]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-cfg.c
re PR middle-end/57147 (setjmp call and if body wrongly elided (function runs off...
[thirdparty/gcc.git] / gcc / tree-cfg.c
CommitLineData
6de9cd9a 1/* Control flow functions for trees.
d1e082c2 2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
6de9cd9a
DN
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9dcd6f09 9the Free Software Foundation; either version 3, or (at your option)
6de9cd9a
DN
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
4a8fb1a1 24#include "hash-table.h"
6de9cd9a
DN
25#include "tm.h"
26#include "tree.h"
6de9cd9a 27#include "tm_p.h"
6de9cd9a 28#include "basic-block.h"
6de9cd9a
DN
29#include "flags.h"
30#include "function.h"
6de9cd9a 31#include "ggc.h"
cf835838 32#include "gimple-pretty-print.h"
6de9cd9a 33#include "tree-flow.h"
6de9cd9a
DN
34#include "tree-dump.h"
35#include "tree-pass.h"
718f9c0f 36#include "diagnostic-core.h"
6de9cd9a
DN
37#include "except.h"
38#include "cfgloop.h"
9af0df6b 39#include "tree-ssa-propagate.h"
6946b3f7 40#include "value-prof.h"
4437b50d 41#include "pointer-set.h"
917948d3 42#include "tree-inline.h"
d45eae79 43#include "target.h"
6de9cd9a
DN
44
45/* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
47
48/* Local declarations. */
49
50/* Initial capacity for the basic block array. */
51static const int initial_cfg_capacity = 20;
52
d6be0d7f
JL
53/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
308e3ba6 55 via their CASE_CHAIN field, which we clear after we're done with the
726a989a 56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
92b6dff3 57
d6be0d7f
JL
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
92b6dff3 60
d6be0d7f
JL
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
65
15814ba0 66static struct pointer_map_t *edge_to_cases;
92b6dff3 67
fc249fe5
MM
68/* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
71
72static bitmap touched_switch_bbs;
73
6de9cd9a
DN
74/* CFG statistics. */
75struct cfg_stats_d
76{
77 long num_merged_labels;
78};
79
80static struct cfg_stats_d cfg_stats;
81
82/* Nonzero if we found a computed goto while building basic blocks. */
83static bool found_computed_goto;
84
6c52e687
CC
85/* Hash table to store last discriminator assigned for each locus. */
86struct locus_discrim_map
87{
88 location_t locus;
89 int discriminator;
90};
4a8fb1a1
LC
91
92/* Hashtable helpers. */
93
94struct locus_descrim_hasher : typed_free_remove <locus_discrim_map>
95{
96 typedef locus_discrim_map value_type;
97 typedef locus_discrim_map compare_type;
98 static inline hashval_t hash (const value_type *);
99 static inline bool equal (const value_type *, const compare_type *);
100};
101
102/* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
104
105inline hashval_t
106locus_descrim_hasher::hash (const value_type *item)
107{
108 return item->locus;
109}
110
111/* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
113
114inline bool
115locus_descrim_hasher::equal (const value_type *a, const compare_type *b)
116{
117 return a->locus == b->locus;
118}
119
120static hash_table <locus_descrim_hasher> discriminator_per_locus;
6c52e687 121
6de9cd9a 122/* Basic blocks and flowgraphs. */
726a989a 123static void make_blocks (gimple_seq);
6de9cd9a 124static void factor_computed_gotos (void);
6de9cd9a
DN
125
126/* Edges. */
127static void make_edges (void);
6de9cd9a 128static void make_cond_expr_edges (basic_block);
726a989a 129static void make_gimple_switch_edges (basic_block);
6de9cd9a 130static void make_goto_expr_edges (basic_block);
1c384bf1 131static void make_gimple_asm_edges (basic_block);
6c52e687 132static void assign_discriminator (location_t, basic_block);
726a989a
RB
133static edge gimple_redirect_edge_and_branch (edge, basic_block);
134static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
c2924966 135static unsigned int split_critical_edges (void);
6de9cd9a
DN
136
137/* Various helpers. */
726a989a
RB
138static inline bool stmt_starts_bb_p (gimple, gimple);
139static int gimple_verify_flow_info (void);
140static void gimple_make_forwarder_block (edge);
6c52e687 141static gimple first_non_label_stmt (basic_block);
0a35513e 142static bool verify_gimple_transaction (gimple);
6de9cd9a
DN
143
144/* Flowgraph optimization and cleanup. */
726a989a
RB
145static void gimple_merge_blocks (basic_block, basic_block);
146static bool gimple_can_merge_blocks_p (basic_block, basic_block);
6de9cd9a 147static void remove_bb (basic_block);
be477406 148static edge find_taken_edge_computed_goto (basic_block, tree);
6de9cd9a
DN
149static edge find_taken_edge_cond_expr (basic_block, tree);
150static edge find_taken_edge_switch_expr (basic_block, tree);
726a989a 151static tree find_case_label_for_value (gimple, tree);
6de9cd9a 152
a930a4ef 153void
9defb1fe 154init_empty_tree_cfg_for_function (struct function *fn)
a930a4ef
JH
155{
156 /* Initialize the basic block array. */
9defb1fe
DN
157 init_flow (fn);
158 profile_status_for_function (fn) = PROFILE_ABSENT;
159 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
160 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
9771b263
DN
161 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn),
a590ac65 163 initial_cfg_capacity);
a930a4ef
JH
164
165 /* Build a mapping of labels to their associated blocks. */
9771b263
DN
166 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
a590ac65 168 initial_cfg_capacity);
a930a4ef 169
b8698a0f 170 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
9defb1fe 171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
b8698a0f 172 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
9defb1fe
DN
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
174
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
179}
180
181void
182init_empty_tree_cfg (void)
183{
184 init_empty_tree_cfg_for_function (cfun);
a930a4ef 185}
6de9cd9a
DN
186
187/*---------------------------------------------------------------------------
188 Create basic blocks
189---------------------------------------------------------------------------*/
190
726a989a 191/* Entry point to the CFG builder for trees. SEQ is the sequence of
6de9cd9a
DN
192 statements to be added to the flowgraph. */
193
194static void
726a989a 195build_gimple_cfg (gimple_seq seq)
6de9cd9a 196{
726a989a
RB
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
6de9cd9a 199
6de9cd9a
DN
200 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
201
a930a4ef 202 init_empty_tree_cfg ();
6de9cd9a
DN
203
204 found_computed_goto = 0;
726a989a 205 make_blocks (seq);
6de9cd9a
DN
206
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto)
213 factor_computed_gotos ();
214
f0b698c1 215 /* Make sure there is always at least one block, even if it's empty. */
24bd1a0b 216 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6de9cd9a
DN
217 create_empty_bb (ENTRY_BLOCK_PTR);
218
6de9cd9a 219 /* Adjust the size of the array. */
9771b263
DN
220 if (basic_block_info->length () < (size_t) n_basic_blocks)
221 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
6de9cd9a 222
f667741c
SB
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
225
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
230
6de9cd9a 231 /* Create the edges of the flowgraph. */
4a8fb1a1 232 discriminator_per_locus.create (13);
6de9cd9a 233 make_edges ();
8b11009b 234 cleanup_dead_labels ();
4a8fb1a1 235 discriminator_per_locus.dispose ();
6de9cd9a
DN
236}
237
c2924966 238static unsigned int
6de9cd9a
DN
239execute_build_cfg (void)
240{
39ecc018
JH
241 gimple_seq body = gimple_body (current_function_decl);
242
243 build_gimple_cfg (body);
244 gimple_set_body (current_function_decl, NULL);
cff7525f
JH
245 if (dump_file && (dump_flags & TDF_DETAILS))
246 {
247 fprintf (dump_file, "Scope blocks:\n");
248 dump_scope_blocks (dump_file, dump_flags);
249 }
a9e0d843
RB
250 cleanup_tree_cfg ();
251 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
c2924966 252 return 0;
6de9cd9a
DN
253}
254
8ddbbcae 255struct gimple_opt_pass pass_build_cfg =
6de9cd9a 256{
8ddbbcae
JH
257 {
258 GIMPLE_PASS,
6de9cd9a 259 "cfg", /* name */
2b4e6bf1 260 OPTGROUP_NONE, /* optinfo_flags */
6de9cd9a
DN
261 NULL, /* gate */
262 execute_build_cfg, /* execute */
263 NULL, /* sub */
264 NULL, /* next */
265 0, /* static_pass_number */
266 TV_TREE_CFG, /* tv_id */
726a989a 267 PROP_gimple_leh, /* properties_required */
a9e0d843 268 PROP_cfg | PROP_loops, /* properties_provided */
6de9cd9a
DN
269 0, /* properties_destroyed */
270 0, /* todo_flags_start */
a9e0d843 271 TODO_verify_stmts /* todo_flags_finish */
8ddbbcae 272 }
6de9cd9a
DN
273};
274
726a989a
RB
275
276/* Return true if T is a computed goto. */
277
278static bool
279computed_goto_p (gimple t)
280{
281 return (gimple_code (t) == GIMPLE_GOTO
282 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
283}
284
285
6531d1be 286/* Search the CFG for any computed gotos. If found, factor them to a
6de9cd9a 287 common computed goto site. Also record the location of that site so
6531d1be 288 that we can un-factor the gotos after we have converted back to
6de9cd9a
DN
289 normal form. */
290
291static void
292factor_computed_gotos (void)
293{
294 basic_block bb;
295 tree factored_label_decl = NULL;
296 tree var = NULL;
726a989a
RB
297 gimple factored_computed_goto_label = NULL;
298 gimple factored_computed_goto = NULL;
6de9cd9a
DN
299
300 /* We know there are one or more computed gotos in this function.
301 Examine the last statement in each basic block to see if the block
302 ends with a computed goto. */
6531d1be 303
6de9cd9a
DN
304 FOR_EACH_BB (bb)
305 {
726a989a
RB
306 gimple_stmt_iterator gsi = gsi_last_bb (bb);
307 gimple last;
6de9cd9a 308
726a989a 309 if (gsi_end_p (gsi))
6de9cd9a 310 continue;
726a989a
RB
311
312 last = gsi_stmt (gsi);
6de9cd9a
DN
313
314 /* Ignore the computed goto we create when we factor the original
315 computed gotos. */
316 if (last == factored_computed_goto)
317 continue;
318
319 /* If the last statement is a computed goto, factor it. */
320 if (computed_goto_p (last))
321 {
726a989a 322 gimple assignment;
6de9cd9a
DN
323
324 /* The first time we find a computed goto we need to create
325 the factored goto block and the variable each original
326 computed goto will use for their goto destination. */
726a989a 327 if (!factored_computed_goto)
6de9cd9a
DN
328 {
329 basic_block new_bb = create_empty_bb (bb);
726a989a 330 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
6de9cd9a
DN
331
332 /* Create the destination of the factored goto. Each original
333 computed goto will put its desired destination into this
334 variable and jump to the label we create immediately
335 below. */
336 var = create_tmp_var (ptr_type_node, "gotovar");
337
338 /* Build a label for the new block which will contain the
339 factored computed goto. */
c2255bc4 340 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
6de9cd9a 341 factored_computed_goto_label
726a989a
RB
342 = gimple_build_label (factored_label_decl);
343 gsi_insert_after (&new_gsi, factored_computed_goto_label,
344 GSI_NEW_STMT);
6de9cd9a
DN
345
346 /* Build our new computed goto. */
726a989a
RB
347 factored_computed_goto = gimple_build_goto (var);
348 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
6de9cd9a
DN
349 }
350
351 /* Copy the original computed goto's destination into VAR. */
726a989a
RB
352 assignment = gimple_build_assign (var, gimple_goto_dest (last));
353 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
6de9cd9a
DN
354
355 /* And re-vector the computed goto to the new destination. */
726a989a 356 gimple_goto_set_dest (last, factored_label_decl);
6de9cd9a
DN
357 }
358 }
359}
360
361
726a989a 362/* Build a flowgraph for the sequence of stmts SEQ. */
6de9cd9a
DN
363
364static void
726a989a 365make_blocks (gimple_seq seq)
6de9cd9a 366{
726a989a
RB
367 gimple_stmt_iterator i = gsi_start (seq);
368 gimple stmt = NULL;
6de9cd9a 369 bool start_new_block = true;
726a989a 370 bool first_stmt_of_seq = true;
6de9cd9a
DN
371 basic_block bb = ENTRY_BLOCK_PTR;
372
726a989a 373 while (!gsi_end_p (i))
6de9cd9a 374 {
726a989a 375 gimple prev_stmt;
6de9cd9a
DN
376
377 prev_stmt = stmt;
726a989a 378 stmt = gsi_stmt (i);
6de9cd9a
DN
379
380 /* If the statement starts a new basic block or if we have determined
381 in a previous pass that we need to create a new block for STMT, do
382 so now. */
383 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
384 {
726a989a 385 if (!first_stmt_of_seq)
355a7673 386 gsi_split_seq_before (&i, &seq);
726a989a 387 bb = create_basic_block (seq, NULL, bb);
6de9cd9a
DN
388 start_new_block = false;
389 }
390
391 /* Now add STMT to BB and create the subgraphs for special statement
392 codes. */
726a989a 393 gimple_set_bb (stmt, bb);
6de9cd9a
DN
394
395 if (computed_goto_p (stmt))
396 found_computed_goto = true;
397
398 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
399 next iteration. */
400 if (stmt_ends_bb_p (stmt))
54634841
RG
401 {
402 /* If the stmt can make abnormal goto use a new temporary
403 for the assignment to the LHS. This makes sure the old value
404 of the LHS is available on the abnormal edge. Otherwise
405 we will end up with overlapping life-ranges for abnormal
406 SSA names. */
407 if (gimple_has_lhs (stmt)
408 && stmt_can_make_abnormal_goto (stmt)
409 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
410 {
411 tree lhs = gimple_get_lhs (stmt);
412 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
413 gimple s = gimple_build_assign (lhs, tmp);
414 gimple_set_location (s, gimple_location (stmt));
415 gimple_set_block (s, gimple_block (stmt));
416 gimple_set_lhs (stmt, tmp);
417 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
418 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
419 DECL_GIMPLE_REG_P (tmp) = 1;
420 gsi_insert_after (&i, s, GSI_SAME_STMT);
421 }
422 start_new_block = true;
423 }
6de9cd9a 424
726a989a
RB
425 gsi_next (&i);
426 first_stmt_of_seq = false;
6de9cd9a
DN
427 }
428}
429
430
431/* Create and return a new empty basic block after bb AFTER. */
432
433static basic_block
434create_bb (void *h, void *e, basic_block after)
435{
436 basic_block bb;
437
1e128c5f 438 gcc_assert (!e);
6de9cd9a 439
27fd69fa 440 /* Create and initialize a new basic block. Since alloc_block uses
a9429e29
LB
441 GC allocation that clears memory to allocate a basic block, we do
442 not have to clear the newly allocated basic block here. */
6de9cd9a 443 bb = alloc_block ();
6de9cd9a
DN
444
445 bb->index = last_basic_block;
446 bb->flags = BB_NEW;
355a7673 447 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
6de9cd9a
DN
448
449 /* Add the new block to the linked list of blocks. */
450 link_block (bb, after);
451
452 /* Grow the basic block array if needed. */
9771b263 453 if ((size_t) last_basic_block == basic_block_info->length ())
6de9cd9a
DN
454 {
455 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
9771b263 456 vec_safe_grow_cleared (basic_block_info, new_size);
6de9cd9a
DN
457 }
458
459 /* Add the newly created block to the array. */
68f9b844 460 SET_BASIC_BLOCK (last_basic_block, bb);
6de9cd9a 461
6de9cd9a
DN
462 n_basic_blocks++;
463 last_basic_block++;
464
6de9cd9a
DN
465 return bb;
466}
467
468
469/*---------------------------------------------------------------------------
470 Edge creation
471---------------------------------------------------------------------------*/
472
fca01525
KH
473/* Fold COND_EXPR_COND of each COND_EXPR. */
474
e21aff8a 475void
fca01525
KH
476fold_cond_expr_cond (void)
477{
478 basic_block bb;
479
480 FOR_EACH_BB (bb)
481 {
726a989a 482 gimple stmt = last_stmt (bb);
fca01525 483
726a989a 484 if (stmt && gimple_code (stmt) == GIMPLE_COND)
fca01525 485 {
db3927fb 486 location_t loc = gimple_location (stmt);
6ac01510
ILT
487 tree cond;
488 bool zerop, onep;
489
490 fold_defer_overflow_warnings ();
db3927fb 491 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
726a989a
RB
492 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
493 if (cond)
494 {
495 zerop = integer_zerop (cond);
496 onep = integer_onep (cond);
497 }
498 else
499 zerop = onep = false;
500
e233ac97 501 fold_undefer_overflow_warnings (zerop || onep,
4df28528 502 stmt,
6ac01510
ILT
503 WARN_STRICT_OVERFLOW_CONDITIONAL);
504 if (zerop)
726a989a 505 gimple_cond_make_false (stmt);
6ac01510 506 else if (onep)
726a989a 507 gimple_cond_make_true (stmt);
fca01525
KH
508 }
509 }
510}
511
6de9cd9a
DN
512/* Join all the blocks in the flowgraph. */
513
514static void
515make_edges (void)
516{
517 basic_block bb;
bed575d5 518 struct omp_region *cur_region = NULL;
6de9cd9a
DN
519
520 /* Create an edge from entry to the first block with executable
521 statements in it. */
24bd1a0b 522 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
6de9cd9a 523
adb35797 524 /* Traverse the basic block array placing edges. */
6de9cd9a
DN
525 FOR_EACH_BB (bb)
526 {
726a989a 527 gimple last = last_stmt (bb);
56e84019 528 bool fallthru;
6de9cd9a 529
56e84019 530 if (last)
6de9cd9a 531 {
726a989a 532 enum gimple_code code = gimple_code (last);
bed575d5 533 switch (code)
56e84019 534 {
726a989a 535 case GIMPLE_GOTO:
56e84019
RH
536 make_goto_expr_edges (bb);
537 fallthru = false;
538 break;
726a989a 539 case GIMPLE_RETURN:
56e84019
RH
540 make_edge (bb, EXIT_BLOCK_PTR, 0);
541 fallthru = false;
542 break;
726a989a 543 case GIMPLE_COND:
56e84019
RH
544 make_cond_expr_edges (bb);
545 fallthru = false;
546 break;
726a989a
RB
547 case GIMPLE_SWITCH:
548 make_gimple_switch_edges (bb);
56e84019
RH
549 fallthru = false;
550 break;
726a989a 551 case GIMPLE_RESX:
56e84019
RH
552 make_eh_edges (last);
553 fallthru = false;
554 break;
1d65f45c
RH
555 case GIMPLE_EH_DISPATCH:
556 fallthru = make_eh_dispatch_edges (last);
557 break;
56e84019 558
726a989a 559 case GIMPLE_CALL:
56e84019
RH
560 /* If this function receives a nonlocal goto, then we need to
561 make edges from this call site to all the nonlocal goto
562 handlers. */
726a989a 563 if (stmt_can_make_abnormal_goto (last))
4f6c2131 564 make_abnormal_goto_edges (bb, true);
6de9cd9a 565
56e84019
RH
566 /* If this statement has reachable exception handlers, then
567 create abnormal edges to them. */
568 make_eh_edges (last);
569
c54c785d
JH
570 /* BUILTIN_RETURN is really a return statement. */
571 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
572 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
56e84019 573 /* Some calls are known not to return. */
c54c785d
JH
574 else
575 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
56e84019
RH
576 break;
577
726a989a
RB
578 case GIMPLE_ASSIGN:
579 /* A GIMPLE_ASSIGN may throw internally and thus be considered
580 control-altering. */
56e84019 581 if (is_ctrl_altering_stmt (last))
1d65f45c 582 make_eh_edges (last);
56e84019
RH
583 fallthru = true;
584 break;
585
1c384bf1
RH
586 case GIMPLE_ASM:
587 make_gimple_asm_edges (bb);
588 fallthru = true;
589 break;
590
726a989a
RB
591 case GIMPLE_OMP_PARALLEL:
592 case GIMPLE_OMP_TASK:
593 case GIMPLE_OMP_FOR:
594 case GIMPLE_OMP_SINGLE:
595 case GIMPLE_OMP_MASTER:
596 case GIMPLE_OMP_ORDERED:
597 case GIMPLE_OMP_CRITICAL:
598 case GIMPLE_OMP_SECTION:
bed575d5 599 cur_region = new_omp_region (bb, code, cur_region);
56e84019
RH
600 fallthru = true;
601 break;
602
726a989a 603 case GIMPLE_OMP_SECTIONS:
bed575d5 604 cur_region = new_omp_region (bb, code, cur_region);
e5c95afe
ZD
605 fallthru = true;
606 break;
607
726a989a 608 case GIMPLE_OMP_SECTIONS_SWITCH:
7e2df4a1 609 fallthru = false;
777f7f9a
RH
610 break;
611
726a989a
RB
612 case GIMPLE_OMP_ATOMIC_LOAD:
613 case GIMPLE_OMP_ATOMIC_STORE:
a509ebb5
RL
614 fallthru = true;
615 break;
616
726a989a
RB
617 case GIMPLE_OMP_RETURN:
618 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
619 somewhere other than the next block. This will be
620 created later. */
bed575d5 621 cur_region->exit = bb;
726a989a 622 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
bed575d5
RS
623 cur_region = cur_region->outer;
624 break;
625
726a989a 626 case GIMPLE_OMP_CONTINUE:
bed575d5
RS
627 cur_region->cont = bb;
628 switch (cur_region->type)
629 {
726a989a
RB
630 case GIMPLE_OMP_FOR:
631 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
632 succs edges as abnormal to prevent splitting
633 them. */
135a171d 634 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
e5c95afe 635 /* Make the loopback edge. */
135a171d
JJ
636 make_edge (bb, single_succ (cur_region->entry),
637 EDGE_ABNORMAL);
638
726a989a
RB
639 /* Create an edge from GIMPLE_OMP_FOR to exit, which
640 corresponds to the case that the body of the loop
641 is not executed at all. */
135a171d
JJ
642 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
643 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
644 fallthru = false;
bed575d5
RS
645 break;
646
726a989a 647 case GIMPLE_OMP_SECTIONS:
bed575d5 648 /* Wire up the edges into and out of the nested sections. */
bed575d5 649 {
e5c95afe
ZD
650 basic_block switch_bb = single_succ (cur_region->entry);
651
bed575d5
RS
652 struct omp_region *i;
653 for (i = cur_region->inner; i ; i = i->next)
654 {
726a989a 655 gcc_assert (i->type == GIMPLE_OMP_SECTION);
e5c95afe 656 make_edge (switch_bb, i->entry, 0);
bed575d5
RS
657 make_edge (i->exit, bb, EDGE_FALLTHRU);
658 }
e5c95afe
ZD
659
660 /* Make the loopback edge to the block with
726a989a 661 GIMPLE_OMP_SECTIONS_SWITCH. */
e5c95afe
ZD
662 make_edge (bb, switch_bb, 0);
663
664 /* Make the edge from the switch to exit. */
665 make_edge (switch_bb, bb->next_bb, 0);
666 fallthru = false;
bed575d5
RS
667 }
668 break;
6531d1be 669
bed575d5
RS
670 default:
671 gcc_unreachable ();
672 }
bed575d5
RS
673 break;
674
0a35513e
AH
675 case GIMPLE_TRANSACTION:
676 {
677 tree abort_label = gimple_transaction_label (last);
678 if (abort_label)
398b1daa 679 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
0a35513e
AH
680 fallthru = true;
681 }
682 break;
683
56e84019
RH
684 default:
685 gcc_assert (!stmt_ends_bb_p (last));
686 fallthru = true;
687 }
6de9cd9a 688 }
56e84019
RH
689 else
690 fallthru = true;
6de9cd9a 691
56e84019 692 if (fallthru)
6c52e687
CC
693 {
694 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
695 if (last)
696 assign_discriminator (gimple_location (last), bb->next_bb);
697 }
6de9cd9a
DN
698 }
699
bed575d5
RS
700 if (root_omp_region)
701 free_omp_regions ();
702
fca01525
KH
703 /* Fold COND_EXPR_COND of each COND_EXPR. */
704 fold_cond_expr_cond ();
6de9cd9a
DN
705}
706
6c52e687
CC
707/* Find the next available discriminator value for LOCUS. The
708 discriminator distinguishes among several basic blocks that
709 share a common locus, allowing for more accurate sample-based
710 profiling. */
711
712static int
713next_discriminator_for_locus (location_t locus)
714{
715 struct locus_discrim_map item;
716 struct locus_discrim_map **slot;
717
718 item.locus = locus;
719 item.discriminator = 0;
4a8fb1a1 720 slot = discriminator_per_locus.find_slot_with_hash (&item, locus, INSERT);
6c52e687
CC
721 gcc_assert (slot);
722 if (*slot == HTAB_EMPTY_ENTRY)
723 {
724 *slot = XNEW (struct locus_discrim_map);
725 gcc_assert (*slot);
726 (*slot)->locus = locus;
727 (*slot)->discriminator = 0;
728 }
729 (*slot)->discriminator++;
730 return (*slot)->discriminator;
731}
732
733/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
734
735static bool
736same_line_p (location_t locus1, location_t locus2)
737{
738 expanded_location from, to;
739
740 if (locus1 == locus2)
741 return true;
742
743 from = expand_location (locus1);
744 to = expand_location (locus2);
745
746 if (from.line != to.line)
747 return false;
748 if (from.file == to.file)
749 return true;
750 return (from.file != NULL
751 && to.file != NULL
ba78087b 752 && filename_cmp (from.file, to.file) == 0);
6c52e687
CC
753}
754
755/* Assign a unique discriminator value to block BB if it begins at the same
756 LOCUS as its predecessor block. */
757
758static void
759assign_discriminator (location_t locus, basic_block bb)
760{
cbea518e 761 gimple first_in_to_bb, last_in_to_bb;
6c52e687
CC
762
763 if (locus == 0 || bb->discriminator != 0)
764 return;
765
cbea518e
CC
766 first_in_to_bb = first_non_label_stmt (bb);
767 last_in_to_bb = last_stmt (bb);
2a2869d6
CC
768 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
769 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
6c52e687
CC
770 bb->discriminator = next_discriminator_for_locus (locus);
771}
6de9cd9a 772
726a989a 773/* Create the edges for a GIMPLE_COND starting at block BB. */
6de9cd9a
DN
774
775static void
776make_cond_expr_edges (basic_block bb)
777{
726a989a
RB
778 gimple entry = last_stmt (bb);
779 gimple then_stmt, else_stmt;
6de9cd9a
DN
780 basic_block then_bb, else_bb;
781 tree then_label, else_label;
d783b2a2 782 edge e;
6c52e687 783 location_t entry_locus;
6de9cd9a 784
1e128c5f 785 gcc_assert (entry);
726a989a 786 gcc_assert (gimple_code (entry) == GIMPLE_COND);
6de9cd9a 787
6c52e687
CC
788 entry_locus = gimple_location (entry);
789
6de9cd9a 790 /* Entry basic blocks for each component. */
726a989a
RB
791 then_label = gimple_cond_true_label (entry);
792 else_label = gimple_cond_false_label (entry);
6de9cd9a
DN
793 then_bb = label_to_block (then_label);
794 else_bb = label_to_block (else_label);
726a989a
RB
795 then_stmt = first_stmt (then_bb);
796 else_stmt = first_stmt (else_bb);
6de9cd9a 797
d783b2a2 798 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
6c52e687 799 assign_discriminator (entry_locus, then_bb);
726a989a 800 e->goto_locus = gimple_location (then_stmt);
d783b2a2
JH
801 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
802 if (e)
7241571e 803 {
6c52e687 804 assign_discriminator (entry_locus, else_bb);
7241571e 805 e->goto_locus = gimple_location (else_stmt);
7241571e 806 }
a9b77cd1 807
726a989a
RB
808 /* We do not need the labels anymore. */
809 gimple_cond_set_true_label (entry, NULL_TREE);
810 gimple_cond_set_false_label (entry, NULL_TREE);
6de9cd9a
DN
811}
812
92b6dff3 813
d6be0d7f
JL
814/* Called for each element in the hash table (P) as we delete the
815 edge to cases hash table.
816
6531d1be 817 Clear all the TREE_CHAINs to prevent problems with copying of
d6be0d7f
JL
818 SWITCH_EXPRs and structure sharing rules, then free the hash table
819 element. */
820
15814ba0 821static bool
ac7d7749 822edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
15814ba0 823 void *data ATTRIBUTE_UNUSED)
d6be0d7f 824{
d6be0d7f
JL
825 tree t, next;
826
15814ba0 827 for (t = (tree) *value; t; t = next)
d6be0d7f 828 {
1290e54c
NF
829 next = CASE_CHAIN (t);
830 CASE_CHAIN (t) = NULL;
d6be0d7f 831 }
15814ba0
PB
832
833 *value = NULL;
eb9f9259 834 return true;
d6be0d7f
JL
835}
836
837/* Start recording information mapping edges to case labels. */
838
c9784e6d 839void
d6be0d7f
JL
840start_recording_case_labels (void)
841{
842 gcc_assert (edge_to_cases == NULL);
15814ba0 843 edge_to_cases = pointer_map_create ();
fc249fe5 844 touched_switch_bbs = BITMAP_ALLOC (NULL);
d6be0d7f
JL
845}
846
847/* Return nonzero if we are recording information for case labels. */
848
849static bool
850recording_case_labels_p (void)
851{
852 return (edge_to_cases != NULL);
853}
854
855/* Stop recording information mapping edges to case labels and
856 remove any information we have recorded. */
c9784e6d 857void
d6be0d7f
JL
858end_recording_case_labels (void)
859{
fc249fe5
MM
860 bitmap_iterator bi;
861 unsigned i;
15814ba0
PB
862 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
863 pointer_map_destroy (edge_to_cases);
d6be0d7f 864 edge_to_cases = NULL;
fc249fe5
MM
865 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
866 {
867 basic_block bb = BASIC_BLOCK (i);
868 if (bb)
869 {
870 gimple stmt = last_stmt (bb);
871 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
872 group_case_labels_stmt (stmt);
873 }
874 }
875 BITMAP_FREE (touched_switch_bbs);
d6be0d7f
JL
876}
877
d6be0d7f
JL
878/* If we are inside a {start,end}_recording_cases block, then return
879 a chain of CASE_LABEL_EXPRs from T which reference E.
880
881 Otherwise return NULL. */
92b6dff3
JL
882
883static tree
726a989a 884get_cases_for_edge (edge e, gimple t)
92b6dff3 885{
92b6dff3 886 void **slot;
d6be0d7f 887 size_t i, n;
92b6dff3 888
d6be0d7f
JL
889 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
890 chains available. Return NULL so the caller can detect this case. */
891 if (!recording_case_labels_p ())
892 return NULL;
6531d1be 893
15814ba0 894 slot = pointer_map_contains (edge_to_cases, e);
92b6dff3 895 if (slot)
15814ba0 896 return (tree) *slot;
92b6dff3 897
d6be0d7f
JL
898 /* If we did not find E in the hash table, then this must be the first
899 time we have been queried for information about E & T. Add all the
900 elements from T to the hash table then perform the query again. */
92b6dff3 901
726a989a 902 n = gimple_switch_num_labels (t);
92b6dff3
JL
903 for (i = 0; i < n; i++)
904 {
726a989a 905 tree elt = gimple_switch_label (t, i);
15814ba0 906 tree lab = CASE_LABEL (elt);
d6be0d7f 907 basic_block label_bb = label_to_block (lab);
15814ba0
PB
908 edge this_edge = find_edge (e->src, label_bb);
909
910 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
911 a new chain. */
912 slot = pointer_map_insert (edge_to_cases, this_edge);
1290e54c 913 CASE_CHAIN (elt) = (tree) *slot;
15814ba0 914 *slot = elt;
92b6dff3 915 }
15814ba0
PB
916
917 return (tree) *pointer_map_contains (edge_to_cases, e);
92b6dff3 918}
6de9cd9a 919
726a989a 920/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
6de9cd9a
DN
921
922static void
726a989a 923make_gimple_switch_edges (basic_block bb)
6de9cd9a 924{
726a989a 925 gimple entry = last_stmt (bb);
6c52e687 926 location_t entry_locus;
6de9cd9a 927 size_t i, n;
6de9cd9a 928
6c52e687
CC
929 entry_locus = gimple_location (entry);
930
726a989a 931 n = gimple_switch_num_labels (entry);
6de9cd9a
DN
932
933 for (i = 0; i < n; ++i)
934 {
726a989a 935 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
6de9cd9a 936 basic_block label_bb = label_to_block (lab);
d6be0d7f 937 make_edge (bb, label_bb, 0);
6c52e687 938 assign_discriminator (entry_locus, label_bb);
6de9cd9a
DN
939 }
940}
941
942
943/* Return the basic block holding label DEST. */
944
945basic_block
997de8ed 946label_to_block_fn (struct function *ifun, tree dest)
6de9cd9a 947{
242229bb
JH
948 int uid = LABEL_DECL_UID (dest);
949
f0b698c1
KH
950 /* We would die hard when faced by an undefined label. Emit a label to
951 the very first basic block. This will hopefully make even the dataflow
242229bb 952 and undefined variable warnings quite right. */
1da2ed5f 953 if (seen_error () && uid < 0)
242229bb 954 {
726a989a
RB
955 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
956 gimple stmt;
242229bb 957
726a989a
RB
958 stmt = gimple_build_label (dest);
959 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
242229bb
JH
960 uid = LABEL_DECL_UID (dest);
961 }
9771b263 962 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
98f464e0 963 return NULL;
9771b263 964 return (*ifun->cfg->x_label_to_block_map)[uid];
6de9cd9a
DN
965}
966
4f6c2131
EB
967/* Create edges for an abnormal goto statement at block BB. If FOR_CALL
968 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
969
970void
971make_abnormal_goto_edges (basic_block bb, bool for_call)
972{
973 basic_block target_bb;
726a989a 974 gimple_stmt_iterator gsi;
4f6c2131
EB
975
976 FOR_EACH_BB (target_bb)
f6b64c35
RB
977 {
978 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
979 {
980 gimple label_stmt = gsi_stmt (gsi);
981 tree target;
4f6c2131 982
f6b64c35
RB
983 if (gimple_code (label_stmt) != GIMPLE_LABEL)
984 break;
4f6c2131 985
f6b64c35 986 target = gimple_label_label (label_stmt);
4f6c2131 987
f6b64c35
RB
988 /* Make an edge to every label block that has been marked as a
989 potential target for a computed goto or a non-local goto. */
990 if ((FORCED_LABEL (target) && !for_call)
991 || (DECL_NONLOCAL (target) && for_call))
992 {
993 make_edge (bb, target_bb, EDGE_ABNORMAL);
994 break;
995 }
996 }
997 if (!gsi_end_p (gsi))
998 {
999 /* Make an edge to every setjmp-like call. */
1000 gimple call_stmt = gsi_stmt (gsi);
1001 if (is_gimple_call (call_stmt)
1002 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
4f6c2131 1003 make_edge (bb, target_bb, EDGE_ABNORMAL);
f6b64c35
RB
1004 }
1005 }
4f6c2131
EB
1006}
1007
6de9cd9a
DN
1008/* Create edges for a goto statement at block BB. */
1009
1010static void
1011make_goto_expr_edges (basic_block bb)
1012{
726a989a
RB
1013 gimple_stmt_iterator last = gsi_last_bb (bb);
1014 gimple goto_t = gsi_stmt (last);
6de9cd9a 1015
4f6c2131
EB
1016 /* A simple GOTO creates normal edges. */
1017 if (simple_goto_p (goto_t))
6de9cd9a 1018 {
726a989a 1019 tree dest = gimple_goto_dest (goto_t);
6c52e687
CC
1020 basic_block label_bb = label_to_block (dest);
1021 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
726a989a 1022 e->goto_locus = gimple_location (goto_t);
6c52e687 1023 assign_discriminator (e->goto_locus, label_bb);
726a989a 1024 gsi_remove (&last, true);
4f6c2131 1025 return;
6de9cd9a
DN
1026 }
1027
4f6c2131
EB
1028 /* A computed GOTO creates abnormal edges. */
1029 make_abnormal_goto_edges (bb, false);
6de9cd9a
DN
1030}
1031
1c384bf1
RH
1032/* Create edges for an asm statement with labels at block BB. */
1033
1034static void
1035make_gimple_asm_edges (basic_block bb)
1036{
1037 gimple stmt = last_stmt (bb);
1038 location_t stmt_loc = gimple_location (stmt);
1039 int i, n = gimple_asm_nlabels (stmt);
1040
1041 for (i = 0; i < n; ++i)
1042 {
1043 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1044 basic_block label_bb = label_to_block (label);
1045 make_edge (bb, label_bb, 0);
1046 assign_discriminator (stmt_loc, label_bb);
1047 }
1048}
6de9cd9a
DN
1049
1050/*---------------------------------------------------------------------------
1051 Flowgraph analysis
1052---------------------------------------------------------------------------*/
1053
f698d217
SB
1054/* Cleanup useless labels in basic blocks. This is something we wish
1055 to do early because it allows us to group case labels before creating
1056 the edges for the CFG, and it speeds up block statement iterators in
1057 all passes later on.
8b11009b
ZD
1058 We rerun this pass after CFG is created, to get rid of the labels that
1059 are no longer referenced. After then we do not run it any more, since
1060 (almost) no new labels should be created. */
f698d217
SB
1061
1062/* A map from basic block index to the leading label of that block. */
8b11009b
ZD
1063static struct label_record
1064{
1065 /* The label. */
1066 tree label;
1067
1068 /* True if the label is referenced from somewhere. */
1069 bool used;
1070} *label_for_bb;
f698d217 1071
242229bb 1072/* Given LABEL return the first label in the same basic block. */
726a989a 1073
242229bb
JH
1074static tree
1075main_block_label (tree label)
1076{
1077 basic_block bb = label_to_block (label);
8b11009b 1078 tree main_label = label_for_bb[bb->index].label;
242229bb
JH
1079
1080 /* label_to_block possibly inserted undefined label into the chain. */
8b11009b
ZD
1081 if (!main_label)
1082 {
1083 label_for_bb[bb->index].label = label;
1084 main_label = label;
1085 }
1086
1087 label_for_bb[bb->index].used = true;
1088 return main_label;
242229bb
JH
1089}
1090
1d65f45c
RH
1091/* Clean up redundant labels within the exception tree. */
1092
1093static void
1094cleanup_dead_labels_eh (void)
1095{
1096 eh_landing_pad lp;
1097 eh_region r;
1098 tree lab;
1099 int i;
1100
1101 if (cfun->eh == NULL)
1102 return;
1103
9771b263 1104 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1d65f45c
RH
1105 if (lp && lp->post_landing_pad)
1106 {
1107 lab = main_block_label (lp->post_landing_pad);
1108 if (lab != lp->post_landing_pad)
1109 {
1110 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1111 EH_LANDING_PAD_NR (lab) = lp->index;
1112 }
1113 }
1114
1115 FOR_ALL_EH_REGION (r)
1116 switch (r->type)
1117 {
1118 case ERT_CLEANUP:
1119 case ERT_MUST_NOT_THROW:
1120 break;
1121
1122 case ERT_TRY:
1123 {
1124 eh_catch c;
1125 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1126 {
1127 lab = c->label;
1128 if (lab)
1129 c->label = main_block_label (lab);
1130 }
1131 }
1132 break;
1133
1134 case ERT_ALLOWED_EXCEPTIONS:
1135 lab = r->u.allowed.label;
1136 if (lab)
1137 r->u.allowed.label = main_block_label (lab);
1138 break;
1139 }
1140}
1141
1142
b986ebf3 1143/* Cleanup redundant labels. This is a three-step process:
f698d217
SB
1144 1) Find the leading label for each block.
1145 2) Redirect all references to labels to the leading labels.
1146 3) Cleanup all useless labels. */
6de9cd9a 1147
165b54c3 1148void
6de9cd9a
DN
1149cleanup_dead_labels (void)
1150{
1151 basic_block bb;
8b11009b 1152 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
6de9cd9a
DN
1153
1154 /* Find a suitable label for each block. We use the first user-defined
f0b698c1 1155 label if there is one, or otherwise just the first label we see. */
6de9cd9a
DN
1156 FOR_EACH_BB (bb)
1157 {
726a989a 1158 gimple_stmt_iterator i;
6de9cd9a 1159
726a989a 1160 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
6de9cd9a 1161 {
726a989a
RB
1162 tree label;
1163 gimple stmt = gsi_stmt (i);
6de9cd9a 1164
726a989a 1165 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a
DN
1166 break;
1167
726a989a 1168 label = gimple_label_label (stmt);
6de9cd9a
DN
1169
1170 /* If we have not yet seen a label for the current block,
1171 remember this one and see if there are more labels. */
8b11009b 1172 if (!label_for_bb[bb->index].label)
6de9cd9a 1173 {
8b11009b 1174 label_for_bb[bb->index].label = label;
6de9cd9a
DN
1175 continue;
1176 }
1177
1178 /* If we did see a label for the current block already, but it
1179 is an artificially created label, replace it if the current
1180 label is a user defined label. */
8b11009b
ZD
1181 if (!DECL_ARTIFICIAL (label)
1182 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
6de9cd9a 1183 {
8b11009b 1184 label_for_bb[bb->index].label = label;
6de9cd9a
DN
1185 break;
1186 }
1187 }
1188 }
1189
f698d217
SB
1190 /* Now redirect all jumps/branches to the selected label.
1191 First do so for each block ending in a control statement. */
6de9cd9a
DN
1192 FOR_EACH_BB (bb)
1193 {
726a989a 1194 gimple stmt = last_stmt (bb);
0a35513e
AH
1195 tree label, new_label;
1196
6de9cd9a
DN
1197 if (!stmt)
1198 continue;
1199
726a989a 1200 switch (gimple_code (stmt))
6de9cd9a 1201 {
726a989a 1202 case GIMPLE_COND:
0a35513e
AH
1203 label = gimple_cond_true_label (stmt);
1204 if (label)
1205 {
1206 new_label = main_block_label (label);
1207 if (new_label != label)
1208 gimple_cond_set_true_label (stmt, new_label);
1209 }
6de9cd9a 1210
0a35513e
AH
1211 label = gimple_cond_false_label (stmt);
1212 if (label)
1213 {
1214 new_label = main_block_label (label);
1215 if (new_label != label)
1216 gimple_cond_set_false_label (stmt, new_label);
1217 }
1218 break;
6531d1be 1219
726a989a 1220 case GIMPLE_SWITCH:
6de9cd9a 1221 {
726a989a 1222 size_t i, n = gimple_switch_num_labels (stmt);
6531d1be 1223
6de9cd9a
DN
1224 /* Replace all destination labels. */
1225 for (i = 0; i < n; ++i)
92b6dff3 1226 {
726a989a 1227 tree case_label = gimple_switch_label (stmt, i);
0a35513e
AH
1228 label = CASE_LABEL (case_label);
1229 new_label = main_block_label (label);
1230 if (new_label != label)
1231 CASE_LABEL (case_label) = new_label;
92b6dff3 1232 }
6de9cd9a
DN
1233 break;
1234 }
1235
1c384bf1
RH
1236 case GIMPLE_ASM:
1237 {
1238 int i, n = gimple_asm_nlabels (stmt);
1239
1240 for (i = 0; i < n; ++i)
1241 {
1242 tree cons = gimple_asm_label_op (stmt, i);
1243 tree label = main_block_label (TREE_VALUE (cons));
1244 TREE_VALUE (cons) = label;
1245 }
1246 break;
1247 }
1248
726a989a 1249 /* We have to handle gotos until they're removed, and we don't
f667741c 1250 remove them until after we've created the CFG edges. */
726a989a 1251 case GIMPLE_GOTO:
0a35513e 1252 if (!computed_goto_p (stmt))
242229bb 1253 {
0a35513e
AH
1254 label = gimple_goto_dest (stmt);
1255 new_label = main_block_label (label);
1256 if (new_label != label)
1257 gimple_goto_set_dest (stmt, new_label);
242229bb 1258 }
1c384bf1 1259 break;
f667741c 1260
0a35513e
AH
1261 case GIMPLE_TRANSACTION:
1262 {
1263 tree label = gimple_transaction_label (stmt);
1264 if (label)
1265 {
1266 tree new_label = main_block_label (label);
1267 if (new_label != label)
1268 gimple_transaction_set_label (stmt, new_label);
1269 }
1270 }
1271 break;
1272
6de9cd9a
DN
1273 default:
1274 break;
1275 }
1276 }
1277
1d65f45c
RH
1278 /* Do the same for the exception region tree labels. */
1279 cleanup_dead_labels_eh ();
f698d217 1280
6de9cd9a 1281 /* Finally, purge dead labels. All user-defined labels and labels that
cea0f4f1
AP
1282 can be the target of non-local gotos and labels which have their
1283 address taken are preserved. */
6de9cd9a
DN
1284 FOR_EACH_BB (bb)
1285 {
726a989a 1286 gimple_stmt_iterator i;
8b11009b 1287 tree label_for_this_bb = label_for_bb[bb->index].label;
6de9cd9a 1288
8b11009b 1289 if (!label_for_this_bb)
6de9cd9a
DN
1290 continue;
1291
8b11009b
ZD
1292 /* If the main label of the block is unused, we may still remove it. */
1293 if (!label_for_bb[bb->index].used)
1294 label_for_this_bb = NULL;
1295
726a989a 1296 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
6de9cd9a 1297 {
726a989a
RB
1298 tree label;
1299 gimple stmt = gsi_stmt (i);
6de9cd9a 1300
726a989a 1301 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a
DN
1302 break;
1303
726a989a 1304 label = gimple_label_label (stmt);
6de9cd9a
DN
1305
1306 if (label == label_for_this_bb
726a989a 1307 || !DECL_ARTIFICIAL (label)
cea0f4f1
AP
1308 || DECL_NONLOCAL (label)
1309 || FORCED_LABEL (label))
726a989a 1310 gsi_next (&i);
6de9cd9a 1311 else
726a989a 1312 gsi_remove (&i, true);
6de9cd9a
DN
1313 }
1314 }
1315
1316 free (label_for_bb);
1317}
1318
fc249fe5
MM
1319/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1320 the ones jumping to the same label.
f667741c
SB
1321 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1322
238065a7 1323void
fc249fe5 1324group_case_labels_stmt (gimple stmt)
f667741c 1325{
fc249fe5
MM
1326 int old_size = gimple_switch_num_labels (stmt);
1327 int i, j, new_size = old_size;
25632d2e 1328 basic_block default_bb = NULL;
fc249fe5 1329
fd8d363e 1330 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
f667741c 1331
fc249fe5 1332 /* Look for possible opportunities to merge cases. */
fd8d363e 1333 i = 1;
fc249fe5 1334 while (i < old_size)
f667741c 1335 {
25632d2e
SB
1336 tree base_case, base_high;
1337 basic_block base_bb;
1338
fc249fe5
MM
1339 base_case = gimple_switch_label (stmt, i);
1340
1341 gcc_assert (base_case);
25632d2e 1342 base_bb = label_to_block (CASE_LABEL (base_case));
fc249fe5
MM
1343
1344 /* Discard cases that have the same destination as the
1345 default case. */
25632d2e 1346 if (base_bb == default_bb)
fc249fe5
MM
1347 {
1348 gimple_switch_set_label (stmt, i, NULL_TREE);
1349 i++;
1350 new_size--;
1351 continue;
1352 }
1353
1354 base_high = CASE_HIGH (base_case)
1355 ? CASE_HIGH (base_case)
1356 : CASE_LOW (base_case);
1357 i++;
1358
1359 /* Try to merge case labels. Break out when we reach the end
1360 of the label vector or when we cannot merge the next case
1361 label with the current one. */
1362 while (i < old_size)
f667741c 1363 {
fc249fe5 1364 tree merge_case = gimple_switch_label (stmt, i);
25632d2e 1365 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
27bcd47c 1366 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
fc249fe5
MM
1367
1368 /* Merge the cases if they jump to the same place,
1369 and their ranges are consecutive. */
25632d2e 1370 if (merge_bb == base_bb
27bcd47c 1371 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
b7814a18 1372 {
fc249fe5
MM
1373 base_high = CASE_HIGH (merge_case) ?
1374 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1375 CASE_HIGH (base_case) = base_high;
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 new_size--;
1378 i++;
b7814a18 1379 }
726a989a 1380 else
fc249fe5
MM
1381 break;
1382 }
1383 }
31e9eea2 1384
fc249fe5
MM
1385 /* Compress the case labels in the label vector, and adjust the
1386 length of the vector. */
1387 for (i = 0, j = 0; i < new_size; i++)
1388 {
1389 while (! gimple_switch_label (stmt, j))
1390 j++;
1391 gimple_switch_set_label (stmt, i,
1392 gimple_switch_label (stmt, j++));
1393 }
31e9eea2 1394
fc249fe5
MM
1395 gcc_assert (new_size <= old_size);
1396 gimple_switch_set_num_labels (stmt, new_size);
1397}
726a989a 1398
fc249fe5
MM
1399/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1400 and scan the sorted vector of cases. Combine the ones jumping to the
1401 same label. */
f667741c 1402
fc249fe5
MM
1403void
1404group_case_labels (void)
1405{
1406 basic_block bb;
726a989a 1407
fc249fe5
MM
1408 FOR_EACH_BB (bb)
1409 {
1410 gimple stmt = last_stmt (bb);
1411 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1412 group_case_labels_stmt (stmt);
f667741c
SB
1413 }
1414}
6de9cd9a
DN
1415
1416/* Checks whether we can merge block B into block A. */
1417
1418static bool
726a989a 1419gimple_can_merge_blocks_p (basic_block a, basic_block b)
6de9cd9a 1420{
726a989a
RB
1421 gimple stmt;
1422 gimple_stmt_iterator gsi;
6de9cd9a 1423
c5cbcccf 1424 if (!single_succ_p (a))
6de9cd9a
DN
1425 return false;
1426
a315c44c 1427 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
6de9cd9a
DN
1428 return false;
1429
c5cbcccf 1430 if (single_succ (a) != b)
6de9cd9a
DN
1431 return false;
1432
c5cbcccf 1433 if (!single_pred_p (b))
6de9cd9a
DN
1434 return false;
1435
26e75214
KH
1436 if (b == EXIT_BLOCK_PTR)
1437 return false;
6531d1be 1438
6de9cd9a
DN
1439 /* If A ends by a statement causing exceptions or something similar, we
1440 cannot merge the blocks. */
726a989a 1441 stmt = last_stmt (a);
6de9cd9a
DN
1442 if (stmt && stmt_ends_bb_p (stmt))
1443 return false;
1444
1445 /* Do not allow a block with only a non-local label to be merged. */
726a989a
RB
1446 if (stmt
1447 && gimple_code (stmt) == GIMPLE_LABEL
1448 && DECL_NONLOCAL (gimple_label_label (stmt)))
6de9cd9a
DN
1449 return false;
1450
8e7c5fdd
RH
1451 /* Examine the labels at the beginning of B. */
1452 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1453 {
1454 tree lab;
1455 stmt = gsi_stmt (gsi);
1456 if (gimple_code (stmt) != GIMPLE_LABEL)
1457 break;
1458 lab = gimple_label_label (stmt);
1459
4a7ab00c
JJ
1460 /* Do not remove user forced labels or for -O0 any user labels. */
1461 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
8e7c5fdd
RH
1462 return false;
1463 }
1464
1465 /* Protect the loop latches. */
1466 if (current_loops && b->loop_father->latch == b)
1467 return false;
1468
38965eb2 1469 /* It must be possible to eliminate all phi nodes in B. If ssa form
610b64e2
RG
1470 is not up-to-date and a name-mapping is registered, we cannot eliminate
1471 any phis. Symbols marked for renaming are never a problem though. */
891f2df6
RG
1472 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1473 {
1474 gimple phi = gsi_stmt (gsi);
1475 /* Technically only new names matter. */
1476 if (name_registered_for_update_p (PHI_RESULT (phi)))
1477 return false;
1478 }
6de9cd9a 1479
c87d6057
JJ
1480 /* When not optimizing, don't merge if we'd lose goto_locus. */
1481 if (!optimize
1482 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1483 {
1484 location_t goto_locus = single_succ_edge (a)->goto_locus;
1485 gimple_stmt_iterator prev, next;
1486 prev = gsi_last_nondebug_bb (a);
1487 next = gsi_after_labels (b);
1488 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1489 gsi_next_nondebug (&next);
1490 if ((gsi_end_p (prev)
1491 || gimple_location (gsi_stmt (prev)) != goto_locus)
1492 && (gsi_end_p (next)
1493 || gimple_location (gsi_stmt (next)) != goto_locus))
1494 return false;
1495 }
1496
6de9cd9a
DN
1497 return true;
1498}
1499
b5b8b0ac
AO
1500/* Return true if the var whose chain of uses starts at PTR has no
1501 nondebug uses. */
1502bool
1503has_zero_uses_1 (const ssa_use_operand_t *head)
1504{
1505 const ssa_use_operand_t *ptr;
1506
1507 for (ptr = head->next; ptr != head; ptr = ptr->next)
1508 if (!is_gimple_debug (USE_STMT (ptr)))
1509 return false;
1510
1511 return true;
1512}
1513
1514/* Return true if the var whose chain of uses starts at PTR has a
1515 single nondebug use. Set USE_P and STMT to that single nondebug
1516 use, if so, or to NULL otherwise. */
1517bool
1518single_imm_use_1 (const ssa_use_operand_t *head,
1519 use_operand_p *use_p, gimple *stmt)
1520{
1521 ssa_use_operand_t *ptr, *single_use = 0;
1522
1523 for (ptr = head->next; ptr != head; ptr = ptr->next)
1524 if (!is_gimple_debug (USE_STMT (ptr)))
1525 {
1526 if (single_use)
1527 {
1528 single_use = NULL;
1529 break;
1530 }
1531 single_use = ptr;
1532 }
1533
1534 if (use_p)
1535 *use_p = single_use;
1536
1537 if (stmt)
1538 *stmt = single_use ? single_use->loc.stmt : NULL;
1539
1540 return !!single_use;
1541}
1542
38965eb2
ZD
1543/* Replaces all uses of NAME by VAL. */
1544
684aaf29 1545void
38965eb2
ZD
1546replace_uses_by (tree name, tree val)
1547{
1548 imm_use_iterator imm_iter;
1549 use_operand_p use;
726a989a 1550 gimple stmt;
38965eb2 1551 edge e;
38965eb2 1552
6c00f606 1553 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
38965eb2 1554 {
6c00f606
AM
1555 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1556 {
1557 replace_exp (use, val);
38965eb2 1558
726a989a 1559 if (gimple_code (stmt) == GIMPLE_PHI)
38965eb2 1560 {
726a989a 1561 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
6c00f606
AM
1562 if (e->flags & EDGE_ABNORMAL)
1563 {
1564 /* This can only occur for virtual operands, since
1565 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1566 would prevent replacement. */
ea057359 1567 gcc_checking_assert (virtual_operand_p (name));
6c00f606
AM
1568 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1569 }
38965eb2
ZD
1570 }
1571 }
cfaab3a9 1572
726a989a 1573 if (gimple_code (stmt) != GIMPLE_PHI)
6c00f606 1574 {
e1ab3876 1575 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4642ed29 1576 gimple orig_stmt = stmt;
726a989a 1577 size_t i;
9af0df6b 1578
552d2db5
RG
1579 /* Mark the block if we changed the last stmt in it. */
1580 if (cfgcleanup_altered_bbs
1581 && stmt_ends_bb_p (stmt))
726a989a 1582 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
cfaab3a9 1583
552d2db5
RG
1584 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1585 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1586 only change sth from non-invariant to invariant, and only
ef0d4c4d
RG
1587 when propagating constants. */
1588 if (is_gimple_min_invariant (val))
552d2db5
RG
1589 for (i = 0; i < gimple_num_ops (stmt); i++)
1590 {
1591 tree op = gimple_op (stmt, i);
1592 /* Operands may be empty here. For example, the labels
1593 of a GIMPLE_COND are nulled out following the creation
1594 of the corresponding CFG edges. */
1595 if (op && TREE_CODE (op) == ADDR_EXPR)
1596 recompute_tree_invariant_for_addr_expr (op);
1597 }
1598
1599 if (fold_stmt (&gsi))
511b4436
JJ
1600 stmt = gsi_stmt (gsi);
1601
77753f4d
JJ
1602 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1603 gimple_purge_dead_eh_edges (gimple_bb (stmt));
9af0df6b 1604
cff4e50d 1605 update_stmt (stmt);
6c00f606 1606 }
38965eb2 1607 }
6531d1be 1608
552d2db5 1609 gcc_checking_assert (has_zero_uses (name));
d5ab5675
ZD
1610
1611 /* Also update the trees stored in loop structures. */
1612 if (current_loops)
1613 {
1614 struct loop *loop;
42fd6772 1615 loop_iterator li;
d5ab5675 1616
42fd6772 1617 FOR_EACH_LOOP (li, loop, 0)
d5ab5675 1618 {
42fd6772 1619 substitute_in_loop_info (loop, name, val);
d5ab5675
ZD
1620 }
1621 }
38965eb2 1622}
6de9cd9a
DN
1623
1624/* Merge block B into block A. */
1625
1626static void
726a989a 1627gimple_merge_blocks (basic_block a, basic_block b)
6de9cd9a 1628{
726a989a 1629 gimple_stmt_iterator last, gsi, psi;
6de9cd9a
DN
1630
1631 if (dump_file)
1632 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1633
c4f548b8
DN
1634 /* Remove all single-valued PHI nodes from block B of the form
1635 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
726a989a 1636 gsi = gsi_last_bb (a);
355a7673 1637 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
38965eb2 1638 {
726a989a
RB
1639 gimple phi = gsi_stmt (psi);
1640 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1641 gimple copy;
ea057359
RG
1642 bool may_replace_uses = (virtual_operand_p (def)
1643 || may_propagate_copy (def, use));
d7f0e25c 1644
7c8eb293
ZD
1645 /* In case we maintain loop closed ssa form, do not propagate arguments
1646 of loop exit phi nodes. */
d7f0e25c 1647 if (current_loops
f87000d0 1648 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
ea057359 1649 && !virtual_operand_p (def)
d7f0e25c
ZD
1650 && TREE_CODE (use) == SSA_NAME
1651 && a->loop_father != b->loop_father)
1652 may_replace_uses = false;
1653
1654 if (!may_replace_uses)
38965eb2 1655 {
ea057359 1656 gcc_assert (!virtual_operand_p (def));
38965eb2 1657
128a79fb 1658 /* Note that just emitting the copies is fine -- there is no problem
38965eb2
ZD
1659 with ordering of phi nodes. This is because A is the single
1660 predecessor of B, therefore results of the phi nodes cannot
1661 appear as arguments of the phi nodes. */
726a989a
RB
1662 copy = gimple_build_assign (def, use);
1663 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1664 remove_phi_node (&psi, false);
38965eb2
ZD
1665 }
1666 else
611021e1 1667 {
d0f76c4b
RG
1668 /* If we deal with a PHI for virtual operands, we can simply
1669 propagate these without fussing with folding or updating
1670 the stmt. */
ea057359 1671 if (virtual_operand_p (def))
d0f76c4b
RG
1672 {
1673 imm_use_iterator iter;
1674 use_operand_p use_p;
726a989a 1675 gimple stmt;
d0f76c4b
RG
1676
1677 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1678 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1679 SET_USE (use_p, use);
7686fb74
RG
1680
1681 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1682 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
d0f76c4b
RG
1683 }
1684 else
1685 replace_uses_by (def, use);
726a989a
RB
1686
1687 remove_phi_node (&psi, true);
611021e1 1688 }
38965eb2
ZD
1689 }
1690
6de9cd9a
DN
1691 /* Ensure that B follows A. */
1692 move_block_after (b, a);
1693
c5cbcccf 1694 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1e128c5f 1695 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
6de9cd9a 1696
726a989a
RB
1697 /* Remove labels from B and set gimple_bb to A for other statements. */
1698 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
6de9cd9a 1699 {
1d65f45c
RH
1700 gimple stmt = gsi_stmt (gsi);
1701 if (gimple_code (stmt) == GIMPLE_LABEL)
be477406 1702 {
1d65f45c
RH
1703 tree label = gimple_label_label (stmt);
1704 int lp_nr;
726a989a
RB
1705
1706 gsi_remove (&gsi, false);
be477406 1707
be477406
JL
1708 /* Now that we can thread computed gotos, we might have
1709 a situation where we have a forced label in block B
1710 However, the label at the start of block B might still be
1711 used in other ways (think about the runtime checking for
1712 Fortran assigned gotos). So we can not just delete the
1713 label. Instead we move the label to the start of block A. */
1d65f45c 1714 if (FORCED_LABEL (label))
be477406 1715 {
726a989a 1716 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1d65f45c
RH
1717 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1718 }
5619e52c
JJ
1719 /* Other user labels keep around in a form of a debug stmt. */
1720 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1721 {
1722 gimple dbg = gimple_build_debug_bind (label,
1723 integer_zero_node,
1724 stmt);
1725 gimple_debug_bind_reset_value (dbg);
1726 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1727 }
1d65f45c
RH
1728
1729 lp_nr = EH_LANDING_PAD_NR (label);
1730 if (lp_nr)
1731 {
1732 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1733 lp->post_landing_pad = NULL;
be477406
JL
1734 }
1735 }
6de9cd9a
DN
1736 else
1737 {
1d65f45c 1738 gimple_set_bb (stmt, a);
726a989a 1739 gsi_next (&gsi);
6de9cd9a
DN
1740 }
1741 }
1742
726a989a
RB
1743 /* Merge the sequences. */
1744 last = gsi_last_bb (a);
1745 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1746 set_bb_seq (b, NULL);
672987e8
ZD
1747
1748 if (cfgcleanup_altered_bbs)
1749 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
6de9cd9a
DN
1750}
1751
1752
bc23502b 1753/* Return the one of two successors of BB that is not reachable by a
2cd713a0 1754 complex edge, if there is one. Else, return BB. We use
bc23502b
PB
1755 this in optimizations that use post-dominators for their heuristics,
1756 to catch the cases in C++ where function calls are involved. */
6531d1be 1757
bc23502b 1758basic_block
6531d1be 1759single_noncomplex_succ (basic_block bb)
bc23502b
PB
1760{
1761 edge e0, e1;
1762 if (EDGE_COUNT (bb->succs) != 2)
1763 return bb;
6531d1be 1764
bc23502b
PB
1765 e0 = EDGE_SUCC (bb, 0);
1766 e1 = EDGE_SUCC (bb, 1);
1767 if (e0->flags & EDGE_COMPLEX)
1768 return e1->dest;
1769 if (e1->flags & EDGE_COMPLEX)
1770 return e0->dest;
6531d1be 1771
bc23502b 1772 return bb;
6531d1be 1773}
bc23502b 1774
6de9cd9a
DN
1775/* T is CALL_EXPR. Set current_function_calls_* flags. */
1776
1777void
726a989a 1778notice_special_calls (gimple call)
6de9cd9a 1779{
726a989a 1780 int flags = gimple_call_flags (call);
6de9cd9a
DN
1781
1782 if (flags & ECF_MAY_BE_ALLOCA)
e3b5732b 1783 cfun->calls_alloca = true;
6de9cd9a 1784 if (flags & ECF_RETURNS_TWICE)
e3b5732b 1785 cfun->calls_setjmp = true;
6de9cd9a
DN
1786}
1787
1788
1789/* Clear flags set by notice_special_calls. Used by dead code removal
1790 to update the flags. */
1791
1792void
1793clear_special_calls (void)
1794{
e3b5732b
JH
1795 cfun->calls_alloca = false;
1796 cfun->calls_setjmp = false;
6de9cd9a
DN
1797}
1798
6de9cd9a
DN
1799/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1800
1801static void
1802remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1803{
6de9cd9a
DN
1804 /* Since this block is no longer reachable, we can just delete all
1805 of its PHI nodes. */
81b822d5 1806 remove_phi_nodes (bb);
6de9cd9a
DN
1807
1808 /* Remove edges to BB's successors. */
628f6a4e 1809 while (EDGE_COUNT (bb->succs) > 0)
d0d2cc21 1810 remove_edge (EDGE_SUCC (bb, 0));
6de9cd9a
DN
1811}
1812
1813
1814/* Remove statements of basic block BB. */
1815
1816static void
1817remove_bb (basic_block bb)
1818{
726a989a 1819 gimple_stmt_iterator i;
6de9cd9a
DN
1820
1821 if (dump_file)
1822 {
1823 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1824 if (dump_flags & TDF_DETAILS)
1825 {
c4669594 1826 dump_bb (dump_file, bb, 0, dump_flags);
6de9cd9a
DN
1827 fprintf (dump_file, "\n");
1828 }
1829 }
1830
2b271002
ZD
1831 if (current_loops)
1832 {
1833 struct loop *loop = bb->loop_father;
1834
598ec7bd
ZD
1835 /* If a loop gets removed, clean up the information associated
1836 with it. */
2b271002
ZD
1837 if (loop->latch == bb
1838 || loop->header == bb)
598ec7bd 1839 free_numbers_of_iterations_estimates_loop (loop);
2b271002
ZD
1840 }
1841
6de9cd9a 1842 /* Remove all the instructions in the block. */
726a989a 1843 if (bb_seq (bb) != NULL)
6de9cd9a 1844 {
b5b8b0ac
AO
1845 /* Walk backwards so as to get a chance to substitute all
1846 released DEFs into debug stmts. See
1847 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1848 details. */
1849 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
77568960 1850 {
726a989a
RB
1851 gimple stmt = gsi_stmt (i);
1852 if (gimple_code (stmt) == GIMPLE_LABEL
1853 && (FORCED_LABEL (gimple_label_label (stmt))
1854 || DECL_NONLOCAL (gimple_label_label (stmt))))
7506e1cb
ZD
1855 {
1856 basic_block new_bb;
726a989a 1857 gimple_stmt_iterator new_gsi;
7506e1cb
ZD
1858
1859 /* A non-reachable non-local label may still be referenced.
1860 But it no longer needs to carry the extra semantics of
1861 non-locality. */
726a989a 1862 if (DECL_NONLOCAL (gimple_label_label (stmt)))
7506e1cb 1863 {
726a989a
RB
1864 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1865 FORCED_LABEL (gimple_label_label (stmt)) = 1;
7506e1cb 1866 }
bb1ecfe8 1867
7506e1cb 1868 new_bb = bb->prev_bb;
726a989a
RB
1869 new_gsi = gsi_start_bb (new_bb);
1870 gsi_remove (&i, false);
1871 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
7506e1cb
ZD
1872 }
1873 else
bb1ecfe8 1874 {
7506e1cb
ZD
1875 /* Release SSA definitions if we are in SSA. Note that we
1876 may be called when not in SSA. For example,
1877 final_cleanup calls this function via
1878 cleanup_tree_cfg. */
1879 if (gimple_in_ssa_p (cfun))
1880 release_defs (stmt);
1881
726a989a 1882 gsi_remove (&i, true);
bb1ecfe8 1883 }
6531d1be 1884
b5b8b0ac
AO
1885 if (gsi_end_p (i))
1886 i = gsi_last_bb (bb);
1887 else
1888 gsi_prev (&i);
43e05e45 1889 }
6de9cd9a
DN
1890 }
1891
6de9cd9a 1892 remove_phi_nodes_and_edges_for_unreachable_block (bb);
3e8b732e
MM
1893 bb->il.gimple.seq = NULL;
1894 bb->il.gimple.phi_nodes = NULL;
6de9cd9a
DN
1895}
1896
6de9cd9a 1897
35920270
KH
1898/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1899 predicate VAL, return the edge that will be taken out of the block.
1900 If VAL does not match a unique edge, NULL is returned. */
6de9cd9a
DN
1901
1902edge
1903find_taken_edge (basic_block bb, tree val)
1904{
726a989a 1905 gimple stmt;
6de9cd9a
DN
1906
1907 stmt = last_stmt (bb);
1908
1e128c5f
GB
1909 gcc_assert (stmt);
1910 gcc_assert (is_ctrl_stmt (stmt));
6de9cd9a 1911
726a989a
RB
1912 if (val == NULL)
1913 return NULL;
1914
1915 if (!is_gimple_min_invariant (val))
6de9cd9a
DN
1916 return NULL;
1917
726a989a 1918 if (gimple_code (stmt) == GIMPLE_COND)
6de9cd9a
DN
1919 return find_taken_edge_cond_expr (bb, val);
1920
726a989a 1921 if (gimple_code (stmt) == GIMPLE_SWITCH)
6de9cd9a
DN
1922 return find_taken_edge_switch_expr (bb, val);
1923
be477406 1924 if (computed_goto_p (stmt))
1799efef
JL
1925 {
1926 /* Only optimize if the argument is a label, if the argument is
1927 not a label then we can not construct a proper CFG.
1928
1929 It may be the case that we only need to allow the LABEL_REF to
1930 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1931 appear inside a LABEL_EXPR just to be safe. */
1932 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1933 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1934 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1935 return NULL;
1936 }
be477406 1937
35920270 1938 gcc_unreachable ();
6de9cd9a
DN
1939}
1940
be477406
JL
1941/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1942 statement, determine which of the outgoing edges will be taken out of the
1943 block. Return NULL if either edge may be taken. */
1944
1945static edge
1946find_taken_edge_computed_goto (basic_block bb, tree val)
1947{
1948 basic_block dest;
1949 edge e = NULL;
1950
1951 dest = label_to_block (val);
1952 if (dest)
1953 {
1954 e = find_edge (bb, dest);
1955 gcc_assert (e != NULL);
1956 }
1957
1958 return e;
1959}
6de9cd9a
DN
1960
1961/* Given a constant value VAL and the entry block BB to a COND_EXPR
1962 statement, determine which of the two edges will be taken out of the
1963 block. Return NULL if either edge may be taken. */
1964
1965static edge
1966find_taken_edge_cond_expr (basic_block bb, tree val)
1967{
1968 edge true_edge, false_edge;
1969
1970 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
6531d1be 1971
f1b19062 1972 gcc_assert (TREE_CODE (val) == INTEGER_CST);
6e682d7e 1973 return (integer_zerop (val) ? false_edge : true_edge);
6de9cd9a
DN
1974}
1975
fca01525 1976/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
6de9cd9a
DN
1977 statement, determine which edge will be taken out of the block. Return
1978 NULL if any edge may be taken. */
1979
1980static edge
1981find_taken_edge_switch_expr (basic_block bb, tree val)
1982{
6de9cd9a
DN
1983 basic_block dest_bb;
1984 edge e;
726a989a
RB
1985 gimple switch_stmt;
1986 tree taken_case;
6de9cd9a 1987
726a989a
RB
1988 switch_stmt = last_stmt (bb);
1989 taken_case = find_case_label_for_value (switch_stmt, val);
6de9cd9a
DN
1990 dest_bb = label_to_block (CASE_LABEL (taken_case));
1991
1992 e = find_edge (bb, dest_bb);
1e128c5f 1993 gcc_assert (e);
6de9cd9a
DN
1994 return e;
1995}
1996
1997
726a989a 1998/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
f667741c
SB
1999 We can make optimal use here of the fact that the case labels are
2000 sorted: We can do a binary search for a case matching VAL. */
6de9cd9a
DN
2001
2002static tree
726a989a 2003find_case_label_for_value (gimple switch_stmt, tree val)
6de9cd9a 2004{
726a989a
RB
2005 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2006 tree default_case = gimple_switch_default_label (switch_stmt);
6de9cd9a 2007
726a989a 2008 for (low = 0, high = n; high - low > 1; )
6de9cd9a 2009 {
f667741c 2010 size_t i = (high + low) / 2;
726a989a 2011 tree t = gimple_switch_label (switch_stmt, i);
f667741c
SB
2012 int cmp;
2013
2014 /* Cache the result of comparing CASE_LOW and val. */
2015 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6de9cd9a 2016
f667741c
SB
2017 if (cmp > 0)
2018 high = i;
2019 else
2020 low = i;
2021
2022 if (CASE_HIGH (t) == NULL)
6de9cd9a 2023 {
f667741c
SB
2024 /* A singe-valued case label. */
2025 if (cmp == 0)
6de9cd9a
DN
2026 return t;
2027 }
2028 else
2029 {
2030 /* A case range. We can only handle integer ranges. */
f667741c 2031 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6de9cd9a
DN
2032 return t;
2033 }
2034 }
2035
6de9cd9a
DN
2036 return default_case;
2037}
2038
2039
6de9cd9a
DN
2040/* Dump a basic block on stderr. */
2041
2042void
726a989a 2043gimple_debug_bb (basic_block bb)
6de9cd9a 2044{
c4669594 2045 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
6de9cd9a
DN
2046}
2047
2048
2049/* Dump basic block with index N on stderr. */
2050
2051basic_block
726a989a 2052gimple_debug_bb_n (int n)
6de9cd9a 2053{
726a989a 2054 gimple_debug_bb (BASIC_BLOCK (n));
6de9cd9a 2055 return BASIC_BLOCK (n);
6531d1be 2056}
6de9cd9a
DN
2057
2058
2059/* Dump the CFG on stderr.
2060
2061 FLAGS are the same used by the tree dumping functions
398b1daa 2062 (see TDF_* in dumpfile.h). */
6de9cd9a
DN
2063
2064void
726a989a 2065gimple_debug_cfg (int flags)
6de9cd9a 2066{
726a989a 2067 gimple_dump_cfg (stderr, flags);
6de9cd9a
DN
2068}
2069
2070
2071/* Dump the program showing basic block boundaries on the given FILE.
2072
2073 FLAGS are the same used by the tree dumping functions (see TDF_* in
2074 tree.h). */
2075
2076void
726a989a 2077gimple_dump_cfg (FILE *file, int flags)
6de9cd9a
DN
2078{
2079 if (flags & TDF_DETAILS)
2080 {
6d8402ac 2081 dump_function_header (file, current_function_decl, flags);
6de9cd9a
DN
2082 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2083 n_basic_blocks, n_edges, last_basic_block);
2084
c4669594 2085 brief_dump_cfg (file, flags | TDF_COMMENT);
6de9cd9a
DN
2086 fprintf (file, "\n");
2087 }
2088
2089 if (flags & TDF_STATS)
2090 dump_cfg_stats (file);
2091
2092 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2093}
2094
2095
2096/* Dump CFG statistics on FILE. */
2097
2098void
2099dump_cfg_stats (FILE *file)
2100{
2101 static long max_num_merged_labels = 0;
2102 unsigned long size, total = 0;
7b0cab99 2103 long num_edges;
6de9cd9a
DN
2104 basic_block bb;
2105 const char * const fmt_str = "%-30s%-13s%12s\n";
f7fda749 2106 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
cac50d94 2107 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
6de9cd9a 2108 const char * const fmt_str_3 = "%-43s%11lu%c\n";
7ee2468b 2109 const char *funcname = current_function_name ();
6de9cd9a
DN
2110
2111 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2112
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, fmt_str, "", " Number of ", "Memory");
2115 fprintf (file, fmt_str, "", " instances ", "used ");
2116 fprintf (file, "---------------------------------------------------------\n");
2117
2118 size = n_basic_blocks * sizeof (struct basic_block_def);
2119 total += size;
f7fda749
RH
2120 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2121 SCALE (size), LABEL (size));
6de9cd9a 2122
7b0cab99 2123 num_edges = 0;
6de9cd9a 2124 FOR_EACH_BB (bb)
7b0cab99
JH
2125 num_edges += EDGE_COUNT (bb->succs);
2126 size = num_edges * sizeof (struct edge_def);
6de9cd9a 2127 total += size;
cac50d94 2128 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
6de9cd9a 2129
6de9cd9a
DN
2130 fprintf (file, "---------------------------------------------------------\n");
2131 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2132 LABEL (total));
2133 fprintf (file, "---------------------------------------------------------\n");
2134 fprintf (file, "\n");
2135
2136 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2137 max_num_merged_labels = cfg_stats.num_merged_labels;
2138
2139 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2140 cfg_stats.num_merged_labels, max_num_merged_labels);
2141
2142 fprintf (file, "\n");
2143}
2144
2145
2146/* Dump CFG statistics on stderr. Keep extern so that it's always
2147 linked in the final executable. */
2148
24e47c76 2149DEBUG_FUNCTION void
6de9cd9a
DN
2150debug_cfg_stats (void)
2151{
2152 dump_cfg_stats (stderr);
2153}
2154
6de9cd9a
DN
2155/*---------------------------------------------------------------------------
2156 Miscellaneous helpers
2157---------------------------------------------------------------------------*/
2158
8d960eda
EB
2159/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2160 flow. Transfers of control flow associated with EH are excluded. */
2161
2162static bool
2163call_can_make_abnormal_goto (gimple t)
2164{
2165 /* If the function has no non-local labels, then a call cannot make an
2166 abnormal transfer of control. */
f6b64c35
RB
2167 if (!cfun->has_nonlocal_label
2168 && !cfun->calls_setjmp)
8d960eda
EB
2169 return false;
2170
2171 /* Likewise if the call has no side effects. */
2172 if (!gimple_has_side_effects (t))
2173 return false;
2174
2175 /* Likewise if the called function is leaf. */
2176 if (gimple_call_flags (t) & ECF_LEAF)
2177 return false;
2178
2179 return true;
2180}
2181
2182
2183/* Return true if T can make an abnormal transfer of control flow.
2184 Transfers of control flow associated with EH are excluded. */
2185
2186bool
2187stmt_can_make_abnormal_goto (gimple t)
2188{
2189 if (computed_goto_p (t))
2190 return true;
2191 if (is_gimple_call (t))
2192 return call_can_make_abnormal_goto (t);
2193 return false;
2194}
2195
2196
6de9cd9a
DN
2197/* Return true if T represents a stmt that always transfers control. */
2198
2199bool
726a989a 2200is_ctrl_stmt (gimple t)
6de9cd9a 2201{
40a32862
RH
2202 switch (gimple_code (t))
2203 {
2204 case GIMPLE_COND:
2205 case GIMPLE_SWITCH:
2206 case GIMPLE_GOTO:
2207 case GIMPLE_RETURN:
2208 case GIMPLE_RESX:
2209 return true;
2210 default:
2211 return false;
2212 }
6de9cd9a
DN
2213}
2214
2215
2216/* Return true if T is a statement that may alter the flow of control
2217 (e.g., a call to a non-returning function). */
2218
2219bool
726a989a 2220is_ctrl_altering_stmt (gimple t)
6de9cd9a 2221{
1e128c5f 2222 gcc_assert (t);
726a989a 2223
8b9db065 2224 switch (gimple_code (t))
6de9cd9a 2225 {
8b9db065
RH
2226 case GIMPLE_CALL:
2227 {
2228 int flags = gimple_call_flags (t);
726a989a 2229
8d960eda
EB
2230 /* A call alters control flow if it can make an abnormal goto. */
2231 if (call_can_make_abnormal_goto (t))
8b9db065 2232 return true;
6de9cd9a 2233
8b9db065 2234 /* A call also alters control flow if it does not return. */
5de8da9b 2235 if (flags & ECF_NORETURN)
8b9db065 2236 return true;
c54c785d 2237
0a35513e
AH
2238 /* TM ending statements have backedges out of the transaction.
2239 Return true so we split the basic block containing them.
2240 Note that the TM_BUILTIN test is merely an optimization. */
2241 if ((flags & ECF_TM_BUILTIN)
2242 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2243 return true;
2244
c54c785d
JH
2245 /* BUILT_IN_RETURN call is same as return statement. */
2246 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2247 return true;
8b9db065
RH
2248 }
2249 break;
6de9cd9a 2250
1d65f45c
RH
2251 case GIMPLE_EH_DISPATCH:
2252 /* EH_DISPATCH branches to the individual catch handlers at
2253 this level of a try or allowed-exceptions region. It can
2254 fallthru to the next statement as well. */
2255 return true;
2256
1c384bf1
RH
2257 case GIMPLE_ASM:
2258 if (gimple_asm_nlabels (t) > 0)
2259 return true;
2260 break;
2261
8b9db065
RH
2262 CASE_GIMPLE_OMP:
2263 /* OpenMP directives alter control flow. */
2264 return true;
2265
0a35513e
AH
2266 case GIMPLE_TRANSACTION:
2267 /* A transaction start alters control flow. */
2268 return true;
2269
8b9db065
RH
2270 default:
2271 break;
2272 }
50674e96 2273
6de9cd9a 2274 /* If a statement can throw, it alters control flow. */
726a989a 2275 return stmt_can_throw_internal (t);
6de9cd9a
DN
2276}
2277
2278
4f6c2131 2279/* Return true if T is a simple local goto. */
6de9cd9a
DN
2280
2281bool
726a989a 2282simple_goto_p (gimple t)
6de9cd9a 2283{
726a989a
RB
2284 return (gimple_code (t) == GIMPLE_GOTO
2285 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
4f6c2131
EB
2286}
2287
2288
726a989a
RB
2289/* Return true if STMT should start a new basic block. PREV_STMT is
2290 the statement preceding STMT. It is used when STMT is a label or a
2291 case label. Labels should only start a new basic block if their
2292 previous statement wasn't a label. Otherwise, sequence of labels
2293 would generate unnecessary basic blocks that only contain a single
2294 label. */
6de9cd9a
DN
2295
2296static inline bool
726a989a 2297stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
6de9cd9a 2298{
726a989a 2299 if (stmt == NULL)
6de9cd9a
DN
2300 return false;
2301
726a989a
RB
2302 /* Labels start a new basic block only if the preceding statement
2303 wasn't a label of the same type. This prevents the creation of
2304 consecutive blocks that have nothing but a single label. */
2305 if (gimple_code (stmt) == GIMPLE_LABEL)
6de9cd9a
DN
2306 {
2307 /* Nonlocal and computed GOTO targets always start a new block. */
726a989a
RB
2308 if (DECL_NONLOCAL (gimple_label_label (stmt))
2309 || FORCED_LABEL (gimple_label_label (stmt)))
6de9cd9a
DN
2310 return true;
2311
726a989a 2312 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
6de9cd9a 2313 {
726a989a 2314 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
6de9cd9a
DN
2315 return true;
2316
2317 cfg_stats.num_merged_labels++;
2318 return false;
2319 }
2320 else
2321 return true;
2322 }
f6b64c35
RB
2323 else if (gimple_code (stmt) == GIMPLE_CALL
2324 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2325 /* setjmp acts similar to a nonlocal GOTO target and thus should
2326 start a new block. */
2327 return true;
6de9cd9a
DN
2328
2329 return false;
2330}
2331
2332
2333/* Return true if T should end a basic block. */
2334
2335bool
726a989a 2336stmt_ends_bb_p (gimple t)
6de9cd9a
DN
2337{
2338 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2339}
2340
726a989a 2341/* Remove block annotations and other data structures. */
6de9cd9a
DN
2342
2343void
242229bb 2344delete_tree_cfg_annotations (void)
6de9cd9a 2345{
9771b263 2346 vec_free (label_to_block_map);
6de9cd9a
DN
2347}
2348
2349
2350/* Return the first statement in basic block BB. */
2351
726a989a 2352gimple
6de9cd9a
DN
2353first_stmt (basic_block bb)
2354{
726a989a 2355 gimple_stmt_iterator i = gsi_start_bb (bb);
b5b8b0ac
AO
2356 gimple stmt = NULL;
2357
2358 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2359 {
2360 gsi_next (&i);
2361 stmt = NULL;
2362 }
2363 return stmt;
6de9cd9a
DN
2364}
2365
6c52e687
CC
2366/* Return the first non-label statement in basic block BB. */
2367
2368static gimple
2369first_non_label_stmt (basic_block bb)
2370{
2371 gimple_stmt_iterator i = gsi_start_bb (bb);
2372 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2373 gsi_next (&i);
2374 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2375}
2376
6de9cd9a
DN
2377/* Return the last statement in basic block BB. */
2378
726a989a 2379gimple
6de9cd9a
DN
2380last_stmt (basic_block bb)
2381{
b5b8b0ac
AO
2382 gimple_stmt_iterator i = gsi_last_bb (bb);
2383 gimple stmt = NULL;
2384
2385 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2386 {
2387 gsi_prev (&i);
2388 stmt = NULL;
2389 }
2390 return stmt;
6de9cd9a
DN
2391}
2392
6de9cd9a
DN
2393/* Return the last statement of an otherwise empty block. Return NULL
2394 if the block is totally empty, or if it contains more than one
2395 statement. */
2396
726a989a 2397gimple
6de9cd9a
DN
2398last_and_only_stmt (basic_block bb)
2399{
b5b8b0ac 2400 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
726a989a 2401 gimple last, prev;
6de9cd9a 2402
726a989a
RB
2403 if (gsi_end_p (i))
2404 return NULL;
6de9cd9a 2405
726a989a 2406 last = gsi_stmt (i);
b5b8b0ac 2407 gsi_prev_nondebug (&i);
726a989a 2408 if (gsi_end_p (i))
6de9cd9a
DN
2409 return last;
2410
2411 /* Empty statements should no longer appear in the instruction stream.
2412 Everything that might have appeared before should be deleted by
726a989a 2413 remove_useless_stmts, and the optimizers should just gsi_remove
6de9cd9a
DN
2414 instead of smashing with build_empty_stmt.
2415
2416 Thus the only thing that should appear here in a block containing
2417 one executable statement is a label. */
726a989a
RB
2418 prev = gsi_stmt (i);
2419 if (gimple_code (prev) == GIMPLE_LABEL)
6de9cd9a
DN
2420 return last;
2421 else
726a989a 2422 return NULL;
82b85a85 2423}
6de9cd9a 2424
4f7db7f7
KH
2425/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2426
2427static void
2428reinstall_phi_args (edge new_edge, edge old_edge)
2429{
9771b263 2430 edge_var_map_vector *v;
ea7e6d5a
AH
2431 edge_var_map *vm;
2432 int i;
726a989a 2433 gimple_stmt_iterator phis;
b8698a0f 2434
ea7e6d5a
AH
2435 v = redirect_edge_var_map_vector (old_edge);
2436 if (!v)
4f7db7f7 2437 return;
b8698a0f 2438
726a989a 2439 for (i = 0, phis = gsi_start_phis (new_edge->dest);
9771b263 2440 v->iterate (i, &vm) && !gsi_end_p (phis);
726a989a 2441 i++, gsi_next (&phis))
4f7db7f7 2442 {
726a989a 2443 gimple phi = gsi_stmt (phis);
ea7e6d5a
AH
2444 tree result = redirect_edge_var_map_result (vm);
2445 tree arg = redirect_edge_var_map_def (vm);
b8698a0f 2446
726a989a 2447 gcc_assert (result == gimple_phi_result (phi));
b8698a0f 2448
9e227d60 2449 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
4f7db7f7 2450 }
b8698a0f 2451
ea7e6d5a 2452 redirect_edge_var_map_clear (old_edge);
4f7db7f7
KH
2453}
2454
2a8a8292 2455/* Returns the basic block after which the new basic block created
b9a66240
ZD
2456 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2457 near its "logical" location. This is of most help to humans looking
2458 at debugging dumps. */
2459
2460static basic_block
2461split_edge_bb_loc (edge edge_in)
2462{
2463 basic_block dest = edge_in->dest;
88e24a5a 2464 basic_block dest_prev = dest->prev_bb;
b9a66240 2465
88e24a5a
RH
2466 if (dest_prev)
2467 {
2468 edge e = find_edge (dest_prev, dest);
2469 if (e && !(e->flags & EDGE_COMPLEX))
2470 return edge_in->src;
2471 }
2472 return dest_prev;
b9a66240
ZD
2473}
2474
6de9cd9a
DN
2475/* Split a (typically critical) edge EDGE_IN. Return the new block.
2476 Abort on abnormal edges. */
2477
2478static basic_block
726a989a 2479gimple_split_edge (edge edge_in)
6de9cd9a 2480{
4741d956 2481 basic_block new_bb, after_bb, dest;
6de9cd9a 2482 edge new_edge, e;
6de9cd9a
DN
2483
2484 /* Abnormal edges cannot be split. */
1e128c5f 2485 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
6de9cd9a 2486
6de9cd9a
DN
2487 dest = edge_in->dest;
2488
b9a66240 2489 after_bb = split_edge_bb_loc (edge_in);
6de9cd9a
DN
2490
2491 new_bb = create_empty_bb (after_bb);
b829f3fa
JH
2492 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2493 new_bb->count = edge_in->count;
6de9cd9a 2494 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
b829f3fa
JH
2495 new_edge->probability = REG_BR_PROB_BASE;
2496 new_edge->count = edge_in->count;
6de9cd9a 2497
1e128c5f 2498 e = redirect_edge_and_branch (edge_in, new_bb);
c7b852c8 2499 gcc_assert (e == edge_in);
4f7db7f7 2500 reinstall_phi_args (new_edge, e);
6de9cd9a
DN
2501
2502 return new_bb;
2503}
2504
70f34814
RG
2505
2506/* Verify properties of the address expression T with base object BASE. */
2507
2508static tree
2509verify_address (tree t, tree base)
2510{
2511 bool old_constant;
2512 bool old_side_effects;
2513 bool new_constant;
2514 bool new_side_effects;
2515
2516 old_constant = TREE_CONSTANT (t);
2517 old_side_effects = TREE_SIDE_EFFECTS (t);
2518
2519 recompute_tree_invariant_for_addr_expr (t);
2520 new_side_effects = TREE_SIDE_EFFECTS (t);
2521 new_constant = TREE_CONSTANT (t);
2522
2523 if (old_constant != new_constant)
2524 {
2525 error ("constant not recomputed when ADDR_EXPR changed");
2526 return t;
2527 }
2528 if (old_side_effects != new_side_effects)
2529 {
2530 error ("side effects not recomputed when ADDR_EXPR changed");
2531 return t;
2532 }
2533
2534 if (!(TREE_CODE (base) == VAR_DECL
2535 || TREE_CODE (base) == PARM_DECL
2536 || TREE_CODE (base) == RESULT_DECL))
2537 return NULL_TREE;
2538
2539 if (DECL_GIMPLE_REG_P (base))
2540 {
2541 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2542 return base;
2543 }
2544
2545 return NULL_TREE;
2546}
2547
6de9cd9a 2548/* Callback for walk_tree, check that all elements with address taken are
7a442a1d
SB
2549 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2550 inside a PHI node. */
6de9cd9a
DN
2551
2552static tree
2fbe90f2 2553verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
6de9cd9a
DN
2554{
2555 tree t = *tp, x;
2556
2557 if (TYPE_P (t))
2558 *walk_subtrees = 0;
6531d1be 2559
e8ca4159 2560 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2fbe90f2 2561#define CHECK_OP(N, MSG) \
e8ca4159 2562 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2fbe90f2 2563 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
6de9cd9a
DN
2564
2565 switch (TREE_CODE (t))
2566 {
2567 case SSA_NAME:
2568 if (SSA_NAME_IN_FREE_LIST (t))
2569 {
2570 error ("SSA name in freelist but still referenced");
2571 return *tp;
2572 }
2573 break;
2574
26de0bcb 2575 case INDIRECT_REF:
70f34814
RG
2576 error ("INDIRECT_REF in gimple IL");
2577 return t;
2578
2579 case MEM_REF:
26de0bcb 2580 x = TREE_OPERAND (t, 0);
38a178dd
RG
2581 if (!POINTER_TYPE_P (TREE_TYPE (x))
2582 || !is_gimple_mem_ref_addr (x))
26de0bcb 2583 {
d8a07487 2584 error ("invalid first operand of MEM_REF");
26de0bcb
AP
2585 return x;
2586 }
70f34814
RG
2587 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2588 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2589 {
d8a07487 2590 error ("invalid offset operand of MEM_REF");
70f34814
RG
2591 return TREE_OPERAND (t, 1);
2592 }
2593 if (TREE_CODE (x) == ADDR_EXPR
2594 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2595 return x;
2596 *walk_subtrees = 0;
26de0bcb
AP
2597 break;
2598
0bca51f0
DN
2599 case ASSERT_EXPR:
2600 x = fold (ASSERT_EXPR_COND (t));
2601 if (x == boolean_false_node)
2602 {
2603 error ("ASSERT_EXPR with an always-false condition");
2604 return *tp;
2605 }
2606 break;
2607
6de9cd9a 2608 case MODIFY_EXPR:
d8a07487 2609 error ("MODIFY_EXPR not expected while having tuples");
e57fcb68 2610 return *tp;
6de9cd9a
DN
2611
2612 case ADDR_EXPR:
81fc3052 2613 {
70f34814 2614 tree tem;
81fc3052 2615
51eed280
PB
2616 gcc_assert (is_gimple_address (t));
2617
81fc3052
DB
2618 /* Skip any references (they will be checked when we recurse down the
2619 tree) and ensure that any variable used as a prefix is marked
2620 addressable. */
2621 for (x = TREE_OPERAND (t, 0);
2622 handled_component_p (x);
2623 x = TREE_OPERAND (x, 0))
2624 ;
2625
70f34814
RG
2626 if ((tem = verify_address (t, x)))
2627 return tem;
2628
5006671f
RG
2629 if (!(TREE_CODE (x) == VAR_DECL
2630 || TREE_CODE (x) == PARM_DECL
2631 || TREE_CODE (x) == RESULT_DECL))
81fc3052 2632 return NULL;
70f34814 2633
81fc3052
DB
2634 if (!TREE_ADDRESSABLE (x))
2635 {
2636 error ("address taken, but ADDRESSABLE bit not set");
2637 return x;
2638 }
bdb69bee 2639
81fc3052
DB
2640 break;
2641 }
6de9cd9a
DN
2642
2643 case COND_EXPR:
a6234684 2644 x = COND_EXPR_COND (t);
d40055ab 2645 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
6de9cd9a 2646 {
d40055ab 2647 error ("non-integral used in condition");
6de9cd9a
DN
2648 return x;
2649 }
9c691961
AP
2650 if (!is_gimple_condexpr (x))
2651 {
ab532386 2652 error ("invalid conditional operand");
9c691961
AP
2653 return x;
2654 }
6de9cd9a
DN
2655 break;
2656
a134e5f3 2657 case NON_LVALUE_EXPR:
53020648
RG
2658 case TRUTH_NOT_EXPR:
2659 gcc_unreachable ();
a134e5f3 2660
1043771b 2661 CASE_CONVERT:
6de9cd9a 2662 case FIX_TRUNC_EXPR:
6de9cd9a
DN
2663 case FLOAT_EXPR:
2664 case NEGATE_EXPR:
2665 case ABS_EXPR:
2666 case BIT_NOT_EXPR:
ab532386 2667 CHECK_OP (0, "invalid operand to unary operator");
6de9cd9a
DN
2668 break;
2669
2670 case REALPART_EXPR:
2671 case IMAGPART_EXPR:
2fbe90f2
RK
2672 case COMPONENT_REF:
2673 case ARRAY_REF:
2674 case ARRAY_RANGE_REF:
2675 case BIT_FIELD_REF:
2676 case VIEW_CONVERT_EXPR:
2677 /* We have a nest of references. Verify that each of the operands
2678 that determine where to reference is either a constant or a variable,
2679 verify that the base is valid, and then show we've already checked
2680 the subtrees. */
afe84921 2681 while (handled_component_p (t))
2fbe90f2
RK
2682 {
2683 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
ab532386 2684 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2fbe90f2
RK
2685 else if (TREE_CODE (t) == ARRAY_REF
2686 || TREE_CODE (t) == ARRAY_RANGE_REF)
2687 {
ab532386 2688 CHECK_OP (1, "invalid array index");
2fbe90f2 2689 if (TREE_OPERAND (t, 2))
ab532386 2690 CHECK_OP (2, "invalid array lower bound");
2fbe90f2 2691 if (TREE_OPERAND (t, 3))
ab532386 2692 CHECK_OP (3, "invalid array stride");
2fbe90f2
RK
2693 }
2694 else if (TREE_CODE (t) == BIT_FIELD_REF)
2695 {
e55f42fb
RG
2696 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2697 || !host_integerp (TREE_OPERAND (t, 2), 1))
2698 {
2699 error ("invalid position or size operand to BIT_FIELD_REF");
2700 return t;
2701 }
3f5f6592
RG
2702 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2703 && (TYPE_PRECISION (TREE_TYPE (t))
2704 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
fc0f49f3
RG
2705 {
2706 error ("integral result type precision does not match "
2707 "field size of BIT_FIELD_REF");
2708 return t;
2709 }
3f5f6592
RG
2710 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2711 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2712 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
fc0f49f3
RG
2715 {
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2718 return t;
2719 }
2fbe90f2
RK
2720 }
2721
2722 t = TREE_OPERAND (t, 0);
2723 }
2724
bb0c55f6 2725 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2fbe90f2 2726 {
ab532386 2727 error ("invalid reference prefix");
2fbe90f2
RK
2728 return t;
2729 }
2730 *walk_subtrees = 0;
6de9cd9a 2731 break;
5be014d5
AP
2732 case PLUS_EXPR:
2733 case MINUS_EXPR:
2734 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2735 POINTER_PLUS_EXPR. */
2736 if (POINTER_TYPE_P (TREE_TYPE (t)))
2737 {
2738 error ("invalid operand to plus/minus, type is a pointer");
2739 return t;
2740 }
2741 CHECK_OP (0, "invalid operand to binary operator");
2742 CHECK_OP (1, "invalid operand to binary operator");
2743 break;
6de9cd9a 2744
5be014d5
AP
2745 case POINTER_PLUS_EXPR:
2746 /* Check to make sure the first operand is a pointer or reference type. */
2747 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2748 {
2749 error ("invalid operand to pointer plus, first operand is not a pointer");
2750 return t;
2751 }
370f4759
RG
2752 /* Check to make sure the second operand is a ptrofftype. */
2753 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
5be014d5
AP
2754 {
2755 error ("invalid operand to pointer plus, second operand is not an "
370f4759 2756 "integer type of appropriate width");
5be014d5
AP
2757 return t;
2758 }
2759 /* FALLTHROUGH */
6de9cd9a
DN
2760 case LT_EXPR:
2761 case LE_EXPR:
2762 case GT_EXPR:
2763 case GE_EXPR:
2764 case EQ_EXPR:
2765 case NE_EXPR:
2766 case UNORDERED_EXPR:
2767 case ORDERED_EXPR:
2768 case UNLT_EXPR:
2769 case UNLE_EXPR:
2770 case UNGT_EXPR:
2771 case UNGE_EXPR:
2772 case UNEQ_EXPR:
d1a7edaf 2773 case LTGT_EXPR:
6de9cd9a
DN
2774 case MULT_EXPR:
2775 case TRUNC_DIV_EXPR:
2776 case CEIL_DIV_EXPR:
2777 case FLOOR_DIV_EXPR:
2778 case ROUND_DIV_EXPR:
2779 case TRUNC_MOD_EXPR:
2780 case CEIL_MOD_EXPR:
2781 case FLOOR_MOD_EXPR:
2782 case ROUND_MOD_EXPR:
2783 case RDIV_EXPR:
2784 case EXACT_DIV_EXPR:
2785 case MIN_EXPR:
2786 case MAX_EXPR:
2787 case LSHIFT_EXPR:
2788 case RSHIFT_EXPR:
2789 case LROTATE_EXPR:
2790 case RROTATE_EXPR:
2791 case BIT_IOR_EXPR:
2792 case BIT_XOR_EXPR:
2793 case BIT_AND_EXPR:
ab532386
JM
2794 CHECK_OP (0, "invalid operand to binary operator");
2795 CHECK_OP (1, "invalid operand to binary operator");
6de9cd9a
DN
2796 break;
2797
84816907
JM
2798 case CONSTRUCTOR:
2799 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2800 *walk_subtrees = 0;
2801 break;
2802
eb9f9259
NF
2803 case CASE_LABEL_EXPR:
2804 if (CASE_CHAIN (t))
2805 {
2806 error ("invalid CASE_CHAIN");
2807 return t;
2808 }
2809 break;
2810
6de9cd9a
DN
2811 default:
2812 break;
2813 }
2814 return NULL;
2fbe90f2
RK
2815
2816#undef CHECK_OP
6de9cd9a
DN
2817}
2818
7e98624c
RG
2819
2820/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2821 Returns true if there is an error, otherwise false. */
2822
2823static bool
726a989a 2824verify_types_in_gimple_min_lval (tree expr)
7e98624c
RG
2825{
2826 tree op;
2827
2828 if (is_gimple_id (expr))
2829 return false;
2830
be1ac4ec 2831 if (TREE_CODE (expr) != TARGET_MEM_REF
70f34814 2832 && TREE_CODE (expr) != MEM_REF)
7e98624c
RG
2833 {
2834 error ("invalid expression for min lvalue");
2835 return true;
2836 }
2837
9f509004
RG
2838 /* TARGET_MEM_REFs are strange beasts. */
2839 if (TREE_CODE (expr) == TARGET_MEM_REF)
2840 return false;
2841
7e98624c
RG
2842 op = TREE_OPERAND (expr, 0);
2843 if (!is_gimple_val (op))
2844 {
2845 error ("invalid operand in indirect reference");
2846 debug_generic_stmt (op);
2847 return true;
2848 }
70f34814 2849 /* Memory references now generally can involve a value conversion. */
7e98624c
RG
2850
2851 return false;
2852}
2853
3a19701a
RG
2854/* Verify if EXPR is a valid GIMPLE reference expression. If
2855 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
7e98624c
RG
2856 if there is an error, otherwise false. */
2857
2858static bool
3a19701a 2859verify_types_in_gimple_reference (tree expr, bool require_lvalue)
7e98624c
RG
2860{
2861 while (handled_component_p (expr))
2862 {
2863 tree op = TREE_OPERAND (expr, 0);
2864
2865 if (TREE_CODE (expr) == ARRAY_REF
2866 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2867 {
2868 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2869 || (TREE_OPERAND (expr, 2)
2870 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2871 || (TREE_OPERAND (expr, 3)
2872 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2873 {
2874 error ("invalid operands to array reference");
2875 debug_generic_stmt (expr);
2876 return true;
2877 }
2878 }
2879
2880 /* Verify if the reference array element types are compatible. */
2881 if (TREE_CODE (expr) == ARRAY_REF
2882 && !useless_type_conversion_p (TREE_TYPE (expr),
2883 TREE_TYPE (TREE_TYPE (op))))
2884 {
2885 error ("type mismatch in array reference");
2886 debug_generic_stmt (TREE_TYPE (expr));
2887 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2888 return true;
2889 }
2890 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2891 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2892 TREE_TYPE (TREE_TYPE (op))))
2893 {
2894 error ("type mismatch in array range reference");
2895 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2896 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2897 return true;
2898 }
2899
2900 if ((TREE_CODE (expr) == REALPART_EXPR
2901 || TREE_CODE (expr) == IMAGPART_EXPR)
2902 && !useless_type_conversion_p (TREE_TYPE (expr),
2903 TREE_TYPE (TREE_TYPE (op))))
2904 {
2905 error ("type mismatch in real/imagpart reference");
2906 debug_generic_stmt (TREE_TYPE (expr));
2907 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2908 return true;
2909 }
2910
2911 if (TREE_CODE (expr) == COMPONENT_REF
2912 && !useless_type_conversion_p (TREE_TYPE (expr),
2913 TREE_TYPE (TREE_OPERAND (expr, 1))))
2914 {
2915 error ("type mismatch in component reference");
2916 debug_generic_stmt (TREE_TYPE (expr));
2917 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2918 return true;
2919 }
2920
cc12e760
MJ
2921 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2922 {
2923 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2924 that their operand is not an SSA name or an invariant when
2925 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2926 bug). Otherwise there is nothing to verify, gross mismatches at
2927 most invoke undefined behavior. */
2928 if (require_lvalue
2929 && (TREE_CODE (op) == SSA_NAME
2930 || is_gimple_min_invariant (op)))
2931 {
d8a07487 2932 error ("conversion of an SSA_NAME on the left hand side");
cc12e760
MJ
2933 debug_generic_stmt (expr);
2934 return true;
2935 }
70f34814
RG
2936 else if (TREE_CODE (op) == SSA_NAME
2937 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2938 {
d8a07487 2939 error ("conversion of register to a different size");
70f34814
RG
2940 debug_generic_stmt (expr);
2941 return true;
2942 }
cc12e760
MJ
2943 else if (!handled_component_p (op))
2944 return false;
2945 }
7e98624c
RG
2946
2947 expr = op;
2948 }
2949
70f34814
RG
2950 if (TREE_CODE (expr) == MEM_REF)
2951 {
2952 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2953 {
d8a07487 2954 error ("invalid address operand in MEM_REF");
70f34814
RG
2955 debug_generic_stmt (expr);
2956 return true;
2957 }
2958 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2959 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2960 {
d8a07487 2961 error ("invalid offset operand in MEM_REF");
70f34814
RG
2962 debug_generic_stmt (expr);
2963 return true;
2964 }
2965 }
4b228e61
RG
2966 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2967 {
4d948885
RG
2968 if (!TMR_BASE (expr)
2969 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
23a534a1 2970 {
cff41484 2971 error ("invalid address operand in TARGET_MEM_REF");
23a534a1
RG
2972 return true;
2973 }
4b228e61
RG
2974 if (!TMR_OFFSET (expr)
2975 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2976 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2977 {
d8a07487 2978 error ("invalid offset operand in TARGET_MEM_REF");
4b228e61
RG
2979 debug_generic_stmt (expr);
2980 return true;
2981 }
2982 }
70f34814 2983
3a19701a
RG
2984 return ((require_lvalue || !is_gimple_min_invariant (expr))
2985 && verify_types_in_gimple_min_lval (expr));
7e98624c
RG
2986}
2987
20dcff2a
RG
2988/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2989 list of pointer-to types that is trivially convertible to DEST. */
2990
2991static bool
2992one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2993{
2994 tree src;
2995
2996 if (!TYPE_POINTER_TO (src_obj))
2997 return true;
2998
2999 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3000 if (useless_type_conversion_p (dest, src))
3001 return true;
3002
3003 return false;
3004}
3005
726a989a
RB
3006/* Return true if TYPE1 is a fixed-point type and if conversions to and
3007 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3008
3009static bool
3010valid_fixed_convert_types_p (tree type1, tree type2)
3011{
3012 return (FIXED_POINT_TYPE_P (type1)
3013 && (INTEGRAL_TYPE_P (type2)
3014 || SCALAR_FLOAT_TYPE_P (type2)
3015 || FIXED_POINT_TYPE_P (type2)));
3016}
3017
726a989a
RB
3018/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3019 is a problem, otherwise false. */
3020
3021static bool
b59d3976 3022verify_gimple_call (gimple stmt)
726a989a 3023{
b59d3976 3024 tree fn = gimple_call_fn (stmt);
34019e28 3025 tree fntype, fndecl;
f68a75df
RG
3026 unsigned i;
3027
25583c4f
RS
3028 if (gimple_call_internal_p (stmt))
3029 {
3030 if (fn)
3031 {
3032 error ("gimple call has two targets");
3033 debug_generic_stmt (fn);
3034 return true;
3035 }
3036 }
3037 else
3038 {
3039 if (!fn)
3040 {
3041 error ("gimple call has no target");
3042 return true;
3043 }
3044 }
3045
3046 if (fn && !is_gimple_call_addr (fn))
f68a75df
RG
3047 {
3048 error ("invalid function in gimple call");
3049 debug_generic_stmt (fn);
3050 return true;
3051 }
726a989a 3052
25583c4f
RS
3053 if (fn
3054 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3055 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3056 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
b59d3976
RG
3057 {
3058 error ("non-function in gimple call");
3059 return true;
3060 }
726a989a 3061
34019e28
RG
3062 fndecl = gimple_call_fndecl (stmt);
3063 if (fndecl
3064 && TREE_CODE (fndecl) == FUNCTION_DECL
3065 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3066 && !DECL_PURE_P (fndecl)
3067 && !TREE_READONLY (fndecl))
3068 {
3069 error ("invalid pure const state for function");
3070 return true;
3071 }
3072
b59d3976 3073 if (gimple_call_lhs (stmt)
cc12e760
MJ
3074 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3075 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
b59d3976
RG
3076 {
3077 error ("invalid LHS in gimple call");
3078 return true;
3079 }
726a989a 3080
5de8da9b
AO
3081 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3082 {
3083 error ("LHS in noreturn call");
3084 return true;
3085 }
3086
9bfc434b 3087 fntype = gimple_call_fntype (stmt);
25583c4f
RS
3088 if (fntype
3089 && gimple_call_lhs (stmt)
b59d3976
RG
3090 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3091 TREE_TYPE (fntype))
3092 /* ??? At least C++ misses conversions at assignments from
3093 void * call results.
3094 ??? Java is completely off. Especially with functions
3095 returning java.lang.Object.
3096 For now simply allow arbitrary pointer type conversions. */
3097 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3098 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3099 {
3100 error ("invalid conversion in gimple call");
3101 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3102 debug_generic_stmt (TREE_TYPE (fntype));
3103 return true;
3104 }
726a989a 3105
f68a75df
RG
3106 if (gimple_call_chain (stmt)
3107 && !is_gimple_val (gimple_call_chain (stmt)))
3108 {
3109 error ("invalid static chain in gimple call");
3110 debug_generic_stmt (gimple_call_chain (stmt));
3111 return true;
3112 }
3113
fe663f4e 3114 /* If there is a static chain argument, this should not be an indirect
9f62cb92 3115 call, and the decl should have DECL_STATIC_CHAIN set. */
fe663f4e
RH
3116 if (gimple_call_chain (stmt))
3117 {
1b0e3802 3118 if (!gimple_call_fndecl (stmt))
fe663f4e
RH
3119 {
3120 error ("static chain in indirect gimple call");
3121 return true;
3122 }
3123 fn = TREE_OPERAND (fn, 0);
3124
9f62cb92 3125 if (!DECL_STATIC_CHAIN (fn))
fe663f4e 3126 {
d8a07487 3127 error ("static chain with function that doesn%'t use one");
fe663f4e
RH
3128 return true;
3129 }
3130 }
3131
b59d3976
RG
3132 /* ??? The C frontend passes unpromoted arguments in case it
3133 didn't see a function declaration before the call. So for now
f68a75df 3134 leave the call arguments mostly unverified. Once we gimplify
b59d3976 3135 unit-at-a-time we have a chance to fix this. */
726a989a 3136
f68a75df
RG
3137 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3138 {
3139 tree arg = gimple_call_arg (stmt, i);
523968bf
RG
3140 if ((is_gimple_reg_type (TREE_TYPE (arg))
3141 && !is_gimple_val (arg))
3142 || (!is_gimple_reg_type (TREE_TYPE (arg))
3143 && !is_gimple_lvalue (arg)))
f68a75df
RG
3144 {
3145 error ("invalid argument to gimple call");
3146 debug_generic_expr (arg);
8957a0ec 3147 return true;
f68a75df
RG
3148 }
3149 }
3150
b59d3976 3151 return false;
726a989a
RB
3152}
3153
b59d3976
RG
3154/* Verifies the gimple comparison with the result type TYPE and
3155 the operands OP0 and OP1. */
17d23165
RS
3156
3157static bool
b59d3976 3158verify_gimple_comparison (tree type, tree op0, tree op1)
17d23165 3159{
b59d3976
RG
3160 tree op0_type = TREE_TYPE (op0);
3161 tree op1_type = TREE_TYPE (op1);
726a989a 3162
b59d3976
RG
3163 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3164 {
3165 error ("invalid operands in gimple comparison");
3166 return true;
3167 }
17d23165 3168
b59d3976
RG
3169 /* For comparisons we do not have the operations type as the
3170 effective type the comparison is carried out in. Instead
3171 we require that either the first operand is trivially
3172 convertible into the second, or the other way around.
b59d3976
RG
3173 Because we special-case pointers to void we allow
3174 comparisons of pointers with the same mode as well. */
544d960a
AS
3175 if (!useless_type_conversion_p (op0_type, op1_type)
3176 && !useless_type_conversion_p (op1_type, op0_type)
3177 && (!POINTER_TYPE_P (op0_type)
3178 || !POINTER_TYPE_P (op1_type)
3179 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3180 {
3181 error ("mismatching comparison operand types");
b59d3976
RG
3182 debug_generic_expr (op0_type);
3183 debug_generic_expr (op1_type);
3184 return true;
3185 }
3186
544d960a
AS
3187 /* The resulting type of a comparison may be an effective boolean type. */
3188 if (INTEGRAL_TYPE_P (type)
3189 && (TREE_CODE (type) == BOOLEAN_TYPE
3190 || TYPE_PRECISION (type) == 1))
d8d638d9
MG
3191 {
3192 if (TREE_CODE (op0_type) == VECTOR_TYPE
3193 || TREE_CODE (op1_type) == VECTOR_TYPE)
3194 {
3195 error ("vector comparison returning a boolean");
3196 debug_generic_expr (op0_type);
3197 debug_generic_expr (op1_type);
3198 return true;
3199 }
3200 }
544d960a
AS
3201 /* Or an integer vector type with the same size and element count
3202 as the comparison operand types. */
3203 else if (TREE_CODE (type) == VECTOR_TYPE
3204 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3205 {
3206 if (TREE_CODE (op0_type) != VECTOR_TYPE
3207 || TREE_CODE (op1_type) != VECTOR_TYPE)
3208 {
3209 error ("non-vector operands in vector comparison");
3210 debug_generic_expr (op0_type);
3211 debug_generic_expr (op1_type);
3212 return true;
3213 }
3214
3215 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
ccb3dd5a 3216 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
74946978
MP
3217 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3218 /* The result of a vector comparison is of signed
3219 integral type. */
3220 || TYPE_UNSIGNED (TREE_TYPE (type)))
544d960a
AS
3221 {
3222 error ("invalid vector comparison resulting type");
3223 debug_generic_expr (type);
3224 return true;
3225 }
3226 }
3227 else
3228 {
3229 error ("bogus comparison result type");
3230 debug_generic_expr (type);
3231 return true;
3232 }
3233
b59d3976
RG
3234 return false;
3235}
726a989a 3236
9f509004
RG
3237/* Verify a gimple assignment statement STMT with an unary rhs.
3238 Returns true if anything is wrong. */
7e98624c
RG
3239
3240static bool
9f509004 3241verify_gimple_assign_unary (gimple stmt)
7e98624c 3242{
726a989a
RB
3243 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3244 tree lhs = gimple_assign_lhs (stmt);
726a989a 3245 tree lhs_type = TREE_TYPE (lhs);
9f509004 3246 tree rhs1 = gimple_assign_rhs1 (stmt);
726a989a 3247 tree rhs1_type = TREE_TYPE (rhs1);
7e98624c 3248
afdac116 3249 if (!is_gimple_reg (lhs))
9f509004
RG
3250 {
3251 error ("non-register as LHS of unary operation");
3252 return true;
3253 }
3254
3255 if (!is_gimple_val (rhs1))
3256 {
3257 error ("invalid operand in unary operation");
3258 return true;
3259 }
3260
3261 /* First handle conversions. */
726a989a 3262 switch (rhs_code)
7e98624c 3263 {
1043771b 3264 CASE_CONVERT:
7e98624c 3265 {
c1d9cb02 3266 /* Allow conversions from pointer type to integral type only if
9f509004 3267 there is no sign or zero extension involved.
0d82a1c8 3268 For targets were the precision of ptrofftype doesn't match that
c1d9cb02 3269 of pointers we need to allow arbitrary conversions to ptrofftype. */
9f509004 3270 if ((POINTER_TYPE_P (lhs_type)
c1d9cb02 3271 && INTEGRAL_TYPE_P (rhs1_type))
9f509004
RG
3272 || (POINTER_TYPE_P (rhs1_type)
3273 && INTEGRAL_TYPE_P (lhs_type)
3274 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
0d82a1c8 3275 || ptrofftype_p (sizetype))))
7e98624c
RG
3276 return false;
3277
819f3b2c 3278 /* Allow conversion from integral to offset type and vice versa. */
726a989a 3279 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
819f3b2c 3280 && INTEGRAL_TYPE_P (rhs1_type))
72d5c6c1
RG
3281 || (INTEGRAL_TYPE_P (lhs_type)
3282 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
7e98624c
RG
3283 return false;
3284
3285 /* Otherwise assert we are converting between types of the
3286 same kind. */
726a989a 3287 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
7e98624c
RG
3288 {
3289 error ("invalid types in nop conversion");
726a989a
RB
3290 debug_generic_expr (lhs_type);
3291 debug_generic_expr (rhs1_type);
7e98624c
RG
3292 return true;
3293 }
3294
3295 return false;
3296 }
3297
09e881c9
BE
3298 case ADDR_SPACE_CONVERT_EXPR:
3299 {
3300 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3301 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3302 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3303 {
3304 error ("invalid types in address space conversion");
3305 debug_generic_expr (lhs_type);
3306 debug_generic_expr (rhs1_type);
3307 return true;
3308 }
3309
3310 return false;
3311 }
3312
17d23165
RS
3313 case FIXED_CONVERT_EXPR:
3314 {
726a989a
RB
3315 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3316 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
17d23165
RS
3317 {
3318 error ("invalid types in fixed-point conversion");
726a989a
RB
3319 debug_generic_expr (lhs_type);
3320 debug_generic_expr (rhs1_type);
17d23165
RS
3321 return true;
3322 }
3323
3324 return false;
3325 }
3326
7e98624c
RG
3327 case FLOAT_EXPR:
3328 {
9db8f45d
DP
3329 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3330 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3331 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
7e98624c
RG
3332 {
3333 error ("invalid types in conversion to floating point");
726a989a
RB
3334 debug_generic_expr (lhs_type);
3335 debug_generic_expr (rhs1_type);
7e98624c
RG
3336 return true;
3337 }
726a989a 3338
7e98624c
RG
3339 return false;
3340 }
3341
3342 case FIX_TRUNC_EXPR:
3343 {
9db8f45d
DP
3344 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3345 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3346 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
7e98624c
RG
3347 {
3348 error ("invalid types in conversion to integer");
726a989a
RB
3349 debug_generic_expr (lhs_type);
3350 debug_generic_expr (rhs1_type);
7e98624c
RG
3351 return true;
3352 }
726a989a 3353
7e98624c
RG
3354 return false;
3355 }
3356
587aa063
RG
3357 case VEC_UNPACK_HI_EXPR:
3358 case VEC_UNPACK_LO_EXPR:
3359 case REDUC_MAX_EXPR:
3360 case REDUC_MIN_EXPR:
3361 case REDUC_PLUS_EXPR:
3362 case VEC_UNPACK_FLOAT_HI_EXPR:
3363 case VEC_UNPACK_FLOAT_LO_EXPR:
3364 /* FIXME. */
3365 return false;
9f509004
RG
3366
3367 case NEGATE_EXPR:
3368 case ABS_EXPR:
3369 case BIT_NOT_EXPR:
3370 case PAREN_EXPR:
3371 case NON_LVALUE_EXPR:
3372 case CONJ_EXPR:
9f509004
RG
3373 break;
3374
3375 default:
3376 gcc_unreachable ();
3377 }
3378
3379 /* For the remaining codes assert there is no conversion involved. */
3380 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3381 {
3382 error ("non-trivial conversion in unary operation");
3383 debug_generic_expr (lhs_type);
3384 debug_generic_expr (rhs1_type);
3385 return true;
3386 }
3387
3388 return false;
3389}
3390
3391/* Verify a gimple assignment statement STMT with a binary rhs.
3392 Returns true if anything is wrong. */
3393
3394static bool
3395verify_gimple_assign_binary (gimple stmt)
3396{
3397 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3398 tree lhs = gimple_assign_lhs (stmt);
3399 tree lhs_type = TREE_TYPE (lhs);
3400 tree rhs1 = gimple_assign_rhs1 (stmt);
3401 tree rhs1_type = TREE_TYPE (rhs1);
3402 tree rhs2 = gimple_assign_rhs2 (stmt);
3403 tree rhs2_type = TREE_TYPE (rhs2);
3404
afdac116 3405 if (!is_gimple_reg (lhs))
9f509004
RG
3406 {
3407 error ("non-register as LHS of binary operation");
3408 return true;
3409 }
726a989a 3410
9f509004
RG
3411 if (!is_gimple_val (rhs1)
3412 || !is_gimple_val (rhs2))
3413 {
3414 error ("invalid operands in binary operation");
3415 return true;
3416 }
3417
3418 /* First handle operations that involve different types. */
3419 switch (rhs_code)
3420 {
3421 case COMPLEX_EXPR:
3422 {
3423 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3424 || !(INTEGRAL_TYPE_P (rhs1_type)
726a989a 3425 || SCALAR_FLOAT_TYPE_P (rhs1_type))
9f509004 3426 || !(INTEGRAL_TYPE_P (rhs2_type)
726a989a 3427 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
7e98624c
RG
3428 {
3429 error ("type mismatch in complex expression");
726a989a
RB
3430 debug_generic_expr (lhs_type);
3431 debug_generic_expr (rhs1_type);
3432 debug_generic_expr (rhs2_type);
7e98624c
RG
3433 return true;
3434 }
726a989a 3435
7e98624c
RG
3436 return false;
3437 }
3438
7e98624c
RG
3439 case LSHIFT_EXPR:
3440 case RSHIFT_EXPR:
3441 case LROTATE_EXPR:
3442 case RROTATE_EXPR:
3443 {
587aa063
RG
3444 /* Shifts and rotates are ok on integral types, fixed point
3445 types and integer vector types. */
3446 if ((!INTEGRAL_TYPE_P (rhs1_type)
3447 && !FIXED_POINT_TYPE_P (rhs1_type)
3448 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
bf8e3b77 3449 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
587aa063
RG
3450 || (!INTEGRAL_TYPE_P (rhs2_type)
3451 /* Vector shifts of vectors are also ok. */
3452 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
bf8e3b77 3453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
587aa063 3454 && TREE_CODE (rhs2_type) == VECTOR_TYPE
bf8e3b77 3455 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
726a989a 3456 || !useless_type_conversion_p (lhs_type, rhs1_type))
7e98624c
RG
3457 {
3458 error ("type mismatch in shift expression");
726a989a
RB
3459 debug_generic_expr (lhs_type);
3460 debug_generic_expr (rhs1_type);
3461 debug_generic_expr (rhs2_type);
7e98624c
RG
3462 return true;
3463 }
726a989a 3464
7e98624c
RG
3465 return false;
3466 }
3467
9f509004
RG
3468 case VEC_LSHIFT_EXPR:
3469 case VEC_RSHIFT_EXPR:
7e98624c 3470 {
9f509004 3471 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
0009b473 3472 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
65dcb901 3473 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
1fe479fd
RG
3474 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3475 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
9f509004
RG
3476 || (!INTEGRAL_TYPE_P (rhs2_type)
3477 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3478 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3479 || !useless_type_conversion_p (lhs_type, rhs1_type))
7e98624c 3480 {
9f509004
RG
3481 error ("type mismatch in vector shift expression");
3482 debug_generic_expr (lhs_type);
3483 debug_generic_expr (rhs1_type);
3484 debug_generic_expr (rhs2_type);
7e98624c
RG
3485 return true;
3486 }
65dcb901 3487 /* For shifting a vector of non-integral components we
1fe479fd 3488 only allow shifting by a constant multiple of the element size. */
65dcb901 3489 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
1fe479fd
RG
3490 && (TREE_CODE (rhs2) != INTEGER_CST
3491 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3492 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3493 {
3494 error ("non-element sized vector shift of floating point vector");
3495 return true;
3496 }
726a989a 3497
9f509004 3498 return false;
7e98624c
RG
3499 }
3500
36ba4aae
IR
3501 case WIDEN_LSHIFT_EXPR:
3502 {
3503 if (!INTEGRAL_TYPE_P (lhs_type)
3504 || !INTEGRAL_TYPE_P (rhs1_type)
3505 || TREE_CODE (rhs2) != INTEGER_CST
3506 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3507 {
3508 error ("type mismatch in widening vector shift expression");
3509 debug_generic_expr (lhs_type);
3510 debug_generic_expr (rhs1_type);
3511 debug_generic_expr (rhs2_type);
3512 return true;
3513 }
3514
3515 return false;
3516 }
3517
3518 case VEC_WIDEN_LSHIFT_HI_EXPR:
3519 case VEC_WIDEN_LSHIFT_LO_EXPR:
3520 {
3521 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3522 || TREE_CODE (lhs_type) != VECTOR_TYPE
3523 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3524 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3525 || TREE_CODE (rhs2) != INTEGER_CST
3526 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3527 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3528 {
3529 error ("type mismatch in widening vector shift expression");
3530 debug_generic_expr (lhs_type);
3531 debug_generic_expr (rhs1_type);
3532 debug_generic_expr (rhs2_type);
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538
646bea10 3539 case PLUS_EXPR:
cc99c5fe 3540 case MINUS_EXPR:
646bea10 3541 {
cc99c5fe 3542 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
646bea10
RG
3543 ??? This just makes the checker happy and may not be what is
3544 intended. */
3545 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3546 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3547 {
3548 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3549 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3550 {
3551 error ("invalid non-vector operands to vector valued plus");
3552 return true;
3553 }
3554 lhs_type = TREE_TYPE (lhs_type);
3555 rhs1_type = TREE_TYPE (rhs1_type);
3556 rhs2_type = TREE_TYPE (rhs2_type);
3557 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3558 the pointer to 2nd place. */
3559 if (POINTER_TYPE_P (rhs2_type))
3560 {
3561 tree tem = rhs1_type;
3562 rhs1_type = rhs2_type;
3563 rhs2_type = tem;
3564 }
3565 goto do_pointer_plus_expr_check;
3566 }
646bea10
RG
3567 if (POINTER_TYPE_P (lhs_type)
3568 || POINTER_TYPE_P (rhs1_type)
3569 || POINTER_TYPE_P (rhs2_type))
3570 {
3571 error ("invalid (pointer) operands to plus/minus");
3572 return true;
3573 }
3574
3575 /* Continue with generic binary expression handling. */
3576 break;
3577 }
3578
7e98624c
RG
3579 case POINTER_PLUS_EXPR:
3580 {
646bea10 3581do_pointer_plus_expr_check:
726a989a
RB
3582 if (!POINTER_TYPE_P (rhs1_type)
3583 || !useless_type_conversion_p (lhs_type, rhs1_type)
370f4759 3584 || !ptrofftype_p (rhs2_type))
7e98624c
RG
3585 {
3586 error ("type mismatch in pointer plus expression");
726a989a
RB
3587 debug_generic_stmt (lhs_type);
3588 debug_generic_stmt (rhs1_type);
3589 debug_generic_stmt (rhs2_type);
7e98624c
RG
3590 return true;
3591 }
7e98624c 3592
726a989a 3593 return false;
b8698a0f 3594 }
7e98624c 3595
7e98624c
RG
3596 case TRUTH_ANDIF_EXPR:
3597 case TRUTH_ORIF_EXPR:
3598 case TRUTH_AND_EXPR:
3599 case TRUTH_OR_EXPR:
3600 case TRUTH_XOR_EXPR:
7e98624c 3601
da5fb469 3602 gcc_unreachable ();
7e98624c 3603
9f509004
RG
3604 case LT_EXPR:
3605 case LE_EXPR:
3606 case GT_EXPR:
3607 case GE_EXPR:
3608 case EQ_EXPR:
3609 case NE_EXPR:
3610 case UNORDERED_EXPR:
3611 case ORDERED_EXPR:
3612 case UNLT_EXPR:
3613 case UNLE_EXPR:
3614 case UNGT_EXPR:
3615 case UNGE_EXPR:
3616 case UNEQ_EXPR:
3617 case LTGT_EXPR:
3618 /* Comparisons are also binary, but the result type is not
3619 connected to the operand types. */
3620 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
7e98624c 3621
587aa063 3622 case WIDEN_MULT_EXPR:
5b58b39b
BS
3623 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3624 return true;
5dfe80ba 3625 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
5b58b39b
BS
3626 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3627
3628 case WIDEN_SUM_EXPR:
587aa063
RG
3629 case VEC_WIDEN_MULT_HI_EXPR:
3630 case VEC_WIDEN_MULT_LO_EXPR:
3f30a9a6
RH
3631 case VEC_WIDEN_MULT_EVEN_EXPR:
3632 case VEC_WIDEN_MULT_ODD_EXPR:
587aa063
RG
3633 case VEC_PACK_TRUNC_EXPR:
3634 case VEC_PACK_SAT_EXPR:
3635 case VEC_PACK_FIX_TRUNC_EXPR:
587aa063
RG
3636 /* FIXME. */
3637 return false;
3638
9f509004 3639 case MULT_EXPR:
98449720 3640 case MULT_HIGHPART_EXPR:
9f509004
RG
3641 case TRUNC_DIV_EXPR:
3642 case CEIL_DIV_EXPR:
3643 case FLOOR_DIV_EXPR:
3644 case ROUND_DIV_EXPR:
3645 case TRUNC_MOD_EXPR:
3646 case CEIL_MOD_EXPR:
3647 case FLOOR_MOD_EXPR:
3648 case ROUND_MOD_EXPR:
3649 case RDIV_EXPR:
3650 case EXACT_DIV_EXPR:
3651 case MIN_EXPR:
3652 case MAX_EXPR:
3653 case BIT_IOR_EXPR:
3654 case BIT_XOR_EXPR:
3655 case BIT_AND_EXPR:
9f509004
RG
3656 /* Continue with generic binary expression handling. */
3657 break;
7e98624c 3658
9f509004
RG
3659 default:
3660 gcc_unreachable ();
3661 }
b691d4b0 3662
9f509004
RG
3663 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3664 || !useless_type_conversion_p (lhs_type, rhs2_type))
3665 {
3666 error ("type mismatch in binary expression");
3667 debug_generic_stmt (lhs_type);
3668 debug_generic_stmt (rhs1_type);
3669 debug_generic_stmt (rhs2_type);
3670 return true;
3671 }
3672
3673 return false;
3674}
3675
0354c0c7
BS
3676/* Verify a gimple assignment statement STMT with a ternary rhs.
3677 Returns true if anything is wrong. */
3678
3679static bool
3680verify_gimple_assign_ternary (gimple stmt)
3681{
3682 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3683 tree lhs = gimple_assign_lhs (stmt);
3684 tree lhs_type = TREE_TYPE (lhs);
3685 tree rhs1 = gimple_assign_rhs1 (stmt);
3686 tree rhs1_type = TREE_TYPE (rhs1);
3687 tree rhs2 = gimple_assign_rhs2 (stmt);
3688 tree rhs2_type = TREE_TYPE (rhs2);
3689 tree rhs3 = gimple_assign_rhs3 (stmt);
3690 tree rhs3_type = TREE_TYPE (rhs3);
3691
afdac116 3692 if (!is_gimple_reg (lhs))
0354c0c7
BS
3693 {
3694 error ("non-register as LHS of ternary operation");
3695 return true;
3696 }
3697
4e71066d
RG
3698 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3699 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
0354c0c7
BS
3700 || !is_gimple_val (rhs2)
3701 || !is_gimple_val (rhs3))
3702 {
3703 error ("invalid operands in ternary operation");
3704 return true;
3705 }
3706
3707 /* First handle operations that involve different types. */
3708 switch (rhs_code)
3709 {
3710 case WIDEN_MULT_PLUS_EXPR:
3711 case WIDEN_MULT_MINUS_EXPR:
3712 if ((!INTEGRAL_TYPE_P (rhs1_type)
3713 && !FIXED_POINT_TYPE_P (rhs1_type))
3714 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3715 || !useless_type_conversion_p (lhs_type, rhs3_type)
5dfe80ba 3716 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
0354c0c7
BS
3717 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3718 {
3719 error ("type mismatch in widening multiply-accumulate expression");
3720 debug_generic_expr (lhs_type);
3721 debug_generic_expr (rhs1_type);
3722 debug_generic_expr (rhs2_type);
3723 debug_generic_expr (rhs3_type);
3724 return true;
3725 }
3726 break;
3727
16949072
RG
3728 case FMA_EXPR:
3729 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3730 || !useless_type_conversion_p (lhs_type, rhs2_type)
3731 || !useless_type_conversion_p (lhs_type, rhs3_type))
3732 {
3733 error ("type mismatch in fused multiply-add expression");
3734 debug_generic_expr (lhs_type);
3735 debug_generic_expr (rhs1_type);
3736 debug_generic_expr (rhs2_type);
3737 debug_generic_expr (rhs3_type);
3738 return true;
3739 }
3740 break;
3741
4e71066d
RG
3742 case COND_EXPR:
3743 case VEC_COND_EXPR:
3744 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3745 || !useless_type_conversion_p (lhs_type, rhs3_type))
3746 {
3747 error ("type mismatch in conditional expression");
3748 debug_generic_expr (lhs_type);
3749 debug_generic_expr (rhs2_type);
3750 debug_generic_expr (rhs3_type);
3751 return true;
3752 }
3753 break;
3754
2205ed25 3755 case VEC_PERM_EXPR:
f90e8e2e
AS
3756 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3757 || !useless_type_conversion_p (lhs_type, rhs2_type))
3758 {
2205ed25 3759 error ("type mismatch in vector permute expression");
f90e8e2e
AS
3760 debug_generic_expr (lhs_type);
3761 debug_generic_expr (rhs1_type);
3762 debug_generic_expr (rhs2_type);
3763 debug_generic_expr (rhs3_type);
3764 return true;
3765 }
3766
3767 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3768 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3769 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3770 {
2205ed25 3771 error ("vector types expected in vector permute expression");
f90e8e2e
AS
3772 debug_generic_expr (lhs_type);
3773 debug_generic_expr (rhs1_type);
3774 debug_generic_expr (rhs2_type);
3775 debug_generic_expr (rhs3_type);
3776 return true;
3777 }
3778
3779 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3780 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3781 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3782 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3783 != TYPE_VECTOR_SUBPARTS (lhs_type))
3784 {
3785 error ("vectors with different element number found "
2205ed25 3786 "in vector permute expression");
f90e8e2e
AS
3787 debug_generic_expr (lhs_type);
3788 debug_generic_expr (rhs1_type);
3789 debug_generic_expr (rhs2_type);
3790 debug_generic_expr (rhs3_type);
3791 return true;
3792 }
3793
3794 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3795 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3796 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3797 {
2205ed25 3798 error ("invalid mask type in vector permute expression");
f90e8e2e
AS
3799 debug_generic_expr (lhs_type);
3800 debug_generic_expr (rhs1_type);
3801 debug_generic_expr (rhs2_type);
3802 debug_generic_expr (rhs3_type);
3803 return true;
3804 }
3805
3806 return false;
3807
f471fe72
RG
3808 case DOT_PROD_EXPR:
3809 case REALIGN_LOAD_EXPR:
3810 /* FIXME. */
3811 return false;
3812
0354c0c7
BS
3813 default:
3814 gcc_unreachable ();
3815 }
3816 return false;
3817}
3818
9f509004
RG
3819/* Verify a gimple assignment statement STMT with a single rhs.
3820 Returns true if anything is wrong. */
3821
3822static bool
3823verify_gimple_assign_single (gimple stmt)
3824{
3825 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3826 tree lhs = gimple_assign_lhs (stmt);
3827 tree lhs_type = TREE_TYPE (lhs);
3828 tree rhs1 = gimple_assign_rhs1 (stmt);
3829 tree rhs1_type = TREE_TYPE (rhs1);
3830 bool res = false;
3831
3832 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3833 {
3834 error ("non-trivial conversion at assignment");
3835 debug_generic_expr (lhs_type);
3836 debug_generic_expr (rhs1_type);
3837 return true;
7e98624c
RG
3838 }
3839
5f33a4fc 3840 if (gimple_clobber_p (stmt)
5d751b0c 3841 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
5f33a4fc 3842 {
5d751b0c 3843 error ("non-decl/MEM_REF LHS in clobber statement");
5f33a4fc
RG
3844 debug_generic_expr (lhs);
3845 return true;
3846 }
3847
9f509004 3848 if (handled_component_p (lhs))
3a19701a 3849 res |= verify_types_in_gimple_reference (lhs, true);
9f509004
RG
3850
3851 /* Special codes we cannot handle via their class. */
3852 switch (rhs_code)
7e98624c 3853 {
9f509004
RG
3854 case ADDR_EXPR:
3855 {
3856 tree op = TREE_OPERAND (rhs1, 0);
3857 if (!is_gimple_addressable (op))
3858 {
3859 error ("invalid operand in unary expression");
3860 return true;
3861 }
f5e85907 3862
1b0e3802
RG
3863 /* Technically there is no longer a need for matching types, but
3864 gimple hygiene asks for this check. In LTO we can end up
3865 combining incompatible units and thus end up with addresses
3866 of globals that change their type to a common one. */
3867 if (!in_lto_p
3868 && !types_compatible_p (TREE_TYPE (op),
3869 TREE_TYPE (TREE_TYPE (rhs1)))
6b8b9e42
RG
3870 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3871 TREE_TYPE (op)))
9f509004
RG
3872 {
3873 error ("type mismatch in address expression");
6b8b9e42
RG
3874 debug_generic_stmt (TREE_TYPE (rhs1));
3875 debug_generic_stmt (TREE_TYPE (op));
9f509004
RG
3876 return true;
3877 }
3878
3a19701a 3879 return verify_types_in_gimple_reference (op, true);
9f509004
RG
3880 }
3881
3882 /* tcc_reference */
70f34814
RG
3883 case INDIRECT_REF:
3884 error ("INDIRECT_REF in gimple IL");
3885 return true;
3886
9f509004
RG
3887 case COMPONENT_REF:
3888 case BIT_FIELD_REF:
9f509004
RG
3889 case ARRAY_REF:
3890 case ARRAY_RANGE_REF:
3891 case VIEW_CONVERT_EXPR:
3892 case REALPART_EXPR:
3893 case IMAGPART_EXPR:
3894 case TARGET_MEM_REF:
70f34814 3895 case MEM_REF:
9f509004
RG
3896 if (!is_gimple_reg (lhs)
3897 && is_gimple_reg_type (TREE_TYPE (lhs)))
f5e85907 3898 {
9f509004
RG
3899 error ("invalid rhs for gimple memory store");
3900 debug_generic_stmt (lhs);
3901 debug_generic_stmt (rhs1);
726a989a
RB
3902 return true;
3903 }
3a19701a 3904 return res || verify_types_in_gimple_reference (rhs1, false);
7e98624c 3905
9f509004
RG
3906 /* tcc_constant */
3907 case SSA_NAME:
3908 case INTEGER_CST:
3909 case REAL_CST:
3910 case FIXED_CST:
3911 case COMPLEX_CST:
3912 case VECTOR_CST:
3913 case STRING_CST:
3914 return res;
3915
3916 /* tcc_declaration */
3917 case CONST_DECL:
3918 return res;
3919 case VAR_DECL:
3920 case PARM_DECL:
3921 if (!is_gimple_reg (lhs)
3922 && !is_gimple_reg (rhs1)
3923 && is_gimple_reg_type (TREE_TYPE (lhs)))
2f9864e6 3924 {
9f509004
RG
3925 error ("invalid rhs for gimple memory store");
3926 debug_generic_stmt (lhs);
3927 debug_generic_stmt (rhs1);
2f9864e6
RG
3928 return true;
3929 }
9f509004 3930 return res;
7e98624c 3931
9f509004 3932 case CONSTRUCTOR:
13396b6e
JJ
3933 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3934 {
3935 unsigned int i;
3936 tree elt_i, elt_v, elt_t = NULL_TREE;
3937
3938 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3939 return res;
3940 /* For vector CONSTRUCTORs we require that either it is empty
3941 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3942 (then the element count must be correct to cover the whole
3943 outer vector and index must be NULL on all elements, or it is
3944 a CONSTRUCTOR of scalar elements, where we as an exception allow
3945 smaller number of elements (assuming zero filling) and
3946 consecutive indexes as compared to NULL indexes (such
3947 CONSTRUCTORs can appear in the IL from FEs). */
3948 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3949 {
3950 if (elt_t == NULL_TREE)
3951 {
3952 elt_t = TREE_TYPE (elt_v);
3953 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3954 {
3955 tree elt_t = TREE_TYPE (elt_v);
3956 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3957 TREE_TYPE (elt_t)))
3958 {
3959 error ("incorrect type of vector CONSTRUCTOR"
3960 " elements");
3961 debug_generic_stmt (rhs1);
3962 return true;
3963 }
3964 else if (CONSTRUCTOR_NELTS (rhs1)
3965 * TYPE_VECTOR_SUBPARTS (elt_t)
3966 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3967 {
3968 error ("incorrect number of vector CONSTRUCTOR"
3969 " elements");
3970 debug_generic_stmt (rhs1);
3971 return true;
3972 }
3973 }
3974 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3975 elt_t))
3976 {
3977 error ("incorrect type of vector CONSTRUCTOR elements");
3978 debug_generic_stmt (rhs1);
3979 return true;
3980 }
3981 else if (CONSTRUCTOR_NELTS (rhs1)
3982 > TYPE_VECTOR_SUBPARTS (rhs1_type))
3983 {
3984 error ("incorrect number of vector CONSTRUCTOR elements");
3985 debug_generic_stmt (rhs1);
3986 return true;
3987 }
3988 }
3989 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
3990 {
3991 error ("incorrect type of vector CONSTRUCTOR elements");
3992 debug_generic_stmt (rhs1);
3993 return true;
3994 }
3995 if (elt_i != NULL_TREE
3996 && (TREE_CODE (elt_t) == VECTOR_TYPE
3997 || TREE_CODE (elt_i) != INTEGER_CST
3998 || compare_tree_int (elt_i, i) != 0))
3999 {
4000 error ("vector CONSTRUCTOR with non-NULL element index");
4001 debug_generic_stmt (rhs1);
4002 return true;
4003 }
4004 }
4005 }
4006 return res;
9f509004
RG
4007 case OBJ_TYPE_REF:
4008 case ASSERT_EXPR:
4009 case WITH_SIZE_EXPR:
9f509004
RG
4010 /* FIXME. */
4011 return res;
7e98624c 4012
726a989a 4013 default:;
7e98624c
RG
4014 }
4015
9f509004 4016 return res;
7e98624c
RG
4017}
4018
9f509004
RG
4019/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4020 is a problem, otherwise false. */
4021
4022static bool
4023verify_gimple_assign (gimple stmt)
4024{
4025 switch (gimple_assign_rhs_class (stmt))
4026 {
4027 case GIMPLE_SINGLE_RHS:
4028 return verify_gimple_assign_single (stmt);
4029
4030 case GIMPLE_UNARY_RHS:
4031 return verify_gimple_assign_unary (stmt);
4032
4033 case GIMPLE_BINARY_RHS:
4034 return verify_gimple_assign_binary (stmt);
4035
0354c0c7
BS
4036 case GIMPLE_TERNARY_RHS:
4037 return verify_gimple_assign_ternary (stmt);
4038
9f509004
RG
4039 default:
4040 gcc_unreachable ();
4041 }
4042}
726a989a
RB
4043
4044/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4045 is a problem, otherwise false. */
7e98624c
RG
4046
4047static bool
b59d3976 4048verify_gimple_return (gimple stmt)
7e98624c 4049{
726a989a 4050 tree op = gimple_return_retval (stmt);
b59d3976 4051 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
726a989a 4052
b59d3976
RG
4053 /* We cannot test for present return values as we do not fix up missing
4054 return values from the original source. */
726a989a
RB
4055 if (op == NULL)
4056 return false;
b8698a0f 4057
b59d3976
RG
4058 if (!is_gimple_val (op)
4059 && TREE_CODE (op) != RESULT_DECL)
4060 {
4061 error ("invalid operand in return statement");
4062 debug_generic_stmt (op);
4063 return true;
4064 }
4065
e3061843
RB
4066 if ((TREE_CODE (op) == RESULT_DECL
4067 && DECL_BY_REFERENCE (op))
4068 || (TREE_CODE (op) == SSA_NAME
70b5e7dc 4069 && SSA_NAME_VAR (op)
e3061843
RB
4070 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4071 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4072 op = TREE_TYPE (op);
4073
4074 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
b59d3976
RG
4075 {
4076 error ("invalid conversion in return statement");
4077 debug_generic_stmt (restype);
4078 debug_generic_stmt (TREE_TYPE (op));
4079 return true;
4080 }
4081
4082 return false;
726a989a 4083}
7e98624c 4084
7e98624c 4085
b59d3976
RG
4086/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4087 is a problem, otherwise false. */
4088
4089static bool
4090verify_gimple_goto (gimple stmt)
4091{
4092 tree dest = gimple_goto_dest (stmt);
4093
4094 /* ??? We have two canonical forms of direct goto destinations, a
4095 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4096 if (TREE_CODE (dest) != LABEL_DECL
4097 && (!is_gimple_val (dest)
4098 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4099 {
4100 error ("goto destination is neither a label nor a pointer");
4101 return true;
4102 }
4103
4104 return false;
4105}
4106
726a989a
RB
4107/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4108 is a problem, otherwise false. */
4109
4110static bool
b59d3976 4111verify_gimple_switch (gimple stmt)
726a989a 4112{
198fc9f1
SB
4113 unsigned int i, n;
4114 tree elt, prev_upper_bound = NULL_TREE;
4115 tree index_type, elt_type = NULL_TREE;
4116
726a989a 4117 if (!is_gimple_val (gimple_switch_index (stmt)))
7e98624c 4118 {
726a989a 4119 error ("invalid operand to switch statement");
b59d3976 4120 debug_generic_stmt (gimple_switch_index (stmt));
7e98624c
RG
4121 return true;
4122 }
4123
198fc9f1
SB
4124 index_type = TREE_TYPE (gimple_switch_index (stmt));
4125 if (! INTEGRAL_TYPE_P (index_type))
4126 {
4127 error ("non-integral type switch statement");
4128 debug_generic_expr (index_type);
4129 return true;
4130 }
4131
fd8d363e 4132 elt = gimple_switch_label (stmt, 0);
198fc9f1
SB
4133 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4134 {
4135 error ("invalid default case label in switch statement");
4136 debug_generic_expr (elt);
4137 return true;
4138 }
4139
4140 n = gimple_switch_num_labels (stmt);
4141 for (i = 1; i < n; i++)
4142 {
4143 elt = gimple_switch_label (stmt, i);
4144
4145 if (! CASE_LOW (elt))
4146 {
4147 error ("invalid case label in switch statement");
4148 debug_generic_expr (elt);
4149 return true;
4150 }
4151 if (CASE_HIGH (elt)
4152 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4153 {
4154 error ("invalid case range in switch statement");
4155 debug_generic_expr (elt);
4156 return true;
4157 }
4158
4159 if (elt_type)
4160 {
4161 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4162 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4163 {
4164 error ("type mismatch for case label in switch statement");
4165 debug_generic_expr (elt);
4166 return true;
4167 }
4168 }
4169 else
4170 {
4171 elt_type = TREE_TYPE (CASE_LOW (elt));
4172 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4173 {
4174 error ("type precision mismatch in switch statement");
4175 return true;
4176 }
4177 }
4178
4179 if (prev_upper_bound)
4180 {
4181 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4182 {
4183 error ("case labels not sorted in switch statement");
4184 return true;
4185 }
4186 }
4187
4188 prev_upper_bound = CASE_HIGH (elt);
4189 if (! prev_upper_bound)
4190 prev_upper_bound = CASE_LOW (elt);
4191 }
4192
726a989a
RB
4193 return false;
4194}
7e98624c 4195
b5b8b0ac
AO
4196/* Verify a gimple debug statement STMT.
4197 Returns true if anything is wrong. */
4198
4199static bool
4200verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4201{
4202 /* There isn't much that could be wrong in a gimple debug stmt. A
4203 gimple debug bind stmt, for example, maps a tree, that's usually
4204 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4205 component or member of an aggregate type, to another tree, that
4206 can be an arbitrary expression. These stmts expand into debug
4207 insns, and are converted to debug notes by var-tracking.c. */
4208 return false;
4209}
4210
34019e28
RG
4211/* Verify a gimple label statement STMT.
4212 Returns true if anything is wrong. */
4213
4214static bool
4215verify_gimple_label (gimple stmt)
4216{
4217 tree decl = gimple_label_label (stmt);
4218 int uid;
4219 bool err = false;
4220
4221 if (TREE_CODE (decl) != LABEL_DECL)
4222 return true;
4223
4224 uid = LABEL_DECL_UID (decl);
4225 if (cfun->cfg
9771b263 4226 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
34019e28
RG
4227 {
4228 error ("incorrect entry in label_to_block_map");
4229 err |= true;
4230 }
4231
4232 uid = EH_LANDING_PAD_NR (decl);
4233 if (uid)
4234 {
4235 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4236 if (decl != lp->post_landing_pad)
4237 {
4238 error ("incorrect setting of landing pad number");
4239 err |= true;
4240 }
4241 }
4242
4243 return err;
4244}
b5b8b0ac 4245
7e98624c
RG
4246/* Verify the GIMPLE statement STMT. Returns true if there is an
4247 error, otherwise false. */
4248
4249static bool
34019e28 4250verify_gimple_stmt (gimple stmt)
7e98624c 4251{
726a989a 4252 switch (gimple_code (stmt))
7e98624c 4253 {
726a989a 4254 case GIMPLE_ASSIGN:
9f509004 4255 return verify_gimple_assign (stmt);
7e98624c 4256
726a989a 4257 case GIMPLE_LABEL:
34019e28 4258 return verify_gimple_label (stmt);
7e98624c 4259
726a989a 4260 case GIMPLE_CALL:
b59d3976 4261 return verify_gimple_call (stmt);
7e98624c 4262
726a989a 4263 case GIMPLE_COND:
f68a75df
RG
4264 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4265 {
4266 error ("invalid comparison code in gimple cond");
4267 return true;
4268 }
4269 if (!(!gimple_cond_true_label (stmt)
4270 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4271 || !(!gimple_cond_false_label (stmt)
4272 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4273 {
4274 error ("invalid labels in gimple cond");
4275 return true;
4276 }
4277
b59d3976
RG
4278 return verify_gimple_comparison (boolean_type_node,
4279 gimple_cond_lhs (stmt),
4280 gimple_cond_rhs (stmt));
7e98624c 4281
726a989a 4282 case GIMPLE_GOTO:
b59d3976 4283 return verify_gimple_goto (stmt);
7e98624c 4284
726a989a 4285 case GIMPLE_SWITCH:
b59d3976 4286 return verify_gimple_switch (stmt);
7e98624c 4287
726a989a 4288 case GIMPLE_RETURN:
b59d3976 4289 return verify_gimple_return (stmt);
7e98624c 4290
726a989a 4291 case GIMPLE_ASM:
7e98624c
RG
4292 return false;
4293
0a35513e
AH
4294 case GIMPLE_TRANSACTION:
4295 return verify_gimple_transaction (stmt);
4296
b59d3976
RG
4297 /* Tuples that do not have tree operands. */
4298 case GIMPLE_NOP:
b59d3976 4299 case GIMPLE_PREDICT:
1d65f45c
RH
4300 case GIMPLE_RESX:
4301 case GIMPLE_EH_DISPATCH:
40742b42 4302 case GIMPLE_EH_MUST_NOT_THROW:
b59d3976 4303 return false;
726a989a 4304
8b9db065
RH
4305 CASE_GIMPLE_OMP:
4306 /* OpenMP directives are validated by the FE and never operated
4307 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4308 non-gimple expressions when the main index variable has had
4309 its address taken. This does not affect the loop itself
4310 because the header of an GIMPLE_OMP_FOR is merely used to determine
4311 how to setup the parallel iteration. */
4312 return false;
4313
b5b8b0ac
AO
4314 case GIMPLE_DEBUG:
4315 return verify_gimple_debug (stmt);
4316
7e98624c
RG
4317 default:
4318 gcc_unreachable ();
4319 }
4320}
4321
34019e28
RG
4322/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4323 and false otherwise. */
4324
4325static bool
4326verify_gimple_phi (gimple phi)
4327{
4328 bool err = false;
4329 unsigned i;
4330 tree phi_result = gimple_phi_result (phi);
4331 bool virtual_p;
4332
4333 if (!phi_result)
4334 {
4335 error ("invalid PHI result");
4336 return true;
4337 }
4338
ea057359 4339 virtual_p = virtual_operand_p (phi_result);
34019e28
RG
4340 if (TREE_CODE (phi_result) != SSA_NAME
4341 || (virtual_p
4342 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4343 {
4344 error ("invalid PHI result");
4345 err = true;
4346 }
4347
4348 for (i = 0; i < gimple_phi_num_args (phi); i++)
4349 {
4350 tree t = gimple_phi_arg_def (phi, i);
4351
4352 if (!t)
4353 {
4354 error ("missing PHI def");
4355 err |= true;
4356 continue;
4357 }
4358 /* Addressable variables do have SSA_NAMEs but they
4359 are not considered gimple values. */
4360 else if ((TREE_CODE (t) == SSA_NAME
ea057359 4361 && virtual_p != virtual_operand_p (t))
34019e28
RG
4362 || (virtual_p
4363 && (TREE_CODE (t) != SSA_NAME
4364 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4365 || (!virtual_p
4366 && !is_gimple_val (t)))
4367 {
4368 error ("invalid PHI argument");
4369 debug_generic_expr (t);
4370 err |= true;
4371 }
4372#ifdef ENABLE_TYPES_CHECKING
4373 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4374 {
4375 error ("incompatible types in PHI argument %u", i);
4376 debug_generic_stmt (TREE_TYPE (phi_result));
4377 debug_generic_stmt (TREE_TYPE (t));
4378 err |= true;
4379 }
4380#endif
4381 }
4382
4383 return err;
4384}
4385
726a989a 4386/* Verify the GIMPLE statements inside the sequence STMTS. */
7e98624c 4387
7dc83ebc 4388static bool
34019e28 4389verify_gimple_in_seq_2 (gimple_seq stmts)
7e98624c 4390{
726a989a 4391 gimple_stmt_iterator ittr;
7dc83ebc 4392 bool err = false;
7e98624c 4393
726a989a 4394 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
7e98624c 4395 {
726a989a 4396 gimple stmt = gsi_stmt (ittr);
7e98624c 4397
726a989a
RB
4398 switch (gimple_code (stmt))
4399 {
b59d3976 4400 case GIMPLE_BIND:
34019e28 4401 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
b59d3976
RG
4402 break;
4403
4404 case GIMPLE_TRY:
34019e28
RG
4405 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4406 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
b59d3976
RG
4407 break;
4408
4409 case GIMPLE_EH_FILTER:
34019e28 4410 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
b59d3976
RG
4411 break;
4412
0a35513e
AH
4413 case GIMPLE_EH_ELSE:
4414 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4415 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4416 break;
4417
b59d3976 4418 case GIMPLE_CATCH:
34019e28 4419 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
b59d3976 4420 break;
7e98624c 4421
0a35513e
AH
4422 case GIMPLE_TRANSACTION:
4423 err |= verify_gimple_transaction (stmt);
4424 break;
4425
7e98624c 4426 default:
7dc83ebc 4427 {
34019e28 4428 bool err2 = verify_gimple_stmt (stmt);
7dc83ebc 4429 if (err2)
726a989a 4430 debug_gimple_stmt (stmt);
7dc83ebc
RG
4431 err |= err2;
4432 }
7e98624c
RG
4433 }
4434 }
7dc83ebc
RG
4435
4436 return err;
4437}
4438
0a35513e
AH
4439/* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4440 is a problem, otherwise false. */
4441
4442static bool
4443verify_gimple_transaction (gimple stmt)
4444{
4445 tree lab = gimple_transaction_label (stmt);
4446 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4447 return true;
4448 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4449}
4450
7dc83ebc
RG
4451
4452/* Verify the GIMPLE statements inside the statement list STMTS. */
4453
34019e28
RG
4454DEBUG_FUNCTION void
4455verify_gimple_in_seq (gimple_seq stmts)
7dc83ebc 4456{
34019e28
RG
4457 timevar_push (TV_TREE_STMT_VERIFY);
4458 if (verify_gimple_in_seq_2 (stmts))
7dc83ebc 4459 internal_error ("verify_gimple failed");
34019e28 4460 timevar_pop (TV_TREE_STMT_VERIFY);
7e98624c
RG
4461}
4462
6de9cd9a
DN
4463/* Return true when the T can be shared. */
4464
d7f09764 4465bool
6de9cd9a
DN
4466tree_node_can_be_shared (tree t)
4467{
6615c446 4468 if (IS_TYPE_OR_DECL_P (t)
6de9cd9a 4469 || is_gimple_min_invariant (t)
5e23162d 4470 || TREE_CODE (t) == SSA_NAME
953ff289
DN
4471 || t == error_mark_node
4472 || TREE_CODE (t) == IDENTIFIER_NODE)
6de9cd9a
DN
4473 return true;
4474
92b6dff3
JL
4475 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4476 return true;
4477
6de9cd9a
DN
4478 if (DECL_P (t))
4479 return true;
4480
4481 return false;
4482}
4483
980d0812 4484/* Called via walk_tree. Verify tree sharing. */
6de9cd9a
DN
4485
4486static tree
980d0812 4487verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
6de9cd9a 4488{
980d0812 4489 struct pointer_set_t *visited = (struct pointer_set_t *) data;
6de9cd9a
DN
4490
4491 if (tree_node_can_be_shared (*tp))
4492 {
4493 *walk_subtrees = false;
4494 return NULL;
4495 }
4496
4437b50d
JH
4497 if (pointer_set_insert (visited, *tp))
4498 return *tp;
6de9cd9a
DN
4499
4500 return NULL;
4501}
4502
980d0812
RB
4503/* Called via walk_gimple_stmt. Verify tree sharing. */
4504
4505static tree
4506verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4507{
4508 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4509 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4510}
4511
4437b50d
JH
4512static bool eh_error_found;
4513static int
4514verify_eh_throw_stmt_node (void **slot, void *data)
4515{
4516 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4517 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4518
4519 if (!pointer_set_contains (visited, node->stmt))
4520 {
d8a07487 4521 error ("dead STMT in EH table");
726a989a 4522 debug_gimple_stmt (node->stmt);
4437b50d
JH
4523 eh_error_found = true;
4524 }
c13edb67 4525 return 1;
4437b50d
JH
4526}
4527
7bb01996
RB
4528/* Verify if the location LOCs block is in BLOCKS. */
4529
4530static bool
4531verify_location (pointer_set_t *blocks, location_t loc)
4532{
4533 tree block = LOCATION_BLOCK (loc);
4534 if (block != NULL_TREE
4535 && !pointer_set_contains (blocks, block))
4536 {
4537 error ("location references block not in block tree");
4538 return true;
4539 }
a9d5a059
RB
4540 if (block != NULL_TREE)
4541 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
7bb01996
RB
4542 return false;
4543}
4544
50d4421c
RB
4545/* Called via walk_tree. Verify that expressions have no blocks. */
4546
4547static tree
4548verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4549{
4550 if (!EXPR_P (*tp))
4551 {
4552 *walk_subtrees = false;
4553 return NULL;
4554 }
4555
4556 location_t loc = EXPR_LOCATION (*tp);
4557 if (LOCATION_BLOCK (loc) != NULL)
4558 return *tp;
4559
4560 return NULL;
4561}
4562
7bb01996
RB
4563/* Called via walk_tree. Verify locations of expressions. */
4564
4565static tree
4566verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4567{
4568 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4569
64366d35 4570 if (TREE_CODE (*tp) == VAR_DECL
839b422f 4571 && DECL_HAS_DEBUG_EXPR_P (*tp))
64366d35
RB
4572 {
4573 tree t = DECL_DEBUG_EXPR (*tp);
50d4421c
RB
4574 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4575 if (addr)
4576 return addr;
4577 }
4578 if ((TREE_CODE (*tp) == VAR_DECL
4579 || TREE_CODE (*tp) == PARM_DECL
4580 || TREE_CODE (*tp) == RESULT_DECL)
4581 && DECL_HAS_VALUE_EXPR_P (*tp))
4582 {
4583 tree t = DECL_VALUE_EXPR (*tp);
4584 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
64366d35
RB
4585 if (addr)
4586 return addr;
4587 }
4588
7bb01996
RB
4589 if (!EXPR_P (*tp))
4590 {
4591 *walk_subtrees = false;
4592 return NULL;
4593 }
4594
4595 location_t loc = EXPR_LOCATION (*tp);
4596 if (verify_location (blocks, loc))
4597 return *tp;
4598
4599 return NULL;
4600}
4601
4602/* Called via walk_gimple_op. Verify locations of expressions. */
4603
4604static tree
4605verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4606{
4607 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4608 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4609}
4610
4611/* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4612
4613static void
4614collect_subblocks (pointer_set_t *blocks, tree block)
4615{
4616 tree t;
4617 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4618 {
4619 pointer_set_insert (blocks, t);
4620 collect_subblocks (blocks, t);
4621 }
4622}
4623
34019e28 4624/* Verify the GIMPLE statements in the CFG of FN. */
6de9cd9a 4625
24e47c76 4626DEBUG_FUNCTION void
34019e28 4627verify_gimple_in_cfg (struct function *fn)
6de9cd9a
DN
4628{
4629 basic_block bb;
6de9cd9a 4630 bool err = false;
7bb01996 4631 struct pointer_set_t *visited, *visited_stmts, *blocks;
6de9cd9a
DN
4632
4633 timevar_push (TV_TREE_STMT_VERIFY);
4437b50d
JH
4634 visited = pointer_set_create ();
4635 visited_stmts = pointer_set_create ();
6de9cd9a 4636
7bb01996
RB
4637 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4638 blocks = pointer_set_create ();
4639 if (DECL_INITIAL (fn->decl))
4640 {
4641 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4642 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4643 }
4644
34019e28 4645 FOR_EACH_BB_FN (bb, fn)
6de9cd9a 4646 {
34019e28 4647 gimple_stmt_iterator gsi;
6de9cd9a 4648
726a989a 4649 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4650 {
34019e28
RG
4651 gimple phi = gsi_stmt (gsi);
4652 bool err2 = false;
4653 unsigned i;
4654
4437b50d 4655 pointer_set_insert (visited_stmts, phi);
34019e28 4656
726a989a 4657 if (gimple_bb (phi) != bb)
8de1fc1b 4658 {
726a989a 4659 error ("gimple_bb (phi) is set to a wrong basic block");
34019e28 4660 err2 = true;
8de1fc1b
KH
4661 }
4662
34019e28
RG
4663 err2 |= verify_gimple_phi (phi);
4664
7bb01996
RB
4665 /* Only PHI arguments have locations. */
4666 if (gimple_location (phi) != UNKNOWN_LOCATION)
4667 {
4668 error ("PHI node with location");
4669 err2 = true;
4670 }
4671
726a989a 4672 for (i = 0; i < gimple_phi_num_args (phi); i++)
6de9cd9a 4673 {
34019e28 4674 tree arg = gimple_phi_arg_def (phi, i);
980d0812
RB
4675 tree addr = walk_tree (&arg, verify_node_sharing_1,
4676 visited, NULL);
6de9cd9a
DN
4677 if (addr)
4678 {
ab532386 4679 error ("incorrect sharing of tree nodes");
726a989a 4680 debug_generic_expr (addr);
34019e28 4681 err2 |= true;
6de9cd9a 4682 }
7bb01996
RB
4683 location_t loc = gimple_phi_arg_location (phi, i);
4684 if (virtual_operand_p (gimple_phi_result (phi))
4685 && loc != UNKNOWN_LOCATION)
4686 {
4687 error ("virtual PHI with argument locations");
4688 err2 = true;
4689 }
4690 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4691 if (addr)
4692 {
4693 debug_generic_expr (addr);
4694 err2 = true;
4695 }
4696 err2 |= verify_location (blocks, loc);
6de9cd9a 4697 }
211ca15c 4698
34019e28
RG
4699 if (err2)
4700 debug_gimple_stmt (phi);
4701 err |= err2;
6de9cd9a
DN
4702 }
4703
34019e28 4704 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4705 {
726a989a 4706 gimple stmt = gsi_stmt (gsi);
34019e28
RG
4707 bool err2 = false;
4708 struct walk_stmt_info wi;
4709 tree addr;
4710 int lp_nr;
8de1fc1b 4711
4437b50d 4712 pointer_set_insert (visited_stmts, stmt);
07beea0d 4713
726a989a 4714 if (gimple_bb (stmt) != bb)
8de1fc1b 4715 {
726a989a 4716 error ("gimple_bb (stmt) is set to a wrong basic block");
34019e28 4717 err2 = true;
8de1fc1b
KH
4718 }
4719
34019e28 4720 err2 |= verify_gimple_stmt (stmt);
7bb01996 4721 err2 |= verify_location (blocks, gimple_location (stmt));
34019e28
RG
4722
4723 memset (&wi, 0, sizeof (wi));
4724 wi.info = (void *) visited;
4725 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4726 if (addr)
726a989a 4727 {
34019e28
RG
4728 error ("incorrect sharing of tree nodes");
4729 debug_generic_expr (addr);
4730 err2 |= true;
4731 }
726a989a 4732
7bb01996
RB
4733 memset (&wi, 0, sizeof (wi));
4734 wi.info = (void *) blocks;
4735 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4736 if (addr)
4737 {
4738 debug_generic_expr (addr);
4739 err2 |= true;
4740 }
4741
34019e28
RG
4742 /* ??? Instead of not checking these stmts at all the walker
4743 should know its context via wi. */
4744 if (!is_gimple_debug (stmt)
4745 && !is_gimple_omp (stmt))
4746 {
4747 memset (&wi, 0, sizeof (wi));
4748 addr = walk_gimple_op (stmt, verify_expr, &wi);
4749 if (addr)
726a989a 4750 {
34019e28
RG
4751 debug_generic_expr (addr);
4752 inform (gimple_location (stmt), "in statement");
4753 err2 |= true;
726a989a 4754 }
34019e28 4755 }
1d65f45c 4756
34019e28
RG
4757 /* If the statement is marked as part of an EH region, then it is
4758 expected that the statement could throw. Verify that when we
4759 have optimizations that simplify statements such that we prove
4760 that they cannot throw, that we update other data structures
4761 to match. */
4762 lp_nr = lookup_stmt_eh_lp (stmt);
4763 if (lp_nr != 0)
4764 {
4765 if (!stmt_could_throw_p (stmt))
1d65f45c 4766 {
34019e28
RG
4767 error ("statement marked for throw, but doesn%'t");
4768 err2 |= true;
4769 }
4770 else if (lp_nr > 0
4771 && !gsi_one_before_end_p (gsi)
4772 && stmt_can_throw_internal (stmt))
4773 {
4774 error ("statement marked for throw in middle of block");
4775 err2 |= true;
1d65f45c 4776 }
726a989a
RB
4777 }
4778
34019e28
RG
4779 if (err2)
4780 debug_gimple_stmt (stmt);
4781 err |= err2;
6de9cd9a
DN
4782 }
4783 }
726a989a 4784
4437b50d
JH
4785 eh_error_found = false;
4786 if (get_eh_throw_stmt_table (cfun))
4787 htab_traverse (get_eh_throw_stmt_table (cfun),
4788 verify_eh_throw_stmt_node,
4789 visited_stmts);
6de9cd9a 4790
34019e28
RG
4791 if (err || eh_error_found)
4792 internal_error ("verify_gimple failed");
6de9cd9a 4793
4437b50d
JH
4794 pointer_set_destroy (visited);
4795 pointer_set_destroy (visited_stmts);
7bb01996 4796 pointer_set_destroy (blocks);
6946b3f7 4797 verify_histograms ();
6de9cd9a
DN
4798 timevar_pop (TV_TREE_STMT_VERIFY);
4799}
4800
4801
4802/* Verifies that the flow information is OK. */
4803
4804static int
726a989a 4805gimple_verify_flow_info (void)
6de9cd9a
DN
4806{
4807 int err = 0;
4808 basic_block bb;
726a989a
RB
4809 gimple_stmt_iterator gsi;
4810 gimple stmt;
6de9cd9a 4811 edge e;
628f6a4e 4812 edge_iterator ei;
6de9cd9a 4813
3e8b732e 4814 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
6de9cd9a 4815 {
7506e1cb 4816 error ("ENTRY_BLOCK has IL associated with it");
6de9cd9a
DN
4817 err = 1;
4818 }
4819
3e8b732e 4820 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
6de9cd9a 4821 {
7506e1cb 4822 error ("EXIT_BLOCK has IL associated with it");
6de9cd9a
DN
4823 err = 1;
4824 }
4825
628f6a4e 4826 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6de9cd9a
DN
4827 if (e->flags & EDGE_FALLTHRU)
4828 {
ab532386 4829 error ("fallthru to exit from bb %d", e->src->index);
6de9cd9a
DN
4830 err = 1;
4831 }
4832
4833 FOR_EACH_BB (bb)
4834 {
4835 bool found_ctrl_stmt = false;
4836
726a989a 4837 stmt = NULL;
548414c6 4838
6de9cd9a 4839 /* Skip labels on the start of basic block. */
726a989a 4840 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4841 {
726a989a
RB
4842 tree label;
4843 gimple prev_stmt = stmt;
548414c6 4844
726a989a 4845 stmt = gsi_stmt (gsi);
548414c6 4846
726a989a 4847 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a
DN
4848 break;
4849
726a989a
RB
4850 label = gimple_label_label (stmt);
4851 if (prev_stmt && DECL_NONLOCAL (label))
548414c6 4852 {
953ff289 4853 error ("nonlocal label ");
726a989a 4854 print_generic_expr (stderr, label, 0);
953ff289
DN
4855 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4856 bb->index);
548414c6
KH
4857 err = 1;
4858 }
4859
1197e789
RG
4860 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4861 {
4862 error ("EH landing pad label ");
4863 print_generic_expr (stderr, label, 0);
4864 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4865 bb->index);
4866 err = 1;
4867 }
4868
726a989a 4869 if (label_to_block (label) != bb)
6de9cd9a 4870 {
953ff289 4871 error ("label ");
726a989a 4872 print_generic_expr (stderr, label, 0);
953ff289
DN
4873 fprintf (stderr, " to block does not match in bb %d",
4874 bb->index);
6de9cd9a
DN
4875 err = 1;
4876 }
4877
726a989a 4878 if (decl_function_context (label) != current_function_decl)
6de9cd9a 4879 {
953ff289 4880 error ("label ");
726a989a 4881 print_generic_expr (stderr, label, 0);
953ff289
DN
4882 fprintf (stderr, " has incorrect context in bb %d",
4883 bb->index);
6de9cd9a
DN
4884 err = 1;
4885 }
4886 }
4887
4888 /* Verify that body of basic block BB is free of control flow. */
726a989a 4889 for (; !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4890 {
726a989a 4891 gimple stmt = gsi_stmt (gsi);
6de9cd9a
DN
4892
4893 if (found_ctrl_stmt)
4894 {
ab532386 4895 error ("control flow in the middle of basic block %d",
6de9cd9a
DN
4896 bb->index);
4897 err = 1;
4898 }
4899
4900 if (stmt_ends_bb_p (stmt))
4901 found_ctrl_stmt = true;
4902
726a989a 4903 if (gimple_code (stmt) == GIMPLE_LABEL)
6de9cd9a 4904 {
953ff289 4905 error ("label ");
726a989a 4906 print_generic_expr (stderr, gimple_label_label (stmt), 0);
953ff289 4907 fprintf (stderr, " in the middle of basic block %d", bb->index);
6de9cd9a
DN
4908 err = 1;
4909 }
4910 }
953ff289 4911
726a989a
RB
4912 gsi = gsi_last_bb (bb);
4913 if (gsi_end_p (gsi))
6de9cd9a
DN
4914 continue;
4915
726a989a 4916 stmt = gsi_stmt (gsi);
6de9cd9a 4917
1d65f45c
RH
4918 if (gimple_code (stmt) == GIMPLE_LABEL)
4919 continue;
4920
cc7220fd
JH
4921 err |= verify_eh_edges (stmt);
4922
6de9cd9a
DN
4923 if (is_ctrl_stmt (stmt))
4924 {
628f6a4e 4925 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
4926 if (e->flags & EDGE_FALLTHRU)
4927 {
ab532386 4928 error ("fallthru edge after a control statement in bb %d",
6de9cd9a
DN
4929 bb->index);
4930 err = 1;
4931 }
4932 }
4933
726a989a 4934 if (gimple_code (stmt) != GIMPLE_COND)
36b24193
ZD
4935 {
4936 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4937 after anything else but if statement. */
4938 FOR_EACH_EDGE (e, ei, bb->succs)
4939 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4940 {
726a989a 4941 error ("true/false edge after a non-GIMPLE_COND in bb %d",
36b24193
ZD
4942 bb->index);
4943 err = 1;
4944 }
4945 }
4946
726a989a 4947 switch (gimple_code (stmt))
6de9cd9a 4948 {
726a989a 4949 case GIMPLE_COND:
6de9cd9a
DN
4950 {
4951 edge true_edge;
4952 edge false_edge;
b8698a0f 4953
6de9cd9a
DN
4954 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4955
726a989a
RB
4956 if (!true_edge
4957 || !false_edge
6de9cd9a
DN
4958 || !(true_edge->flags & EDGE_TRUE_VALUE)
4959 || !(false_edge->flags & EDGE_FALSE_VALUE)
4960 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4961 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
628f6a4e 4962 || EDGE_COUNT (bb->succs) >= 3)
6de9cd9a 4963 {
ab532386 4964 error ("wrong outgoing edge flags at end of bb %d",
6de9cd9a
DN
4965 bb->index);
4966 err = 1;
4967 }
6de9cd9a
DN
4968 }
4969 break;
4970
726a989a 4971 case GIMPLE_GOTO:
6de9cd9a
DN
4972 if (simple_goto_p (stmt))
4973 {
ab532386 4974 error ("explicit goto at end of bb %d", bb->index);
6531d1be 4975 err = 1;
6de9cd9a
DN
4976 }
4977 else
4978 {
6531d1be 4979 /* FIXME. We should double check that the labels in the
6de9cd9a 4980 destination blocks have their address taken. */
628f6a4e 4981 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
4982 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4983 | EDGE_FALSE_VALUE))
4984 || !(e->flags & EDGE_ABNORMAL))
4985 {
ab532386 4986 error ("wrong outgoing edge flags at end of bb %d",
6de9cd9a
DN
4987 bb->index);
4988 err = 1;
4989 }
4990 }
4991 break;
4992
c54c785d
JH
4993 case GIMPLE_CALL:
4994 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4995 break;
4996 /* ... fallthru ... */
726a989a 4997 case GIMPLE_RETURN:
c5cbcccf
ZD
4998 if (!single_succ_p (bb)
4999 || (single_succ_edge (bb)->flags
5000 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5001 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
6de9cd9a 5002 {
ab532386 5003 error ("wrong outgoing edge flags at end of bb %d", bb->index);
6de9cd9a
DN
5004 err = 1;
5005 }
c5cbcccf 5006 if (single_succ (bb) != EXIT_BLOCK_PTR)
6de9cd9a 5007 {
ab532386 5008 error ("return edge does not point to exit in bb %d",
6de9cd9a
DN
5009 bb->index);
5010 err = 1;
5011 }
5012 break;
5013
726a989a 5014 case GIMPLE_SWITCH:
6de9cd9a 5015 {
7853504d 5016 tree prev;
6de9cd9a
DN
5017 edge e;
5018 size_t i, n;
6de9cd9a 5019
726a989a 5020 n = gimple_switch_num_labels (stmt);
6de9cd9a
DN
5021
5022 /* Mark all the destination basic blocks. */
5023 for (i = 0; i < n; ++i)
5024 {
726a989a 5025 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
6de9cd9a 5026 basic_block label_bb = label_to_block (lab);
1e128c5f 5027 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
6de9cd9a
DN
5028 label_bb->aux = (void *)1;
5029 }
5030
7853504d 5031 /* Verify that the case labels are sorted. */
726a989a 5032 prev = gimple_switch_label (stmt, 0);
b7814a18 5033 for (i = 1; i < n; ++i)
7853504d 5034 {
726a989a
RB
5035 tree c = gimple_switch_label (stmt, i);
5036 if (!CASE_LOW (c))
7853504d 5037 {
726a989a
RB
5038 error ("found default case not at the start of "
5039 "case vector");
5040 err = 1;
7853504d
SB
5041 continue;
5042 }
726a989a
RB
5043 if (CASE_LOW (prev)
5044 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
7853504d 5045 {
953ff289 5046 error ("case labels not sorted: ");
7853504d
SB
5047 print_generic_expr (stderr, prev, 0);
5048 fprintf (stderr," is greater than ");
5049 print_generic_expr (stderr, c, 0);
5050 fprintf (stderr," but comes before it.\n");
5051 err = 1;
5052 }
5053 prev = c;
5054 }
b7814a18
RG
5055 /* VRP will remove the default case if it can prove it will
5056 never be executed. So do not verify there always exists
5057 a default case here. */
7853504d 5058
628f6a4e 5059 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
5060 {
5061 if (!e->dest->aux)
5062 {
ab532386 5063 error ("extra outgoing edge %d->%d",
6de9cd9a
DN
5064 bb->index, e->dest->index);
5065 err = 1;
5066 }
726a989a 5067
6de9cd9a
DN
5068 e->dest->aux = (void *)2;
5069 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5070 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5071 {
ab532386 5072 error ("wrong outgoing edge flags at end of bb %d",
6de9cd9a
DN
5073 bb->index);
5074 err = 1;
5075 }
5076 }
5077
5078 /* Check that we have all of them. */
5079 for (i = 0; i < n; ++i)
5080 {
726a989a 5081 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
6de9cd9a
DN
5082 basic_block label_bb = label_to_block (lab);
5083
5084 if (label_bb->aux != (void *)2)
5085 {
726a989a 5086 error ("missing edge %i->%i", bb->index, label_bb->index);
6de9cd9a
DN
5087 err = 1;
5088 }
5089 }
5090
628f6a4e 5091 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
5092 e->dest->aux = (void *)0;
5093 }
1d65f45c
RH
5094 break;
5095
5096 case GIMPLE_EH_DISPATCH:
5097 err |= verify_eh_dispatch_edge (stmt);
5098 break;
6de9cd9a 5099
1d65f45c
RH
5100 default:
5101 break;
6de9cd9a
DN
5102 }
5103 }
5104
2b28c07a 5105 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
6de9cd9a
DN
5106 verify_dominators (CDI_DOMINATORS);
5107
5108 return err;
5109}
5110
5111
f0b698c1 5112/* Updates phi nodes after creating a forwarder block joined
6de9cd9a
DN
5113 by edge FALLTHRU. */
5114
5115static void
726a989a 5116gimple_make_forwarder_block (edge fallthru)
6de9cd9a
DN
5117{
5118 edge e;
628f6a4e 5119 edge_iterator ei;
6de9cd9a 5120 basic_block dummy, bb;
726a989a
RB
5121 tree var;
5122 gimple_stmt_iterator gsi;
6de9cd9a
DN
5123
5124 dummy = fallthru->src;
5125 bb = fallthru->dest;
5126
c5cbcccf 5127 if (single_pred_p (bb))
6de9cd9a
DN
5128 return;
5129
cfaab3a9 5130 /* If we redirected a branch we must create new PHI nodes at the
6de9cd9a 5131 start of BB. */
726a989a 5132 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 5133 {
726a989a 5134 gimple phi, new_phi;
b8698a0f 5135
726a989a
RB
5136 phi = gsi_stmt (gsi);
5137 var = gimple_phi_result (phi);
6de9cd9a 5138 new_phi = create_phi_node (var, bb);
070ecdfd 5139 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
b8698a0f 5140 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
9e227d60 5141 UNKNOWN_LOCATION);
6de9cd9a
DN
5142 }
5143
6de9cd9a 5144 /* Add the arguments we have stored on edges. */
628f6a4e 5145 FOR_EACH_EDGE (e, ei, bb->preds)
6de9cd9a
DN
5146 {
5147 if (e == fallthru)
5148 continue;
5149
71882046 5150 flush_pending_stmts (e);
6de9cd9a
DN
5151 }
5152}
5153
5154
6de9cd9a
DN
5155/* Return a non-special label in the head of basic block BLOCK.
5156 Create one if it doesn't exist. */
5157
d7621d3c 5158tree
726a989a 5159gimple_block_label (basic_block bb)
6de9cd9a 5160{
726a989a 5161 gimple_stmt_iterator i, s = gsi_start_bb (bb);
6de9cd9a 5162 bool first = true;
726a989a
RB
5163 tree label;
5164 gimple stmt;
6de9cd9a 5165
726a989a 5166 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
6de9cd9a 5167 {
726a989a
RB
5168 stmt = gsi_stmt (i);
5169 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a 5170 break;
726a989a 5171 label = gimple_label_label (stmt);
6de9cd9a
DN
5172 if (!DECL_NONLOCAL (label))
5173 {
5174 if (!first)
726a989a 5175 gsi_move_before (&i, &s);
6de9cd9a
DN
5176 return label;
5177 }
5178 }
5179
c2255bc4 5180 label = create_artificial_label (UNKNOWN_LOCATION);
726a989a
RB
5181 stmt = gimple_build_label (label);
5182 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
6de9cd9a
DN
5183 return label;
5184}
5185
5186
5187/* Attempt to perform edge redirection by replacing a possibly complex
5188 jump instruction by a goto or by removing the jump completely.
5189 This can apply only if all edges now point to the same block. The
5190 parameters and return values are equivalent to
5191 redirect_edge_and_branch. */
5192
5193static edge
726a989a 5194gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
6de9cd9a
DN
5195{
5196 basic_block src = e->src;
726a989a
RB
5197 gimple_stmt_iterator i;
5198 gimple stmt;
6de9cd9a 5199
07b43a87
KH
5200 /* We can replace or remove a complex jump only when we have exactly
5201 two edges. */
5202 if (EDGE_COUNT (src->succs) != 2
5203 /* Verify that all targets will be TARGET. Specifically, the
5204 edge that is not E must also go to TARGET. */
5205 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
6de9cd9a
DN
5206 return NULL;
5207
726a989a
RB
5208 i = gsi_last_bb (src);
5209 if (gsi_end_p (i))
6de9cd9a 5210 return NULL;
6de9cd9a 5211
726a989a
RB
5212 stmt = gsi_stmt (i);
5213
5214 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
6de9cd9a 5215 {
726a989a 5216 gsi_remove (&i, true);
6de9cd9a
DN
5217 e = ssa_redirect_edge (e, target);
5218 e->flags = EDGE_FALLTHRU;
5219 return e;
5220 }
5221
5222 return NULL;
5223}
5224
5225
5226/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5227 edge representing the redirected branch. */
5228
5229static edge
726a989a 5230gimple_redirect_edge_and_branch (edge e, basic_block dest)
6de9cd9a
DN
5231{
5232 basic_block bb = e->src;
726a989a 5233 gimple_stmt_iterator gsi;
6de9cd9a 5234 edge ret;
726a989a 5235 gimple stmt;
6de9cd9a 5236
4f6c2131 5237 if (e->flags & EDGE_ABNORMAL)
6de9cd9a
DN
5238 return NULL;
5239
6de9cd9a
DN
5240 if (e->dest == dest)
5241 return NULL;
5242
a3710436
JH
5243 if (e->flags & EDGE_EH)
5244 return redirect_eh_edge (e, dest);
5245
1c061be5
RH
5246 if (e->src != ENTRY_BLOCK_PTR)
5247 {
5248 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5249 if (ret)
5250 return ret;
5251 }
5252
726a989a
RB
5253 gsi = gsi_last_bb (bb);
5254 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6de9cd9a 5255
d130ae11 5256 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6de9cd9a 5257 {
726a989a 5258 case GIMPLE_COND:
a9b77cd1 5259 /* For COND_EXPR, we only need to redirect the edge. */
6de9cd9a
DN
5260 break;
5261
726a989a 5262 case GIMPLE_GOTO:
6de9cd9a
DN
5263 /* No non-abnormal edges should lead from a non-simple goto, and
5264 simple ones should be represented implicitly. */
1e128c5f 5265 gcc_unreachable ();
6de9cd9a 5266
726a989a 5267 case GIMPLE_SWITCH:
6de9cd9a 5268 {
726a989a 5269 tree label = gimple_block_label (dest);
d6be0d7f 5270 tree cases = get_cases_for_edge (e, stmt);
6de9cd9a 5271
d6be0d7f
JL
5272 /* If we have a list of cases associated with E, then use it
5273 as it's a lot faster than walking the entire case vector. */
5274 if (cases)
6de9cd9a 5275 {
4edbbd3f 5276 edge e2 = find_edge (e->src, dest);
d6be0d7f
JL
5277 tree last, first;
5278
5279 first = cases;
5280 while (cases)
5281 {
5282 last = cases;
5283 CASE_LABEL (cases) = label;
1290e54c 5284 cases = CASE_CHAIN (cases);
d6be0d7f
JL
5285 }
5286
5287 /* If there was already an edge in the CFG, then we need
5288 to move all the cases associated with E to E2. */
5289 if (e2)
5290 {
5291 tree cases2 = get_cases_for_edge (e2, stmt);
5292
1290e54c
NF
5293 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5294 CASE_CHAIN (cases2) = first;
d6be0d7f 5295 }
fc249fe5 5296 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6de9cd9a 5297 }
92b6dff3
JL
5298 else
5299 {
726a989a 5300 size_t i, n = gimple_switch_num_labels (stmt);
d6be0d7f
JL
5301
5302 for (i = 0; i < n; i++)
5303 {
726a989a 5304 tree elt = gimple_switch_label (stmt, i);
d6be0d7f
JL
5305 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5306 CASE_LABEL (elt) = label;
5307 }
92b6dff3 5308 }
1c384bf1
RH
5309 }
5310 break;
d6be0d7f 5311
1c384bf1
RH
5312 case GIMPLE_ASM:
5313 {
5314 int i, n = gimple_asm_nlabels (stmt);
f8981d1c 5315 tree label = NULL;
1c384bf1
RH
5316
5317 for (i = 0; i < n; ++i)
5318 {
5319 tree cons = gimple_asm_label_op (stmt, i);
5320 if (label_to_block (TREE_VALUE (cons)) == e->dest)
f8981d1c
AO
5321 {
5322 if (!label)
5323 label = gimple_block_label (dest);
5324 TREE_VALUE (cons) = label;
5325 }
1c384bf1 5326 }
f8981d1c
AO
5327
5328 /* If we didn't find any label matching the former edge in the
5329 asm labels, we must be redirecting the fallthrough
5330 edge. */
5331 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6de9cd9a 5332 }
1c384bf1 5333 break;
6de9cd9a 5334
726a989a
RB
5335 case GIMPLE_RETURN:
5336 gsi_remove (&gsi, true);
6de9cd9a
DN
5337 e->flags |= EDGE_FALLTHRU;
5338 break;
5339
726a989a
RB
5340 case GIMPLE_OMP_RETURN:
5341 case GIMPLE_OMP_CONTINUE:
5342 case GIMPLE_OMP_SECTIONS_SWITCH:
5343 case GIMPLE_OMP_FOR:
e5c95afe
ZD
5344 /* The edges from OMP constructs can be simply redirected. */
5345 break;
5346
1d65f45c
RH
5347 case GIMPLE_EH_DISPATCH:
5348 if (!(e->flags & EDGE_FALLTHRU))
5349 redirect_eh_dispatch_edge (stmt, e, dest);
5350 break;
5351
0a35513e
AH
5352 case GIMPLE_TRANSACTION:
5353 /* The ABORT edge has a stored label associated with it, otherwise
5354 the edges are simply redirectable. */
5355 if (e->flags == 0)
5356 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5357 break;
5358
6de9cd9a
DN
5359 default:
5360 /* Otherwise it must be a fallthru edge, and we don't need to
5361 do anything besides redirecting it. */
1e128c5f 5362 gcc_assert (e->flags & EDGE_FALLTHRU);
6de9cd9a
DN
5363 break;
5364 }
5365
5366 /* Update/insert PHI nodes as necessary. */
5367
5368 /* Now update the edges in the CFG. */
5369 e = ssa_redirect_edge (e, dest);
5370
5371 return e;
5372}
5373
14fa2cc0
ZD
5374/* Returns true if it is possible to remove edge E by redirecting
5375 it to the destination of the other edge from E->src. */
5376
5377static bool
726a989a 5378gimple_can_remove_branch_p (const_edge e)
14fa2cc0 5379{
496a4ef5 5380 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
14fa2cc0
ZD
5381 return false;
5382
5383 return true;
5384}
6de9cd9a
DN
5385
5386/* Simple wrapper, as we can always redirect fallthru edges. */
5387
5388static basic_block
726a989a 5389gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6de9cd9a 5390{
726a989a 5391 e = gimple_redirect_edge_and_branch (e, dest);
1e128c5f 5392 gcc_assert (e);
6de9cd9a
DN
5393
5394 return NULL;
5395}
5396
5397
5398/* Splits basic block BB after statement STMT (but at least after the
5399 labels). If STMT is NULL, BB is split just after the labels. */
5400
5401static basic_block
726a989a 5402gimple_split_block (basic_block bb, void *stmt)
6de9cd9a 5403{
726a989a
RB
5404 gimple_stmt_iterator gsi;
5405 gimple_stmt_iterator gsi_tgt;
5406 gimple act;
5407 gimple_seq list;
6de9cd9a
DN
5408 basic_block new_bb;
5409 edge e;
628f6a4e 5410 edge_iterator ei;
6de9cd9a
DN
5411
5412 new_bb = create_empty_bb (bb);
5413
5414 /* Redirect the outgoing edges. */
628f6a4e
BE
5415 new_bb->succs = bb->succs;
5416 bb->succs = NULL;
5417 FOR_EACH_EDGE (e, ei, new_bb->succs)
6de9cd9a
DN
5418 e->src = new_bb;
5419
726a989a 5420 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
6de9cd9a
DN
5421 stmt = NULL;
5422
726a989a
RB
5423 /* Move everything from GSI to the new basic block. */
5424 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 5425 {
726a989a
RB
5426 act = gsi_stmt (gsi);
5427 if (gimple_code (act) == GIMPLE_LABEL)
6de9cd9a
DN
5428 continue;
5429
5430 if (!stmt)
5431 break;
5432
5433 if (stmt == act)
5434 {
726a989a 5435 gsi_next (&gsi);
6de9cd9a
DN
5436 break;
5437 }
5438 }
5439
726a989a 5440 if (gsi_end_p (gsi))
597ae074
JH
5441 return new_bb;
5442
5443 /* Split the statement list - avoid re-creating new containers as this
b8698a0f 5444 brings ugly quadratic memory consumption in the inliner.
597ae074
JH
5445 (We are still quadratic since we need to update stmt BB pointers,
5446 sadly.) */
355a7673 5447 gsi_split_seq_before (&gsi, &list);
726a989a
RB
5448 set_bb_seq (new_bb, list);
5449 for (gsi_tgt = gsi_start (list);
5450 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5451 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6de9cd9a
DN
5452
5453 return new_bb;
5454}
5455
5456
5457/* Moves basic block BB after block AFTER. */
5458
5459static bool
726a989a 5460gimple_move_block_after (basic_block bb, basic_block after)
6de9cd9a
DN
5461{
5462 if (bb->prev_bb == after)
5463 return true;
5464
5465 unlink_block (bb);
5466 link_block (bb, after);
5467
5468 return true;
5469}
5470
5471
df92c640
SB
5472/* Return TRUE if block BB has no executable statements, otherwise return
5473 FALSE. */
5474
5475bool
5476gimple_empty_block_p (basic_block bb)
5477{
5478 /* BB must have no executable statements. */
5479 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5480 if (phi_nodes (bb))
5481 return false;
5482 if (gsi_end_p (gsi))
5483 return true;
5484 if (is_gimple_debug (gsi_stmt (gsi)))
5485 gsi_next_nondebug (&gsi);
5486 return gsi_end_p (gsi);
5487}
5488
5489
5490/* Split a basic block if it ends with a conditional branch and if the
5491 other part of the block is not empty. */
5492
5493static basic_block
5494gimple_split_block_before_cond_jump (basic_block bb)
5495{
5496 gimple last, split_point;
5497 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5498 if (gsi_end_p (gsi))
5499 return NULL;
5500 last = gsi_stmt (gsi);
5501 if (gimple_code (last) != GIMPLE_COND
5502 && gimple_code (last) != GIMPLE_SWITCH)
5503 return NULL;
5504 gsi_prev_nondebug (&gsi);
5505 split_point = gsi_stmt (gsi);
5506 return split_block (bb, split_point)->dest;
5507}
5508
5509
6de9cd9a
DN
5510/* Return true if basic_block can be duplicated. */
5511
5512static bool
ca89096d 5513gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6de9cd9a
DN
5514{
5515 return true;
5516}
5517
6de9cd9a
DN
5518/* Create a duplicate of the basic block BB. NOTE: This does not
5519 preserve SSA form. */
5520
5521static basic_block
726a989a 5522gimple_duplicate_bb (basic_block bb)
6de9cd9a
DN
5523{
5524 basic_block new_bb;
726a989a
RB
5525 gimple_stmt_iterator gsi, gsi_tgt;
5526 gimple_seq phis = phi_nodes (bb);
5527 gimple phi, stmt, copy;
6de9cd9a
DN
5528
5529 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
b0382c67 5530
84d65814
DN
5531 /* Copy the PHI nodes. We ignore PHI node arguments here because
5532 the incoming edges have not been setup yet. */
726a989a 5533 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
b0382c67 5534 {
726a989a 5535 phi = gsi_stmt (gsi);
dcc748dd
RG
5536 copy = create_phi_node (NULL_TREE, new_bb);
5537 create_new_def_for (gimple_phi_result (phi), copy,
726a989a 5538 gimple_phi_result_ptr (copy));
b0382c67 5539 }
84d65814 5540
726a989a
RB
5541 gsi_tgt = gsi_start_bb (new_bb);
5542 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 5543 {
84d65814
DN
5544 def_operand_p def_p;
5545 ssa_op_iter op_iter;
1ace6185 5546 tree lhs;
6de9cd9a 5547
726a989a
RB
5548 stmt = gsi_stmt (gsi);
5549 if (gimple_code (stmt) == GIMPLE_LABEL)
6de9cd9a
DN
5550 continue;
5551
5619e52c
JJ
5552 /* Don't duplicate label debug stmts. */
5553 if (gimple_debug_bind_p (stmt)
5554 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5555 == LABEL_DECL)
5556 continue;
5557
84d65814
DN
5558 /* Create a new copy of STMT and duplicate STMT's virtual
5559 operands. */
726a989a
RB
5560 copy = gimple_copy (stmt);
5561 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
1d65f45c
RH
5562
5563 maybe_duplicate_eh_stmt (copy, stmt);
6946b3f7 5564 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
84d65814 5565
1ace6185
JJ
5566 /* When copying around a stmt writing into a local non-user
5567 aggregate, make sure it won't share stack slot with other
5568 vars. */
5569 lhs = gimple_get_lhs (stmt);
5570 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5571 {
5572 tree base = get_base_address (lhs);
5573 if (base
5574 && (TREE_CODE (base) == VAR_DECL
5575 || TREE_CODE (base) == RESULT_DECL)
5576 && DECL_IGNORED_P (base)
5577 && !TREE_STATIC (base)
5578 && !DECL_EXTERNAL (base)
5579 && (TREE_CODE (base) != VAR_DECL
5580 || !DECL_HAS_VALUE_EXPR_P (base)))
5581 DECL_NONSHAREABLE (base) = 1;
5582 }
5583
84d65814
DN
5584 /* Create new names for all the definitions created by COPY and
5585 add replacement mappings for each new name. */
5586 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5587 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6de9cd9a
DN
5588 }
5589
5590 return new_bb;
5591}
5592
5f40b3cb
ZD
5593/* Adds phi node arguments for edge E_COPY after basic block duplication. */
5594
5595static void
5596add_phi_args_after_copy_edge (edge e_copy)
5597{
5598 basic_block bb, bb_copy = e_copy->src, dest;
5599 edge e;
5600 edge_iterator ei;
726a989a
RB
5601 gimple phi, phi_copy;
5602 tree def;
5603 gimple_stmt_iterator psi, psi_copy;
5f40b3cb 5604
726a989a 5605 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5f40b3cb
ZD
5606 return;
5607
5608 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5609
5610 if (e_copy->dest->flags & BB_DUPLICATED)
5611 dest = get_bb_original (e_copy->dest);
5612 else
5613 dest = e_copy->dest;
5614
5615 e = find_edge (bb, dest);
5616 if (!e)
5617 {
5618 /* During loop unrolling the target of the latch edge is copied.
5619 In this case we are not looking for edge to dest, but to
5620 duplicated block whose original was dest. */
5621 FOR_EACH_EDGE (e, ei, bb->succs)
5622 {
5623 if ((e->dest->flags & BB_DUPLICATED)
5624 && get_bb_original (e->dest) == dest)
5625 break;
5626 }
5627
5628 gcc_assert (e != NULL);
5629 }
5630
726a989a
RB
5631 for (psi = gsi_start_phis (e->dest),
5632 psi_copy = gsi_start_phis (e_copy->dest);
5633 !gsi_end_p (psi);
5634 gsi_next (&psi), gsi_next (&psi_copy))
5f40b3cb 5635 {
726a989a
RB
5636 phi = gsi_stmt (psi);
5637 phi_copy = gsi_stmt (psi_copy);
5f40b3cb 5638 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
b8698a0f 5639 add_phi_arg (phi_copy, def, e_copy,
9e227d60 5640 gimple_phi_arg_location_from_edge (phi, e));
5f40b3cb
ZD
5641 }
5642}
5643
84d65814 5644
42759f1e
ZD
5645/* Basic block BB_COPY was created by code duplication. Add phi node
5646 arguments for edges going out of BB_COPY. The blocks that were
6580ee77 5647 duplicated have BB_DUPLICATED set. */
42759f1e
ZD
5648
5649void
5650add_phi_args_after_copy_bb (basic_block bb_copy)
5651{
5f40b3cb 5652 edge e_copy;
726a989a 5653 edge_iterator ei;
42759f1e 5654
628f6a4e 5655 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
42759f1e 5656 {
5f40b3cb 5657 add_phi_args_after_copy_edge (e_copy);
42759f1e
ZD
5658 }
5659}
5660
5661/* Blocks in REGION_COPY array of length N_REGION were created by
5662 duplication of basic blocks. Add phi node arguments for edges
5f40b3cb
ZD
5663 going from these blocks. If E_COPY is not NULL, also add
5664 phi node arguments for its destination.*/
42759f1e
ZD
5665
5666void
5f40b3cb
ZD
5667add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5668 edge e_copy)
42759f1e
ZD
5669{
5670 unsigned i;
5671
5672 for (i = 0; i < n_region; i++)
6580ee77 5673 region_copy[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
5674
5675 for (i = 0; i < n_region; i++)
5676 add_phi_args_after_copy_bb (region_copy[i]);
5f40b3cb
ZD
5677 if (e_copy)
5678 add_phi_args_after_copy_edge (e_copy);
42759f1e
ZD
5679
5680 for (i = 0; i < n_region; i++)
6580ee77 5681 region_copy[i]->flags &= ~BB_DUPLICATED;
42759f1e
ZD
5682}
5683
42759f1e
ZD
5684/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5685 important exit edge EXIT. By important we mean that no SSA name defined
5686 inside region is live over the other exit edges of the region. All entry
5687 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
197ce793
MM
5688 to the duplicate of the region. Dominance and loop information is
5689 updated, but not the SSA web. The new basic blocks are stored to
5690 REGION_COPY in the same order as they had in REGION, provided that
5691 REGION_COPY is not NULL.
42759f1e
ZD
5692 The function returns false if it is unable to copy the region,
5693 true otherwise. */
5694
5695bool
726a989a 5696gimple_duplicate_sese_region (edge entry, edge exit,
42759f1e
ZD
5697 basic_block *region, unsigned n_region,
5698 basic_block *region_copy)
5699{
66f97d31 5700 unsigned i;
42759f1e
ZD
5701 bool free_region_copy = false, copying_header = false;
5702 struct loop *loop = entry->dest->loop_father;
5703 edge exit_copy;
9771b263 5704 vec<basic_block> doms;
42759f1e 5705 edge redirected;
09bac500
JH
5706 int total_freq = 0, entry_freq = 0;
5707 gcov_type total_count = 0, entry_count = 0;
42759f1e
ZD
5708
5709 if (!can_copy_bbs_p (region, n_region))
5710 return false;
5711
5712 /* Some sanity checking. Note that we do not check for all possible
5713 missuses of the functions. I.e. if you ask to copy something weird,
5714 it will work, but the state of structures probably will not be
5715 correct. */
42759f1e
ZD
5716 for (i = 0; i < n_region; i++)
5717 {
5718 /* We do not handle subloops, i.e. all the blocks must belong to the
5719 same loop. */
5720 if (region[i]->loop_father != loop)
5721 return false;
5722
5723 if (region[i] != entry->dest
5724 && region[i] == loop->header)
5725 return false;
5726 }
5727
561e8a90 5728 set_loop_copy (loop, loop);
42759f1e
ZD
5729
5730 /* In case the function is used for loop header copying (which is the primary
5731 use), ensure that EXIT and its copy will be new latch and entry edges. */
5732 if (loop->header == entry->dest)
5733 {
5734 copying_header = true;
561e8a90 5735 set_loop_copy (loop, loop_outer (loop));
42759f1e
ZD
5736
5737 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5738 return false;
5739
5740 for (i = 0; i < n_region; i++)
5741 if (region[i] != exit->src
5742 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5743 return false;
5744 }
5745
5746 if (!region_copy)
5747 {
858904db 5748 region_copy = XNEWVEC (basic_block, n_region);
42759f1e
ZD
5749 free_region_copy = true;
5750 }
5751
5deaef19 5752 /* Record blocks outside the region that are dominated by something
42759f1e 5753 inside. */
9771b263 5754 doms.create (0);
6580ee77
JH
5755 initialize_original_copy_tables ();
5756
66f97d31 5757 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
42759f1e 5758
09bac500
JH
5759 if (entry->dest->count)
5760 {
5761 total_count = entry->dest->count;
5762 entry_count = entry->count;
5763 /* Fix up corner cases, to avoid division by zero or creation of negative
5764 frequencies. */
5765 if (entry_count > total_count)
5766 entry_count = total_count;
5767 }
5768 else
5769 {
5770 total_freq = entry->dest->frequency;
5771 entry_freq = EDGE_FREQUENCY (entry);
5772 /* Fix up corner cases, to avoid division by zero or creation of negative
5773 frequencies. */
5774 if (total_freq == 0)
5775 total_freq = 1;
5776 else if (entry_freq > total_freq)
5777 entry_freq = total_freq;
5778 }
5deaef19 5779
b9a66240
ZD
5780 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5781 split_edge_bb_loc (entry));
09bac500
JH
5782 if (total_count)
5783 {
5784 scale_bbs_frequencies_gcov_type (region, n_region,
5785 total_count - entry_count,
5786 total_count);
5787 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6531d1be 5788 total_count);
09bac500
JH
5789 }
5790 else
5791 {
5792 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5793 total_freq);
5794 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5795 }
42759f1e
ZD
5796
5797 if (copying_header)
5798 {
5799 loop->header = exit->dest;
5800 loop->latch = exit->src;
5801 }
5802
5803 /* Redirect the entry and add the phi node arguments. */
6580ee77 5804 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
42759f1e 5805 gcc_assert (redirected != NULL);
71882046 5806 flush_pending_stmts (entry);
42759f1e
ZD
5807
5808 /* Concerning updating of dominators: We must recount dominators
84d65814
DN
5809 for entry block and its copy. Anything that is outside of the
5810 region, but was dominated by something inside needs recounting as
5811 well. */
42759f1e 5812 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
9771b263 5813 doms.safe_push (get_bb_original (entry->dest));
66f97d31 5814 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
9771b263 5815 doms.release ();
42759f1e 5816
84d65814 5817 /* Add the other PHI node arguments. */
5f40b3cb
ZD
5818 add_phi_args_after_copy (region_copy, n_region, NULL);
5819
5f40b3cb
ZD
5820 if (free_region_copy)
5821 free (region_copy);
5822
5823 free_original_copy_tables ();
5824 return true;
5825}
5826
69958396
RL
5827/* Checks if BB is part of the region defined by N_REGION BBS. */
5828static bool
5829bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5830{
5831 unsigned int n;
5832
5833 for (n = 0; n < n_region; n++)
5834 {
5835 if (bb == bbs[n])
5836 return true;
5837 }
5838 return false;
5839}
5840
5f40b3cb
ZD
5841/* Duplicates REGION consisting of N_REGION blocks. The new blocks
5842 are stored to REGION_COPY in the same order in that they appear
5843 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5844 the region, EXIT an exit from it. The condition guarding EXIT
5845 is moved to ENTRY. Returns true if duplication succeeds, false
5846 otherwise.
5847
b8698a0f
L
5848 For example,
5849
5f40b3cb
ZD
5850 some_code;
5851 if (cond)
5852 A;
5853 else
5854 B;
5855
5856 is transformed to
5857
5858 if (cond)
5859 {
5860 some_code;
5861 A;
5862 }
5863 else
5864 {
5865 some_code;
5866 B;
5867 }
5868*/
5869
5870bool
726a989a
RB
5871gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5872 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5873 basic_block *region_copy ATTRIBUTE_UNUSED)
5f40b3cb
ZD
5874{
5875 unsigned i;
5876 bool free_region_copy = false;
5877 struct loop *loop = exit->dest->loop_father;
5878 struct loop *orig_loop = entry->dest->loop_father;
5879 basic_block switch_bb, entry_bb, nentry_bb;
9771b263 5880 vec<basic_block> doms;
5f40b3cb
ZD
5881 int total_freq = 0, exit_freq = 0;
5882 gcov_type total_count = 0, exit_count = 0;
5883 edge exits[2], nexits[2], e;
12037899 5884 gimple_stmt_iterator gsi;
726a989a 5885 gimple cond_stmt;
8adfe01d 5886 edge sorig, snew;
48710229 5887 basic_block exit_bb;
8adfe01d
RL
5888 gimple_stmt_iterator psi;
5889 gimple phi;
5890 tree def;
69958396 5891 struct loop *target, *aloop, *cloop;
5f40b3cb
ZD
5892
5893 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5894 exits[0] = exit;
5895 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5896
5897 if (!can_copy_bbs_p (region, n_region))
5898 return false;
5899
5f40b3cb
ZD
5900 initialize_original_copy_tables ();
5901 set_loop_copy (orig_loop, loop);
69958396
RL
5902
5903 target= loop;
5904 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5905 {
5906 if (bb_part_of_region_p (aloop->header, region, n_region))
5907 {
5908 cloop = duplicate_loop (aloop, target);
5909 duplicate_subloops (aloop, cloop);
5910 }
5911 }
5f40b3cb
ZD
5912
5913 if (!region_copy)
5914 {
5915 region_copy = XNEWVEC (basic_block, n_region);
5916 free_region_copy = true;
5917 }
5918
5006671f 5919 gcc_assert (!need_ssa_update_p (cfun));
5f40b3cb
ZD
5920
5921 /* Record blocks outside the region that are dominated by something
5922 inside. */
5923 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5924
5925 if (exit->src->count)
5926 {
5927 total_count = exit->src->count;
5928 exit_count = exit->count;
5929 /* Fix up corner cases, to avoid division by zero or creation of negative
5930 frequencies. */
5931 if (exit_count > total_count)
5932 exit_count = total_count;
5933 }
5934 else
5935 {
5936 total_freq = exit->src->frequency;
5937 exit_freq = EDGE_FREQUENCY (exit);
5938 /* Fix up corner cases, to avoid division by zero or creation of negative
5939 frequencies. */
5940 if (total_freq == 0)
5941 total_freq = 1;
5942 if (exit_freq > total_freq)
5943 exit_freq = total_freq;
5944 }
5945
5946 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5947 split_edge_bb_loc (exit));
5948 if (total_count)
5949 {
5950 scale_bbs_frequencies_gcov_type (region, n_region,
5951 total_count - exit_count,
5952 total_count);
5953 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5954 total_count);
5955 }
5956 else
5957 {
5958 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5959 total_freq);
5960 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5961 }
5962
5963 /* Create the switch block, and put the exit condition to it. */
5964 entry_bb = entry->dest;
5965 nentry_bb = get_bb_copy (entry_bb);
5966 if (!last_stmt (entry->src)
5967 || !stmt_ends_bb_p (last_stmt (entry->src)))
5968 switch_bb = entry->src;
5969 else
5970 switch_bb = split_edge (entry);
5971 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5972
726a989a
RB
5973 gsi = gsi_last_bb (switch_bb);
5974 cond_stmt = last_stmt (exit->src);
5975 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5976 cond_stmt = gimple_copy (cond_stmt);
b8698a0f 5977
726a989a 5978 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5f40b3cb
ZD
5979
5980 sorig = single_succ_edge (switch_bb);
5981 sorig->flags = exits[1]->flags;
5982 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5983
5984 /* Register the new edge from SWITCH_BB in loop exit lists. */
5985 rescan_loop_exit (snew, true, false);
5986
5987 /* Add the PHI node arguments. */
5988 add_phi_args_after_copy (region_copy, n_region, snew);
b8698a0f 5989
5f40b3cb
ZD
5990 /* Get rid of now superfluous conditions and associated edges (and phi node
5991 arguments). */
48710229 5992 exit_bb = exit->dest;
b8698a0f 5993
5f40b3cb 5994 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
726a989a 5995 PENDING_STMT (e) = NULL;
b8698a0f 5996
8adfe01d
RL
5997 /* The latch of ORIG_LOOP was copied, and so was the backedge
5998 to the original header. We redirect this backedge to EXIT_BB. */
48710229 5999 for (i = 0; i < n_region; i++)
8adfe01d
RL
6000 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6001 {
6002 gcc_assert (single_succ_edge (region_copy[i]));
6003 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6004 PENDING_STMT (e) = NULL;
6005 for (psi = gsi_start_phis (exit_bb);
6006 !gsi_end_p (psi);
6007 gsi_next (&psi))
6008 {
6009 phi = gsi_stmt (psi);
6010 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
9e227d60 6011 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
8adfe01d
RL
6012 }
6013 }
69958396 6014 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
8adfe01d
RL
6015 PENDING_STMT (e) = NULL;
6016
5f40b3cb
ZD
6017 /* Anything that is outside of the region, but was dominated by something
6018 inside needs to update dominance info. */
6019 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
9771b263 6020 doms.release ();
84d65814
DN
6021 /* Update the SSA web. */
6022 update_ssa (TODO_update_ssa);
6d8752c4 6023
42759f1e
ZD
6024 if (free_region_copy)
6025 free (region_copy);
6d8752c4 6026
6580ee77 6027 free_original_copy_tables ();
42759f1e
ZD
6028 return true;
6029}
6de9cd9a 6030
50674e96
DN
6031/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6032 adding blocks when the dominator traversal reaches EXIT. This
6033 function silently assumes that ENTRY strictly dominates EXIT. */
6034
9f9f72aa 6035void
50674e96 6036gather_blocks_in_sese_region (basic_block entry, basic_block exit,
9771b263 6037 vec<basic_block> *bbs_p)
50674e96
DN
6038{
6039 basic_block son;
6040
6041 for (son = first_dom_son (CDI_DOMINATORS, entry);
6042 son;
6043 son = next_dom_son (CDI_DOMINATORS, son))
6044 {
9771b263 6045 bbs_p->safe_push (son);
50674e96
DN
6046 if (son != exit)
6047 gather_blocks_in_sese_region (son, exit, bbs_p);
6048 }
6049}
6050
917948d3
ZD
6051/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6052 The duplicates are recorded in VARS_MAP. */
6053
6054static void
6055replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6056 tree to_context)
6057{
6058 tree t = *tp, new_t;
6059 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6060 void **loc;
6061
6062 if (DECL_CONTEXT (t) == to_context)
6063 return;
6064
6065 loc = pointer_map_contains (vars_map, t);
6066
6067 if (!loc)
6068 {
6069 loc = pointer_map_insert (vars_map, t);
6070
6071 if (SSA_VAR_P (t))
6072 {
6073 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
c021f10b 6074 add_local_decl (f, new_t);
917948d3
ZD
6075 }
6076 else
6077 {
6078 gcc_assert (TREE_CODE (t) == CONST_DECL);
6079 new_t = copy_node (t);
6080 }
6081 DECL_CONTEXT (new_t) = to_context;
6082
6083 *loc = new_t;
6084 }
6085 else
3d9a9f94 6086 new_t = (tree) *loc;
917948d3
ZD
6087
6088 *tp = new_t;
6089}
6090
726a989a 6091
917948d3
ZD
6092/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6093 VARS_MAP maps old ssa names and var_decls to the new ones. */
6094
6095static tree
6096replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6097 tree to_context)
6098{
6099 void **loc;
70b5e7dc 6100 tree new_name;
917948d3 6101
ea057359 6102 gcc_assert (!virtual_operand_p (name));
917948d3
ZD
6103
6104 loc = pointer_map_contains (vars_map, name);
6105
6106 if (!loc)
6107 {
70b5e7dc
RG
6108 tree decl = SSA_NAME_VAR (name);
6109 if (decl)
6110 {
6111 replace_by_duplicate_decl (&decl, vars_map, to_context);
6112 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6113 decl, SSA_NAME_DEF_STMT (name));
6114 if (SSA_NAME_IS_DEFAULT_DEF (name))
6115 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6116 decl, new_name);
6117 }
6118 else
6119 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6120 name, SSA_NAME_DEF_STMT (name));
917948d3
ZD
6121
6122 loc = pointer_map_insert (vars_map, name);
6123 *loc = new_name;
6124 }
6125 else
3d9a9f94 6126 new_name = (tree) *loc;
917948d3
ZD
6127
6128 return new_name;
6129}
50674e96
DN
6130
6131struct move_stmt_d
6132{
b357f682
JJ
6133 tree orig_block;
6134 tree new_block;
50674e96
DN
6135 tree from_context;
6136 tree to_context;
917948d3 6137 struct pointer_map_t *vars_map;
fad41cd7 6138 htab_t new_label_map;
1d65f45c 6139 struct pointer_map_t *eh_map;
50674e96
DN
6140 bool remap_decls_p;
6141};
6142
6143/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
b357f682
JJ
6144 contained in *TP if it has been ORIG_BLOCK previously and change the
6145 DECL_CONTEXT of every local variable referenced in *TP. */
50674e96
DN
6146
6147static tree
726a989a 6148move_stmt_op (tree *tp, int *walk_subtrees, void *data)
50674e96 6149{
726a989a
RB
6150 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6151 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
fad41cd7 6152 tree t = *tp;
50674e96 6153
726a989a 6154 if (EXPR_P (t))
5368224f 6155 {
0c2b2040
RB
6156 tree block = TREE_BLOCK (t);
6157 if (block == p->orig_block
60478b9c 6158 || (p->orig_block == NULL_TREE
0c2b2040 6159 && block != NULL_TREE))
5368224f 6160 TREE_SET_BLOCK (t, p->new_block);
0c2b2040
RB
6161#ifdef ENABLE_CHECKING
6162 else if (block != NULL_TREE)
6163 {
6164 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6165 block = BLOCK_SUPERCONTEXT (block);
6166 gcc_assert (block == p->orig_block);
6167 }
6168#endif
5368224f 6169 }
917948d3 6170 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
50674e96 6171 {
917948d3
ZD
6172 if (TREE_CODE (t) == SSA_NAME)
6173 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6174 else if (TREE_CODE (t) == LABEL_DECL)
fad41cd7
RH
6175 {
6176 if (p->new_label_map)
6177 {
6178 struct tree_map in, *out;
fc8600f9 6179 in.base.from = t;
3d9a9f94
KG
6180 out = (struct tree_map *)
6181 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
fad41cd7
RH
6182 if (out)
6183 *tp = t = out->to;
6184 }
50674e96 6185
fad41cd7
RH
6186 DECL_CONTEXT (t) = p->to_context;
6187 }
6188 else if (p->remap_decls_p)
50674e96 6189 {
917948d3
ZD
6190 /* Replace T with its duplicate. T should no longer appear in the
6191 parent function, so this looks wasteful; however, it may appear
6192 in referenced_vars, and more importantly, as virtual operands of
6193 statements, and in alias lists of other variables. It would be
6194 quite difficult to expunge it from all those places. ??? It might
6195 suffice to do this for addressable variables. */
6196 if ((TREE_CODE (t) == VAR_DECL
6197 && !is_global_var (t))
6198 || TREE_CODE (t) == CONST_DECL)
46eb666a 6199 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
50674e96 6200 }
917948d3 6201 *walk_subtrees = 0;
50674e96 6202 }
fad41cd7
RH
6203 else if (TYPE_P (t))
6204 *walk_subtrees = 0;
50674e96
DN
6205
6206 return NULL_TREE;
6207}
6208
1d65f45c
RH
6209/* Helper for move_stmt_r. Given an EH region number for the source
6210 function, map that to the duplicate EH regio number in the dest. */
6211
6212static int
6213move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6214{
6215 eh_region old_r, new_r;
6216 void **slot;
6217
6218 old_r = get_eh_region_from_number (old_nr);
6219 slot = pointer_map_contains (p->eh_map, old_r);
6220 new_r = (eh_region) *slot;
6221
6222 return new_r->index;
6223}
6224
6225/* Similar, but operate on INTEGER_CSTs. */
6226
6227static tree
6228move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6229{
6230 int old_nr, new_nr;
6231
6232 old_nr = tree_low_cst (old_t_nr, 0);
6233 new_nr = move_stmt_eh_region_nr (old_nr, p);
6234
45a2c477 6235 return build_int_cst (integer_type_node, new_nr);
1d65f45c
RH
6236}
6237
726a989a
RB
6238/* Like move_stmt_op, but for gimple statements.
6239
6240 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6241 contained in the current statement in *GSI_P and change the
6242 DECL_CONTEXT of every local variable referenced in the current
6243 statement. */
6244
6245static tree
6246move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6247 struct walk_stmt_info *wi)
6248{
6249 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6250 gimple stmt = gsi_stmt (*gsi_p);
6251 tree block = gimple_block (stmt);
6252
0c2b2040
RB
6253 if (block == p->orig_block
6254 || (p->orig_block == NULL_TREE
6255 && block != NULL_TREE))
726a989a 6256 gimple_set_block (stmt, p->new_block);
726a989a 6257
1d65f45c 6258 switch (gimple_code (stmt))
726a989a 6259 {
1d65f45c
RH
6260 case GIMPLE_CALL:
6261 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6262 {
6263 tree r, fndecl = gimple_call_fndecl (stmt);
6264 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6265 switch (DECL_FUNCTION_CODE (fndecl))
6266 {
6267 case BUILT_IN_EH_COPY_VALUES:
6268 r = gimple_call_arg (stmt, 1);
6269 r = move_stmt_eh_region_tree_nr (r, p);
6270 gimple_call_set_arg (stmt, 1, r);
6271 /* FALLTHRU */
6272
6273 case BUILT_IN_EH_POINTER:
6274 case BUILT_IN_EH_FILTER:
6275 r = gimple_call_arg (stmt, 0);
6276 r = move_stmt_eh_region_tree_nr (r, p);
6277 gimple_call_set_arg (stmt, 0, r);
6278 break;
726a989a 6279
1d65f45c
RH
6280 default:
6281 break;
6282 }
6283 }
6284 break;
6285
6286 case GIMPLE_RESX:
6287 {
6288 int r = gimple_resx_region (stmt);
6289 r = move_stmt_eh_region_nr (r, p);
6290 gimple_resx_set_region (stmt, r);
6291 }
6292 break;
726a989a 6293
1d65f45c
RH
6294 case GIMPLE_EH_DISPATCH:
6295 {
6296 int r = gimple_eh_dispatch_region (stmt);
6297 r = move_stmt_eh_region_nr (r, p);
6298 gimple_eh_dispatch_set_region (stmt, r);
6299 }
6300 break;
6301
6302 case GIMPLE_OMP_RETURN:
6303 case GIMPLE_OMP_CONTINUE:
6304 break;
6305 default:
6306 if (is_gimple_omp (stmt))
6307 {
6308 /* Do not remap variables inside OMP directives. Variables
6309 referenced in clauses and directive header belong to the
6310 parent function and should not be moved into the child
6311 function. */
6312 bool save_remap_decls_p = p->remap_decls_p;
6313 p->remap_decls_p = false;
6314 *handled_ops_p = true;
6315
355a7673
MM
6316 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6317 move_stmt_op, wi);
1d65f45c
RH
6318
6319 p->remap_decls_p = save_remap_decls_p;
6320 }
6321 break;
726a989a
RB
6322 }
6323
6324 return NULL_TREE;
6325}
6326
50674e96
DN
6327/* Move basic block BB from function CFUN to function DEST_FN. The
6328 block is moved out of the original linked list and placed after
6329 block AFTER in the new list. Also, the block is removed from the
6330 original array of blocks and placed in DEST_FN's array of blocks.
6331 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6332 updated to reflect the moved edges.
6531d1be 6333
917948d3
ZD
6334 The local variables are remapped to new instances, VARS_MAP is used
6335 to record the mapping. */
50674e96
DN
6336
6337static void
6338move_block_to_fn (struct function *dest_cfun, basic_block bb,
6339 basic_block after, bool update_edge_count_p,
1d65f45c 6340 struct move_stmt_d *d)
50674e96
DN
6341{
6342 struct control_flow_graph *cfg;
6343 edge_iterator ei;
6344 edge e;
726a989a 6345 gimple_stmt_iterator si;
728b26bb 6346 unsigned old_len, new_len;
50674e96 6347
3722506a
ZD
6348 /* Remove BB from dominance structures. */
6349 delete_from_dominance_info (CDI_DOMINATORS, bb);
d7ed20db
RB
6350
6351 /* Move BB from its current loop to the copy in the new function. */
5f40b3cb 6352 if (current_loops)
d7ed20db
RB
6353 {
6354 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6355 if (new_loop)
6356 bb->loop_father = new_loop;
6357 }
3722506a 6358
50674e96
DN
6359 /* Link BB to the new linked list. */
6360 move_block_after (bb, after);
6361
6362 /* Update the edge count in the corresponding flowgraphs. */
6363 if (update_edge_count_p)
6364 FOR_EACH_EDGE (e, ei, bb->succs)
6365 {
6366 cfun->cfg->x_n_edges--;
6367 dest_cfun->cfg->x_n_edges++;
6368 }
6369
6370 /* Remove BB from the original basic block array. */
9771b263 6371 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
50674e96
DN
6372 cfun->cfg->x_n_basic_blocks--;
6373
6374 /* Grow DEST_CFUN's basic block array if needed. */
6375 cfg = dest_cfun->cfg;
6376 cfg->x_n_basic_blocks++;
3722506a
ZD
6377 if (bb->index >= cfg->x_last_basic_block)
6378 cfg->x_last_basic_block = bb->index + 1;
50674e96 6379
9771b263 6380 old_len = vec_safe_length (cfg->x_basic_block_info);
728b26bb 6381 if ((unsigned) cfg->x_last_basic_block >= old_len)
50674e96 6382 {
728b26bb 6383 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
9771b263 6384 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
50674e96
DN
6385 }
6386
9771b263 6387 (*cfg->x_basic_block_info)[bb->index] = bb;
50674e96 6388
917948d3 6389 /* Remap the variables in phi nodes. */
726a989a 6390 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
917948d3 6391 {
726a989a 6392 gimple phi = gsi_stmt (si);
917948d3
ZD
6393 use_operand_p use;
6394 tree op = PHI_RESULT (phi);
6395 ssa_op_iter oi;
846b158c 6396 unsigned i;
917948d3 6397
ea057359 6398 if (virtual_operand_p (op))
5f40b3cb
ZD
6399 {
6400 /* Remove the phi nodes for virtual operands (alias analysis will be
6401 run for the new function, anyway). */
726a989a 6402 remove_phi_node (&si, true);
5f40b3cb
ZD
6403 continue;
6404 }
917948d3 6405
b357f682
JJ
6406 SET_PHI_RESULT (phi,
6407 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
917948d3
ZD
6408 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6409 {
6410 op = USE_FROM_PTR (use);
6411 if (TREE_CODE (op) == SSA_NAME)
b357f682 6412 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
917948d3 6413 }
726a989a 6414
846b158c
DC
6415 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6416 {
6417 location_t locus = gimple_phi_arg_location (phi, i);
6418 tree block = LOCATION_BLOCK (locus);
6419
6420 if (locus == UNKNOWN_LOCATION)
6421 continue;
6422 if (d->orig_block == NULL_TREE || block == d->orig_block)
6423 {
6424 if (d->new_block == NULL_TREE)
6425 locus = LOCATION_LOCUS (locus);
6426 else
6427 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6428 gimple_phi_arg_set_location (phi, i, locus);
6429 }
6430 }
6431
726a989a 6432 gsi_next (&si);
917948d3
ZD
6433 }
6434
726a989a 6435 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
50674e96 6436 {
726a989a 6437 gimple stmt = gsi_stmt (si);
726a989a 6438 struct walk_stmt_info wi;
50674e96 6439
726a989a
RB
6440 memset (&wi, 0, sizeof (wi));
6441 wi.info = d;
6442 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
50674e96 6443
726a989a 6444 if (gimple_code (stmt) == GIMPLE_LABEL)
50674e96 6445 {
726a989a 6446 tree label = gimple_label_label (stmt);
50674e96
DN
6447 int uid = LABEL_DECL_UID (label);
6448
6449 gcc_assert (uid > -1);
6450
9771b263 6451 old_len = vec_safe_length (cfg->x_label_to_block_map);
50674e96
DN
6452 if (old_len <= (unsigned) uid)
6453 {
5006671f 6454 new_len = 3 * uid / 2 + 1;
9771b263 6455 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
50674e96
DN
6456 }
6457
9771b263
DN
6458 (*cfg->x_label_to_block_map)[uid] = bb;
6459 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
50674e96
DN
6460
6461 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6462
cb91fab0
JH
6463 if (uid >= dest_cfun->cfg->last_label_uid)
6464 dest_cfun->cfg->last_label_uid = uid + 1;
50674e96 6465 }
fad41cd7 6466
1d65f45c
RH
6467 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6468 remove_stmt_from_eh_lp_fn (cfun, stmt);
6469
6470 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6471 gimple_remove_stmt_histograms (cfun, stmt);
917948d3 6472
5f40b3cb
ZD
6473 /* We cannot leave any operands allocated from the operand caches of
6474 the current function. */
6475 free_stmt_operands (stmt);
6476 push_cfun (dest_cfun);
917948d3 6477 update_stmt (stmt);
5f40b3cb 6478 pop_cfun ();
fad41cd7 6479 }
7241571e
JJ
6480
6481 FOR_EACH_EDGE (e, ei, bb->succs)
60478b9c 6482 if (e->goto_locus != UNKNOWN_LOCATION)
7241571e 6483 {
5368224f 6484 tree block = LOCATION_BLOCK (e->goto_locus);
7241571e
JJ
6485 if (d->orig_block == NULL_TREE
6486 || block == d->orig_block)
5368224f
DC
6487 e->goto_locus = d->new_block ?
6488 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6489 LOCATION_LOCUS (e->goto_locus);
7241571e 6490 }
fad41cd7
RH
6491}
6492
6493/* Examine the statements in BB (which is in SRC_CFUN); find and return
6494 the outermost EH region. Use REGION as the incoming base EH region. */
6495
1d65f45c 6496static eh_region
fad41cd7 6497find_outermost_region_in_block (struct function *src_cfun,
1d65f45c 6498 basic_block bb, eh_region region)
fad41cd7 6499{
726a989a 6500 gimple_stmt_iterator si;
6531d1be 6501
726a989a 6502 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
fad41cd7 6503 {
726a989a 6504 gimple stmt = gsi_stmt (si);
1d65f45c
RH
6505 eh_region stmt_region;
6506 int lp_nr;
1799e5d5 6507
1d65f45c
RH
6508 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6509 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6510 if (stmt_region)
7e2df4a1 6511 {
1d65f45c 6512 if (region == NULL)
7e2df4a1
JJ
6513 region = stmt_region;
6514 else if (stmt_region != region)
6515 {
6516 region = eh_region_outermost (src_cfun, stmt_region, region);
1d65f45c 6517 gcc_assert (region != NULL);
7e2df4a1
JJ
6518 }
6519 }
50674e96 6520 }
fad41cd7
RH
6521
6522 return region;
50674e96
DN
6523}
6524
fad41cd7
RH
6525static tree
6526new_label_mapper (tree decl, void *data)
6527{
6528 htab_t hash = (htab_t) data;
6529 struct tree_map *m;
6530 void **slot;
6531
6532 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6533
3d9a9f94 6534 m = XNEW (struct tree_map);
fad41cd7 6535 m->hash = DECL_UID (decl);
fc8600f9 6536 m->base.from = decl;
c2255bc4 6537 m->to = create_artificial_label (UNKNOWN_LOCATION);
fad41cd7 6538 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
cb91fab0
JH
6539 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6540 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
fad41cd7
RH
6541
6542 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6543 gcc_assert (*slot == NULL);
6544
6545 *slot = m;
6546
6547 return m->to;
6548}
50674e96 6549
b357f682
JJ
6550/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6551 subblocks. */
6552
6553static void
6554replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6555 tree to_context)
6556{
6557 tree *tp, t;
6558
910ad8de 6559 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
b357f682
JJ
6560 {
6561 t = *tp;
e1e2bac4
JJ
6562 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6563 continue;
b357f682
JJ
6564 replace_by_duplicate_decl (&t, vars_map, to_context);
6565 if (t != *tp)
6566 {
6567 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6568 {
6569 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6570 DECL_HAS_VALUE_EXPR_P (t) = 1;
6571 }
910ad8de 6572 DECL_CHAIN (t) = DECL_CHAIN (*tp);
b357f682
JJ
6573 *tp = t;
6574 }
6575 }
6576
6577 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6578 replace_block_vars_by_duplicates (block, vars_map, to_context);
6579}
6580
d7ed20db
RB
6581/* Fixup the loop arrays and numbers after moving LOOP and its subloops
6582 from FN1 to FN2. */
6583
6584static void
6585fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6586 struct loop *loop)
6587{
6588 /* Discard it from the old loop array. */
0fc822d0 6589 (*get_loops (fn1))[loop->num] = NULL;
d7ed20db
RB
6590
6591 /* Place it in the new loop array, assigning it a new number. */
0fc822d0
RB
6592 loop->num = number_of_loops (fn2);
6593 vec_safe_push (loops_for_fn (fn2)->larray, loop);
d7ed20db
RB
6594
6595 /* Recurse to children. */
6596 for (loop = loop->inner; loop; loop = loop->next)
6597 fixup_loop_arrays_after_move (fn1, fn2, loop);
6598}
6599
50674e96
DN
6600/* Move a single-entry, single-exit region delimited by ENTRY_BB and
6601 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6602 single basic block in the original CFG and the new basic block is
6603 returned. DEST_CFUN must not have a CFG yet.
6604
6605 Note that the region need not be a pure SESE region. Blocks inside
6606 the region may contain calls to abort/exit. The only restriction
6607 is that ENTRY_BB should be the only entry point and it must
6608 dominate EXIT_BB.
6609
b357f682
JJ
6610 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6611 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6612 to the new function.
6613
50674e96
DN
6614 All local variables referenced in the region are assumed to be in
6615 the corresponding BLOCK_VARS and unexpanded variable lists
6616 associated with DEST_CFUN. */
6617
6618basic_block
6619move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
b357f682 6620 basic_block exit_bb, tree orig_block)
50674e96 6621{
9771b263 6622 vec<basic_block> bbs, dom_bbs;
917948d3
ZD
6623 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6624 basic_block after, bb, *entry_pred, *exit_succ, abb;
6625 struct function *saved_cfun = cfun;
1d65f45c 6626 int *entry_flag, *exit_flag;
917948d3 6627 unsigned *entry_prob, *exit_prob;
50674e96
DN
6628 unsigned i, num_entry_edges, num_exit_edges;
6629 edge e;
6630 edge_iterator ei;
fad41cd7 6631 htab_t new_label_map;
1d65f45c 6632 struct pointer_map_t *vars_map, *eh_map;
5f40b3cb 6633 struct loop *loop = entry_bb->loop_father;
b357f682 6634 struct move_stmt_d d;
50674e96
DN
6635
6636 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6637 region. */
6638 gcc_assert (entry_bb != exit_bb
2aee3e57
JJ
6639 && (!exit_bb
6640 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
50674e96 6641
917948d3
ZD
6642 /* Collect all the blocks in the region. Manually add ENTRY_BB
6643 because it won't be added by dfs_enumerate_from. */
9771b263
DN
6644 bbs.create (0);
6645 bbs.safe_push (entry_bb);
50674e96
DN
6646 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6647
917948d3
ZD
6648 /* The blocks that used to be dominated by something in BBS will now be
6649 dominated by the new block. */
6650 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
9771b263
DN
6651 bbs.address (),
6652 bbs.length ());
917948d3 6653
50674e96
DN
6654 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6655 the predecessor edges to ENTRY_BB and the successor edges to
6656 EXIT_BB so that we can re-attach them to the new basic block that
6657 will replace the region. */
6658 num_entry_edges = EDGE_COUNT (entry_bb->preds);
c302207e
SB
6659 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6660 entry_flag = XNEWVEC (int, num_entry_edges);
917948d3 6661 entry_prob = XNEWVEC (unsigned, num_entry_edges);
50674e96
DN
6662 i = 0;
6663 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6664 {
917948d3 6665 entry_prob[i] = e->probability;
50674e96
DN
6666 entry_flag[i] = e->flags;
6667 entry_pred[i++] = e->src;
6668 remove_edge (e);
6669 }
6670
2aee3e57 6671 if (exit_bb)
50674e96 6672 {
2aee3e57 6673 num_exit_edges = EDGE_COUNT (exit_bb->succs);
c302207e
SB
6674 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6675 exit_flag = XNEWVEC (int, num_exit_edges);
917948d3 6676 exit_prob = XNEWVEC (unsigned, num_exit_edges);
2aee3e57
JJ
6677 i = 0;
6678 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6679 {
917948d3 6680 exit_prob[i] = e->probability;
2aee3e57
JJ
6681 exit_flag[i] = e->flags;
6682 exit_succ[i++] = e->dest;
6683 remove_edge (e);
6684 }
6685 }
6686 else
6687 {
6688 num_exit_edges = 0;
6689 exit_succ = NULL;
6690 exit_flag = NULL;
917948d3 6691 exit_prob = NULL;
50674e96
DN
6692 }
6693
6694 /* Switch context to the child function to initialize DEST_FN's CFG. */
6695 gcc_assert (dest_cfun->cfg == NULL);
917948d3 6696 push_cfun (dest_cfun);
fad41cd7 6697
50674e96 6698 init_empty_tree_cfg ();
fad41cd7
RH
6699
6700 /* Initialize EH information for the new function. */
1d65f45c 6701 eh_map = NULL;
fad41cd7
RH
6702 new_label_map = NULL;
6703 if (saved_cfun->eh)
6704 {
1d65f45c 6705 eh_region region = NULL;
fad41cd7 6706
9771b263 6707 FOR_EACH_VEC_ELT (bbs, i, bb)
fad41cd7
RH
6708 region = find_outermost_region_in_block (saved_cfun, bb, region);
6709
6710 init_eh_for_function ();
1d65f45c 6711 if (region != NULL)
fad41cd7
RH
6712 {
6713 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
1d65f45c
RH
6714 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6715 new_label_mapper, new_label_map);
fad41cd7
RH
6716 }
6717 }
6718
d7ed20db 6719 /* Initialize an empty loop tree. */
0fc822d0
RB
6720 struct loops *loops = ggc_alloc_cleared_loops ();
6721 init_loops_structure (dest_cfun, loops, 1);
6722 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6723 set_loops_for_fn (dest_cfun, loops);
d7ed20db
RB
6724
6725 /* Move the outlined loop tree part. */
6726 FOR_EACH_VEC_ELT (bbs, i, bb)
6727 {
6728 if (bb->loop_father->header == bb
6729 && loop_outer (bb->loop_father) == loop)
6730 {
6731 struct loop *loop = bb->loop_father;
6732 flow_loop_tree_node_remove (bb->loop_father);
0fc822d0 6733 flow_loop_tree_node_add (get_loop (dest_cfun, 0), loop);
d7ed20db
RB
6734 fixup_loop_arrays_after_move (saved_cfun, cfun, loop);
6735 }
6736
6737 /* Remove loop exits from the outlined region. */
0fc822d0 6738 if (loops_for_fn (saved_cfun)->exits)
d7ed20db
RB
6739 FOR_EACH_EDGE (e, ei, bb->succs)
6740 {
6741 void **slot = htab_find_slot_with_hash
0fc822d0 6742 (loops_for_fn (saved_cfun)->exits, e,
d7ed20db
RB
6743 htab_hash_pointer (e), NO_INSERT);
6744 if (slot)
0fc822d0 6745 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
d7ed20db
RB
6746 }
6747 }
6748
6749
6750 /* Adjust the number of blocks in the tree root of the outlined part. */
0fc822d0 6751 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
d7ed20db
RB
6752
6753 /* Setup a mapping to be used by move_block_to_fn. */
6754 loop->aux = current_loops->tree_root;
6755
917948d3
ZD
6756 pop_cfun ();
6757
50674e96 6758 /* Move blocks from BBS into DEST_CFUN. */
9771b263 6759 gcc_assert (bbs.length () >= 2);
50674e96 6760 after = dest_cfun->cfg->x_entry_block_ptr;
917948d3 6761 vars_map = pointer_map_create ();
b357f682
JJ
6762
6763 memset (&d, 0, sizeof (d));
1d65f45c
RH
6764 d.orig_block = orig_block;
6765 d.new_block = DECL_INITIAL (dest_cfun->decl);
b357f682
JJ
6766 d.from_context = cfun->decl;
6767 d.to_context = dest_cfun->decl;
1d65f45c 6768 d.vars_map = vars_map;
b357f682 6769 d.new_label_map = new_label_map;
1d65f45c 6770 d.eh_map = eh_map;
b357f682 6771 d.remap_decls_p = true;
b357f682 6772
9771b263 6773 FOR_EACH_VEC_ELT (bbs, i, bb)
50674e96
DN
6774 {
6775 /* No need to update edge counts on the last block. It has
6776 already been updated earlier when we detached the region from
6777 the original CFG. */
1d65f45c 6778 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
50674e96
DN
6779 after = bb;
6780 }
6781
d7ed20db
RB
6782 loop->aux = NULL;
6783 /* Loop sizes are no longer correct, fix them up. */
6784 loop->num_nodes -= bbs.length ();
6785 for (struct loop *outer = loop_outer (loop);
6786 outer; outer = loop_outer (outer))
6787 outer->num_nodes -= bbs.length ();
6788
b357f682
JJ
6789 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6790 if (orig_block)
6791 {
6792 tree block;
6793 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6794 == NULL_TREE);
6795 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6796 = BLOCK_SUBBLOCKS (orig_block);
6797 for (block = BLOCK_SUBBLOCKS (orig_block);
6798 block; block = BLOCK_CHAIN (block))
6799 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6800 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6801 }
6802
6803 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6804 vars_map, dest_cfun->decl);
6805
fad41cd7
RH
6806 if (new_label_map)
6807 htab_delete (new_label_map);
1d65f45c
RH
6808 if (eh_map)
6809 pointer_map_destroy (eh_map);
917948d3 6810 pointer_map_destroy (vars_map);
50674e96
DN
6811
6812 /* Rewire the entry and exit blocks. The successor to the entry
6813 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6814 the child function. Similarly, the predecessor of DEST_FN's
6815 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6816 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6817 various CFG manipulation function get to the right CFG.
6818
6819 FIXME, this is silly. The CFG ought to become a parameter to
6820 these helpers. */
917948d3 6821 push_cfun (dest_cfun);
50674e96 6822 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
2aee3e57
JJ
6823 if (exit_bb)
6824 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
917948d3 6825 pop_cfun ();
50674e96
DN
6826
6827 /* Back in the original function, the SESE region has disappeared,
6828 create a new basic block in its place. */
6829 bb = create_empty_bb (entry_pred[0]);
5f40b3cb
ZD
6830 if (current_loops)
6831 add_bb_to_loop (bb, loop);
50674e96 6832 for (i = 0; i < num_entry_edges; i++)
917948d3
ZD
6833 {
6834 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6835 e->probability = entry_prob[i];
6836 }
50674e96
DN
6837
6838 for (i = 0; i < num_exit_edges; i++)
917948d3
ZD
6839 {
6840 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6841 e->probability = exit_prob[i];
6842 }
6843
6844 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
9771b263 6845 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
917948d3 6846 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
9771b263 6847 dom_bbs.release ();
50674e96 6848
2aee3e57
JJ
6849 if (exit_bb)
6850 {
917948d3 6851 free (exit_prob);
2aee3e57
JJ
6852 free (exit_flag);
6853 free (exit_succ);
6854 }
917948d3 6855 free (entry_prob);
50674e96
DN
6856 free (entry_flag);
6857 free (entry_pred);
9771b263 6858 bbs.release ();
50674e96
DN
6859
6860 return bb;
6861}
6862
84d65814 6863
398b1daa 6864/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
726a989a 6865 */
6de9cd9a
DN
6866
6867void
2eb712b4 6868dump_function_to_file (tree fndecl, FILE *file, int flags)
6de9cd9a 6869{
2eb712b4 6870 tree arg, var, old_current_fndecl = current_function_decl;
459ffad3 6871 struct function *dsf;
6de9cd9a
DN
6872 bool ignore_topmost_bind = false, any_var = false;
6873 basic_block bb;
6874 tree chain;
2eb712b4
MJ
6875 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6876 && decl_is_tm_clone (fndecl));
6877 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6531d1be 6878
2eb712b4
MJ
6879 current_function_decl = fndecl;
6880 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6de9cd9a 6881
2eb712b4 6882 arg = DECL_ARGUMENTS (fndecl);
6de9cd9a
DN
6883 while (arg)
6884 {
2f9ea521
RG
6885 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6886 fprintf (file, " ");
6de9cd9a 6887 print_generic_expr (file, arg, dump_flags);
3e894af1
KZ
6888 if (flags & TDF_VERBOSE)
6889 print_node (file, "", arg, 4);
910ad8de 6890 if (DECL_CHAIN (arg))
6de9cd9a 6891 fprintf (file, ", ");
910ad8de 6892 arg = DECL_CHAIN (arg);
6de9cd9a
DN
6893 }
6894 fprintf (file, ")\n");
6895
3e894af1 6896 if (flags & TDF_VERBOSE)
2eb712b4 6897 print_node (file, "", fndecl, 2);
3e894af1 6898
2eb712b4 6899 dsf = DECL_STRUCT_FUNCTION (fndecl);
feb4e5ba 6900 if (dsf && (flags & TDF_EH))
459ffad3
EB
6901 dump_eh_tree (file, dsf);
6902
2eb712b4 6903 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6de9cd9a 6904 {
2eb712b4
MJ
6905 dump_node (fndecl, TDF_SLIM | flags, file);
6906 current_function_decl = old_current_fndecl;
6de9cd9a
DN
6907 return;
6908 }
6909
6910 /* When GIMPLE is lowered, the variables are no longer available in
6911 BIND_EXPRs, so display them separately. */
2eb712b4 6912 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6de9cd9a 6913 {
c021f10b 6914 unsigned ix;
6de9cd9a
DN
6915 ignore_topmost_bind = true;
6916
6917 fprintf (file, "{\n");
9771b263 6918 if (!vec_safe_is_empty (fun->local_decls))
2eb712b4 6919 FOR_EACH_LOCAL_DECL (fun, ix, var)
e28b8a60
RG
6920 {
6921 print_generic_decl (file, var, flags);
6922 if (flags & TDF_VERBOSE)
6923 print_node (file, "", var, 4);
6924 fprintf (file, "\n");
6de9cd9a 6925
e28b8a60
RG
6926 any_var = true;
6927 }
70b5e7dc
RG
6928 if (gimple_in_ssa_p (cfun))
6929 for (ix = 1; ix < num_ssa_names; ++ix)
6930 {
6931 tree name = ssa_name (ix);
6932 if (name && !SSA_NAME_VAR (name))
6933 {
6934 fprintf (file, " ");
6935 print_generic_expr (file, TREE_TYPE (name), flags);
6936 fprintf (file, " ");
6937 print_generic_expr (file, name, flags);
6938 fprintf (file, ";\n");
e28b8a60
RG
6939
6940 any_var = true;
70b5e7dc
RG
6941 }
6942 }
6de9cd9a
DN
6943 }
6944
9771b263
DN
6945 if (fun && fun->decl == fndecl
6946 && fun->cfg
2eb712b4 6947 && basic_block_info_for_function (fun))
6de9cd9a 6948 {
726a989a 6949 /* If the CFG has been built, emit a CFG-based dump. */
6de9cd9a
DN
6950 if (!ignore_topmost_bind)
6951 fprintf (file, "{\n");
6952
2eb712b4 6953 if (any_var && n_basic_blocks_for_function (fun))
6de9cd9a
DN
6954 fprintf (file, "\n");
6955
2eb712b4 6956 FOR_EACH_BB_FN (bb, fun)
c4669594 6957 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6531d1be 6958
6de9cd9a
DN
6959 fprintf (file, "}\n");
6960 }
2eb712b4 6961 else if (DECL_SAVED_TREE (fndecl) == NULL)
726a989a
RB
6962 {
6963 /* The function is now in GIMPLE form but the CFG has not been
6964 built yet. Emit the single sequence of GIMPLE statements
6965 that make up its body. */
2eb712b4 6966 gimple_seq body = gimple_body (fndecl);
726a989a
RB
6967
6968 if (gimple_seq_first_stmt (body)
6969 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6970 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6971 print_gimple_seq (file, body, 0, flags);
6972 else
6973 {
6974 if (!ignore_topmost_bind)
6975 fprintf (file, "{\n");
6976
6977 if (any_var)
6978 fprintf (file, "\n");
6979
6980 print_gimple_seq (file, body, 2, flags);
6981 fprintf (file, "}\n");
6982 }
6983 }
6de9cd9a
DN
6984 else
6985 {
6986 int indent;
6987
6988 /* Make a tree based dump. */
2eb712b4 6989 chain = DECL_SAVED_TREE (fndecl);
953ff289 6990 if (chain && TREE_CODE (chain) == BIND_EXPR)
6de9cd9a
DN
6991 {
6992 if (ignore_topmost_bind)
6993 {
6994 chain = BIND_EXPR_BODY (chain);
6995 indent = 2;
6996 }
6997 else
6998 indent = 0;
6999 }
7000 else
7001 {
7002 if (!ignore_topmost_bind)
7003 fprintf (file, "{\n");
7004 indent = 2;
7005 }
7006
7007 if (any_var)
7008 fprintf (file, "\n");
7009
7010 print_generic_stmt_indented (file, chain, flags, indent);
7011 if (ignore_topmost_bind)
7012 fprintf (file, "}\n");
7013 }
7014
c31c32f9
JR
7015 if (flags & TDF_ENUMERATE_LOCALS)
7016 dump_enumerated_decls (file, flags);
6de9cd9a 7017 fprintf (file, "\n\n");
953ff289 7018
2eb712b4 7019 current_function_decl = old_current_fndecl;
953ff289
DN
7020}
7021
953ff289
DN
7022/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7023
24e47c76 7024DEBUG_FUNCTION void
953ff289
DN
7025debug_function (tree fn, int flags)
7026{
7027 dump_function_to_file (fn, stderr, flags);
6de9cd9a
DN
7028}
7029
7030
d7770457 7031/* Print on FILE the indexes for the predecessors of basic_block BB. */
6de9cd9a
DN
7032
7033static void
628f6a4e 7034print_pred_bbs (FILE *file, basic_block bb)
6de9cd9a 7035{
628f6a4e
BE
7036 edge e;
7037 edge_iterator ei;
7038
7039 FOR_EACH_EDGE (e, ei, bb->preds)
d7770457 7040 fprintf (file, "bb_%d ", e->src->index);
6de9cd9a
DN
7041}
7042
7043
d7770457 7044/* Print on FILE the indexes for the successors of basic_block BB. */
6de9cd9a
DN
7045
7046static void
628f6a4e 7047print_succ_bbs (FILE *file, basic_block bb)
6de9cd9a 7048{
628f6a4e
BE
7049 edge e;
7050 edge_iterator ei;
7051
7052 FOR_EACH_EDGE (e, ei, bb->succs)
d7770457 7053 fprintf (file, "bb_%d ", e->dest->index);
6de9cd9a
DN
7054}
7055
0c8efed8
SP
7056/* Print to FILE the basic block BB following the VERBOSITY level. */
7057
b8698a0f 7058void
0c8efed8
SP
7059print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7060{
7061 char *s_indent = (char *) alloca ((size_t) indent + 1);
7062 memset ((void *) s_indent, ' ', (size_t) indent);
7063 s_indent[indent] = '\0';
7064
7065 /* Print basic_block's header. */
7066 if (verbosity >= 2)
7067 {
7068 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7069 print_pred_bbs (file, bb);
7070 fprintf (file, "}, succs = {");
7071 print_succ_bbs (file, bb);
7072 fprintf (file, "})\n");
7073 }
7074
7075 /* Print basic_block's body. */
7076 if (verbosity >= 3)
7077 {
7078 fprintf (file, "%s {\n", s_indent);
c4669594 7079 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
0c8efed8
SP
7080 fprintf (file, "%s }\n", s_indent);
7081 }
7082}
7083
7084static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6de9cd9a 7085
0c8efed8
SP
7086/* Pretty print LOOP on FILE, indented INDENT spaces. Following
7087 VERBOSITY level this outputs the contents of the loop, or just its
7088 structure. */
6de9cd9a
DN
7089
7090static void
0c8efed8 7091print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6de9cd9a
DN
7092{
7093 char *s_indent;
7094 basic_block bb;
6531d1be 7095
6de9cd9a
DN
7096 if (loop == NULL)
7097 return;
7098
7099 s_indent = (char *) alloca ((size_t) indent + 1);
7100 memset ((void *) s_indent, ' ', (size_t) indent);
7101 s_indent[indent] = '\0';
7102
0c8efed8 7103 /* Print loop's header. */
755a1ca5
RG
7104 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7105 if (loop->header)
7106 fprintf (file, "header = %d", loop->header->index);
7107 else
7108 {
7109 fprintf (file, "deleted)\n");
7110 return;
7111 }
7112 if (loop->latch)
7113 fprintf (file, ", latch = %d", loop->latch->index);
7114 else
7115 fprintf (file, ", multiple latches");
0c8efed8
SP
7116 fprintf (file, ", niter = ");
7117 print_generic_expr (file, loop->nb_iterations, 0);
6531d1be 7118
0c8efed8
SP
7119 if (loop->any_upper_bound)
7120 {
7121 fprintf (file, ", upper_bound = ");
7122 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7123 }
6531d1be 7124
0c8efed8
SP
7125 if (loop->any_estimate)
7126 {
7127 fprintf (file, ", estimate = ");
7128 dump_double_int (file, loop->nb_iterations_estimate, true);
7129 }
7130 fprintf (file, ")\n");
7131
7132 /* Print loop's body. */
7133 if (verbosity >= 1)
7134 {
7135 fprintf (file, "%s{\n", s_indent);
7136 FOR_EACH_BB (bb)
7137 if (bb->loop_father == loop)
7138 print_loops_bb (file, bb, indent, verbosity);
7139
7140 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7141 fprintf (file, "%s}\n", s_indent);
7142 }
6de9cd9a
DN
7143}
7144
0c8efed8
SP
7145/* Print the LOOP and its sibling loops on FILE, indented INDENT
7146 spaces. Following VERBOSITY level this outputs the contents of the
7147 loop, or just its structure. */
7148
7149static void
7b3b6ae4
LC
7150print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7151 int verbosity)
0c8efed8
SP
7152{
7153 if (loop == NULL)
7154 return;
7155
7156 print_loop (file, loop, indent, verbosity);
7157 print_loop_and_siblings (file, loop->next, indent, verbosity);
7158}
6de9cd9a
DN
7159
7160/* Follow a CFG edge from the entry point of the program, and on entry
7161 of a loop, pretty print the loop structure on FILE. */
7162
6531d1be 7163void
0c8efed8 7164print_loops (FILE *file, int verbosity)
6de9cd9a
DN
7165{
7166 basic_block bb;
6531d1be 7167
f8bf9252 7168 bb = ENTRY_BLOCK_PTR;
6de9cd9a 7169 if (bb && bb->loop_father)
0c8efed8 7170 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6de9cd9a
DN
7171}
7172
7b3b6ae4
LC
7173/* Dump a loop. */
7174
7175DEBUG_FUNCTION void
7176debug (struct loop &ref)
7177{
7178 print_loop (stderr, &ref, 0, /*verbosity*/0);
7179}
7180
7181DEBUG_FUNCTION void
7182debug (struct loop *ptr)
7183{
7184 if (ptr)
7185 debug (*ptr);
7186 else
7187 fprintf (stderr, "<nil>\n");
7188}
7189
7190/* Dump a loop verbosely. */
7191
7192DEBUG_FUNCTION void
7193debug_verbose (struct loop &ref)
7194{
7195 print_loop (stderr, &ref, 0, /*verbosity*/3);
7196}
7197
7198DEBUG_FUNCTION void
7199debug_verbose (struct loop *ptr)
7200{
7201 if (ptr)
7202 debug (*ptr);
7203 else
7204 fprintf (stderr, "<nil>\n");
7205}
7206
6de9cd9a 7207
0c8efed8
SP
7208/* Debugging loops structure at tree level, at some VERBOSITY level. */
7209
24e47c76 7210DEBUG_FUNCTION void
0c8efed8
SP
7211debug_loops (int verbosity)
7212{
7213 print_loops (stderr, verbosity);
7214}
7215
7216/* Print on stderr the code of LOOP, at some VERBOSITY level. */
6de9cd9a 7217
24e47c76 7218DEBUG_FUNCTION void
0c8efed8 7219debug_loop (struct loop *loop, int verbosity)
6de9cd9a 7220{
0c8efed8 7221 print_loop (stderr, loop, 0, verbosity);
6de9cd9a
DN
7222}
7223
0c8efed8
SP
7224/* Print on stderr the code of loop number NUM, at some VERBOSITY
7225 level. */
7226
24e47c76 7227DEBUG_FUNCTION void
0c8efed8
SP
7228debug_loop_num (unsigned num, int verbosity)
7229{
0fc822d0 7230 debug_loop (get_loop (cfun, num), verbosity);
0c8efed8 7231}
6de9cd9a
DN
7232
7233/* Return true if BB ends with a call, possibly followed by some
7234 instructions that must stay with the call. Return false,
7235 otherwise. */
7236
7237static bool
726a989a 7238gimple_block_ends_with_call_p (basic_block bb)
6de9cd9a 7239{
b5b8b0ac 7240 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7dd536f1 7241 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6de9cd9a
DN
7242}
7243
7244
7245/* Return true if BB ends with a conditional branch. Return false,
7246 otherwise. */
7247
7248static bool
726a989a 7249gimple_block_ends_with_condjump_p (const_basic_block bb)
6de9cd9a 7250{
726a989a
RB
7251 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7252 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6de9cd9a
DN
7253}
7254
7255
7256/* Return true if we need to add fake edge to exit at statement T.
726a989a 7257 Helper function for gimple_flow_call_edges_add. */
6de9cd9a
DN
7258
7259static bool
726a989a 7260need_fake_edge_p (gimple t)
6de9cd9a 7261{
726a989a
RB
7262 tree fndecl = NULL_TREE;
7263 int call_flags = 0;
6de9cd9a
DN
7264
7265 /* NORETURN and LONGJMP calls already have an edge to exit.
321cf1f2 7266 CONST and PURE calls do not need one.
6de9cd9a
DN
7267 We don't currently check for CONST and PURE here, although
7268 it would be a good idea, because those attributes are
7269 figured out from the RTL in mark_constant_function, and
7270 the counter incrementation code from -fprofile-arcs
7271 leads to different results from -fbranch-probabilities. */
726a989a 7272 if (is_gimple_call (t))
23ef6d21 7273 {
726a989a
RB
7274 fndecl = gimple_call_fndecl (t);
7275 call_flags = gimple_call_flags (t);
23ef6d21
BE
7276 }
7277
726a989a
RB
7278 if (is_gimple_call (t)
7279 && fndecl
7280 && DECL_BUILT_IN (fndecl)
23ef6d21 7281 && (call_flags & ECF_NOTHROW)
3cfa762b
RG
7282 && !(call_flags & ECF_RETURNS_TWICE)
7283 /* fork() doesn't really return twice, but the effect of
7284 wrapping it in __gcov_fork() which calls __gcov_flush()
7285 and clears the counters before forking has the same
7286 effect as returning twice. Force a fake edge. */
7287 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7288 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7289 return false;
23ef6d21 7290
bfeb0869
JJ
7291 if (is_gimple_call (t))
7292 {
7293 edge_iterator ei;
7294 edge e;
7295 basic_block bb;
7296
7297 if (!(call_flags & ECF_NORETURN))
7298 return true;
7299
7300 bb = gimple_bb (t);
7301 FOR_EACH_EDGE (e, ei, bb->succs)
7302 if ((e->flags & EDGE_FAKE) == 0)
7303 return true;
7304 }
6de9cd9a 7305
e0c68ce9 7306 if (gimple_code (t) == GIMPLE_ASM
726a989a 7307 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6de9cd9a
DN
7308 return true;
7309
7310 return false;
7311}
7312
7313
7314/* Add fake edges to the function exit for any non constant and non
bfeb0869
JJ
7315 noreturn calls (or noreturn calls with EH/abnormal edges),
7316 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7317 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7318 that were split.
6de9cd9a
DN
7319
7320 The goal is to expose cases in which entering a basic block does
7321 not imply that all subsequent instructions must be executed. */
7322
7323static int
726a989a 7324gimple_flow_call_edges_add (sbitmap blocks)
6de9cd9a
DN
7325{
7326 int i;
7327 int blocks_split = 0;
7328 int last_bb = last_basic_block;
7329 bool check_last_block = false;
7330
24bd1a0b 7331 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6de9cd9a
DN
7332 return 0;
7333
7334 if (! blocks)
7335 check_last_block = true;
7336 else
d7c028c0 7337 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6de9cd9a
DN
7338
7339 /* In the last basic block, before epilogue generation, there will be
7340 a fallthru edge to EXIT. Special care is required if the last insn
7341 of the last basic block is a call because make_edge folds duplicate
7342 edges, which would result in the fallthru edge also being marked
7343 fake, which would result in the fallthru edge being removed by
7344 remove_fake_edges, which would result in an invalid CFG.
7345
7346 Moreover, we can't elide the outgoing fake edge, since the block
7347 profiler needs to take this into account in order to solve the minimal
7348 spanning tree in the case that the call doesn't return.
7349
7350 Handle this by adding a dummy instruction in a new last basic block. */
7351 if (check_last_block)
7352 {
7353 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
f6f2ca8f 7354 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
726a989a
RB
7355 gimple t = NULL;
7356
7357 if (!gsi_end_p (gsi))
7358 t = gsi_stmt (gsi);
6de9cd9a 7359
6a60530d 7360 if (t && need_fake_edge_p (t))
6de9cd9a
DN
7361 {
7362 edge e;
7363
9ff3d2de
JL
7364 e = find_edge (bb, EXIT_BLOCK_PTR);
7365 if (e)
7366 {
726a989a
RB
7367 gsi_insert_on_edge (e, gimple_build_nop ());
7368 gsi_commit_edge_inserts ();
9ff3d2de 7369 }
6de9cd9a
DN
7370 }
7371 }
7372
7373 /* Now add fake edges to the function exit for any non constant
7374 calls since there is no way that we can determine if they will
7375 return or not... */
7376 for (i = 0; i < last_bb; i++)
7377 {
7378 basic_block bb = BASIC_BLOCK (i);
726a989a
RB
7379 gimple_stmt_iterator gsi;
7380 gimple stmt, last_stmt;
6de9cd9a
DN
7381
7382 if (!bb)
7383 continue;
7384
d7c028c0 7385 if (blocks && !bitmap_bit_p (blocks, i))
6de9cd9a
DN
7386 continue;
7387
f6f2ca8f 7388 gsi = gsi_last_nondebug_bb (bb);
726a989a 7389 if (!gsi_end_p (gsi))
6de9cd9a 7390 {
726a989a 7391 last_stmt = gsi_stmt (gsi);
6de9cd9a
DN
7392 do
7393 {
726a989a 7394 stmt = gsi_stmt (gsi);
6de9cd9a
DN
7395 if (need_fake_edge_p (stmt))
7396 {
7397 edge e;
726a989a 7398
6de9cd9a
DN
7399 /* The handling above of the final block before the
7400 epilogue should be enough to verify that there is
7401 no edge to the exit block in CFG already.
7402 Calling make_edge in such case would cause us to
7403 mark that edge as fake and remove it later. */
7404#ifdef ENABLE_CHECKING
7405 if (stmt == last_stmt)
628f6a4e 7406 {
9ff3d2de
JL
7407 e = find_edge (bb, EXIT_BLOCK_PTR);
7408 gcc_assert (e == NULL);
628f6a4e 7409 }
6de9cd9a
DN
7410#endif
7411
7412 /* Note that the following may create a new basic block
7413 and renumber the existing basic blocks. */
7414 if (stmt != last_stmt)
7415 {
7416 e = split_block (bb, stmt);
7417 if (e)
7418 blocks_split++;
7419 }
7420 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7421 }
726a989a 7422 gsi_prev (&gsi);
6de9cd9a 7423 }
726a989a 7424 while (!gsi_end_p (gsi));
6de9cd9a
DN
7425 }
7426 }
7427
7428 if (blocks_split)
7429 verify_flow_info ();
7430
7431 return blocks_split;
7432}
7433
672987e8
ZD
7434/* Removes edge E and all the blocks dominated by it, and updates dominance
7435 information. The IL in E->src needs to be updated separately.
7436 If dominance info is not available, only the edge E is removed.*/
7437
7438void
7439remove_edge_and_dominated_blocks (edge e)
7440{
6e1aa848
DN
7441 vec<basic_block> bbs_to_remove = vNULL;
7442 vec<basic_block> bbs_to_fix_dom = vNULL;
672987e8
ZD
7443 bitmap df, df_idom;
7444 edge f;
7445 edge_iterator ei;
7446 bool none_removed = false;
7447 unsigned i;
7448 basic_block bb, dbb;
7449 bitmap_iterator bi;
7450
2b28c07a 7451 if (!dom_info_available_p (CDI_DOMINATORS))
672987e8
ZD
7452 {
7453 remove_edge (e);
7454 return;
7455 }
7456
7457 /* No updating is needed for edges to exit. */
7458 if (e->dest == EXIT_BLOCK_PTR)
7459 {
7460 if (cfgcleanup_altered_bbs)
7461 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7462 remove_edge (e);
7463 return;
7464 }
7465
7466 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7467 that is not dominated by E->dest, then this set is empty. Otherwise,
7468 all the basic blocks dominated by E->dest are removed.
7469
7470 Also, to DF_IDOM we store the immediate dominators of the blocks in
7471 the dominance frontier of E (i.e., of the successors of the
7472 removed blocks, if there are any, and of E->dest otherwise). */
7473 FOR_EACH_EDGE (f, ei, e->dest->preds)
7474 {
7475 if (f == e)
7476 continue;
7477
7478 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7479 {
7480 none_removed = true;
7481 break;
7482 }
7483 }
7484
7485 df = BITMAP_ALLOC (NULL);
7486 df_idom = BITMAP_ALLOC (NULL);
7487
7488 if (none_removed)
7489 bitmap_set_bit (df_idom,
7490 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7491 else
7492 {
438c239d 7493 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
9771b263 7494 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
672987e8
ZD
7495 {
7496 FOR_EACH_EDGE (f, ei, bb->succs)
7497 {
7498 if (f->dest != EXIT_BLOCK_PTR)
7499 bitmap_set_bit (df, f->dest->index);
7500 }
7501 }
9771b263 7502 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
672987e8
ZD
7503 bitmap_clear_bit (df, bb->index);
7504
7505 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7506 {
7507 bb = BASIC_BLOCK (i);
7508 bitmap_set_bit (df_idom,
7509 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7510 }
7511 }
7512
7513 if (cfgcleanup_altered_bbs)
7514 {
7515 /* Record the set of the altered basic blocks. */
7516 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7517 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7518 }
7519
7520 /* Remove E and the cancelled blocks. */
7521 if (none_removed)
7522 remove_edge (e);
7523 else
7524 {
b5b8b0ac
AO
7525 /* Walk backwards so as to get a chance to substitute all
7526 released DEFs into debug stmts. See
7527 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7528 details. */
9771b263
DN
7529 for (i = bbs_to_remove.length (); i-- > 0; )
7530 delete_basic_block (bbs_to_remove[i]);
672987e8
ZD
7531 }
7532
7533 /* Update the dominance information. The immediate dominator may change only
7534 for blocks whose immediate dominator belongs to DF_IDOM:
b8698a0f 7535
672987e8
ZD
7536 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7537 removal. Let Z the arbitrary block such that idom(Z) = Y and
7538 Z dominates X after the removal. Before removal, there exists a path P
7539 from Y to X that avoids Z. Let F be the last edge on P that is
7540 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7541 dominates W, and because of P, Z does not dominate W), and W belongs to
b8698a0f 7542 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
672987e8
ZD
7543 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7544 {
7545 bb = BASIC_BLOCK (i);
7546 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7547 dbb;
7548 dbb = next_dom_son (CDI_DOMINATORS, dbb))
9771b263 7549 bbs_to_fix_dom.safe_push (dbb);
672987e8
ZD
7550 }
7551
66f97d31 7552 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
672987e8
ZD
7553
7554 BITMAP_FREE (df);
7555 BITMAP_FREE (df_idom);
9771b263
DN
7556 bbs_to_remove.release ();
7557 bbs_to_fix_dom.release ();
672987e8
ZD
7558}
7559
4f6c2131
EB
7560/* Purge dead EH edges from basic block BB. */
7561
1eaba2f2 7562bool
726a989a 7563gimple_purge_dead_eh_edges (basic_block bb)
1eaba2f2
RH
7564{
7565 bool changed = false;
628f6a4e
BE
7566 edge e;
7567 edge_iterator ei;
726a989a 7568 gimple stmt = last_stmt (bb);
1eaba2f2 7569
726a989a 7570 if (stmt && stmt_can_throw_internal (stmt))
1eaba2f2
RH
7571 return false;
7572
628f6a4e 7573 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
1eaba2f2 7574 {
1eaba2f2
RH
7575 if (e->flags & EDGE_EH)
7576 {
672987e8 7577 remove_edge_and_dominated_blocks (e);
1eaba2f2
RH
7578 changed = true;
7579 }
628f6a4e
BE
7580 else
7581 ei_next (&ei);
1eaba2f2
RH
7582 }
7583
7584 return changed;
7585}
7586
30fd5881
EB
7587/* Purge dead EH edges from basic block listed in BLOCKS. */
7588
1eaba2f2 7589bool
726a989a 7590gimple_purge_all_dead_eh_edges (const_bitmap blocks)
1eaba2f2
RH
7591{
7592 bool changed = false;
3cd8c58a 7593 unsigned i;
87c476a2 7594 bitmap_iterator bi;
1eaba2f2 7595
87c476a2
ZD
7596 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7597 {
833ee764
JJ
7598 basic_block bb = BASIC_BLOCK (i);
7599
7600 /* Earlier gimple_purge_dead_eh_edges could have removed
7601 this basic block already. */
7602 gcc_assert (bb || changed);
7603 if (bb != NULL)
7604 changed |= gimple_purge_dead_eh_edges (bb);
87c476a2 7605 }
1eaba2f2
RH
7606
7607 return changed;
7608}
6de9cd9a 7609
30fd5881
EB
7610/* Purge dead abnormal call edges from basic block BB. */
7611
7612bool
7613gimple_purge_dead_abnormal_call_edges (basic_block bb)
7614{
7615 bool changed = false;
7616 edge e;
7617 edge_iterator ei;
7618 gimple stmt = last_stmt (bb);
7619
f6b64c35
RB
7620 if (!cfun->has_nonlocal_label
7621 && !cfun->calls_setjmp)
30fd5881
EB
7622 return false;
7623
7624 if (stmt && stmt_can_make_abnormal_goto (stmt))
7625 return false;
7626
7627 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7628 {
7629 if (e->flags & EDGE_ABNORMAL)
7630 {
0107dca2
RB
7631 if (e->flags & EDGE_FALLTHRU)
7632 e->flags &= ~EDGE_ABNORMAL;
7633 else
7634 remove_edge_and_dominated_blocks (e);
30fd5881
EB
7635 changed = true;
7636 }
7637 else
7638 ei_next (&ei);
7639 }
7640
7641 return changed;
7642}
7643
7644/* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7645
7646bool
7647gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7648{
7649 bool changed = false;
7650 unsigned i;
7651 bitmap_iterator bi;
7652
7653 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7654 {
7655 basic_block bb = BASIC_BLOCK (i);
7656
7657 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7658 this basic block already. */
7659 gcc_assert (bb || changed);
7660 if (bb != NULL)
7661 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7662 }
7663
7664 return changed;
7665}
7666
a100ac1e
KH
7667/* This function is called whenever a new edge is created or
7668 redirected. */
7669
7670static void
726a989a 7671gimple_execute_on_growing_pred (edge e)
a100ac1e
KH
7672{
7673 basic_block bb = e->dest;
7674
8eacd016 7675 if (!gimple_seq_empty_p (phi_nodes (bb)))
a100ac1e
KH
7676 reserve_phi_args_for_new_edge (bb);
7677}
7678
e51546f8
KH
7679/* This function is called immediately before edge E is removed from
7680 the edge vector E->dest->preds. */
7681
7682static void
726a989a 7683gimple_execute_on_shrinking_pred (edge e)
e51546f8 7684{
8eacd016 7685 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
e51546f8
KH
7686 remove_phi_args (e);
7687}
7688
1cb7dfc3
MH
7689/*---------------------------------------------------------------------------
7690 Helper functions for Loop versioning
7691 ---------------------------------------------------------------------------*/
7692
7693/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7694 of 'first'. Both of them are dominated by 'new_head' basic block. When
7695 'new_head' was created by 'second's incoming edge it received phi arguments
7696 on the edge by split_edge(). Later, additional edge 'e' was created to
6531d1be
BF
7697 connect 'new_head' and 'first'. Now this routine adds phi args on this
7698 additional edge 'e' that new_head to second edge received as part of edge
726a989a 7699 splitting. */
1cb7dfc3
MH
7700
7701static void
726a989a
RB
7702gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7703 basic_block new_head, edge e)
1cb7dfc3 7704{
726a989a
RB
7705 gimple phi1, phi2;
7706 gimple_stmt_iterator psi1, psi2;
7707 tree def;
d0e12fc6
KH
7708 edge e2 = find_edge (new_head, second);
7709
7710 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7711 edge, we should always have an edge from NEW_HEAD to SECOND. */
7712 gcc_assert (e2 != NULL);
1cb7dfc3
MH
7713
7714 /* Browse all 'second' basic block phi nodes and add phi args to
7715 edge 'e' for 'first' head. PHI args are always in correct order. */
7716
726a989a
RB
7717 for (psi2 = gsi_start_phis (second),
7718 psi1 = gsi_start_phis (first);
7719 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7720 gsi_next (&psi2), gsi_next (&psi1))
1cb7dfc3 7721 {
726a989a
RB
7722 phi1 = gsi_stmt (psi1);
7723 phi2 = gsi_stmt (psi2);
7724 def = PHI_ARG_DEF (phi2, e2->dest_idx);
9e227d60 7725 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
1cb7dfc3
MH
7726 }
7727}
7728
726a989a 7729
6531d1be
BF
7730/* Adds a if else statement to COND_BB with condition COND_EXPR.
7731 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
1cb7dfc3 7732 the destination of the ELSE part. */
726a989a 7733
1cb7dfc3 7734static void
726a989a
RB
7735gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7736 basic_block second_head ATTRIBUTE_UNUSED,
7737 basic_block cond_bb, void *cond_e)
1cb7dfc3 7738{
726a989a
RB
7739 gimple_stmt_iterator gsi;
7740 gimple new_cond_expr;
1cb7dfc3
MH
7741 tree cond_expr = (tree) cond_e;
7742 edge e0;
7743
7744 /* Build new conditional expr */
726a989a
RB
7745 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7746 NULL_TREE, NULL_TREE);
1cb7dfc3 7747
6531d1be 7748 /* Add new cond in cond_bb. */
726a989a
RB
7749 gsi = gsi_last_bb (cond_bb);
7750 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7751
1cb7dfc3
MH
7752 /* Adjust edges appropriately to connect new head with first head
7753 as well as second head. */
7754 e0 = single_succ_edge (cond_bb);
7755 e0->flags &= ~EDGE_FALLTHRU;
7756 e0->flags |= EDGE_FALSE_VALUE;
7757}
7758
aa4723d7
SB
7759
7760/* Do book-keeping of basic block BB for the profile consistency checker.
7761 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7762 then do post-pass accounting. Store the counting in RECORD. */
7763static void
7764gimple_account_profile_record (basic_block bb, int after_pass,
7765 struct profile_record *record)
7766{
7767 gimple_stmt_iterator i;
7768 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7769 {
7770 record->size[after_pass]
7771 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7772 if (profile_status == PROFILE_READ)
7773 record->time[after_pass]
7774 += estimate_num_insns (gsi_stmt (i),
7775 &eni_time_weights) * bb->count;
7776 else if (profile_status == PROFILE_GUESSED)
7777 record->time[after_pass]
7778 += estimate_num_insns (gsi_stmt (i),
7779 &eni_time_weights) * bb->frequency;
7780 }
7781}
7782
726a989a
RB
7783struct cfg_hooks gimple_cfg_hooks = {
7784 "gimple",
7785 gimple_verify_flow_info,
7786 gimple_dump_bb, /* dump_bb */
2c895bd1 7787 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
6de9cd9a 7788 create_bb, /* create_basic_block */
726a989a
RB
7789 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7790 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7791 gimple_can_remove_branch_p, /* can_remove_branch_p */
6de9cd9a 7792 remove_bb, /* delete_basic_block */
726a989a
RB
7793 gimple_split_block, /* split_block */
7794 gimple_move_block_after, /* move_block_after */
7795 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7796 gimple_merge_blocks, /* merge_blocks */
7797 gimple_predict_edge, /* predict_edge */
10817317 7798 gimple_predicted_by_p, /* predicted_by_p */
726a989a
RB
7799 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7800 gimple_duplicate_bb, /* duplicate_block */
7801 gimple_split_edge, /* split_edge */
7802 gimple_make_forwarder_block, /* make_forward_block */
6de9cd9a 7803 NULL, /* tidy_fallthru_edge */
cf103ca4 7804 NULL, /* force_nonfallthru */
726a989a
RB
7805 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7806 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
10817317 7807 gimple_flow_call_edges_add, /* flow_call_edges_add */
726a989a
RB
7808 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7809 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7810 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7811 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7812 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
1cb7dfc3 7813 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
df92c640
SB
7814 flush_pending_stmts, /* flush_pending_stmts */
7815 gimple_empty_block_p, /* block_empty_p */
7816 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
aa4723d7 7817 gimple_account_profile_record,
6de9cd9a
DN
7818};
7819
7820
7821/* Split all critical edges. */
7822
c2924966 7823static unsigned int
6de9cd9a
DN
7824split_critical_edges (void)
7825{
7826 basic_block bb;
7827 edge e;
628f6a4e 7828 edge_iterator ei;
6de9cd9a 7829
d6be0d7f
JL
7830 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7831 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7832 mappings around the calls to split_edge. */
7833 start_recording_case_labels ();
6de9cd9a
DN
7834 FOR_ALL_BB (bb)
7835 {
628f6a4e 7836 FOR_EACH_EDGE (e, ei, bb->succs)
496a4ef5
JH
7837 {
7838 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6de9cd9a 7839 split_edge (e);
b8698a0f 7840 /* PRE inserts statements to edges and expects that
496a4ef5
JH
7841 since split_critical_edges was done beforehand, committing edge
7842 insertions will not split more edges. In addition to critical
7843 edges we must split edges that have multiple successors and
b8698a0f 7844 end by control flow statements, such as RESX.
496a4ef5
JH
7845 Go ahead and split them too. This matches the logic in
7846 gimple_find_edge_insert_loc. */
7847 else if ((!single_pred_p (e->dest)
671f9f30 7848 || !gimple_seq_empty_p (phi_nodes (e->dest))
496a4ef5
JH
7849 || e->dest == EXIT_BLOCK_PTR)
7850 && e->src != ENTRY_BLOCK_PTR
7851 && !(e->flags & EDGE_ABNORMAL))
7852 {
7853 gimple_stmt_iterator gsi;
7854
7855 gsi = gsi_last_bb (e->src);
7856 if (!gsi_end_p (gsi)
7857 && stmt_ends_bb_p (gsi_stmt (gsi))
c54c785d
JH
7858 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7859 && !gimple_call_builtin_p (gsi_stmt (gsi),
7860 BUILT_IN_RETURN)))
496a4ef5
JH
7861 split_edge (e);
7862 }
7863 }
6de9cd9a 7864 }
d6be0d7f 7865 end_recording_case_labels ();
c2924966 7866 return 0;
6de9cd9a
DN
7867}
7868
8ddbbcae 7869struct gimple_opt_pass pass_split_crit_edges =
6de9cd9a 7870{
8ddbbcae
JH
7871 {
7872 GIMPLE_PASS,
5d44aeed 7873 "crited", /* name */
2b4e6bf1 7874 OPTGROUP_NONE, /* optinfo_flags */
6de9cd9a
DN
7875 NULL, /* gate */
7876 split_critical_edges, /* execute */
7877 NULL, /* sub */
7878 NULL, /* next */
7879 0, /* static_pass_number */
7880 TV_TREE_SPLIT_EDGES, /* tv_id */
7881 PROP_cfg, /* properties required */
7882 PROP_no_crit_edges, /* properties_provided */
7883 0, /* properties_destroyed */
7884 0, /* todo_flags_start */
22c5fa5f 7885 TODO_verify_flow /* todo_flags_finish */
8ddbbcae 7886 }
6de9cd9a 7887};
26277d41 7888
26277d41 7889
726a989a 7890/* Build a ternary operation and gimplify it. Emit code before GSI.
26277d41
PB
7891 Return the gimple_val holding the result. */
7892
7893tree
726a989a 7894gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
26277d41
PB
7895 tree type, tree a, tree b, tree c)
7896{
7897 tree ret;
db3927fb 7898 location_t loc = gimple_location (gsi_stmt (*gsi));
26277d41 7899
db3927fb 7900 ret = fold_build3_loc (loc, code, type, a, b, c);
26277d41
PB
7901 STRIP_NOPS (ret);
7902
726a989a
RB
7903 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7904 GSI_SAME_STMT);
26277d41
PB
7905}
7906
726a989a 7907/* Build a binary operation and gimplify it. Emit code before GSI.
26277d41
PB
7908 Return the gimple_val holding the result. */
7909
7910tree
726a989a 7911gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
26277d41
PB
7912 tree type, tree a, tree b)
7913{
7914 tree ret;
7915
db3927fb 7916 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
26277d41
PB
7917 STRIP_NOPS (ret);
7918
726a989a
RB
7919 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7920 GSI_SAME_STMT);
26277d41
PB
7921}
7922
726a989a 7923/* Build a unary operation and gimplify it. Emit code before GSI.
26277d41
PB
7924 Return the gimple_val holding the result. */
7925
7926tree
726a989a 7927gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
26277d41
PB
7928 tree a)
7929{
7930 tree ret;
7931
db3927fb 7932 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
26277d41
PB
7933 STRIP_NOPS (ret);
7934
726a989a
RB
7935 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7936 GSI_SAME_STMT);
26277d41
PB
7937}
7938
7939
6de9cd9a
DN
7940\f
7941/* Emit return warnings. */
7942
c2924966 7943static unsigned int
6de9cd9a
DN
7944execute_warn_function_return (void)
7945{
9506ac2b 7946 source_location location;
726a989a 7947 gimple last;
6de9cd9a 7948 edge e;
628f6a4e 7949 edge_iterator ei;
6de9cd9a 7950
d45eae79
SL
7951 if (!targetm.warn_func_return (cfun->decl))
7952 return 0;
7953
6de9cd9a
DN
7954 /* If we have a path to EXIT, then we do return. */
7955 if (TREE_THIS_VOLATILE (cfun->decl)
628f6a4e 7956 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
6de9cd9a 7957 {
9506ac2b 7958 location = UNKNOWN_LOCATION;
628f6a4e 7959 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6de9cd9a
DN
7960 {
7961 last = last_stmt (e->src);
c54c785d
JH
7962 if ((gimple_code (last) == GIMPLE_RETURN
7963 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
726a989a 7964 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
6de9cd9a
DN
7965 break;
7966 }
9506ac2b
PB
7967 if (location == UNKNOWN_LOCATION)
7968 location = cfun->function_end_locus;
fab922b1 7969 warning_at (location, 0, "%<noreturn%> function does return");
6de9cd9a
DN
7970 }
7971
7972 /* If we see "return;" in some basic block, then we do reach the end
7973 without returning a value. */
7974 else if (warn_return_type
089efaa4 7975 && !TREE_NO_WARNING (cfun->decl)
628f6a4e 7976 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
6de9cd9a
DN
7977 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7978 {
628f6a4e 7979 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6de9cd9a 7980 {
726a989a
RB
7981 gimple last = last_stmt (e->src);
7982 if (gimple_code (last) == GIMPLE_RETURN
7983 && gimple_return_retval (last) == NULL
7984 && !gimple_no_warning_p (last))
6de9cd9a 7985 {
726a989a 7986 location = gimple_location (last);
9506ac2b
PB
7987 if (location == UNKNOWN_LOCATION)
7988 location = cfun->function_end_locus;
aa14403d 7989 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
089efaa4 7990 TREE_NO_WARNING (cfun->decl) = 1;
6de9cd9a
DN
7991 break;
7992 }
7993 }
7994 }
c2924966 7995 return 0;
6de9cd9a
DN
7996}
7997
7998
7999/* Given a basic block B which ends with a conditional and has
8000 precisely two successors, determine which of the edges is taken if
8001 the conditional is true and which is taken if the conditional is
8002 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8003
8004void
8005extract_true_false_edges_from_block (basic_block b,
8006 edge *true_edge,
8007 edge *false_edge)
8008{
628f6a4e 8009 edge e = EDGE_SUCC (b, 0);
6de9cd9a
DN
8010
8011 if (e->flags & EDGE_TRUE_VALUE)
8012 {
8013 *true_edge = e;
628f6a4e 8014 *false_edge = EDGE_SUCC (b, 1);
6de9cd9a
DN
8015 }
8016 else
8017 {
8018 *false_edge = e;
628f6a4e 8019 *true_edge = EDGE_SUCC (b, 1);
6de9cd9a
DN
8020 }
8021}
8022
8ddbbcae 8023struct gimple_opt_pass pass_warn_function_return =
6de9cd9a 8024{
8ddbbcae
JH
8025 {
8026 GIMPLE_PASS,
e0a42b0f 8027 "*warn_function_return", /* name */
2b4e6bf1 8028 OPTGROUP_NONE, /* optinfo_flags */
6de9cd9a
DN
8029 NULL, /* gate */
8030 execute_warn_function_return, /* execute */
8031 NULL, /* sub */
8032 NULL, /* next */
8033 0, /* static_pass_number */
7072a650 8034 TV_NONE, /* tv_id */
00bfee6f 8035 PROP_cfg, /* properties_required */
6de9cd9a
DN
8036 0, /* properties_provided */
8037 0, /* properties_destroyed */
8038 0, /* todo_flags_start */
8ddbbcae
JH
8039 0 /* todo_flags_finish */
8040 }
6de9cd9a 8041};
aa313ed4
JH
8042
8043/* Emit noreturn warnings. */
8044
c2924966 8045static unsigned int
aa313ed4
JH
8046execute_warn_function_noreturn (void)
8047{
7ea6b6cf
JH
8048 if (!TREE_THIS_VOLATILE (current_function_decl)
8049 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
8050 warn_function_noreturn (current_function_decl);
c2924966 8051 return 0;
aa313ed4
JH
8052}
8053
7ea6b6cf
JH
8054static bool
8055gate_warn_function_noreturn (void)
8056{
8057 return warn_suggest_attribute_noreturn;
8058}
8059
8ddbbcae 8060struct gimple_opt_pass pass_warn_function_noreturn =
aa313ed4 8061{
8ddbbcae
JH
8062 {
8063 GIMPLE_PASS,
e0a42b0f 8064 "*warn_function_noreturn", /* name */
2b4e6bf1 8065 OPTGROUP_NONE, /* optinfo_flags */
7ea6b6cf 8066 gate_warn_function_noreturn, /* gate */
aa313ed4
JH
8067 execute_warn_function_noreturn, /* execute */
8068 NULL, /* sub */
8069 NULL, /* next */
8070 0, /* static_pass_number */
7072a650 8071 TV_NONE, /* tv_id */
aa313ed4
JH
8072 PROP_cfg, /* properties_required */
8073 0, /* properties_provided */
8074 0, /* properties_destroyed */
8075 0, /* todo_flags_start */
8ddbbcae
JH
8076 0 /* todo_flags_finish */
8077 }
aa313ed4 8078};
a406865a
RG
8079
8080
8081/* Walk a gimplified function and warn for functions whose return value is
8082 ignored and attribute((warn_unused_result)) is set. This is done before
8083 inlining, so we don't have to worry about that. */
8084
8085static void
8086do_warn_unused_result (gimple_seq seq)
8087{
8088 tree fdecl, ftype;
8089 gimple_stmt_iterator i;
8090
8091 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8092 {
8093 gimple g = gsi_stmt (i);
8094
8095 switch (gimple_code (g))
8096 {
8097 case GIMPLE_BIND:
8098 do_warn_unused_result (gimple_bind_body (g));
8099 break;
8100 case GIMPLE_TRY:
8101 do_warn_unused_result (gimple_try_eval (g));
8102 do_warn_unused_result (gimple_try_cleanup (g));
8103 break;
8104 case GIMPLE_CATCH:
8105 do_warn_unused_result (gimple_catch_handler (g));
8106 break;
8107 case GIMPLE_EH_FILTER:
8108 do_warn_unused_result (gimple_eh_filter_failure (g));
8109 break;
8110
8111 case GIMPLE_CALL:
8112 if (gimple_call_lhs (g))
8113 break;
25583c4f
RS
8114 if (gimple_call_internal_p (g))
8115 break;
a406865a
RG
8116
8117 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8118 LHS. All calls whose value is ignored should be
8119 represented like this. Look for the attribute. */
8120 fdecl = gimple_call_fndecl (g);
9bfc434b 8121 ftype = gimple_call_fntype (g);
a406865a
RG
8122
8123 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8124 {
8125 location_t loc = gimple_location (g);
8126
8127 if (fdecl)
8128 warning_at (loc, OPT_Wunused_result,
8129 "ignoring return value of %qD, "
8130 "declared with attribute warn_unused_result",
8131 fdecl);
8132 else
8133 warning_at (loc, OPT_Wunused_result,
8134 "ignoring return value of function "
8135 "declared with attribute warn_unused_result");
8136 }
8137 break;
8138
8139 default:
8140 /* Not a container, not a call, or a call whose value is used. */
8141 break;
8142 }
8143 }
8144}
8145
8146static unsigned int
8147run_warn_unused_result (void)
8148{
8149 do_warn_unused_result (gimple_body (current_function_decl));
8150 return 0;
8151}
8152
8153static bool
8154gate_warn_unused_result (void)
8155{
8156 return flag_warn_unused_result;
8157}
8158
8159struct gimple_opt_pass pass_warn_unused_result =
8160{
8161 {
8162 GIMPLE_PASS,
2329c6f5 8163 "*warn_unused_result", /* name */
2b4e6bf1 8164 OPTGROUP_NONE, /* optinfo_flags */
a406865a
RG
8165 gate_warn_unused_result, /* gate */
8166 run_warn_unused_result, /* execute */
8167 NULL, /* sub */
8168 NULL, /* next */
8169 0, /* static_pass_number */
8170 TV_NONE, /* tv_id */
8171 PROP_gimple_any, /* properties_required */
8172 0, /* properties_provided */
8173 0, /* properties_destroyed */
8174 0, /* todo_flags_start */
8175 0, /* todo_flags_finish */
8176 }
8177};
0823efed
DN
8178
8179
8180/* Garbage collection support for edge_def. */
8181
8182extern void gt_ggc_mx (tree&);
8183extern void gt_ggc_mx (gimple&);
8184extern void gt_ggc_mx (rtx&);
8185extern void gt_ggc_mx (basic_block&);
8186
8187void
8188gt_ggc_mx (edge_def *e)
8189{
5368224f 8190 tree block = LOCATION_BLOCK (e->goto_locus);
0823efed
DN
8191 gt_ggc_mx (e->src);
8192 gt_ggc_mx (e->dest);
8193 if (current_ir_type () == IR_GIMPLE)
8194 gt_ggc_mx (e->insns.g);
8195 else
8196 gt_ggc_mx (e->insns.r);
5368224f 8197 gt_ggc_mx (block);
0823efed
DN
8198}
8199
8200/* PCH support for edge_def. */
8201
8202extern void gt_pch_nx (tree&);
8203extern void gt_pch_nx (gimple&);
8204extern void gt_pch_nx (rtx&);
8205extern void gt_pch_nx (basic_block&);
8206
8207void
8208gt_pch_nx (edge_def *e)
8209{
5368224f 8210 tree block = LOCATION_BLOCK (e->goto_locus);
0823efed
DN
8211 gt_pch_nx (e->src);
8212 gt_pch_nx (e->dest);
8213 if (current_ir_type () == IR_GIMPLE)
8214 gt_pch_nx (e->insns.g);
8215 else
8216 gt_pch_nx (e->insns.r);
5368224f 8217 gt_pch_nx (block);
0823efed
DN
8218}
8219
8220void
8221gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8222{
5368224f 8223 tree block = LOCATION_BLOCK (e->goto_locus);
0823efed
DN
8224 op (&(e->src), cookie);
8225 op (&(e->dest), cookie);
8226 if (current_ir_type () == IR_GIMPLE)
8227 op (&(e->insns.g), cookie);
8228 else
8229 op (&(e->insns.r), cookie);
5368224f 8230 op (&(block), cookie);
0823efed 8231}