set_t orig_ops = NULL;
1626 bnd_t bnd = BLIST_BND (bnds);
1627
1628 /* If the chosen best expr doesn't belong to current boundary,
1629 skip it. */
1630 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1631 continue;
1632
1633 /* Put in ORIG_OPS all exprs from this boundary that became
1634 RES on top. */
1635 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1636
1637 /* Compute used regs and OR it into the USED_REGS. */
1638 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1639 reg_rename_p, original_insns);
1640
1641 /* FIXME: the assert is true until we'd have several boundaries. */
1642 gcc_assert (res);
1643 av_set_clear (&orig_ops);
1644 }
1645}
1646
1647/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1648 If BEST_REG is valid, replace LHS of EXPR with it. */
1649static bool
1650try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1651{
e855c69d
AB
1652 /* Try whether we'll be able to generate the insn
1653 'dest := best_reg' at the place of the original operation. */
1654 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1655 {
1656 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1657
1658 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1659
0666ff4e
AB
1660 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1661 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1662 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
e855c69d
AB
1663 return false;
1664 }
1665
1666 /* Make sure that EXPR has the right destination
1667 register. */
0666ff4e
AB
1668 if (expr_dest_regno (expr) != REGNO (best_reg))
1669 replace_dest_with_reg_in_expr (expr, best_reg);
1670 else
1671 EXPR_TARGET_AVAILABLE (expr) = 1;
1672
e855c69d
AB
1673 return true;
1674}
1675
b8698a0f
L
1676/* Select and assign best register to EXPR searching from BNDS.
1677 Set *IS_ORIG_REG_P to TRUE if original register was selected.
e855c69d
AB
1678 Return FALSE if no register can be chosen, which could happen when:
1679 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1680 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1681 that are used on the moving path. */
1682static bool
1683find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1684{
1685 static struct reg_rename reg_rename_data;
1686
1687 regset used_regs;
1688 def_list_t original_insns = NULL;
1689 bool reg_ok;
1690
1691 *is_orig_reg_p = false;
1692
1693 /* Don't bother to do anything if this insn doesn't set any registers. */
1694 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1695 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1696 return true;
1697
1698 used_regs = get_clear_regset_from_pool ();
1699 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1700
1701 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1702 &original_insns);
1703
1704#ifdef ENABLE_CHECKING
1705 /* If after reload, make sure we're working with hard regs here. */
b8698a0f 1706 if (reload_completed)
e855c69d
AB
1707 {
1708 reg_set_iterator rsi;
1709 unsigned i;
b8698a0f 1710
e855c69d
AB
1711 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1712 gcc_unreachable ();
1713 }
1714#endif
1715
1716 if (EXPR_SEPARABLE_P (expr))
1717 {
1718 rtx best_reg = NULL_RTX;
1719 /* Check that we have computed availability of a target register
1720 correctly. */
1721 verify_target_availability (expr, used_regs, &reg_rename_data);
1722
1723 /* Turn everything in hard regs after reload. */
1724 if (reload_completed)
1725 {
1726 HARD_REG_SET hard_regs_used;
1727 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1728
1729 /* Join hard registers unavailable due to register class
1730 restrictions and live range intersection. */
1731 IOR_HARD_REG_SET (hard_regs_used,
1732 reg_rename_data.unavailable_hard_regs);
1733
1734 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1735 original_insns, is_orig_reg_p);
1736 }
1737 else
1738 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1739 original_insns, is_orig_reg_p);
1740
1741 if (!best_reg)
1742 reg_ok = false;
1743 else if (*is_orig_reg_p)
1744 {
1745 /* In case of unification BEST_REG may be different from EXPR's LHS
1746 when EXPR's LHS is unavailable, and there is another LHS among
1747 ORIGINAL_INSNS. */
1748 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1749 }
1750 else
1751 {
1752 /* Forbid renaming of low-cost insns. */
1753 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1754 reg_ok = false;
1755 else
1756 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1757 }
1758 }
1759 else
1760 {
1761 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1762 any of the HARD_REGS_USED set. */
1763 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1764 reg_rename_data.unavailable_hard_regs))
1765 {
1766 reg_ok = false;
1767 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1768 }
1769 else
1770 {
1771 reg_ok = true;
1772 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1773 }
1774 }
1775
1776 ilist_clear (&original_insns);
1777 return_regset_to_pool (used_regs);
1778
1779 return reg_ok;
1780}
1781\f
1782
1783/* Return true if dependence described by DS can be overcomed. */
1784static bool
1785can_speculate_dep_p (ds_t ds)
1786{
1787 if (spec_info == NULL)
1788 return false;
1789
1790 /* Leave only speculative data. */
1791 ds &= SPECULATIVE;
1792
1793 if (ds == 0)
1794 return false;
1795
1796 {
1797 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1798 that we can overcome. */
1799 ds_t spec_mask = spec_info->mask;
1800
1801 if ((ds & spec_mask) != ds)
1802 return false;
1803 }
1804
1805 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1806 return false;
1807
1808 return true;
1809}
1810
1811/* Get a speculation check instruction.
1812 C_EXPR is a speculative expression,
1813 CHECK_DS describes speculations that should be checked,
1814 ORIG_INSN is the original non-speculative insn in the stream. */
1815static insn_t
1816create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1817{
1818 rtx check_pattern;
1819 rtx insn_rtx;
1820 insn_t insn;
1821 basic_block recovery_block;
1822 rtx label;
1823
1824 /* Create a recovery block if target is going to emit branchy check, or if
1825 ORIG_INSN was speculative already. */
388092d5 1826 if (targetm.sched.needs_block_p (check_ds)
e855c69d
AB
1827 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1828 {
1829 recovery_block = sel_create_recovery_block (orig_insn);
1830 label = BB_HEAD (recovery_block);
1831 }
1832 else
1833 {
1834 recovery_block = NULL;
1835 label = NULL_RTX;
1836 }
1837
1838 /* Get pattern of the check. */
1839 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1840 check_ds);
1841
1842 gcc_assert (check_pattern != NULL);
1843
1844 /* Emit check. */
1845 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1846
1847 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1848 INSN_SEQNO (orig_insn), orig_insn);
1849
1850 /* Make check to be non-speculative. */
1851 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1852 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1853
1854 /* Decrease priority of check by difference of load/check instruction
1855 latencies. */
1856 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1857 - sel_vinsn_cost (INSN_VINSN (insn)));
1858
1859 /* Emit copy of original insn (though with replaced target register,
1860 if needed) to the recovery block. */
1861 if (recovery_block != NULL)
1862 {
1863 rtx twin_rtx;
e855c69d
AB
1864
1865 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1866 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1124098b
JJ
1867 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1868 INSN_EXPR (orig_insn),
1869 INSN_SEQNO (insn),
1870 bb_note (recovery_block));
e855c69d
AB
1871 }
1872
1873 /* If we've generated a data speculation check, make sure
1874 that all the bookkeeping instruction we'll create during
1875 this move_op () will allocate an ALAT entry so that the
1876 check won't fail.
1877 In case of control speculation we must convert C_EXPR to control
1878 speculative mode, because failing to do so will bring us an exception
1879 thrown by the non-control-speculative load. */
1880 check_ds = ds_get_max_dep_weak (check_ds);
1881 speculate_expr (c_expr, check_ds);
b8698a0f 1882
e855c69d
AB
1883 return insn;
1884}
1885
1886/* True when INSN is a "regN = regN" copy. */
1887static bool
1888identical_copy_p (rtx insn)
1889{
1890 rtx lhs, rhs, pat;
1891
1892 pat = PATTERN (insn);
1893
1894 if (GET_CODE (pat) != SET)
1895 return false;
1896
1897 lhs = SET_DEST (pat);
1898 if (!REG_P (lhs))
1899 return false;
1900
1901 rhs = SET_SRC (pat);
1902 if (!REG_P (rhs))
1903 return false;
1904
1905 return REGNO (lhs) == REGNO (rhs);
1906}
1907
b8698a0f 1908/* Undo all transformations on *AV_PTR that were done when
e855c69d
AB
1909 moving through INSN. */
1910static void
1911undo_transformations (av_set_t *av_ptr, rtx insn)
1912{
1913 av_set_iterator av_iter;
1914 expr_t expr;
1915 av_set_t new_set = NULL;
1916
b8698a0f 1917 /* First, kill any EXPR that uses registers set by an insn. This is
e855c69d
AB
1918 required for correctness. */
1919 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1920 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
b8698a0f 1921 && bitmap_intersect_p (INSN_REG_SETS (insn),
e855c69d
AB
1922 VINSN_REG_USES (EXPR_VINSN (expr)))
1923 /* When an insn looks like 'r1 = r1', we could substitute through
1924 it, but the above condition will still hold. This happened with
b8698a0f 1925 gcc.c-torture/execute/961125-1.c. */
e855c69d
AB
1926 && !identical_copy_p (insn))
1927 {
1928 if (sched_verbose >= 6)
b8698a0f 1929 sel_print ("Expr %d removed due to use/set conflict\n",
e855c69d
AB
1930 INSN_UID (EXPR_INSN_RTX (expr)));
1931 av_set_iter_remove (&av_iter);
1932 }
1933
1934 /* Undo transformations looking at the history vector. */
1935 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1936 {
1937 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1938 insn, EXPR_VINSN (expr), true);
1939
1940 if (index >= 0)
1941 {
1942 expr_history_def *phist;
1943
b8698a0f 1944 phist = VEC_index (expr_history_def,
e855c69d
AB
1945 EXPR_HISTORY_OF_CHANGES (expr),
1946 index);
1947
b8698a0f 1948 switch (phist->type)
e855c69d
AB
1949 {
1950 case TRANS_SPECULATION:
1951 {
1952 ds_t old_ds, new_ds;
b8698a0f 1953
e855c69d 1954 /* Compute the difference between old and new speculative
b8698a0f 1955 statuses: that's what we need to check.
e855c69d
AB
1956 Earlier we used to assert that the status will really
1957 change. This no longer works because only the probability
1958 bits in the status may have changed during compute_av_set,
b8698a0f
L
1959 and in the case of merging different probabilities of the
1960 same speculative status along different paths we do not
e855c69d
AB
1961 record this in the history vector. */
1962 old_ds = phist->spec_ds;
1963 new_ds = EXPR_SPEC_DONE_DS (expr);
1964
1965 old_ds &= SPECULATIVE;
1966 new_ds &= SPECULATIVE;
1967 new_ds &= ~old_ds;
b8698a0f 1968
e855c69d
AB
1969 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1970 break;
1971 }
1972 case TRANS_SUBSTITUTION:
1973 {
1974 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1975 vinsn_t new_vi;
1976 bool add = true;
b8698a0f 1977
e855c69d 1978 new_vi = phist->old_expr_vinsn;
b8698a0f
L
1979
1980 gcc_assert (VINSN_SEPARABLE_P (new_vi)
e855c69d
AB
1981 == EXPR_SEPARABLE_P (expr));
1982 copy_expr (tmp_expr, expr);
1983
b8698a0f 1984 if (vinsn_equal_p (phist->new_expr_vinsn,
e855c69d
AB
1985 EXPR_VINSN (tmp_expr)))
1986 change_vinsn_in_expr (tmp_expr, new_vi);
1987 else
1988 /* This happens when we're unsubstituting on a bookkeeping
1989 copy, which was in turn substituted. The history is wrong
1990 in this case. Do it the hard way. */
1991 add = substitute_reg_in_expr (tmp_expr, insn, true);
1992 if (add)
1993 av_set_add (&new_set, tmp_expr);
1994 clear_expr (tmp_expr);
1995 break;
1996 }
1997 default:
1998 gcc_unreachable ();
1999 }
2000 }
b8698a0f 2001
e855c69d
AB
2002 }
2003
2004 av_set_union_and_clear (av_ptr, &new_set, NULL);
2005}
2006\f
2007
2008/* Moveup_* helpers for code motion and computing av sets. */
2009
2010/* Propagates EXPR inside an insn group through THROUGH_INSN.
b8698a0f 2011 The difference from the below function is that only substitution is
e855c69d
AB
2012 performed. */
2013static enum MOVEUP_EXPR_CODE
2014moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2015{
2016 vinsn_t vi = EXPR_VINSN (expr);
2017 ds_t *has_dep_p;
2018 ds_t full_ds;
2019
2020 /* Do this only inside insn group. */
2021 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2022
2023 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2024 if (full_ds == 0)
2025 return MOVEUP_EXPR_SAME;
2026
2027 /* Substitution is the possible choice in this case. */
2028 if (has_dep_p[DEPS_IN_RHS])
2029 {
2030 /* Can't substitute UNIQUE VINSNs. */
2031 gcc_assert (!VINSN_UNIQUE_P (vi));
b8698a0f
L
2032
2033 if (can_substitute_through_p (through_insn,
e855c69d
AB
2034 has_dep_p[DEPS_IN_RHS])
2035 && substitute_reg_in_expr (expr, through_insn, false))
2036 {
2037 EXPR_WAS_SUBSTITUTED (expr) = true;
2038 return MOVEUP_EXPR_CHANGED;
2039 }
2040
2041 /* Don't care about this, as even true dependencies may be allowed
2042 in an insn group. */
2043 return MOVEUP_EXPR_SAME;
2044 }
2045
2046 /* This can catch output dependencies in COND_EXECs. */
2047 if (has_dep_p[DEPS_IN_INSN])
2048 return MOVEUP_EXPR_NULL;
b8698a0f 2049
e855c69d
AB
2050 /* This is either an output or an anti dependence, which usually have
2051 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2052 will fix this. */
2053 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2054 return MOVEUP_EXPR_AS_RHS;
2055}
2056
2057/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2058#define CANT_MOVE_TRAPPING(expr, through_insn) \
2059 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2060 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2061 && !sel_insn_is_speculation_check (through_insn))
2062
2063/* True when a conflict on a target register was found during moveup_expr. */
2064static bool was_target_conflict = false;
2065
b5b8b0ac
AO
2066/* Return true when moving a debug INSN across THROUGH_INSN will
2067 create a bookkeeping block. We don't want to create such blocks,
2068 for they would cause codegen differences between compilations with
2069 and without debug info. */
2070
2071static bool
2072moving_insn_creates_bookkeeping_block_p (insn_t insn,
2073 insn_t through_insn)
2074{
2075 basic_block bbi, bbt;
2076 edge e1, e2;
2077 edge_iterator ei1, ei2;
2078
2079 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2080 {
2081 if (sched_verbose >= 9)
2082 sel_print ("no bookkeeping required: ");
2083 return FALSE;
2084 }
2085
2086 bbi = BLOCK_FOR_INSN (insn);
2087
2088 if (EDGE_COUNT (bbi->preds) == 1)
2089 {
2090 if (sched_verbose >= 9)
2091 sel_print ("only one pred edge: ");
2092 return TRUE;
2093 }
2094
2095 bbt = BLOCK_FOR_INSN (through_insn);
2096
2097 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2098 {
2099 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2100 {
2101 if (find_block_for_bookkeeping (e1, e2, TRUE))
2102 {
2103 if (sched_verbose >= 9)
2104 sel_print ("found existing block: ");
2105 return FALSE;
2106 }
2107 }
2108 }
2109
2110 if (sched_verbose >= 9)
2111 sel_print ("would create bookkeeping block: ");
2112
2113 return TRUE;
2114}
2115
e855c69d 2116/* Modifies EXPR so it can be moved through the THROUGH_INSN,
b8698a0f
L
2117 performing necessary transformations. Record the type of transformation
2118 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
e855c69d 2119 permit all dependencies except true ones, and try to remove those
b8698a0f
L
2120 too via forward substitution. All cases when a non-eliminable
2121 non-zero cost dependency exists inside an insn group will be fixed
e855c69d
AB
2122 in tick_check_p instead. */
2123static enum MOVEUP_EXPR_CODE
2124moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2125 enum local_trans_type *ptrans_type)
2126{
2127 vinsn_t vi = EXPR_VINSN (expr);
2128 insn_t insn = VINSN_INSN_RTX (vi);
2129 bool was_changed = false;
2130 bool as_rhs = false;
2131 ds_t *has_dep_p;
2132 ds_t full_ds;
2133
48bb58b1
AO
2134 /* ??? We use dependencies of non-debug insns on debug insns to
2135 indicate that the debug insns need to be reset if the non-debug
2136 insn is pulled ahead of it. It's hard to figure out how to
2137 introduce such a notion in sel-sched, but it already fails to
2138 support debug insns in other ways, so we just go ahead and
2139 let the deug insns go corrupt for now. */
2140 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2141 return MOVEUP_EXPR_SAME;
2142
e855c69d
AB
2143 /* When inside_insn_group, delegate to the helper. */
2144 if (inside_insn_group)
2145 return moveup_expr_inside_insn_group (expr, through_insn);
2146
2147 /* Deal with unique insns and control dependencies. */
2148 if (VINSN_UNIQUE_P (vi))
2149 {
2150 /* We can move jumps without side-effects or jumps that are
2151 mutually exclusive with instruction THROUGH_INSN (all in cases
2152 dependencies allow to do so and jump is not speculative). */
2153 if (control_flow_insn_p (insn))
2154 {
2155 basic_block fallthru_bb;
2156
b8698a0f 2157 /* Do not move checks and do not move jumps through other
e855c69d
AB
2158 jumps. */
2159 if (control_flow_insn_p (through_insn)
2160 || sel_insn_is_speculation_check (insn))
2161 return MOVEUP_EXPR_NULL;
2162
2163 /* Don't move jumps through CFG joins. */
2164 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2165 return MOVEUP_EXPR_NULL;
2166
b8698a0f 2167 /* The jump should have a clear fallthru block, and
e855c69d
AB
2168 this block should be in the current region. */
2169 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2170 || ! in_current_region_p (fallthru_bb))
2171 return MOVEUP_EXPR_NULL;
b8698a0f 2172
eb277bf1
AM
2173 /* And it should be mutually exclusive with through_insn. */
2174 if (! sched_insns_conditions_mutex_p (insn, through_insn)
b5b8b0ac 2175 && ! DEBUG_INSN_P (through_insn))
e855c69d
AB
2176 return MOVEUP_EXPR_NULL;
2177 }
2178
2179 /* Don't move what we can't move. */
2180 if (EXPR_CANT_MOVE (expr)
2181 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 return MOVEUP_EXPR_NULL;
2183
2184 /* Don't move SCHED_GROUP instruction through anything.
2185 If we don't force this, then it will be possible to start
2186 scheduling a sched_group before all its dependencies are
2187 resolved.
2188 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189 as late as possible through rank_for_schedule. */
2190 if (SCHED_GROUP_P (insn))
2191 return MOVEUP_EXPR_NULL;
2192 }
2193 else
2194 gcc_assert (!control_flow_insn_p (insn));
2195
b5b8b0ac
AO
2196 /* Don't move debug insns if this would require bookkeeping. */
2197 if (DEBUG_INSN_P (insn)
2198 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200 return MOVEUP_EXPR_NULL;
2201
e855c69d
AB
2202 /* Deal with data dependencies. */
2203 was_target_conflict = false;
2204 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205 if (full_ds == 0)
2206 {
2207 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 return MOVEUP_EXPR_SAME;
2209 }
2210 else
2211 {
b8698a0f 2212 /* We can move UNIQUE insn up only as a whole and unchanged,
e855c69d
AB
2213 so it shouldn't have any dependencies. */
2214 if (VINSN_UNIQUE_P (vi))
2215 return MOVEUP_EXPR_NULL;
2216 }
2217
2218 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219 {
2220 int res;
2221
2222 res = speculate_expr (expr, full_ds);
2223 if (res >= 0)
2224 {
2225 /* Speculation was successful. */
2226 full_ds = 0;
2227 was_changed = (res > 0);
2228 if (res == 2)
2229 was_target_conflict = true;
2230 if (ptrans_type)
2231 *ptrans_type = TRANS_SPECULATION;
2232 sel_clear_has_dependence ();
2233 }
2234 }
2235
2236 if (has_dep_p[DEPS_IN_INSN])
2237 /* We have some dependency that cannot be discarded. */
2238 return MOVEUP_EXPR_NULL;
2239
2240 if (has_dep_p[DEPS_IN_LHS])
b8698a0f 2241 {
e855c69d 2242 /* Only separable insns can be moved up with the new register.
b8698a0f 2243 Anyways, we should mark that the original register is
e855c69d
AB
2244 unavailable. */
2245 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246 return MOVEUP_EXPR_NULL;
2247
2248 EXPR_TARGET_AVAILABLE (expr) = false;
2249 was_target_conflict = true;
2250 as_rhs = true;
2251 }
2252
2253 /* At this point we have either separable insns, that will be lifted
2254 up only as RHSes, or non-separable insns with no dependency in lhs.
2255 If dependency is in RHS, then try to perform substitution and move up
2256 substituted RHS:
2257
2258 Ex. 1: Ex.2
2259 y = x; y = x;
2260 z = y*2; y = y*2;
2261
b8698a0f 2262 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
e855c69d
AB
2263 moved above y=x assignment as z=x*2.
2264
b8698a0f 2265 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
e855c69d
AB
2266 side can be moved because of the output dependency. The operation was
2267 cropped to its rhs above. */
2268 if (has_dep_p[DEPS_IN_RHS])
2269 {
2270 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2271
2272 /* Can't substitute UNIQUE VINSNs. */
2273 gcc_assert (!VINSN_UNIQUE_P (vi));
2274
2275 if (can_speculate_dep_p (*rhs_dsp))
2276 {
2277 int res;
b8698a0f 2278
e855c69d
AB
2279 res = speculate_expr (expr, *rhs_dsp);
2280 if (res >= 0)
2281 {
2282 /* Speculation was successful. */
2283 *rhs_dsp = 0;
2284 was_changed = (res > 0);
2285 if (res == 2)
2286 was_target_conflict = true;
2287 if (ptrans_type)
2288 *ptrans_type = TRANS_SPECULATION;
2289 }
2290 else
2291 return MOVEUP_EXPR_NULL;
2292 }
2293 else if (can_substitute_through_p (through_insn,
2294 *rhs_dsp)
2295 && substitute_reg_in_expr (expr, through_insn, false))
2296 {
2297 /* ??? We cannot perform substitution AND speculation on the same
2298 insn. */
2299 gcc_assert (!was_changed);
2300 was_changed = true;
2301 if (ptrans_type)
2302 *ptrans_type = TRANS_SUBSTITUTION;
2303 EXPR_WAS_SUBSTITUTED (expr) = true;
2304 }
2305 else
2306 return MOVEUP_EXPR_NULL;
2307 }
2308
2309 /* Don't move trapping insns through jumps.
2310 This check should be at the end to give a chance to control speculation
2311 to perform its duties. */
2312 if (CANT_MOVE_TRAPPING (expr, through_insn))
2313 return MOVEUP_EXPR_NULL;
2314
b8698a0f
L
2315 return (was_changed
2316 ? MOVEUP_EXPR_CHANGED
2317 : (as_rhs
e855c69d
AB
2318 ? MOVEUP_EXPR_AS_RHS
2319 : MOVEUP_EXPR_SAME));
2320}
2321
b8698a0f 2322/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d
AB
2323 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2324 that can exist within a parallel group. Write to RES the resulting
2325 code for moveup_expr. */
b8698a0f 2326static bool
e855c69d
AB
2327try_bitmap_cache (expr_t expr, insn_t insn,
2328 bool inside_insn_group,
2329 enum MOVEUP_EXPR_CODE *res)
2330{
2331 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
b8698a0f 2332
e855c69d
AB
2333 /* First check whether we've analyzed this situation already. */
2334 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2335 {
2336 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2337 {
2338 if (sched_verbose >= 6)
2339 sel_print ("removed (cached)\n");
2340 *res = MOVEUP_EXPR_NULL;
2341 return true;
2342 }
2343 else
2344 {
2345 if (sched_verbose >= 6)
2346 sel_print ("unchanged (cached)\n");
2347 *res = MOVEUP_EXPR_SAME;
2348 return true;
2349 }
2350 }
2351 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2352 {
2353 if (inside_insn_group)
2354 {
2355 if (sched_verbose >= 6)
2356 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2357 *res = MOVEUP_EXPR_SAME;
2358 return true;
b8698a0f 2359
e855c69d
AB
2360 }
2361 else
2362 EXPR_TARGET_AVAILABLE (expr) = false;
2363
b8698a0f
L
2364 /* This is the only case when propagation result can change over time,
2365 as we can dynamically switch off scheduling as RHS. In this case,
e855c69d
AB
2366 just check the flag to reach the correct decision. */
2367 if (enable_schedule_as_rhs_p)
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (as RHS, cached)\n");
2371 *res = MOVEUP_EXPR_AS_RHS;
2372 return true;
2373 }
2374 else
2375 {
2376 if (sched_verbose >= 6)
2377 sel_print ("removed (cached as RHS, but renaming"
2378 " is now disabled)\n");
2379 *res = MOVEUP_EXPR_NULL;
2380 return true;
2381 }
2382 }
2383
2384 return false;
2385}
2386
b8698a0f 2387/* Try to look at bitmap caches for EXPR and INSN pair, return true
e855c69d 2388 if successful. Write to RES the resulting code for moveup_expr. */
b8698a0f 2389static bool
e855c69d
AB
2390try_transformation_cache (expr_t expr, insn_t insn,
2391 enum MOVEUP_EXPR_CODE *res)
2392{
b8698a0f 2393 struct transformed_insns *pti
e855c69d
AB
2394 = (struct transformed_insns *)
2395 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
b8698a0f 2396 &EXPR_VINSN (expr),
e855c69d
AB
2397 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2398 if (pti)
2399 {
b8698a0f
L
2400 /* This EXPR was already moved through this insn and was
2401 changed as a result. Fetch the proper data from
e855c69d 2402 the hashtable. */
b8698a0f
L
2403 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2404 INSN_UID (insn), pti->type,
2405 pti->vinsn_old, pti->vinsn_new,
e855c69d 2406 EXPR_SPEC_DONE_DS (expr));
b8698a0f 2407
e855c69d
AB
2408 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2409 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2410 change_vinsn_in_expr (expr, pti->vinsn_new);
2411 if (pti->was_target_conflict)
2412 EXPR_TARGET_AVAILABLE (expr) = false;
2413 if (pti->type == TRANS_SPECULATION)
2414 {
e855c69d
AB
2415 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2416 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2417 }
2418
2419 if (sched_verbose >= 6)
2420 {
2421 sel_print ("changed (cached): ");
2422 dump_expr (expr);
2423 sel_print ("\n");
2424 }
2425
2426 *res = MOVEUP_EXPR_CHANGED;
2427 return true;
2428 }
2429
2430 return false;
2431}
2432
2433/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2434static void
b8698a0f 2435update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
e855c69d
AB
2436 enum MOVEUP_EXPR_CODE res)
2437{
2438 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2439
b8698a0f 2440 /* Do not cache result of propagating jumps through an insn group,
e855c69d
AB
2441 as it is always true, which is not useful outside the group. */
2442 if (inside_insn_group)
2443 return;
b8698a0f 2444
e855c69d
AB
2445 if (res == MOVEUP_EXPR_NULL)
2446 {
2447 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2448 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2449 }
2450 else if (res == MOVEUP_EXPR_SAME)
2451 {
2452 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2453 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2454 }
2455 else if (res == MOVEUP_EXPR_AS_RHS)
2456 {
2457 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2459 }
2460 else
2461 gcc_unreachable ();
2462}
2463
2464/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2465 and transformation type TRANS_TYPE. */
2466static void
b8698a0f 2467update_transformation_cache (expr_t expr, insn_t insn,
e855c69d 2468 bool inside_insn_group,
b8698a0f 2469 enum local_trans_type trans_type,
e855c69d
AB
2470 vinsn_t expr_old_vinsn)
2471{
2472 struct transformed_insns *pti;
2473
2474 if (inside_insn_group)
2475 return;
b8698a0f 2476
e855c69d
AB
2477 pti = XNEW (struct transformed_insns);
2478 pti->vinsn_old = expr_old_vinsn;
2479 pti->vinsn_new = EXPR_VINSN (expr);
2480 pti->type = trans_type;
2481 pti->was_target_conflict = was_target_conflict;
2482 pti->ds = EXPR_SPEC_DONE_DS (expr);
2483 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2484 vinsn_attach (pti->vinsn_old);
2485 vinsn_attach (pti->vinsn_new);
b8698a0f 2486 *((struct transformed_insns **)
e855c69d
AB
2487 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2488 pti, VINSN_HASH_RTX (expr_old_vinsn),
2489 INSERT)) = pti;
2490}
2491
b8698a0f 2492/* Same as moveup_expr, but first looks up the result of
e855c69d
AB
2493 transformation in caches. */
2494static enum MOVEUP_EXPR_CODE
2495moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2496{
2497 enum MOVEUP_EXPR_CODE res;
2498 bool got_answer = false;
2499
2500 if (sched_verbose >= 6)
2501 {
b8698a0f 2502 sel_print ("Moving ");
e855c69d
AB
2503 dump_expr (expr);
2504 sel_print (" through %d: ", INSN_UID (insn));
2505 }
2506
b5b8b0ac
AO
2507 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2508 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2509 == EXPR_INSN_RTX (expr)))
2510 /* Don't use cached information for debug insns that are heads of
2511 basic blocks. */;
2512 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
e855c69d
AB
2513 /* When inside insn group, we do not want remove stores conflicting
2514 with previosly issued loads. */
2515 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2516 else if (try_transformation_cache (expr, insn, &res))
2517 got_answer = true;
2518
2519 if (! got_answer)
2520 {
2521 /* Invoke moveup_expr and record the results. */
2522 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2523 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2524 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2525 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2526 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2527
b8698a0f 2528 /* ??? Invent something better than this. We can't allow old_vinsn
e855c69d
AB
2529 to go, we need it for the history vector. */
2530 vinsn_attach (expr_old_vinsn);
2531
2532 res = moveup_expr (expr, insn, inside_insn_group,
2533 &trans_type);
2534 switch (res)
2535 {
2536 case MOVEUP_EXPR_NULL:
2537 update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 if (sched_verbose >= 6)
2539 sel_print ("removed\n");
2540 break;
2541
2542 case MOVEUP_EXPR_SAME:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("unchanged\n");
2546 break;
2547
2548 case MOVEUP_EXPR_AS_RHS:
2549 gcc_assert (!unique_p || inside_insn_group);
2550 update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 if (sched_verbose >= 6)
2552 sel_print ("unchanged (as RHS)\n");
2553 break;
2554
2555 case MOVEUP_EXPR_CHANGED:
2556 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2557 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
b8698a0f
L
2558 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2559 INSN_UID (insn), trans_type,
2560 expr_old_vinsn, EXPR_VINSN (expr),
e855c69d
AB
2561 expr_old_spec_ds);
2562 update_transformation_cache (expr, insn, inside_insn_group,
2563 trans_type, expr_old_vinsn);
2564 if (sched_verbose >= 6)
2565 {
2566 sel_print ("changed: ");
2567 dump_expr (expr);
2568 sel_print ("\n");
2569 }
2570 break;
2571 default:
2572 gcc_unreachable ();
2573 }
2574
2575 vinsn_detach (expr_old_vinsn);
2576 }
2577
2578 return res;
2579}
2580
b8698a0f 2581/* Moves an av set AVP up through INSN, performing necessary
e855c69d
AB
2582 transformations. */
2583static void
2584moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2585{
2586 av_set_iterator i;
2587 expr_t expr;
2588
b8698a0f
L
2589 FOR_EACH_EXPR_1 (expr, i, avp)
2590 {
2591
e855c69d
AB
2592 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2593 {
2594 case MOVEUP_EXPR_SAME:
2595 case MOVEUP_EXPR_AS_RHS:
2596 break;
2597
2598 case MOVEUP_EXPR_NULL:
2599 av_set_iter_remove (&i);
2600 break;
2601
2602 case MOVEUP_EXPR_CHANGED:
2603 expr = merge_with_other_exprs (avp, &i, expr);
2604 break;
b8698a0f 2605
e855c69d
AB
2606 default:
2607 gcc_unreachable ();
2608 }
2609 }
2610}
2611
2612/* Moves AVP set along PATH. */
2613static void
2614moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2615{
2616 int last_cycle;
b8698a0f 2617
e855c69d
AB
2618 if (sched_verbose >= 6)
2619 sel_print ("Moving expressions up in the insn group...\n");
2620 if (! path)
2621 return;
2622 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
b8698a0f 2623 while (path
e855c69d
AB
2624 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2625 {
2626 moveup_set_expr (avp, ILIST_INSN (path), true);
2627 path = ILIST_NEXT (path);
2628 }
2629}
2630
2631/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2632static bool
2633equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2634{
2635 expr_def _tmp, *tmp = &_tmp;
2636 int last_cycle;
2637 bool res = true;
2638
2639 copy_expr_onside (tmp, expr);
2640 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
b8698a0f 2641 while (path
e855c69d
AB
2642 && res
2643 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2644 {
b8698a0f 2645 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
e855c69d
AB
2646 != MOVEUP_EXPR_NULL);
2647 path = ILIST_NEXT (path);
2648 }
2649
2650 if (res)
2651 {
2652 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2653 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2654
2655 if (tmp_vinsn != expr_vliw_vinsn)
2656 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2657 }
2658
2659 clear_expr (tmp);
2660 return res;
2661}
2662\f
2663
2664/* Functions that compute av and lv sets. */
2665
b8698a0f 2666/* Returns true if INSN is not a downward continuation of the given path P in
e855c69d
AB
2667 the current stage. */
2668static bool
2669is_ineligible_successor (insn_t insn, ilist_t p)
2670{
2671 insn_t prev_insn;
2672
2673 /* Check if insn is not deleted. */
2674 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2677 gcc_unreachable ();
2678
2679 /* If it's the first insn visited, then the successor is ok. */
2680 if (!p)
2681 return false;
2682
2683 prev_insn = ILIST_INSN (p);
2684
2685 if (/* a backward edge. */
2686 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2687 /* is already visited. */
2688 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2689 && (ilist_is_in_p (p, insn)
b8698a0f
L
2690 /* We can reach another fence here and still seqno of insn
2691 would be equal to seqno of prev_insn. This is possible
e855c69d
AB
2692 when prev_insn is a previously created bookkeeping copy.
2693 In that case it'd get a seqno of insn. Thus, check here
2694 whether insn is in current fence too. */
2695 || IN_CURRENT_FENCE_P (insn)))
2696 /* Was already scheduled on this round. */
2697 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2698 && IN_CURRENT_FENCE_P (insn))
b8698a0f
L
2699 /* An insn from another fence could also be
2700 scheduled earlier even if this insn is not in
e855c69d
AB
2701 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2702 || (!pipelining_p
2703 && INSN_SCHED_TIMES (insn) > 0))
2704 return true;
2705 else
2706 return false;
2707}
2708
b8698a0f
L
2709/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2710 of handling multiple successors and properly merging its av_sets. P is
2711 the current path traversed. WS is the size of lookahead window.
e855c69d
AB
2712 Return the av set computed. */
2713static av_set_t
2714compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2715{
2716 struct succs_info *sinfo;
2717 av_set_t expr_in_all_succ_branches = NULL;
2718 int is;
2719 insn_t succ, zero_succ = NULL;
2720 av_set_t av1 = NULL;
2721
2722 gcc_assert (sel_bb_end_p (insn));
2723
b8698a0f 2724 /* Find different kind of successors needed for correct computing of
e855c69d
AB
2725 SPEC and TARGET_AVAILABLE attributes. */
2726 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2727
2728 /* Debug output. */
2729 if (sched_verbose >= 6)
2730 {
2731 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2732 dump_insn_vector (sinfo->succs_ok);
2733 sel_print ("\n");
2734 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2735 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2736 }
2737
dd5a833e 2738 /* Add insn to the tail of current path. */
e855c69d
AB
2739 ilist_add (&p, insn);
2740
ac47786e 2741 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
e855c69d
AB
2742 {
2743 av_set_t succ_set;
2744
2745 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2746 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2747
b8698a0f
L
2748 av_set_split_usefulness (succ_set,
2749 VEC_index (int, sinfo->probs_ok, is),
e855c69d
AB
2750 sinfo->all_prob);
2751
c6486552 2752 if (sinfo->all_succs_n > 1)
e855c69d 2753 {
b8698a0f 2754 /* Find EXPR'es that came from *all* successors and save them
e855c69d
AB
2755 into expr_in_all_succ_branches. This set will be used later
2756 for calculating speculation attributes of EXPR'es. */
2757 if (is == 0)
2758 {
2759 expr_in_all_succ_branches = av_set_copy (succ_set);
2760
2761 /* Remember the first successor for later. */
2762 zero_succ = succ;
2763 }
2764 else
2765 {
2766 av_set_iterator i;
2767 expr_t expr;
b8698a0f 2768
e855c69d
AB
2769 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2770 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2771 av_set_iter_remove (&i);
2772 }
2773 }
2774
2775 /* Union the av_sets. Check liveness restrictions on target registers
2776 in special case of two successors. */
2777 if (sinfo->succs_ok_n == 2 && is == 1)
2778 {
2779 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2780 basic_block bb1 = BLOCK_FOR_INSN (succ);
2781
2782 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
b8698a0f 2783 av_set_union_and_live (&av1, &succ_set,
e855c69d
AB
2784 BB_LV_SET (bb0),
2785 BB_LV_SET (bb1),
2786 insn);
2787 }
2788 else
2789 av_set_union_and_clear (&av1, &succ_set, insn);
2790 }
2791
b8698a0f 2792 /* Check liveness restrictions via hard way when there are more than
e855c69d
AB
2793 two successors. */
2794 if (sinfo->succs_ok_n > 2)
ac47786e 2795 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
e855c69d
AB
2796 {
2797 basic_block succ_bb = BLOCK_FOR_INSN (succ);
b8698a0f 2798
e855c69d 2799 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
b8698a0f 2800 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
e855c69d
AB
2801 BB_LV_SET (succ_bb));
2802 }
b8698a0f
L
2803
2804 /* Finally, check liveness restrictions on paths leaving the region. */
e855c69d 2805 if (sinfo->all_succs_n > sinfo->succs_ok_n)
ac47786e 2806 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
b8698a0f 2807 mark_unavailable_targets
e855c69d
AB
2808 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2809
2810 if (sinfo->all_succs_n > 1)
2811 {
2812 av_set_iterator i;
2813 expr_t expr;
2814
b8698a0f 2815 /* Increase the spec attribute of all EXPR'es that didn't come
e855c69d
AB
2816 from all successors. */
2817 FOR_EACH_EXPR (expr, i, av1)
2818 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2819 EXPR_SPEC (expr)++;
2820
2821 av_set_clear (&expr_in_all_succ_branches);
b8698a0f
L
2822
2823 /* Do not move conditional branches through other
2824 conditional branches. So, remove all conditional
e855c69d
AB
2825 branches from av_set if current operator is a conditional
2826 branch. */
2827 av_set_substract_cond_branches (&av1);
2828 }
b8698a0f 2829
e855c69d
AB
2830 ilist_remove (&p);
2831 free_succs_info (sinfo);
2832
2833 if (sched_verbose >= 6)
2834 {
2835 sel_print ("av_succs (%d): ", INSN_UID (insn));
2836 dump_av_set (av1);
2837 sel_print ("\n");
2838 }
2839
2840 return av1;
2841}
2842
b8698a0f
L
2843/* This function computes av_set for the FIRST_INSN by dragging valid
2844 av_set through all basic block insns either from the end of basic block
2845 (computed using compute_av_set_at_bb_end) or from the insn on which
e855c69d
AB
2846 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2847 below the basic block and handling conditional branches.
2848 FIRST_INSN - the basic block head, P - path consisting of the insns
2849 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2850 and bb ends are added to the path), WS - current window size,
2851 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2852static av_set_t
b8698a0f 2853compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
e855c69d
AB
2854 bool need_copy_p)
2855{
2856 insn_t cur_insn;
2857 int end_ws = ws;
2858 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2859 insn_t after_bb_end = NEXT_INSN (bb_end);
2860 insn_t last_insn;
2861 av_set_t av = NULL;
2862 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2863
2864 /* Return NULL if insn is not on the legitimate downward path. */
2865 if (is_ineligible_successor (first_insn, p))
2866 {
2867 if (sched_verbose >= 6)
2868 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2869
2870 return NULL;
2871 }
2872
b8698a0f 2873 /* If insn already has valid av(insn) computed, just return it. */
e855c69d
AB
2874 if (AV_SET_VALID_P (first_insn))
2875 {
2876 av_set_t av_set;
2877
2878 if (sel_bb_head_p (first_insn))
2879 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2880 else
2881 av_set = NULL;
2882
2883 if (sched_verbose >= 6)
2884 {
2885 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2886 dump_av_set (av_set);
2887 sel_print ("\n");
2888 }
2889
2890 return need_copy_p ? av_set_copy (av_set) : av_set;
2891 }
2892
2893 ilist_add (&p, first_insn);
2894
2895 /* As the result after this loop have completed, in LAST_INSN we'll
b8698a0f
L
2896 have the insn which has valid av_set to start backward computation
2897 from: it either will be NULL because on it the window size was exceeded
2898 or other valid av_set as returned by compute_av_set for the last insn
e855c69d
AB
2899 of the basic block. */
2900 for (last_insn = first_insn; last_insn != after_bb_end;
2901 last_insn = NEXT_INSN (last_insn))
2902 {
2903 /* We may encounter valid av_set not only on bb_head, but also on
2904 those insns on which previously MAX_WS was exceeded. */
2905 if (AV_SET_VALID_P (last_insn))
2906 {
2907 if (sched_verbose >= 6)
2908 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2909 break;
2910 }
2911
2912 /* The special case: the last insn of the BB may be an
2913 ineligible_successor due to its SEQ_NO that was set on
2914 it as a bookkeeping. */
b8698a0f 2915 if (last_insn != first_insn
e855c69d
AB
2916 && is_ineligible_successor (last_insn, p))
2917 {
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
b8698a0f 2920 break;
e855c69d
AB
2921 }
2922
b5b8b0ac
AO
2923 if (DEBUG_INSN_P (last_insn))
2924 continue;
2925
e855c69d
AB
2926 if (end_ws > max_ws)
2927 {
b8698a0f 2928 /* We can reach max lookahead size at bb_header, so clean av_set
e855c69d
AB
2929 first. */
2930 INSN_WS_LEVEL (last_insn) = global_level;
2931
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d is beyond the software lookahead window size\n",
2934 INSN_UID (last_insn));
2935 break;
2936 }
2937
2938 end_ws++;
2939 }
2940
2941 /* Get the valid av_set into AV above the LAST_INSN to start backward
2942 computation from. It either will be empty av_set or av_set computed from
2943 the successors on the last insn of the current bb. */
2944 if (last_insn != after_bb_end)
2945 {
2946 av = NULL;
2947
b8698a0f 2948 /* This is needed only to obtain av_sets that are identical to
e855c69d
AB
2949 those computed by the old compute_av_set version. */
2950 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2951 av_set_add (&av, INSN_EXPR (last_insn));
2952 }
2953 else
2954 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2955 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2956
2957 /* Compute av_set in AV starting from below the LAST_INSN up to
2958 location above the FIRST_INSN. */
2959 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
b8698a0f 2960 cur_insn = PREV_INSN (cur_insn))
e855c69d
AB
2961 if (!INSN_NOP_P (cur_insn))
2962 {
2963 expr_t expr;
b8698a0f 2964
e855c69d 2965 moveup_set_expr (&av, cur_insn, false);
b8698a0f
L
2966
2967 /* If the expression for CUR_INSN is already in the set,
e855c69d 2968 replace it by the new one. */
b8698a0f 2969 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
e855c69d
AB
2970 if (expr != NULL)
2971 {
2972 clear_expr (expr);
2973 copy_expr (expr, INSN_EXPR (cur_insn));
2974 }
2975 else
2976 av_set_add (&av, INSN_EXPR (cur_insn));
2977 }
2978
2979 /* Clear stale bb_av_set. */
2980 if (sel_bb_head_p (first_insn))
2981 {
2982 av_set_clear (&BB_AV_SET (cur_bb));
2983 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2984 BB_AV_LEVEL (cur_bb) = global_level;
2985 }
2986
2987 if (sched_verbose >= 6)
2988 {
2989 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2990 dump_av_set (av);
2991 sel_print ("\n");
2992 }
2993
2994 ilist_remove (&p);
2995 return av;
2996}
2997
2998/* Compute av set before INSN.
2999 INSN - the current operation (actual rtx INSN)
3000 P - the current path, which is list of insns visited so far
3001 WS - software lookahead window size.
3002 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3003 if we want to save computed av_set in s_i_d, we should make a copy of it.
3004
3005 In the resulting set we will have only expressions that don't have delay
3006 stalls and nonsubstitutable dependences. */
3007static av_set_t
3008compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3009{
3010 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3011}
3012
3013/* Propagate a liveness set LV through INSN. */
3014static void
3015propagate_lv_set (regset lv, insn_t insn)
3016{
3017 gcc_assert (INSN_P (insn));
3018
3019 if (INSN_NOP_P (insn))
3020 return;
3021
02b47899 3022 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
e855c69d
AB
3023}
3024
3025/* Return livness set at the end of BB. */
3026static regset
3027compute_live_after_bb (basic_block bb)
3028{
3029 edge e;
3030 edge_iterator ei;
3031 regset lv = get_clear_regset_from_pool ();
3032
3033 gcc_assert (!ignore_first);
3034
3035 FOR_EACH_EDGE (e, ei, bb->succs)
3036 if (sel_bb_empty_p (e->dest))
3037 {
3038 if (! BB_LV_SET_VALID_P (e->dest))
3039 {
3040 gcc_unreachable ();
3041 gcc_assert (BB_LV_SET (e->dest) == NULL);
3042 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3043 BB_LV_SET_VALID_P (e->dest) = true;
3044 }
3045 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3046 }
3047 else
3048 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3049
3050 return lv;
3051}
3052
3053/* Compute the set of all live registers at the point before INSN and save
3054 it at INSN if INSN is bb header. */
3055regset
3056compute_live (insn_t insn)
3057{
3058 basic_block bb = BLOCK_FOR_INSN (insn);
3059 insn_t final, temp;
3060 regset lv;
3061
3062 /* Return the valid set if we're already on it. */
3063 if (!ignore_first)
3064 {
3065 regset src = NULL;
b8698a0f 3066
e855c69d
AB
3067 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3068 src = BB_LV_SET (bb);
b8698a0f 3069 else
e855c69d
AB
3070 {
3071 gcc_assert (in_current_region_p (bb));
3072 if (INSN_LIVE_VALID_P (insn))
3073 src = INSN_LIVE (insn);
3074 }
b8698a0f 3075
e855c69d
AB
3076 if (src)
3077 {
3078 lv = get_regset_from_pool ();
3079 COPY_REG_SET (lv, src);
3080
3081 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3082 {
3083 COPY_REG_SET (BB_LV_SET (bb), lv);
3084 BB_LV_SET_VALID_P (bb) = true;
3085 }
b8698a0f 3086
e855c69d
AB
3087 return_regset_to_pool (lv);
3088 return lv;
3089 }
3090 }
3091
3092 /* We've skipped the wrong lv_set. Don't skip the right one. */
3093 ignore_first = false;
3094 gcc_assert (in_current_region_p (bb));
3095
b8698a0f
L
3096 /* Find a valid LV set in this block or below, if needed.
3097 Start searching from the next insn: either ignore_first is true, or
e855c69d
AB
3098 INSN doesn't have a correct live set. */
3099 temp = NEXT_INSN (insn);
3100 final = NEXT_INSN (BB_END (bb));
3101 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3102 temp = NEXT_INSN (temp);
3103 if (temp == final)
3104 {
3105 lv = compute_live_after_bb (bb);
3106 temp = PREV_INSN (temp);
3107 }
3108 else
3109 {
3110 lv = get_regset_from_pool ();
3111 COPY_REG_SET (lv, INSN_LIVE (temp));
3112 }
3113
3114 /* Put correct lv sets on the insns which have bad sets. */
3115 final = PREV_INSN (insn);
3116 while (temp != final)
3117 {
3118 propagate_lv_set (lv, temp);
3119 COPY_REG_SET (INSN_LIVE (temp), lv);
3120 INSN_LIVE_VALID_P (temp) = true;
3121 temp = PREV_INSN (temp);
3122 }
3123
3124 /* Also put it in a BB. */
3125 if (sel_bb_head_p (insn))
3126 {
3127 basic_block bb = BLOCK_FOR_INSN (insn);
b8698a0f 3128
e855c69d
AB
3129 COPY_REG_SET (BB_LV_SET (bb), lv);
3130 BB_LV_SET_VALID_P (bb) = true;
3131 }
b8698a0f 3132
e855c69d
AB
3133 /* We return LV to the pool, but will not clear it there. Thus we can
3134 legimatelly use LV till the next use of regset_pool_get (). */
3135 return_regset_to_pool (lv);
3136 return lv;
3137}
3138
3139/* Update liveness sets for INSN. */
3140static inline void
3141update_liveness_on_insn (rtx insn)
3142{
3143 ignore_first = true;
3144 compute_live (insn);
3145}
3146
3147/* Compute liveness below INSN and write it into REGS. */
3148static inline void
3149compute_live_below_insn (rtx insn, regset regs)
3150{
3151 rtx succ;
3152 succ_iterator si;
b8698a0f
L
3153
3154 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
e855c69d
AB
3155 IOR_REG_SET (regs, compute_live (succ));
3156}
3157
3158/* Update the data gathered in av and lv sets starting from INSN. */
3159static void
3160update_data_sets (rtx insn)
3161{
3162 update_liveness_on_insn (insn);
3163 if (sel_bb_head_p (insn))
3164 {
3165 gcc_assert (AV_LEVEL (insn) != 0);
3166 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3167 compute_av_set (insn, NULL, 0, 0);
3168 }
3169}
3170\f
3171
3172/* Helper for move_op () and find_used_regs ().
3173 Return speculation type for which a check should be created on the place
3174 of INSN. EXPR is one of the original ops we are searching for. */
3175static ds_t
3176get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3177{
3178 ds_t to_check_ds;
3179 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3180
3181 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3182
3183 if (targetm.sched.get_insn_checked_ds)
3184 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3185
3186 if (spec_info != NULL
3187 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3188 already_checked_ds |= BEGIN_CONTROL;
3189
3190 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3191
3192 to_check_ds &= ~already_checked_ds;
3193
3194 return to_check_ds;
3195}
3196
b8698a0f 3197/* Find the set of registers that are unavailable for storing expres
e855c69d
AB
3198 while moving ORIG_OPS up on the path starting from INSN due to
3199 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3200
3201 All the original operations found during the traversal are saved in the
3202 ORIGINAL_INSNS list.
3203
3204 REG_RENAME_P denotes the set of hardware registers that
3205 can not be used with renaming due to the register class restrictions,
b8698a0f 3206 mode restrictions and other (the register we'll choose should be
e855c69d
AB
3207 compatible class with the original uses, shouldn't be in call_used_regs,
3208 should be HARD_REGNO_RENAME_OK etc).
3209
3210 Returns TRUE if we've found all original insns, FALSE otherwise.
3211
3212 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
b8698a0f
L
3213 to traverse the code motion paths. This helper function finds registers
3214 that are not available for storing expres while moving ORIG_OPS up on the
e855c69d
AB
3215 path starting from INSN. A register considered as used on the moving path,
3216 if one of the following conditions is not satisfied:
3217
b8698a0f
L
3218 (1) a register not set or read on any path from xi to an instance of
3219 the original operation,
3220 (2) not among the live registers of the point immediately following the
e855c69d
AB
3221 first original operation on a given downward path, except for the
3222 original target register of the operation,
b8698a0f 3223 (3) not live on the other path of any conditional branch that is passed
e855c69d
AB
3224 by the operation, in case original operations are not present on
3225 both paths of the conditional branch.
3226
3227 All the original operations found during the traversal are saved in the
3228 ORIGINAL_INSNS list.
3229
b8698a0f
L
3230 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3231 from INSN to original insn. In this case CALL_USED_REG_SET will be added
e855c69d
AB
3232 to unavailable hard regs at the point original operation is found. */
3233
3234static bool
3235find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3236 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3237{
3238 def_list_iterator i;
3239 def_t def;
3240 int res;
3241 bool needs_spec_check_p = false;
3242 expr_t expr;
3243 av_set_iterator expr_iter;
3244 struct fur_static_params sparams;
3245 struct cmpd_local_params lparams;
3246
3247 /* We haven't visited any blocks yet. */
3248 bitmap_clear (code_motion_visited_blocks);
3249
3250 /* Init parameters for code_motion_path_driver. */
3251 sparams.crosses_call = false;
3252 sparams.original_insns = original_insns;
3253 sparams.used_regs = used_regs;
b8698a0f 3254
e855c69d
AB
3255 /* Set the appropriate hooks and data. */
3256 code_motion_path_driver_info = &fur_hooks;
b8698a0f 3257
e855c69d
AB
3258 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3259
3260 reg_rename_p->crosses_call |= sparams.crosses_call;
3261
3262 gcc_assert (res == 1);
3263 gcc_assert (original_insns && *original_insns);
3264
3265 /* ??? We calculate whether an expression needs a check when computing
3266 av sets. This information is not as precise as it could be due to
3267 merging this bit in merge_expr. We can do better in find_used_regs,
b8698a0f 3268 but we want to avoid multiple traversals of the same code motion
e855c69d
AB
3269 paths. */
3270 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3271 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3272
b8698a0f 3273 /* Mark hardware regs in REG_RENAME_P that are not suitable
e855c69d
AB
3274 for renaming expr in INSN due to hardware restrictions (register class,
3275 modes compatibility etc). */
3276 FOR_EACH_DEF (def, i, *original_insns)
3277 {
3278 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3279
3280 if (VINSN_SEPARABLE_P (vinsn))
3281 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3282
b8698a0f 3283 /* Do not allow clobbering of ld.[sa] address in case some of the
e855c69d
AB
3284 original operations need a check. */
3285 if (needs_spec_check_p)
3286 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3287 }
3288
3289 return true;
3290}
3291\f
3292
3293/* Functions to choose the best insn from available ones. */
3294
3295/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3296static int
3297sel_target_adjust_priority (expr_t expr)
3298{
3299 int priority = EXPR_PRIORITY (expr);
3300 int new_priority;
3301
3302 if (targetm.sched.adjust_priority)
3303 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3304 else
3305 new_priority = priority;
3306
3307 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3308 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3309
3310 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3311
136e01a3
AB
3312 if (sched_verbose >= 4)
3313 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
b8698a0f 3314 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
e855c69d
AB
3315 EXPR_PRIORITY_ADJ (expr), new_priority);
3316
3317 return new_priority;
3318}
3319
3320/* Rank two available exprs for schedule. Never return 0 here. */
b8698a0f 3321static int
e855c69d
AB
3322sel_rank_for_schedule (const void *x, const void *y)
3323{
3324 expr_t tmp = *(const expr_t *) y;
3325 expr_t tmp2 = *(const expr_t *) x;
3326 insn_t tmp_insn, tmp2_insn;
3327 vinsn_t tmp_vinsn, tmp2_vinsn;
3328 int val;
3329
3330 tmp_vinsn = EXPR_VINSN (tmp);
3331 tmp2_vinsn = EXPR_VINSN (tmp2);
3332 tmp_insn = EXPR_INSN_RTX (tmp);
3333 tmp2_insn = EXPR_INSN_RTX (tmp2);
b8698a0f 3334
b5b8b0ac
AO
3335 /* Schedule debug insns as early as possible. */
3336 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3337 return -1;
3338 else if (DEBUG_INSN_P (tmp2_insn))
3339 return 1;
3340
e855c69d
AB
3341 /* Prefer SCHED_GROUP_P insns to any others. */
3342 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3343 {
b8698a0f 3344 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
e855c69d
AB
3345 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3346
3347 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3348 cannot be cloned. */
3349 if (VINSN_UNIQUE_P (tmp2_vinsn))
3350 return 1;
3351 return -1;
3352 }
3353
3354 /* Discourage scheduling of speculative checks. */
3355 val = (sel_insn_is_speculation_check (tmp_insn)
3356 - sel_insn_is_speculation_check (tmp2_insn));
3357 if (val)
3358 return val;
3359
3360 /* Prefer not scheduled insn over scheduled one. */
3361 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3362 {
3363 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3364 if (val)
3365 return val;
3366 }
3367
3368 /* Prefer jump over non-jump instruction. */
3369 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3370 return -1;
3371 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3372 return 1;
3373
3374 /* Prefer an expr with greater priority. */
3375 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3376 {
3377 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3378 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3379
3380 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3381 }
3382 else
b8698a0f 3383 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
e855c69d
AB
3384 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3385 if (val)
3386 return val;
3387
3388 if (spec_info != NULL && spec_info->mask != 0)
3389 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3390 {
3391 ds_t ds1, ds2;
3392 dw_t dw1, dw2;
3393 int dw;
3394
3395 ds1 = EXPR_SPEC_DONE_DS (tmp);
3396 if (ds1)
3397 dw1 = ds_weak (ds1);
3398 else
3399 dw1 = NO_DEP_WEAK;
3400
3401 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3402 if (ds2)
3403 dw2 = ds_weak (ds2);
3404 else
3405 dw2 = NO_DEP_WEAK;
3406
3407 dw = dw2 - dw1;
3408 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3409 return dw;
3410 }
3411
e855c69d 3412 /* Prefer an old insn to a bookkeeping insn. */
b8698a0f 3413 if (INSN_UID (tmp_insn) < first_emitted_uid
e855c69d
AB
3414 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3415 return -1;
b8698a0f 3416 if (INSN_UID (tmp_insn) >= first_emitted_uid
e855c69d
AB
3417 && INSN_UID (tmp2_insn) < first_emitted_uid)
3418 return 1;
3419
b8698a0f 3420 /* Prefer an insn with smaller UID, as a last resort.
e855c69d
AB
3421 We can't safely use INSN_LUID as it is defined only for those insns
3422 that are in the stream. */
3423 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3424}
3425
b8698a0f 3426/* Filter out expressions from av set pointed to by AV_PTR
e855c69d
AB
3427 that are pipelined too many times. */
3428static void
3429process_pipelined_exprs (av_set_t *av_ptr)
3430{
3431 expr_t expr;
3432 av_set_iterator si;
3433
3434 /* Don't pipeline already pipelined code as that would increase
b8698a0f 3435 number of unnecessary register moves. */
e855c69d
AB
3436 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3437 {
3438 if (EXPR_SCHED_TIMES (expr)
3439 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3440 av_set_iter_remove (&si);
3441 }
3442}
3443
3444/* Filter speculative insns from AV_PTR if we don't want them. */
3445static void
3446process_spec_exprs (av_set_t *av_ptr)
3447{
3448 bool try_data_p = true;
3449 bool try_control_p = true;
3450 expr_t expr;
3451 av_set_iterator si;
3452
3453 if (spec_info == NULL)
3454 return;
3455
3456 /* Scan *AV_PTR to find out if we want to consider speculative
3457 instructions for scheduling. */
3458 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3459 {
3460 ds_t ds;
3461
3462 ds = EXPR_SPEC_DONE_DS (expr);
3463
3464 /* The probability of a success is too low - don't speculate. */
3465 if ((ds & SPECULATIVE)
3466 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3467 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3468 || (pipelining_p && false
3469 && (ds & DATA_SPEC)
3470 && (ds & CONTROL_SPEC))))
3471 {
3472 av_set_iter_remove (&si);
3473 continue;
3474 }
3475
3476 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3477 && !(ds & BEGIN_DATA))
3478 try_data_p = false;
3479
3480 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3481 && !(ds & BEGIN_CONTROL))
3482 try_control_p = false;
3483 }
3484
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3486 {
3487 ds_t ds;
3488
3489 ds = EXPR_SPEC_DONE_DS (expr);
3490
3491 if (ds & SPECULATIVE)
3492 {
3493 if ((ds & BEGIN_DATA) && !try_data_p)
3494 /* We don't want any data speculative instructions right
3495 now. */
3496 av_set_iter_remove (&si);
3497
3498 if ((ds & BEGIN_CONTROL) && !try_control_p)
3499 /* We don't want any control speculative instructions right
3500 now. */
3501 av_set_iter_remove (&si);
3502 }
3503 }
3504}
3505
b8698a0f
L
3506/* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
e855c69d
AB
3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510static expr_t
3511process_use_exprs (av_set_t *av_ptr)
3512{
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3517
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 {
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 {
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 {
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3529
3530 av_set_iter_remove (&si);
3531 }
3532 else
3533 {
3534 gcc_assert (pipelining_p);
3535
3536 uses_present_p = true;
3537 }
3538 }
3539 else
3540 try_uses_p = false;
3541 }
3542
3543 if (uses_present_p)
3544 {
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3548 {
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3552 }
3553 else
3554 {
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 {
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3561
3562 av_set_iter_remove (&si);
3563 }
3564 }
3565 }
3566
3567 return NULL;
3568}
3569
3570/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3571static bool
3572vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3573{
3574 vinsn_t vinsn;
3575 int n;
3576
ac47786e 3577 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
e855c69d
AB
3578 if (VINSN_SEPARABLE_P (vinsn))
3579 {
3580 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3581 return true;
3582 }
3583 else
3584 {
3585 /* For non-separable instructions, the blocking insn can have
3586 another pattern due to substitution, and we can't choose
3587 different register as in the above case. Check all registers
3588 being written instead. */
b8698a0f 3589 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
e855c69d
AB
3590 VINSN_REG_SETS (EXPR_VINSN (expr))))
3591 return true;
3592 }
3593
3594 return false;
3595}
3596
3597#ifdef ENABLE_CHECKING
3598/* Return true if either of expressions from ORIG_OPS can be blocked
3599 by previously created bookkeeping code. STATIC_PARAMS points to static
3600 parameters of move_op. */
3601static bool
3602av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3603{
3604 expr_t expr;
3605 av_set_iterator iter;
3606 moveop_static_params_p sparams;
3607
3608 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609 created while scheduling on another fence. */
3610 FOR_EACH_EXPR (expr, iter, orig_ops)
3611 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612 return true;
3613
3614 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615 sparams = (moveop_static_params_p) static_params;
3616
3617 /* Expressions can be also blocked by bookkeeping created during current
3618 move_op. */
3619 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622 return true;
3623
3624 /* Expressions in ORIG_OPS may have wrong destination register due to
3625 renaming. Check with the right register instead. */
3626 if (sparams->dest && REG_P (sparams->dest))
3627 {
cf3d5824 3628 rtx reg = sparams->dest;
e855c69d
AB
3629 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3630
cf3d5824
SG
3631 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3632 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3633 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
e855c69d
AB
3634 return true;
3635 }
3636
3637 return false;
3638}
3639#endif
3640
3641/* Clear VINSN_VEC and detach vinsns. */
3642static void
3643vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644{
3645 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3646 if (len > 0)
3647 {
3648 vinsn_t vinsn;
3649 int n;
b8698a0f 3650
ac47786e 3651 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
e855c69d
AB
3652 vinsn_detach (vinsn);
3653 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654 }
3655}
3656
3657/* Add the vinsn of EXPR to the VINSN_VEC. */
3658static void
3659vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660{
3661 vinsn_attach (EXPR_VINSN (expr));
3662 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3663}
3664
b8698a0f 3665/* Free the vector representing blocked expressions. */
e855c69d
AB
3666static void
3667vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3668{
3669 if (*vinsn_vec)
3670 VEC_free (vinsn_t, heap, *vinsn_vec);
3671}
3672
3673/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3674
3675void sel_add_to_insn_priority (rtx insn, int amount)
3676{
3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3678
3679 if (sched_verbose >= 2)
b8698a0f 3680 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
e855c69d
AB
3681 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683}
3684
b8698a0f 3685/* Turn AV into a vector, filter inappropriate insns and sort it. Return
e855c69d
AB
3686 true if there is something to schedule. BNDS and FENCE are current
3687 boundaries and fence, respectively. If we need to stall for some cycles
b8698a0f 3688 before an expr from AV would become available, write this number to
e855c69d
AB
3689 *PNEED_STALL. */
3690static bool
3691fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692 int *pneed_stall)
3693{
3694 av_set_iterator si;
3695 expr_t expr;
3696 int sched_next_worked = 0, stalled, n;
3697 static int av_max_prio, est_ticks_till_branch;
3698 int min_need_stall = -1;
3699 deps_t dc = BND_DC (BLIST_BND (bnds));
3700
3701 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702 already scheduled. */
3703 if (av == NULL)
3704 return false;
3705
3706 /* Empty vector from the previous stuff. */
3707 if (VEC_length (expr_t, vec_av_set) > 0)
3708 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3709
3710 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711 for each insn. */
3712 gcc_assert (VEC_empty (expr_t, vec_av_set));
3713 FOR_EACH_EXPR (expr, si, av)
b8698a0f 3714 {
e855c69d
AB
3715 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3716
3717 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3718
3719 /* Adjust priority using target backend hook. */
3720 sel_target_adjust_priority (expr);
3721 }
3722
3723 /* Sort the vector. */
5095da95 3724 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
e855c69d
AB
3725
3726 /* We record maximal priority of insns in av set for current instruction
3727 group. */
3728 if (FENCE_STARTS_CYCLE_P (fence))
3729 av_max_prio = est_ticks_till_branch = INT_MIN;
3730
3731 /* Filter out inappropriate expressions. Loop's direction is reversed to
3732 visit "best" instructions first. We assume that VEC_unordered_remove
3733 moves last element in place of one being deleted. */
3734 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3735 {
3736 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3737 insn_t insn = EXPR_INSN_RTX (expr);
f3764768 3738 signed char target_available;
e855c69d
AB
3739 bool is_orig_reg_p = true;
3740 int need_cycles, new_prio;
3741
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 {
3745 VEC_unordered_remove (expr_t, vec_av_set, n);
3746 continue;
3747 }
3748
b8698a0f 3749 /* Set number of sched_next insns (just in case there
e855c69d
AB
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
b8698a0f
L
3753
3754 /* Check all liveness requirements and try renaming.
e855c69d
AB
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3757
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3761 target_available = -1;
3762
3763 /* If the availability of the EXPR is invalidated by the insertion of
3764 bookkeeping earlier, make sure that we won't choose this expr for
3765 scheduling if it's not separable, and if it is separable, then
3766 we have to recompute the set of available registers for it. */
3767 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 {
3769 VEC_unordered_remove (expr_t, vec_av_set, n);
3770 if (sched_verbose >= 4)
3771 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772 INSN_UID (insn));
3773 continue;
3774 }
b8698a0f 3775
e855c69d
AB
3776 if (target_available == true)
3777 {
3778 /* Do nothing -- we can use an existing register. */
3779 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780 }
b8698a0f 3781 else if (/* Non-separable instruction will never
e855c69d
AB
3782 get another register. */
3783 (target_available == false
3784 && !EXPR_SEPARABLE_P (expr))
3785 /* Don't try to find a register for low-priority expression. */
3786 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3787 /* ??? FIXME: Don't try to rename data speculation. */
3788 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790 {
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792 if (sched_verbose >= 4)
b8698a0f 3793 sel_print ("Expr %d has no suitable target register\n",
e855c69d
AB
3794 INSN_UID (insn));
3795 continue;
3796 }
3797
3798 /* Filter expressions that need to be renamed or speculated when
3799 pipelining, because compensating register copies or speculation
3800 checks are likely to be placed near the beginning of the loop,
3801 causing a stall. */
3802 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3803 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3804 {
3805 /* Estimation of number of cycles until loop branch for
3806 renaming/speculation to be successful. */
3807 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3808
3809 if ((int) current_loop_nest->ninsns < 9)
3810 {
3811 VEC_unordered_remove (expr_t, vec_av_set, n);
3812 if (sched_verbose >= 4)
3813 sel_print ("Pipelining expr %d will likely cause stall\n",
3814 INSN_UID (insn));
3815 continue;
3816 }
3817
3818 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3819 < need_n_ticks_till_branch * issue_rate / 2
3820 && est_ticks_till_branch < need_n_ticks_till_branch)
3821 {
3822 VEC_unordered_remove (expr_t, vec_av_set, n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3827 }
3828 }
3829
3830 /* We want to schedule speculation checks as late as possible. Discard
3831 them from av set if there are instructions with higher priority. */
3832 if (sel_insn_is_speculation_check (insn)
3833 && EXPR_PRIORITY (expr) < av_max_prio)
3834 {
3835 stalled++;
3836 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3837 VEC_unordered_remove (expr_t, vec_av_set, n);
3838 if (sched_verbose >= 4)
3839 sel_print ("Delaying speculation check %d until its first use\n",
3840 INSN_UID (insn));
3841 continue;
3842 }
3843
3844 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3845 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3846 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3847
3848 /* Don't allow any insns whose data is not yet ready.
3849 Check first whether we've already tried them and failed. */
3850 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3851 {
3852 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3853 - FENCE_CYCLE (fence));
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 est_ticks_till_branch = MAX (est_ticks_till_branch,
3856 EXPR_PRIORITY (expr) + need_cycles);
3857
3858 if (need_cycles > 0)
3859 {
3860 stalled++;
b8698a0f 3861 min_need_stall = (min_need_stall < 0
e855c69d
AB
3862 ? need_cycles
3863 : MIN (min_need_stall, need_cycles));
3864 VEC_unordered_remove (expr_t, vec_av_set, n);
3865
3866 if (sched_verbose >= 4)
b8698a0f 3867 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
e855c69d
AB
3868 INSN_UID (insn),
3869 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3870 continue;
3871 }
3872 }
3873
b8698a0f 3874 /* Now resort to dependence analysis to find whether EXPR might be
e855c69d
AB
3875 stalled due to dependencies from FENCE's context. */
3876 need_cycles = tick_check_p (expr, dc, fence);
3877 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3878
3879 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3880 est_ticks_till_branch = MAX (est_ticks_till_branch,
3881 new_prio);
3882
3883 if (need_cycles > 0)
3884 {
3885 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3886 {
3887 int new_size = INSN_UID (insn) * 3 / 2;
b8698a0f
L
3888
3889 FENCE_READY_TICKS (fence)
e855c69d
AB
3890 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3891 new_size, FENCE_READY_TICKS_SIZE (fence),
3892 sizeof (int));
3893 }
b8698a0f
L
3894 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3895 = FENCE_CYCLE (fence) + need_cycles;
3896
e855c69d 3897 stalled++;
b8698a0f 3898 min_need_stall = (min_need_stall < 0
e855c69d
AB
3899 ? need_cycles
3900 : MIN (min_need_stall, need_cycles));
3901
3902 VEC_unordered_remove (expr_t, vec_av_set, n);
b8698a0f 3903
e855c69d 3904 if (sched_verbose >= 4)
b8698a0f 3905 sel_print ("Expr %d is not ready yet until cycle %d\n",
e855c69d
AB
3906 INSN_UID (insn),
3907 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908 continue;
3909 }
3910
3911 if (sched_verbose >= 4)
3912 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3913 min_need_stall = 0;
3914 }
3915
3916 /* Clear SCHED_NEXT. */
3917 if (FENCE_SCHED_NEXT (fence))
3918 {
3919 gcc_assert (sched_next_worked == 1);
3920 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3921 }
3922
3923 /* No need to stall if this variable was not initialized. */
3924 if (min_need_stall < 0)
3925 min_need_stall = 0;
3926
3927 if (VEC_empty (expr_t, vec_av_set))
3928 {
3929 /* We need to set *pneed_stall here, because later we skip this code
3930 when ready list is empty. */
3931 *pneed_stall = min_need_stall;
3932 return false;
3933 }
3934 else
3935 gcc_assert (min_need_stall == 0);
3936
3937 /* Sort the vector. */
5095da95 3938 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
b8698a0f 3939
e855c69d
AB
3940 if (sched_verbose >= 4)
3941 {
b8698a0f 3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
e855c69d
AB
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
ac47786e 3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
e855c69d
AB
3946 dump_expr (expr);
3947 sel_print ("\n");
3948 }
3949
3950 *pneed_stall = 0;
3951 return true;
3952}
3953
3954/* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956static void
3957convert_vec_av_set_to_ready (void)
3958{
3959 int n;
3960 expr_t expr;
3961
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
b8698a0f 3965
e855c69d
AB
3966 gcc_assert (ready.n_ready > 0);
3967
3968 if (ready.n_ready > max_issue_size)
3969 {
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3972 }
b8698a0f 3973
ac47786e 3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
e855c69d
AB
3975 {
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3978
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3981 }
3982}
3983
3984/* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
b8698a0f
L
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
e855c69d
AB
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989static expr_t
3990fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3992{
3993 expr_t expr;
3994
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3997
b8698a0f 3998 /* Process expressions required special handling, i.e. pipelined,
e855c69d
AB
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4002
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4006 {
4007 *pneed_stall = 0;
4008 return expr;
4009 }
4010
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013 {
4014 ready.n_ready = 0;
4015 return NULL;
4016 }
4017
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4021}
4022
4023/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024static bool
4025sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026{
b8698a0f
L
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
e855c69d
AB
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4032
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4035
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4041 {
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4046 }
4047
4048 return res;
4049}
4050
4051/* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053static int
4054invoke_reorder_hooks (fence_t fence)
4055{
4056 int issue_more;
4057 bool ran_hook = false;
4058
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4062 {
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4066 {
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4071
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4076
4077 if (pipelining_p)
4078 ++ready.n_ready;
4079
4080 ran_hook = true;
4081 }
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4085 }
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088 {
4089 if (ready.n_ready == 1)
b8698a0f 4090 issue_more =
e855c69d
AB
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4095 {
4096 if (pipelining_p)
4097 --ready.n_ready;
4098
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104
4105 if (pipelining_p)
4106 ++ready.n_ready;
4107 }
4108
4109 ran_hook = true;
4110 }
b8698a0f 4111 else
136e01a3 4112 issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
4113
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4117 {
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4121
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124 {
4125 expr_t tmp;
4126
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4131
b8698a0f 4132 tmp = vec[i];
e855c69d
AB
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4135 }
4136 }
4137
4138 return issue_more;
4139}
4140
b8698a0f
L
4141/* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
e855c69d
AB
4144 ready.vec otherwise. */
4145static inline expr_t
4146find_expr_for_ready (int index, bool follow_ready_element)
4147{
4148 expr_t expr;
4149 int real_index;
4150
4151 real_index = follow_ready_element ? ready.first - index : index;
4152
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155
4156 return expr;
4157}
4158
4159/* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161static int
4162invoke_dfa_lookahead_guard (void)
4163{
4164 int i, n;
b8698a0f 4165 bool have_hook
e855c69d
AB
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4170
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4172 {
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4176
b8698a0f 4177 /* In this loop insn is Ith element of the ready list given by
e855c69d
AB
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
b8698a0f 4180
e855c69d
AB
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
b8698a0f 4185
e855c69d 4186 gcc_assert (INSN_CODE (insn) >= 0);
b8698a0f
L
4187
4188 /* Only insns with ready_try = 0 can get here
e855c69d
AB
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4194
4195 expr = find_expr_for_ready (i, true);
b8698a0f 4196
e855c69d
AB
4197 if (sched_verbose >= 2)
4198 {
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4201 }
4202 }
4203
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4207}
4208
4209/* Calculate the number of privileged insns and return it. */
4210static int
4211calculate_privileged_insns (void)
4212{
4213 expr_t cur_expr, min_spec_expr = NULL;
e855c69d
AB
4214 int privileged_n = 0, i;
4215
4216 for (i = 0; i < ready.n_ready; i++)
4217 {
4218 if (ready_try[i])
4219 continue;
4220
4221 if (! min_spec_expr)
1124098b 4222 min_spec_expr = find_expr_for_ready (i, true);
b8698a0f 4223
e855c69d
AB
4224 cur_expr = find_expr_for_ready (i, true);
4225
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4228
4229 ++privileged_n;
4230 }
4231
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4234
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4239}
4240
b8698a0f 4241/* Call the rest of the hooks after the choice was made. Return
e855c69d
AB
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245static int
4246invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247{
4248 gcc_assert (INSN_P (best_insn));
4249
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
b8698a0f 4252
e855c69d
AB
4253 if (targetm.sched.variable_issue)
4254 {
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
b8698a0f 4256 issue_more =
e855c69d
AB
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 }
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266}
4267
d66b8f4b 4268/* Estimate the cost of issuing INSN on DFA state STATE. */
e855c69d 4269static int
d66b8f4b 4270estimate_insn_cost (rtx insn, state_t state)
e855c69d
AB
4271{
4272 static state_t temp = NULL;
4273 int cost;
4274
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4277
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4280
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4286}
4287
b8698a0f 4288/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
e855c69d
AB
4289 This function properly handles ASMs, USEs etc. */
4290static int
4291get_expr_cost (expr_t expr, fence_t fence)
4292{
4293 rtx insn = EXPR_INSN_RTX (expr);
4294
4295 if (recog_memoized (insn) < 0)
4296 {
b8698a0f 4297 if (!FENCE_STARTS_CYCLE_P (fence)
e855c69d
AB
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4308 }
4309 else
d66b8f4b 4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
e855c69d
AB
4311}
4312
b8698a0f 4313/* Find the best insn for scheduling, either via max_issue or just take
e855c69d
AB
4314 the most prioritized available. */
4315static int
4316choose_best_insn (fence_t fence, int privileged_n, int *index)
4317{
4318 int can_issue = 0;
4319
4320 if (dfa_lookahead > 0)
4321 {
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
894fd6f2 4323 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
e855c69d 4324 can_issue = max_issue (&ready, privileged_n,
894fd6f2 4325 FENCE_STATE (fence), true, index);
e855c69d
AB
4326 if (sched_verbose >= 2)
4327 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4328 can_issue, FENCE_ISSUED_INSNS (fence));
4329 }
4330 else
4331 {
4332 /* We can't use max_issue; just return the first available element. */
4333 int i;
4334
4335 for (i = 0; i < ready.n_ready; i++)
4336 {
4337 expr_t expr = find_expr_for_ready (i, true);
4338
4339 if (get_expr_cost (expr, fence) < 1)
4340 {
4341 can_issue = can_issue_more;
4342 *index = i;
4343
4344 if (sched_verbose >= 2)
4345 sel_print ("using %dth insn from the ready list\n", i + 1);
4346
4347 break;
4348 }
4349 }
4350
4351 if (i == ready.n_ready)
4352 {
4353 can_issue = 0;
4354 *index = -1;
4355 }
4356 }
4357
4358 return can_issue;
4359}
4360
b8698a0f
L
4361/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4362 BNDS and FENCE are current boundaries and scheduling fence respectively.
4363 Return the expr found and NULL if nothing can be issued atm.
4364 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
e855c69d
AB
4365static expr_t
4366find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4367 int *pneed_stall)
4368{
4369 expr_t best;
b8698a0f 4370
e855c69d
AB
4371 /* Choose the best insn for scheduling via:
4372 1) sorting the ready list based on priority;
4373 2) calling the reorder hook;
4374 3) calling max_issue. */
4375 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4376 if (best == NULL && ready.n_ready > 0)
4377 {
1124098b 4378 int privileged_n, index;
e855c69d
AB
4379
4380 can_issue_more = invoke_reorder_hooks (fence);
4381 if (can_issue_more > 0)
4382 {
b8698a0f 4383 /* Try choosing the best insn until we find one that is could be
e855c69d
AB
4384 scheduled due to liveness restrictions on its destination register.
4385 In the future, we'd like to choose once and then just probe insns
4386 in the order of their priority. */
1124098b 4387 invoke_dfa_lookahead_guard ();
e855c69d
AB
4388 privileged_n = calculate_privileged_insns ();
4389 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4390 if (can_issue_more)
4391 best = find_expr_for_ready (index, true);
4392 }
b8698a0f 4393 /* We had some available insns, so if we can't issue them,
e855c69d
AB
4394 we have a stall. */
4395 if (can_issue_more == 0)
4396 {
4397 best = NULL;
4398 *pneed_stall = 1;
4399 }
4400 }
4401
4402 if (best != NULL)
4403 {
4404 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4405 can_issue_more);
06f0c25f
AB
4406 if (targetm.sched.variable_issue
4407 && can_issue_more == 0)
e855c69d
AB
4408 *pneed_stall = 1;
4409 }
b8698a0f 4410
e855c69d
AB
4411 if (sched_verbose >= 2)
4412 {
4413 if (best != NULL)
4414 {
4415 sel_print ("Best expression (vliw form): ");
4416 dump_expr (best);
4417 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4418 }
4419 else
4420 sel_print ("No best expr found!\n");
4421 }
4422
4423 return best;
4424}
4425\f
4426
4427/* Functions that implement the core of the scheduler. */
4428
4429
b8698a0f 4430/* Emit an instruction from EXPR with SEQNO and VINSN after
e855c69d
AB
4431 PLACE_TO_INSERT. */
4432static insn_t
b8698a0f 4433emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
e855c69d
AB
4434 insn_t place_to_insert)
4435{
4436 /* This assert fails when we have identical instructions
4437 one of which dominates the other. In this case move_op ()
4438 finds the first instruction and doesn't search for second one.
4439 The solution would be to compute av_set after the first found
4440 insn and, if insn present in that set, continue searching.
4441 For now we workaround this issue in move_op. */
4442 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4443
4444 if (EXPR_WAS_RENAMED (expr))
4445 {
4446 unsigned regno = expr_dest_regno (expr);
b8698a0f 4447
e855c69d
AB
4448 if (HARD_REGISTER_NUM_P (regno))
4449 {
4450 df_set_regs_ever_live (regno, true);
4451 reg_rename_tick[regno] = ++reg_rename_this_tick;
4452 }
4453 }
b8698a0f
L
4454
4455 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
e855c69d
AB
4456 place_to_insert);
4457}
4458
4459/* Return TRUE if BB can hold bookkeeping code. */
4460static bool
4461block_valid_for_bookkeeping_p (basic_block bb)
4462{
4463 insn_t bb_end = BB_END (bb);
4464
4465 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4466 return false;
4467
4468 if (INSN_P (bb_end))
4469 {
4470 if (INSN_SCHED_TIMES (bb_end) > 0)
4471 return false;
4472 }
4473 else
4474 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4475
4476 return true;
4477}
4478
4479/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4480 into E2->dest, except from E1->src (there may be a sequence of empty basic
4481 blocks between E1->src and E2->dest). Return found block, or NULL if new
b5b8b0ac
AO
4482 one must be created. If LAX holds, don't assume there is a simple path
4483 from E1->src to E2->dest. */
e855c69d 4484static basic_block
b5b8b0ac 4485find_block_for_bookkeeping (edge e1, edge e2, bool lax)
e855c69d
AB
4486{
4487 basic_block candidate_block = NULL;
4488 edge e;
4489
4490 /* Loop over edges from E1 to E2, inclusive. */
b5b8b0ac 4491 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
e855c69d
AB
4492 {
4493 if (EDGE_COUNT (e->dest->preds) == 2)
4494 {
4495 if (candidate_block == NULL)
4496 candidate_block = (EDGE_PRED (e->dest, 0) == e
4497 ? EDGE_PRED (e->dest, 1)->src
4498 : EDGE_PRED (e->dest, 0)->src);
4499 else
4500 /* Found additional edge leading to path from e1 to e2
4501 from aside. */
4502 return NULL;
4503 }
4504 else if (EDGE_COUNT (e->dest->preds) > 2)
4505 /* Several edges leading to path from e1 to e2 from aside. */
4506 return NULL;
4507
4508 if (e == e2)
b5b8b0ac
AO
4509 return ((!lax || candidate_block)
4510 && block_valid_for_bookkeeping_p (candidate_block)
e855c69d
AB
4511 ? candidate_block
4512 : NULL);
b5b8b0ac
AO
4513
4514 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4515 return NULL;
e855c69d 4516 }
b5b8b0ac
AO
4517
4518 if (lax)
4519 return NULL;
4520
e855c69d
AB
4521 gcc_unreachable ();
4522}
4523
4524/* Create new basic block for bookkeeping code for path(s) incoming into
4525 E2->dest, except from E1->src. Return created block. */
4526static basic_block
4527create_block_for_bookkeeping (edge e1, edge e2)
4528{
4529 basic_block new_bb, bb = e2->dest;
4530
4531 /* Check that we don't spoil the loop structure. */
4532 if (current_loop_nest)
4533 {
4534 basic_block latch = current_loop_nest->latch;
4535
4536 /* We do not split header. */
4537 gcc_assert (e2->dest != current_loop_nest->header);
4538
4539 /* We do not redirect the only edge to the latch block. */
4540 gcc_assert (e1->dest != latch
4541 || !single_pred_p (latch)
4542 || e1 != single_pred_edge (latch));
4543 }
4544
4545 /* Split BB to insert BOOK_INSN there. */
4546 new_bb = sched_split_block (bb, NULL);
4547
4548 /* Move note_list from the upper bb. */
4549 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4550 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4551 BB_NOTE_LIST (bb) = NULL_RTX;
4552
4553 gcc_assert (e2->dest == bb);
4554
4555 /* Skip block for bookkeeping copy when leaving E1->src. */
4556 if (e1->flags & EDGE_FALLTHRU)
4557 sel_redirect_edge_and_branch_force (e1, new_bb);
4558 else
4559 sel_redirect_edge_and_branch (e1, new_bb);
4560
4561 gcc_assert (e1->dest == new_bb);
4562 gcc_assert (sel_bb_empty_p (bb));
4563
b5b8b0ac
AO
4564 /* To keep basic block numbers in sync between debug and non-debug
4565 compilations, we have to rotate blocks here. Consider that we
4566 started from (a,b)->d, (c,d)->e, and d contained only debug
4567 insns. It would have been removed before if the debug insns
4568 weren't there, so we'd have split e rather than d. So what we do
4569 now is to swap the block numbers of new_bb and
4570 single_succ(new_bb) == e, so that the insns that were in e before
4571 get the new block number. */
4572
4573 if (MAY_HAVE_DEBUG_INSNS)
4574 {
4575 basic_block succ;
4576 insn_t insn = sel_bb_head (new_bb);
4577 insn_t last;
4578
4579 if (DEBUG_INSN_P (insn)
4580 && single_succ_p (new_bb)
4581 && (succ = single_succ (new_bb))
4582 && succ != EXIT_BLOCK_PTR
4583 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4584 {
4585 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4586 insn = NEXT_INSN (insn);
4587
4588 if (insn == last)
4589 {
4590 sel_global_bb_info_def gbi;
4591 sel_region_bb_info_def rbi;
4592 int i;
4593
4594 if (sched_verbose >= 2)
4595 sel_print ("Swapping block ids %i and %i\n",
4596 new_bb->index, succ->index);
4597
4598 i = new_bb->index;
4599 new_bb->index = succ->index;
4600 succ->index = i;
4601
4602 SET_BASIC_BLOCK (new_bb->index, new_bb);
4603 SET_BASIC_BLOCK (succ->index, succ);
4604
4605 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4607 sizeof (gbi));
4608 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4609
4610 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4612 sizeof (rbi));
4613 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4614
4615 i = BLOCK_TO_BB (new_bb->index);
4616 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4617 BLOCK_TO_BB (succ->index) = i;
4618
4619 i = CONTAINING_RGN (new_bb->index);
4620 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4621 CONTAINING_RGN (succ->index) = i;
4622
4623 for (i = 0; i < current_nr_blocks; i++)
4624 if (BB_TO_BLOCK (i) == succ->index)
4625 BB_TO_BLOCK (i) = new_bb->index;
4626 else if (BB_TO_BLOCK (i) == new_bb->index)
4627 BB_TO_BLOCK (i) = succ->index;
4628
4629 FOR_BB_INSNS (new_bb, insn)
4630 if (INSN_P (insn))
4631 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4632
4633 FOR_BB_INSNS (succ, insn)
4634 if (INSN_P (insn))
4635 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4636
fcaa4ca4
NF
4637 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4638 bitmap_set_bit (code_motion_visited_blocks, succ->index);
b5b8b0ac
AO
4639
4640 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4641 && LABEL_P (BB_HEAD (succ)));
4642
4643 if (sched_verbose >= 4)
4644 sel_print ("Swapping code labels %i and %i\n",
4645 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4646 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4647
4648 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4649 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4650 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4651 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4652 }
4653 }
4654 }
4655
e855c69d
AB
4656 return bb;
4657}
4658
4659/* Return insn after which we must insert bookkeeping code for path(s) incoming
6fc5966f
AM
4660 into E2->dest, except from E1->src. If the returned insn immediately
4661 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
e855c69d 4662static insn_t
6fc5966f 4663find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
e855c69d
AB
4664{
4665 insn_t place_to_insert;
4666 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4667 create new basic block, but insert bookkeeping there. */
b5b8b0ac 4668 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
e855c69d 4669
b5b8b0ac
AO
4670 if (book_block)
4671 {
4672 place_to_insert = BB_END (book_block);
4673
4674 /* Don't use a block containing only debug insns for
4675 bookkeeping, this causes scheduling differences between debug
4676 and non-debug compilations, for the block would have been
4677 removed already. */
4678 if (DEBUG_INSN_P (place_to_insert))
4679 {
4680 rtx insn = sel_bb_head (book_block);
e855c69d 4681
b5b8b0ac
AO
4682 while (insn != place_to_insert &&
4683 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 insn = NEXT_INSN (insn);
4685
4686 if (insn == place_to_insert)
4687 book_block = NULL;
4688 }
4689 }
4690
4691 if (!book_block)
4692 {
4693 book_block = create_block_for_bookkeeping (e1, e2);
4694 place_to_insert = BB_END (book_block);
4695 if (sched_verbose >= 9)
4696 sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698 }
4699 else
4700 {
4701 if (sched_verbose >= 9)
4702 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4703 }
e855c69d 4704
6fc5966f
AM
4705 *fence_to_rewind = NULL;
4706 /* If basic block ends with a jump, insert bookkeeping code right before it.
4707 Notice if we are crossing a fence when taking PREV_INSN. */
e855c69d 4708 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
6fc5966f
AM
4709 {
4710 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4711 place_to_insert = PREV_INSN (place_to_insert);
4712 }
e855c69d
AB
4713
4714 return place_to_insert;
4715}
4716
4717/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718 for JOIN_POINT. */
4719static int
4720find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4721{
4722 int seqno;
4723 rtx next;
4724
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 next = NEXT_INSN (place_to_insert);
b8698a0f 4728 if (INSN_P (next)
e855c69d
AB
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
da7ba240
AB
4731 {
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4734 }
e855c69d
AB
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
da7ba240
AB
4738 {
4739 seqno = get_seqno_by_preds (place_to_insert);
4740
b8698a0f
L
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
da7ba240
AB
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4747 {
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4750 }
4751 }
b8698a0f 4752
e855c69d
AB
4753 gcc_assert (seqno > 0);
4754 return seqno;
4755}
4756
4757/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759static insn_t
4760emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761{
4762 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4763
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4770
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4773
4774 return new_insn;
4775}
4776
4777/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781static basic_block
4782generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783{
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
6fc5966f 4787 fence_t fence_to_rewind;
e855c69d
AB
4788
4789 if (sched_verbose >= 4)
4790 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 e2->dest->index);
4792
4793 join_point = sel_bb_head (e2->dest);
6fc5966f 4794 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
e855c69d
AB
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4798
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4800
6fc5966f
AM
4801 if (fence_to_rewind)
4802 FENCE_INSN (fence_to_rewind) = new_insn;
4803
e855c69d
AB
4804 /* When inserting bookkeeping insn in new block, av sets should be
4805 following: old basic block (that now holds bookkeeping) data sets are
4806 the same as was before generation of bookkeeping, and new basic block
4807 (that now hold all other insns of old basic block) data sets are
4808 invalid. So exchange data sets for these basic blocks as sel_split_block
4809 mistakenly exchanges them in this case. Cannot do it earlier because
4810 when single instruction is added to new basic block it should hold NULL
4811 lv_set. */
4812 if (need_to_exchange_data_sets)
4813 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4814 BLOCK_FOR_INSN (join_point));
4815
4816 stat_bookkeeping_copies++;
4817 return BLOCK_FOR_INSN (new_insn);
4818}
4819
b8698a0f 4820/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
e855c69d
AB
4821 on FENCE, but we are unable to copy them. */
4822static void
4823remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4824{
4825 expr_t expr;
4826 av_set_iterator i;
4827
b8698a0f
L
4828 /* An expression does not need bookkeeping if it is available on all paths
4829 from current block to original block and current block dominates
4830 original block. We check availability on all paths by examining
4831 EXPR_SPEC; this is not equivalent, because it may be positive even
4832 if expr is available on all paths (but if expr is not available on
e855c69d
AB
4833 any path, EXPR_SPEC will be positive). */
4834
4835 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4836 {
4837 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 && (EXPR_SPEC (expr)
4840 || !EXPR_ORIG_BB_INDEX (expr)
4841 || !dominated_by_p (CDI_DOMINATORS,
4842 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4843 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4844 {
4845 if (sched_verbose >= 4)
4846 sel_print ("Expr %d removed because it would need bookkeeping, which "
4847 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4848 av_set_iter_remove (&i);
4849 }
4850 }
4851}
4852
4853/* Moving conditional jump through some instructions.
4854
4855 Consider example:
4856
4857 ... <- current scheduling point
4858 NOTE BASIC BLOCK: <- bb header
4859 (p8) add r14=r14+0x9;;
4860 (p8) mov [r14]=r23
4861 (!p8) jump L1;;
4862 NOTE BASIC BLOCK:
4863 ...
4864
b8698a0f 4865 We can schedule jump one cycle earlier, than mov, because they cannot be
e855c69d
AB
4866 executed together as their predicates are mutually exclusive.
4867
b8698a0f
L
4868 This is done in this way: first, new fallthrough basic block is created
4869 after jump (it is always can be done, because there already should be a
e855c69d 4870 fallthrough block, where control flow goes in case of predicate being true -
b8698a0f
L
4871 in our example; otherwise there should be a dependence between those
4872 instructions and jump and we cannot schedule jump right now);
4873 next, all instructions between jump and current scheduling point are moved
e855c69d
AB
4874 to this new block. And the result is this:
4875
4876 NOTE BASIC BLOCK:
4877 (!p8) jump L1 <- current scheduling point
4878 NOTE BASIC BLOCK: <- bb header
4879 (p8) add r14=r14+0x9;;
4880 (p8) mov [r14]=r23
4881 NOTE BASIC BLOCK:
4882 ...
4883*/
4884static void
4885move_cond_jump (rtx insn, bnd_t bnd)
4886{
4887 edge ft_edge;
324d3f45
AM
4888 basic_block block_from, block_next, block_new, block_bnd, bb;
4889 rtx next, prev, link, head;
e855c69d 4890
e855c69d 4891 block_from = BLOCK_FOR_INSN (insn);
324d3f45
AM
4892 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4893 prev = BND_TO (bnd);
e855c69d 4894
324d3f45
AM
4895#ifdef ENABLE_CHECKING
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
4899 if (block_from != block_bnd)
4900 {
4901 bb = block_from;
4902 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4903 link = PREV_INSN (link))
4904 {
4905 if (INSN_P (link))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4908 {
4909 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910 bb = BLOCK_FOR_INSN (link);
4911 }
4912 }
4913 }
4914#endif
e855c69d
AB
4915
4916 /* Jump is moved to the boundary. */
e855c69d
AB
4917 next = PREV_INSN (insn);
4918 BND_TO (bnd) = insn;
4919
0fd4b31d 4920 ft_edge = find_fallthru_edge_from (block_from);
e855c69d
AB
4921 block_next = ft_edge->dest;
4922 /* There must be a fallthrough block (or where should go
4923 control flow in case of false jump predicate otherwise?). */
4924 gcc_assert (block_next);
4925
4926 /* Create new empty basic block after source block. */
4927 block_new = sel_split_edge (ft_edge);
4928 gcc_assert (block_new->next_bb == block_next
4929 && block_from->next_bb == block_new);
4930
324d3f45
AM
4931 /* Move all instructions except INSN to BLOCK_NEW. */
4932 bb = block_bnd;
4933 head = BB_HEAD (block_new);
4934 while (bb != block_from->next_bb)
e855c69d 4935 {
324d3f45
AM
4936 rtx from, to;
4937 from = bb == block_bnd ? prev : sel_bb_head (bb);
4938 to = bb == block_from ? next : sel_bb_end (bb);
e855c69d 4939
324d3f45
AM
4940 /* The jump being moved can be the first insn in the block.
4941 In this case we don't have to move anything in this block. */
4942 if (NEXT_INSN (to) != from)
4943 {
4944 reorder_insns (from, to, head);
4945
4946 for (link = to; link != head; link = PREV_INSN (link))
4947 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4948 head = to;
4949 }
e855c69d 4950
324d3f45
AM
4951 /* Cleanup possibly empty blocks left. */
4952 block_next = bb->next_bb;
4953 if (bb != block_from)
65592aad 4954 tidy_control_flow (bb, false);
324d3f45
AM
4955 bb = block_next;
4956 }
e855c69d
AB
4957
4958 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4959 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
e855c69d
AB
4960
4961 gcc_assert (!sel_bb_empty_p (block_from)
4962 && !sel_bb_empty_p (block_new));
4963
4964 /* Update data sets for BLOCK_NEW to represent that INSN and
4965 instructions from the other branch of INSN is no longer
4966 available at BLOCK_NEW. */
4967 BB_AV_LEVEL (block_new) = global_level;
4968 gcc_assert (BB_LV_SET (block_new) == NULL);
4969 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4970 update_data_sets (sel_bb_head (block_new));
4971
4972 /* INSN is a new basic block header - so prepare its data
4973 structures and update availability and liveness sets. */
4974 update_data_sets (insn);
4975
4976 if (sched_verbose >= 4)
4977 sel_print ("Moving jump %d\n", INSN_UID (insn));
4978}
4979
4980/* Remove nops generated during move_op for preventing removal of empty
4981 basic blocks. */
4982static void
b5b8b0ac 4983remove_temp_moveop_nops (bool full_tidying)
e855c69d
AB
4984{
4985 int i;
4986 insn_t insn;
b8698a0f 4987
ac47786e 4988 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
e855c69d
AB
4989 {
4990 gcc_assert (INSN_NOP_P (insn));
b5b8b0ac 4991 return_nop_to_pool (insn, full_tidying);
e855c69d
AB
4992 }
4993
4994 /* Empty the vector. */
4995 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
b8698a0f 4996 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
e855c69d
AB
4997 VEC_length (insn_t, vec_temp_moveop_nops));
4998}
4999
5000/* Records the maximal UID before moving up an instruction. Used for
5001 distinguishing between bookkeeping copies and original insns. */
5002static int max_uid_before_move_op = 0;
5003
5004/* Remove from AV_VLIW_P all instructions but next when debug counter
5005 tells us so. Next instruction is fetched from BNDS. */
5006static void
5007remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5008{
5009 if (! dbg_cnt (sel_sched_insn_cnt))
5010 /* Leave only the next insn in av_vliw. */
5011 {
5012 av_set_iterator av_it;
5013 expr_t expr;
5014 bnd_t bnd = BLIST_BND (bnds);
5015 insn_t next = BND_TO (bnd);
5016
5017 gcc_assert (BLIST_NEXT (bnds) == NULL);
5018
5019 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5020 if (EXPR_INSN_RTX (expr) != next)
5021 av_set_iter_remove (&av_it);
5022 }
5023}
5024
b8698a0f 5025/* Compute available instructions on BNDS. FENCE is the current fence. Write
e855c69d
AB
5026 the computed set to *AV_VLIW_P. */
5027static void
5028compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5029{
5030 if (sched_verbose >= 2)
5031 {
5032 sel_print ("Boundaries: ");
5033 dump_blist (bnds);
5034 sel_print ("\n");
5035 }
5036
5037 for (; bnds; bnds = BLIST_NEXT (bnds))
5038 {
5039 bnd_t bnd = BLIST_BND (bnds);
5040 av_set_t av1_copy;
5041 insn_t bnd_to = BND_TO (bnd);
5042
5043 /* Rewind BND->TO to the basic block header in case some bookkeeping
5044 instructions were inserted before BND->TO and it needs to be
5045 adjusted. */
5046 if (sel_bb_head_p (bnd_to))
5047 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5048 else
5049 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5050 {
5051 bnd_to = PREV_INSN (bnd_to);
5052 if (sel_bb_head_p (bnd_to))
5053 break;
5054 }
5055
5056 if (BND_TO (bnd) != bnd_to)
5057 {
5058 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5059 FENCE_INSN (fence) = bnd_to;
5060 BND_TO (bnd) = bnd_to;
5061 }
5062
5063 av_set_clear (&BND_AV (bnd));
5064 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5065
5066 av_set_clear (&BND_AV1 (bnd));
5067 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5068
5069 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
b8698a0f 5070
e855c69d
AB
5071 av1_copy = av_set_copy (BND_AV1 (bnd));
5072 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5073 }
5074
5075 if (sched_verbose >= 2)
5076 {
5077 sel_print ("Available exprs (vliw form): ");
5078 dump_av_set (*av_vliw_p);
5079 sel_print ("\n");
5080 }
5081}
5082
b8698a0f
L
5083/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5084 expression. When FOR_MOVEOP is true, also replace the register of
e855c69d
AB
5085 expressions found with the register from EXPR_VLIW. */
5086static av_set_t
5087find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5088{
5089 av_set_t expr_seq = NULL;
5090 expr_t expr;
5091 av_set_iterator i;
b8698a0f 5092
e855c69d
AB
5093 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5094 {
5095 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5096 {
5097 if (for_moveop)
5098 {
b8698a0f
L
5099 /* The sequential expression has the right form to pass
5100 to move_op except when renaming happened. Put the
e855c69d
AB
5101 correct register in EXPR then. */
5102 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5103 {
5104 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5105 {
5106 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5107 stat_renamed_scheduled++;
5108 }
b8698a0f
L
5109 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5110 This is needed when renaming came up with original
e855c69d 5111 register. */
b8698a0f 5112 else if (EXPR_TARGET_AVAILABLE (expr)
e855c69d
AB
5113 != EXPR_TARGET_AVAILABLE (expr_vliw))
5114 {
5115 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5116 EXPR_TARGET_AVAILABLE (expr) = 1;
5117 }
5118 }
5119 if (EXPR_WAS_SUBSTITUTED (expr))
5120 stat_substitutions_total++;
5121 }
5122
5123 av_set_add (&expr_seq, expr);
b8698a0f
L
5124
5125 /* With substitution inside insn group, it is possible
5126 that more than one expression in expr_seq will correspond
5127 to expr_vliw. In this case, choose one as the attempt to
e855c69d
AB
5128 move both leads to miscompiles. */
5129 break;
5130 }
5131 }
5132
5133 if (for_moveop && sched_verbose >= 2)
5134 {
5135 sel_print ("Best expression(s) (sequential form): ");
5136 dump_av_set (expr_seq);
5137 sel_print ("\n");
5138 }
b8698a0f 5139
e855c69d
AB
5140 return expr_seq;
5141}
5142
5143
5144/* Move nop to previous block. */
5145static void ATTRIBUTE_UNUSED
5146move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5147{
5148 insn_t prev_insn, next_insn, note;
5149
b8698a0f 5150 gcc_assert (sel_bb_head_p (nop)
e855c69d
AB
5151 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5152 note = bb_note (BLOCK_FOR_INSN (nop));
5153 prev_insn = sel_bb_end (prev_bb);
5154 next_insn = NEXT_INSN (nop);
5155 gcc_assert (prev_insn != NULL_RTX
5156 && PREV_INSN (note) == prev_insn);
5157
5158 NEXT_INSN (prev_insn) = nop;
5159 PREV_INSN (nop) = prev_insn;
5160
5161 PREV_INSN (note) = nop;
5162 NEXT_INSN (note) = next_insn;
5163
5164 NEXT_INSN (nop) = note;
5165 PREV_INSN (next_insn) = note;
5166
5167 BB_END (prev_bb) = nop;
5168 BLOCK_FOR_INSN (nop) = prev_bb;
5169}
5170
5171/* Prepare a place to insert the chosen expression on BND. */
5172static insn_t
5173prepare_place_to_insert (bnd_t bnd)
5174{
5175 insn_t place_to_insert;
5176
5177 /* Init place_to_insert before calling move_op, as the later
5178 can possibly remove BND_TO (bnd). */
5179 if (/* If this is not the first insn scheduled. */
5180 BND_PTR (bnd))
5181 {
5182 /* Add it after last scheduled. */
5183 place_to_insert = ILIST_INSN (BND_PTR (bnd));
b5b8b0ac
AO
5184 if (DEBUG_INSN_P (place_to_insert))
5185 {
5186 ilist_t l = BND_PTR (bnd);
5187 while ((l = ILIST_NEXT (l)) &&
5188 DEBUG_INSN_P (ILIST_INSN (l)))
5189 ;
5190 if (!l)
5191 place_to_insert = NULL;
5192 }
e855c69d
AB
5193 }
5194 else
b5b8b0ac
AO
5195 place_to_insert = NULL;
5196
5197 if (!place_to_insert)
e855c69d
AB
5198 {
5199 /* Add it before BND_TO. The difference is in the
5200 basic block, where INSN will be added. */
5201 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5202 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5203 == BLOCK_FOR_INSN (BND_TO (bnd)));
5204 }
5205
5206 return place_to_insert;
5207}
5208
b8698a0f 5209/* Find original instructions for EXPR_SEQ and move it to BND boundary.
e855c69d 5210 Return the expression to emit in C_EXPR. */
72a54528 5211static bool
b8698a0f 5212move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
e855c69d
AB
5213 av_set_t expr_seq, expr_t c_expr)
5214{
72a54528 5215 bool b, should_move;
e855c69d
AB
5216 unsigned book_uid;
5217 bitmap_iterator bi;
5218 int n_bookkeeping_copies_before_moveop;
5219
5220 /* Make a move. This call will remove the original operation,
5221 insert all necessary bookkeeping instructions and update the
5222 data sets. After that all we have to do is add the operation
5223 at before BND_TO (BND). */
5224 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5225 max_uid_before_move_op = get_max_uid ();
5226 bitmap_clear (current_copies);
5227 bitmap_clear (current_originators);
5228
b8698a0f 5229 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
72a54528 5230 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
e855c69d 5231
b8698a0f 5232 /* We should be able to find the expression we've chosen for
e855c69d 5233 scheduling. */
72a54528 5234 gcc_assert (b);
b8698a0f 5235
e855c69d
AB
5236 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5237 stat_insns_needed_bookkeeping++;
b8698a0f 5238
e855c69d
AB
5239 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5240 {
14f30b87
AM
5241 unsigned uid;
5242 bitmap_iterator bi;
5243
e855c69d
AB
5244 /* We allocate these bitmaps lazily. */
5245 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5246 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
b8698a0f
L
5247
5248 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
e855c69d 5249 current_originators);
14f30b87
AM
5250
5251 /* Transitively add all originators' originators. */
5252 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5253 if (INSN_ORIGINATORS_BY_UID (uid))
5254 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5255 INSN_ORIGINATORS_BY_UID (uid));
e855c69d 5256 }
72a54528
AM
5257
5258 return should_move;
e855c69d
AB
5259}
5260
5261
5262/* Debug a DFA state as an array of bytes. */
5263static void
5264debug_state (state_t state)
5265{
5266 unsigned char *p;
5267 unsigned int i, size = dfa_state_size;
5268
5269 sel_print ("state (%u):", size);
5270 for (i = 0, p = (unsigned char *) state; i < size; i++)
5271 sel_print (" %d", p[i]);
5272 sel_print ("\n");
5273}
5274
b8698a0f 5275/* Advance state on FENCE with INSN. Return true if INSN is
e855c69d
AB
5276 an ASM, and we should advance state once more. */
5277static bool
5278advance_state_on_fence (fence_t fence, insn_t insn)
5279{
5280 bool asm_p;
5281
5282 if (recog_memoized (insn) >= 0)
5283 {
5284 int res;
5285 state_t temp_state = alloca (dfa_state_size);
b8698a0f 5286
e855c69d
AB
5287 gcc_assert (!INSN_ASM_P (insn));
5288 asm_p = false;
5289
5290 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5291 res = state_transition (FENCE_STATE (fence), insn);
5292 gcc_assert (res < 0);
5293
5294 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5295 {
5296 FENCE_ISSUED_INSNS (fence)++;
5297
5298 /* We should never issue more than issue_rate insns. */
5299 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5300 gcc_unreachable ();
5301 }
b8698a0f 5302 }
e855c69d
AB
5303 else
5304 {
b8698a0f 5305 /* This could be an ASM insn which we'd like to schedule
e855c69d
AB
5306 on the next cycle. */
5307 asm_p = INSN_ASM_P (insn);
5308 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5309 advance_one_cycle (fence);
5310 }
5311
5312 if (sched_verbose >= 2)
5313 debug_state (FENCE_STATE (fence));
b5b8b0ac
AO
5314 if (!DEBUG_INSN_P (insn))
5315 FENCE_STARTS_CYCLE_P (fence) = 0;
136e01a3 5316 FENCE_ISSUE_MORE (fence) = can_issue_more;
e855c69d
AB
5317 return asm_p;
5318}
5319
5320/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5321 is nonzero if we need to stall after issuing INSN. */
5322static void
5323update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5324{
5325 bool asm_p;
b8698a0f 5326
e855c69d
AB
5327 /* First, reflect that something is scheduled on this fence. */
5328 asm_p = advance_state_on_fence (fence, insn);
5329 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5330 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5331 if (SCHED_GROUP_P (insn))
5332 {
5333 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5334 SCHED_GROUP_P (insn) = 0;
5335 }
5336 else
5337 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5338 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5339 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5340
5341 /* Set instruction scheduling info. This will be used in bundling,
5342 pipelining, tick computations etc. */
5343 ++INSN_SCHED_TIMES (insn);
5344 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5345 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5346 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5347 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5348
5349 /* This does not account for adjust_cost hooks, just add the biggest
b8698a0f 5350 constant the hook may add to the latency. TODO: make this
e855c69d 5351 a target dependent constant. */
b8698a0f
L
5352 INSN_READY_CYCLE (insn)
5353 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
e855c69d
AB
5354 ? 1
5355 : maximal_insn_latency (insn) + 1);
5356
5357 /* Change these fields last, as they're used above. */
5358 FENCE_AFTER_STALL_P (fence) = 0;
5359 if (asm_p || need_stall)
5360 advance_one_cycle (fence);
b8698a0f 5361
e855c69d
AB
5362 /* Indicate that we've scheduled something on this fence. */
5363 FENCE_SCHEDULED_P (fence) = true;
5364 scheduled_something_on_previous_fence = true;
5365
5366 /* Print debug information when insn's fields are updated. */
5367 if (sched_verbose >= 2)
5368 {
5369 sel_print ("Scheduling insn: ");
5370 dump_insn_1 (insn, 1);
5371 sel_print ("\n");
5372 }
5373}
5374
b5b8b0ac
AO
5375/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5376 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5377 return it. */
e855c69d 5378static blist_t *
b5b8b0ac 5379update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
e855c69d
AB
5380 blist_t *bnds_tailp)
5381{
5382 succ_iterator si;
5383 insn_t succ;
5384
5385 advance_deps_context (BND_DC (bnd), insn);
b8698a0f 5386 FOR_EACH_SUCC_1 (succ, si, insn,
e855c69d
AB
5387 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5388 {
5389 ilist_t ptr = ilist_copy (BND_PTR (bnd));
b8698a0f 5390
e855c69d 5391 ilist_add (&ptr, insn);
b5b8b0ac
AO
5392
5393 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5394 && is_ineligible_successor (succ, ptr))
5395 {
5396 ilist_clear (&ptr);
5397 continue;
5398 }
5399
5400 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5401 {
5402 if (sched_verbose >= 9)
5403 sel_print ("Updating fence insn from %i to %i\n",
5404 INSN_UID (insn), INSN_UID (succ));
5405 FENCE_INSN (fence) = succ;
5406 }
e855c69d
AB
5407 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5408 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5409 }
b8698a0f 5410
e855c69d
AB
5411 blist_remove (bndsp);
5412 return bnds_tailp;
5413}
5414
5415/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5416static insn_t
5417schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5418{
5419 av_set_t expr_seq;
5420 expr_t c_expr = XALLOCA (expr_def);
5421 insn_t place_to_insert;
5422 insn_t insn;
72a54528 5423 bool should_move;
e855c69d
AB
5424
5425 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5426
5427 /* In case of scheduling a jump skipping some other instructions,
b8698a0f 5428 prepare CFG. After this, jump is at the boundary and can be
e855c69d
AB
5429 scheduled as usual insn by MOVE_OP. */
5430 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5431 {
5432 insn = EXPR_INSN_RTX (expr_vliw);
b8698a0f 5433
e855c69d 5434 /* Speculative jumps are not handled. */
b8698a0f 5435 if (insn != BND_TO (bnd)
e855c69d
AB
5436 && !sel_insn_is_speculation_check (insn))
5437 move_cond_jump (insn, bnd);
5438 }
5439
e855c69d
AB
5440 /* Find a place for C_EXPR to schedule. */
5441 place_to_insert = prepare_place_to_insert (bnd);
72a54528 5442 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
e855c69d 5443 clear_expr (c_expr);
b8698a0f
L
5444
5445 /* Add the instruction. The corner case to care about is when
5446 the expr_seq set has more than one expr, and we chose the one that
5447 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
e855c69d
AB
5448 we can't use it. Generate the new vinsn. */
5449 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5450 {
5451 vinsn_t vinsn_new;
b8698a0f 5452
e855c69d
AB
5453 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5454 change_vinsn_in_expr (expr_vliw, vinsn_new);
72a54528 5455 should_move = false;
e855c69d 5456 }
72a54528
AM
5457 if (should_move)
5458 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5459 else
b8698a0f 5460 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
e855c69d 5461 place_to_insert);
e855c69d
AB
5462
5463 /* Return the nops generated for preserving of data sets back
5464 into pool. */
5465 if (INSN_NOP_P (place_to_insert))
b5b8b0ac
AO
5466 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5467 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
e855c69d
AB
5468
5469 av_set_clear (&expr_seq);
b8698a0f
L
5470
5471 /* Save the expression scheduled so to reset target availability if we'll
e855c69d
AB
5472 meet it later on the same fence. */
5473 if (EXPR_WAS_RENAMED (expr_vliw))
5474 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5475
5476 /* Check that the recent movement didn't destroyed loop
5477 structure. */
5478 gcc_assert (!pipelining_p
5479 || current_loop_nest == NULL
5480 || loop_latch_edge (current_loop_nest));
5481 return insn;
5482}
5483
5484/* Stall for N cycles on FENCE. */
5485static void
5486stall_for_cycles (fence_t fence, int n)
5487{
5488 int could_more;
b8698a0f 5489
e855c69d
AB
5490 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5491 while (n--)
5492 advance_one_cycle (fence);
5493 if (could_more)
5494 FENCE_AFTER_STALL_P (fence) = 1;
5495}
5496
b8698a0f
L
5497/* Gather a parallel group of insns at FENCE and assign their seqno
5498 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
e855c69d
AB
5499 list for later recalculation of seqnos. */
5500static void
5501fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5502{
5503 blist_t bnds = NULL, *bnds_tailp;
5504 av_set_t av_vliw = NULL;
5505 insn_t insn = FENCE_INSN (fence);
5506
5507 if (sched_verbose >= 2)
b8698a0f 5508 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
e855c69d
AB
5509 INSN_UID (insn), FENCE_CYCLE (fence));
5510
5511 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5512 bnds_tailp = &BLIST_NEXT (bnds);
5513 set_target_context (FENCE_TC (fence));
136e01a3 5514 can_issue_more = FENCE_ISSUE_MORE (fence);
e855c69d
AB
5515 target_bb = INSN_BB (insn);
5516
5517 /* Do while we can add any operation to the current group. */
5518 do
5519 {
5520 blist_t *bnds_tailp1, *bndsp;
5521 expr_t expr_vliw;
09a2806f 5522 int need_stall = false;
06f0c25f 5523 int was_stall = 0, scheduled_insns = 0;
e855c69d
AB
5524 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5525 int max_stall = pipelining_p ? 1 : 3;
b5b8b0ac
AO
5526 bool last_insn_was_debug = false;
5527 bool was_debug_bb_end_p = false;
5528
e855c69d
AB
5529 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5530 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5531 remove_insns_for_debug (bnds, &av_vliw);
5532
5533 /* Return early if we have nothing to schedule. */
5534 if (av_vliw == NULL)
5535 break;
5536
5537 /* Choose the best expression and, if needed, destination register
5538 for it. */
5539 do
5540 {
5541 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
06f0c25f 5542 if (! expr_vliw && need_stall)
e855c69d
AB
5543 {
5544 /* All expressions required a stall. Do not recompute av sets
5545 as we'll get the same answer (modulo the insns between
5546 the fence and its boundary, which will not be available for
06f0c25f
AB
5547 pipelining).
5548 If we are going to stall for too long, break to recompute av
e855c69d 5549 sets and bring more insns for pipelining. */
06f0c25f 5550 was_stall++;
e855c69d
AB
5551 if (need_stall <= 3)
5552 stall_for_cycles (fence, need_stall);
5553 else
5554 {
5555 stall_for_cycles (fence, 1);
5556 break;
5557 }
5558 }
5559 }
5560 while (! expr_vliw && need_stall);
b8698a0f 5561
e855c69d
AB
5562 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5563 if (!expr_vliw)
5564 {
5565 av_set_clear (&av_vliw);
5566 break;
5567 }
5568
5569 bndsp = &bnds;
5570 bnds_tailp1 = bnds_tailp;
5571
5572 do
b8698a0f 5573 /* This code will be executed only once until we'd have several
e855c69d
AB
5574 boundaries per fence. */
5575 {
5576 bnd_t bnd = BLIST_BND (*bndsp);
5577
5578 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5579 {
5580 bndsp = &BLIST_NEXT (*bndsp);
5581 continue;
5582 }
b8698a0f 5583
e855c69d 5584 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
b5b8b0ac
AO
5585 last_insn_was_debug = DEBUG_INSN_P (insn);
5586 if (last_insn_was_debug)
5587 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
e855c69d 5588 update_fence_and_insn (fence, insn, need_stall);
b5b8b0ac 5589 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
e855c69d
AB
5590
5591 /* Add insn to the list of scheduled on this cycle instructions. */
5592 ilist_add (*scheduled_insns_tailpp, insn);
5593 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5594 }
5595 while (*bndsp != *bnds_tailp1);
5596
5597 av_set_clear (&av_vliw);
b5b8b0ac
AO
5598 if (!last_insn_was_debug)
5599 scheduled_insns++;
e855c69d
AB
5600
5601 /* We currently support information about candidate blocks only for
5602 one 'target_bb' block. Hence we can't schedule after jump insn,
5603 as this will bring two boundaries and, hence, necessity to handle
5604 information for two or more blocks concurrently. */
b5b8b0ac 5605 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
b8698a0f
L
5606 || (was_stall
5607 && (was_stall >= max_stall
e855c69d
AB
5608 || scheduled_insns >= max_insns)))
5609 break;
5610 }
5611 while (bnds);
5612
5613 gcc_assert (!FENCE_BNDS (fence));
b8698a0f 5614
e855c69d
AB
5615 /* Update boundaries of the FENCE. */
5616 while (bnds)
5617 {
5618 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5619
5620 if (ptr)
5621 {
5622 insn = ILIST_INSN (ptr);
5623
5624 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5625 ilist_add (&FENCE_BNDS (fence), insn);
5626 }
b8698a0f 5627
e855c69d
AB
5628 blist_remove (&bnds);
5629 }
5630
5631 /* Update target context on the fence. */
5632 reset_target_context (FENCE_TC (fence), false);
5633}
5634
5635/* All exprs in ORIG_OPS must have the same destination register or memory.
5636 Return that destination. */
5637static rtx
5638get_dest_from_orig_ops (av_set_t orig_ops)
5639{
5640 rtx dest = NULL_RTX;
5641 av_set_iterator av_it;
5642 expr_t expr;
5643 bool first_p = true;
5644
5645 FOR_EACH_EXPR (expr, av_it, orig_ops)
5646 {
5647 rtx x = EXPR_LHS (expr);
5648
5649 if (first_p)
5650 {
5651 first_p = false;
5652 dest = x;
5653 }
5654 else
5655 gcc_assert (dest == x
5656 || (dest != NULL_RTX && x != NULL_RTX
5657 && rtx_equal_p (dest, x)));
5658 }
5659
5660 return dest;
5661}
5662
5663/* Update data sets for the bookkeeping block and record those expressions
5664 which become no longer available after inserting this bookkeeping. */
5665static void
5666update_and_record_unavailable_insns (basic_block book_block)
5667{
5668 av_set_iterator i;
5669 av_set_t old_av_set = NULL;
5670 expr_t cur_expr;
5671 rtx bb_end = sel_bb_end (book_block);
5672
b8698a0f 5673 /* First, get correct liveness in the bookkeeping block. The problem is
e855c69d
AB
5674 the range between the bookeeping insn and the end of block. */
5675 update_liveness_on_insn (bb_end);
5676 if (control_flow_insn_p (bb_end))
5677 update_liveness_on_insn (PREV_INSN (bb_end));
5678
5679 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5680 fence above, where we may choose to schedule an insn which is
5681 actually blocked from moving up with the bookkeeping we create here. */
5682 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5683 {
5684 old_av_set = av_set_copy (BB_AV_SET (book_block));
5685 update_data_sets (sel_bb_head (book_block));
b8698a0f 5686
e855c69d
AB
5687 /* Traverse all the expressions in the old av_set and check whether
5688 CUR_EXPR is in new AV_SET. */
5689 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5690 {
b8698a0f 5691 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
e855c69d
AB
5692 EXPR_VINSN (cur_expr));
5693
b8698a0f
L
5694 if (! new_expr
5695 /* In this case, we can just turn off the E_T_A bit, but we can't
e855c69d 5696 represent this information with the current vector. */
b8698a0f 5697 || EXPR_TARGET_AVAILABLE (new_expr)
e855c69d
AB
5698 != EXPR_TARGET_AVAILABLE (cur_expr))
5699 /* Unfortunately, the below code could be also fired up on
5700 separable insns.
5701 FIXME: add an example of how this could happen. */
5702 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5703 }
5704
5705 av_set_clear (&old_av_set);
5706 }
5707}
5708
b8698a0f 5709/* The main effect of this function is that sparams->c_expr is merged
e855c69d
AB
5710 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5711 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
b8698a0f
L
5712 lparams->c_expr_merged is copied back to sparams->c_expr after all
5713 successors has been traversed. lparams->c_expr_local is an expr allocated
5714 on stack in the caller function, and is used if there is more than one
5715 successor.
e855c69d
AB
5716
5717 SUCC is one of the SUCCS_NORMAL successors of INSN,
5718 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5719 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5720static void
b8698a0f
L
5721move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5722 insn_t succ ATTRIBUTE_UNUSED,
5723 int moveop_drv_call_res,
e855c69d
AB
5724 cmpd_local_params_p lparams, void *static_params)
5725{
5726 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5727
5728 /* Nothing to do, if original expr wasn't found below. */
5729 if (moveop_drv_call_res != 1)
5730 return;
5731
5732 /* If this is a first successor. */
5733 if (!lparams->c_expr_merged)
5734 {
5735 lparams->c_expr_merged = sparams->c_expr;
5736 sparams->c_expr = lparams->c_expr_local;
5737 }
5738 else
5739 {
5740 /* We must merge all found expressions to get reasonable
5741 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5742 do so then we can first find the expr with epsilon
5743 speculation success probability and only then with the
5744 good probability. As a result the insn will get epsilon
5745 probability and will never be scheduled because of
5746 weakness_cutoff in find_best_expr.
5747
b8698a0f 5748 We call merge_expr_data here instead of merge_expr
e855c69d
AB
5749 because due to speculation C_EXPR and X may have the
5750 same insns with different speculation types. And as of
b8698a0f 5751 now such insns are considered non-equal.
e855c69d 5752
b8698a0f
L
5753 However, EXPR_SCHED_TIMES is different -- we must get
5754 SCHED_TIMES from a real insn, not a bookkeeping copy.
e855c69d 5755 We force this here. Instead, we may consider merging
b8698a0f 5756 SCHED_TIMES to the maximum instead of minimum in the
e855c69d
AB
5757 below function. */
5758 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5759
5760 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5761 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5762 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5763
5764 clear_expr (sparams->c_expr);
5765 }
5766}
5767
5768/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5769
5770 SUCC is one of the SUCCS_NORMAL successors of INSN,
5771 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5772 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5773 STATIC_PARAMS contain USED_REGS set. */
5774static void
b8698a0f
L
5775fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5776 int moveop_drv_call_res,
5777 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5778 void *static_params)
5779{
5780 regset succ_live;
5781 fur_static_params_p sparams = (fur_static_params_p) static_params;
5782
5783 /* Here we compute live regsets only for branches that do not lie
b8698a0f 5784 on the code motion paths. These branches correspond to value
e855c69d
AB
5785 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5786 for such branches code_motion_path_driver is not called. */
5787 if (moveop_drv_call_res != 0)
5788 return;
5789
5790 /* Mark all registers that do not meet the following condition:
5791 (3) not live on the other path of any conditional branch
5792 that is passed by the operation, in case original
5793 operations are not present on both paths of the
5794 conditional branch. */
5795 succ_live = compute_live (succ);
5796 IOR_REG_SET (sparams->used_regs, succ_live);
5797}
5798
5799/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5800 into SP->CEXPR. */
5801static void
5802move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
b8698a0f 5803{
e855c69d
AB
5804 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5805
5806 sp->c_expr = lp->c_expr_merged;
5807}
5808
5809/* Track bookkeeping copies created, insns scheduled, and blocks for
5810 rescheduling when INSN is found by move_op. */
5811static void
5812track_scheduled_insns_and_blocks (rtx insn)
5813{
5814 /* Even if this insn can be a copy that will be removed during current move_op,
5815 we still need to count it as an originator. */
5816 bitmap_set_bit (current_originators, INSN_UID (insn));
5817
fcaa4ca4 5818 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
e855c69d
AB
5819 {
5820 /* Note that original block needs to be rescheduled, as we pulled an
5821 instruction out of it. */
5822 if (INSN_SCHED_TIMES (insn) > 0)
5823 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
b5b8b0ac 5824 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
e855c69d
AB
5825 num_insns_scheduled++;
5826 }
e855c69d
AB
5827
5828 /* For instructions we must immediately remove insn from the
5829 stream, so subsequent update_data_sets () won't include this
5830 insn into av_set.
5831 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5832 if (INSN_UID (insn) > max_uid_before_move_op)
5833 stat_bookkeeping_copies--;
5834}
5835
b8698a0f 5836/* Emit a register-register copy for INSN if needed. Return true if
e855c69d
AB
5837 emitted one. PARAMS is the move_op static parameters. */
5838static bool
b8698a0f 5839maybe_emit_renaming_copy (rtx insn,
e855c69d
AB
5840 moveop_static_params_p params)
5841{
5842 bool insn_emitted = false;
f07013eb 5843 rtx cur_reg;
e855c69d 5844
f07013eb
AM
5845 /* Bail out early when expression can not be renamed at all. */
5846 if (!EXPR_SEPARABLE_P (params->c_expr))
5847 return false;
5848
5849 cur_reg = expr_dest_reg (params->c_expr);
5850 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
e855c69d
AB
5851
5852 /* If original operation has expr and the register chosen for
5853 that expr is not original operation's dest reg, substitute
5854 operation's right hand side with the register chosen. */
f07013eb 5855 if (REGNO (params->dest) != REGNO (cur_reg))
e855c69d
AB
5856 {
5857 insn_t reg_move_insn, reg_move_insn_rtx;
b8698a0f
L
5858
5859 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
e855c69d 5860 params->dest);
b8698a0f
L
5861 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5862 INSN_EXPR (insn),
5863 INSN_SEQNO (insn),
e855c69d
AB
5864 insn);
5865 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5866 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
b8698a0f 5867
e855c69d
AB
5868 insn_emitted = true;
5869 params->was_renamed = true;
5870 }
b8698a0f 5871
e855c69d
AB
5872 return insn_emitted;
5873}
5874
b8698a0f
L
5875/* Emit a speculative check for INSN speculated as EXPR if needed.
5876 Return true if we've emitted one. PARAMS is the move_op static
e855c69d
AB
5877 parameters. */
5878static bool
5879maybe_emit_speculative_check (rtx insn, expr_t expr,
5880 moveop_static_params_p params)
5881{
5882 bool insn_emitted = false;
5883 insn_t x;
5884 ds_t check_ds;
5885
5886 check_ds = get_spec_check_type_for_insn (insn, expr);
5887 if (check_ds != 0)
5888 {
5889 /* A speculation check should be inserted. */
5890 x = create_speculation_check (params->c_expr, check_ds, insn);
5891 insn_emitted = true;
5892 }
5893 else
5894 {
5895 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5896 x = insn;
5897 }
b8698a0f 5898
e855c69d
AB
5899 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5900 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5901 return insn_emitted;
5902}
5903
b8698a0f
L
5904/* Handle transformations that leave an insn in place of original
5905 insn such as renaming/speculation. Return true if one of such
e855c69d
AB
5906 transformations actually happened, and we have emitted this insn. */
5907static bool
b8698a0f 5908handle_emitting_transformations (rtx insn, expr_t expr,
e855c69d
AB
5909 moveop_static_params_p params)
5910{
5911 bool insn_emitted = false;
5912
5913 insn_emitted = maybe_emit_renaming_copy (insn, params);
5914 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5915
5916 return insn_emitted;
b8698a0f 5917}
e855c69d 5918
b5b8b0ac
AO
5919/* If INSN is the only insn in the basic block (not counting JUMP,
5920 which may be a jump to next insn, and DEBUG_INSNs), we want to
5921 leave a NOP there till the return to fill_insns. */
5922
5923static bool
5924need_nop_to_preserve_insn_bb (rtx insn)
e855c69d 5925{
b5b8b0ac 5926 insn_t bb_head, bb_end, bb_next, in_next;
e855c69d
AB
5927 basic_block bb = BLOCK_FOR_INSN (insn);
5928
e855c69d
AB
5929 bb_head = sel_bb_head (bb);
5930 bb_end = sel_bb_end (bb);
e855c69d 5931
b5b8b0ac
AO
5932 if (bb_head == bb_end)
5933 return true;
5934
5935 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5936 bb_head = NEXT_INSN (bb_head);
5937
5938 if (bb_head == bb_end)
5939 return true;
5940
5941 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5942 bb_end = PREV_INSN (bb_end);
5943
5944 if (bb_head == bb_end)
5945 return true;
5946
5947 bb_next = NEXT_INSN (bb_head);
5948 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5949 bb_next = NEXT_INSN (bb_next);
5950
5951 if (bb_next == bb_end && JUMP_P (bb_end))
5952 return true;
5953
5954 in_next = NEXT_INSN (insn);
5955 while (DEBUG_INSN_P (in_next))
5956 in_next = NEXT_INSN (in_next);
5957
5958 if (IN_CURRENT_FENCE_P (in_next))
5959 return true;
5960
5961 return false;
5962}
5963
5964/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5965 is not removed but reused when INSN is re-emitted. */
5966static void
5967remove_insn_from_stream (rtx insn, bool only_disconnect)
5968{
e855c69d
AB
5969 /* If there's only one insn in the BB, make sure that a nop is
5970 inserted into it, so the basic block won't disappear when we'll
5971 delete INSN below with sel_remove_insn. It should also survive
b8698a0f 5972 till the return to fill_insns. */
b5b8b0ac 5973 if (need_nop_to_preserve_insn_bb (insn))
e855c69d 5974 {
b5b8b0ac 5975 insn_t nop = get_nop_from_pool (insn);
e855c69d
AB
5976 gcc_assert (INSN_NOP_P (nop));
5977 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5978 }
5979
5980 sel_remove_insn (insn, only_disconnect, false);
5981}
5982
5983/* This function is called when original expr is found.
b8698a0f 5984 INSN - current insn traversed, EXPR - the corresponding expr found.
e855c69d
AB
5985 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5986 is static parameters of move_op. */
5987static void
b8698a0f
L
5988move_op_orig_expr_found (insn_t insn, expr_t expr,
5989 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
5990 void *static_params)
5991{
5992 bool only_disconnect, insn_emitted;
5993 moveop_static_params_p params = (moveop_static_params_p) static_params;
b8698a0f 5994
e855c69d
AB
5995 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5996 track_scheduled_insns_and_blocks (insn);
5997 insn_emitted = handle_emitting_transformations (insn, expr, params);
5998 only_disconnect = (params->uid == INSN_UID (insn)
5999 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
72a54528
AM
6000
6001 /* Mark that we've disconnected an insn. */
6002 if (only_disconnect)
6003 params->uid = -1;
e855c69d
AB
6004 remove_insn_from_stream (insn, only_disconnect);
6005}
6006
6007/* The function is called when original expr is found.
6008 INSN - current insn traversed, EXPR - the corresponding expr found,
6009 crosses_call and original_insns in STATIC_PARAMS are updated. */
6010static void
6011fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6012 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6013 void *static_params)
6014{
6015 fur_static_params_p params = (fur_static_params_p) static_params;
6016 regset tmp;
6017
6018 if (CALL_P (insn))
6019 params->crosses_call = true;
6020
6021 def_list_add (params->original_insns, insn, params->crosses_call);
6022
6023 /* Mark the registers that do not meet the following condition:
b8698a0f
L
6024 (2) not among the live registers of the point
6025 immediately following the first original operation on
e855c69d
AB
6026 a given downward path, except for the original target
6027 register of the operation. */
6028 tmp = get_clear_regset_from_pool ();
6029 compute_live_below_insn (insn, tmp);
6030 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6031 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6032 IOR_REG_SET (params->used_regs, tmp);
6033 return_regset_to_pool (tmp);
6034
6035 /* (*1) We need to add to USED_REGS registers that are read by
6036 INSN's lhs. This may lead to choosing wrong src register.
6037 E.g. (scheduling const expr enabled):
6038
6039 429: ax=0x0 <- Can't use AX for this expr (0x0)
6040 433: dx=[bp-0x18]
6041 427: [ax+dx+0x1]=ax
6042 REG_DEAD: ax
6043 168: di=dx
6044 REG_DEAD: dx
6045 */
b8698a0f 6046 /* FIXME: see comment above and enable MEM_P
e855c69d
AB
6047 in vinsn_separable_p. */
6048 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6049 || !MEM_P (INSN_LHS (insn)));
6050}
6051
6052/* This function is called on the ascending pass, before returning from
6053 current basic block. */
6054static void
b8698a0f 6055move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
e855c69d
AB
6056 void *static_params)
6057{
6058 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6059 basic_block book_block = NULL;
6060
b8698a0f 6061 /* When we have removed the boundary insn for scheduling, which also
e855c69d 6062 happened to be the end insn in its bb, we don't need to update sets. */
b8698a0f 6063 if (!lparams->removed_last_insn
e855c69d
AB
6064 && lparams->e1
6065 && sel_bb_head_p (insn))
6066 {
6067 /* We should generate bookkeeping code only if we are not at the
6068 top level of the move_op. */
6069 if (sel_num_cfg_preds_gt_1 (insn))
6070 book_block = generate_bookkeeping_insn (sparams->c_expr,
6071 lparams->e1, lparams->e2);
6072 /* Update data sets for the current insn. */
6073 update_data_sets (insn);
6074 }
b8698a0f 6075
e855c69d 6076 /* If bookkeeping code was inserted, we need to update av sets of basic
b8698a0f 6077 block that received bookkeeping. After generation of bookkeeping insn,
e855c69d 6078 bookkeeping block does not contain valid av set because we are not following
b8698a0f 6079 the original algorithm in every detail with regards to e.g. renaming
e855c69d 6080 simple reg-reg copies. Consider example:
b8698a0f 6081
e855c69d
AB
6082 bookkeeping block scheduling fence
6083 \ /
6084 \ join /
6085 ----------
6086 | |
6087 ----------
6088 / \
6089 / \
6090 r1 := r2 r1 := r3
6091
b8698a0f 6092 We try to schedule insn "r1 := r3" on the current
e855c69d
AB
6093 scheduling fence. Also, note that av set of bookkeeping block
6094 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6095 been scheduled, the CFG is as follows:
6096
6097 r1 := r3 r1 := r3
6098 bookkeeping block scheduling fence
6099 \ /
6100 \ join /
6101 ----------
6102 | |
6103 ----------
6104 / \
6105 / \
6106 r1 := r2
6107
6108 Here, insn "r1 := r3" was scheduled at the current scheduling point
6109 and bookkeeping code was generated at the bookeeping block. This
6110 way insn "r1 := r2" is no longer available as a whole instruction
6111 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
b8698a0f 6112 This situation is handled by calling update_data_sets.
e855c69d
AB
6113
6114 Since update_data_sets is called only on the bookkeeping block, and
b8698a0f 6115 it also may have predecessors with av_sets, containing instructions that
e855c69d
AB
6116 are no longer available, we save all such expressions that become
6117 unavailable during data sets update on the bookkeeping block in
b8698a0f
L
6118 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6119 expressions for scheduling. This allows us to avoid recomputation of
e855c69d 6120 av_sets outside the code motion path. */
b8698a0f 6121
e855c69d
AB
6122 if (book_block)
6123 update_and_record_unavailable_insns (book_block);
6124
6125 /* If INSN was previously marked for deletion, it's time to do it. */
6126 if (lparams->removed_last_insn)
6127 insn = PREV_INSN (insn);
b8698a0f 6128
e855c69d
AB
6129 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6130 kill a block with a single nop in which the insn should be emitted. */
6131 if (lparams->e1)
6132 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6133}
6134
6135/* This function is called on the ascending pass, before returning from the
6136 current basic block. */
6137static void
b8698a0f
L
6138fur_at_first_insn (insn_t insn,
6139 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
e855c69d
AB
6140 void *static_params ATTRIBUTE_UNUSED)
6141{
6142 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6143 || AV_LEVEL (insn) == -1);
6144}
6145
6146/* Called on the backward stage of recursion to call moveup_expr for insn
6147 and sparams->c_expr. */
6148static void
6149move_op_ascend (insn_t insn, void *static_params)
6150{
6151 enum MOVEUP_EXPR_CODE res;
6152 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6153
6154 if (! INSN_NOP_P (insn))
6155 {
6156 res = moveup_expr_cached (sparams->c_expr, insn, false);
6157 gcc_assert (res != MOVEUP_EXPR_NULL);
6158 }
6159
6160 /* Update liveness for this insn as it was invalidated. */
6161 update_liveness_on_insn (insn);
6162}
6163
b8698a0f
L
6164/* This function is called on enter to the basic block.
6165 Returns TRUE if this block already have been visited and
e855c69d
AB
6166 code_motion_path_driver should return 1, FALSE otherwise. */
6167static int
b8698a0f 6168fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
e855c69d
AB
6169 void *static_params, bool visited_p)
6170{
6171 fur_static_params_p sparams = (fur_static_params_p) static_params;
6172
6173 if (visited_p)
6174 {
6175 /* If we have found something below this block, there should be at
6176 least one insn in ORIGINAL_INSNS. */
6177 gcc_assert (*sparams->original_insns);
6178
6179 /* Adjust CROSSES_CALL, since we may have come to this block along
6180 different path. */
6181 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6182 |= sparams->crosses_call;
6183 }
6184 else
6185 local_params->old_original_insns = *sparams->original_insns;
6186
6187 return 1;
6188}
6189
6190/* Same as above but for move_op. */
6191static int
b8698a0f
L
6192move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6193 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
e855c69d
AB
6194 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6195{
6196 if (visited_p)
6197 return -1;
6198 return 1;
6199}
6200
b8698a0f 6201/* This function is called while descending current basic block if current
e855c69d
AB
6202 insn is not the original EXPR we're searching for.
6203
b8698a0f 6204 Return value: FALSE, if code_motion_path_driver should perform a local
e855c69d
AB
6205 cleanup and return 0 itself;
6206 TRUE, if code_motion_path_driver should continue. */
6207static bool
6208move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6209 void *static_params)
6210{
6211 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6212
6213#ifdef ENABLE_CHECKING
6214 sparams->failed_insn = insn;
6215#endif
6216
6217 /* If we're scheduling separate expr, in order to generate correct code
b8698a0f 6218 we need to stop the search at bookkeeping code generated with the
e855c69d
AB
6219 same destination register or memory. */
6220 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6221 return false;
6222 return true;
6223}
6224
b8698a0f 6225/* This function is called while descending current basic block if current
e855c69d
AB
6226 insn is not the original EXPR we're searching for.
6227
6228 Return value: TRUE (code_motion_path_driver should continue). */
6229static bool
6230fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6231{
6232 bool mutexed;
6233 expr_t r;
6234 av_set_iterator avi;
6235 fur_static_params_p sparams = (fur_static_params_p) static_params;
6236
6237 if (CALL_P (insn))
6238 sparams->crosses_call = true;
b5b8b0ac
AO
6239 else if (DEBUG_INSN_P (insn))
6240 return true;
e855c69d
AB
6241
6242 /* If current insn we are looking at cannot be executed together
6243 with original insn, then we can skip it safely.
6244
6245 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6246 INSN = (!p6) r14 = r14 + 1;
6247
6248 Here we can schedule ORIG_OP with lhs = r14, though only
6249 looking at the set of used and set registers of INSN we must
6250 forbid it. So, add set/used in INSN registers to the
6251 untouchable set only if there is an insn in ORIG_OPS that can
6252 affect INSN. */
6253 mutexed = true;
6254 FOR_EACH_EXPR (r, avi, orig_ops)
6255 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6256 {
6257 mutexed = false;
6258 break;
6259 }
6260
6261 /* Mark all registers that do not meet the following condition:
6262 (1) Not set or read on any path from xi to an instance of the
6263 original operation. */
6264 if (!mutexed)
6265 {
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6267 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6268 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6269 }
6270
6271 return true;
6272}
6273
6274/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6275struct code_motion_path_driver_info_def move_op_hooks = {
6276 move_op_on_enter,
6277 move_op_orig_expr_found,
6278 move_op_orig_expr_not_found,
6279 move_op_merge_succs,
6280 move_op_after_merge_succs,
6281 move_op_ascend,
6282 move_op_at_first_insn,
6283 SUCCS_NORMAL,
6284 "move_op"
6285};
6286
b8698a0f 6287/* Hooks and data to perform find_used_regs operations
e855c69d
AB
6288 with code_motion_path_driver. */
6289struct code_motion_path_driver_info_def fur_hooks = {
6290 fur_on_enter,
6291 fur_orig_expr_found,
6292 fur_orig_expr_not_found,
6293 fur_merge_succs,
6294 NULL, /* fur_after_merge_succs */
6295 NULL, /* fur_ascend */
6296 fur_at_first_insn,
6297 SUCCS_ALL,
6298 "find_used_regs"
6299};
6300
6301/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
b8698a0f
L
6302 code_motion_path_driver is called recursively. Original operation
6303 was found at least on one path that is starting with one of INSN's
e855c69d
AB
6304 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6305 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
b8698a0f 6306 of either move_op or find_used_regs depending on the caller.
e855c69d
AB
6307
6308 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6309 know for sure at this point. */
6310static int
b8698a0f 6311code_motion_process_successors (insn_t insn, av_set_t orig_ops,
e855c69d
AB
6312 ilist_t path, void *static_params)
6313{
6314 int res = 0;
6315 succ_iterator succ_i;
6316 rtx succ;
6317 basic_block bb;
6318 int old_index;
6319 unsigned old_succs;
6320
6321 struct cmpd_local_params lparams;
6322 expr_def _x;
6323
6324 lparams.c_expr_local = &_x;
6325 lparams.c_expr_merged = NULL;
6326
6327 /* We need to process only NORMAL succs for move_op, and collect live
b8698a0f
L
6328 registers from ALL branches (including those leading out of the
6329 region) for find_used_regs.
e855c69d
AB
6330
6331 In move_op, there can be a case when insn's bb number has changed
b8698a0f
L
6332 due to created bookkeeping. This happens very rare, as we need to
6333 move expression from the beginning to the end of the same block.
6334 Rescan successors in this case. */
e855c69d
AB
6335
6336 rescan:
6337 bb = BLOCK_FOR_INSN (insn);
b8698a0f 6338 old_index = bb->index;
e855c69d 6339 old_succs = EDGE_COUNT (bb->succs);
b8698a0f 6340
e855c69d
AB
6341 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6342 {
6343 int b;
6344
6345 lparams.e1 = succ_i.e1;
6346 lparams.e2 = succ_i.e2;
6347
6348 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6349 current region). */
6350 if (succ_i.current_flags == SUCCS_NORMAL)
b8698a0f 6351 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
e855c69d
AB
6352 static_params);
6353 else
6354 b = 0;
6355
6356 /* Merge c_expres found or unify live register sets from different
6357 successors. */
6358 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6359 static_params);
6360 if (b == 1)
6361 res = b;
6362 else if (b == -1 && res != 1)
6363 res = b;
6364
6365 /* We have simplified the control flow below this point. In this case,
6366 the iterator becomes invalid. We need to try again. */
6367 if (BLOCK_FOR_INSN (insn)->index != old_index
6368 || EDGE_COUNT (bb->succs) != old_succs)
7c1f0b40
DM
6369 {
6370 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6371 goto rescan;
6372 }
e855c69d
AB
6373 }
6374
cefb375a 6375#ifdef ENABLE_CHECKING
b8698a0f 6376 /* Here, RES==1 if original expr was found at least for one of the
e855c69d 6377 successors. After the loop, RES may happen to have zero value
b8698a0f
L
6378 only if at some point the expr searched is present in av_set, but is
6379 not found below. In most cases, this situation is an error.
e855c69d
AB
6380 The exception is when the original operation is blocked by
6381 bookkeeping generated for another fence or for another path in current
6382 move_op. */
cefb375a
NF
6383 gcc_assert (res == 1
6384 || (res == 0
6385 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6386 static_params))
6387 || res == -1);
6388#endif
b8698a0f 6389
e855c69d 6390 /* Merge data, clean up, etc. */
72a54528 6391 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
e855c69d
AB
6392 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6393
6394 return res;
6395}
6396
6397
b8698a0f
L
6398/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6399 is the pointer to the av set with expressions we were looking for,
e855c69d
AB
6400 PATH_P is the pointer to the traversed path. */
6401static inline void
6402code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6403{
6404 ilist_remove (path_p);
6405 av_set_clear (orig_ops_p);
6406}
6407
b8698a0f
L
6408/* The driver function that implements move_op or find_used_regs
6409 functionality dependent whether code_motion_path_driver_INFO is set to
6410 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
e855c69d
AB
6411 of code (CFG traversal etc) that are shared among both functions. INSN
6412 is the insn we're starting the search from, ORIG_OPS are the expressions
6413 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6414 parameters of the driver, and STATIC_PARAMS are static parameters of
b8698a0f 6415 the caller.
e855c69d
AB
6416
6417 Returns whether original instructions were found. Note that top-level
6418 code_motion_path_driver always returns true. */
72a54528 6419static int
b8698a0f
L
6420code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6421 cmpd_local_params_p local_params_in,
e855c69d
AB
6422 void *static_params)
6423{
6424 expr_t expr = NULL;
6425 basic_block bb = BLOCK_FOR_INSN (insn);
6426 insn_t first_insn, bb_tail, before_first;
6427 bool removed_last_insn = false;
6428
6429 if (sched_verbose >= 6)
6430 {
6431 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6432 dump_insn (insn);
6433 sel_print (",");
6434 dump_av_set (orig_ops);
6435 sel_print (")\n");
6436 }
6437
6438 gcc_assert (orig_ops);
6439
6440 /* If no original operations exist below this insn, return immediately. */
6441 if (is_ineligible_successor (insn, path))
6442 {
6443 if (sched_verbose >= 6)
6444 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6445 return false;
6446 }
b8698a0f 6447
e855c69d
AB
6448 /* The block can have invalid av set, in which case it was created earlier
6449 during move_op. Return immediately. */
6450 if (sel_bb_head_p (insn))
6451 {
6452 if (! AV_SET_VALID_P (insn))
6453 {
6454 if (sched_verbose >= 6)
6455 sel_print ("Returned from block %d as it had invalid av set\n",
6456 bb->index);
6457 return false;
6458 }
6459
6460 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6461 {
6462 /* We have already found an original operation on this branch, do not
6463 go any further and just return TRUE here. If we don't stop here,
b8698a0f 6464 function can have exponential behaviour even on the small code
e855c69d
AB
6465 with many different paths (e.g. with data speculation and
6466 recovery blocks). */
6467 if (sched_verbose >= 6)
6468 sel_print ("Block %d already visited in this traversal\n", bb->index);
6469 if (code_motion_path_driver_info->on_enter)
b8698a0f 6470 return code_motion_path_driver_info->on_enter (insn,
e855c69d 6471 local_params_in,
b8698a0f 6472 static_params,
e855c69d
AB
6473 true);
6474 }
6475 }
b8698a0f 6476
e855c69d
AB
6477 if (code_motion_path_driver_info->on_enter)
6478 code_motion_path_driver_info->on_enter (insn, local_params_in,
6479 static_params, false);
6480 orig_ops = av_set_copy (orig_ops);
6481
6482 /* Filter the orig_ops set. */
6483 if (AV_SET_VALID_P (insn))
5d369d58 6484 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
e855c69d
AB
6485
6486 /* If no more original ops, return immediately. */
6487 if (!orig_ops)
6488 {
6489 if (sched_verbose >= 6)
6490 sel_print ("No intersection with av set of block %d\n", bb->index);
6491 return false;
6492 }
6493
6494 /* For non-speculative insns we have to leave only one form of the
b8698a0f 6495 original operation, because if we don't, we may end up with
e855c69d
AB
6496 different C_EXPRes and, consequently, with bookkeepings for different
6497 expression forms along the same code motion path. That may lead to
b8698a0f
L
6498 generation of incorrect code. So for each code motion we stick to
6499 the single form of the instruction, except for speculative insns
6500 which we need to keep in different forms with all speculation
e855c69d
AB
6501 types. */
6502 av_set_leave_one_nonspec (&orig_ops);
6503
6504 /* It is not possible that all ORIG_OPS are filtered out. */
6505 gcc_assert (orig_ops);
6506
6507 /* It is enough to place only heads and tails of visited basic blocks into
6508 the PATH. */
6509 ilist_add (&path, insn);
6510 first_insn = insn;
6511 bb_tail = sel_bb_end (bb);
6512
6513 /* Descend the basic block in search of the original expr; this part
b8698a0f 6514 corresponds to the part of the original move_op procedure executed
e855c69d
AB
6515 before the recursive call. */
6516 for (;;)
6517 {
6518 /* Look at the insn and decide if it could be an ancestor of currently
6519 scheduling operation. If it is so, then the insn "dest = op" could
6520 either be replaced with "dest = reg", because REG now holds the result
6521 of OP, or just removed, if we've scheduled the insn as a whole.
6522
6523 If this insn doesn't contain currently scheduling OP, then proceed
6524 with searching and look at its successors. Operations we're searching
b8698a0f 6525 for could have changed when moving up through this insn via
e855c69d
AB
6526 substituting. In this case, perform unsubstitution on them first.
6527
6528 When traversing the DAG below this insn is finished, insert
6529 bookkeeping code, if the insn is a joint point, and remove
6530 leftovers. */
6531
6532 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6533 if (expr)
6534 {
6535 insn_t last_insn = PREV_INSN (insn);
6536
6537 /* We have found the original operation. */
6538 if (sched_verbose >= 6)
6539 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6540
b8698a0f 6541 code_motion_path_driver_info->orig_expr_found
e855c69d
AB
6542 (insn, expr, local_params_in, static_params);
6543
6544 /* Step back, so on the way back we'll start traversing from the
b8698a0f 6545 previous insn (or we'll see that it's bb_note and skip that
e855c69d
AB
6546 loop). */
6547 if (insn == first_insn)
6548 {
6549 first_insn = NEXT_INSN (last_insn);
6550 removed_last_insn = sel_bb_end_p (last_insn);
6551 }
6552 insn = last_insn;
6553 break;
6554 }
6555 else
6556 {
6557 /* We haven't found the original expr, continue descending the basic
6558 block. */
b8698a0f 6559 if (code_motion_path_driver_info->orig_expr_not_found
e855c69d
AB
6560 (insn, orig_ops, static_params))
6561 {
b8698a0f 6562 /* Av set ops could have been changed when moving through this
e855c69d
AB
6563 insn. To find them below it, we have to un-substitute them. */
6564 undo_transformations (&orig_ops, insn);
6565 }
6566 else
6567 {
6568 /* Clean up and return, if the hook tells us to do so. It may
b8698a0f 6569 happen if we've encountered the previously created
e855c69d
AB
6570 bookkeeping. */
6571 code_motion_path_driver_cleanup (&orig_ops, &path);
6572 return -1;
6573 }
6574
6575 gcc_assert (orig_ops);
6576 }
6577
6578 /* Stop at insn if we got to the end of BB. */
6579 if (insn == bb_tail)
6580 break;
6581
6582 insn = NEXT_INSN (insn);
6583 }
6584
b8698a0f 6585 /* Here INSN either points to the insn before the original insn (may be
e855c69d
AB
6586 bb_note, if original insn was a bb_head) or to the bb_end. */
6587 if (!expr)
6588 {
6589 int res;
7c1f0b40
DM
6590 rtx last_insn = PREV_INSN (insn);
6591 bool added_to_path;
e855c69d
AB
6592
6593 gcc_assert (insn == sel_bb_end (bb));
6594
6595 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6596 it's already in PATH then). */
6597 if (insn != first_insn)
7c1f0b40
DM
6598 {
6599 ilist_add (&path, insn);
6600 added_to_path = true;
6601 }
6602 else
6603 added_to_path = false;
e855c69d 6604
b8698a0f
L
6605 /* Process_successors should be able to find at least one
6606 successor for which code_motion_path_driver returns TRUE. */
6607 res = code_motion_process_successors (insn, orig_ops,
e855c69d
AB
6608 path, static_params);
6609
7c1f0b40
DM
6610 /* Jump in the end of basic block could have been removed or replaced
6611 during code_motion_process_successors, so recompute insn as the
6612 last insn in bb. */
6613 if (NEXT_INSN (last_insn) != insn)
6614 {
6615 insn = sel_bb_end (bb);
6616 first_insn = sel_bb_head (bb);
6617 }
6618
e855c69d 6619 /* Remove bb tail from path. */
7c1f0b40 6620 if (added_to_path)
e855c69d
AB
6621 ilist_remove (&path);
6622
6623 if (res != 1)
6624 {
6625 /* This is the case when one of the original expr is no longer available
b8698a0f 6626 due to bookkeeping created on this branch with the same register.
e855c69d 6627 In the original algorithm, which doesn't have update_data_sets call
b8698a0f
L
6628 on a bookkeeping block, it would simply result in returning
6629 FALSE when we've encountered a previously generated bookkeeping
e855c69d
AB
6630 insn in moveop_orig_expr_not_found. */
6631 code_motion_path_driver_cleanup (&orig_ops, &path);
6632 return res;
6633 }
6634 }
6635
6636 /* Don't need it any more. */
6637 av_set_clear (&orig_ops);
6638
b8698a0f 6639 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
e855c69d
AB
6640 the beginning of the basic block. */
6641 before_first = PREV_INSN (first_insn);
6642 while (insn != before_first)
b8698a0f 6643 {
e855c69d
AB
6644 if (code_motion_path_driver_info->ascend)
6645 code_motion_path_driver_info->ascend (insn, static_params);
6646
6647 insn = PREV_INSN (insn);
6648 }
b8698a0f 6649
e855c69d
AB
6650 /* Now we're at the bb head. */
6651 insn = first_insn;
6652 ilist_remove (&path);
6653 local_params_in->removed_last_insn = removed_last_insn;
6654 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
b8698a0f 6655
e855c69d
AB
6656 /* This should be the very last operation as at bb head we could change
6657 the numbering by creating bookkeeping blocks. */
6658 if (removed_last_insn)
6659 insn = PREV_INSN (insn);
6660 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6661 return true;
6662}
6663
b8698a0f 6664/* Move up the operations from ORIG_OPS set traversing the dag starting
e855c69d
AB
6665 from INSN. PATH represents the edges traversed so far.
6666 DEST is the register chosen for scheduling the current expr. Insert
6667 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
b8698a0f 6668 C_EXPR is how it looks like at the given cfg point.
72a54528
AM
6669 Set *SHOULD_MOVE to indicate whether we have only disconnected
6670 one of the insns found.
e855c69d 6671
b8698a0f 6672 Returns whether original instructions were found, which is asserted
e855c69d
AB
6673 to be true in the caller. */
6674static bool
6675move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
72a54528 6676 rtx dest, expr_t c_expr, bool *should_move)
e855c69d
AB
6677{
6678 struct moveop_static_params sparams;
6679 struct cmpd_local_params lparams;
6c8e9fc9 6680 int res;
e855c69d 6681
b8698a0f 6682 /* Init params for code_motion_path_driver. */
e855c69d
AB
6683 sparams.dest = dest;
6684 sparams.c_expr = c_expr;
6685 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6686#ifdef ENABLE_CHECKING
6687 sparams.failed_insn = NULL;
6688#endif
6689 sparams.was_renamed = false;
6690 lparams.e1 = NULL;
6691
6692 /* We haven't visited any blocks yet. */
6693 bitmap_clear (code_motion_visited_blocks);
b8698a0f 6694
e855c69d
AB
6695 /* Set appropriate hooks and data. */
6696 code_motion_path_driver_info = &move_op_hooks;
6697 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6698
6c8e9fc9
AM
6699 gcc_assert (res != -1);
6700
e855c69d
AB
6701 if (sparams.was_renamed)
6702 EXPR_WAS_RENAMED (expr_vliw) = true;
6703
72a54528
AM
6704 *should_move = (sparams.uid == -1);
6705
e855c69d
AB
6706 return res;
6707}
6708\f
6709
6710/* Functions that work with regions. */
6711
6712/* Current number of seqno used in init_seqno and init_seqno_1. */
6713static int cur_seqno;
6714
b8698a0f
L
6715/* A helper for init_seqno. Traverse the region starting from BB and
6716 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
e855c69d
AB
6717 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6718static void
6719init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6720{
6721 int bbi = BLOCK_TO_BB (bb->index);
6722 insn_t insn, note = bb_note (bb);
6723 insn_t succ_insn;
6724 succ_iterator si;
6725
6726 SET_BIT (visited_bbs, bbi);
6727 if (blocks_to_reschedule)
6728 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6729
b8698a0f 6730 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
e855c69d
AB
6731 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6732 {
6733 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6734 int succ_bbi = BLOCK_TO_BB (succ->index);
6735
6736 gcc_assert (in_current_region_p (succ));
6737
6738 if (!TEST_BIT (visited_bbs, succ_bbi))
6739 {
6740 gcc_assert (succ_bbi > bbi);
6741
6742 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6743 }
06f0c25f
AB
6744 else if (blocks_to_reschedule)
6745 bitmap_set_bit (forced_ebb_heads, succ->index);
e855c69d
AB
6746 }
6747
6748 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6749 INSN_SEQNO (insn) = cur_seqno--;
6750}
6751
1f3b2b4e
AM
6752/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6753 blocks on which we're rescheduling when pipelining, FROM is the block where
e855c69d 6754 traversing region begins (it may not be the head of the region when
b8698a0f 6755 pipelining, but the head of the loop instead).
e855c69d
AB
6756
6757 Returns the maximal seqno found. */
6758static int
1f3b2b4e 6759init_seqno (bitmap blocks_to_reschedule, basic_block from)
e855c69d
AB
6760{
6761 sbitmap visited_bbs;
6762 bitmap_iterator bi;
6763 unsigned bbi;
6764
6765 visited_bbs = sbitmap_alloc (current_nr_blocks);
6766
6767 if (blocks_to_reschedule)
6768 {
6769 sbitmap_ones (visited_bbs);
6770 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6771 {
6772 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6773 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6774 }
6775 }
6776 else
6777 {
6778 sbitmap_zero (visited_bbs);
6779 from = EBB_FIRST_BB (0);
6780 }
6781
1f3b2b4e 6782 cur_seqno = sched_max_luid - 1;
e855c69d 6783 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
1f3b2b4e
AM
6784
6785 /* cur_seqno may be positive if the number of instructions is less than
6786 sched_max_luid - 1 (when rescheduling or if some instructions have been
6787 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6788 gcc_assert (cur_seqno >= 0);
e855c69d
AB
6789
6790 sbitmap_free (visited_bbs);
6791 return sched_max_luid - 1;
6792}
6793
6794/* Initialize scheduling parameters for current region. */
6795static void
6796sel_setup_region_sched_flags (void)
6797{
6798 enable_schedule_as_rhs_p = 1;
6799 bookkeeping_p = 1;
b8698a0f 6800 pipelining_p = (bookkeeping_p
e855c69d 6801 && (flag_sel_sched_pipelining != 0)
07643d76
AM
6802 && current_loop_nest != NULL
6803 && loop_has_exit_edges (current_loop_nest));
e855c69d
AB
6804 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6805 max_ws = MAX_WS;
6806}
6807
6808/* Return true if all basic blocks of current region are empty. */
6809static bool
6810current_region_empty_p (void)
6811{
6812 int i;
6813 for (i = 0; i < current_nr_blocks; i++)
6814 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6815 return false;
6816
6817 return true;
6818}
6819
6820/* Prepare and verify loop nest for pipelining. */
6821static void
ea4d630f 6822setup_current_loop_nest (int rgn, bb_vec_t *bbs)
e855c69d
AB
6823{
6824 current_loop_nest = get_loop_nest_for_rgn (rgn);
6825
6826 if (!current_loop_nest)
6827 return;
6828
6829 /* If this loop has any saved loop preheaders from nested loops,
6830 add these basic blocks to the current region. */
ea4d630f 6831 sel_add_loop_preheaders (bbs);
e855c69d
AB
6832
6833 /* Check that we're starting with a valid information. */
6834 gcc_assert (loop_latch_edge (current_loop_nest));
6835 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6836}
6837
e855c69d
AB
6838/* Compute instruction priorities for current region. */
6839static void
6840sel_compute_priorities (int rgn)
6841{
6842 sched_rgn_compute_dependencies (rgn);
6843
6844 /* Compute insn priorities in haifa style. Then free haifa style
6845 dependencies that we've calculated for this. */
6846 compute_priorities ();
6847
6848 if (sched_verbose >= 5)
6849 debug_rgn_dependencies (0);
6850
6851 free_rgn_deps ();
6852}
6853
6854/* Init scheduling data for RGN. Returns true when this region should not
6855 be scheduled. */
6856static bool
6857sel_region_init (int rgn)
6858{
6859 int i;
6860 bb_vec_t bbs;
6861
6862 rgn_setup_region (rgn);
6863
b8698a0f 6864 /* Even if sched_is_disabled_for_current_region_p() is true, we still
e855c69d
AB
6865 do region initialization here so the region can be bundled correctly,
6866 but we'll skip the scheduling in sel_sched_region (). */
6867 if (current_region_empty_p ())
6868 return true;
6869
e855c69d
AB
6870 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6871
6872 for (i = 0; i < current_nr_blocks; i++)
6873 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6874
a95b23b4 6875 sel_init_bbs (bbs);
e855c69d 6876
ea4d630f
AM
6877 if (flag_sel_sched_pipelining)
6878 setup_current_loop_nest (rgn, &bbs);
6879
9d40778b
AM
6880 sel_setup_region_sched_flags ();
6881
e855c69d
AB
6882 /* Initialize luids and dependence analysis which both sel-sched and haifa
6883 need. */
a95b23b4 6884 sched_init_luids (bbs);
e855c69d
AB
6885 sched_deps_init (false);
6886
6887 /* Initialize haifa data. */
6888 rgn_setup_sched_infos ();
6889 sel_set_sched_flags ();
a95b23b4 6890 haifa_init_h_i_d (bbs);
e855c69d
AB
6891
6892 sel_compute_priorities (rgn);
6893 init_deps_global ();
6894
6895 /* Main initialization. */
6896 sel_setup_sched_infos ();
6897 sel_init_global_and_expr (bbs);
6898
6899 VEC_free (basic_block, heap, bbs);
6900
6901 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6902
6903 /* Init correct liveness sets on each instruction of a single-block loop.
6904 This is the only situation when we can't update liveness when calling
6905 compute_live for the first insn of the loop. */
6906 if (current_loop_nest)
6907 {
6908 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6909 ? 1
6910 : 0);
6911
6912 if (current_nr_blocks == header + 1)
b8698a0f 6913 update_liveness_on_insn
e855c69d
AB
6914 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6915 }
b8698a0f 6916
e855c69d
AB
6917 /* Set hooks so that no newly generated insn will go out unnoticed. */
6918 sel_register_cfg_hooks ();
6919
38f8b050
JR
6920 /* !!! We call target.sched.init () for the whole region, but we invoke
6921 targetm.sched.finish () for every ebb. */
6922 if (targetm.sched.init)
e855c69d 6923 /* None of the arguments are actually used in any target. */
38f8b050 6924 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
6925
6926 first_emitted_uid = get_max_uid () + 1;
6927 preheader_removed = false;
6928
6929 /* Reset register allocation ticks array. */
6930 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6931 reg_rename_this_tick = 0;
6932
6933 bitmap_initialize (forced_ebb_heads, 0);
6934 bitmap_clear (forced_ebb_heads);
6935
6936 setup_nop_vinsn ();
6937 current_copies = BITMAP_ALLOC (NULL);
6938 current_originators = BITMAP_ALLOC (NULL);
6939 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6940
6941 return false;
6942}
6943
6944/* Simplify insns after the scheduling. */
6945static void
6946simplify_changed_insns (void)
6947{
6948 int i;
6949
6950 for (i = 0; i < current_nr_blocks; i++)
6951 {
6952 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6953 rtx insn;
6954
6955 FOR_BB_INSNS (bb, insn)
6956 if (INSN_P (insn))
6957 {
6958 expr_t expr = INSN_EXPR (insn);
6959
b8698a0f 6960 if (EXPR_WAS_SUBSTITUTED (expr))
e855c69d
AB
6961 validate_simplify_insn (insn);
6962 }
6963 }
6964}
6965
6966/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6967 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6968 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6969static void
6970find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6971{
6972 insn_t head, tail;
6973 basic_block bb1 = bb;
6974 if (sched_verbose >= 2)
6975 sel_print ("Finishing schedule in bbs: ");
6976
6977 do
6978 {
6979 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6980
6981 if (sched_verbose >= 2)
6982 sel_print ("%d; ", bb1->index);
6983 }
6984 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6985
6986 if (sched_verbose >= 2)
6987 sel_print ("\n");
6988
6989 get_ebb_head_tail (bb, bb1, &head, &tail);
6990
6991 current_sched_info->head = head;
6992 current_sched_info->tail = tail;
6993 current_sched_info->prev_head = PREV_INSN (head);
6994 current_sched_info->next_tail = NEXT_INSN (tail);
6995}
6996
6997/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6998static void
6999reset_sched_cycles_in_current_ebb (void)
7000{
7001 int last_clock = 0;
7002 int haifa_last_clock = -1;
7003 int haifa_clock = 0;
06f0c25f 7004 int issued_insns = 0;
e855c69d
AB
7005 insn_t insn;
7006
38f8b050 7007 if (targetm.sched.init)
e855c69d
AB
7008 {
7009 /* None of the arguments are actually used in any target.
7010 NB: We should have md_reset () hook for cases like this. */
38f8b050 7011 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7012 }
7013
7014 state_reset (curr_state);
7015 advance_state (curr_state);
b8698a0f 7016
e855c69d
AB
7017 for (insn = current_sched_info->head;
7018 insn != current_sched_info->next_tail;
7019 insn = NEXT_INSN (insn))
7020 {
7021 int cost, haifa_cost;
7022 int sort_p;
d66b8f4b 7023 bool asm_p, real_insn, after_stall, all_issued;
e855c69d
AB
7024 int clock;
7025
7026 if (!INSN_P (insn))
7027 continue;
7028
7029 asm_p = false;
7030 real_insn = recog_memoized (insn) >= 0;
7031 clock = INSN_SCHED_CYCLE (insn);
7032
7033 cost = clock - last_clock;
7034
7035 /* Initialize HAIFA_COST. */
7036 if (! real_insn)
7037 {
7038 asm_p = INSN_ASM_P (insn);
7039
7040 if (asm_p)
7041 /* This is asm insn which *had* to be scheduled first
7042 on the cycle. */
7043 haifa_cost = 1;
7044 else
b8698a0f 7045 /* This is a use/clobber insn. It should not change
e855c69d
AB
7046 cost. */
7047 haifa_cost = 0;
7048 }
7049 else
d66b8f4b 7050 haifa_cost = estimate_insn_cost (insn, curr_state);
e855c69d
AB
7051
7052 /* Stall for whatever cycles we've stalled before. */
7053 after_stall = 0;
7054 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7055 {
7056 haifa_cost = cost;
7057 after_stall = 1;
7058 }
9b0f04e7
AB
7059 all_issued = issued_insns == issue_rate;
7060 if (haifa_cost == 0 && all_issued)
06f0c25f 7061 haifa_cost = 1;
e855c69d
AB
7062 if (haifa_cost > 0)
7063 {
7064 int i = 0;
7065
7066 while (haifa_cost--)
7067 {
7068 advance_state (curr_state);
06f0c25f 7069 issued_insns = 0;
e855c69d
AB
7070 i++;
7071
7072 if (sched_verbose >= 2)
7073 {
7074 sel_print ("advance_state (state_transition)\n");
7075 debug_state (curr_state);
7076 }
7077
b8698a0f
L
7078 /* The DFA may report that e.g. insn requires 2 cycles to be
7079 issued, but on the next cycle it says that insn is ready
e855c69d
AB
7080 to go. Check this here. */
7081 if (!after_stall
b8698a0f 7082 && real_insn
e855c69d 7083 && haifa_cost > 0
d66b8f4b 7084 && estimate_insn_cost (insn, curr_state) == 0)
e855c69d 7085 break;
d7f672ec
AB
7086
7087 /* When the data dependency stall is longer than the DFA stall,
9b0f04e7
AB
7088 and when we have issued exactly issue_rate insns and stalled,
7089 it could be that after this longer stall the insn will again
d7f672ec
AB
7090 become unavailable to the DFA restrictions. Looks strange
7091 but happens e.g. on x86-64. So recheck DFA on the last
7092 iteration. */
9b0f04e7 7093 if ((after_stall || all_issued)
d7f672ec
AB
7094 && real_insn
7095 && haifa_cost == 0)
d66b8f4b 7096 haifa_cost = estimate_insn_cost (insn, curr_state);
d7f672ec 7097 }
e855c69d
AB
7098
7099 haifa_clock += i;
06f0c25f
AB
7100 if (sched_verbose >= 2)
7101 sel_print ("haifa clock: %d\n", haifa_clock);
e855c69d
AB
7102 }
7103 else
7104 gcc_assert (haifa_cost == 0);
7105
7106 if (sched_verbose >= 2)
7107 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7108
7109 if (targetm.sched.dfa_new_cycle)
7110 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7111 haifa_last_clock, haifa_clock,
7112 &sort_p))
7113 {
7114 advance_state (curr_state);
06f0c25f 7115 issued_insns = 0;
e855c69d
AB
7116 haifa_clock++;
7117 if (sched_verbose >= 2)
7118 {
7119 sel_print ("advance_state (dfa_new_cycle)\n");
7120 debug_state (curr_state);
06f0c25f 7121 sel_print ("haifa clock: %d\n", haifa_clock + 1);
e855c69d
AB
7122 }
7123 }
7124
7125 if (real_insn)
7126 {
d66b8f4b
AB
7127 static state_t temp = NULL;
7128
7129 if (!temp)
7130 temp = xmalloc (dfa_state_size);
7131 memcpy (temp, curr_state, dfa_state_size);
7132
e855c69d 7133 cost = state_transition (curr_state, insn);
d66b8f4b 7134 if (memcmp (temp, curr_state, dfa_state_size))
3f1960ac 7135 issued_insns++;
e855c69d
AB
7136
7137 if (sched_verbose >= 2)
06f0c25f
AB
7138 {
7139 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7140 haifa_clock + 1);
7141 debug_state (curr_state);
7142 }
e855c69d
AB
7143 gcc_assert (cost < 0);
7144 }
7145
7146 if (targetm.sched.variable_issue)
7147 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7148
7149 INSN_SCHED_CYCLE (insn) = haifa_clock;
7150
7151 last_clock = clock;
7152 haifa_last_clock = haifa_clock;
7153 }
7154}
7155
7156/* Put TImode markers on insns starting a new issue group. */
7157static void
7158put_TImodes (void)
7159{
7160 int last_clock = -1;
7161 insn_t insn;
7162
7163 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7164 insn = NEXT_INSN (insn))
7165 {
7166 int cost, clock;
7167
7168 if (!INSN_P (insn))
7169 continue;
7170
7171 clock = INSN_SCHED_CYCLE (insn);
7172 cost = (last_clock == -1) ? 1 : clock - last_clock;
7173
7174 gcc_assert (cost >= 0);
7175
7176 if (issue_rate > 1
7177 && GET_CODE (PATTERN (insn)) != USE
7178 && GET_CODE (PATTERN (insn)) != CLOBBER)
7179 {
7180 if (reload_completed && cost > 0)
7181 PUT_MODE (insn, TImode);
7182
7183 last_clock = clock;
7184 }
7185
7186 if (sched_verbose >= 2)
7187 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7188 }
7189}
7190
b8698a0f 7191/* Perform MD_FINISH on EBBs comprising current region. When
e855c69d
AB
7192 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7193 to produce correct sched cycles on insns. */
7194static void
7195sel_region_target_finish (bool reset_sched_cycles_p)
7196{
7197 int i;
7198 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7199
7200 for (i = 0; i < current_nr_blocks; i++)
7201 {
7202 if (bitmap_bit_p (scheduled_blocks, i))
7203 continue;
7204
7205 /* While pipelining outer loops, skip bundling for loop
7206 preheaders. Those will be rescheduled in the outer loop. */
7207 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7208 continue;
7209
7210 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7211
7212 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7213 continue;
7214
7215 if (reset_sched_cycles_p)
7216 reset_sched_cycles_in_current_ebb ();
7217
38f8b050
JR
7218 if (targetm.sched.init)
7219 targetm.sched.init (sched_dump, sched_verbose, -1);
e855c69d
AB
7220
7221 put_TImodes ();
7222
38f8b050 7223 if (targetm.sched.finish)
e855c69d 7224 {
38f8b050 7225 targetm.sched.finish (sched_dump, sched_verbose);
e855c69d
AB
7226
7227 /* Extend luids so that insns generated by the target will
7228 get zero luid. */
a95b23b4 7229 sched_extend_luids ();
e855c69d
AB
7230 }
7231 }
7232
7233 BITMAP_FREE (scheduled_blocks);
7234}
7235
7236/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
b8698a0f 7237 is true, make an additional pass emulating scheduler to get correct insn
e855c69d
AB
7238 cycles for md_finish calls. */
7239static void
7240sel_region_finish (bool reset_sched_cycles_p)
7241{
7242 simplify_changed_insns ();
7243 sched_finish_ready_list ();
7244 free_nop_pool ();
7245
7246 /* Free the vectors. */
7247 if (vec_av_set)
7248 VEC_free (expr_t, heap, vec_av_set);
7249 BITMAP_FREE (current_copies);
7250 BITMAP_FREE (current_originators);
7251 BITMAP_FREE (code_motion_visited_blocks);
7252 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7253 vinsn_vec_free (&vec_target_unavailable_vinsns);
7254
7255 /* If LV_SET of the region head should be updated, do it now because
7256 there will be no other chance. */
7257 {
7258 succ_iterator si;
7259 insn_t insn;
7260
7261 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7262 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7263 {
7264 basic_block bb = BLOCK_FOR_INSN (insn);
7265
7266 if (!BB_LV_SET_VALID_P (bb))
7267 compute_live (insn);
7268 }
7269 }
7270
7271 /* Emulate the Haifa scheduler for bundling. */
7272 if (reload_completed)
7273 sel_region_target_finish (reset_sched_cycles_p);
7274
7275 sel_finish_global_and_expr ();
7276
7277 bitmap_clear (forced_ebb_heads);
7278
7279 free_nop_vinsn ();
7280
7281 finish_deps_global ();
7282 sched_finish_luids ();
6c8e9fc9 7283 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
e855c69d
AB
7284
7285 sel_finish_bbs ();
7286 BITMAP_FREE (blocks_to_reschedule);
7287
7288 sel_unregister_cfg_hooks ();
7289
7290 max_issue_size = 0;
7291}
7292\f
7293
7294/* Functions that implement the scheduler driver. */
7295
7296/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7297 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7298 of insns scheduled -- these would be postprocessed later. */
7299static void
7300schedule_on_fences (flist_t fences, int max_seqno,
7301 ilist_t **scheduled_insns_tailpp)
7302{
7303 flist_t old_fences = fences;
7304
7305 if (sched_verbose >= 1)
7306 {
7307 sel_print ("\nScheduling on fences: ");
7308 dump_flist (fences);
7309 sel_print ("\n");
7310 }
7311
7312 scheduled_something_on_previous_fence = false;
7313 for (; fences; fences = FLIST_NEXT (fences))
7314 {
7315 fence_t fence = NULL;
7316 int seqno = 0;
7317 flist_t fences2;
7318 bool first_p = true;
b8698a0f 7319
e855c69d
AB
7320 /* Choose the next fence group to schedule.
7321 The fact that insn can be scheduled only once
7322 on the cycle is guaranteed by two properties:
7323 1. seqnos of parallel groups decrease with each iteration.
7324 2. If is_ineligible_successor () sees the larger seqno, it
7325 checks if candidate insn is_in_current_fence_p (). */
7326 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7327 {
7328 fence_t f = FLIST_FENCE (fences2);
7329
7330 if (!FENCE_PROCESSED_P (f))
7331 {
7332 int i = INSN_SEQNO (FENCE_INSN (f));
7333
7334 if (first_p || i > seqno)
7335 {
7336 seqno = i;
7337 fence = f;
7338 first_p = false;
7339 }
7340 else
7341 /* ??? Seqnos of different groups should be different. */
7342 gcc_assert (1 || i != seqno);
7343 }
7344 }
7345
7346 gcc_assert (fence);
7347
7348 /* As FENCE is nonnull, SEQNO is initialized. */
7349 seqno -= max_seqno + 1;
7350 fill_insns (fence, seqno, scheduled_insns_tailpp);
7351 FENCE_PROCESSED_P (fence) = true;
7352 }
7353
7354 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
b8698a0f 7355 don't need to keep bookkeeping-invalidated and target-unavailable
e855c69d
AB
7356 vinsns any more. */
7357 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7358 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7359}
7360
7361/* Calculate MIN_SEQNO and MAX_SEQNO. */
7362static void
7363find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7364{
7365 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7366
7367 /* The first element is already processed. */
7368 while ((fences = FLIST_NEXT (fences)))
7369 {
7370 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
b8698a0f 7371
e855c69d
AB
7372 if (*min_seqno > seqno)
7373 *min_seqno = seqno;
7374 else if (*max_seqno < seqno)
7375 *max_seqno = seqno;
7376 }
7377}
7378
7379/* Calculate new fences from FENCES. */
b8698a0f 7380static flist_t
e855c69d
AB
7381calculate_new_fences (flist_t fences, int orig_max_seqno)
7382{
7383 flist_t old_fences = fences;
7384 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7385
7386 flist_tail_init (new_fences);
7387 for (; fences; fences = FLIST_NEXT (fences))
7388 {
7389 fence_t fence = FLIST_FENCE (fences);
7390 insn_t insn;
b8698a0f 7391
e855c69d
AB
7392 if (!FENCE_BNDS (fence))
7393 {
7394 /* This fence doesn't have any successors. */
7395 if (!FENCE_SCHEDULED_P (fence))
7396 {
7397 /* Nothing was scheduled on this fence. */
7398 int seqno;
7399
7400 insn = FENCE_INSN (fence);
7401 seqno = INSN_SEQNO (insn);
7402 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7403
7404 if (sched_verbose >= 1)
b8698a0f 7405 sel_print ("Fence %d[%d] has not changed\n",
e855c69d
AB
7406 INSN_UID (insn),
7407 BLOCK_NUM (insn));
7408 move_fence_to_fences (fences, new_fences);
7409 }
7410 }
7411 else
7412 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7413 }
7414
7415 flist_clear (&old_fences);
7416 return FLIST_TAIL_HEAD (new_fences);
7417}
7418
7419/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7420 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7421 the highest seqno used in a region. Return the updated highest seqno. */
7422static int
b8698a0f
L
7423update_seqnos_and_stage (int min_seqno, int max_seqno,
7424 int highest_seqno_in_use,
e855c69d
AB
7425 ilist_t *pscheduled_insns)
7426{
7427 int new_hs;
7428 ilist_iterator ii;
7429 insn_t insn;
b8698a0f 7430
e855c69d
AB
7431 /* Actually, new_hs is the seqno of the instruction, that was
7432 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7433 if (*pscheduled_insns)
7434 {
7435 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7436 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7437 gcc_assert (new_hs > highest_seqno_in_use);
7438 }
7439 else
7440 new_hs = highest_seqno_in_use;
7441
7442 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7443 {
7444 gcc_assert (INSN_SEQNO (insn) < 0);
7445 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7446 gcc_assert (INSN_SEQNO (insn) <= new_hs);
bcf33775
AB
7447
7448 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7449 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7450 require > 1GB of memory e.g. on limit-fnargs.c. */
7451 if (! pipelining_p)
7452 free_data_for_scheduled_insn (insn);
e855c69d
AB
7453 }
7454
7455 ilist_clear (pscheduled_insns);
7456 global_level++;
7457
7458 return new_hs;
7459}
7460
b8698a0f
L
7461/* The main driver for scheduling a region. This function is responsible
7462 for correct propagation of fences (i.e. scheduling points) and creating
7463 a group of parallel insns at each of them. It also supports
e855c69d
AB
7464 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7465 of scheduling. */
7466static void
7467sel_sched_region_2 (int orig_max_seqno)
7468{
7469 int highest_seqno_in_use = orig_max_seqno;
7470
7471 stat_bookkeeping_copies = 0;
7472 stat_insns_needed_bookkeeping = 0;
7473 stat_renamed_scheduled = 0;
7474 stat_substitutions_total = 0;
7475 num_insns_scheduled = 0;
7476
7477 while (fences)
7478 {
7479 int min_seqno, max_seqno;
7480 ilist_t scheduled_insns = NULL;
7481 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7482
7483 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7484 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7485 fences = calculate_new_fences (fences, orig_max_seqno);
7486 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7487 highest_seqno_in_use,
7488 &scheduled_insns);
7489 }
7490
7491 if (sched_verbose >= 1)
7492 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7493 "bookkeeping, %d insns renamed, %d insns substituted\n",
7494 stat_bookkeeping_copies,
7495 stat_insns_needed_bookkeeping,
7496 stat_renamed_scheduled,
7497 stat_substitutions_total);
7498}
7499
b8698a0f
L
7500/* Schedule a region. When pipelining, search for possibly never scheduled
7501 bookkeeping code and schedule it. Reschedule pipelined code without
e855c69d
AB
7502 pipelining after. */
7503static void
7504sel_sched_region_1 (void)
7505{
e855c69d
AB
7506 int orig_max_seqno;
7507
1f3b2b4e 7508 /* Remove empty blocks that might be in the region from the beginning. */
e855c69d
AB
7509 purge_empty_blocks ();
7510
1f3b2b4e 7511 orig_max_seqno = init_seqno (NULL, NULL);
e855c69d
AB
7512 gcc_assert (orig_max_seqno >= 1);
7513
7514 /* When pipelining outer loops, create fences on the loop header,
7515 not preheader. */
7516 fences = NULL;
7517 if (current_loop_nest)
7518 init_fences (BB_END (EBB_FIRST_BB (0)));
7519 else
7520 init_fences (bb_note (EBB_FIRST_BB (0)));
7521 global_level = 1;
7522
7523 sel_sched_region_2 (orig_max_seqno);
7524
7525 gcc_assert (fences == NULL);
7526
7527 if (pipelining_p)
7528 {
7529 int i;
7530 basic_block bb;
7531 struct flist_tail_def _new_fences;
7532 flist_tail_t new_fences = &_new_fences;
7533 bool do_p = true;
7534
7535 pipelining_p = false;
7536 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7537 bookkeeping_p = false;
7538 enable_schedule_as_rhs_p = false;
7539
7540 /* Schedule newly created code, that has not been scheduled yet. */
7541 do_p = true;
7542
7543 while (do_p)
7544 {
7545 do_p = false;
7546
7547 for (i = 0; i < current_nr_blocks; i++)
7548 {
7549 basic_block bb = EBB_FIRST_BB (i);
7550
e855c69d
AB
7551 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7552 {
d7f672ec
AB
7553 if (! bb_ends_ebb_p (bb))
7554 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7555 if (sel_bb_empty_p (bb))
7556 {
7557 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7558 continue;
7559 }
e855c69d
AB
7560 clear_outdated_rtx_info (bb);
7561 if (sel_insn_is_speculation_check (BB_END (bb))
7562 && JUMP_P (BB_END (bb)))
7563 bitmap_set_bit (blocks_to_reschedule,
7564 BRANCH_EDGE (bb)->dest->index);
7565 }
d7f672ec
AB
7566 else if (! sel_bb_empty_p (bb)
7567 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
e855c69d
AB
7568 bitmap_set_bit (blocks_to_reschedule, bb->index);
7569 }
7570
7571 for (i = 0; i < current_nr_blocks; i++)
7572 {
7573 bb = EBB_FIRST_BB (i);
7574
b8698a0f 7575 /* While pipelining outer loops, skip bundling for loop
e855c69d
AB
7576 preheaders. Those will be rescheduled in the outer
7577 loop. */
7578 if (sel_is_loop_preheader_p (bb))
7579 {
7580 clear_outdated_rtx_info (bb);
7581 continue;
7582 }
b8698a0f 7583
06f0c25f 7584 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
e855c69d
AB
7585 {
7586 flist_tail_init (new_fences);
7587
1f3b2b4e 7588 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
e855c69d
AB
7589
7590 /* Mark BB as head of the new ebb. */
7591 bitmap_set_bit (forced_ebb_heads, bb->index);
7592
e855c69d
AB
7593 gcc_assert (fences == NULL);
7594
7595 init_fences (bb_note (bb));
b8698a0f 7596
e855c69d 7597 sel_sched_region_2 (orig_max_seqno);
b8698a0f 7598
e855c69d
AB
7599 do_p = true;
7600 break;
7601 }
7602 }
7603 }
7604 }
7605}
7606
7607/* Schedule the RGN region. */
7608void
7609sel_sched_region (int rgn)
7610{
7611 bool schedule_p;
7612 bool reset_sched_cycles_p;
7613
7614 if (sel_region_init (rgn))
7615 return;
7616
7617 if (sched_verbose >= 1)
7618 sel_print ("Scheduling region %d\n", rgn);
7619
7620 schedule_p = (!sched_is_disabled_for_current_region_p ()
7621 && dbg_cnt (sel_sched_region_cnt));
7622 reset_sched_cycles_p = pipelining_p;
7623 if (schedule_p)
7624 sel_sched_region_1 ();
7625 else
7626 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7627 reset_sched_cycles_p = true;
b8698a0f 7628
e855c69d
AB
7629 sel_region_finish (reset_sched_cycles_p);
7630}
7631
7632/* Perform global init for the scheduler. */
7633static void
7634sel_global_init (void)
7635{
7636 calculate_dominance_info (CDI_DOMINATORS);
7637 alloc_sched_pools ();
7638
7639 /* Setup the infos for sched_init. */
7640 sel_setup_sched_infos ();
7641 setup_sched_dump ();
7642
7861732f 7643 sched_rgn_init (false);
d51e8a2d 7644 sched_init ();
e855c69d
AB
7645
7646 sched_init_bbs ();
7647 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7648 after_recovery = 0;
b8698a0f 7649 can_issue_more = issue_rate;
e855c69d
AB
7650
7651 sched_extend_target ();
7652 sched_deps_init (true);
7653 setup_nop_and_exit_insns ();
7654 sel_extend_global_bb_info ();
7655 init_lv_sets ();
7656 init_hard_regs_data ();
7657}
7658
7659/* Free the global data of the scheduler. */
7660static void
7661sel_global_finish (void)
7662{
7663 free_bb_note_pool ();
7664 free_lv_sets ();
7665 sel_finish_global_bb_info ();
7666
7667 free_regset_pool ();
7668 free_nop_and_exit_insns ();
7669
7670 sched_rgn_finish ();
7671 sched_deps_finish ();
7672 sched_finish ();
7673
7674 if (current_loops)
7675 sel_finish_pipelining ();
7676
7677 free_sched_pools ();
7678 free_dominance_info (CDI_DOMINATORS);
7679}
7680
7681/* Return true when we need to skip selective scheduling. Used for debugging. */
7682bool
7683maybe_skip_selective_scheduling (void)
7684{
7685 return ! dbg_cnt (sel_sched_cnt);
7686}
7687
7688/* The entry point. */
7689void
7690run_selective_scheduling (void)
7691{
7692 int rgn;
7693
7694 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7695 return;
7696
7697 sel_global_init ();
7698
7699 for (rgn = 0; rgn < nr_regions; rgn++)
7700 sel_sched_region (rgn);
7701
7702 sel_global_finish ();
7703}
7704
7705#endif