]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/stor-layout.c
* opts.c (common_handle_option): Handle -fsanitize=alignment.
[thirdparty/gcc.git] / gcc / stor-layout.c
CommitLineData
f2cfea4a 1/* C-compiler utilities for types and variables storage layout
3aea1f79 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
f2cfea4a 3
f12b58b3 4This file is part of GCC.
f2cfea4a 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
f2cfea4a 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
f2cfea4a 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
f2cfea4a 19
20
21#include "config.h"
405711de 22#include "system.h"
805e22b2 23#include "coretypes.h"
24#include "tm.h"
f2cfea4a 25#include "tree.h"
9ed99284 26#include "stor-layout.h"
27#include "stringpool.h"
28#include "varasm.h"
29#include "print-tree.h"
bd3b1088 30#include "rtl.h"
7953c610 31#include "tm_p.h"
a6a1ab64 32#include "flags.h"
f2cfea4a 33#include "function.h"
c091e5a4 34#include "expr.h"
0b205f4c 35#include "diagnostic-core.h"
f04f096b 36#include "target.h"
20325f61 37#include "langhooks.h"
83e2a11b 38#include "regs.h"
00b76131 39#include "params.h"
4189e677 40#include "cgraph.h"
41#include "tree-inline.h"
42#include "tree-dump.h"
a8783bee 43#include "gimplify.h"
f2cfea4a 44
f2cfea4a 45/* Data type for the expressions representing sizes of data types.
a32bb500 46 It is the first integer type laid out. */
748e5d45 47tree sizetype_tab[(int) stk_type_kind_last];
f2cfea4a 48
cdb11de0 49/* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
6b5553e5 51unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
cdb11de0 52
98155838 53/* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
f1986931 56static int reference_types_internal = 0;
57
4189e677 58static tree self_referential_size (tree);
60b8c5b3 59static void finalize_record_size (record_layout_info);
60static void finalize_type_size (tree);
61static void place_union_field (record_layout_info, tree);
9a27f26f 62#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60b8c5b3 63static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
9a27f26f 65#endif
60b8c5b3 66extern void debug_rli (record_layout_info);
f2cfea4a 67\f
98155838 68/* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
f1986931 70
71void
60b8c5b3 72internal_reference_types (void)
f1986931 73{
74 reference_types_internal = 1;
75}
76
09138ab1 77/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
f2cfea4a 78 to serve as the actual size-expression for a type or decl. */
79
7b778713 80tree
60b8c5b3 81variable_size (tree size)
f2cfea4a 82{
4189e677 83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
86
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
91
1d2bb655 92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
034b6c60 96 return size;
97
a5aff672 98 return save_expr (size);
f2cfea4a 99}
4189e677 100
101/* An array of functions used for self-referential size computation. */
f1f41a6c 102static GTY(()) vec<tree, va_gc> *size_functions;
4189e677 103
104/* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
107
108static tree
109copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110{
111 enum tree_code code = TREE_CODE (*tp);
112
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
117 {
118 *walk_subtrees = 0;
119 return NULL_TREE;
120 }
121
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 {
126 *walk_subtrees = 0;
127 return NULL_TREE;
128 }
129
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
132 {
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
137 ;
138
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
140 {
141 *walk_subtrees = 0;
142 return NULL_TREE;
143 }
144 }
145
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
153
17476aac 154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
156
4189e677 157 return copy_tree_r (tp, walk_subtrees, data);
158}
159
160/* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
162
163static tree
164self_referential_size (tree size)
165{
166 static unsigned HOST_WIDE_INT fnno = 0;
1e094109 167 vec<tree> self_refs = vNULL;
414c3a2c 168 tree param_type_list = NULL, param_decl_list = NULL;
4189e677 169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
f1f41a6c 172 vec<tree, va_gc> *args = NULL;
4189e677 173
174 /* Do not factor out simple operations. */
85cea2e3 175 t = skip_simple_constant_arithmetic (size);
4189e677 176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
178
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
f1f41a6c 181 gcc_assert (self_refs.length () > 0);
4189e677 182
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
188
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
f1f41a6c 191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
4189e677 193 {
194 tree subst, param_name, param_type, param_decl;
195
196 if (DECL_P (ref))
197 {
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
201 }
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
208
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 if (targetm.calls.promote_prototypes (NULL_TREE)
215 && INTEGRAL_TYPE_P (param_type)
216 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
217 DECL_ARG_TYPE (param_decl) = integer_type_node;
218 else
219 DECL_ARG_TYPE (param_decl) = param_type;
220 DECL_ARTIFICIAL (param_decl) = 1;
221 TREE_READONLY (param_decl) = 1;
222
223 size = substitute_in_expr (size, subst, param_decl);
224
225 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
226 param_decl_list = chainon (param_decl, param_decl_list);
f1f41a6c 227 args->quick_push (ref);
4189e677 228 }
229
f1f41a6c 230 self_refs.release ();
4189e677 231
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
234
235 /* The 3 lists have been created in reverse order. */
236 param_type_list = nreverse (param_type_list);
237 param_decl_list = nreverse (param_decl_list);
4189e677 238
239 /* Build the function type. */
240 return_type = TREE_TYPE (size);
241 fntype = build_function_type (return_type, param_type_list);
242
243 /* Build the function declaration. */
244 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
245 fnname = get_file_function_name (buf);
246 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
1767a056 247 for (t = param_decl_list; t; t = DECL_CHAIN (t))
4189e677 248 DECL_CONTEXT (t) = fndecl;
249 DECL_ARGUMENTS (fndecl) = param_decl_list;
250 DECL_RESULT (fndecl)
251 = build_decl (input_location, RESULT_DECL, 0, return_type);
252 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
253
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl) = 1;
257 DECL_IGNORED_P (fndecl) = 1;
258
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl) = 1;
261 TREE_NOTHROW (fndecl) = 1;
262
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl) = 1;
266
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl) = make_node (BLOCK);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
270 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
271 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
272 TREE_STATIC (fndecl) = 1;
273
274 /* Put it onto the list of size functions. */
f1f41a6c 275 vec_safe_push (size_functions, fndecl);
4189e677 276
277 /* Replace the original expression with a call to the size function. */
5cca4f1d 278 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
4189e677 279}
280
281/* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
287
288void
289finalize_size_functions (void)
290{
291 unsigned int i;
292 tree fndecl;
293
f1f41a6c 294 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
4189e677 295 {
c6cfb282 296 allocate_struct_function (fndecl, false);
297 set_cfun (NULL);
4189e677 298 dump_function (TDI_original, fndecl);
299 gimplify_function_tree (fndecl);
300 dump_function (TDI_generic, fndecl);
301 cgraph_finalize_function (fndecl, false);
302 }
303
f1f41a6c 304 vec_free (size_functions);
4189e677 305}
f2cfea4a 306\f
7c0390e7 307/* Return the machine mode to use for a nonscalar of SIZE bits. The
47cfb7f4 308 mode must be in class MCLASS, and have exactly that many value bits;
7c0390e7 309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
f2cfea4a 311
312enum machine_mode
47cfb7f4 313mode_for_size (unsigned int size, enum mode_class mclass, int limit)
f2cfea4a 314{
19cb6b50 315 enum machine_mode mode;
f2cfea4a 316
0fc6aef1 317 if (limit && size > MAX_FIXED_MODE_SIZE)
f2cfea4a 318 return BLKmode;
319
034b6c60 320 /* Get the first mode which has this size, in the specified class. */
47cfb7f4 321 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
f2cfea4a 322 mode = GET_MODE_WIDER_MODE (mode))
7c0390e7 323 if (GET_MODE_PRECISION (mode) == size)
f2cfea4a 324 return mode;
325
326 return BLKmode;
327}
328
0fc6aef1 329/* Similar, except passed a tree node. */
330
331enum machine_mode
47cfb7f4 332mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
0fc6aef1 333{
1088cbc4 334 unsigned HOST_WIDE_INT uhwi;
335 unsigned int ui;
336
e913b5cd 337 if (!tree_fits_uhwi_p (size))
0fc6aef1 338 return BLKmode;
e913b5cd 339 uhwi = tree_to_uhwi (size);
1088cbc4 340 ui = uhwi;
341 if (uhwi != ui)
342 return BLKmode;
47cfb7f4 343 return mode_for_size (ui, mclass, limit);
0fc6aef1 344}
345
034b6c60 346/* Similar, but never return BLKmode; return the narrowest mode that
7c0390e7 347 contains at least the requested number of value bits. */
034b6c60 348
bbceecb6 349enum machine_mode
47cfb7f4 350smallest_mode_for_size (unsigned int size, enum mode_class mclass)
034b6c60 351{
19cb6b50 352 enum machine_mode mode;
034b6c60 353
354 /* Get the first mode which has at least this size, in the
355 specified class. */
47cfb7f4 356 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
034b6c60 357 mode = GET_MODE_WIDER_MODE (mode))
7c0390e7 358 if (GET_MODE_PRECISION (mode) >= size)
034b6c60 359 return mode;
360
04e579b6 361 gcc_unreachable ();
034b6c60 362}
363
86cde393 364/* Find an integer mode of the exact same size, or BLKmode on failure. */
365
366enum machine_mode
60b8c5b3 367int_mode_for_mode (enum machine_mode mode)
86cde393 368{
369 switch (GET_MODE_CLASS (mode))
370 {
371 case MODE_INT:
372 case MODE_PARTIAL_INT:
373 break;
374
375 case MODE_COMPLEX_INT:
376 case MODE_COMPLEX_FLOAT:
377 case MODE_FLOAT:
069b07bf 378 case MODE_DECIMAL_FLOAT:
d76983d1 379 case MODE_VECTOR_INT:
380 case MODE_VECTOR_FLOAT:
06f0b99c 381 case MODE_FRACT:
382 case MODE_ACCUM:
383 case MODE_UFRACT:
384 case MODE_UACCUM:
385 case MODE_VECTOR_FRACT:
386 case MODE_VECTOR_ACCUM:
387 case MODE_VECTOR_UFRACT:
388 case MODE_VECTOR_UACCUM:
86cde393 389 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
390 break;
391
392 case MODE_RANDOM:
393 if (mode == BLKmode)
40734805 394 break;
083a2b5e 395
1be87b72 396 /* ... fall through ... */
86cde393 397
398 case MODE_CC:
399 default:
04e579b6 400 gcc_unreachable ();
86cde393 401 }
402
403 return mode;
404}
405
ac875fa4 406/* Find a mode that can be used for efficient bitwise operations on MODE.
407 Return BLKmode if no such mode exists. */
408
409enum machine_mode
410bitwise_mode_for_mode (enum machine_mode mode)
411{
412 /* Quick exit if we already have a suitable mode. */
413 unsigned int bitsize = GET_MODE_BITSIZE (mode);
414 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
415 return mode;
416
417 /* Reuse the sanity checks from int_mode_for_mode. */
418 gcc_checking_assert ((int_mode_for_mode (mode), true));
419
420 /* Try to replace complex modes with complex modes. In general we
421 expect both components to be processed independently, so we only
422 care whether there is a register for the inner mode. */
423 if (COMPLEX_MODE_P (mode))
424 {
425 enum machine_mode trial = mode;
426 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
427 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
428 if (trial != BLKmode
429 && have_regs_of_mode[GET_MODE_INNER (trial)])
430 return trial;
431 }
432
433 /* Try to replace vector modes with vector modes. Also try using vector
434 modes if an integer mode would be too big. */
435 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
436 {
437 enum machine_mode trial = mode;
438 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
439 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
440 if (trial != BLKmode
441 && have_regs_of_mode[trial]
442 && targetm.vector_mode_supported_p (trial))
443 return trial;
444 }
445
446 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
447 return mode_for_size (bitsize, MODE_INT, true);
448}
449
450/* Find a type that can be used for efficient bitwise operations on MODE.
451 Return null if no such mode exists. */
452
453tree
454bitwise_type_for_mode (enum machine_mode mode)
455{
456 mode = bitwise_mode_for_mode (mode);
457 if (mode == BLKmode)
458 return NULL_TREE;
459
460 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
461 tree inner_type = build_nonstandard_integer_type (inner_size, true);
462
463 if (VECTOR_MODE_P (mode))
464 return build_vector_type_for_mode (inner_type, mode);
465
466 if (COMPLEX_MODE_P (mode))
467 return build_complex_type (inner_type);
468
469 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
470 return inner_type;
471}
472
c4740c5d 473/* Find a mode that is suitable for representing a vector with
474 NUNITS elements of mode INNERMODE. Returns BLKmode if there
475 is no suitable mode. */
476
477enum machine_mode
478mode_for_vector (enum machine_mode innermode, unsigned nunits)
479{
480 enum machine_mode mode;
481
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode))
484 mode = MIN_MODE_VECTOR_FLOAT;
485 else if (SCALAR_FRACT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FRACT;
487 else if (SCALAR_UFRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_UFRACT;
489 else if (SCALAR_ACCUM_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_ACCUM;
491 else if (SCALAR_UACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_UACCUM;
493 else
494 mode = MIN_MODE_VECTOR_INT;
495
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
499 if (GET_MODE_NUNITS (mode) == nunits
500 && GET_MODE_INNER (mode) == innermode)
501 break;
502
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (mode == VOIDmode
505 && GET_MODE_CLASS (innermode) == MODE_INT)
506 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
507 MODE_INT, 0);
508
509 if (mode == VOIDmode
510 || (GET_MODE_CLASS (mode) == MODE_INT
511 && !have_regs_of_mode[mode]))
512 return BLKmode;
513
514 return mode;
515}
516
1a3e3a66 517/* Return the alignment of MODE. This will be bounded by 1 and
518 BIGGEST_ALIGNMENT. */
519
520unsigned int
60b8c5b3 521get_mode_alignment (enum machine_mode mode)
1a3e3a66 522{
47a2c1d4 523 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
1a3e3a66 524}
525
432dd330 526/* Return the precision of the mode, or for a complex or vector mode the
527 precision of the mode of its elements. */
528
529unsigned int
530element_precision (enum machine_mode mode)
531{
532 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
533 mode = GET_MODE_INNER (mode);
534
535 return GET_MODE_PRECISION (mode);
536}
537
13d3ceb9 538/* Return the natural mode of an array, given that it is SIZE bytes in
539 total and has elements of type ELEM_TYPE. */
540
541static enum machine_mode
542mode_for_array (tree elem_type, tree size)
543{
544 tree elem_size;
545 unsigned HOST_WIDE_INT int_size, int_elem_size;
546 bool limit_p;
547
548 /* One-element arrays get the component type's mode. */
549 elem_size = TYPE_SIZE (elem_type);
550 if (simple_cst_equal (size, elem_size))
551 return TYPE_MODE (elem_type);
552
553 limit_p = true;
e913b5cd 554 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
13d3ceb9 555 {
e913b5cd 556 int_size = tree_to_uhwi (size);
557 int_elem_size = tree_to_uhwi (elem_size);
13d3ceb9 558 if (int_elem_size > 0
559 && int_size % int_elem_size == 0
560 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
561 int_size / int_elem_size))
562 limit_p = false;
563 }
564 return mode_for_size_tree (size, MODE_INT, limit_p);
565}
f2cfea4a 566\f
f5712181 567/* Subroutine of layout_decl: Force alignment required for the data type.
568 But if the decl itself wants greater alignment, don't override that. */
569
570static inline void
571do_type_align (tree type, tree decl)
572{
573 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
574 {
575 DECL_ALIGN (decl) = TYPE_ALIGN (type);
79bdd5ff 576 if (TREE_CODE (decl) == FIELD_DECL)
577 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
f5712181 578 }
579}
580
f2cfea4a 581/* Set the size, mode and alignment of a ..._DECL node.
582 TYPE_DECL does need this for C++.
583 Note that LABEL_DECL and CONST_DECL nodes do not need this,
584 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
585 Don't call layout_decl for them.
586
587 KNOWN_ALIGN is the amount of alignment we can assume this
588 decl has with no special effort. It is relevant only for FIELD_DECLs
589 and depends on the previous fields.
590 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
591 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
592 the record will be aligned to suit. */
593
594void
60b8c5b3 595layout_decl (tree decl, unsigned int known_align)
f2cfea4a 596{
19cb6b50 597 tree type = TREE_TYPE (decl);
598 enum tree_code code = TREE_CODE (decl);
65433eb4 599 rtx rtl = NULL_RTX;
389dd41b 600 location_t loc = DECL_SOURCE_LOCATION (decl);
f2cfea4a 601
602 if (code == CONST_DECL)
603 return;
7bd4091f 604
04e579b6 605 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
606 || code == TYPE_DECL ||code == FIELD_DECL);
7bd4091f 607
65433eb4 608 rtl = DECL_RTL_IF_SET (decl);
609
f2cfea4a 610 if (type == error_mark_node)
51e5c07e 611 type = void_type_node;
f2cfea4a 612
02e7a332 613 /* Usually the size and mode come from the data type without change,
614 however, the front-end may set the explicit width of the field, so its
615 size may not be the same as the size of its type. This happens with
616 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
617 also happens with other fields. For example, the C++ front-end creates
618 zero-sized fields corresponding to empty base classes, and depends on
619 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
62d2dc6f 620 size in bytes from the size in bits. If we have already set the mode,
621 don't set it again since we can be called twice for FIELD_DECLs. */
02e7a332 622
86ae60fd 623 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
62d2dc6f 624 if (DECL_MODE (decl) == VOIDmode)
625 DECL_MODE (decl) = TYPE_MODE (type);
02e7a332 626
034b6c60 627 if (DECL_SIZE (decl) == 0)
b278476e 628 {
bc97b18f 629 DECL_SIZE (decl) = TYPE_SIZE (type);
630 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
b278476e 631 }
ac068b11 632 else if (DECL_SIZE_UNIT (decl) == 0)
02e7a332 633 DECL_SIZE_UNIT (decl)
389dd41b 634 = fold_convert_loc (loc, sizetype,
635 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
636 bitsize_unit_node));
b278476e 637
f5712181 638 if (code != FIELD_DECL)
639 /* For non-fields, update the alignment from the type. */
640 do_type_align (type, decl);
641 else
642 /* For fields, it's a bit more complicated... */
40734805 643 {
6a22ca24 644 bool old_user_align = DECL_USER_ALIGN (decl);
7c68c953 645 bool zero_bitfield = false;
646 bool packed_p = DECL_PACKED (decl);
647 unsigned int mfa;
6a22ca24 648
f5712181 649 if (DECL_BIT_FIELD (decl))
650 {
651 DECL_BIT_FIELD_TYPE (decl) = type;
f2cfea4a 652
f5712181 653 /* A zero-length bit-field affects the alignment of the next
7c68c953 654 field. In essence such bit-fields are not influenced by
655 any packing due to #pragma pack or attribute packed. */
f5712181 656 if (integer_zerop (DECL_SIZE (decl))
883b2e73 657 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
f5712181 658 {
7c68c953 659 zero_bitfield = true;
660 packed_p = false;
f5712181 661#ifdef PCC_BITFIELD_TYPE_MATTERS
662 if (PCC_BITFIELD_TYPE_MATTERS)
663 do_type_align (type, decl);
664 else
665#endif
3aa7cd03 666 {
f5712181 667#ifdef EMPTY_FIELD_BOUNDARY
3aa7cd03 668 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
669 {
670 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
671 DECL_USER_ALIGN (decl) = 0;
672 }
f5712181 673#endif
3aa7cd03 674 }
f5712181 675 }
676
677 /* See if we can use an ordinary integer mode for a bit-field.
f30fa59a 678 Conditions are: a fixed size that is correct for another mode,
7691c4ce 679 occupying a complete byte or bytes on proper boundary. */
f5712181 680 if (TYPE_SIZE (type) != 0
681 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
7691c4ce 682 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
f5712181 683 {
684 enum machine_mode xmode
685 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
23f65835 686 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
f5712181 687
9e7454d0 688 if (xmode != BLKmode
23f65835 689 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
690 && (known_align == 0 || known_align >= xalign))
f5712181 691 {
23f65835 692 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
f5712181 693 DECL_MODE (decl) = xmode;
694 DECL_BIT_FIELD (decl) = 0;
695 }
696 }
697
698 /* Turn off DECL_BIT_FIELD if we won't need it set. */
699 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
700 && known_align >= TYPE_ALIGN (type)
701 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
702 DECL_BIT_FIELD (decl) = 0;
703 }
7c68c953 704 else if (packed_p && DECL_USER_ALIGN (decl))
f5712181 705 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
a708df98 706 round up; we'll reduce it again below. We want packing to
c7bf1374 707 supersede USER_ALIGN inherited from the type, but defer to
a708df98 708 alignment explicitly specified on the field decl. */;
f5712181 709 else
6a22ca24 710 do_type_align (type, decl);
711
7b04d839 712 /* If the field is packed and not explicitly aligned, give it the
713 minimum alignment. Note that do_type_align may set
714 DECL_USER_ALIGN, so we need to check old_user_align instead. */
7c68c953 715 if (packed_p
7b04d839 716 && !old_user_align)
6a22ca24 717 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
f5712181 718
7c68c953 719 if (! packed_p && ! DECL_USER_ALIGN (decl))
f2cfea4a 720 {
f5712181 721 /* Some targets (i.e. i386, VMS) limit struct field alignment
722 to a lower boundary than alignment of variables unless
723 it was overridden by attribute aligned. */
724#ifdef BIGGEST_FIELD_ALIGNMENT
725 DECL_ALIGN (decl)
726 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
727#endif
728#ifdef ADJUST_FIELD_ALIGN
729 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
730#endif
f2cfea4a 731 }
36530340 732
7c68c953 733 if (zero_bitfield)
734 mfa = initial_max_fld_align * BITS_PER_UNIT;
735 else
736 mfa = maximum_field_alignment;
36530340 737 /* Should this be controlled by DECL_USER_ALIGN, too? */
7c68c953 738 if (mfa != 0)
739 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
f2cfea4a 740 }
741
742 /* Evaluate nonconstant size only once, either now or as soon as safe. */
743 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
744 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
b278476e 745 if (DECL_SIZE_UNIT (decl) != 0
746 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
747 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
748
749 /* If requested, warn about definitions of large data objects. */
750 if (warn_larger_than
b8e0d419 751 && (code == VAR_DECL || code == PARM_DECL)
b278476e 752 && ! DECL_EXTERNAL (decl))
753 {
754 tree size = DECL_SIZE_UNIT (decl);
755
756 if (size != 0 && TREE_CODE (size) == INTEGER_CST
a0c2c45b 757 && compare_tree_int (size, larger_than_size) > 0)
b278476e 758 {
f9ae6f95 759 int size_as_int = TREE_INT_CST_LOW (size);
b278476e 760
a0c2c45b 761 if (compare_tree_int (size, size_as_int) == 0)
67089c6b 762 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
b278476e 763 else
67089c6b 764 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
3cf8b391 765 decl, larger_than_size);
b278476e 766 }
767 }
65433eb4 768
769 /* If the RTL was already set, update its mode and mem attributes. */
770 if (rtl)
771 {
772 PUT_MODE (rtl, DECL_MODE (decl));
773 SET_DECL_RTL (decl, 0);
774 set_mem_attributes (rtl, decl, 1);
775 SET_DECL_RTL (decl, rtl);
776 }
f2cfea4a 777}
dddcebdc 778
779/* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
780 a previous call to layout_decl and calls it again. */
781
782void
783relayout_decl (tree decl)
784{
785 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
786 DECL_MODE (decl) = VOIDmode;
950474d6 787 if (!DECL_USER_ALIGN (decl))
788 DECL_ALIGN (decl) = 0;
dddcebdc 789 SET_DECL_RTL (decl, 0);
790
791 layout_decl (decl, 0);
792}
f2cfea4a 793\f
02e7a332 794/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
795 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
796 is to be passed to all other layout functions for this record. It is the
40734805 797 responsibility of the caller to call `free' for the storage returned.
02e7a332 798 Note that garbage collection is not permitted until we finish laying
799 out the record. */
f2cfea4a 800
99f4e085 801record_layout_info
60b8c5b3 802start_record_layout (tree t)
f2cfea4a 803{
f7f3687c 804 record_layout_info rli = XNEW (struct record_layout_info_s);
99f4e085 805
806 rli->t = t;
02e7a332 807
99f4e085 808 /* If the type has a minimum specified alignment (via an attribute
809 declaration, for example) use it -- otherwise, start with a
810 one-byte alignment. */
811 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
f5712181 812 rli->unpacked_align = rli->record_align;
02e7a332 813 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
f2cfea4a 814
3af966eb 815#ifdef STRUCTURE_SIZE_BOUNDARY
816 /* Packed structures don't need to have minimum size. */
0f9793f3 817 if (! TYPE_PACKED (t))
546e12a7 818 {
819 unsigned tmp;
820
821 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
822 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
823 if (maximum_field_alignment != 0)
824 tmp = MIN (tmp, maximum_field_alignment);
825 rli->record_align = MAX (rli->record_align, tmp);
826 }
3af966eb 827#endif
f2cfea4a 828
02e7a332 829 rli->offset = size_zero_node;
830 rli->bitpos = bitsize_zero_node;
f04f096b 831 rli->prev_field = 0;
f1f41a6c 832 rli->pending_statics = 0;
02e7a332 833 rli->packed_maybe_necessary = 0;
7bd4091f 834 rli->remaining_in_alignment = 0;
02e7a332 835
99f4e085 836 return rli;
837}
f2cfea4a 838
2765f7eb 839/* Return the combined bit position for the byte offset OFFSET and the
d9906773 840 bit position BITPOS.
841
842 These functions operate on byte and bit positions present in FIELD_DECLs
843 and assume that these expressions result in no (intermediate) overflow.
844 This assumption is necessary to fold the expressions as much as possible,
845 so as to avoid creating artificially variable-sized types in languages
846 supporting variable-sized types like Ada. */
6d731e4d 847
848tree
60b8c5b3 849bit_from_pos (tree offset, tree bitpos)
6d731e4d 850{
d9906773 851 if (TREE_CODE (offset) == PLUS_EXPR)
852 offset = size_binop (PLUS_EXPR,
853 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
854 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
855 else
856 offset = fold_convert (bitsizetype, offset);
6d731e4d 857 return size_binop (PLUS_EXPR, bitpos,
d9906773 858 size_binop (MULT_EXPR, offset, bitsize_unit_node));
6d731e4d 859}
860
2765f7eb 861/* Return the combined truncated byte position for the byte offset OFFSET and
d9906773 862 the bit position BITPOS. */
2765f7eb 863
6d731e4d 864tree
60b8c5b3 865byte_from_pos (tree offset, tree bitpos)
6d731e4d 866{
2765f7eb 867 tree bytepos;
868 if (TREE_CODE (bitpos) == MULT_EXPR
869 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
870 bytepos = TREE_OPERAND (bitpos, 0);
871 else
872 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
873 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
6d731e4d 874}
875
2765f7eb 876/* Split the bit position POS into a byte offset *POFFSET and a bit
877 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
878
6d731e4d 879void
60b8c5b3 880pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
881 tree pos)
6d731e4d 882{
2765f7eb 883 tree toff_align = bitsize_int (off_align);
884 if (TREE_CODE (pos) == MULT_EXPR
885 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
886 {
887 *poffset = size_binop (MULT_EXPR,
888 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
889 size_int (off_align / BITS_PER_UNIT));
890 *pbitpos = bitsize_zero_node;
891 }
892 else
893 {
894 *poffset = size_binop (MULT_EXPR,
895 fold_convert (sizetype,
896 size_binop (FLOOR_DIV_EXPR, pos,
897 toff_align)),
898 size_int (off_align / BITS_PER_UNIT));
899 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
900 }
6d731e4d 901}
902
903/* Given a pointer to bit and byte offsets and an offset alignment,
904 normalize the offsets so they are within the alignment. */
905
906void
60b8c5b3 907normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
6d731e4d 908{
909 /* If the bit position is now larger than it should be, adjust it
910 downwards. */
911 if (compare_tree_int (*pbitpos, off_align) >= 0)
912 {
2765f7eb 913 tree offset, bitpos;
914 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
915 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
916 *pbitpos = bitpos;
6d731e4d 917 }
918}
919
02e7a332 920/* Print debugging information about the information in RLI. */
83675f44 921
4b987fac 922DEBUG_FUNCTION void
60b8c5b3 923debug_rli (record_layout_info rli)
83675f44 924{
02e7a332 925 print_node_brief (stderr, "type", rli->t, 0);
926 print_node_brief (stderr, "\noffset", rli->offset, 0);
927 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
83675f44 928
f5712181 929 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
930 rli->record_align, rli->unpacked_align,
38ac5984 931 rli->offset_align);
7bd4091f 932
933 /* The ms_struct code is the only that uses this. */
934 if (targetm.ms_bitfield_layout_p (rli->t))
674b377b 935 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
7bd4091f 936
02e7a332 937 if (rli->packed_maybe_necessary)
938 fprintf (stderr, "packed may be necessary\n");
939
f1f41a6c 940 if (!vec_safe_is_empty (rli->pending_statics))
02e7a332 941 {
942 fprintf (stderr, "pending statics:\n");
364ba361 943 debug_vec_tree (rli->pending_statics);
02e7a332 944 }
945}
946
947/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
948 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
949
950void
60b8c5b3 951normalize_rli (record_layout_info rli)
02e7a332 952{
6d731e4d 953 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
02e7a332 954}
83675f44 955
02e7a332 956/* Returns the size in bytes allocated so far. */
957
958tree
60b8c5b3 959rli_size_unit_so_far (record_layout_info rli)
02e7a332 960{
6d731e4d 961 return byte_from_pos (rli->offset, rli->bitpos);
02e7a332 962}
963
964/* Returns the size in bits allocated so far. */
965
966tree
60b8c5b3 967rli_size_so_far (record_layout_info rli)
02e7a332 968{
6d731e4d 969 return bit_from_pos (rli->offset, rli->bitpos);
02e7a332 970}
971
4b387c35 972/* FIELD is about to be added to RLI->T. The alignment (in bits) of
23325b33 973 the next available location within the record is given by KNOWN_ALIGN.
974 Update the variable alignment fields in RLI, and return the alignment
975 to give the FIELD. */
02e7a332 976
4ee9c684 977unsigned int
60b8c5b3 978update_alignment_for_field (record_layout_info rli, tree field,
979 unsigned int known_align)
99f4e085 980{
981 /* The alignment required for FIELD. */
982 unsigned int desired_align;
99f4e085 983 /* The type of this field. */
984 tree type = TREE_TYPE (field);
4b387c35 985 /* True if the field was explicitly aligned by the user. */
986 bool user_align;
f5712181 987 bool is_bitfield;
99f4e085 988
f6cf83a8 989 /* Do not attempt to align an ERROR_MARK node */
990 if (TREE_CODE (type) == ERROR_MARK)
991 return 0;
992
f5712181 993 /* Lay out the field so we know what alignment it needs. */
994 layout_decl (field, known_align);
02e7a332 995 desired_align = DECL_ALIGN (field);
aca14577 996 user_align = DECL_USER_ALIGN (field);
02e7a332 997
f5712181 998 is_bitfield = (type != error_mark_node
999 && DECL_BIT_FIELD_TYPE (field)
1000 && ! integer_zerop (TYPE_SIZE (type)));
f2cfea4a 1001
99f4e085 1002 /* Record must have at least as much alignment as any field.
1003 Otherwise, the alignment of the field within the record is
1004 meaningless. */
7bd4091f 1005 if (targetm.ms_bitfield_layout_p (rli->t))
f04f096b 1006 {
8642f3d3 1007 /* Here, the alignment of the underlying type of a bitfield can
1008 affect the alignment of a record; even a zero-sized field
1009 can do this. The alignment should be to the alignment of
1010 the type, except that for zero-size bitfields this only
f712a0dc 1011 applies if there was an immediately prior, nonzero-size
8642f3d3 1012 bitfield. (That's the way it is, experimentally.) */
089ea875 1013 if ((!is_bitfield && !DECL_PACKED (field))
a6949f31 1014 || ((DECL_SIZE (field) == NULL_TREE
1015 || !integer_zerop (DECL_SIZE (field)))
7bd4091f 1016 ? !DECL_PACKED (field)
1017 : (rli->prev_field
1018 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1019 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
f04f096b 1020 {
8642f3d3 1021 unsigned int type_align = TYPE_ALIGN (type);
1022 type_align = MAX (type_align, desired_align);
1023 if (maximum_field_alignment != 0)
1024 type_align = MIN (type_align, maximum_field_alignment);
1025 rli->record_align = MAX (rli->record_align, type_align);
f04f096b 1026 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1027 }
40734805 1028 }
fca12917 1029#ifdef PCC_BITFIELD_TYPE_MATTERS
f5712181 1030 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
99f4e085 1031 {
4975da72 1032 /* Named bit-fields cause the entire structure to have the
25ba5be6 1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field) != 0
1036 || targetm.align_anon_bitfield ())
f2cfea4a 1037 {
99f4e085 1038 unsigned int type_align = TYPE_ALIGN (type);
fe352cf1 1039
77d0f168 1040#ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type))
1042 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1043#endif
1044
7c68c953 1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field)))
1049 {
1050 if (initial_max_fld_align)
1051 type_align = MIN (type_align,
1052 initial_max_fld_align * BITS_PER_UNIT);
1053 }
1054 else if (maximum_field_alignment != 0)
99f4e085 1055 type_align = MIN (type_align, maximum_field_alignment);
1056 else if (DECL_PACKED (field))
1057 type_align = MIN (type_align, BITS_PER_UNIT);
87994a83 1058
4975da72 1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1063 the field. */
1064 rli->record_align = MAX (rli->record_align, desired_align);
99f4e085 1065 rli->record_align = MAX (rli->record_align, type_align);
4975da72 1066
fca12917 1067 if (warn_packed)
38ac5984 1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
fced8f42 1069 user_align |= TYPE_USER_ALIGN (type);
fca12917 1070 }
99f4e085 1071 }
99f4e085 1072#endif
f5712181 1073 else
99f4e085 1074 {
1075 rli->record_align = MAX (rli->record_align, desired_align);
02e7a332 1076 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
99f4e085 1077 }
fca12917 1078
4b387c35 1079 TYPE_USER_ALIGN (rli->t) |= user_align;
1080
1081 return desired_align;
1082}
1083
1084/* Called from place_field to handle unions. */
1085
1086static void
60b8c5b3 1087place_union_field (record_layout_info rli, tree field)
4b387c35 1088{
1089 update_alignment_for_field (rli, field, /*known_align=*/0);
1090
1091 DECL_FIELD_OFFSET (field) = size_zero_node;
1092 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1093 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1094
7bd4091f 1095 /* If this is an ERROR_MARK return *after* having set the
f6cf83a8 1096 field at the start of the union. This helps when parsing
1097 invalid fields. */
1098 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1099 return;
1100
4b387c35 1101 /* We assume the union's size will be a multiple of a byte so we don't
1102 bother with BITPOS. */
1103 if (TREE_CODE (rli->t) == UNION_TYPE)
1104 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1105 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
178825bb 1106 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
faa43f85 1107 DECL_SIZE_UNIT (field), rli->offset);
4b387c35 1108}
1109
9a27f26f 1110#if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
805e22b2 1111/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
a8b24921 1112 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
805e22b2 1113 units of alignment than the underlying TYPE. */
1114static int
60b8c5b3 1115excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1116 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
805e22b2 1117{
1118 /* Note that the calculation of OFFSET might overflow; we calculate it so
1119 that we still get the right result as long as ALIGN is a power of two. */
1120 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1121
1122 offset = offset % align;
1123 return ((offset + size + align - 1) / align
aa59f000 1124 > tree_to_uhwi (TYPE_SIZE (type)) / align);
805e22b2 1125}
9a27f26f 1126#endif
805e22b2 1127
4b387c35 1128/* RLI contains information about the layout of a RECORD_TYPE. FIELD
1129 is a FIELD_DECL to be added after those fields already present in
1130 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1131 callers that desire that behavior must manually perform that step.) */
1132
1133void
60b8c5b3 1134place_field (record_layout_info rli, tree field)
4b387c35 1135{
1136 /* The alignment required for FIELD. */
1137 unsigned int desired_align;
1138 /* The alignment FIELD would have if we just dropped it into the
1139 record as it presently stands. */
1140 unsigned int known_align;
1141 unsigned int actual_align;
1142 /* The type of this field. */
1143 tree type = TREE_TYPE (field);
1144
65a7c526 1145 gcc_assert (TREE_CODE (field) != ERROR_MARK);
4b387c35 1146
1147 /* If FIELD is static, then treat it like a separate variable, not
1148 really like a structure field. If it is a FUNCTION_DECL, it's a
1149 method. In both cases, all we do is lay out the decl, and we do
1150 it *after* the record is laid out. */
1151 if (TREE_CODE (field) == VAR_DECL)
1152 {
f1f41a6c 1153 vec_safe_push (rli->pending_statics, field);
4b387c35 1154 return;
1155 }
1156
1157 /* Enumerators and enum types which are local to this class need not
1158 be laid out. Likewise for initialized constant fields. */
1159 else if (TREE_CODE (field) != FIELD_DECL)
1160 return;
1161
1162 /* Unions are laid out very differently than records, so split
1163 that code off to another function. */
1164 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1165 {
1166 place_union_field (rli, field);
1167 return;
1168 }
1169
7bd4091f 1170 else if (TREE_CODE (type) == ERROR_MARK)
f6cf83a8 1171 {
1172 /* Place this field at the current allocation position, so we
1173 maintain monotonicity. */
1174 DECL_FIELD_OFFSET (field) = rli->offset;
1175 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1176 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1177 return;
1178 }
1179
4b387c35 1180 /* Work out the known alignment so far. Note that A & (-A) is the
1181 value of the least-significant bit in A that is one. */
1182 if (! integer_zerop (rli->bitpos))
e913b5cd 1183 known_align = (tree_to_uhwi (rli->bitpos)
1184 & - tree_to_uhwi (rli->bitpos));
4b387c35 1185 else if (integer_zerop (rli->offset))
23325b33 1186 known_align = 0;
e913b5cd 1187 else if (tree_fits_uhwi_p (rli->offset))
4b387c35 1188 known_align = (BITS_PER_UNIT
e913b5cd 1189 * (tree_to_uhwi (rli->offset)
1190 & - tree_to_uhwi (rli->offset)));
4b387c35 1191 else
1192 known_align = rli->offset_align;
60b8c5b3 1193
4b387c35 1194 desired_align = update_alignment_for_field (rli, field, known_align);
23325b33 1195 if (known_align == 0)
1196 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
4b387c35 1197
99f4e085 1198 if (warn_packed && DECL_PACKED (field))
1199 {
f5712181 1200 if (known_align >= TYPE_ALIGN (type))
fca12917 1201 {
99f4e085 1202 if (TYPE_ALIGN (type) > desired_align)
fca12917 1203 {
99f4e085 1204 if (STRICT_ALIGNMENT)
3cf8b391 1205 warning (OPT_Wattributes, "packed attribute causes "
1206 "inefficient alignment for %q+D", field);
acca8c42 1207 /* Don't warn if DECL_PACKED was set by the type. */
1208 else if (!TYPE_PACKED (rli->t))
3cf8b391 1209 warning (OPT_Wattributes, "packed attribute is "
1210 "unnecessary for %q+D", field);
fca12917 1211 }
fca12917 1212 }
99f4e085 1213 else
1214 rli->packed_maybe_necessary = 1;
1215 }
f2cfea4a 1216
99f4e085 1217 /* Does this field automatically have alignment it needs by virtue
b527cbf0 1218 of the fields that precede it and the record's own alignment? */
1219 if (known_align < desired_align)
99f4e085 1220 {
1221 /* No, we need to skip space before this field.
1222 Bump the cumulative size to multiple of field alignment. */
f2cfea4a 1223
b527cbf0 1224 if (!targetm.ms_bitfield_layout_p (rli->t)
1225 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
d1251492 1226 warning (OPT_Wpadded, "padding struct to align %q+D", field);
fca12917 1227
02e7a332 1228 /* If the alignment is still within offset_align, just align
1229 the bit position. */
1230 if (desired_align < rli->offset_align)
1231 rli->bitpos = round_up (rli->bitpos, desired_align);
99f4e085 1232 else
1233 {
02e7a332 1234 /* First adjust OFFSET by the partial bits, then align. */
1235 rli->offset
1236 = size_binop (PLUS_EXPR, rli->offset,
5d7ed6c7 1237 fold_convert (sizetype,
1238 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1239 bitsize_unit_node)));
02e7a332 1240 rli->bitpos = bitsize_zero_node;
1241
1242 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
f2cfea4a 1243 }
02e7a332 1244
53de1faf 1245 if (! TREE_CONSTANT (rli->offset))
1246 rli->offset_align = desired_align;
b527cbf0 1247 if (targetm.ms_bitfield_layout_p (rli->t))
1248 rli->prev_field = NULL;
99f4e085 1249 }
f2cfea4a 1250
02e7a332 1251 /* Handle compatibility with PCC. Note that if the record has any
1252 variable-sized fields, we need not worry about compatibility. */
f2cfea4a 1253#ifdef PCC_BITFIELD_TYPE_MATTERS
99f4e085 1254 if (PCC_BITFIELD_TYPE_MATTERS
6fb33aa0 1255 && ! targetm.ms_bitfield_layout_p (rli->t)
99f4e085 1256 && TREE_CODE (field) == FIELD_DECL
1257 && type != error_mark_node
02e7a332 1258 && DECL_BIT_FIELD (field)
9fd767c5 1259 && (! DECL_PACKED (field)
1260 /* Enter for these packed fields only to issue a warning. */
1261 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
99f4e085 1262 && maximum_field_alignment == 0
02e7a332 1263 && ! integer_zerop (DECL_SIZE (field))
e913b5cd 1264 && tree_fits_uhwi_p (DECL_SIZE (field))
e913b5cd 1265 && tree_fits_uhwi_p (rli->offset)
1266 && tree_fits_uhwi_p (TYPE_SIZE (type)))
99f4e085 1267 {
1268 unsigned int type_align = TYPE_ALIGN (type);
02e7a332 1269 tree dsize = DECL_SIZE (field);
e913b5cd 1270 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
69c1cbfa 1271 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
e913b5cd 1272 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
99f4e085 1273
77d0f168 1274#ifdef ADJUST_FIELD_ALIGN
1275 if (! TYPE_USER_ALIGN (type))
1276 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1277#endif
1278
99f4e085 1279 /* A bit field may not span more units of alignment of its type
1280 than its type itself. Advance to next boundary if necessary. */
805e22b2 1281 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
9fd767c5 1282 {
1283 if (DECL_PACKED (field))
1284 {
7a6a48c9 1285 if (warn_packed_bitfield_compat == 1)
9fd767c5 1286 inform
1287 (input_location,
bf776685 1288 "offset of packed bit-field %qD has changed in GCC 4.4",
9fd767c5 1289 field);
1290 }
1291 else
178825bb 1292 rli->bitpos = round_up (rli->bitpos, type_align);
9fd767c5 1293 }
fced8f42 1294
9fd767c5 1295 if (! DECL_PACKED (field))
1296 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
99f4e085 1297 }
f2cfea4a 1298#endif
1299
f2cfea4a 1300#ifdef BITFIELD_NBYTES_LIMITED
99f4e085 1301 if (BITFIELD_NBYTES_LIMITED
6fb33aa0 1302 && ! targetm.ms_bitfield_layout_p (rli->t)
99f4e085 1303 && TREE_CODE (field) == FIELD_DECL
1304 && type != error_mark_node
1305 && DECL_BIT_FIELD_TYPE (field)
02e7a332 1306 && ! DECL_PACKED (field)
1307 && ! integer_zerop (DECL_SIZE (field))
e913b5cd 1308 && tree_fits_uhwi_p (DECL_SIZE (field))
08f4222b 1309 && tree_fits_uhwi_p (rli->offset)
e913b5cd 1310 && tree_fits_uhwi_p (TYPE_SIZE (type)))
99f4e085 1311 {
1312 unsigned int type_align = TYPE_ALIGN (type);
02e7a332 1313 tree dsize = DECL_SIZE (field);
e913b5cd 1314 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
69c1cbfa 1315 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
e913b5cd 1316 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
87994a83 1317
77d0f168 1318#ifdef ADJUST_FIELD_ALIGN
1319 if (! TYPE_USER_ALIGN (type))
1320 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1321#endif
1322
99f4e085 1323 if (maximum_field_alignment != 0)
1324 type_align = MIN (type_align, maximum_field_alignment);
1325 /* ??? This test is opposite the test in the containing if
1326 statement, so this code is unreachable currently. */
1327 else if (DECL_PACKED (field))
1328 type_align = MIN (type_align, BITS_PER_UNIT);
1329
1330 /* A bit field may not span the unit of alignment of its type.
1331 Advance to next boundary if necessary. */
805e22b2 1332 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
02e7a332 1333 rli->bitpos = round_up (rli->bitpos, type_align);
fced8f42 1334
4b387c35 1335 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
99f4e085 1336 }
f2cfea4a 1337#endif
1338
8642f3d3 1339 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1340 A subtlety:
1341 When a bit field is inserted into a packed record, the whole
1342 size of the underlying type is used by one or more same-size
805e22b2 1343 adjacent bitfields. (That is, if its long:3, 32 bits is
8642f3d3 1344 used in the record, and any additional adjacent long bitfields are
1345 packed into the same chunk of 32 bits. However, if the size
1346 changes, a new field of that size is allocated.) In an unpacked
de132707 1347 record, this is the same as using alignment, but not equivalent
805e22b2 1348 when packing.
8642f3d3 1349
de132707 1350 Note: for compatibility, we use the type size, not the type alignment
8642f3d3 1351 to determine alignment, since that matches the documentation */
1352
7bd4091f 1353 if (targetm.ms_bitfield_layout_p (rli->t))
f04f096b 1354 {
8642f3d3 1355 tree prev_saved = rli->prev_field;
8aea3a7e 1356 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
f04f096b 1357
7bd4091f 1358 /* This is a bitfield if it exists. */
1359 if (rli->prev_field)
8642f3d3 1360 {
1361 /* If both are bitfields, nonzero, and the same size, this is
1362 the middle of a run. Zero declared size fields are special
1363 and handled as "end of run". (Note: it's nonzero declared
1364 size, but equal type sizes!) (Since we know that both
1365 the current and previous fields are bitfields by the
1366 time we check it, DECL_SIZE must be present for both.) */
1367 if (DECL_BIT_FIELD_TYPE (field)
1368 && !integer_zerop (DECL_SIZE (field))
1369 && !integer_zerop (DECL_SIZE (rli->prev_field))
e913b5cd 1370 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
69c1cbfa 1371 && tree_fits_uhwi_p (TYPE_SIZE (type))
8aea3a7e 1372 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
8642f3d3 1373 {
1374 /* We're in the middle of a run of equal type size fields; make
1375 sure we realign if we run out of bits. (Not decl size,
1376 type size!) */
e913b5cd 1377 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
8642f3d3 1378
1379 if (rli->remaining_in_alignment < bitsize)
1380 {
e913b5cd 1381 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
8aea3a7e 1382
7bd4091f 1383 /* out of bits; bump up to next 'word'. */
7bd4091f 1384 rli->bitpos
8aea3a7e 1385 = size_binop (PLUS_EXPR, rli->bitpos,
1386 bitsize_int (rli->remaining_in_alignment));
7bd4091f 1387 rli->prev_field = field;
8aea3a7e 1388 if (typesize < bitsize)
1389 rli->remaining_in_alignment = 0;
1390 else
1391 rli->remaining_in_alignment = typesize - bitsize;
8642f3d3 1392 }
8aea3a7e 1393 else
1394 rli->remaining_in_alignment -= bitsize;
8642f3d3 1395 }
1396 else
1397 {
805e22b2 1398 /* End of a run: if leaving a run of bitfields of the same type
1399 size, we have to "use up" the rest of the bits of the type
8642f3d3 1400 size.
1401
1402 Compute the new position as the sum of the size for the prior
1403 type and where we first started working on that type.
1404 Note: since the beginning of the field was aligned then
1405 of course the end will be too. No round needed. */
1406
a6cf93fb 1407 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
8642f3d3 1408 {
7bd4091f 1409 rli->bitpos
1410 = size_binop (PLUS_EXPR, rli->bitpos,
1411 bitsize_int (rli->remaining_in_alignment));
8642f3d3 1412 }
1413 else
5f1e9331 1414 /* We "use up" size zero fields; the code below should behave
1415 as if the prior field was not a bitfield. */
1416 prev_saved = NULL;
8642f3d3 1417
805e22b2 1418 /* Cause a new bitfield to be captured, either this time (if
9cb8e99f 1419 currently a bitfield) or next time we see one. */
9af5ce0c 1420 if (!DECL_BIT_FIELD_TYPE (field)
a6cf93fb 1421 || integer_zerop (DECL_SIZE (field)))
5f1e9331 1422 rli->prev_field = NULL;
8642f3d3 1423 }
5f1e9331 1424
8642f3d3 1425 normalize_rli (rli);
1426 }
1427
3157acc6 1428 /* If we're starting a new run of same type size bitfields
8642f3d3 1429 (or a run of non-bitfields), set up the "first of the run"
805e22b2 1430 fields.
8642f3d3 1431
1432 That is, if the current field is not a bitfield, or if there
1433 was a prior bitfield the type sizes differ, or if there wasn't
1434 a prior bitfield the size of the current field is nonzero.
1435
1436 Note: we must be sure to test ONLY the type size if there was
1437 a prior bitfield and ONLY for the current field being zero if
1438 there wasn't. */
1439
1440 if (!DECL_BIT_FIELD_TYPE (field)
a6cf93fb 1441 || (prev_saved != NULL
8aea3a7e 1442 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
5f1e9331 1443 : !integer_zerop (DECL_SIZE (field)) ))
8642f3d3 1444 {
5f1e9331 1445 /* Never smaller than a byte for compatibility. */
1446 unsigned int type_align = BITS_PER_UNIT;
8642f3d3 1447
805e22b2 1448 /* (When not a bitfield), we could be seeing a flex array (with
8642f3d3 1449 no DECL_SIZE). Since we won't be using remaining_in_alignment
805e22b2 1450 until we see a bitfield (and come by here again) we just skip
8642f3d3 1451 calculating it. */
5f1e9331 1452 if (DECL_SIZE (field) != NULL
e913b5cd 1453 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1454 && tree_fits_uhwi_p (DECL_SIZE (field)))
8aea3a7e 1455 {
c7e8d0da 1456 unsigned HOST_WIDE_INT bitsize
e913b5cd 1457 = tree_to_uhwi (DECL_SIZE (field));
c7e8d0da 1458 unsigned HOST_WIDE_INT typesize
e913b5cd 1459 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
8aea3a7e 1460
1461 if (typesize < bitsize)
1462 rli->remaining_in_alignment = 0;
1463 else
1464 rli->remaining_in_alignment = typesize - bitsize;
1465 }
8642f3d3 1466
9cb8e99f 1467 /* Now align (conventionally) for the new type. */
7bd4091f 1468 type_align = TYPE_ALIGN (TREE_TYPE (field));
f04f096b 1469
8642f3d3 1470 if (maximum_field_alignment != 0)
1471 type_align = MIN (type_align, maximum_field_alignment);
f04f096b 1472
178825bb 1473 rli->bitpos = round_up (rli->bitpos, type_align);
5f1e9331 1474
8642f3d3 1475 /* If we really aligned, don't allow subsequent bitfields
9cb8e99f 1476 to undo that. */
8642f3d3 1477 rli->prev_field = NULL;
1478 }
f04f096b 1479 }
1480
02e7a332 1481 /* Offset so far becomes the position of this field after normalizing. */
1482 normalize_rli (rli);
1483 DECL_FIELD_OFFSET (field) = rli->offset;
1484 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
b4bb829f 1485 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
02e7a332 1486
46515aeb 1487 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1488 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1489 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1490
02e7a332 1491 /* If this field ended up more aligned than we thought it would be (we
1492 approximate this by seeing if its position changed), lay out the field
1493 again; perhaps we can use an integral mode for it now. */
62d2dc6f 1494 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
e913b5cd 1495 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1496 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
62d2dc6f 1497 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
23325b33 1498 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
e913b5cd 1499 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
02e7a332 1500 actual_align = (BITS_PER_UNIT
e913b5cd 1501 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1502 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
99f4e085 1503 else
02e7a332 1504 actual_align = DECL_OFFSET_ALIGN (field);
23325b33 1505 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1506 store / extract bit field operations will check the alignment of the
1507 record against the mode of bit fields. */
02e7a332 1508
1509 if (known_align != actual_align)
1510 layout_decl (field, actual_align);
1511
7bd4091f 1512 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1513 rli->prev_field = field;
f04f096b 1514
02e7a332 1515 /* Now add size of this field to the size of the record. If the size is
1516 not constant, treat the field as being a multiple of bytes and just
1517 adjust the offset, resetting the bit position. Otherwise, apportion the
1518 size amongst the bit position and offset. First handle the case of an
1519 unspecified size, which can happen when we have an invalid nested struct
1520 definition, such as struct j { struct j { int i; } }. The error message
1521 is printed in finish_struct. */
1522 if (DECL_SIZE (field) == 0)
1523 /* Do nothing. */;
7e50ecae 1524 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
f96bd2bf 1525 || TREE_OVERFLOW (DECL_SIZE (field)))
99f4e085 1526 {
02e7a332 1527 rli->offset
1528 = size_binop (PLUS_EXPR, rli->offset,
5d7ed6c7 1529 fold_convert (sizetype,
1530 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1531 bitsize_unit_node)));
02e7a332 1532 rli->offset
1533 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1534 rli->bitpos = bitsize_zero_node;
fcf31ac6 1535 rli->offset_align = MIN (rli->offset_align, desired_align);
99f4e085 1536 }
7bd4091f 1537 else if (targetm.ms_bitfield_layout_p (rli->t))
1538 {
1539 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1540
1541 /* If we ended a bitfield before the full length of the type then
1542 pad the struct out to the full length of the last type. */
1767a056 1543 if ((DECL_CHAIN (field) == NULL
1544 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
7bd4091f 1545 && DECL_BIT_FIELD_TYPE (field)
1546 && !integer_zerop (DECL_SIZE (field)))
1547 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1548 bitsize_int (rli->remaining_in_alignment));
1549
1550 normalize_rli (rli);
1551 }
99f4e085 1552 else
1553 {
02e7a332 1554 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1555 normalize_rli (rli);
f2cfea4a 1556 }
99f4e085 1557}
f2cfea4a 1558
99f4e085 1559/* Assuming that all the fields have been laid out, this function uses
1560 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
de132707 1561 indicated by RLI. */
f2cfea4a 1562
99f4e085 1563static void
60b8c5b3 1564finalize_record_size (record_layout_info rli)
99f4e085 1565{
02e7a332 1566 tree unpadded_size, unpadded_size_unit;
1567
9ac9c432 1568 /* Now we want just byte and bit offsets, so set the offset alignment
1569 to be a byte and then normalize. */
1570 rli->offset_align = BITS_PER_UNIT;
1571 normalize_rli (rli);
f2cfea4a 1572
1573 /* Determine the desired alignment. */
1574#ifdef ROUND_TYPE_ALIGN
99f4e085 1575 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
fd5279fc 1576 rli->record_align);
f2cfea4a 1577#else
99f4e085 1578 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
f2cfea4a 1579#endif
1580
9ac9c432 1581 /* Compute the size so far. Be sure to allow for extra bits in the
1582 size in bytes. We have guaranteed above that it will be no more
1583 than a single byte. */
1584 unpadded_size = rli_size_so_far (rli);
1585 unpadded_size_unit = rli_size_unit_so_far (rli);
1586 if (! integer_zerop (rli->bitpos))
1587 unpadded_size_unit
1588 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
02e7a332 1589
9aa78eb0 1590 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1591 && !TREE_OVERFLOW (unpadded_size_unit)
1592 && !valid_constant_size_p (unpadded_size_unit))
1593 error ("type %qT is too large", rli->t);
1594
2358393e 1595 /* Round the size up to be a multiple of the required alignment. */
178825bb 1596 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
d37625c0 1597 TYPE_SIZE_UNIT (rli->t)
178825bb 1598 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
fe352cf1 1599
6bf97f82 1600 if (TREE_CONSTANT (unpadded_size)
d1251492 1601 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1602 && input_location != BUILTINS_LOCATION)
6bf97f82 1603 warning (OPT_Wpadded, "padding struct size to alignment boundary");
40734805 1604
02e7a332 1605 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1606 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1607 && TREE_CONSTANT (unpadded_size))
fca12917 1608 {
1609 tree unpacked_size;
fe352cf1 1610
fca12917 1611#ifdef ROUND_TYPE_ALIGN
99f4e085 1612 rli->unpacked_align
1613 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
fca12917 1614#else
99f4e085 1615 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
fca12917 1616#endif
02e7a332 1617
178825bb 1618 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
99f4e085 1619 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
fca12917 1620 {
99f4e085 1621 if (TYPE_NAME (rli->t))
fca12917 1622 {
abd3e6b5 1623 tree name;
fe352cf1 1624
99f4e085 1625 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
abd3e6b5 1626 name = TYPE_NAME (rli->t);
fca12917 1627 else
abd3e6b5 1628 name = DECL_NAME (TYPE_NAME (rli->t));
02e7a332 1629
fca12917 1630 if (STRICT_ALIGNMENT)
6bf97f82 1631 warning (OPT_Wpacked, "packed attribute causes inefficient "
abd3e6b5 1632 "alignment for %qE", name);
fca12917 1633 else
6bf97f82 1634 warning (OPT_Wpacked,
abd3e6b5 1635 "packed attribute is unnecessary for %qE", name);
fca12917 1636 }
1637 else
1638 {
1639 if (STRICT_ALIGNMENT)
6bf97f82 1640 warning (OPT_Wpacked,
9b2d6d13 1641 "packed attribute causes inefficient alignment");
fca12917 1642 else
6bf97f82 1643 warning (OPT_Wpacked, "packed attribute is unnecessary");
fca12917 1644 }
1645 }
fca12917 1646 }
99f4e085 1647}
1648
1649/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
f2cfea4a 1650
9ac9c432 1651void
60b8c5b3 1652compute_record_mode (tree type)
99f4e085 1653{
02e7a332 1654 tree field;
1655 enum machine_mode mode = VOIDmode;
1656
99f4e085 1657 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1658 However, if possible, we use a mode that fits in a register
1659 instead, in order to allow for better optimization down the
1660 line. */
342ad2d6 1661 SET_TYPE_MODE (type, BLKmode);
99f4e085 1662
e913b5cd 1663 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
02e7a332 1664 return;
99f4e085 1665
02e7a332 1666 /* A record which has any BLKmode members must itself be
1667 BLKmode; it can't go in a register. Unless the member is
1668 BLKmode only because it isn't aligned. */
1767a056 1669 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
02e7a332 1670 {
02e7a332 1671 if (TREE_CODE (field) != FIELD_DECL)
1672 continue;
99f4e085 1673
02e7a332 1674 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1675 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
0e9fefce 1676 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1677 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1678 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
e913b5cd 1679 || ! tree_fits_uhwi_p (bit_position (field))
0b241033 1680 || DECL_SIZE (field) == 0
e913b5cd 1681 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
02e7a332 1682 return;
1683
02e7a332 1684 /* If this field is the whole struct, remember its mode so
1685 that, say, we can put a double in a class into a DF
b708a05c 1686 register instead of forcing it to live in the stack. */
1687 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
02e7a332 1688 mode = DECL_MODE (field);
99f4e085 1689
f91ed644 1690 /* With some targets, it is sub-optimal to access an aligned
1691 BLKmode structure as a scalar. */
1692 if (targetm.member_type_forces_blk (field, mode))
02e7a332 1693 return;
02e7a332 1694 }
99f4e085 1695
aedd07a7 1696 /* If we only have one real field; use its mode if that mode's size
1697 matches the type's size. This only applies to RECORD_TYPE. This
1698 does not apply to unions. */
1699 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
e913b5cd 1700 && tree_fits_uhwi_p (TYPE_SIZE (type))
1701 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
342ad2d6 1702 SET_TYPE_MODE (type, mode);
c0d93be8 1703 else
342ad2d6 1704 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
02e7a332 1705
1706 /* If structure's known alignment is less than what the scalar
1707 mode would need, and it matters, then stick with BLKmode. */
1708 if (TYPE_MODE (type) != BLKmode
1709 && STRICT_ALIGNMENT
1710 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1711 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1712 {
1713 /* If this is the only reason this type is BLKmode, then
1714 don't force containing types to be BLKmode. */
1715 TYPE_NO_FORCE_BLK (type) = 1;
342ad2d6 1716 SET_TYPE_MODE (type, BLKmode);
99f4e085 1717 }
f2cfea4a 1718}
99f4e085 1719
1720/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1721 out. */
1722
1723static void
60b8c5b3 1724finalize_type_size (tree type)
99f4e085 1725{
1726 /* Normally, use the alignment corresponding to the mode chosen.
1727 However, where strict alignment is not required, avoid
1728 over-aligning structures, since most compilers do not do this
d1b5d503 1729 alignment. */
99f4e085 1730
1731 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
d1b5d503 1732 && (STRICT_ALIGNMENT
99f4e085 1733 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1734 && TREE_CODE (type) != QUAL_UNION_TYPE
1735 && TREE_CODE (type) != ARRAY_TYPE)))
aca14577 1736 {
d1b5d503 1737 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1738
1739 /* Don't override a larger alignment requirement coming from a user
1740 alignment of one of the fields. */
1741 if (mode_align >= TYPE_ALIGN (type))
1742 {
1743 TYPE_ALIGN (type) = mode_align;
1744 TYPE_USER_ALIGN (type) = 0;
1745 }
aca14577 1746 }
99f4e085 1747
1748 /* Do machine-dependent extra alignment. */
1749#ifdef ROUND_TYPE_ALIGN
1750 TYPE_ALIGN (type)
1751 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1752#endif
1753
99f4e085 1754 /* If we failed to find a simple way to calculate the unit size
02e7a332 1755 of the type, find it by division. */
99f4e085 1756 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1757 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1758 result will fit in sizetype. We will get more efficient code using
1759 sizetype, so we force a conversion. */
1760 TYPE_SIZE_UNIT (type)
5d7ed6c7 1761 = fold_convert (sizetype,
1762 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1763 bitsize_unit_node));
99f4e085 1764
02e7a332 1765 if (TYPE_SIZE (type) != 0)
1766 {
178825bb 1767 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1768 TYPE_SIZE_UNIT (type)
1769 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
02e7a332 1770 }
1771
1772 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1773 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1774 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
99f4e085 1775 if (TYPE_SIZE_UNIT (type) != 0
1776 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1777 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1778
1779 /* Also layout any other variants of the type. */
1780 if (TYPE_NEXT_VARIANT (type)
1781 || type != TYPE_MAIN_VARIANT (type))
1782 {
1783 tree variant;
1784 /* Record layout info of this variant. */
1785 tree size = TYPE_SIZE (type);
1786 tree size_unit = TYPE_SIZE_UNIT (type);
1787 unsigned int align = TYPE_ALIGN (type);
aca14577 1788 unsigned int user_align = TYPE_USER_ALIGN (type);
99f4e085 1789 enum machine_mode mode = TYPE_MODE (type);
1790
1791 /* Copy it into all variants. */
1792 for (variant = TYPE_MAIN_VARIANT (type);
1793 variant != 0;
1794 variant = TYPE_NEXT_VARIANT (variant))
1795 {
1796 TYPE_SIZE (variant) = size;
1797 TYPE_SIZE_UNIT (variant) = size_unit;
1798 TYPE_ALIGN (variant) = align;
aca14577 1799 TYPE_USER_ALIGN (variant) = user_align;
342ad2d6 1800 SET_TYPE_MODE (variant, mode);
99f4e085 1801 }
1802 }
1803}
1804
8d8a34f9 1805/* Return a new underlying object for a bitfield started with FIELD. */
1806
1807static tree
1808start_bitfield_representative (tree field)
1809{
1810 tree repr = make_node (FIELD_DECL);
1811 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1812 /* Force the representative to begin at a BITS_PER_UNIT aligned
1813 boundary - C++ may use tail-padding of a base object to
1814 continue packing bits so the bitfield region does not start
1815 at bit zero (see g++.dg/abi/bitfield5.C for example).
1816 Unallocated bits may happen for other reasons as well,
1817 for example Ada which allows explicit bit-granular structure layout. */
1818 DECL_FIELD_BIT_OFFSET (repr)
1819 = size_binop (BIT_AND_EXPR,
1820 DECL_FIELD_BIT_OFFSET (field),
1821 bitsize_int (~(BITS_PER_UNIT - 1)));
1822 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1823 DECL_SIZE (repr) = DECL_SIZE (field);
1824 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1825 DECL_PACKED (repr) = DECL_PACKED (field);
1826 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1827 return repr;
1828}
1829
1830/* Finish up a bitfield group that was started by creating the underlying
1831 object REPR with the last field in the bitfield group FIELD. */
1832
1833static void
1834finish_bitfield_representative (tree repr, tree field)
1835{
1836 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1837 enum machine_mode mode;
1838 tree nextf, size;
1839
1840 size = size_diffop (DECL_FIELD_OFFSET (field),
1841 DECL_FIELD_OFFSET (repr));
e913b5cd 1842 gcc_assert (tree_fits_uhwi_p (size));
1843 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1844 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1845 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1846 + tree_to_uhwi (DECL_SIZE (field)));
8d8a34f9 1847
75188dc6 1848 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1849 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1850
8d8a34f9 1851 /* Now nothing tells us how to pad out bitsize ... */
1852 nextf = DECL_CHAIN (field);
1853 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1854 nextf = DECL_CHAIN (nextf);
1855 if (nextf)
1856 {
1857 tree maxsize;
9d75589a 1858 /* If there was an error, the field may be not laid out
8d8a34f9 1859 correctly. Don't bother to do anything. */
1860 if (TREE_TYPE (nextf) == error_mark_node)
1861 return;
1862 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1863 DECL_FIELD_OFFSET (repr));
e913b5cd 1864 if (tree_fits_uhwi_p (maxsize))
fa42e1a4 1865 {
e913b5cd 1866 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1867 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1868 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
fa42e1a4 1869 /* If the group ends within a bitfield nextf does not need to be
1870 aligned to BITS_PER_UNIT. Thus round up. */
1871 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1872 }
1873 else
1874 maxbitsize = bitsize;
8d8a34f9 1875 }
1876 else
1877 {
1878 /* ??? If you consider that tail-padding of this struct might be
1879 re-used when deriving from it we cannot really do the following
75188dc6 1880 and thus need to set maxsize to bitsize? Also we cannot
1881 generally rely on maxsize to fold to an integer constant, so
1882 use bitsize as fallback for this case. */
8d8a34f9 1883 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1884 DECL_FIELD_OFFSET (repr));
e913b5cd 1885 if (tree_fits_uhwi_p (maxsize))
1886 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1887 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
75188dc6 1888 else
1889 maxbitsize = bitsize;
8d8a34f9 1890 }
1891
1892 /* Only if we don't artificially break up the representative in
1893 the middle of a large bitfield with different possibly
1894 overlapping representatives. And all representatives start
1895 at byte offset. */
1896 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1897
8d8a34f9 1898 /* Find the smallest nice mode to use. */
1899 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1900 mode = GET_MODE_WIDER_MODE (mode))
1901 if (GET_MODE_BITSIZE (mode) >= bitsize)
1902 break;
1903 if (mode != VOIDmode
1904 && (GET_MODE_BITSIZE (mode) > maxbitsize
1905 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1906 mode = VOIDmode;
1907
1908 if (mode == VOIDmode)
1909 {
1910 /* We really want a BLKmode representative only as a last resort,
1911 considering the member b in
1912 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1913 Otherwise we simply want to split the representative up
1914 allowing for overlaps within the bitfield region as required for
1915 struct { int a : 7; int b : 7;
1916 int c : 10; int d; } __attribute__((packed));
1917 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1918 DECL_SIZE (repr) = bitsize_int (bitsize);
1919 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1920 DECL_MODE (repr) = BLKmode;
1921 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1922 bitsize / BITS_PER_UNIT);
1923 }
1924 else
1925 {
1926 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1927 DECL_SIZE (repr) = bitsize_int (modesize);
1928 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1929 DECL_MODE (repr) = mode;
1930 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1931 }
1932
1933 /* Remember whether the bitfield group is at the end of the
1934 structure or not. */
1935 DECL_CHAIN (repr) = nextf;
1936}
1937
1938/* Compute and set FIELD_DECLs for the underlying objects we should
9d75589a 1939 use for bitfield access for the structure laid out with RLI. */
8d8a34f9 1940
1941static void
1942finish_bitfield_layout (record_layout_info rli)
1943{
1944 tree field, prev;
1945 tree repr = NULL_TREE;
1946
1947 /* Unions would be special, for the ease of type-punning optimizations
1948 we could use the underlying type as hint for the representative
1949 if the bitfield would fit and the representative would not exceed
1950 the union in size. */
1951 if (TREE_CODE (rli->t) != RECORD_TYPE)
1952 return;
1953
1954 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1955 field; field = DECL_CHAIN (field))
1956 {
1957 if (TREE_CODE (field) != FIELD_DECL)
1958 continue;
1959
1960 /* In the C++ memory model, consecutive bit fields in a structure are
1961 considered one memory location and updating a memory location
1962 may not store into adjacent memory locations. */
1963 if (!repr
1964 && DECL_BIT_FIELD_TYPE (field))
1965 {
1966 /* Start new representative. */
1967 repr = start_bitfield_representative (field);
1968 }
1969 else if (repr
1970 && ! DECL_BIT_FIELD_TYPE (field))
1971 {
1972 /* Finish off new representative. */
1973 finish_bitfield_representative (repr, prev);
1974 repr = NULL_TREE;
1975 }
1976 else if (DECL_BIT_FIELD_TYPE (field))
1977 {
fa42e1a4 1978 gcc_assert (repr != NULL_TREE);
1979
8d8a34f9 1980 /* Zero-size bitfields finish off a representative and
1981 do not have a representative themselves. This is
1982 required by the C++ memory model. */
1983 if (integer_zerop (DECL_SIZE (field)))
1984 {
1985 finish_bitfield_representative (repr, prev);
1986 repr = NULL_TREE;
1987 }
fa42e1a4 1988
1989 /* We assume that either DECL_FIELD_OFFSET of the representative
1990 and each bitfield member is a constant or they are equal.
1991 This is because we need to be able to compute the bit-offset
1992 of each field relative to the representative in get_bit_range
1993 during RTL expansion.
1994 If these constraints are not met, simply force a new
1995 representative to be generated. That will at most
1996 generate worse code but still maintain correctness with
1997 respect to the C++ memory model. */
e913b5cd 1998 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1999 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
fa42e1a4 2000 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2001 DECL_FIELD_OFFSET (field), 0)))
2002 {
2003 finish_bitfield_representative (repr, prev);
2004 repr = start_bitfield_representative (field);
2005 }
8d8a34f9 2006 }
2007 else
2008 continue;
2009
2010 if (repr)
2011 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2012
2013 prev = field;
2014 }
2015
2016 if (repr)
2017 finish_bitfield_representative (repr, prev);
2018}
2019
99f4e085 2020/* Do all of the work required to layout the type indicated by RLI,
2021 once the fields have been laid out. This function will call `free'
23ed74d8 2022 for RLI, unless FREE_P is false. Passing a value other than false
2023 for FREE_P is bad practice; this option only exists to support the
2024 G++ 3.2 ABI. */
99f4e085 2025
2026void
60b8c5b3 2027finish_record_layout (record_layout_info rli, int free_p)
99f4e085 2028{
2bc7da70 2029 tree variant;
2030
02e7a332 2031 /* Compute the final size. */
2032 finalize_record_size (rli);
2033
2034 /* Compute the TYPE_MODE for the record. */
2035 compute_record_mode (rli->t);
83675f44 2036
48fdacd0 2037 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2038 finalize_type_size (rli->t);
2039
8d8a34f9 2040 /* Compute bitfield representatives. */
2041 finish_bitfield_layout (rli);
2042
2bc7da70 2043 /* Propagate TYPE_PACKED to variants. With C++ templates,
2044 handle_packed_attribute is too early to do this. */
2045 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2046 variant = TYPE_NEXT_VARIANT (variant))
2047 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2048
99f4e085 2049 /* Lay out any static members. This is done now because their type
2050 may use the record's type. */
f1f41a6c 2051 while (!vec_safe_is_empty (rli->pending_statics))
2052 layout_decl (rli->pending_statics->pop (), 0);
83675f44 2053
99f4e085 2054 /* Clean up. */
23ed74d8 2055 if (free_p)
364ba361 2056 {
f1f41a6c 2057 vec_free (rli->pending_statics);
364ba361 2058 free (rli);
2059 }
99f4e085 2060}
f2cfea4a 2061\f
805e22b2 2062
2063/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2064 NAME, its fields are chained in reverse on FIELDS.
2065
2066 If ALIGN_TYPE is non-null, it is given the same alignment as
2067 ALIGN_TYPE. */
2068
2069void
60b8c5b3 2070finish_builtin_struct (tree type, const char *name, tree fields,
2071 tree align_type)
805e22b2 2072{
f2332b21 2073 tree tail, next;
805e22b2 2074
2075 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2076 {
2077 DECL_FIELD_CONTEXT (fields) = type;
1767a056 2078 next = DECL_CHAIN (fields);
2079 DECL_CHAIN (fields) = tail;
805e22b2 2080 }
2081 TYPE_FIELDS (type) = tail;
2082
2083 if (align_type)
2084 {
2085 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2086 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2087 }
2088
2089 layout_type (type);
2090#if 0 /* not yet, should get fixed properly later */
2091 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2092#else
e60a6f7b 2093 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2094 TYPE_DECL, get_identifier (name), type);
805e22b2 2095#endif
2096 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2097 layout_decl (TYPE_NAME (type), 0);
2098}
2099
f2cfea4a 2100/* Calculate the mode, size, and alignment for TYPE.
2101 For an array type, calculate the element separation as well.
2102 Record TYPE on the chain of permanent or temporary types
2103 so that dbxout will find out about it.
2104
2105 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2106 layout_type does nothing on such a type.
2107
2108 If the type is incomplete, its TYPE_SIZE remains zero. */
2109
2110void
60b8c5b3 2111layout_type (tree type)
f2cfea4a 2112{
04e579b6 2113 gcc_assert (type);
f2cfea4a 2114
4ee9c684 2115 if (type == error_mark_node)
2116 return;
2117
f2cfea4a 2118 /* Do nothing if type has been laid out before. */
2119 if (TYPE_SIZE (type))
2120 return;
2121
f2cfea4a 2122 switch (TREE_CODE (type))
2123 {
2124 case LANG_TYPE:
2125 /* This kind of type is the responsibility
c3418f42 2126 of the language-specific code. */
04e579b6 2127 gcc_unreachable ();
f2cfea4a 2128
0e3dfadd 2129 case BOOLEAN_TYPE:
f2cfea4a 2130 case INTEGER_TYPE:
2131 case ENUMERAL_TYPE:
342ad2d6 2132 SET_TYPE_MODE (type,
2133 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
b278476e 2134 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
cec6c892 2135 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
f2cfea4a 2136 break;
2137
2138 case REAL_TYPE:
342ad2d6 2139 SET_TYPE_MODE (type,
2140 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
b278476e 2141 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
cec6c892 2142 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
f2cfea4a 2143 break;
2144
06f0b99c 2145 case FIXED_POINT_TYPE:
2146 /* TYPE_MODE (type) has been set already. */
2147 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2148 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2149 break;
2150
f2cfea4a 2151 case COMPLEX_TYPE:
78a8ed03 2152 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
342ad2d6 2153 SET_TYPE_MODE (type,
2154 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2155 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2156 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2157 0));
b278476e 2158 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
cec6c892 2159 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
f2cfea4a 2160 break;
2161
8a95ab85 2162 case VECTOR_TYPE:
83e2a11b 2163 {
2164 int nunits = TYPE_VECTOR_SUBPARTS (type);
83e2a11b 2165 tree innertype = TREE_TYPE (type);
2166
04e579b6 2167 gcc_assert (!(nunits & (nunits - 1)));
83e2a11b 2168
2169 /* Find an appropriate mode for the vector type. */
2170 if (TYPE_MODE (type) == VOIDmode)
c4740c5d 2171 SET_TYPE_MODE (type,
2172 mode_for_vector (TYPE_MODE (innertype), nunits));
83e2a11b 2173
06f0b99c 2174 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
83e2a11b 2175 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2176 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2177 TYPE_SIZE_UNIT (innertype),
317e2a67 2178 size_int (nunits));
83e2a11b 2179 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
317e2a67 2180 bitsize_int (nunits));
b74c835a 2181
482a44fa 2182 /* For vector types, we do not default to the mode's alignment.
2183 Instead, query a target hook, defaulting to natural alignment.
2184 This prevents ABI changes depending on whether or not native
2185 vector modes are supported. */
2186 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2187
2188 /* However, if the underlying mode requires a bigger alignment than
2189 what the target hook provides, we cannot use the mode. For now,
2190 simply reject that case. */
2191 gcc_assert (TYPE_ALIGN (type)
2192 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
83e2a11b 2193 break;
2194 }
8a95ab85 2195
f2cfea4a 2196 case VOID_TYPE:
02e7a332 2197 /* This is an incomplete type and so doesn't have a size. */
f2cfea4a 2198 TYPE_ALIGN (type) = 1;
aca14577 2199 TYPE_USER_ALIGN (type) = 0;
342ad2d6 2200 SET_TYPE_MODE (type, VOIDmode);
f2cfea4a 2201 break;
2202
e23958d4 2203 case OFFSET_TYPE:
b278476e 2204 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
cec6c892 2205 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
60bf59a4 2206 /* A pointer might be MODE_PARTIAL_INT,
2207 but ptrdiff_t must be integral. */
342ad2d6 2208 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
98155838 2209 TYPE_PRECISION (type) = POINTER_SIZE;
e23958d4 2210 break;
2211
f2cfea4a 2212 case FUNCTION_TYPE:
2213 case METHOD_TYPE:
4812cab0 2214 /* It's hard to see what the mode and size of a function ought to
2215 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2216 make it consistent with that. */
342ad2d6 2217 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
4812cab0 2218 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2219 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
f2cfea4a 2220 break;
2221
2222 case POINTER_TYPE:
2223 case REFERENCE_TYPE:
f1986931 2224 {
98155838 2225 enum machine_mode mode = TYPE_MODE (type);
2226 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2227 {
2228 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2229 mode = targetm.addr_space.address_mode (as);
2230 }
805e22b2 2231
98155838 2232 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
805e22b2 2233 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
78a8ed03 2234 TYPE_UNSIGNED (type) = 1;
98155838 2235 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
f1986931 2236 }
f2cfea4a 2237 break;
2238
2239 case ARRAY_TYPE:
2240 {
19cb6b50 2241 tree index = TYPE_DOMAIN (type);
2242 tree element = TREE_TYPE (type);
f2cfea4a 2243
2244 build_pointer_type (element);
2245
2246 /* We need to know both bounds in order to compute the size. */
2247 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2248 && TYPE_SIZE (element))
2249 {
bc97b18f 2250 tree ub = TYPE_MAX_VALUE (index);
2251 tree lb = TYPE_MIN_VALUE (index);
f00a8c41 2252 tree element_size = TYPE_SIZE (element);
41e112e6 2253 tree length;
2254
820fcceb 2255 /* Make sure that an array of zero-sized element is zero-sized
2256 regardless of its extent. */
2257 if (integer_zerop (element_size))
2258 length = size_zero_node;
2259
7542c3b4 2260 /* The computation should happen in the original signedness so
2261 that (possible) negative values are handled appropriately
2262 when determining overflow. */
820fcceb 2263 else
85d86b55 2264 {
2265 /* ??? When it is obvious that the range is signed
2266 represent it using ssizetype. */
2267 if (TREE_CODE (lb) == INTEGER_CST
2268 && TREE_CODE (ub) == INTEGER_CST
2269 && TYPE_UNSIGNED (TREE_TYPE (lb))
2270 && tree_int_cst_lt (ub, lb))
2271 {
796b6678 2272 lb = wide_int_to_tree (ssizetype,
5de9d3ed 2273 offset_int::from (lb, SIGNED));
796b6678 2274 ub = wide_int_to_tree (ssizetype,
5de9d3ed 2275 offset_int::from (ub, SIGNED));
85d86b55 2276 }
2277 length
2278 = fold_convert (sizetype,
2279 size_binop (PLUS_EXPR,
2280 build_int_cst (TREE_TYPE (lb), 1),
2281 size_binop (MINUS_EXPR, ub, lb)));
2282 }
2283
97658fc9 2284 /* ??? We have no way to distinguish a null-sized array from an
2285 array spanning the whole sizetype range, so we arbitrarily
2286 decide that [0, -1] is the only valid representation. */
85d86b55 2287 if (integer_zerop (length)
97658fc9 2288 && TREE_OVERFLOW (length)
2289 && integer_zerop (lb))
85d86b55 2290 length = size_zero_node;
f2cfea4a 2291
902de8ed 2292 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
7bd4091f 2293 fold_convert (bitsizetype,
5d7ed6c7 2294 length));
cec6c892 2295
f00a8c41 2296 /* If we know the size of the element, calculate the total size
2297 directly, rather than do some division thing below. This
2298 optimization helps Fortran assumed-size arrays (where the
2299 size of the array is determined at runtime) substantially. */
2300 if (TYPE_SIZE_UNIT (element))
083a2b5e 2301 TYPE_SIZE_UNIT (type)
2302 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
f2cfea4a 2303 }
2304
2305 /* Now round the alignment and size,
2306 using machine-dependent criteria if any. */
2307
2308#ifdef ROUND_TYPE_ALIGN
2309 TYPE_ALIGN (type)
2310 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2311#else
2312 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2313#endif
e6475517 2314 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
342ad2d6 2315 SET_TYPE_MODE (type, BLKmode);
f2cfea4a 2316 if (TYPE_SIZE (type) != 0
f91ed644 2317 && ! targetm.member_type_forces_blk (type, VOIDmode)
f2cfea4a 2318 /* BLKmode elements force BLKmode aggregate;
2319 else extract/store fields may lose. */
2320 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2321 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2322 {
13d3ceb9 2323 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2324 TYPE_SIZE (type)));
0fc6aef1 2325 if (TYPE_MODE (type) != BLKmode
2326 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
a2ee4f78 2327 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
f2cfea4a 2328 {
2329 TYPE_NO_FORCE_BLK (type) = 1;
342ad2d6 2330 SET_TYPE_MODE (type, BLKmode);
f2cfea4a 2331 }
f2cfea4a 2332 }
e1b062ae 2333 /* When the element size is constant, check that it is at least as
2334 large as the element alignment. */
b3bb0d2d 2335 if (TYPE_SIZE_UNIT (element)
2336 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
e1b062ae 2337 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2338 TYPE_ALIGN_UNIT. */
f96bd2bf 2339 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
b3bb0d2d 2340 && !integer_zerop (TYPE_SIZE_UNIT (element))
2341 && compare_tree_int (TYPE_SIZE_UNIT (element),
2342 TYPE_ALIGN_UNIT (element)) < 0)
2343 error ("alignment of array elements is greater than element size");
f2cfea4a 2344 break;
2345 }
2346
2347 case RECORD_TYPE:
83675f44 2348 case UNION_TYPE:
2349 case QUAL_UNION_TYPE:
99f4e085 2350 {
2351 tree field;
2352 record_layout_info rli;
2353
2354 /* Initialize the layout information. */
02e7a332 2355 rli = start_record_layout (type);
2356
83675f44 2357 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2358 in the reverse order in building the COND_EXPR that denotes
2359 its size. We reverse them again later. */
2360 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2361 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
02e7a332 2362
2363 /* Place all the fields. */
1767a056 2364 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
02e7a332 2365 place_field (rli, field);
2366
83675f44 2367 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2368 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
02e7a332 2369
99f4e085 2370 /* Finish laying out the record. */
23ed74d8 2371 finish_record_layout (rli, /*free_p=*/true);
99f4e085 2372 }
f2cfea4a 2373 break;
2374
f2cfea4a 2375 default:
04e579b6 2376 gcc_unreachable ();
fe352cf1 2377 }
f2cfea4a 2378
99f4e085 2379 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
83675f44 2380 records and unions, finish_record_layout already called this
2381 function. */
40734805 2382 if (TREE_CODE (type) != RECORD_TYPE
83675f44 2383 && TREE_CODE (type) != UNION_TYPE
2384 && TREE_CODE (type) != QUAL_UNION_TYPE)
99f4e085 2385 finalize_type_size (type);
f2cfea4a 2386
b35a8f48 2387 /* We should never see alias sets on incomplete aggregates. And we
2388 should not call layout_type on not incomplete aggregates. */
2389 if (AGGREGATE_TYPE_P (type))
2390 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
f2cfea4a 2391}
342ad2d6 2392
392dee1e 2393/* Return the least alignment required for type TYPE. */
2394
2395unsigned int
2396min_align_of_type (tree type)
2397{
2398 unsigned int align = TYPE_ALIGN (type);
2399 align = MIN (align, BIGGEST_ALIGNMENT);
2400#ifdef BIGGEST_FIELD_ALIGNMENT
2401 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2402#endif
2403 unsigned int field_align = align;
2404#ifdef ADJUST_FIELD_ALIGN
2405 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE,
2406 type);
2407 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2408 ggc_free (field);
2409#endif
2410 align = MIN (align, field_align);
2411 return align / BITS_PER_UNIT;
2412}
2413
342ad2d6 2414/* Vector types need to re-check the target flags each time we report
2415 the machine mode. We need to do this because attribute target can
2416 change the result of vector_mode_supported_p and have_regs_of_mode
2417 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2418 change on a per-function basis. */
48e1416a 2419/* ??? Possibly a better solution is to run through all the types
342ad2d6 2420 referenced by a function and re-compute the TYPE_MODE once, rather
2421 than make the TYPE_MODE macro call a function. */
2422
2423enum machine_mode
2424vector_type_mode (const_tree t)
2425{
2426 enum machine_mode mode;
2427
2428 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2429
8f2eb9e1 2430 mode = t->type_common.mode;
342ad2d6 2431 if (VECTOR_MODE_P (mode)
2432 && (!targetm.vector_mode_supported_p (mode)
2433 || !have_regs_of_mode[mode]))
2434 {
8f2eb9e1 2435 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
342ad2d6 2436
2437 /* For integers, try mapping it to a same-sized scalar mode. */
2438 if (GET_MODE_CLASS (innermode) == MODE_INT)
2439 {
2440 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2441 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2442
2443 if (mode != VOIDmode && have_regs_of_mode[mode])
2444 return mode;
2445 }
2446
2447 return BLKmode;
2448 }
2449
2450 return mode;
2451}
f2cfea4a 2452\f
2453/* Create and return a type for signed integers of PRECISION bits. */
2454
2455tree
60b8c5b3 2456make_signed_type (int precision)
f2cfea4a 2457{
19cb6b50 2458 tree type = make_node (INTEGER_TYPE);
f2cfea4a 2459
2460 TYPE_PRECISION (type) = precision;
2461
902de8ed 2462 fixup_signed_type (type);
f2cfea4a 2463 return type;
2464}
2465
2466/* Create and return a type for unsigned integers of PRECISION bits. */
2467
2468tree
60b8c5b3 2469make_unsigned_type (int precision)
f2cfea4a 2470{
19cb6b50 2471 tree type = make_node (INTEGER_TYPE);
f2cfea4a 2472
2473 TYPE_PRECISION (type) = precision;
2474
f2cfea4a 2475 fixup_unsigned_type (type);
2476 return type;
2477}
902de8ed 2478\f
06f0b99c 2479/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2480 and SATP. */
2481
2482tree
2483make_fract_type (int precision, int unsignedp, int satp)
2484{
2485 tree type = make_node (FIXED_POINT_TYPE);
2486
2487 TYPE_PRECISION (type) = precision;
2488
2489 if (satp)
2490 TYPE_SATURATING (type) = 1;
2491
2492 /* Lay out the type: set its alignment, size, etc. */
2493 if (unsignedp)
2494 {
2495 TYPE_UNSIGNED (type) = 1;
342ad2d6 2496 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
06f0b99c 2497 }
2498 else
342ad2d6 2499 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
06f0b99c 2500 layout_type (type);
2501
2502 return type;
2503}
2504
2505/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2506 and SATP. */
2507
2508tree
2509make_accum_type (int precision, int unsignedp, int satp)
2510{
2511 tree type = make_node (FIXED_POINT_TYPE);
2512
2513 TYPE_PRECISION (type) = precision;
2514
2515 if (satp)
2516 TYPE_SATURATING (type) = 1;
2517
2518 /* Lay out the type: set its alignment, size, etc. */
2519 if (unsignedp)
2520 {
2521 TYPE_UNSIGNED (type) = 1;
342ad2d6 2522 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
06f0b99c 2523 }
2524 else
342ad2d6 2525 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
06f0b99c 2526 layout_type (type);
2527
2528 return type;
2529}
2530
7907db97 2531/* Initialize sizetypes so layout_type can use them. */
902de8ed 2532
2533void
ad086ed4 2534initialize_sizetypes (void)
902de8ed 2535{
7907db97 2536 int precision, bprecision;
2537
2538 /* Get sizetypes precision from the SIZE_TYPE target macro. */
748e5d45 2539 if (strcmp (SIZETYPE, "unsigned int") == 0)
7907db97 2540 precision = INT_TYPE_SIZE;
748e5d45 2541 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
7907db97 2542 precision = LONG_TYPE_SIZE;
748e5d45 2543 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
7907db97 2544 precision = LONG_LONG_TYPE_SIZE;
748e5d45 2545 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
621fad71 2546 precision = SHORT_TYPE_SIZE;
7907db97 2547 else
2548 gcc_unreachable ();
7bd4091f 2549
7907db97 2550 bprecision
2551 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2552 bprecision
2553 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
24cd46a7 2554 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2555 bprecision = HOST_BITS_PER_DOUBLE_INT;
7907db97 2556
2557 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2558 sizetype = make_node (INTEGER_TYPE);
f1444979 2559 TYPE_NAME (sizetype) = get_identifier ("sizetype");
7907db97 2560 TYPE_PRECISION (sizetype) = precision;
2561 TYPE_UNSIGNED (sizetype) = 1;
7907db97 2562 bitsizetype = make_node (INTEGER_TYPE);
2563 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2564 TYPE_PRECISION (bitsizetype) = bprecision;
2565 TYPE_UNSIGNED (bitsizetype) = 1;
7907db97 2566
2567 /* Now layout both types manually. */
2568 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2569 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2570 TYPE_SIZE (sizetype) = bitsize_int (precision);
2571 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
e913b5cd 2572 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
7907db97 2573
2574 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2575 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2576 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2577 TYPE_SIZE_UNIT (bitsizetype)
2578 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
e913b5cd 2579 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
e345fa3a 2580
ad086ed4 2581 /* Create the signed variants of *sizetype. */
7907db97 2582 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
f1444979 2583 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
7907db97 2584 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
f1444979 2585 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
902de8ed 2586}
2587\f
63bf54cf 2588/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2589 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
ee1ab431 2590 for TYPE, based on the PRECISION and whether or not the TYPE
2591 IS_UNSIGNED. PRECISION need not correspond to a width supported
2592 natively by the hardware; for example, on a machine with 8-bit,
2593 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2594 61. */
2595
2596void
2597set_min_and_max_values_for_integral_type (tree type,
2598 int precision,
e913b5cd 2599 signop sgn)
ee1ab431 2600{
0e3dfadd 2601 /* For bitfields with zero width we end up creating integer types
2602 with zero precision. Don't assign any minimum/maximum values
2603 to those types, they don't have any valid value. */
2604 if (precision < 1)
2605 return;
2606
796b6678 2607 TYPE_MIN_VALUE (type)
2608 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2609 TYPE_MAX_VALUE (type)
2610 = wide_int_to_tree (type, wi::max_value (precision, sgn));
ee1ab431 2611}
2612
6d85d3bb 2613/* Set the extreme values of TYPE based on its precision in bits,
6bb1bdc7 2614 then lay it out. Used when make_signed_type won't do
6d85d3bb 2615 because the tree code is not INTEGER_TYPE.
2616 E.g. for Pascal, when the -fsigned-char option is given. */
2617
2618void
60b8c5b3 2619fixup_signed_type (tree type)
6d85d3bb 2620{
19cb6b50 2621 int precision = TYPE_PRECISION (type);
6d85d3bb 2622
e913b5cd 2623 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
6d85d3bb 2624
2625 /* Lay out the type: set its alignment, size, etc. */
6d85d3bb 2626 layout_type (type);
2627}
2628
f2cfea4a 2629/* Set the extreme values of TYPE based on its precision in bits,
6bb1bdc7 2630 then lay it out. This is used both in `make_unsigned_type'
f2cfea4a 2631 and for enumeral types. */
2632
2633void
60b8c5b3 2634fixup_unsigned_type (tree type)
f2cfea4a 2635{
19cb6b50 2636 int precision = TYPE_PRECISION (type);
f2cfea4a 2637
00b76131 2638 TYPE_UNSIGNED (type) = 1;
9e7454d0 2639
e913b5cd 2640 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
f2cfea4a 2641
2642 /* Lay out the type: set its alignment, size, etc. */
f2cfea4a 2643 layout_type (type);
2644}
2645\f
0a1f5755 2646/* Construct an iterator for a bitfield that spans BITSIZE bits,
2647 starting at BITPOS.
2648
2649 BITREGION_START is the bit position of the first bit in this
2650 sequence of bit fields. BITREGION_END is the last bit in this
2651 sequence. If these two fields are non-zero, we should restrict the
2652 memory access to that range. Otherwise, we are allowed to touch
2653 any adjacent non bit-fields.
2654
2655 ALIGN is the alignment of the underlying object in bits.
2656 VOLATILEP says whether the bitfield is volatile. */
2657
2658bit_field_mode_iterator
2659::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2660 HOST_WIDE_INT bitregion_start,
2661 HOST_WIDE_INT bitregion_end,
2662 unsigned int align, bool volatilep)
ae84f584 2663: m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2664 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2665 m_bitregion_end (bitregion_end), m_align (align),
2666 m_volatilep (volatilep), m_count (0)
0a1f5755 2667{
ae84f584 2668 if (!m_bitregion_end)
4ed6cf77 2669 {
392630d4 2670 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2671 the bitfield is mapped and won't trap, provided that ALIGN isn't
2672 too large. The cap is the biggest required alignment for data,
2673 or at least the word size. And force one such chunk at least. */
2674 unsigned HOST_WIDE_INT units
2675 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2676 if (bitsize <= 0)
2677 bitsize = 1;
ae84f584 2678 m_bitregion_end = bitpos + bitsize + units - 1;
2679 m_bitregion_end -= m_bitregion_end % units + 1;
4ed6cf77 2680 }
0a1f5755 2681}
2682
2683/* Calls to this function return successively larger modes that can be used
2684 to represent the bitfield. Return true if another bitfield mode is
2685 available, storing it in *OUT_MODE if so. */
2686
2687bool
2688bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2689{
ae84f584 2690 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
0a1f5755 2691 {
ae84f584 2692 unsigned int unit = GET_MODE_BITSIZE (m_mode);
0a1f5755 2693
2694 /* Skip modes that don't have full precision. */
ae84f584 2695 if (unit != GET_MODE_PRECISION (m_mode))
0a1f5755 2696 continue;
2697
0a1f5755 2698 /* Stop if the mode is too wide to handle efficiently. */
2699 if (unit > MAX_FIXED_MODE_SIZE)
2700 break;
2701
2702 /* Don't deliver more than one multiword mode; the smallest one
2703 should be used. */
ae84f584 2704 if (m_count > 0 && unit > BITS_PER_WORD)
0a1f5755 2705 break;
2706
efa6660d 2707 /* Skip modes that are too small. */
ae84f584 2708 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2709 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
efa6660d 2710 if (subend > unit)
2711 continue;
2712
0a1f5755 2713 /* Stop if the mode goes outside the bitregion. */
ae84f584 2714 HOST_WIDE_INT start = m_bitpos - substart;
2715 if (m_bitregion_start && start < m_bitregion_start)
0a1f5755 2716 break;
efa6660d 2717 HOST_WIDE_INT end = start + unit;
ae84f584 2718 if (end > m_bitregion_end + 1)
4ed6cf77 2719 break;
2720
2721 /* Stop if the mode requires too much alignment. */
ae84f584 2722 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2723 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
0a1f5755 2724 break;
2725
ae84f584 2726 *out_mode = m_mode;
2727 m_mode = GET_MODE_WIDER_MODE (m_mode);
2728 m_count++;
0a1f5755 2729 return true;
2730 }
2731 return false;
2732}
2733
2734/* Return true if smaller modes are generally preferred for this kind
2735 of bitfield. */
2736
2737bool
2738bit_field_mode_iterator::prefer_smaller_modes ()
2739{
ae84f584 2740 return (m_volatilep
0a1f5755 2741 ? targetm.narrow_volatile_bitfield ()
2742 : !SLOW_BYTE_ACCESS);
2743}
2744
f2cfea4a 2745/* Find the best machine mode to use when referencing a bit field of length
2746 BITSIZE bits starting at BITPOS.
2747
4bb60ec7 2748 BITREGION_START is the bit position of the first bit in this
2749 sequence of bit fields. BITREGION_END is the last bit in this
2750 sequence. If these two fields are non-zero, we should restrict the
0a1f5755 2751 memory access to that range. Otherwise, we are allowed to touch
4bb60ec7 2752 any adjacent non bit-fields.
2753
f2cfea4a 2754 The underlying object is known to be aligned to a boundary of ALIGN bits.
2755 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2756 larger than LARGEST_MODE (usually SImode).
2757
5f458503 2758 If no mode meets all these conditions, we return VOIDmode.
7bd4091f 2759
5f458503 2760 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2761 smallest mode meeting these conditions.
2762
2763 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2764 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2765 all the conditions.
7bd4091f 2766
5f458503 2767 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2768 decide which of the above modes should be used. */
f2cfea4a 2769
2770enum machine_mode
4bb60ec7 2771get_best_mode (int bitsize, int bitpos,
2772 unsigned HOST_WIDE_INT bitregion_start,
2773 unsigned HOST_WIDE_INT bitregion_end,
2774 unsigned int align,
0a1f5755 2775 enum machine_mode largest_mode, bool volatilep)
f2cfea4a 2776{
0a1f5755 2777 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2778 bitregion_end, align, volatilep);
2779 enum machine_mode widest_mode = VOIDmode;
f2cfea4a 2780 enum machine_mode mode;
0a1f5755 2781 while (iter.next_mode (&mode)
06bedae0 2782 /* ??? For historical reasons, reject modes that would normally
2783 receive greater alignment, even if unaligned accesses are
2784 acceptable. This has both advantages and disadvantages.
4ed6cf77 2785 Removing this check means that something like:
2786
2787 struct s { unsigned int x; unsigned int y; };
2788 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2789
2790 can be implemented using a single load and compare on
2791 64-bit machines that have no alignment restrictions.
2792 For example, on powerpc64-linux-gnu, we would generate:
2793
2794 ld 3,0(3)
2795 cntlzd 3,3
2796 srdi 3,3,6
2797 blr
2798
2799 rather than:
2800
2801 lwz 9,0(3)
2802 cmpwi 7,9,0
2803 bne 7,.L3
2804 lwz 3,4(3)
2805 cntlzw 3,3
2806 srwi 3,3,5
2807 extsw 3,3
2808 blr
2809 .p2align 4,,15
2810 .L3:
2811 li 3,0
2812 blr
2813
2814 However, accessing more than one field can make life harder
2815 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2816 has a series of unsigned short copies followed by a series of
2817 unsigned short comparisons. With this check, both the copies
2818 and comparisons remain 16-bit accesses and FRE is able
2819 to eliminate the latter. Without the check, the comparisons
2820 can be done using 2 64-bit operations, which FRE isn't able
2821 to handle in the same way.
2822
2823 Either way, it would probably be worth disabling this check
2824 during expand. One particular example where removing the
2825 check would help is the get_best_mode call in store_bit_field.
2826 If we are given a memory bitregion of 128 bits that is aligned
2827 to a 64-bit boundary, and the bitfield we want to modify is
2828 in the second half of the bitregion, this check causes
2829 store_bitfield to turn the memory into a 64-bit reference
2830 to the _first_ half of the region. We later use
2831 adjust_bitfield_address to get a reference to the correct half,
2832 but doing so looks to adjust_bitfield_address as though we are
2833 moving past the end of the original object, so it drops the
2834 associated MEM_EXPR and MEM_OFFSET. Removing the check
2835 causes store_bit_field to keep a 128-bit memory reference,
2836 so that the final bitfield reference still has a MEM_EXPR
2837 and MEM_OFFSET. */
06bedae0 2838 && GET_MODE_ALIGNMENT (mode) <= align
0a1f5755 2839 && (largest_mode == VOIDmode
2840 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
f2cfea4a 2841 {
0a1f5755 2842 widest_mode = mode;
2843 if (iter.prefer_smaller_modes ())
f2cfea4a 2844 break;
2845 }
0a1f5755 2846 return widest_mode;
f2cfea4a 2847}
521dd524 2848
f9cce2dc 2849/* Gets minimal and maximal values for MODE (signed or unsigned depending on
a6629703 2850 SIGN). The returned constants are made to be usable in TARGET_MODE. */
f9cce2dc 2851
2852void
a6629703 2853get_mode_bounds (enum machine_mode mode, int sign,
2854 enum machine_mode target_mode,
2855 rtx *mmin, rtx *mmax)
f9cce2dc 2856{
44a9bb76 2857 unsigned size = GET_MODE_PRECISION (mode);
a6629703 2858 unsigned HOST_WIDE_INT min_val, max_val;
f9cce2dc 2859
04e579b6 2860 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
f9cce2dc 2861
396020c7 2862 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2863 if (mode == BImode)
2864 {
2865 if (STORE_FLAG_VALUE < 0)
2866 {
2867 min_val = STORE_FLAG_VALUE;
2868 max_val = 0;
2869 }
2870 else
2871 {
2872 min_val = 0;
2873 max_val = STORE_FLAG_VALUE;
2874 }
2875 }
2876 else if (sign)
f9cce2dc 2877 {
a6629703 2878 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2879 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
f9cce2dc 2880 }
2881 else
2882 {
a6629703 2883 min_val = 0;
2884 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
f9cce2dc 2885 }
a6629703 2886
69e41517 2887 *mmin = gen_int_mode (min_val, target_mode);
2888 *mmax = gen_int_mode (max_val, target_mode);
f9cce2dc 2889}
2890
1f3233d1 2891#include "gt-stor-layout.h"