]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/sese.h
switch from gimple to gimple*
[thirdparty/gcc.git] / gcc / sese.h
CommitLineData
2abae5f1 1/* Single entry single exit control flow regions.
5624e564 2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
2abae5f1
SP
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#ifndef GCC_SESE_H
23#define GCC_SESE_H
24
74032f47
AK
25typedef hash_map<tree, tree> parameter_rename_map_t;
26
2abae5f1
SP
27/* A Single Entry, Single Exit region is a part of the CFG delimited
28 by two edges. */
29typedef struct sese_s
30{
31 /* Single ENTRY and single EXIT from the SESE region. */
32 edge entry, exit;
33
34 /* Parameters used within the SCOP. */
9771b263 35 vec<tree> params;
2abae5f1 36
74032f47
AK
37 /* Parameters to be renamed. */
38 parameter_rename_map_t *parameter_rename_map;
39
2abae5f1
SP
40 /* Loops completely contained in the SCOP. */
41 bitmap loops;
9771b263 42 vec<loop_p> loop_nest;
2abae5f1
SP
43
44 /* Are we allowed to add more params? This is for debugging purpose. We
45 can only add new params before generating the bb domains, otherwise they
46 become invalid. */
47 bool add_params;
48} *sese;
49
50#define SESE_ENTRY(S) (S->entry)
51#define SESE_ENTRY_BB(S) (S->entry->dest)
52#define SESE_EXIT(S) (S->exit)
53#define SESE_EXIT_BB(S) (S->exit->dest)
54#define SESE_PARAMS(S) (S->params)
2abae5f1
SP
55#define SESE_LOOPS(S) (S->loops)
56#define SESE_LOOP_NEST(S) (S->loop_nest)
57#define SESE_ADD_PARAMS(S) (S->add_params)
58
59extern sese new_sese (edge, edge);
60extern void free_sese (sese);
61extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
2abae5f1 62extern void build_sese_loop_nests (sese);
2e286fd2 63extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
9771b263 64 vec<tree> , bool *);
2abae5f1 65extern struct loop *outermost_loop_in_sese (sese, basic_block);
2abae5f1
SP
66extern tree scalar_evolution_in_region (sese, loop_p, tree);
67
68/* Check that SESE contains LOOP. */
69
70static inline bool
71sese_contains_loop (sese sese, struct loop *loop)
72{
73 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
74}
75
76/* The number of parameters in REGION. */
77
78static inline unsigned
79sese_nb_params (sese region)
80{
9771b263 81 return SESE_PARAMS (region).length ();
2abae5f1
SP
82}
83
84/* Checks whether BB is contained in the region delimited by ENTRY and
85 EXIT blocks. */
86
87static inline bool
88bb_in_region (basic_block bb, basic_block entry, basic_block exit)
89{
90#ifdef ENABLE_CHECKING
91 {
92 edge e;
93 edge_iterator ei;
94
95 /* Check that there are no edges coming in the region: all the
96 predecessors of EXIT are dominated by ENTRY. */
97 FOR_EACH_EDGE (e, ei, exit->preds)
98 dominated_by_p (CDI_DOMINATORS, e->src, entry);
2abae5f1
SP
99 }
100#endif
101
102 return dominated_by_p (CDI_DOMINATORS, bb, entry)
103 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
104 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
105}
106
107/* Checks whether BB is contained in the region delimited by ENTRY and
108 EXIT blocks. */
109
110static inline bool
111bb_in_sese_p (basic_block bb, sese region)
112{
113 basic_block entry = SESE_ENTRY_BB (region);
114 basic_block exit = SESE_EXIT_BB (region);
115
116 return bb_in_region (bb, entry, exit);
117}
118
a30e5345
SP
119/* Returns true when STMT is defined in REGION. */
120
121static inline bool
355fe088 122stmt_in_sese_p (gimple *stmt, sese region)
a30e5345
SP
123{
124 basic_block bb = gimple_bb (stmt);
125 return bb && bb_in_sese_p (bb, region);
126}
127
2abae5f1
SP
128/* Returns true when NAME is defined in REGION. */
129
130static inline bool
131defined_in_sese_p (tree name, sese region)
132{
355fe088 133 gimple *stmt = SSA_NAME_DEF_STMT (name);
a30e5345 134 return stmt_in_sese_p (stmt, region);
2abae5f1
SP
135}
136
137/* Returns true when LOOP is in REGION. */
138
b8698a0f 139static inline bool
2abae5f1
SP
140loop_in_sese_p (struct loop *loop, sese region)
141{
142 return (bb_in_sese_p (loop->header, region)
143 && bb_in_sese_p (loop->latch, region));
144}
145
146/* Returns the loop depth of LOOP in REGION. The loop depth
147 is the same as the normal loop depth, but limited by a region.
148
149 Example:
150
151 loop_0
152 loop_1
153 {
b8698a0f 154 S0
2abae5f1
SP
155 <- region start
156 S1
157
158 loop_2
159 S2
160
161 S3
162 <- region end
b8698a0f 163 }
2abae5f1
SP
164
165 loop_0 does not exist in the region -> invalid
166 loop_1 exists, but is not completely contained in the region -> depth 0
167 loop_2 is completely contained -> depth 1 */
168
169static inline unsigned int
170sese_loop_depth (sese region, loop_p loop)
171{
172 unsigned int depth = 0;
173
174 gcc_assert ((!loop_in_sese_p (loop, region)
175 && (SESE_ENTRY_BB (region)->loop_father == loop
176 || SESE_EXIT (region)->src->loop_father == loop))
177 || loop_in_sese_p (loop, region));
178
179 while (loop_in_sese_p (loop, region))
180 {
181 depth++;
182 loop = loop_outer (loop);
183 }
184
185 return depth;
186}
187
a0dd1440
SP
188/* Splits BB to make a single entry single exit region. */
189
190static inline sese
191split_region_for_bb (basic_block bb)
192{
193 edge entry, exit;
194
195 if (single_pred_p (bb))
196 entry = single_pred_edge (bb);
197 else
198 {
199 entry = split_block_after_labels (bb);
200 bb = single_succ (bb);
201 }
202
203 if (single_succ_p (bb))
204 exit = single_succ_edge (bb);
205 else
206 {
207 gimple_stmt_iterator gsi = gsi_last_bb (bb);
208 gsi_prev (&gsi);
209 exit = split_block (bb, gsi_stmt (gsi));
210 }
211
212 return new_sese (entry, exit);
213}
214
2abae5f1
SP
215/* Returns the block preceding the entry of a SESE. */
216
217static inline basic_block
218block_before_sese (sese sese)
219{
220 return SESE_ENTRY (sese)->src;
221}
222
2abae5f1
SP
223\f
224
225/* A single entry single exit specialized for conditions. */
226
227typedef struct ifsese_s {
228 sese region;
229 sese true_region;
230 sese false_region;
231} *ifsese;
232
233extern void if_region_set_false_region (ifsese, sese);
2abae5f1
SP
234extern ifsese move_sese_in_condition (sese);
235extern edge get_true_edge_from_guard_bb (basic_block);
236extern edge get_false_edge_from_guard_bb (basic_block);
3c7c0158 237extern void set_ifsese_condition (ifsese, tree);
2abae5f1
SP
238
239static inline edge
240if_region_entry (ifsese if_region)
241{
242 return SESE_ENTRY (if_region->region);
243}
244
245static inline edge
246if_region_exit (ifsese if_region)
247{
248 return SESE_EXIT (if_region->region);
249}
250
251static inline basic_block
252if_region_get_condition_block (ifsese if_region)
253{
254 return if_region_entry (if_region)->dest;
2abae5f1
SP
255}
256
2abae5f1
SP
257/* Free and compute again all the dominators information. */
258
259static inline void
260recompute_all_dominators (void)
261{
262 mark_irreducible_loops ();
263 free_dominance_info (CDI_DOMINATORS);
2abae5f1 264 calculate_dominance_info (CDI_DOMINATORS);
2abae5f1
SP
265}
266
267typedef struct gimple_bb
268{
269 basic_block bb;
efa21390 270 struct poly_bb *pbb;
2abae5f1
SP
271
272 /* Lists containing the restrictions of the conditional statements
273 dominating this bb. This bb can only be executed, if all conditions
274 are true.
b8698a0f 275
2abae5f1 276 Example:
b8698a0f 277
2abae5f1
SP
278 for (i = 0; i <= 20; i++)
279 {
280 A
b8698a0f 281
2abae5f1
SP
282 if (2i <= 8)
283 B
284 }
b8698a0f 285
2abae5f1 286 So for B there is an additional condition (2i <= 8).
b8698a0f 287
2abae5f1
SP
288 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
289 corresponding element in CONDITION_CASES is not NULL_TREE. For a
290 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
291 CASE_LABEL_EXPR. */
355fe088
TS
292 vec<gimple *> conditions;
293 vec<gimple *> condition_cases;
9771b263 294 vec<data_reference_p> data_refs;
2abae5f1
SP
295} *gimple_bb_p;
296
efa21390
SP
297#define GBB_BB(GBB) (GBB)->bb
298#define GBB_PBB(GBB) (GBB)->pbb
299#define GBB_DATA_REFS(GBB) (GBB)->data_refs
300#define GBB_CONDITIONS(GBB) (GBB)->conditions
301#define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
2abae5f1
SP
302
303/* Return the innermost loop that contains the basic block GBB. */
304
305static inline struct loop *
306gbb_loop (struct gimple_bb *gbb)
307{
308 return GBB_BB (gbb)->loop_father;
309}
310
b8698a0f 311/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
2abae5f1
SP
312 If there is no corresponding gimple loop, we return NULL. */
313
314static inline loop_p
315gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
316{
317 loop_p loop = gbb_loop (gbb);
318 int depth = sese_loop_depth (region, loop);
319
320 while (--depth > index)
321 loop = loop_outer (loop);
322
323 gcc_assert (sese_contains_loop (region, loop));
324
325 return loop;
326}
327
328/* The number of common loops in REGION for GBB1 and GBB2. */
329
330static inline int
331nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
332{
333 loop_p l1 = gbb_loop (gbb1);
334 loop_p l2 = gbb_loop (gbb2);
335 loop_p common = find_common_loop (l1, l2);
b8698a0f 336
2abae5f1
SP
337 return sese_loop_depth (region, common);
338}
339
2e286fd2
SP
340/* Return true when DEF can be analyzed in REGION by the scalar
341 evolution analyzer. */
342
343static inline bool
344scev_analyzable_p (tree def, sese region)
345{
8ba78f92
SP
346 loop_p loop;
347 tree scev;
348 tree type = TREE_TYPE (def);
349
350 /* When Graphite generates code for a scev, the code generator
351 expresses the scev in function of a single induction variable.
352 This is unsafe for floating point computations, as it may replace
353 a floating point sum reduction with a multiplication. The
354 following test returns false for non integer types to avoid such
355 problems. */
356 if (!INTEGRAL_TYPE_P (type)
357 && !POINTER_TYPE_P (type))
358 return false;
359
360 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
361 scev = scalar_evolution_in_region (region, loop, def);
2e286fd2
SP
362
363 return !chrec_contains_undetermined (scev)
9be8ba7e
SP
364 && (TREE_CODE (scev) != SSA_NAME
365 || !defined_in_sese_p (scev, region))
f36fc876
SP
366 && (tree_does_not_contain_chrecs (scev)
367 || evolution_function_is_affine_p (scev));
2e286fd2
SP
368}
369
2abae5f1 370#endif