]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/stor-layout.c
2015-10-29 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / stor-layout.c
CommitLineData
f2cfea4a 1/* C-compiler utilities for types and variables storage layout
d353bf18 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
f2cfea4a 3
f12b58b3 4This file is part of GCC.
f2cfea4a 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
f2cfea4a 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
f2cfea4a 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
f2cfea4a 19
20
21#include "config.h"
405711de 22#include "system.h"
805e22b2 23#include "coretypes.h"
7c29e30e 24#include "target.h"
25#include "function.h"
26#include "rtl.h"
f2cfea4a 27#include "tree.h"
7c29e30e 28#include "tm_p.h"
29#include "stringpool.h"
30#include "expmed.h"
31#include "insn-config.h"
32#include "regs.h"
33#include "emit-rtl.h"
34#include "cgraph.h"
35#include "diagnostic-core.h"
36#include "alias.h"
b20a8bb4 37#include "fold-const.h"
9ed99284 38#include "stor-layout.h"
9ed99284 39#include "varasm.h"
40#include "print-tree.h"
a6a1ab64 41#include "flags.h"
d53441c8 42#include "dojump.h"
43#include "explow.h"
44#include "calls.h"
d53441c8 45#include "stmt.h"
c091e5a4 46#include "expr.h"
20325f61 47#include "langhooks.h"
00b76131 48#include "params.h"
4189e677 49#include "tree-inline.h"
50#include "tree-dump.h"
a8783bee 51#include "gimplify.h"
f2cfea4a 52
f2cfea4a 53/* Data type for the expressions representing sizes of data types.
a32bb500 54 It is the first integer type laid out. */
748e5d45 55tree sizetype_tab[(int) stk_type_kind_last];
f2cfea4a 56
cdb11de0 57/* If nonzero, this is an upper limit on alignment of structure fields.
58 The value is measured in bits. */
6b5553e5 59unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
cdb11de0 60
98155838 61/* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
62 in the address spaces' address_mode, not pointer_mode. Set only by
63 internal_reference_types called only by a front end. */
f1986931 64static int reference_types_internal = 0;
65
4189e677 66static tree self_referential_size (tree);
60b8c5b3 67static void finalize_record_size (record_layout_info);
68static void finalize_type_size (tree);
69static void place_union_field (record_layout_info, tree);
60b8c5b3 70static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
71 HOST_WIDE_INT, tree);
60b8c5b3 72extern void debug_rli (record_layout_info);
f2cfea4a 73\f
98155838 74/* Show that REFERENCE_TYPES are internal and should use address_mode.
75 Called only by front end. */
f1986931 76
77void
60b8c5b3 78internal_reference_types (void)
f1986931 79{
80 reference_types_internal = 1;
81}
82
09138ab1 83/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
f2cfea4a 84 to serve as the actual size-expression for a type or decl. */
85
7b778713 86tree
60b8c5b3 87variable_size (tree size)
f2cfea4a 88{
4189e677 89 /* Obviously. */
90 if (TREE_CONSTANT (size))
91 return size;
92
93 /* If the size is self-referential, we can't make a SAVE_EXPR (see
94 save_expr for the rationale). But we can do something else. */
95 if (CONTAINS_PLACEHOLDER_P (size))
96 return self_referential_size (size);
97
1d2bb655 98 /* If we are in the global binding level, we can't make a SAVE_EXPR
99 since it may end up being shared across functions, so it is up
100 to the front-end to deal with this case. */
101 if (lang_hooks.decls.global_bindings_p ())
034b6c60 102 return size;
103
a5aff672 104 return save_expr (size);
f2cfea4a 105}
4189e677 106
107/* An array of functions used for self-referential size computation. */
f1f41a6c 108static GTY(()) vec<tree, va_gc> *size_functions;
4189e677 109
5759dc8e 110/* Return true if T is a self-referential component reference. */
111
112static bool
113self_referential_component_ref_p (tree t)
114{
115 if (TREE_CODE (t) != COMPONENT_REF)
116 return false;
117
118 while (REFERENCE_CLASS_P (t))
119 t = TREE_OPERAND (t, 0);
120
121 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
122}
123
4189e677 124/* Similar to copy_tree_r but do not copy component references involving
125 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
126 and substituted in substitute_in_expr. */
127
128static tree
129copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
130{
131 enum tree_code code = TREE_CODE (*tp);
132
133 /* Stop at types, decls, constants like copy_tree_r. */
134 if (TREE_CODE_CLASS (code) == tcc_type
135 || TREE_CODE_CLASS (code) == tcc_declaration
136 || TREE_CODE_CLASS (code) == tcc_constant)
137 {
138 *walk_subtrees = 0;
139 return NULL_TREE;
140 }
141
142 /* This is the pattern built in ada/make_aligning_type. */
143 else if (code == ADDR_EXPR
144 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
145 {
146 *walk_subtrees = 0;
147 return NULL_TREE;
148 }
149
150 /* Default case: the component reference. */
5759dc8e 151 else if (self_referential_component_ref_p (*tp))
4189e677 152 {
5759dc8e 153 *walk_subtrees = 0;
154 return NULL_TREE;
4189e677 155 }
156
157 /* We're not supposed to have them in self-referential size trees
158 because we wouldn't properly control when they are evaluated.
159 However, not creating superfluous SAVE_EXPRs requires accurate
160 tracking of readonly-ness all the way down to here, which we
161 cannot always guarantee in practice. So punt in this case. */
162 else if (code == SAVE_EXPR)
163 return error_mark_node;
164
17476aac 165 else if (code == STATEMENT_LIST)
166 gcc_unreachable ();
167
4189e677 168 return copy_tree_r (tp, walk_subtrees, data);
169}
170
171/* Given a SIZE expression that is self-referential, return an equivalent
172 expression to serve as the actual size expression for a type. */
173
174static tree
175self_referential_size (tree size)
176{
177 static unsigned HOST_WIDE_INT fnno = 0;
1e094109 178 vec<tree> self_refs = vNULL;
414c3a2c 179 tree param_type_list = NULL, param_decl_list = NULL;
4189e677 180 tree t, ref, return_type, fntype, fnname, fndecl;
181 unsigned int i;
182 char buf[128];
f1f41a6c 183 vec<tree, va_gc> *args = NULL;
4189e677 184
185 /* Do not factor out simple operations. */
85cea2e3 186 t = skip_simple_constant_arithmetic (size);
5759dc8e 187 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
4189e677 188 return size;
189
190 /* Collect the list of self-references in the expression. */
191 find_placeholder_in_expr (size, &self_refs);
f1f41a6c 192 gcc_assert (self_refs.length () > 0);
4189e677 193
194 /* Obtain a private copy of the expression. */
195 t = size;
196 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
197 return size;
198 size = t;
199
200 /* Build the parameter and argument lists in parallel; also
201 substitute the former for the latter in the expression. */
f1f41a6c 202 vec_alloc (args, self_refs.length ());
203 FOR_EACH_VEC_ELT (self_refs, i, ref)
4189e677 204 {
205 tree subst, param_name, param_type, param_decl;
206
207 if (DECL_P (ref))
208 {
209 /* We shouldn't have true variables here. */
210 gcc_assert (TREE_READONLY (ref));
211 subst = ref;
212 }
213 /* This is the pattern built in ada/make_aligning_type. */
214 else if (TREE_CODE (ref) == ADDR_EXPR)
215 subst = ref;
216 /* Default case: the component reference. */
217 else
218 subst = TREE_OPERAND (ref, 1);
219
220 sprintf (buf, "p%d", i);
221 param_name = get_identifier (buf);
222 param_type = TREE_TYPE (ref);
223 param_decl
224 = build_decl (input_location, PARM_DECL, param_name, param_type);
263c64d9 225 DECL_ARG_TYPE (param_decl) = param_type;
4189e677 226 DECL_ARTIFICIAL (param_decl) = 1;
227 TREE_READONLY (param_decl) = 1;
228
229 size = substitute_in_expr (size, subst, param_decl);
230
231 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
232 param_decl_list = chainon (param_decl, param_decl_list);
f1f41a6c 233 args->quick_push (ref);
4189e677 234 }
235
f1f41a6c 236 self_refs.release ();
4189e677 237
238 /* Append 'void' to indicate that the number of parameters is fixed. */
239 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
240
241 /* The 3 lists have been created in reverse order. */
242 param_type_list = nreverse (param_type_list);
243 param_decl_list = nreverse (param_decl_list);
4189e677 244
245 /* Build the function type. */
246 return_type = TREE_TYPE (size);
247 fntype = build_function_type (return_type, param_type_list);
248
249 /* Build the function declaration. */
f03df321 250 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
4189e677 251 fnname = get_file_function_name (buf);
252 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
1767a056 253 for (t = param_decl_list; t; t = DECL_CHAIN (t))
4189e677 254 DECL_CONTEXT (t) = fndecl;
255 DECL_ARGUMENTS (fndecl) = param_decl_list;
256 DECL_RESULT (fndecl)
257 = build_decl (input_location, RESULT_DECL, 0, return_type);
258 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
259
260 /* The function has been created by the compiler and we don't
261 want to emit debug info for it. */
262 DECL_ARTIFICIAL (fndecl) = 1;
263 DECL_IGNORED_P (fndecl) = 1;
264
265 /* It is supposed to be "const" and never throw. */
266 TREE_READONLY (fndecl) = 1;
267 TREE_NOTHROW (fndecl) = 1;
268
269 /* We want it to be inlined when this is deemed profitable, as
270 well as discarded if every call has been integrated. */
271 DECL_DECLARED_INLINE_P (fndecl) = 1;
272
273 /* It is made up of a unique return statement. */
274 DECL_INITIAL (fndecl) = make_node (BLOCK);
275 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
276 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
277 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
278 TREE_STATIC (fndecl) = 1;
279
280 /* Put it onto the list of size functions. */
f1f41a6c 281 vec_safe_push (size_functions, fndecl);
4189e677 282
283 /* Replace the original expression with a call to the size function. */
5cca4f1d 284 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
4189e677 285}
286
287/* Take, queue and compile all the size functions. It is essential that
288 the size functions be gimplified at the very end of the compilation
289 in order to guarantee transparent handling of self-referential sizes.
290 Otherwise the GENERIC inliner would not be able to inline them back
291 at each of their call sites, thus creating artificial non-constant
292 size expressions which would trigger nasty problems later on. */
293
294void
295finalize_size_functions (void)
296{
297 unsigned int i;
298 tree fndecl;
299
f1f41a6c 300 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
4189e677 301 {
c6cfb282 302 allocate_struct_function (fndecl, false);
303 set_cfun (NULL);
4189e677 304 dump_function (TDI_original, fndecl);
305 gimplify_function_tree (fndecl);
35ee1c66 306 cgraph_node::finalize_function (fndecl, false);
4189e677 307 }
308
f1f41a6c 309 vec_free (size_functions);
4189e677 310}
f2cfea4a 311\f
7c0390e7 312/* Return the machine mode to use for a nonscalar of SIZE bits. The
47cfb7f4 313 mode must be in class MCLASS, and have exactly that many value bits;
7c0390e7 314 it may have padding as well. If LIMIT is nonzero, modes of wider
315 than MAX_FIXED_MODE_SIZE will not be used. */
f2cfea4a 316
3754d046 317machine_mode
47cfb7f4 318mode_for_size (unsigned int size, enum mode_class mclass, int limit)
f2cfea4a 319{
3754d046 320 machine_mode mode;
9f75f026 321 int i;
f2cfea4a 322
0fc6aef1 323 if (limit && size > MAX_FIXED_MODE_SIZE)
f2cfea4a 324 return BLKmode;
325
034b6c60 326 /* Get the first mode which has this size, in the specified class. */
47cfb7f4 327 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
f2cfea4a 328 mode = GET_MODE_WIDER_MODE (mode))
7c0390e7 329 if (GET_MODE_PRECISION (mode) == size)
f2cfea4a 330 return mode;
331
9f75f026 332 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
333 for (i = 0; i < NUM_INT_N_ENTS; i ++)
334 if (int_n_data[i].bitsize == size
335 && int_n_enabled_p[i])
336 return int_n_data[i].m;
337
f2cfea4a 338 return BLKmode;
339}
340
0fc6aef1 341/* Similar, except passed a tree node. */
342
3754d046 343machine_mode
47cfb7f4 344mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
0fc6aef1 345{
1088cbc4 346 unsigned HOST_WIDE_INT uhwi;
347 unsigned int ui;
348
e913b5cd 349 if (!tree_fits_uhwi_p (size))
0fc6aef1 350 return BLKmode;
e913b5cd 351 uhwi = tree_to_uhwi (size);
1088cbc4 352 ui = uhwi;
353 if (uhwi != ui)
354 return BLKmode;
47cfb7f4 355 return mode_for_size (ui, mclass, limit);
0fc6aef1 356}
357
034b6c60 358/* Similar, but never return BLKmode; return the narrowest mode that
7c0390e7 359 contains at least the requested number of value bits. */
034b6c60 360
3754d046 361machine_mode
47cfb7f4 362smallest_mode_for_size (unsigned int size, enum mode_class mclass)
034b6c60 363{
3754d046 364 machine_mode mode = VOIDmode;
9f75f026 365 int i;
034b6c60 366
367 /* Get the first mode which has at least this size, in the
368 specified class. */
47cfb7f4 369 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
034b6c60 370 mode = GET_MODE_WIDER_MODE (mode))
7c0390e7 371 if (GET_MODE_PRECISION (mode) >= size)
9f75f026 372 break;
034b6c60 373
9f75f026 374 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
375 for (i = 0; i < NUM_INT_N_ENTS; i ++)
376 if (int_n_data[i].bitsize >= size
377 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
378 && int_n_enabled_p[i])
379 mode = int_n_data[i].m;
380
381 if (mode == VOIDmode)
382 gcc_unreachable ();
383
384 return mode;
034b6c60 385}
386
86cde393 387/* Find an integer mode of the exact same size, or BLKmode on failure. */
388
3754d046 389machine_mode
390int_mode_for_mode (machine_mode mode)
86cde393 391{
392 switch (GET_MODE_CLASS (mode))
393 {
394 case MODE_INT:
395 case MODE_PARTIAL_INT:
396 break;
397
398 case MODE_COMPLEX_INT:
399 case MODE_COMPLEX_FLOAT:
400 case MODE_FLOAT:
069b07bf 401 case MODE_DECIMAL_FLOAT:
d76983d1 402 case MODE_VECTOR_INT:
403 case MODE_VECTOR_FLOAT:
06f0b99c 404 case MODE_FRACT:
405 case MODE_ACCUM:
406 case MODE_UFRACT:
407 case MODE_UACCUM:
408 case MODE_VECTOR_FRACT:
409 case MODE_VECTOR_ACCUM:
410 case MODE_VECTOR_UFRACT:
411 case MODE_VECTOR_UACCUM:
058a1b7a 412 case MODE_POINTER_BOUNDS:
86cde393 413 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
414 break;
415
416 case MODE_RANDOM:
417 if (mode == BLKmode)
40734805 418 break;
083a2b5e 419
1be87b72 420 /* ... fall through ... */
86cde393 421
422 case MODE_CC:
423 default:
04e579b6 424 gcc_unreachable ();
86cde393 425 }
426
427 return mode;
428}
429
ac875fa4 430/* Find a mode that can be used for efficient bitwise operations on MODE.
431 Return BLKmode if no such mode exists. */
432
3754d046 433machine_mode
434bitwise_mode_for_mode (machine_mode mode)
ac875fa4 435{
436 /* Quick exit if we already have a suitable mode. */
437 unsigned int bitsize = GET_MODE_BITSIZE (mode);
438 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
439 return mode;
440
441 /* Reuse the sanity checks from int_mode_for_mode. */
442 gcc_checking_assert ((int_mode_for_mode (mode), true));
443
444 /* Try to replace complex modes with complex modes. In general we
445 expect both components to be processed independently, so we only
446 care whether there is a register for the inner mode. */
447 if (COMPLEX_MODE_P (mode))
448 {
3754d046 449 machine_mode trial = mode;
ac875fa4 450 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
451 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
452 if (trial != BLKmode
453 && have_regs_of_mode[GET_MODE_INNER (trial)])
454 return trial;
455 }
456
457 /* Try to replace vector modes with vector modes. Also try using vector
458 modes if an integer mode would be too big. */
459 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
460 {
3754d046 461 machine_mode trial = mode;
ac875fa4 462 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
463 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
464 if (trial != BLKmode
465 && have_regs_of_mode[trial]
466 && targetm.vector_mode_supported_p (trial))
467 return trial;
468 }
469
470 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
471 return mode_for_size (bitsize, MODE_INT, true);
472}
473
474/* Find a type that can be used for efficient bitwise operations on MODE.
475 Return null if no such mode exists. */
476
477tree
3754d046 478bitwise_type_for_mode (machine_mode mode)
ac875fa4 479{
480 mode = bitwise_mode_for_mode (mode);
481 if (mode == BLKmode)
482 return NULL_TREE;
483
484 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
485 tree inner_type = build_nonstandard_integer_type (inner_size, true);
486
487 if (VECTOR_MODE_P (mode))
488 return build_vector_type_for_mode (inner_type, mode);
489
490 if (COMPLEX_MODE_P (mode))
491 return build_complex_type (inner_type);
492
d145b68b 493 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
ac875fa4 494 return inner_type;
495}
496
c4740c5d 497/* Find a mode that is suitable for representing a vector with
498 NUNITS elements of mode INNERMODE. Returns BLKmode if there
499 is no suitable mode. */
500
3754d046 501machine_mode
502mode_for_vector (machine_mode innermode, unsigned nunits)
c4740c5d 503{
3754d046 504 machine_mode mode;
c4740c5d 505
506 /* First, look for a supported vector type. */
507 if (SCALAR_FLOAT_MODE_P (innermode))
508 mode = MIN_MODE_VECTOR_FLOAT;
509 else if (SCALAR_FRACT_MODE_P (innermode))
510 mode = MIN_MODE_VECTOR_FRACT;
511 else if (SCALAR_UFRACT_MODE_P (innermode))
512 mode = MIN_MODE_VECTOR_UFRACT;
513 else if (SCALAR_ACCUM_MODE_P (innermode))
514 mode = MIN_MODE_VECTOR_ACCUM;
515 else if (SCALAR_UACCUM_MODE_P (innermode))
516 mode = MIN_MODE_VECTOR_UACCUM;
517 else
518 mode = MIN_MODE_VECTOR_INT;
519
520 /* Do not check vector_mode_supported_p here. We'll do that
521 later in vector_type_mode. */
522 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
523 if (GET_MODE_NUNITS (mode) == nunits
524 && GET_MODE_INNER (mode) == innermode)
525 break;
526
527 /* For integers, try mapping it to a same-sized scalar mode. */
528 if (mode == VOIDmode
529 && GET_MODE_CLASS (innermode) == MODE_INT)
530 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
531 MODE_INT, 0);
532
533 if (mode == VOIDmode
534 || (GET_MODE_CLASS (mode) == MODE_INT
535 && !have_regs_of_mode[mode]))
536 return BLKmode;
537
538 return mode;
539}
540
1a3e3a66 541/* Return the alignment of MODE. This will be bounded by 1 and
542 BIGGEST_ALIGNMENT. */
543
544unsigned int
3754d046 545get_mode_alignment (machine_mode mode)
1a3e3a66 546{
47a2c1d4 547 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
1a3e3a66 548}
549
13d3ceb9 550/* Return the natural mode of an array, given that it is SIZE bytes in
551 total and has elements of type ELEM_TYPE. */
552
3754d046 553static machine_mode
13d3ceb9 554mode_for_array (tree elem_type, tree size)
555{
556 tree elem_size;
557 unsigned HOST_WIDE_INT int_size, int_elem_size;
558 bool limit_p;
559
560 /* One-element arrays get the component type's mode. */
561 elem_size = TYPE_SIZE (elem_type);
562 if (simple_cst_equal (size, elem_size))
563 return TYPE_MODE (elem_type);
564
565 limit_p = true;
e913b5cd 566 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
13d3ceb9 567 {
e913b5cd 568 int_size = tree_to_uhwi (size);
569 int_elem_size = tree_to_uhwi (elem_size);
13d3ceb9 570 if (int_elem_size > 0
571 && int_size % int_elem_size == 0
572 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
573 int_size / int_elem_size))
574 limit_p = false;
575 }
576 return mode_for_size_tree (size, MODE_INT, limit_p);
577}
f2cfea4a 578\f
f5712181 579/* Subroutine of layout_decl: Force alignment required for the data type.
580 But if the decl itself wants greater alignment, don't override that. */
581
582static inline void
583do_type_align (tree type, tree decl)
584{
585 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
586 {
587 DECL_ALIGN (decl) = TYPE_ALIGN (type);
79bdd5ff 588 if (TREE_CODE (decl) == FIELD_DECL)
589 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
f5712181 590 }
591}
592
f2cfea4a 593/* Set the size, mode and alignment of a ..._DECL node.
594 TYPE_DECL does need this for C++.
595 Note that LABEL_DECL and CONST_DECL nodes do not need this,
596 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
597 Don't call layout_decl for them.
598
599 KNOWN_ALIGN is the amount of alignment we can assume this
600 decl has with no special effort. It is relevant only for FIELD_DECLs
601 and depends on the previous fields.
602 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
603 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
604 the record will be aligned to suit. */
605
606void
60b8c5b3 607layout_decl (tree decl, unsigned int known_align)
f2cfea4a 608{
19cb6b50 609 tree type = TREE_TYPE (decl);
610 enum tree_code code = TREE_CODE (decl);
65433eb4 611 rtx rtl = NULL_RTX;
389dd41b 612 location_t loc = DECL_SOURCE_LOCATION (decl);
f2cfea4a 613
614 if (code == CONST_DECL)
615 return;
7bd4091f 616
04e579b6 617 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
618 || code == TYPE_DECL ||code == FIELD_DECL);
7bd4091f 619
65433eb4 620 rtl = DECL_RTL_IF_SET (decl);
621
f2cfea4a 622 if (type == error_mark_node)
51e5c07e 623 type = void_type_node;
f2cfea4a 624
02e7a332 625 /* Usually the size and mode come from the data type without change,
626 however, the front-end may set the explicit width of the field, so its
627 size may not be the same as the size of its type. This happens with
628 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
629 also happens with other fields. For example, the C++ front-end creates
630 zero-sized fields corresponding to empty base classes, and depends on
631 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
62d2dc6f 632 size in bytes from the size in bits. If we have already set the mode,
633 don't set it again since we can be called twice for FIELD_DECLs. */
02e7a332 634
86ae60fd 635 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
62d2dc6f 636 if (DECL_MODE (decl) == VOIDmode)
637 DECL_MODE (decl) = TYPE_MODE (type);
02e7a332 638
034b6c60 639 if (DECL_SIZE (decl) == 0)
b278476e 640 {
bc97b18f 641 DECL_SIZE (decl) = TYPE_SIZE (type);
642 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
b278476e 643 }
ac068b11 644 else if (DECL_SIZE_UNIT (decl) == 0)
02e7a332 645 DECL_SIZE_UNIT (decl)
389dd41b 646 = fold_convert_loc (loc, sizetype,
647 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
648 bitsize_unit_node));
b278476e 649
f5712181 650 if (code != FIELD_DECL)
651 /* For non-fields, update the alignment from the type. */
652 do_type_align (type, decl);
653 else
654 /* For fields, it's a bit more complicated... */
40734805 655 {
6a22ca24 656 bool old_user_align = DECL_USER_ALIGN (decl);
7c68c953 657 bool zero_bitfield = false;
658 bool packed_p = DECL_PACKED (decl);
659 unsigned int mfa;
6a22ca24 660
f5712181 661 if (DECL_BIT_FIELD (decl))
662 {
663 DECL_BIT_FIELD_TYPE (decl) = type;
f2cfea4a 664
f5712181 665 /* A zero-length bit-field affects the alignment of the next
7c68c953 666 field. In essence such bit-fields are not influenced by
667 any packing due to #pragma pack or attribute packed. */
f5712181 668 if (integer_zerop (DECL_SIZE (decl))
883b2e73 669 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
f5712181 670 {
7c68c953 671 zero_bitfield = true;
672 packed_p = false;
f5712181 673 if (PCC_BITFIELD_TYPE_MATTERS)
674 do_type_align (type, decl);
675 else
3aa7cd03 676 {
f5712181 677#ifdef EMPTY_FIELD_BOUNDARY
3aa7cd03 678 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
679 {
680 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
681 DECL_USER_ALIGN (decl) = 0;
682 }
f5712181 683#endif
3aa7cd03 684 }
f5712181 685 }
686
687 /* See if we can use an ordinary integer mode for a bit-field.
f30fa59a 688 Conditions are: a fixed size that is correct for another mode,
7691c4ce 689 occupying a complete byte or bytes on proper boundary. */
f5712181 690 if (TYPE_SIZE (type) != 0
691 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
7691c4ce 692 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
f5712181 693 {
3754d046 694 machine_mode xmode
f5712181 695 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
23f65835 696 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
f5712181 697
9e7454d0 698 if (xmode != BLKmode
23f65835 699 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
700 && (known_align == 0 || known_align >= xalign))
f5712181 701 {
23f65835 702 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
f5712181 703 DECL_MODE (decl) = xmode;
704 DECL_BIT_FIELD (decl) = 0;
705 }
706 }
707
708 /* Turn off DECL_BIT_FIELD if we won't need it set. */
709 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
710 && known_align >= TYPE_ALIGN (type)
711 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
712 DECL_BIT_FIELD (decl) = 0;
713 }
7c68c953 714 else if (packed_p && DECL_USER_ALIGN (decl))
f5712181 715 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
a708df98 716 round up; we'll reduce it again below. We want packing to
c7bf1374 717 supersede USER_ALIGN inherited from the type, but defer to
a708df98 718 alignment explicitly specified on the field decl. */;
f5712181 719 else
6a22ca24 720 do_type_align (type, decl);
721
7b04d839 722 /* If the field is packed and not explicitly aligned, give it the
723 minimum alignment. Note that do_type_align may set
724 DECL_USER_ALIGN, so we need to check old_user_align instead. */
7c68c953 725 if (packed_p
7b04d839 726 && !old_user_align)
6a22ca24 727 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
f5712181 728
7c68c953 729 if (! packed_p && ! DECL_USER_ALIGN (decl))
f2cfea4a 730 {
f5712181 731 /* Some targets (i.e. i386, VMS) limit struct field alignment
732 to a lower boundary than alignment of variables unless
733 it was overridden by attribute aligned. */
734#ifdef BIGGEST_FIELD_ALIGNMENT
735 DECL_ALIGN (decl)
736 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
737#endif
738#ifdef ADJUST_FIELD_ALIGN
739 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
740#endif
f2cfea4a 741 }
36530340 742
7c68c953 743 if (zero_bitfield)
744 mfa = initial_max_fld_align * BITS_PER_UNIT;
745 else
746 mfa = maximum_field_alignment;
36530340 747 /* Should this be controlled by DECL_USER_ALIGN, too? */
7c68c953 748 if (mfa != 0)
749 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
f2cfea4a 750 }
751
752 /* Evaluate nonconstant size only once, either now or as soon as safe. */
753 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
754 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
b278476e 755 if (DECL_SIZE_UNIT (decl) != 0
756 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
757 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
758
759 /* If requested, warn about definitions of large data objects. */
760 if (warn_larger_than
b8e0d419 761 && (code == VAR_DECL || code == PARM_DECL)
b278476e 762 && ! DECL_EXTERNAL (decl))
763 {
764 tree size = DECL_SIZE_UNIT (decl);
765
766 if (size != 0 && TREE_CODE (size) == INTEGER_CST
a0c2c45b 767 && compare_tree_int (size, larger_than_size) > 0)
b278476e 768 {
f9ae6f95 769 int size_as_int = TREE_INT_CST_LOW (size);
b278476e 770
a0c2c45b 771 if (compare_tree_int (size, size_as_int) == 0)
67089c6b 772 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
b278476e 773 else
67089c6b 774 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
3cf8b391 775 decl, larger_than_size);
b278476e 776 }
777 }
65433eb4 778
779 /* If the RTL was already set, update its mode and mem attributes. */
780 if (rtl)
781 {
782 PUT_MODE (rtl, DECL_MODE (decl));
783 SET_DECL_RTL (decl, 0);
94f92c36 784 if (MEM_P (rtl))
785 set_mem_attributes (rtl, decl, 1);
65433eb4 786 SET_DECL_RTL (decl, rtl);
787 }
f2cfea4a 788}
dddcebdc 789
790/* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
791 a previous call to layout_decl and calls it again. */
792
793void
794relayout_decl (tree decl)
795{
796 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
797 DECL_MODE (decl) = VOIDmode;
950474d6 798 if (!DECL_USER_ALIGN (decl))
799 DECL_ALIGN (decl) = 0;
dddcebdc 800 SET_DECL_RTL (decl, 0);
801
802 layout_decl (decl, 0);
803}
f2cfea4a 804\f
02e7a332 805/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
807 is to be passed to all other layout functions for this record. It is the
40734805 808 responsibility of the caller to call `free' for the storage returned.
02e7a332 809 Note that garbage collection is not permitted until we finish laying
810 out the record. */
f2cfea4a 811
99f4e085 812record_layout_info
60b8c5b3 813start_record_layout (tree t)
f2cfea4a 814{
f7f3687c 815 record_layout_info rli = XNEW (struct record_layout_info_s);
99f4e085 816
817 rli->t = t;
02e7a332 818
99f4e085 819 /* If the type has a minimum specified alignment (via an attribute
820 declaration, for example) use it -- otherwise, start with a
821 one-byte alignment. */
822 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
f5712181 823 rli->unpacked_align = rli->record_align;
02e7a332 824 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
f2cfea4a 825
3af966eb 826#ifdef STRUCTURE_SIZE_BOUNDARY
827 /* Packed structures don't need to have minimum size. */
0f9793f3 828 if (! TYPE_PACKED (t))
546e12a7 829 {
830 unsigned tmp;
831
832 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
833 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834 if (maximum_field_alignment != 0)
835 tmp = MIN (tmp, maximum_field_alignment);
836 rli->record_align = MAX (rli->record_align, tmp);
837 }
3af966eb 838#endif
f2cfea4a 839
02e7a332 840 rli->offset = size_zero_node;
841 rli->bitpos = bitsize_zero_node;
f04f096b 842 rli->prev_field = 0;
f1f41a6c 843 rli->pending_statics = 0;
02e7a332 844 rli->packed_maybe_necessary = 0;
7bd4091f 845 rli->remaining_in_alignment = 0;
02e7a332 846
99f4e085 847 return rli;
848}
f2cfea4a 849
2765f7eb 850/* Return the combined bit position for the byte offset OFFSET and the
d9906773 851 bit position BITPOS.
852
853 These functions operate on byte and bit positions present in FIELD_DECLs
854 and assume that these expressions result in no (intermediate) overflow.
855 This assumption is necessary to fold the expressions as much as possible,
856 so as to avoid creating artificially variable-sized types in languages
857 supporting variable-sized types like Ada. */
6d731e4d 858
859tree
60b8c5b3 860bit_from_pos (tree offset, tree bitpos)
6d731e4d 861{
d9906773 862 if (TREE_CODE (offset) == PLUS_EXPR)
863 offset = size_binop (PLUS_EXPR,
864 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
865 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
866 else
867 offset = fold_convert (bitsizetype, offset);
6d731e4d 868 return size_binop (PLUS_EXPR, bitpos,
d9906773 869 size_binop (MULT_EXPR, offset, bitsize_unit_node));
6d731e4d 870}
871
2765f7eb 872/* Return the combined truncated byte position for the byte offset OFFSET and
d9906773 873 the bit position BITPOS. */
2765f7eb 874
6d731e4d 875tree
60b8c5b3 876byte_from_pos (tree offset, tree bitpos)
6d731e4d 877{
2765f7eb 878 tree bytepos;
879 if (TREE_CODE (bitpos) == MULT_EXPR
880 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
881 bytepos = TREE_OPERAND (bitpos, 0);
882 else
883 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
884 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
6d731e4d 885}
886
2765f7eb 887/* Split the bit position POS into a byte offset *POFFSET and a bit
888 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
889
6d731e4d 890void
60b8c5b3 891pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
892 tree pos)
6d731e4d 893{
2765f7eb 894 tree toff_align = bitsize_int (off_align);
895 if (TREE_CODE (pos) == MULT_EXPR
896 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
897 {
898 *poffset = size_binop (MULT_EXPR,
899 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
900 size_int (off_align / BITS_PER_UNIT));
901 *pbitpos = bitsize_zero_node;
902 }
903 else
904 {
905 *poffset = size_binop (MULT_EXPR,
906 fold_convert (sizetype,
907 size_binop (FLOOR_DIV_EXPR, pos,
908 toff_align)),
909 size_int (off_align / BITS_PER_UNIT));
910 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
911 }
6d731e4d 912}
913
914/* Given a pointer to bit and byte offsets and an offset alignment,
915 normalize the offsets so they are within the alignment. */
916
917void
60b8c5b3 918normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
6d731e4d 919{
920 /* If the bit position is now larger than it should be, adjust it
921 downwards. */
922 if (compare_tree_int (*pbitpos, off_align) >= 0)
923 {
2765f7eb 924 tree offset, bitpos;
925 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
926 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
927 *pbitpos = bitpos;
6d731e4d 928 }
929}
930
02e7a332 931/* Print debugging information about the information in RLI. */
83675f44 932
4b987fac 933DEBUG_FUNCTION void
60b8c5b3 934debug_rli (record_layout_info rli)
83675f44 935{
02e7a332 936 print_node_brief (stderr, "type", rli->t, 0);
937 print_node_brief (stderr, "\noffset", rli->offset, 0);
938 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
83675f44 939
f5712181 940 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
941 rli->record_align, rli->unpacked_align,
38ac5984 942 rli->offset_align);
7bd4091f 943
944 /* The ms_struct code is the only that uses this. */
945 if (targetm.ms_bitfield_layout_p (rli->t))
674b377b 946 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
7bd4091f 947
02e7a332 948 if (rli->packed_maybe_necessary)
949 fprintf (stderr, "packed may be necessary\n");
950
f1f41a6c 951 if (!vec_safe_is_empty (rli->pending_statics))
02e7a332 952 {
953 fprintf (stderr, "pending statics:\n");
364ba361 954 debug_vec_tree (rli->pending_statics);
02e7a332 955 }
956}
957
958/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
959 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
960
961void
60b8c5b3 962normalize_rli (record_layout_info rli)
02e7a332 963{
6d731e4d 964 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
02e7a332 965}
83675f44 966
02e7a332 967/* Returns the size in bytes allocated so far. */
968
969tree
60b8c5b3 970rli_size_unit_so_far (record_layout_info rli)
02e7a332 971{
6d731e4d 972 return byte_from_pos (rli->offset, rli->bitpos);
02e7a332 973}
974
975/* Returns the size in bits allocated so far. */
976
977tree
60b8c5b3 978rli_size_so_far (record_layout_info rli)
02e7a332 979{
6d731e4d 980 return bit_from_pos (rli->offset, rli->bitpos);
02e7a332 981}
982
4b387c35 983/* FIELD is about to be added to RLI->T. The alignment (in bits) of
23325b33 984 the next available location within the record is given by KNOWN_ALIGN.
985 Update the variable alignment fields in RLI, and return the alignment
986 to give the FIELD. */
02e7a332 987
4ee9c684 988unsigned int
60b8c5b3 989update_alignment_for_field (record_layout_info rli, tree field,
990 unsigned int known_align)
99f4e085 991{
992 /* The alignment required for FIELD. */
993 unsigned int desired_align;
99f4e085 994 /* The type of this field. */
995 tree type = TREE_TYPE (field);
4b387c35 996 /* True if the field was explicitly aligned by the user. */
997 bool user_align;
f5712181 998 bool is_bitfield;
99f4e085 999
f6cf83a8 1000 /* Do not attempt to align an ERROR_MARK node */
1001 if (TREE_CODE (type) == ERROR_MARK)
1002 return 0;
1003
f5712181 1004 /* Lay out the field so we know what alignment it needs. */
1005 layout_decl (field, known_align);
02e7a332 1006 desired_align = DECL_ALIGN (field);
aca14577 1007 user_align = DECL_USER_ALIGN (field);
02e7a332 1008
f5712181 1009 is_bitfield = (type != error_mark_node
1010 && DECL_BIT_FIELD_TYPE (field)
1011 && ! integer_zerop (TYPE_SIZE (type)));
f2cfea4a 1012
99f4e085 1013 /* Record must have at least as much alignment as any field.
1014 Otherwise, the alignment of the field within the record is
1015 meaningless. */
7bd4091f 1016 if (targetm.ms_bitfield_layout_p (rli->t))
f04f096b 1017 {
8642f3d3 1018 /* Here, the alignment of the underlying type of a bitfield can
1019 affect the alignment of a record; even a zero-sized field
1020 can do this. The alignment should be to the alignment of
1021 the type, except that for zero-size bitfields this only
f712a0dc 1022 applies if there was an immediately prior, nonzero-size
8642f3d3 1023 bitfield. (That's the way it is, experimentally.) */
089ea875 1024 if ((!is_bitfield && !DECL_PACKED (field))
a6949f31 1025 || ((DECL_SIZE (field) == NULL_TREE
1026 || !integer_zerop (DECL_SIZE (field)))
7bd4091f 1027 ? !DECL_PACKED (field)
1028 : (rli->prev_field
1029 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1030 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
f04f096b 1031 {
8642f3d3 1032 unsigned int type_align = TYPE_ALIGN (type);
1033 type_align = MAX (type_align, desired_align);
1034 if (maximum_field_alignment != 0)
1035 type_align = MIN (type_align, maximum_field_alignment);
1036 rli->record_align = MAX (rli->record_align, type_align);
f04f096b 1037 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1038 }
40734805 1039 }
f5712181 1040 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
99f4e085 1041 {
4975da72 1042 /* Named bit-fields cause the entire structure to have the
25ba5be6 1043 alignment implied by their type. Some targets also apply the same
1044 rules to unnamed bitfields. */
1045 if (DECL_NAME (field) != 0
1046 || targetm.align_anon_bitfield ())
f2cfea4a 1047 {
99f4e085 1048 unsigned int type_align = TYPE_ALIGN (type);
fe352cf1 1049
77d0f168 1050#ifdef ADJUST_FIELD_ALIGN
1051 if (! TYPE_USER_ALIGN (type))
1052 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1053#endif
1054
7c68c953 1055 /* Targets might chose to handle unnamed and hence possibly
1056 zero-width bitfield. Those are not influenced by #pragmas
1057 or packed attributes. */
1058 if (integer_zerop (DECL_SIZE (field)))
1059 {
1060 if (initial_max_fld_align)
1061 type_align = MIN (type_align,
1062 initial_max_fld_align * BITS_PER_UNIT);
1063 }
1064 else if (maximum_field_alignment != 0)
99f4e085 1065 type_align = MIN (type_align, maximum_field_alignment);
1066 else if (DECL_PACKED (field))
1067 type_align = MIN (type_align, BITS_PER_UNIT);
87994a83 1068
4975da72 1069 /* The alignment of the record is increased to the maximum
1070 of the current alignment, the alignment indicated on the
1071 field (i.e., the alignment specified by an __aligned__
1072 attribute), and the alignment indicated by the type of
1073 the field. */
1074 rli->record_align = MAX (rli->record_align, desired_align);
99f4e085 1075 rli->record_align = MAX (rli->record_align, type_align);
4975da72 1076
fca12917 1077 if (warn_packed)
38ac5984 1078 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
fced8f42 1079 user_align |= TYPE_USER_ALIGN (type);
fca12917 1080 }
99f4e085 1081 }
f5712181 1082 else
99f4e085 1083 {
1084 rli->record_align = MAX (rli->record_align, desired_align);
02e7a332 1085 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
99f4e085 1086 }
fca12917 1087
4b387c35 1088 TYPE_USER_ALIGN (rli->t) |= user_align;
1089
1090 return desired_align;
1091}
1092
1093/* Called from place_field to handle unions. */
1094
1095static void
60b8c5b3 1096place_union_field (record_layout_info rli, tree field)
4b387c35 1097{
1098 update_alignment_for_field (rli, field, /*known_align=*/0);
1099
1100 DECL_FIELD_OFFSET (field) = size_zero_node;
1101 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1102 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1103
7bd4091f 1104 /* If this is an ERROR_MARK return *after* having set the
f6cf83a8 1105 field at the start of the union. This helps when parsing
1106 invalid fields. */
1107 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1108 return;
1109
4b387c35 1110 /* We assume the union's size will be a multiple of a byte so we don't
1111 bother with BITPOS. */
1112 if (TREE_CODE (rli->t) == UNION_TYPE)
1113 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1114 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
178825bb 1115 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
faa43f85 1116 DECL_SIZE_UNIT (field), rli->offset);
4b387c35 1117}
1118
805e22b2 1119/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
a8b24921 1120 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
805e22b2 1121 units of alignment than the underlying TYPE. */
1122static int
60b8c5b3 1123excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1124 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
805e22b2 1125{
1126 /* Note that the calculation of OFFSET might overflow; we calculate it so
1127 that we still get the right result as long as ALIGN is a power of two. */
1128 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1129
1130 offset = offset % align;
1131 return ((offset + size + align - 1) / align
aa59f000 1132 > tree_to_uhwi (TYPE_SIZE (type)) / align);
805e22b2 1133}
1134
4b387c35 1135/* RLI contains information about the layout of a RECORD_TYPE. FIELD
1136 is a FIELD_DECL to be added after those fields already present in
1137 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1138 callers that desire that behavior must manually perform that step.) */
1139
1140void
60b8c5b3 1141place_field (record_layout_info rli, tree field)
4b387c35 1142{
1143 /* The alignment required for FIELD. */
1144 unsigned int desired_align;
1145 /* The alignment FIELD would have if we just dropped it into the
1146 record as it presently stands. */
1147 unsigned int known_align;
1148 unsigned int actual_align;
1149 /* The type of this field. */
1150 tree type = TREE_TYPE (field);
1151
65a7c526 1152 gcc_assert (TREE_CODE (field) != ERROR_MARK);
4b387c35 1153
1154 /* If FIELD is static, then treat it like a separate variable, not
1155 really like a structure field. If it is a FUNCTION_DECL, it's a
1156 method. In both cases, all we do is lay out the decl, and we do
1157 it *after* the record is laid out. */
1158 if (TREE_CODE (field) == VAR_DECL)
1159 {
f1f41a6c 1160 vec_safe_push (rli->pending_statics, field);
4b387c35 1161 return;
1162 }
1163
1164 /* Enumerators and enum types which are local to this class need not
1165 be laid out. Likewise for initialized constant fields. */
1166 else if (TREE_CODE (field) != FIELD_DECL)
1167 return;
1168
1169 /* Unions are laid out very differently than records, so split
1170 that code off to another function. */
1171 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1172 {
1173 place_union_field (rli, field);
1174 return;
1175 }
1176
7bd4091f 1177 else if (TREE_CODE (type) == ERROR_MARK)
f6cf83a8 1178 {
1179 /* Place this field at the current allocation position, so we
1180 maintain monotonicity. */
1181 DECL_FIELD_OFFSET (field) = rli->offset;
1182 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1183 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1184 return;
1185 }
1186
4b387c35 1187 /* Work out the known alignment so far. Note that A & (-A) is the
1188 value of the least-significant bit in A that is one. */
1189 if (! integer_zerop (rli->bitpos))
e913b5cd 1190 known_align = (tree_to_uhwi (rli->bitpos)
1191 & - tree_to_uhwi (rli->bitpos));
4b387c35 1192 else if (integer_zerop (rli->offset))
23325b33 1193 known_align = 0;
e913b5cd 1194 else if (tree_fits_uhwi_p (rli->offset))
4b387c35 1195 known_align = (BITS_PER_UNIT
e913b5cd 1196 * (tree_to_uhwi (rli->offset)
1197 & - tree_to_uhwi (rli->offset)));
4b387c35 1198 else
1199 known_align = rli->offset_align;
60b8c5b3 1200
4b387c35 1201 desired_align = update_alignment_for_field (rli, field, known_align);
23325b33 1202 if (known_align == 0)
1203 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
4b387c35 1204
99f4e085 1205 if (warn_packed && DECL_PACKED (field))
1206 {
f5712181 1207 if (known_align >= TYPE_ALIGN (type))
fca12917 1208 {
99f4e085 1209 if (TYPE_ALIGN (type) > desired_align)
fca12917 1210 {
99f4e085 1211 if (STRICT_ALIGNMENT)
3cf8b391 1212 warning (OPT_Wattributes, "packed attribute causes "
1213 "inefficient alignment for %q+D", field);
acca8c42 1214 /* Don't warn if DECL_PACKED was set by the type. */
1215 else if (!TYPE_PACKED (rli->t))
3cf8b391 1216 warning (OPT_Wattributes, "packed attribute is "
1217 "unnecessary for %q+D", field);
fca12917 1218 }
fca12917 1219 }
99f4e085 1220 else
1221 rli->packed_maybe_necessary = 1;
1222 }
f2cfea4a 1223
99f4e085 1224 /* Does this field automatically have alignment it needs by virtue
b527cbf0 1225 of the fields that precede it and the record's own alignment? */
1226 if (known_align < desired_align)
99f4e085 1227 {
1228 /* No, we need to skip space before this field.
1229 Bump the cumulative size to multiple of field alignment. */
f2cfea4a 1230
b527cbf0 1231 if (!targetm.ms_bitfield_layout_p (rli->t)
1232 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
d1251492 1233 warning (OPT_Wpadded, "padding struct to align %q+D", field);
fca12917 1234
02e7a332 1235 /* If the alignment is still within offset_align, just align
1236 the bit position. */
1237 if (desired_align < rli->offset_align)
1238 rli->bitpos = round_up (rli->bitpos, desired_align);
99f4e085 1239 else
1240 {
02e7a332 1241 /* First adjust OFFSET by the partial bits, then align. */
1242 rli->offset
1243 = size_binop (PLUS_EXPR, rli->offset,
5d7ed6c7 1244 fold_convert (sizetype,
1245 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1246 bitsize_unit_node)));
02e7a332 1247 rli->bitpos = bitsize_zero_node;
1248
1249 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
f2cfea4a 1250 }
02e7a332 1251
53de1faf 1252 if (! TREE_CONSTANT (rli->offset))
1253 rli->offset_align = desired_align;
b527cbf0 1254 if (targetm.ms_bitfield_layout_p (rli->t))
1255 rli->prev_field = NULL;
99f4e085 1256 }
f2cfea4a 1257
02e7a332 1258 /* Handle compatibility with PCC. Note that if the record has any
1259 variable-sized fields, we need not worry about compatibility. */
99f4e085 1260 if (PCC_BITFIELD_TYPE_MATTERS
6fb33aa0 1261 && ! targetm.ms_bitfield_layout_p (rli->t)
99f4e085 1262 && TREE_CODE (field) == FIELD_DECL
1263 && type != error_mark_node
02e7a332 1264 && DECL_BIT_FIELD (field)
9fd767c5 1265 && (! DECL_PACKED (field)
1266 /* Enter for these packed fields only to issue a warning. */
1267 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
99f4e085 1268 && maximum_field_alignment == 0
02e7a332 1269 && ! integer_zerop (DECL_SIZE (field))
e913b5cd 1270 && tree_fits_uhwi_p (DECL_SIZE (field))
e913b5cd 1271 && tree_fits_uhwi_p (rli->offset)
1272 && tree_fits_uhwi_p (TYPE_SIZE (type)))
99f4e085 1273 {
1274 unsigned int type_align = TYPE_ALIGN (type);
02e7a332 1275 tree dsize = DECL_SIZE (field);
e913b5cd 1276 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
69c1cbfa 1277 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
e913b5cd 1278 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
99f4e085 1279
77d0f168 1280#ifdef ADJUST_FIELD_ALIGN
1281 if (! TYPE_USER_ALIGN (type))
1282 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1283#endif
1284
99f4e085 1285 /* A bit field may not span more units of alignment of its type
1286 than its type itself. Advance to next boundary if necessary. */
805e22b2 1287 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
9fd767c5 1288 {
1289 if (DECL_PACKED (field))
1290 {
7a6a48c9 1291 if (warn_packed_bitfield_compat == 1)
9fd767c5 1292 inform
1293 (input_location,
bf776685 1294 "offset of packed bit-field %qD has changed in GCC 4.4",
9fd767c5 1295 field);
1296 }
1297 else
178825bb 1298 rli->bitpos = round_up (rli->bitpos, type_align);
9fd767c5 1299 }
fced8f42 1300
9fd767c5 1301 if (! DECL_PACKED (field))
1302 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
99f4e085 1303 }
f2cfea4a 1304
f2cfea4a 1305#ifdef BITFIELD_NBYTES_LIMITED
99f4e085 1306 if (BITFIELD_NBYTES_LIMITED
6fb33aa0 1307 && ! targetm.ms_bitfield_layout_p (rli->t)
99f4e085 1308 && TREE_CODE (field) == FIELD_DECL
1309 && type != error_mark_node
1310 && DECL_BIT_FIELD_TYPE (field)
02e7a332 1311 && ! DECL_PACKED (field)
1312 && ! integer_zerop (DECL_SIZE (field))
e913b5cd 1313 && tree_fits_uhwi_p (DECL_SIZE (field))
08f4222b 1314 && tree_fits_uhwi_p (rli->offset)
e913b5cd 1315 && tree_fits_uhwi_p (TYPE_SIZE (type)))
99f4e085 1316 {
1317 unsigned int type_align = TYPE_ALIGN (type);
02e7a332 1318 tree dsize = DECL_SIZE (field);
e913b5cd 1319 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
69c1cbfa 1320 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
e913b5cd 1321 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
87994a83 1322
77d0f168 1323#ifdef ADJUST_FIELD_ALIGN
1324 if (! TYPE_USER_ALIGN (type))
1325 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1326#endif
1327
99f4e085 1328 if (maximum_field_alignment != 0)
1329 type_align = MIN (type_align, maximum_field_alignment);
1330 /* ??? This test is opposite the test in the containing if
1331 statement, so this code is unreachable currently. */
1332 else if (DECL_PACKED (field))
1333 type_align = MIN (type_align, BITS_PER_UNIT);
1334
1335 /* A bit field may not span the unit of alignment of its type.
1336 Advance to next boundary if necessary. */
805e22b2 1337 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
02e7a332 1338 rli->bitpos = round_up (rli->bitpos, type_align);
fced8f42 1339
4b387c35 1340 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
99f4e085 1341 }
f2cfea4a 1342#endif
1343
8642f3d3 1344 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1345 A subtlety:
1346 When a bit field is inserted into a packed record, the whole
1347 size of the underlying type is used by one or more same-size
805e22b2 1348 adjacent bitfields. (That is, if its long:3, 32 bits is
8642f3d3 1349 used in the record, and any additional adjacent long bitfields are
1350 packed into the same chunk of 32 bits. However, if the size
1351 changes, a new field of that size is allocated.) In an unpacked
de132707 1352 record, this is the same as using alignment, but not equivalent
805e22b2 1353 when packing.
8642f3d3 1354
de132707 1355 Note: for compatibility, we use the type size, not the type alignment
8642f3d3 1356 to determine alignment, since that matches the documentation */
1357
7bd4091f 1358 if (targetm.ms_bitfield_layout_p (rli->t))
f04f096b 1359 {
8642f3d3 1360 tree prev_saved = rli->prev_field;
8aea3a7e 1361 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
f04f096b 1362
7bd4091f 1363 /* This is a bitfield if it exists. */
1364 if (rli->prev_field)
8642f3d3 1365 {
1366 /* If both are bitfields, nonzero, and the same size, this is
1367 the middle of a run. Zero declared size fields are special
1368 and handled as "end of run". (Note: it's nonzero declared
1369 size, but equal type sizes!) (Since we know that both
1370 the current and previous fields are bitfields by the
1371 time we check it, DECL_SIZE must be present for both.) */
1372 if (DECL_BIT_FIELD_TYPE (field)
1373 && !integer_zerop (DECL_SIZE (field))
1374 && !integer_zerop (DECL_SIZE (rli->prev_field))
e913b5cd 1375 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
69c1cbfa 1376 && tree_fits_uhwi_p (TYPE_SIZE (type))
8aea3a7e 1377 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
8642f3d3 1378 {
1379 /* We're in the middle of a run of equal type size fields; make
1380 sure we realign if we run out of bits. (Not decl size,
1381 type size!) */
e913b5cd 1382 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
8642f3d3 1383
1384 if (rli->remaining_in_alignment < bitsize)
1385 {
e913b5cd 1386 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
8aea3a7e 1387
7bd4091f 1388 /* out of bits; bump up to next 'word'. */
7bd4091f 1389 rli->bitpos
8aea3a7e 1390 = size_binop (PLUS_EXPR, rli->bitpos,
1391 bitsize_int (rli->remaining_in_alignment));
7bd4091f 1392 rli->prev_field = field;
8aea3a7e 1393 if (typesize < bitsize)
1394 rli->remaining_in_alignment = 0;
1395 else
1396 rli->remaining_in_alignment = typesize - bitsize;
8642f3d3 1397 }
8aea3a7e 1398 else
1399 rli->remaining_in_alignment -= bitsize;
8642f3d3 1400 }
1401 else
1402 {
805e22b2 1403 /* End of a run: if leaving a run of bitfields of the same type
1404 size, we have to "use up" the rest of the bits of the type
8642f3d3 1405 size.
1406
1407 Compute the new position as the sum of the size for the prior
1408 type and where we first started working on that type.
1409 Note: since the beginning of the field was aligned then
1410 of course the end will be too. No round needed. */
1411
a6cf93fb 1412 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
8642f3d3 1413 {
7bd4091f 1414 rli->bitpos
1415 = size_binop (PLUS_EXPR, rli->bitpos,
1416 bitsize_int (rli->remaining_in_alignment));
8642f3d3 1417 }
1418 else
5f1e9331 1419 /* We "use up" size zero fields; the code below should behave
1420 as if the prior field was not a bitfield. */
1421 prev_saved = NULL;
8642f3d3 1422
805e22b2 1423 /* Cause a new bitfield to be captured, either this time (if
9cb8e99f 1424 currently a bitfield) or next time we see one. */
9af5ce0c 1425 if (!DECL_BIT_FIELD_TYPE (field)
a6cf93fb 1426 || integer_zerop (DECL_SIZE (field)))
5f1e9331 1427 rli->prev_field = NULL;
8642f3d3 1428 }
5f1e9331 1429
8642f3d3 1430 normalize_rli (rli);
1431 }
1432
3157acc6 1433 /* If we're starting a new run of same type size bitfields
8642f3d3 1434 (or a run of non-bitfields), set up the "first of the run"
805e22b2 1435 fields.
8642f3d3 1436
1437 That is, if the current field is not a bitfield, or if there
1438 was a prior bitfield the type sizes differ, or if there wasn't
1439 a prior bitfield the size of the current field is nonzero.
1440
1441 Note: we must be sure to test ONLY the type size if there was
1442 a prior bitfield and ONLY for the current field being zero if
1443 there wasn't. */
1444
1445 if (!DECL_BIT_FIELD_TYPE (field)
a6cf93fb 1446 || (prev_saved != NULL
8aea3a7e 1447 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
5f1e9331 1448 : !integer_zerop (DECL_SIZE (field)) ))
8642f3d3 1449 {
5f1e9331 1450 /* Never smaller than a byte for compatibility. */
1451 unsigned int type_align = BITS_PER_UNIT;
8642f3d3 1452
805e22b2 1453 /* (When not a bitfield), we could be seeing a flex array (with
8642f3d3 1454 no DECL_SIZE). Since we won't be using remaining_in_alignment
805e22b2 1455 until we see a bitfield (and come by here again) we just skip
8642f3d3 1456 calculating it. */
5f1e9331 1457 if (DECL_SIZE (field) != NULL
e913b5cd 1458 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1459 && tree_fits_uhwi_p (DECL_SIZE (field)))
8aea3a7e 1460 {
c7e8d0da 1461 unsigned HOST_WIDE_INT bitsize
e913b5cd 1462 = tree_to_uhwi (DECL_SIZE (field));
c7e8d0da 1463 unsigned HOST_WIDE_INT typesize
e913b5cd 1464 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
8aea3a7e 1465
1466 if (typesize < bitsize)
1467 rli->remaining_in_alignment = 0;
1468 else
1469 rli->remaining_in_alignment = typesize - bitsize;
1470 }
8642f3d3 1471
9cb8e99f 1472 /* Now align (conventionally) for the new type. */
7bd4091f 1473 type_align = TYPE_ALIGN (TREE_TYPE (field));
f04f096b 1474
8642f3d3 1475 if (maximum_field_alignment != 0)
1476 type_align = MIN (type_align, maximum_field_alignment);
f04f096b 1477
178825bb 1478 rli->bitpos = round_up (rli->bitpos, type_align);
5f1e9331 1479
8642f3d3 1480 /* If we really aligned, don't allow subsequent bitfields
9cb8e99f 1481 to undo that. */
8642f3d3 1482 rli->prev_field = NULL;
1483 }
f04f096b 1484 }
1485
02e7a332 1486 /* Offset so far becomes the position of this field after normalizing. */
1487 normalize_rli (rli);
1488 DECL_FIELD_OFFSET (field) = rli->offset;
1489 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
b4bb829f 1490 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
02e7a332 1491
46515aeb 1492 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1493 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1494 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1495
02e7a332 1496 /* If this field ended up more aligned than we thought it would be (we
1497 approximate this by seeing if its position changed), lay out the field
1498 again; perhaps we can use an integral mode for it now. */
62d2dc6f 1499 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
e913b5cd 1500 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1501 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
62d2dc6f 1502 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
23325b33 1503 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
e913b5cd 1504 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
02e7a332 1505 actual_align = (BITS_PER_UNIT
e913b5cd 1506 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1507 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
99f4e085 1508 else
02e7a332 1509 actual_align = DECL_OFFSET_ALIGN (field);
23325b33 1510 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1511 store / extract bit field operations will check the alignment of the
1512 record against the mode of bit fields. */
02e7a332 1513
1514 if (known_align != actual_align)
1515 layout_decl (field, actual_align);
1516
7bd4091f 1517 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1518 rli->prev_field = field;
f04f096b 1519
02e7a332 1520 /* Now add size of this field to the size of the record. If the size is
1521 not constant, treat the field as being a multiple of bytes and just
1522 adjust the offset, resetting the bit position. Otherwise, apportion the
1523 size amongst the bit position and offset. First handle the case of an
1524 unspecified size, which can happen when we have an invalid nested struct
1525 definition, such as struct j { struct j { int i; } }. The error message
1526 is printed in finish_struct. */
1527 if (DECL_SIZE (field) == 0)
1528 /* Do nothing. */;
7e50ecae 1529 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
f96bd2bf 1530 || TREE_OVERFLOW (DECL_SIZE (field)))
99f4e085 1531 {
02e7a332 1532 rli->offset
1533 = size_binop (PLUS_EXPR, rli->offset,
5d7ed6c7 1534 fold_convert (sizetype,
1535 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1536 bitsize_unit_node)));
02e7a332 1537 rli->offset
1538 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1539 rli->bitpos = bitsize_zero_node;
fcf31ac6 1540 rli->offset_align = MIN (rli->offset_align, desired_align);
99f4e085 1541 }
7bd4091f 1542 else if (targetm.ms_bitfield_layout_p (rli->t))
1543 {
1544 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1545
1546 /* If we ended a bitfield before the full length of the type then
1547 pad the struct out to the full length of the last type. */
1767a056 1548 if ((DECL_CHAIN (field) == NULL
1549 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
7bd4091f 1550 && DECL_BIT_FIELD_TYPE (field)
1551 && !integer_zerop (DECL_SIZE (field)))
1552 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1553 bitsize_int (rli->remaining_in_alignment));
1554
1555 normalize_rli (rli);
1556 }
99f4e085 1557 else
1558 {
02e7a332 1559 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1560 normalize_rli (rli);
f2cfea4a 1561 }
99f4e085 1562}
f2cfea4a 1563
99f4e085 1564/* Assuming that all the fields have been laid out, this function uses
1565 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
de132707 1566 indicated by RLI. */
f2cfea4a 1567
99f4e085 1568static void
60b8c5b3 1569finalize_record_size (record_layout_info rli)
99f4e085 1570{
02e7a332 1571 tree unpadded_size, unpadded_size_unit;
1572
9ac9c432 1573 /* Now we want just byte and bit offsets, so set the offset alignment
1574 to be a byte and then normalize. */
1575 rli->offset_align = BITS_PER_UNIT;
1576 normalize_rli (rli);
f2cfea4a 1577
1578 /* Determine the desired alignment. */
1579#ifdef ROUND_TYPE_ALIGN
99f4e085 1580 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
fd5279fc 1581 rli->record_align);
f2cfea4a 1582#else
99f4e085 1583 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
f2cfea4a 1584#endif
1585
9ac9c432 1586 /* Compute the size so far. Be sure to allow for extra bits in the
1587 size in bytes. We have guaranteed above that it will be no more
1588 than a single byte. */
1589 unpadded_size = rli_size_so_far (rli);
1590 unpadded_size_unit = rli_size_unit_so_far (rli);
1591 if (! integer_zerop (rli->bitpos))
1592 unpadded_size_unit
1593 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
02e7a332 1594
2358393e 1595 /* Round the size up to be a multiple of the required alignment. */
178825bb 1596 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
d37625c0 1597 TYPE_SIZE_UNIT (rli->t)
178825bb 1598 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
fe352cf1 1599
6bf97f82 1600 if (TREE_CONSTANT (unpadded_size)
d1251492 1601 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1602 && input_location != BUILTINS_LOCATION)
6bf97f82 1603 warning (OPT_Wpadded, "padding struct size to alignment boundary");
40734805 1604
02e7a332 1605 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1606 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1607 && TREE_CONSTANT (unpadded_size))
fca12917 1608 {
1609 tree unpacked_size;
fe352cf1 1610
fca12917 1611#ifdef ROUND_TYPE_ALIGN
99f4e085 1612 rli->unpacked_align
1613 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
fca12917 1614#else
99f4e085 1615 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
fca12917 1616#endif
02e7a332 1617
178825bb 1618 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
99f4e085 1619 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
fca12917 1620 {
99f4e085 1621 if (TYPE_NAME (rli->t))
fca12917 1622 {
abd3e6b5 1623 tree name;
fe352cf1 1624
99f4e085 1625 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
abd3e6b5 1626 name = TYPE_NAME (rli->t);
fca12917 1627 else
abd3e6b5 1628 name = DECL_NAME (TYPE_NAME (rli->t));
02e7a332 1629
fca12917 1630 if (STRICT_ALIGNMENT)
6bf97f82 1631 warning (OPT_Wpacked, "packed attribute causes inefficient "
abd3e6b5 1632 "alignment for %qE", name);
fca12917 1633 else
6bf97f82 1634 warning (OPT_Wpacked,
abd3e6b5 1635 "packed attribute is unnecessary for %qE", name);
fca12917 1636 }
1637 else
1638 {
1639 if (STRICT_ALIGNMENT)
6bf97f82 1640 warning (OPT_Wpacked,
9b2d6d13 1641 "packed attribute causes inefficient alignment");
fca12917 1642 else
6bf97f82 1643 warning (OPT_Wpacked, "packed attribute is unnecessary");
fca12917 1644 }
1645 }
fca12917 1646 }
99f4e085 1647}
1648
1649/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
f2cfea4a 1650
9ac9c432 1651void
60b8c5b3 1652compute_record_mode (tree type)
99f4e085 1653{
02e7a332 1654 tree field;
3754d046 1655 machine_mode mode = VOIDmode;
02e7a332 1656
99f4e085 1657 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1658 However, if possible, we use a mode that fits in a register
1659 instead, in order to allow for better optimization down the
1660 line. */
342ad2d6 1661 SET_TYPE_MODE (type, BLKmode);
99f4e085 1662
e913b5cd 1663 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
02e7a332 1664 return;
99f4e085 1665
02e7a332 1666 /* A record which has any BLKmode members must itself be
1667 BLKmode; it can't go in a register. Unless the member is
1668 BLKmode only because it isn't aligned. */
1767a056 1669 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
02e7a332 1670 {
02e7a332 1671 if (TREE_CODE (field) != FIELD_DECL)
1672 continue;
99f4e085 1673
02e7a332 1674 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1675 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
0e9fefce 1676 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1677 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1678 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
e913b5cd 1679 || ! tree_fits_uhwi_p (bit_position (field))
0b241033 1680 || DECL_SIZE (field) == 0
e913b5cd 1681 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
02e7a332 1682 return;
1683
02e7a332 1684 /* If this field is the whole struct, remember its mode so
1685 that, say, we can put a double in a class into a DF
b708a05c 1686 register instead of forcing it to live in the stack. */
1687 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
02e7a332 1688 mode = DECL_MODE (field);
99f4e085 1689
f91ed644 1690 /* With some targets, it is sub-optimal to access an aligned
1691 BLKmode structure as a scalar. */
1692 if (targetm.member_type_forces_blk (field, mode))
02e7a332 1693 return;
02e7a332 1694 }
99f4e085 1695
aedd07a7 1696 /* If we only have one real field; use its mode if that mode's size
1697 matches the type's size. This only applies to RECORD_TYPE. This
1698 does not apply to unions. */
1699 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
e913b5cd 1700 && tree_fits_uhwi_p (TYPE_SIZE (type))
1701 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
342ad2d6 1702 SET_TYPE_MODE (type, mode);
c0d93be8 1703 else
342ad2d6 1704 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
02e7a332 1705
1706 /* If structure's known alignment is less than what the scalar
1707 mode would need, and it matters, then stick with BLKmode. */
1708 if (TYPE_MODE (type) != BLKmode
1709 && STRICT_ALIGNMENT
1710 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1711 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1712 {
1713 /* If this is the only reason this type is BLKmode, then
1714 don't force containing types to be BLKmode. */
1715 TYPE_NO_FORCE_BLK (type) = 1;
342ad2d6 1716 SET_TYPE_MODE (type, BLKmode);
99f4e085 1717 }
f2cfea4a 1718}
99f4e085 1719
1720/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1721 out. */
1722
1723static void
60b8c5b3 1724finalize_type_size (tree type)
99f4e085 1725{
1726 /* Normally, use the alignment corresponding to the mode chosen.
1727 However, where strict alignment is not required, avoid
1728 over-aligning structures, since most compilers do not do this
d1b5d503 1729 alignment. */
3d54a731 1730 if (TYPE_MODE (type) != BLKmode
1731 && TYPE_MODE (type) != VOIDmode
1732 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
aca14577 1733 {
d1b5d503 1734 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1735
1736 /* Don't override a larger alignment requirement coming from a user
1737 alignment of one of the fields. */
1738 if (mode_align >= TYPE_ALIGN (type))
1739 {
1740 TYPE_ALIGN (type) = mode_align;
1741 TYPE_USER_ALIGN (type) = 0;
1742 }
aca14577 1743 }
99f4e085 1744
1745 /* Do machine-dependent extra alignment. */
1746#ifdef ROUND_TYPE_ALIGN
1747 TYPE_ALIGN (type)
1748 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1749#endif
1750
99f4e085 1751 /* If we failed to find a simple way to calculate the unit size
02e7a332 1752 of the type, find it by division. */
99f4e085 1753 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1754 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1755 result will fit in sizetype. We will get more efficient code using
1756 sizetype, so we force a conversion. */
1757 TYPE_SIZE_UNIT (type)
5d7ed6c7 1758 = fold_convert (sizetype,
1759 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1760 bitsize_unit_node));
99f4e085 1761
02e7a332 1762 if (TYPE_SIZE (type) != 0)
1763 {
178825bb 1764 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1765 TYPE_SIZE_UNIT (type)
1766 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
02e7a332 1767 }
1768
1769 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1770 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1771 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
99f4e085 1772 if (TYPE_SIZE_UNIT (type) != 0
1773 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1774 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1775
1776 /* Also layout any other variants of the type. */
1777 if (TYPE_NEXT_VARIANT (type)
1778 || type != TYPE_MAIN_VARIANT (type))
1779 {
1780 tree variant;
1781 /* Record layout info of this variant. */
1782 tree size = TYPE_SIZE (type);
1783 tree size_unit = TYPE_SIZE_UNIT (type);
1784 unsigned int align = TYPE_ALIGN (type);
4765975c 1785 unsigned int precision = TYPE_PRECISION (type);
aca14577 1786 unsigned int user_align = TYPE_USER_ALIGN (type);
3754d046 1787 machine_mode mode = TYPE_MODE (type);
99f4e085 1788
1789 /* Copy it into all variants. */
1790 for (variant = TYPE_MAIN_VARIANT (type);
1791 variant != 0;
1792 variant = TYPE_NEXT_VARIANT (variant))
1793 {
1794 TYPE_SIZE (variant) = size;
1795 TYPE_SIZE_UNIT (variant) = size_unit;
8c522687 1796 unsigned valign = align;
1797 if (TYPE_USER_ALIGN (variant))
1798 valign = MAX (valign, TYPE_ALIGN (variant));
1799 else
1800 TYPE_USER_ALIGN (variant) = user_align;
1801 TYPE_ALIGN (variant) = valign;
4765975c 1802 TYPE_PRECISION (variant) = precision;
342ad2d6 1803 SET_TYPE_MODE (variant, mode);
99f4e085 1804 }
1805 }
1806}
1807
8d8a34f9 1808/* Return a new underlying object for a bitfield started with FIELD. */
1809
1810static tree
1811start_bitfield_representative (tree field)
1812{
1813 tree repr = make_node (FIELD_DECL);
1814 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1815 /* Force the representative to begin at a BITS_PER_UNIT aligned
1816 boundary - C++ may use tail-padding of a base object to
1817 continue packing bits so the bitfield region does not start
1818 at bit zero (see g++.dg/abi/bitfield5.C for example).
1819 Unallocated bits may happen for other reasons as well,
1820 for example Ada which allows explicit bit-granular structure layout. */
1821 DECL_FIELD_BIT_OFFSET (repr)
1822 = size_binop (BIT_AND_EXPR,
1823 DECL_FIELD_BIT_OFFSET (field),
1824 bitsize_int (~(BITS_PER_UNIT - 1)));
1825 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1826 DECL_SIZE (repr) = DECL_SIZE (field);
1827 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1828 DECL_PACKED (repr) = DECL_PACKED (field);
1829 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1830 return repr;
1831}
1832
1833/* Finish up a bitfield group that was started by creating the underlying
1834 object REPR with the last field in the bitfield group FIELD. */
1835
1836static void
1837finish_bitfield_representative (tree repr, tree field)
1838{
1839 unsigned HOST_WIDE_INT bitsize, maxbitsize;
3754d046 1840 machine_mode mode;
8d8a34f9 1841 tree nextf, size;
1842
1843 size = size_diffop (DECL_FIELD_OFFSET (field),
1844 DECL_FIELD_OFFSET (repr));
129ef22c 1845 while (TREE_CODE (size) == COMPOUND_EXPR)
1846 size = TREE_OPERAND (size, 1);
e913b5cd 1847 gcc_assert (tree_fits_uhwi_p (size));
1848 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1849 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1850 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1851 + tree_to_uhwi (DECL_SIZE (field)));
8d8a34f9 1852
75188dc6 1853 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1854 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1855
8d8a34f9 1856 /* Now nothing tells us how to pad out bitsize ... */
1857 nextf = DECL_CHAIN (field);
1858 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1859 nextf = DECL_CHAIN (nextf);
1860 if (nextf)
1861 {
1862 tree maxsize;
9d75589a 1863 /* If there was an error, the field may be not laid out
8d8a34f9 1864 correctly. Don't bother to do anything. */
1865 if (TREE_TYPE (nextf) == error_mark_node)
1866 return;
1867 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1868 DECL_FIELD_OFFSET (repr));
e913b5cd 1869 if (tree_fits_uhwi_p (maxsize))
fa42e1a4 1870 {
e913b5cd 1871 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1872 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1873 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
fa42e1a4 1874 /* If the group ends within a bitfield nextf does not need to be
1875 aligned to BITS_PER_UNIT. Thus round up. */
1876 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1877 }
1878 else
1879 maxbitsize = bitsize;
8d8a34f9 1880 }
1881 else
1882 {
1883 /* ??? If you consider that tail-padding of this struct might be
1884 re-used when deriving from it we cannot really do the following
75188dc6 1885 and thus need to set maxsize to bitsize? Also we cannot
1886 generally rely on maxsize to fold to an integer constant, so
1887 use bitsize as fallback for this case. */
8d8a34f9 1888 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1889 DECL_FIELD_OFFSET (repr));
e913b5cd 1890 if (tree_fits_uhwi_p (maxsize))
1891 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1892 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
75188dc6 1893 else
1894 maxbitsize = bitsize;
8d8a34f9 1895 }
1896
1897 /* Only if we don't artificially break up the representative in
1898 the middle of a large bitfield with different possibly
1899 overlapping representatives. And all representatives start
1900 at byte offset. */
1901 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1902
8d8a34f9 1903 /* Find the smallest nice mode to use. */
1904 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1905 mode = GET_MODE_WIDER_MODE (mode))
1906 if (GET_MODE_BITSIZE (mode) >= bitsize)
1907 break;
1908 if (mode != VOIDmode
1909 && (GET_MODE_BITSIZE (mode) > maxbitsize
1910 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1911 mode = VOIDmode;
1912
1913 if (mode == VOIDmode)
1914 {
1915 /* We really want a BLKmode representative only as a last resort,
1916 considering the member b in
1917 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1918 Otherwise we simply want to split the representative up
1919 allowing for overlaps within the bitfield region as required for
1920 struct { int a : 7; int b : 7;
1921 int c : 10; int d; } __attribute__((packed));
1922 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1923 DECL_SIZE (repr) = bitsize_int (bitsize);
1924 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1925 DECL_MODE (repr) = BLKmode;
1926 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1927 bitsize / BITS_PER_UNIT);
1928 }
1929 else
1930 {
1931 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1932 DECL_SIZE (repr) = bitsize_int (modesize);
1933 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1934 DECL_MODE (repr) = mode;
1935 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1936 }
1937
1938 /* Remember whether the bitfield group is at the end of the
1939 structure or not. */
1940 DECL_CHAIN (repr) = nextf;
1941}
1942
1943/* Compute and set FIELD_DECLs for the underlying objects we should
ab103e33 1944 use for bitfield access for the structure T. */
8d8a34f9 1945
ab103e33 1946void
1947finish_bitfield_layout (tree t)
8d8a34f9 1948{
1949 tree field, prev;
1950 tree repr = NULL_TREE;
1951
1952 /* Unions would be special, for the ease of type-punning optimizations
1953 we could use the underlying type as hint for the representative
1954 if the bitfield would fit and the representative would not exceed
1955 the union in size. */
ab103e33 1956 if (TREE_CODE (t) != RECORD_TYPE)
8d8a34f9 1957 return;
1958
ab103e33 1959 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
8d8a34f9 1960 field; field = DECL_CHAIN (field))
1961 {
1962 if (TREE_CODE (field) != FIELD_DECL)
1963 continue;
1964
1965 /* In the C++ memory model, consecutive bit fields in a structure are
1966 considered one memory location and updating a memory location
1967 may not store into adjacent memory locations. */
1968 if (!repr
1969 && DECL_BIT_FIELD_TYPE (field))
1970 {
1971 /* Start new representative. */
1972 repr = start_bitfield_representative (field);
1973 }
1974 else if (repr
1975 && ! DECL_BIT_FIELD_TYPE (field))
1976 {
1977 /* Finish off new representative. */
1978 finish_bitfield_representative (repr, prev);
1979 repr = NULL_TREE;
1980 }
1981 else if (DECL_BIT_FIELD_TYPE (field))
1982 {
fa42e1a4 1983 gcc_assert (repr != NULL_TREE);
1984
8d8a34f9 1985 /* Zero-size bitfields finish off a representative and
1986 do not have a representative themselves. This is
1987 required by the C++ memory model. */
1988 if (integer_zerop (DECL_SIZE (field)))
1989 {
1990 finish_bitfield_representative (repr, prev);
1991 repr = NULL_TREE;
1992 }
fa42e1a4 1993
1994 /* We assume that either DECL_FIELD_OFFSET of the representative
1995 and each bitfield member is a constant or they are equal.
1996 This is because we need to be able to compute the bit-offset
1997 of each field relative to the representative in get_bit_range
1998 during RTL expansion.
1999 If these constraints are not met, simply force a new
2000 representative to be generated. That will at most
2001 generate worse code but still maintain correctness with
2002 respect to the C++ memory model. */
e913b5cd 2003 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2004 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
fa42e1a4 2005 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2006 DECL_FIELD_OFFSET (field), 0)))
2007 {
2008 finish_bitfield_representative (repr, prev);
2009 repr = start_bitfield_representative (field);
2010 }
8d8a34f9 2011 }
2012 else
2013 continue;
2014
2015 if (repr)
2016 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2017
2018 prev = field;
2019 }
2020
2021 if (repr)
2022 finish_bitfield_representative (repr, prev);
2023}
2024
99f4e085 2025/* Do all of the work required to layout the type indicated by RLI,
2026 once the fields have been laid out. This function will call `free'
23ed74d8 2027 for RLI, unless FREE_P is false. Passing a value other than false
2028 for FREE_P is bad practice; this option only exists to support the
2029 G++ 3.2 ABI. */
99f4e085 2030
2031void
60b8c5b3 2032finish_record_layout (record_layout_info rli, int free_p)
99f4e085 2033{
2bc7da70 2034 tree variant;
2035
02e7a332 2036 /* Compute the final size. */
2037 finalize_record_size (rli);
2038
2039 /* Compute the TYPE_MODE for the record. */
2040 compute_record_mode (rli->t);
83675f44 2041
48fdacd0 2042 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2043 finalize_type_size (rli->t);
2044
8d8a34f9 2045 /* Compute bitfield representatives. */
ab103e33 2046 finish_bitfield_layout (rli->t);
8d8a34f9 2047
2bc7da70 2048 /* Propagate TYPE_PACKED to variants. With C++ templates,
2049 handle_packed_attribute is too early to do this. */
2050 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2051 variant = TYPE_NEXT_VARIANT (variant))
2052 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2053
99f4e085 2054 /* Lay out any static members. This is done now because their type
2055 may use the record's type. */
f1f41a6c 2056 while (!vec_safe_is_empty (rli->pending_statics))
2057 layout_decl (rli->pending_statics->pop (), 0);
83675f44 2058
99f4e085 2059 /* Clean up. */
23ed74d8 2060 if (free_p)
364ba361 2061 {
f1f41a6c 2062 vec_free (rli->pending_statics);
364ba361 2063 free (rli);
2064 }
99f4e085 2065}
f2cfea4a 2066\f
805e22b2 2067
2068/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2069 NAME, its fields are chained in reverse on FIELDS.
2070
2071 If ALIGN_TYPE is non-null, it is given the same alignment as
2072 ALIGN_TYPE. */
2073
2074void
60b8c5b3 2075finish_builtin_struct (tree type, const char *name, tree fields,
2076 tree align_type)
805e22b2 2077{
f2332b21 2078 tree tail, next;
805e22b2 2079
2080 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2081 {
2082 DECL_FIELD_CONTEXT (fields) = type;
1767a056 2083 next = DECL_CHAIN (fields);
2084 DECL_CHAIN (fields) = tail;
805e22b2 2085 }
2086 TYPE_FIELDS (type) = tail;
2087
2088 if (align_type)
2089 {
2090 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2091 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2092 }
2093
2094 layout_type (type);
2095#if 0 /* not yet, should get fixed properly later */
2096 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2097#else
e60a6f7b 2098 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2099 TYPE_DECL, get_identifier (name), type);
805e22b2 2100#endif
2101 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2102 layout_decl (TYPE_NAME (type), 0);
2103}
2104
f2cfea4a 2105/* Calculate the mode, size, and alignment for TYPE.
2106 For an array type, calculate the element separation as well.
2107 Record TYPE on the chain of permanent or temporary types
2108 so that dbxout will find out about it.
2109
2110 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2111 layout_type does nothing on such a type.
2112
2113 If the type is incomplete, its TYPE_SIZE remains zero. */
2114
2115void
60b8c5b3 2116layout_type (tree type)
f2cfea4a 2117{
04e579b6 2118 gcc_assert (type);
f2cfea4a 2119
4ee9c684 2120 if (type == error_mark_node)
2121 return;
2122
8c522687 2123 /* We don't want finalize_type_size to copy an alignment attribute to
2124 variants that don't have it. */
2125 type = TYPE_MAIN_VARIANT (type);
2126
f2cfea4a 2127 /* Do nothing if type has been laid out before. */
2128 if (TYPE_SIZE (type))
2129 return;
2130
f2cfea4a 2131 switch (TREE_CODE (type))
2132 {
2133 case LANG_TYPE:
2134 /* This kind of type is the responsibility
c3418f42 2135 of the language-specific code. */
04e579b6 2136 gcc_unreachable ();
f2cfea4a 2137
0e3dfadd 2138 case BOOLEAN_TYPE:
f2cfea4a 2139 case INTEGER_TYPE:
2140 case ENUMERAL_TYPE:
342ad2d6 2141 SET_TYPE_MODE (type,
2142 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
b278476e 2143 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
4765975c 2144 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
cec6c892 2145 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
f2cfea4a 2146 break;
2147
2148 case REAL_TYPE:
342ad2d6 2149 SET_TYPE_MODE (type,
2150 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
b278476e 2151 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
cec6c892 2152 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
f2cfea4a 2153 break;
2154
06f0b99c 2155 case FIXED_POINT_TYPE:
2156 /* TYPE_MODE (type) has been set already. */
2157 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2158 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2159 break;
2160
f2cfea4a 2161 case COMPLEX_TYPE:
78a8ed03 2162 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
342ad2d6 2163 SET_TYPE_MODE (type,
2164 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2165 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2166 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2167 0));
b278476e 2168 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
cec6c892 2169 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
f2cfea4a 2170 break;
2171
8a95ab85 2172 case VECTOR_TYPE:
83e2a11b 2173 {
2174 int nunits = TYPE_VECTOR_SUBPARTS (type);
83e2a11b 2175 tree innertype = TREE_TYPE (type);
2176
04e579b6 2177 gcc_assert (!(nunits & (nunits - 1)));
83e2a11b 2178
2179 /* Find an appropriate mode for the vector type. */
2180 if (TYPE_MODE (type) == VOIDmode)
c4740c5d 2181 SET_TYPE_MODE (type,
2182 mode_for_vector (TYPE_MODE (innertype), nunits));
83e2a11b 2183
06f0b99c 2184 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
83e2a11b 2185 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1f137e6d 2186 /* Several boolean vector elements may fit in a single unit. */
2187 if (VECTOR_BOOLEAN_TYPE_P (type))
2188 TYPE_SIZE_UNIT (type)
2189 = size_int (GET_MODE_SIZE (type->type_common.mode));
2190 else
2191 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2192 TYPE_SIZE_UNIT (innertype),
2193 size_int (nunits));
2194 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2195 TYPE_SIZE (innertype),
317e2a67 2196 bitsize_int (nunits));
b74c835a 2197
482a44fa 2198 /* For vector types, we do not default to the mode's alignment.
2199 Instead, query a target hook, defaulting to natural alignment.
2200 This prevents ABI changes depending on whether or not native
2201 vector modes are supported. */
2202 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2203
2204 /* However, if the underlying mode requires a bigger alignment than
2205 what the target hook provides, we cannot use the mode. For now,
2206 simply reject that case. */
2207 gcc_assert (TYPE_ALIGN (type)
2208 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
83e2a11b 2209 break;
2210 }
8a95ab85 2211
f2cfea4a 2212 case VOID_TYPE:
02e7a332 2213 /* This is an incomplete type and so doesn't have a size. */
f2cfea4a 2214 TYPE_ALIGN (type) = 1;
aca14577 2215 TYPE_USER_ALIGN (type) = 0;
342ad2d6 2216 SET_TYPE_MODE (type, VOIDmode);
f2cfea4a 2217 break;
2218
058a1b7a 2219 case POINTER_BOUNDS_TYPE:
2220 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2221 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2222 break;
2223
e23958d4 2224 case OFFSET_TYPE:
b278476e 2225 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
4765975c 2226 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2227 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2228 integral, which may be an __intN. */
342ad2d6 2229 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
98155838 2230 TYPE_PRECISION (type) = POINTER_SIZE;
e23958d4 2231 break;
2232
f2cfea4a 2233 case FUNCTION_TYPE:
2234 case METHOD_TYPE:
4812cab0 2235 /* It's hard to see what the mode and size of a function ought to
2236 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2237 make it consistent with that. */
342ad2d6 2238 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
4812cab0 2239 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2240 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
f2cfea4a 2241 break;
2242
2243 case POINTER_TYPE:
2244 case REFERENCE_TYPE:
f1986931 2245 {
3754d046 2246 machine_mode mode = TYPE_MODE (type);
98155838 2247 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2248 {
2249 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2250 mode = targetm.addr_space.address_mode (as);
2251 }
805e22b2 2252
98155838 2253 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
805e22b2 2254 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
78a8ed03 2255 TYPE_UNSIGNED (type) = 1;
4765975c 2256 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
f1986931 2257 }
f2cfea4a 2258 break;
2259
2260 case ARRAY_TYPE:
2261 {
19cb6b50 2262 tree index = TYPE_DOMAIN (type);
2263 tree element = TREE_TYPE (type);
f2cfea4a 2264
2265 build_pointer_type (element);
2266
2267 /* We need to know both bounds in order to compute the size. */
2268 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2269 && TYPE_SIZE (element))
2270 {
bc97b18f 2271 tree ub = TYPE_MAX_VALUE (index);
2272 tree lb = TYPE_MIN_VALUE (index);
f00a8c41 2273 tree element_size = TYPE_SIZE (element);
41e112e6 2274 tree length;
2275
820fcceb 2276 /* Make sure that an array of zero-sized element is zero-sized
2277 regardless of its extent. */
2278 if (integer_zerop (element_size))
2279 length = size_zero_node;
2280
7542c3b4 2281 /* The computation should happen in the original signedness so
2282 that (possible) negative values are handled appropriately
2283 when determining overflow. */
820fcceb 2284 else
85d86b55 2285 {
2286 /* ??? When it is obvious that the range is signed
2287 represent it using ssizetype. */
2288 if (TREE_CODE (lb) == INTEGER_CST
2289 && TREE_CODE (ub) == INTEGER_CST
2290 && TYPE_UNSIGNED (TREE_TYPE (lb))
2291 && tree_int_cst_lt (ub, lb))
2292 {
796b6678 2293 lb = wide_int_to_tree (ssizetype,
5de9d3ed 2294 offset_int::from (lb, SIGNED));
796b6678 2295 ub = wide_int_to_tree (ssizetype,
5de9d3ed 2296 offset_int::from (ub, SIGNED));
85d86b55 2297 }
2298 length
2299 = fold_convert (sizetype,
2300 size_binop (PLUS_EXPR,
2301 build_int_cst (TREE_TYPE (lb), 1),
2302 size_binop (MINUS_EXPR, ub, lb)));
2303 }
2304
97658fc9 2305 /* ??? We have no way to distinguish a null-sized array from an
2306 array spanning the whole sizetype range, so we arbitrarily
2307 decide that [0, -1] is the only valid representation. */
85d86b55 2308 if (integer_zerop (length)
97658fc9 2309 && TREE_OVERFLOW (length)
2310 && integer_zerop (lb))
85d86b55 2311 length = size_zero_node;
f2cfea4a 2312
902de8ed 2313 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
7bd4091f 2314 fold_convert (bitsizetype,
5d7ed6c7 2315 length));
cec6c892 2316
f00a8c41 2317 /* If we know the size of the element, calculate the total size
2318 directly, rather than do some division thing below. This
2319 optimization helps Fortran assumed-size arrays (where the
2320 size of the array is determined at runtime) substantially. */
2321 if (TYPE_SIZE_UNIT (element))
083a2b5e 2322 TYPE_SIZE_UNIT (type)
2323 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
f2cfea4a 2324 }
2325
2326 /* Now round the alignment and size,
2327 using machine-dependent criteria if any. */
2328
8c522687 2329 unsigned align = TYPE_ALIGN (element);
2330 if (TYPE_USER_ALIGN (type))
2331 align = MAX (align, TYPE_ALIGN (type));
2332 else
2333 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
f2cfea4a 2334#ifdef ROUND_TYPE_ALIGN
8c522687 2335 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
f2cfea4a 2336#else
8c522687 2337 align = MAX (align, BITS_PER_UNIT);
f2cfea4a 2338#endif
8c522687 2339 TYPE_ALIGN (type) = align;
342ad2d6 2340 SET_TYPE_MODE (type, BLKmode);
f2cfea4a 2341 if (TYPE_SIZE (type) != 0
f91ed644 2342 && ! targetm.member_type_forces_blk (type, VOIDmode)
f2cfea4a 2343 /* BLKmode elements force BLKmode aggregate;
2344 else extract/store fields may lose. */
2345 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2346 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2347 {
13d3ceb9 2348 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2349 TYPE_SIZE (type)));
0fc6aef1 2350 if (TYPE_MODE (type) != BLKmode
2351 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
a2ee4f78 2352 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
f2cfea4a 2353 {
2354 TYPE_NO_FORCE_BLK (type) = 1;
342ad2d6 2355 SET_TYPE_MODE (type, BLKmode);
f2cfea4a 2356 }
f2cfea4a 2357 }
e1b062ae 2358 /* When the element size is constant, check that it is at least as
2359 large as the element alignment. */
b3bb0d2d 2360 if (TYPE_SIZE_UNIT (element)
2361 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
e1b062ae 2362 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2363 TYPE_ALIGN_UNIT. */
f96bd2bf 2364 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
b3bb0d2d 2365 && !integer_zerop (TYPE_SIZE_UNIT (element))
2366 && compare_tree_int (TYPE_SIZE_UNIT (element),
2367 TYPE_ALIGN_UNIT (element)) < 0)
2368 error ("alignment of array elements is greater than element size");
f2cfea4a 2369 break;
2370 }
2371
2372 case RECORD_TYPE:
83675f44 2373 case UNION_TYPE:
2374 case QUAL_UNION_TYPE:
99f4e085 2375 {
2376 tree field;
2377 record_layout_info rli;
2378
2379 /* Initialize the layout information. */
02e7a332 2380 rli = start_record_layout (type);
2381
83675f44 2382 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2383 in the reverse order in building the COND_EXPR that denotes
2384 its size. We reverse them again later. */
2385 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2386 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
02e7a332 2387
2388 /* Place all the fields. */
1767a056 2389 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
02e7a332 2390 place_field (rli, field);
2391
83675f44 2392 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2393 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
02e7a332 2394
99f4e085 2395 /* Finish laying out the record. */
23ed74d8 2396 finish_record_layout (rli, /*free_p=*/true);
99f4e085 2397 }
f2cfea4a 2398 break;
2399
f2cfea4a 2400 default:
04e579b6 2401 gcc_unreachable ();
fe352cf1 2402 }
f2cfea4a 2403
99f4e085 2404 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
83675f44 2405 records and unions, finish_record_layout already called this
2406 function. */
3d54a731 2407 if (!RECORD_OR_UNION_TYPE_P (type))
99f4e085 2408 finalize_type_size (type);
f2cfea4a 2409
b35a8f48 2410 /* We should never see alias sets on incomplete aggregates. And we
2411 should not call layout_type on not incomplete aggregates. */
2412 if (AGGREGATE_TYPE_P (type))
2413 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
f2cfea4a 2414}
342ad2d6 2415
392dee1e 2416/* Return the least alignment required for type TYPE. */
2417
2418unsigned int
2419min_align_of_type (tree type)
2420{
2421 unsigned int align = TYPE_ALIGN (type);
c30da3c3 2422 if (!TYPE_USER_ALIGN (type))
2423 {
6312c69b 2424 align = MIN (align, BIGGEST_ALIGNMENT);
392dee1e 2425#ifdef BIGGEST_FIELD_ALIGNMENT
c30da3c3 2426 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
392dee1e 2427#endif
c30da3c3 2428 unsigned int field_align = align;
392dee1e 2429#ifdef ADJUST_FIELD_ALIGN
c30da3c3 2430 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2431 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2432 ggc_free (field);
392dee1e 2433#endif
c30da3c3 2434 align = MIN (align, field_align);
2435 }
392dee1e 2436 return align / BITS_PER_UNIT;
2437}
2438
342ad2d6 2439/* Vector types need to re-check the target flags each time we report
2440 the machine mode. We need to do this because attribute target can
2441 change the result of vector_mode_supported_p and have_regs_of_mode
2442 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2443 change on a per-function basis. */
48e1416a 2444/* ??? Possibly a better solution is to run through all the types
342ad2d6 2445 referenced by a function and re-compute the TYPE_MODE once, rather
2446 than make the TYPE_MODE macro call a function. */
2447
3754d046 2448machine_mode
342ad2d6 2449vector_type_mode (const_tree t)
2450{
3754d046 2451 machine_mode mode;
342ad2d6 2452
2453 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2454
8f2eb9e1 2455 mode = t->type_common.mode;
342ad2d6 2456 if (VECTOR_MODE_P (mode)
2457 && (!targetm.vector_mode_supported_p (mode)
2458 || !have_regs_of_mode[mode]))
2459 {
3754d046 2460 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
342ad2d6 2461
2462 /* For integers, try mapping it to a same-sized scalar mode. */
2463 if (GET_MODE_CLASS (innermode) == MODE_INT)
2464 {
2465 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2466 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2467
2468 if (mode != VOIDmode && have_regs_of_mode[mode])
2469 return mode;
2470 }
2471
2472 return BLKmode;
2473 }
2474
2475 return mode;
2476}
f2cfea4a 2477\f
2478/* Create and return a type for signed integers of PRECISION bits. */
2479
2480tree
60b8c5b3 2481make_signed_type (int precision)
f2cfea4a 2482{
19cb6b50 2483 tree type = make_node (INTEGER_TYPE);
f2cfea4a 2484
2485 TYPE_PRECISION (type) = precision;
2486
902de8ed 2487 fixup_signed_type (type);
f2cfea4a 2488 return type;
2489}
2490
2491/* Create and return a type for unsigned integers of PRECISION bits. */
2492
2493tree
60b8c5b3 2494make_unsigned_type (int precision)
f2cfea4a 2495{
19cb6b50 2496 tree type = make_node (INTEGER_TYPE);
f2cfea4a 2497
2498 TYPE_PRECISION (type) = precision;
2499
f2cfea4a 2500 fixup_unsigned_type (type);
2501 return type;
2502}
902de8ed 2503\f
06f0b99c 2504/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2505 and SATP. */
2506
2507tree
2508make_fract_type (int precision, int unsignedp, int satp)
2509{
2510 tree type = make_node (FIXED_POINT_TYPE);
2511
2512 TYPE_PRECISION (type) = precision;
2513
2514 if (satp)
2515 TYPE_SATURATING (type) = 1;
2516
2517 /* Lay out the type: set its alignment, size, etc. */
2518 if (unsignedp)
2519 {
2520 TYPE_UNSIGNED (type) = 1;
342ad2d6 2521 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
06f0b99c 2522 }
2523 else
342ad2d6 2524 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
06f0b99c 2525 layout_type (type);
2526
2527 return type;
2528}
2529
2530/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2531 and SATP. */
2532
2533tree
2534make_accum_type (int precision, int unsignedp, int satp)
2535{
2536 tree type = make_node (FIXED_POINT_TYPE);
2537
2538 TYPE_PRECISION (type) = precision;
2539
2540 if (satp)
2541 TYPE_SATURATING (type) = 1;
2542
2543 /* Lay out the type: set its alignment, size, etc. */
2544 if (unsignedp)
2545 {
2546 TYPE_UNSIGNED (type) = 1;
342ad2d6 2547 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
06f0b99c 2548 }
2549 else
342ad2d6 2550 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
06f0b99c 2551 layout_type (type);
2552
2553 return type;
2554}
2555
7907db97 2556/* Initialize sizetypes so layout_type can use them. */
902de8ed 2557
2558void
ad086ed4 2559initialize_sizetypes (void)
902de8ed 2560{
7907db97 2561 int precision, bprecision;
2562
2563 /* Get sizetypes precision from the SIZE_TYPE target macro. */
748e5d45 2564 if (strcmp (SIZETYPE, "unsigned int") == 0)
7907db97 2565 precision = INT_TYPE_SIZE;
748e5d45 2566 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
7907db97 2567 precision = LONG_TYPE_SIZE;
748e5d45 2568 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
7907db97 2569 precision = LONG_LONG_TYPE_SIZE;
748e5d45 2570 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
621fad71 2571 precision = SHORT_TYPE_SIZE;
7907db97 2572 else
9f75f026 2573 {
2574 int i;
2575
2576 precision = -1;
2577 for (i = 0; i < NUM_INT_N_ENTS; i++)
2578 if (int_n_enabled_p[i])
2579 {
2580 char name[50];
2581 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2582
2583 if (strcmp (name, SIZETYPE) == 0)
2584 {
2585 precision = int_n_data[i].bitsize;
2586 }
2587 }
2588 if (precision == -1)
2589 gcc_unreachable ();
2590 }
7bd4091f 2591
7907db97 2592 bprecision
2593 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2594 bprecision
2595 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
24cd46a7 2596 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2597 bprecision = HOST_BITS_PER_DOUBLE_INT;
7907db97 2598
2599 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2600 sizetype = make_node (INTEGER_TYPE);
f1444979 2601 TYPE_NAME (sizetype) = get_identifier ("sizetype");
7907db97 2602 TYPE_PRECISION (sizetype) = precision;
2603 TYPE_UNSIGNED (sizetype) = 1;
7907db97 2604 bitsizetype = make_node (INTEGER_TYPE);
2605 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2606 TYPE_PRECISION (bitsizetype) = bprecision;
2607 TYPE_UNSIGNED (bitsizetype) = 1;
7907db97 2608
2609 /* Now layout both types manually. */
2610 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2611 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2612 TYPE_SIZE (sizetype) = bitsize_int (precision);
2613 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
e913b5cd 2614 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
7907db97 2615
2616 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2617 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2618 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2619 TYPE_SIZE_UNIT (bitsizetype)
2620 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
e913b5cd 2621 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
e345fa3a 2622
ad086ed4 2623 /* Create the signed variants of *sizetype. */
7907db97 2624 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
f1444979 2625 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
7907db97 2626 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
f1444979 2627 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
902de8ed 2628}
2629\f
63bf54cf 2630/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2631 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
ee1ab431 2632 for TYPE, based on the PRECISION and whether or not the TYPE
2633 IS_UNSIGNED. PRECISION need not correspond to a width supported
2634 natively by the hardware; for example, on a machine with 8-bit,
2635 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2636 61. */
2637
2638void
2639set_min_and_max_values_for_integral_type (tree type,
2640 int precision,
e913b5cd 2641 signop sgn)
ee1ab431 2642{
0e3dfadd 2643 /* For bitfields with zero width we end up creating integer types
2644 with zero precision. Don't assign any minimum/maximum values
2645 to those types, they don't have any valid value. */
2646 if (precision < 1)
2647 return;
2648
796b6678 2649 TYPE_MIN_VALUE (type)
2650 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2651 TYPE_MAX_VALUE (type)
2652 = wide_int_to_tree (type, wi::max_value (precision, sgn));
ee1ab431 2653}
2654
6d85d3bb 2655/* Set the extreme values of TYPE based on its precision in bits,
6bb1bdc7 2656 then lay it out. Used when make_signed_type won't do
6d85d3bb 2657 because the tree code is not INTEGER_TYPE.
2658 E.g. for Pascal, when the -fsigned-char option is given. */
2659
2660void
60b8c5b3 2661fixup_signed_type (tree type)
6d85d3bb 2662{
19cb6b50 2663 int precision = TYPE_PRECISION (type);
6d85d3bb 2664
e913b5cd 2665 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
6d85d3bb 2666
2667 /* Lay out the type: set its alignment, size, etc. */
6d85d3bb 2668 layout_type (type);
2669}
2670
f2cfea4a 2671/* Set the extreme values of TYPE based on its precision in bits,
6bb1bdc7 2672 then lay it out. This is used both in `make_unsigned_type'
f2cfea4a 2673 and for enumeral types. */
2674
2675void
60b8c5b3 2676fixup_unsigned_type (tree type)
f2cfea4a 2677{
19cb6b50 2678 int precision = TYPE_PRECISION (type);
f2cfea4a 2679
00b76131 2680 TYPE_UNSIGNED (type) = 1;
9e7454d0 2681
e913b5cd 2682 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
f2cfea4a 2683
2684 /* Lay out the type: set its alignment, size, etc. */
f2cfea4a 2685 layout_type (type);
2686}
2687\f
0a1f5755 2688/* Construct an iterator for a bitfield that spans BITSIZE bits,
2689 starting at BITPOS.
2690
2691 BITREGION_START is the bit position of the first bit in this
2692 sequence of bit fields. BITREGION_END is the last bit in this
2693 sequence. If these two fields are non-zero, we should restrict the
2694 memory access to that range. Otherwise, we are allowed to touch
2695 any adjacent non bit-fields.
2696
2697 ALIGN is the alignment of the underlying object in bits.
2698 VOLATILEP says whether the bitfield is volatile. */
2699
2700bit_field_mode_iterator
2701::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2702 HOST_WIDE_INT bitregion_start,
2703 HOST_WIDE_INT bitregion_end,
2704 unsigned int align, bool volatilep)
ae84f584 2705: m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2706 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2707 m_bitregion_end (bitregion_end), m_align (align),
2708 m_volatilep (volatilep), m_count (0)
0a1f5755 2709{
ae84f584 2710 if (!m_bitregion_end)
4ed6cf77 2711 {
392630d4 2712 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2713 the bitfield is mapped and won't trap, provided that ALIGN isn't
2714 too large. The cap is the biggest required alignment for data,
2715 or at least the word size. And force one such chunk at least. */
2716 unsigned HOST_WIDE_INT units
2717 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2718 if (bitsize <= 0)
2719 bitsize = 1;
ae84f584 2720 m_bitregion_end = bitpos + bitsize + units - 1;
2721 m_bitregion_end -= m_bitregion_end % units + 1;
4ed6cf77 2722 }
0a1f5755 2723}
2724
2725/* Calls to this function return successively larger modes that can be used
2726 to represent the bitfield. Return true if another bitfield mode is
2727 available, storing it in *OUT_MODE if so. */
2728
2729bool
3754d046 2730bit_field_mode_iterator::next_mode (machine_mode *out_mode)
0a1f5755 2731{
ae84f584 2732 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
0a1f5755 2733 {
ae84f584 2734 unsigned int unit = GET_MODE_BITSIZE (m_mode);
0a1f5755 2735
2736 /* Skip modes that don't have full precision. */
ae84f584 2737 if (unit != GET_MODE_PRECISION (m_mode))
0a1f5755 2738 continue;
2739
0a1f5755 2740 /* Stop if the mode is too wide to handle efficiently. */
2741 if (unit > MAX_FIXED_MODE_SIZE)
2742 break;
2743
2744 /* Don't deliver more than one multiword mode; the smallest one
2745 should be used. */
ae84f584 2746 if (m_count > 0 && unit > BITS_PER_WORD)
0a1f5755 2747 break;
2748
efa6660d 2749 /* Skip modes that are too small. */
ae84f584 2750 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2751 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
efa6660d 2752 if (subend > unit)
2753 continue;
2754
0a1f5755 2755 /* Stop if the mode goes outside the bitregion. */
ae84f584 2756 HOST_WIDE_INT start = m_bitpos - substart;
2757 if (m_bitregion_start && start < m_bitregion_start)
0a1f5755 2758 break;
efa6660d 2759 HOST_WIDE_INT end = start + unit;
ae84f584 2760 if (end > m_bitregion_end + 1)
4ed6cf77 2761 break;
2762
2763 /* Stop if the mode requires too much alignment. */
ae84f584 2764 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2765 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
0a1f5755 2766 break;
2767
ae84f584 2768 *out_mode = m_mode;
2769 m_mode = GET_MODE_WIDER_MODE (m_mode);
2770 m_count++;
0a1f5755 2771 return true;
2772 }
2773 return false;
2774}
2775
2776/* Return true if smaller modes are generally preferred for this kind
2777 of bitfield. */
2778
2779bool
2780bit_field_mode_iterator::prefer_smaller_modes ()
2781{
ae84f584 2782 return (m_volatilep
0a1f5755 2783 ? targetm.narrow_volatile_bitfield ()
2784 : !SLOW_BYTE_ACCESS);
2785}
2786
f2cfea4a 2787/* Find the best machine mode to use when referencing a bit field of length
2788 BITSIZE bits starting at BITPOS.
2789
4bb60ec7 2790 BITREGION_START is the bit position of the first bit in this
2791 sequence of bit fields. BITREGION_END is the last bit in this
2792 sequence. If these two fields are non-zero, we should restrict the
0a1f5755 2793 memory access to that range. Otherwise, we are allowed to touch
4bb60ec7 2794 any adjacent non bit-fields.
2795
f2cfea4a 2796 The underlying object is known to be aligned to a boundary of ALIGN bits.
2797 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2798 larger than LARGEST_MODE (usually SImode).
2799
5f458503 2800 If no mode meets all these conditions, we return VOIDmode.
7bd4091f 2801
5f458503 2802 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2803 smallest mode meeting these conditions.
2804
2805 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2806 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2807 all the conditions.
7bd4091f 2808
5f458503 2809 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2810 decide which of the above modes should be used. */
f2cfea4a 2811
3754d046 2812machine_mode
4bb60ec7 2813get_best_mode (int bitsize, int bitpos,
2814 unsigned HOST_WIDE_INT bitregion_start,
2815 unsigned HOST_WIDE_INT bitregion_end,
2816 unsigned int align,
3754d046 2817 machine_mode largest_mode, bool volatilep)
f2cfea4a 2818{
0a1f5755 2819 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2820 bitregion_end, align, volatilep);
3754d046 2821 machine_mode widest_mode = VOIDmode;
2822 machine_mode mode;
0a1f5755 2823 while (iter.next_mode (&mode)
06bedae0 2824 /* ??? For historical reasons, reject modes that would normally
2825 receive greater alignment, even if unaligned accesses are
2826 acceptable. This has both advantages and disadvantages.
4ed6cf77 2827 Removing this check means that something like:
2828
2829 struct s { unsigned int x; unsigned int y; };
2830 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2831
2832 can be implemented using a single load and compare on
2833 64-bit machines that have no alignment restrictions.
2834 For example, on powerpc64-linux-gnu, we would generate:
2835
2836 ld 3,0(3)
2837 cntlzd 3,3
2838 srdi 3,3,6
2839 blr
2840
2841 rather than:
2842
2843 lwz 9,0(3)
2844 cmpwi 7,9,0
2845 bne 7,.L3
2846 lwz 3,4(3)
2847 cntlzw 3,3
2848 srwi 3,3,5
2849 extsw 3,3
2850 blr
2851 .p2align 4,,15
2852 .L3:
2853 li 3,0
2854 blr
2855
2856 However, accessing more than one field can make life harder
2857 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2858 has a series of unsigned short copies followed by a series of
2859 unsigned short comparisons. With this check, both the copies
2860 and comparisons remain 16-bit accesses and FRE is able
2861 to eliminate the latter. Without the check, the comparisons
2862 can be done using 2 64-bit operations, which FRE isn't able
2863 to handle in the same way.
2864
2865 Either way, it would probably be worth disabling this check
2866 during expand. One particular example where removing the
2867 check would help is the get_best_mode call in store_bit_field.
2868 If we are given a memory bitregion of 128 bits that is aligned
2869 to a 64-bit boundary, and the bitfield we want to modify is
2870 in the second half of the bitregion, this check causes
2871 store_bitfield to turn the memory into a 64-bit reference
2872 to the _first_ half of the region. We later use
2873 adjust_bitfield_address to get a reference to the correct half,
2874 but doing so looks to adjust_bitfield_address as though we are
2875 moving past the end of the original object, so it drops the
2876 associated MEM_EXPR and MEM_OFFSET. Removing the check
2877 causes store_bit_field to keep a 128-bit memory reference,
2878 so that the final bitfield reference still has a MEM_EXPR
2879 and MEM_OFFSET. */
06bedae0 2880 && GET_MODE_ALIGNMENT (mode) <= align
0a1f5755 2881 && (largest_mode == VOIDmode
2882 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
f2cfea4a 2883 {
0a1f5755 2884 widest_mode = mode;
2885 if (iter.prefer_smaller_modes ())
f2cfea4a 2886 break;
2887 }
0a1f5755 2888 return widest_mode;
f2cfea4a 2889}
521dd524 2890
f9cce2dc 2891/* Gets minimal and maximal values for MODE (signed or unsigned depending on
a6629703 2892 SIGN). The returned constants are made to be usable in TARGET_MODE. */
f9cce2dc 2893
2894void
3754d046 2895get_mode_bounds (machine_mode mode, int sign,
2896 machine_mode target_mode,
a6629703 2897 rtx *mmin, rtx *mmax)
f9cce2dc 2898{
44a9bb76 2899 unsigned size = GET_MODE_PRECISION (mode);
a6629703 2900 unsigned HOST_WIDE_INT min_val, max_val;
f9cce2dc 2901
04e579b6 2902 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
f9cce2dc 2903
396020c7 2904 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2905 if (mode == BImode)
2906 {
2907 if (STORE_FLAG_VALUE < 0)
2908 {
2909 min_val = STORE_FLAG_VALUE;
2910 max_val = 0;
2911 }
2912 else
2913 {
2914 min_val = 0;
2915 max_val = STORE_FLAG_VALUE;
2916 }
2917 }
2918 else if (sign)
f9cce2dc 2919 {
a6629703 2920 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2921 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
f9cce2dc 2922 }
2923 else
2924 {
a6629703 2925 min_val = 0;
2926 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
f9cce2dc 2927 }
a6629703 2928
69e41517 2929 *mmin = gen_int_mode (min_val, target_mode);
2930 *mmax = gen_int_mode (max_val, target_mode);
f9cce2dc 2931}
2932
1f3233d1 2933#include "gt-stor-layout.h"