]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-cfg.c
revert: tree-profile.c (tree_init_ic_make_global_vars): Make static variables TLS.
[thirdparty/gcc.git] / gcc / tree-cfg.c
CommitLineData
6de9cd9a 1/* Control flow functions for trees.
135a171d 2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
56e84019 3 Free Software Foundation, Inc.
6de9cd9a
DN
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
9dcd6f09 10the Free Software Foundation; either version 3, or (at your option)
6de9cd9a
DN
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "tree.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "output.h"
6de9cd9a
DN
32#include "flags.h"
33#include "function.h"
34#include "expr.h"
35#include "ggc.h"
36#include "langhooks.h"
37#include "diagnostic.h"
38#include "tree-flow.h"
39#include "timevar.h"
40#include "tree-dump.h"
41#include "tree-pass.h"
42#include "toplev.h"
43#include "except.h"
44#include "cfgloop.h"
42759f1e 45#include "cfglayout.h"
9af0df6b 46#include "tree-ssa-propagate.h"
6946b3f7 47#include "value-prof.h"
4437b50d 48#include "pointer-set.h"
917948d3 49#include "tree-inline.h"
6de9cd9a
DN
50
51/* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
53
54/* Local declarations. */
55
56/* Initial capacity for the basic block array. */
57static const int initial_cfg_capacity = 20;
58
d6be0d7f
JL
59/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
726a989a 62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
92b6dff3 63
d6be0d7f
JL
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
92b6dff3 66
d6be0d7f
JL
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
71
15814ba0 72static struct pointer_map_t *edge_to_cases;
92b6dff3 73
6de9cd9a
DN
74/* CFG statistics. */
75struct cfg_stats_d
76{
77 long num_merged_labels;
78};
79
80static struct cfg_stats_d cfg_stats;
81
82/* Nonzero if we found a computed goto while building basic blocks. */
83static bool found_computed_goto;
84
85/* Basic blocks and flowgraphs. */
726a989a 86static void make_blocks (gimple_seq);
6de9cd9a 87static void factor_computed_gotos (void);
6de9cd9a
DN
88
89/* Edges. */
90static void make_edges (void);
6de9cd9a 91static void make_cond_expr_edges (basic_block);
726a989a 92static void make_gimple_switch_edges (basic_block);
6de9cd9a 93static void make_goto_expr_edges (basic_block);
726a989a
RB
94static edge gimple_redirect_edge_and_branch (edge, basic_block);
95static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
c2924966 96static unsigned int split_critical_edges (void);
6de9cd9a
DN
97
98/* Various helpers. */
726a989a
RB
99static inline bool stmt_starts_bb_p (gimple, gimple);
100static int gimple_verify_flow_info (void);
101static void gimple_make_forwarder_block (edge);
102static void gimple_cfg2vcg (FILE *);
6de9cd9a
DN
103
104/* Flowgraph optimization and cleanup. */
726a989a
RB
105static void gimple_merge_blocks (basic_block, basic_block);
106static bool gimple_can_merge_blocks_p (basic_block, basic_block);
6de9cd9a 107static void remove_bb (basic_block);
be477406 108static edge find_taken_edge_computed_goto (basic_block, tree);
6de9cd9a
DN
109static edge find_taken_edge_cond_expr (basic_block, tree);
110static edge find_taken_edge_switch_expr (basic_block, tree);
726a989a 111static tree find_case_label_for_value (gimple, tree);
6de9cd9a 112
a930a4ef 113void
9defb1fe 114init_empty_tree_cfg_for_function (struct function *fn)
a930a4ef
JH
115{
116 /* Initialize the basic block array. */
9defb1fe
DN
117 init_flow (fn);
118 profile_status_for_function (fn) = PROFILE_ABSENT;
119 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
120 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
121 basic_block_info_for_function (fn)
122 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
123 VEC_safe_grow_cleared (basic_block, gc,
124 basic_block_info_for_function (fn),
a590ac65 125 initial_cfg_capacity);
a930a4ef
JH
126
127 /* Build a mapping of labels to their associated blocks. */
9defb1fe
DN
128 label_to_block_map_for_function (fn)
129 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
130 VEC_safe_grow_cleared (basic_block, gc,
131 label_to_block_map_for_function (fn),
a590ac65 132 initial_cfg_capacity);
a930a4ef 133
9defb1fe
DN
134 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
135 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
136 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
137 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
138
139 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
140 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
141 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
142 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
143}
144
145void
146init_empty_tree_cfg (void)
147{
148 init_empty_tree_cfg_for_function (cfun);
a930a4ef 149}
6de9cd9a
DN
150
151/*---------------------------------------------------------------------------
152 Create basic blocks
153---------------------------------------------------------------------------*/
154
726a989a 155/* Entry point to the CFG builder for trees. SEQ is the sequence of
6de9cd9a
DN
156 statements to be added to the flowgraph. */
157
158static void
726a989a 159build_gimple_cfg (gimple_seq seq)
6de9cd9a 160{
726a989a
RB
161 /* Register specific gimple functions. */
162 gimple_register_cfg_hooks ();
6de9cd9a 163
6de9cd9a
DN
164 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
165
a930a4ef 166 init_empty_tree_cfg ();
6de9cd9a
DN
167
168 found_computed_goto = 0;
726a989a 169 make_blocks (seq);
6de9cd9a
DN
170
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto)
177 factor_computed_gotos ();
178
f0b698c1 179 /* Make sure there is always at least one block, even if it's empty. */
24bd1a0b 180 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6de9cd9a
DN
181 create_empty_bb (ENTRY_BLOCK_PTR);
182
6de9cd9a 183 /* Adjust the size of the array. */
68f9b844 184 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
a590ac65 185 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
6de9cd9a 186
f667741c
SB
187 /* To speed up statement iterator walks, we first purge dead labels. */
188 cleanup_dead_labels ();
189
190 /* Group case nodes to reduce the number of edges.
191 We do this after cleaning up dead labels because otherwise we miss
192 a lot of obvious case merging opportunities. */
193 group_case_labels ();
194
6de9cd9a
DN
195 /* Create the edges of the flowgraph. */
196 make_edges ();
8b11009b 197 cleanup_dead_labels ();
6de9cd9a
DN
198
199 /* Debugging dumps. */
200
201 /* Write the flowgraph to a VCG file. */
202 {
203 int local_dump_flags;
10d22567
ZD
204 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
205 if (vcg_file)
6de9cd9a 206 {
726a989a 207 gimple_cfg2vcg (vcg_file);
10d22567 208 dump_end (TDI_vcg, vcg_file);
6de9cd9a
DN
209 }
210 }
211
81cfbbc2
JH
212#ifdef ENABLE_CHECKING
213 verify_stmts ();
214#endif
6de9cd9a
DN
215}
216
c2924966 217static unsigned int
6de9cd9a
DN
218execute_build_cfg (void)
219{
39ecc018
JH
220 gimple_seq body = gimple_body (current_function_decl);
221
222 build_gimple_cfg (body);
223 gimple_set_body (current_function_decl, NULL);
c2924966 224 return 0;
6de9cd9a
DN
225}
226
8ddbbcae 227struct gimple_opt_pass pass_build_cfg =
6de9cd9a 228{
8ddbbcae
JH
229 {
230 GIMPLE_PASS,
6de9cd9a
DN
231 "cfg", /* name */
232 NULL, /* gate */
233 execute_build_cfg, /* execute */
234 NULL, /* sub */
235 NULL, /* next */
236 0, /* static_pass_number */
237 TV_TREE_CFG, /* tv_id */
726a989a 238 PROP_gimple_leh, /* properties_required */
6de9cd9a
DN
239 PROP_cfg, /* properties_provided */
240 0, /* properties_destroyed */
241 0, /* todo_flags_start */
11b08ee9
RG
242 TODO_verify_stmts | TODO_cleanup_cfg
243 | TODO_dump_func /* todo_flags_finish */
8ddbbcae 244 }
6de9cd9a
DN
245};
246
726a989a
RB
247
248/* Return true if T is a computed goto. */
249
250static bool
251computed_goto_p (gimple t)
252{
253 return (gimple_code (t) == GIMPLE_GOTO
254 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
255}
256
257
6531d1be 258/* Search the CFG for any computed gotos. If found, factor them to a
6de9cd9a 259 common computed goto site. Also record the location of that site so
6531d1be 260 that we can un-factor the gotos after we have converted back to
6de9cd9a
DN
261 normal form. */
262
263static void
264factor_computed_gotos (void)
265{
266 basic_block bb;
267 tree factored_label_decl = NULL;
268 tree var = NULL;
726a989a
RB
269 gimple factored_computed_goto_label = NULL;
270 gimple factored_computed_goto = NULL;
6de9cd9a
DN
271
272 /* We know there are one or more computed gotos in this function.
273 Examine the last statement in each basic block to see if the block
274 ends with a computed goto. */
6531d1be 275
6de9cd9a
DN
276 FOR_EACH_BB (bb)
277 {
726a989a
RB
278 gimple_stmt_iterator gsi = gsi_last_bb (bb);
279 gimple last;
6de9cd9a 280
726a989a 281 if (gsi_end_p (gsi))
6de9cd9a 282 continue;
726a989a
RB
283
284 last = gsi_stmt (gsi);
6de9cd9a
DN
285
286 /* Ignore the computed goto we create when we factor the original
287 computed gotos. */
288 if (last == factored_computed_goto)
289 continue;
290
291 /* If the last statement is a computed goto, factor it. */
292 if (computed_goto_p (last))
293 {
726a989a 294 gimple assignment;
6de9cd9a
DN
295
296 /* The first time we find a computed goto we need to create
297 the factored goto block and the variable each original
298 computed goto will use for their goto destination. */
726a989a 299 if (!factored_computed_goto)
6de9cd9a
DN
300 {
301 basic_block new_bb = create_empty_bb (bb);
726a989a 302 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
6de9cd9a
DN
303
304 /* Create the destination of the factored goto. Each original
305 computed goto will put its desired destination into this
306 variable and jump to the label we create immediately
307 below. */
308 var = create_tmp_var (ptr_type_node, "gotovar");
309
310 /* Build a label for the new block which will contain the
311 factored computed goto. */
312 factored_label_decl = create_artificial_label ();
313 factored_computed_goto_label
726a989a
RB
314 = gimple_build_label (factored_label_decl);
315 gsi_insert_after (&new_gsi, factored_computed_goto_label,
316 GSI_NEW_STMT);
6de9cd9a
DN
317
318 /* Build our new computed goto. */
726a989a
RB
319 factored_computed_goto = gimple_build_goto (var);
320 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
6de9cd9a
DN
321 }
322
323 /* Copy the original computed goto's destination into VAR. */
726a989a
RB
324 assignment = gimple_build_assign (var, gimple_goto_dest (last));
325 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
6de9cd9a
DN
326
327 /* And re-vector the computed goto to the new destination. */
726a989a 328 gimple_goto_set_dest (last, factored_label_decl);
6de9cd9a
DN
329 }
330 }
331}
332
333
726a989a 334/* Build a flowgraph for the sequence of stmts SEQ. */
6de9cd9a
DN
335
336static void
726a989a 337make_blocks (gimple_seq seq)
6de9cd9a 338{
726a989a
RB
339 gimple_stmt_iterator i = gsi_start (seq);
340 gimple stmt = NULL;
6de9cd9a 341 bool start_new_block = true;
726a989a 342 bool first_stmt_of_seq = true;
6de9cd9a
DN
343 basic_block bb = ENTRY_BLOCK_PTR;
344
726a989a 345 while (!gsi_end_p (i))
6de9cd9a 346 {
726a989a 347 gimple prev_stmt;
6de9cd9a
DN
348
349 prev_stmt = stmt;
726a989a 350 stmt = gsi_stmt (i);
6de9cd9a
DN
351
352 /* If the statement starts a new basic block or if we have determined
353 in a previous pass that we need to create a new block for STMT, do
354 so now. */
355 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
356 {
726a989a
RB
357 if (!first_stmt_of_seq)
358 seq = gsi_split_seq_before (&i);
359 bb = create_basic_block (seq, NULL, bb);
6de9cd9a
DN
360 start_new_block = false;
361 }
362
363 /* Now add STMT to BB and create the subgraphs for special statement
364 codes. */
726a989a 365 gimple_set_bb (stmt, bb);
6de9cd9a
DN
366
367 if (computed_goto_p (stmt))
368 found_computed_goto = true;
369
370 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
371 next iteration. */
372 if (stmt_ends_bb_p (stmt))
373 start_new_block = true;
374
726a989a
RB
375 gsi_next (&i);
376 first_stmt_of_seq = false;
6de9cd9a
DN
377 }
378}
379
380
381/* Create and return a new empty basic block after bb AFTER. */
382
383static basic_block
384create_bb (void *h, void *e, basic_block after)
385{
386 basic_block bb;
387
1e128c5f 388 gcc_assert (!e);
6de9cd9a 389
27fd69fa
KH
390 /* Create and initialize a new basic block. Since alloc_block uses
391 ggc_alloc_cleared to allocate a basic block, we do not have to
392 clear the newly allocated basic block here. */
6de9cd9a 393 bb = alloc_block ();
6de9cd9a
DN
394
395 bb->index = last_basic_block;
396 bb->flags = BB_NEW;
726a989a
RB
397 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
398 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
6de9cd9a
DN
399
400 /* Add the new block to the linked list of blocks. */
401 link_block (bb, after);
402
403 /* Grow the basic block array if needed. */
68f9b844 404 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
6de9cd9a
DN
405 {
406 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
a590ac65 407 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
6de9cd9a
DN
408 }
409
410 /* Add the newly created block to the array. */
68f9b844 411 SET_BASIC_BLOCK (last_basic_block, bb);
6de9cd9a 412
6de9cd9a
DN
413 n_basic_blocks++;
414 last_basic_block++;
415
6de9cd9a
DN
416 return bb;
417}
418
419
420/*---------------------------------------------------------------------------
421 Edge creation
422---------------------------------------------------------------------------*/
423
fca01525
KH
424/* Fold COND_EXPR_COND of each COND_EXPR. */
425
e21aff8a 426void
fca01525
KH
427fold_cond_expr_cond (void)
428{
429 basic_block bb;
430
431 FOR_EACH_BB (bb)
432 {
726a989a 433 gimple stmt = last_stmt (bb);
fca01525 434
726a989a 435 if (stmt && gimple_code (stmt) == GIMPLE_COND)
fca01525 436 {
6ac01510
ILT
437 tree cond;
438 bool zerop, onep;
439
440 fold_defer_overflow_warnings ();
726a989a
RB
441 cond = fold_binary (gimple_cond_code (stmt), boolean_type_node,
442 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
443 if (cond)
444 {
445 zerop = integer_zerop (cond);
446 onep = integer_onep (cond);
447 }
448 else
449 zerop = onep = false;
450
e233ac97 451 fold_undefer_overflow_warnings (zerop || onep,
4df28528 452 stmt,
6ac01510
ILT
453 WARN_STRICT_OVERFLOW_CONDITIONAL);
454 if (zerop)
726a989a 455 gimple_cond_make_false (stmt);
6ac01510 456 else if (onep)
726a989a 457 gimple_cond_make_true (stmt);
fca01525
KH
458 }
459 }
460}
461
6de9cd9a
DN
462/* Join all the blocks in the flowgraph. */
463
464static void
465make_edges (void)
466{
467 basic_block bb;
bed575d5 468 struct omp_region *cur_region = NULL;
6de9cd9a
DN
469
470 /* Create an edge from entry to the first block with executable
471 statements in it. */
24bd1a0b 472 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
6de9cd9a 473
adb35797 474 /* Traverse the basic block array placing edges. */
6de9cd9a
DN
475 FOR_EACH_BB (bb)
476 {
726a989a 477 gimple last = last_stmt (bb);
56e84019 478 bool fallthru;
6de9cd9a 479
56e84019 480 if (last)
6de9cd9a 481 {
726a989a 482 enum gimple_code code = gimple_code (last);
bed575d5 483 switch (code)
56e84019 484 {
726a989a 485 case GIMPLE_GOTO:
56e84019
RH
486 make_goto_expr_edges (bb);
487 fallthru = false;
488 break;
726a989a 489 case GIMPLE_RETURN:
56e84019
RH
490 make_edge (bb, EXIT_BLOCK_PTR, 0);
491 fallthru = false;
492 break;
726a989a 493 case GIMPLE_COND:
56e84019
RH
494 make_cond_expr_edges (bb);
495 fallthru = false;
496 break;
726a989a
RB
497 case GIMPLE_SWITCH:
498 make_gimple_switch_edges (bb);
56e84019
RH
499 fallthru = false;
500 break;
726a989a 501 case GIMPLE_RESX:
56e84019
RH
502 make_eh_edges (last);
503 fallthru = false;
504 break;
505
726a989a 506 case GIMPLE_CALL:
56e84019
RH
507 /* If this function receives a nonlocal goto, then we need to
508 make edges from this call site to all the nonlocal goto
509 handlers. */
726a989a 510 if (stmt_can_make_abnormal_goto (last))
4f6c2131 511 make_abnormal_goto_edges (bb, true);
6de9cd9a 512
56e84019
RH
513 /* If this statement has reachable exception handlers, then
514 create abnormal edges to them. */
515 make_eh_edges (last);
516
517 /* Some calls are known not to return. */
726a989a 518 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
56e84019
RH
519 break;
520
726a989a
RB
521 case GIMPLE_ASSIGN:
522 /* A GIMPLE_ASSIGN may throw internally and thus be considered
523 control-altering. */
56e84019
RH
524 if (is_ctrl_altering_stmt (last))
525 {
56e84019
RH
526 make_eh_edges (last);
527 }
528 fallthru = true;
529 break;
530
726a989a
RB
531 case GIMPLE_OMP_PARALLEL:
532 case GIMPLE_OMP_TASK:
533 case GIMPLE_OMP_FOR:
534 case GIMPLE_OMP_SINGLE:
535 case GIMPLE_OMP_MASTER:
536 case GIMPLE_OMP_ORDERED:
537 case GIMPLE_OMP_CRITICAL:
538 case GIMPLE_OMP_SECTION:
bed575d5 539 cur_region = new_omp_region (bb, code, cur_region);
56e84019
RH
540 fallthru = true;
541 break;
542
726a989a 543 case GIMPLE_OMP_SECTIONS:
bed575d5 544 cur_region = new_omp_region (bb, code, cur_region);
e5c95afe
ZD
545 fallthru = true;
546 break;
547
726a989a 548 case GIMPLE_OMP_SECTIONS_SWITCH:
7e2df4a1 549 fallthru = false;
777f7f9a
RH
550 break;
551
a509ebb5 552
726a989a
RB
553 case GIMPLE_OMP_ATOMIC_LOAD:
554 case GIMPLE_OMP_ATOMIC_STORE:
a509ebb5
RL
555 fallthru = true;
556 break;
557
558
726a989a
RB
559 case GIMPLE_OMP_RETURN:
560 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
561 somewhere other than the next block. This will be
562 created later. */
bed575d5 563 cur_region->exit = bb;
726a989a 564 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
bed575d5
RS
565 cur_region = cur_region->outer;
566 break;
567
726a989a 568 case GIMPLE_OMP_CONTINUE:
bed575d5
RS
569 cur_region->cont = bb;
570 switch (cur_region->type)
571 {
726a989a
RB
572 case GIMPLE_OMP_FOR:
573 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
574 succs edges as abnormal to prevent splitting
575 them. */
135a171d 576 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
e5c95afe 577 /* Make the loopback edge. */
135a171d
JJ
578 make_edge (bb, single_succ (cur_region->entry),
579 EDGE_ABNORMAL);
580
726a989a
RB
581 /* Create an edge from GIMPLE_OMP_FOR to exit, which
582 corresponds to the case that the body of the loop
583 is not executed at all. */
135a171d
JJ
584 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
585 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
586 fallthru = false;
bed575d5
RS
587 break;
588
726a989a 589 case GIMPLE_OMP_SECTIONS:
bed575d5 590 /* Wire up the edges into and out of the nested sections. */
bed575d5 591 {
e5c95afe
ZD
592 basic_block switch_bb = single_succ (cur_region->entry);
593
bed575d5
RS
594 struct omp_region *i;
595 for (i = cur_region->inner; i ; i = i->next)
596 {
726a989a 597 gcc_assert (i->type == GIMPLE_OMP_SECTION);
e5c95afe 598 make_edge (switch_bb, i->entry, 0);
bed575d5
RS
599 make_edge (i->exit, bb, EDGE_FALLTHRU);
600 }
e5c95afe
ZD
601
602 /* Make the loopback edge to the block with
726a989a 603 GIMPLE_OMP_SECTIONS_SWITCH. */
e5c95afe
ZD
604 make_edge (bb, switch_bb, 0);
605
606 /* Make the edge from the switch to exit. */
607 make_edge (switch_bb, bb->next_bb, 0);
608 fallthru = false;
bed575d5
RS
609 }
610 break;
6531d1be 611
bed575d5
RS
612 default:
613 gcc_unreachable ();
614 }
bed575d5
RS
615 break;
616
56e84019
RH
617 default:
618 gcc_assert (!stmt_ends_bb_p (last));
619 fallthru = true;
620 }
6de9cd9a 621 }
56e84019
RH
622 else
623 fallthru = true;
6de9cd9a 624
56e84019 625 if (fallthru)
6de9cd9a
DN
626 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
627 }
628
bed575d5
RS
629 if (root_omp_region)
630 free_omp_regions ();
631
fca01525
KH
632 /* Fold COND_EXPR_COND of each COND_EXPR. */
633 fold_cond_expr_cond ();
6de9cd9a
DN
634}
635
636
726a989a 637/* Create the edges for a GIMPLE_COND starting at block BB. */
6de9cd9a
DN
638
639static void
640make_cond_expr_edges (basic_block bb)
641{
726a989a
RB
642 gimple entry = last_stmt (bb);
643 gimple then_stmt, else_stmt;
6de9cd9a
DN
644 basic_block then_bb, else_bb;
645 tree then_label, else_label;
d783b2a2 646 edge e;
6de9cd9a 647
1e128c5f 648 gcc_assert (entry);
726a989a 649 gcc_assert (gimple_code (entry) == GIMPLE_COND);
6de9cd9a
DN
650
651 /* Entry basic blocks for each component. */
726a989a
RB
652 then_label = gimple_cond_true_label (entry);
653 else_label = gimple_cond_false_label (entry);
6de9cd9a
DN
654 then_bb = label_to_block (then_label);
655 else_bb = label_to_block (else_label);
726a989a
RB
656 then_stmt = first_stmt (then_bb);
657 else_stmt = first_stmt (else_bb);
6de9cd9a 658
d783b2a2 659 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
726a989a 660 e->goto_locus = gimple_location (then_stmt);
cc2a64dd
JJ
661 if (e->goto_locus)
662 e->goto_block = gimple_block (then_stmt);
d783b2a2
JH
663 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
664 if (e)
7241571e
JJ
665 {
666 e->goto_locus = gimple_location (else_stmt);
cc2a64dd
JJ
667 if (e->goto_locus)
668 e->goto_block = gimple_block (else_stmt);
7241571e 669 }
a9b77cd1 670
726a989a
RB
671 /* We do not need the labels anymore. */
672 gimple_cond_set_true_label (entry, NULL_TREE);
673 gimple_cond_set_false_label (entry, NULL_TREE);
6de9cd9a
DN
674}
675
92b6dff3 676
d6be0d7f
JL
677/* Called for each element in the hash table (P) as we delete the
678 edge to cases hash table.
679
6531d1be 680 Clear all the TREE_CHAINs to prevent problems with copying of
d6be0d7f
JL
681 SWITCH_EXPRs and structure sharing rules, then free the hash table
682 element. */
683
15814ba0 684static bool
ac7d7749 685edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
15814ba0 686 void *data ATTRIBUTE_UNUSED)
d6be0d7f 687{
d6be0d7f
JL
688 tree t, next;
689
15814ba0 690 for (t = (tree) *value; t; t = next)
d6be0d7f
JL
691 {
692 next = TREE_CHAIN (t);
693 TREE_CHAIN (t) = NULL;
694 }
15814ba0
PB
695
696 *value = NULL;
697 return false;
d6be0d7f
JL
698}
699
700/* Start recording information mapping edges to case labels. */
701
c9784e6d 702void
d6be0d7f
JL
703start_recording_case_labels (void)
704{
705 gcc_assert (edge_to_cases == NULL);
15814ba0 706 edge_to_cases = pointer_map_create ();
d6be0d7f
JL
707}
708
709/* Return nonzero if we are recording information for case labels. */
710
711static bool
712recording_case_labels_p (void)
713{
714 return (edge_to_cases != NULL);
715}
716
717/* Stop recording information mapping edges to case labels and
718 remove any information we have recorded. */
c9784e6d 719void
d6be0d7f
JL
720end_recording_case_labels (void)
721{
15814ba0
PB
722 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
723 pointer_map_destroy (edge_to_cases);
d6be0d7f
JL
724 edge_to_cases = NULL;
725}
726
d6be0d7f
JL
727/* If we are inside a {start,end}_recording_cases block, then return
728 a chain of CASE_LABEL_EXPRs from T which reference E.
729
730 Otherwise return NULL. */
92b6dff3
JL
731
732static tree
726a989a 733get_cases_for_edge (edge e, gimple t)
92b6dff3 734{
92b6dff3 735 void **slot;
d6be0d7f 736 size_t i, n;
92b6dff3 737
d6be0d7f
JL
738 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
739 chains available. Return NULL so the caller can detect this case. */
740 if (!recording_case_labels_p ())
741 return NULL;
6531d1be 742
15814ba0 743 slot = pointer_map_contains (edge_to_cases, e);
92b6dff3 744 if (slot)
15814ba0 745 return (tree) *slot;
92b6dff3 746
d6be0d7f
JL
747 /* If we did not find E in the hash table, then this must be the first
748 time we have been queried for information about E & T. Add all the
749 elements from T to the hash table then perform the query again. */
92b6dff3 750
726a989a 751 n = gimple_switch_num_labels (t);
92b6dff3
JL
752 for (i = 0; i < n; i++)
753 {
726a989a 754 tree elt = gimple_switch_label (t, i);
15814ba0 755 tree lab = CASE_LABEL (elt);
d6be0d7f 756 basic_block label_bb = label_to_block (lab);
15814ba0
PB
757 edge this_edge = find_edge (e->src, label_bb);
758
759 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
760 a new chain. */
761 slot = pointer_map_insert (edge_to_cases, this_edge);
762 TREE_CHAIN (elt) = (tree) *slot;
763 *slot = elt;
92b6dff3 764 }
15814ba0
PB
765
766 return (tree) *pointer_map_contains (edge_to_cases, e);
92b6dff3 767}
6de9cd9a 768
726a989a 769/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
6de9cd9a
DN
770
771static void
726a989a 772make_gimple_switch_edges (basic_block bb)
6de9cd9a 773{
726a989a 774 gimple entry = last_stmt (bb);
6de9cd9a 775 size_t i, n;
6de9cd9a 776
726a989a 777 n = gimple_switch_num_labels (entry);
6de9cd9a
DN
778
779 for (i = 0; i < n; ++i)
780 {
726a989a 781 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
6de9cd9a 782 basic_block label_bb = label_to_block (lab);
d6be0d7f 783 make_edge (bb, label_bb, 0);
6de9cd9a
DN
784 }
785}
786
787
788/* Return the basic block holding label DEST. */
789
790basic_block
997de8ed 791label_to_block_fn (struct function *ifun, tree dest)
6de9cd9a 792{
242229bb
JH
793 int uid = LABEL_DECL_UID (dest);
794
f0b698c1
KH
795 /* We would die hard when faced by an undefined label. Emit a label to
796 the very first basic block. This will hopefully make even the dataflow
242229bb
JH
797 and undefined variable warnings quite right. */
798 if ((errorcount || sorrycount) && uid < 0)
799 {
726a989a
RB
800 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
801 gimple stmt;
242229bb 802
726a989a
RB
803 stmt = gimple_build_label (dest);
804 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
242229bb
JH
805 uid = LABEL_DECL_UID (dest);
806 }
e597f337
KH
807 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
808 <= (unsigned int) uid)
98f464e0 809 return NULL;
e597f337 810 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
6de9cd9a
DN
811}
812
4f6c2131
EB
813/* Create edges for an abnormal goto statement at block BB. If FOR_CALL
814 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
815
816void
817make_abnormal_goto_edges (basic_block bb, bool for_call)
818{
819 basic_block target_bb;
726a989a 820 gimple_stmt_iterator gsi;
4f6c2131
EB
821
822 FOR_EACH_BB (target_bb)
726a989a 823 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
4f6c2131 824 {
726a989a
RB
825 gimple label_stmt = gsi_stmt (gsi);
826 tree target;
4f6c2131 827
726a989a 828 if (gimple_code (label_stmt) != GIMPLE_LABEL)
4f6c2131
EB
829 break;
830
726a989a 831 target = gimple_label_label (label_stmt);
4f6c2131
EB
832
833 /* Make an edge to every label block that has been marked as a
834 potential target for a computed goto or a non-local goto. */
835 if ((FORCED_LABEL (target) && !for_call)
836 || (DECL_NONLOCAL (target) && for_call))
837 {
838 make_edge (bb, target_bb, EDGE_ABNORMAL);
839 break;
840 }
841 }
842}
843
6de9cd9a
DN
844/* Create edges for a goto statement at block BB. */
845
846static void
847make_goto_expr_edges (basic_block bb)
848{
726a989a
RB
849 gimple_stmt_iterator last = gsi_last_bb (bb);
850 gimple goto_t = gsi_stmt (last);
6de9cd9a 851
4f6c2131
EB
852 /* A simple GOTO creates normal edges. */
853 if (simple_goto_p (goto_t))
6de9cd9a 854 {
726a989a 855 tree dest = gimple_goto_dest (goto_t);
4f6c2131 856 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
726a989a 857 e->goto_locus = gimple_location (goto_t);
cc2a64dd
JJ
858 if (e->goto_locus)
859 e->goto_block = gimple_block (goto_t);
726a989a 860 gsi_remove (&last, true);
4f6c2131 861 return;
6de9cd9a
DN
862 }
863
4f6c2131
EB
864 /* A computed GOTO creates abnormal edges. */
865 make_abnormal_goto_edges (bb, false);
6de9cd9a
DN
866}
867
868
869/*---------------------------------------------------------------------------
870 Flowgraph analysis
871---------------------------------------------------------------------------*/
872
f698d217
SB
873/* Cleanup useless labels in basic blocks. This is something we wish
874 to do early because it allows us to group case labels before creating
875 the edges for the CFG, and it speeds up block statement iterators in
876 all passes later on.
8b11009b
ZD
877 We rerun this pass after CFG is created, to get rid of the labels that
878 are no longer referenced. After then we do not run it any more, since
879 (almost) no new labels should be created. */
f698d217
SB
880
881/* A map from basic block index to the leading label of that block. */
8b11009b
ZD
882static struct label_record
883{
884 /* The label. */
885 tree label;
886
887 /* True if the label is referenced from somewhere. */
888 bool used;
889} *label_for_bb;
f698d217
SB
890
891/* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
892static void
893update_eh_label (struct eh_region *region)
894{
895 tree old_label = get_eh_region_tree_label (region);
896 if (old_label)
897 {
165b54c3
SB
898 tree new_label;
899 basic_block bb = label_to_block (old_label);
900
901 /* ??? After optimizing, there may be EH regions with labels
902 that have already been removed from the function body, so
903 there is no basic block for them. */
904 if (! bb)
905 return;
906
8b11009b
ZD
907 new_label = label_for_bb[bb->index].label;
908 label_for_bb[bb->index].used = true;
f698d217
SB
909 set_eh_region_tree_label (region, new_label);
910 }
911}
912
726a989a 913
242229bb 914/* Given LABEL return the first label in the same basic block. */
726a989a 915
242229bb
JH
916static tree
917main_block_label (tree label)
918{
919 basic_block bb = label_to_block (label);
8b11009b 920 tree main_label = label_for_bb[bb->index].label;
242229bb
JH
921
922 /* label_to_block possibly inserted undefined label into the chain. */
8b11009b
ZD
923 if (!main_label)
924 {
925 label_for_bb[bb->index].label = label;
926 main_label = label;
927 }
928
929 label_for_bb[bb->index].used = true;
930 return main_label;
242229bb
JH
931}
932
b986ebf3 933/* Cleanup redundant labels. This is a three-step process:
f698d217
SB
934 1) Find the leading label for each block.
935 2) Redirect all references to labels to the leading labels.
936 3) Cleanup all useless labels. */
6de9cd9a 937
165b54c3 938void
6de9cd9a
DN
939cleanup_dead_labels (void)
940{
941 basic_block bb;
8b11009b 942 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
6de9cd9a
DN
943
944 /* Find a suitable label for each block. We use the first user-defined
f0b698c1 945 label if there is one, or otherwise just the first label we see. */
6de9cd9a
DN
946 FOR_EACH_BB (bb)
947 {
726a989a 948 gimple_stmt_iterator i;
6de9cd9a 949
726a989a 950 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
6de9cd9a 951 {
726a989a
RB
952 tree label;
953 gimple stmt = gsi_stmt (i);
6de9cd9a 954
726a989a 955 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a
DN
956 break;
957
726a989a 958 label = gimple_label_label (stmt);
6de9cd9a
DN
959
960 /* If we have not yet seen a label for the current block,
961 remember this one and see if there are more labels. */
8b11009b 962 if (!label_for_bb[bb->index].label)
6de9cd9a 963 {
8b11009b 964 label_for_bb[bb->index].label = label;
6de9cd9a
DN
965 continue;
966 }
967
968 /* If we did see a label for the current block already, but it
969 is an artificially created label, replace it if the current
970 label is a user defined label. */
8b11009b
ZD
971 if (!DECL_ARTIFICIAL (label)
972 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
6de9cd9a 973 {
8b11009b 974 label_for_bb[bb->index].label = label;
6de9cd9a
DN
975 break;
976 }
977 }
978 }
979
f698d217
SB
980 /* Now redirect all jumps/branches to the selected label.
981 First do so for each block ending in a control statement. */
6de9cd9a
DN
982 FOR_EACH_BB (bb)
983 {
726a989a 984 gimple stmt = last_stmt (bb);
6de9cd9a
DN
985 if (!stmt)
986 continue;
987
726a989a 988 switch (gimple_code (stmt))
6de9cd9a 989 {
726a989a 990 case GIMPLE_COND:
6de9cd9a 991 {
726a989a
RB
992 tree true_label = gimple_cond_true_label (stmt);
993 tree false_label = gimple_cond_false_label (stmt);
6de9cd9a 994
726a989a
RB
995 if (true_label)
996 gimple_cond_set_true_label (stmt, main_block_label (true_label));
997 if (false_label)
998 gimple_cond_set_false_label (stmt, main_block_label (false_label));
6de9cd9a
DN
999 break;
1000 }
6531d1be 1001
726a989a 1002 case GIMPLE_SWITCH:
6de9cd9a 1003 {
726a989a 1004 size_t i, n = gimple_switch_num_labels (stmt);
6531d1be 1005
6de9cd9a
DN
1006 /* Replace all destination labels. */
1007 for (i = 0; i < n; ++i)
92b6dff3 1008 {
726a989a
RB
1009 tree case_label = gimple_switch_label (stmt, i);
1010 tree label = main_block_label (CASE_LABEL (case_label));
1011 CASE_LABEL (case_label) = label;
92b6dff3 1012 }
6de9cd9a
DN
1013 break;
1014 }
1015
726a989a 1016 /* We have to handle gotos until they're removed, and we don't
f667741c 1017 remove them until after we've created the CFG edges. */
726a989a
RB
1018 case GIMPLE_GOTO:
1019 if (!computed_goto_p (stmt))
242229bb 1020 {
726a989a
RB
1021 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1022 gimple_goto_set_dest (stmt, new_dest);
242229bb
JH
1023 break;
1024 }
f667741c 1025
6de9cd9a
DN
1026 default:
1027 break;
1028 }
1029 }
1030
f698d217
SB
1031 for_each_eh_region (update_eh_label);
1032
6de9cd9a 1033 /* Finally, purge dead labels. All user-defined labels and labels that
cea0f4f1
AP
1034 can be the target of non-local gotos and labels which have their
1035 address taken are preserved. */
6de9cd9a
DN
1036 FOR_EACH_BB (bb)
1037 {
726a989a 1038 gimple_stmt_iterator i;
8b11009b 1039 tree label_for_this_bb = label_for_bb[bb->index].label;
6de9cd9a 1040
8b11009b 1041 if (!label_for_this_bb)
6de9cd9a
DN
1042 continue;
1043
8b11009b
ZD
1044 /* If the main label of the block is unused, we may still remove it. */
1045 if (!label_for_bb[bb->index].used)
1046 label_for_this_bb = NULL;
1047
726a989a 1048 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
6de9cd9a 1049 {
726a989a
RB
1050 tree label;
1051 gimple stmt = gsi_stmt (i);
6de9cd9a 1052
726a989a 1053 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a
DN
1054 break;
1055
726a989a 1056 label = gimple_label_label (stmt);
6de9cd9a
DN
1057
1058 if (label == label_for_this_bb
726a989a 1059 || !DECL_ARTIFICIAL (label)
cea0f4f1
AP
1060 || DECL_NONLOCAL (label)
1061 || FORCED_LABEL (label))
726a989a 1062 gsi_next (&i);
6de9cd9a 1063 else
726a989a 1064 gsi_remove (&i, true);
6de9cd9a
DN
1065 }
1066 }
1067
1068 free (label_for_bb);
1069}
1070
f667741c
SB
1071/* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1072 and scan the sorted vector of cases. Combine the ones jumping to the
1073 same label.
1074 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1075
165b54c3 1076void
f667741c
SB
1077group_case_labels (void)
1078{
1079 basic_block bb;
1080
1081 FOR_EACH_BB (bb)
1082 {
726a989a
RB
1083 gimple stmt = last_stmt (bb);
1084 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
f667741c 1085 {
726a989a 1086 int old_size = gimple_switch_num_labels (stmt);
f667741c 1087 int i, j, new_size = old_size;
b7814a18
RG
1088 tree default_case = NULL_TREE;
1089 tree default_label = NULL_TREE;
726a989a 1090 bool has_default;
29c4d22b 1091
726a989a 1092 /* The default label is always the first case in a switch
b7814a18 1093 statement after gimplification if it was not optimized
726a989a
RB
1094 away */
1095 if (!CASE_LOW (gimple_switch_default_label (stmt))
1096 && !CASE_HIGH (gimple_switch_default_label (stmt)))
b7814a18 1097 {
726a989a 1098 default_case = gimple_switch_default_label (stmt);
b7814a18 1099 default_label = CASE_LABEL (default_case);
726a989a 1100 has_default = true;
b7814a18 1101 }
726a989a
RB
1102 else
1103 has_default = false;
f667741c 1104
b7814a18 1105 /* Look for possible opportunities to merge cases. */
726a989a
RB
1106 if (has_default)
1107 i = 1;
1108 else
1109 i = 0;
b7814a18 1110 while (i < old_size)
f667741c 1111 {
ed9cef22 1112 tree base_case, base_label, base_high;
726a989a 1113 base_case = gimple_switch_label (stmt, i);
f667741c 1114
1e128c5f 1115 gcc_assert (base_case);
f667741c 1116 base_label = CASE_LABEL (base_case);
31e9eea2
SB
1117
1118 /* Discard cases that have the same destination as the
1119 default case. */
1120 if (base_label == default_label)
1121 {
726a989a 1122 gimple_switch_set_label (stmt, i, NULL_TREE);
31e9eea2 1123 i++;
29c4d22b 1124 new_size--;
31e9eea2
SB
1125 continue;
1126 }
1127
726a989a
RB
1128 base_high = CASE_HIGH (base_case)
1129 ? CASE_HIGH (base_case)
1130 : CASE_LOW (base_case);
d717e500 1131 i++;
726a989a 1132
f667741c
SB
1133 /* Try to merge case labels. Break out when we reach the end
1134 of the label vector or when we cannot merge the next case
1135 label with the current one. */
b7814a18 1136 while (i < old_size)
f667741c 1137 {
726a989a 1138 tree merge_case = gimple_switch_label (stmt, i);
f667741c
SB
1139 tree merge_label = CASE_LABEL (merge_case);
1140 tree t = int_const_binop (PLUS_EXPR, base_high,
1141 integer_one_node, 1);
1142
1143 /* Merge the cases if they jump to the same place,
1144 and their ranges are consecutive. */
1145 if (merge_label == base_label
1146 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1147 {
1148 base_high = CASE_HIGH (merge_case) ?
1149 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1150 CASE_HIGH (base_case) = base_high;
726a989a 1151 gimple_switch_set_label (stmt, i, NULL_TREE);
f667741c 1152 new_size--;
d717e500 1153 i++;
f667741c
SB
1154 }
1155 else
1156 break;
1157 }
1158 }
1159
1160 /* Compress the case labels in the label vector, and adjust the
1161 length of the vector. */
1162 for (i = 0, j = 0; i < new_size; i++)
1163 {
726a989a 1164 while (! gimple_switch_label (stmt, j))
f667741c 1165 j++;
726a989a
RB
1166 gimple_switch_set_label (stmt, i,
1167 gimple_switch_label (stmt, j++));
f667741c 1168 }
726a989a
RB
1169
1170 gcc_assert (new_size <= old_size);
1171 gimple_switch_set_num_labels (stmt, new_size);
f667741c
SB
1172 }
1173 }
1174}
6de9cd9a
DN
1175
1176/* Checks whether we can merge block B into block A. */
1177
1178static bool
726a989a 1179gimple_can_merge_blocks_p (basic_block a, basic_block b)
6de9cd9a 1180{
726a989a
RB
1181 gimple stmt;
1182 gimple_stmt_iterator gsi;
1183 gimple_seq phis;
6de9cd9a 1184
c5cbcccf 1185 if (!single_succ_p (a))
6de9cd9a
DN
1186 return false;
1187
c5cbcccf 1188 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
6de9cd9a
DN
1189 return false;
1190
c5cbcccf 1191 if (single_succ (a) != b)
6de9cd9a
DN
1192 return false;
1193
c5cbcccf 1194 if (!single_pred_p (b))
6de9cd9a
DN
1195 return false;
1196
26e75214
KH
1197 if (b == EXIT_BLOCK_PTR)
1198 return false;
6531d1be 1199
6de9cd9a
DN
1200 /* If A ends by a statement causing exceptions or something similar, we
1201 cannot merge the blocks. */
726a989a 1202 stmt = last_stmt (a);
6de9cd9a
DN
1203 if (stmt && stmt_ends_bb_p (stmt))
1204 return false;
1205
1206 /* Do not allow a block with only a non-local label to be merged. */
726a989a
RB
1207 if (stmt
1208 && gimple_code (stmt) == GIMPLE_LABEL
1209 && DECL_NONLOCAL (gimple_label_label (stmt)))
6de9cd9a
DN
1210 return false;
1211
38965eb2 1212 /* It must be possible to eliminate all phi nodes in B. If ssa form
8f8bb1d2
ZD
1213 is not up-to-date, we cannot eliminate any phis; however, if only
1214 some symbols as whole are marked for renaming, this is not a problem,
1215 as phi nodes for those symbols are irrelevant in updating anyway. */
726a989a
RB
1216 phis = phi_nodes (b);
1217 if (!gimple_seq_empty_p (phis))
38965eb2 1218 {
726a989a
RB
1219 gimple_stmt_iterator i;
1220
8f8bb1d2 1221 if (name_mappings_registered_p ())
38965eb2
ZD
1222 return false;
1223
726a989a
RB
1224 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1225 {
1226 gimple phi = gsi_stmt (i);
1227
1228 if (!is_gimple_reg (gimple_phi_result (phi))
1229 && !may_propagate_copy (gimple_phi_result (phi),
1230 gimple_phi_arg_def (phi, 0)))
1231 return false;
1232 }
38965eb2 1233 }
6de9cd9a
DN
1234
1235 /* Do not remove user labels. */
726a989a 1236 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 1237 {
726a989a
RB
1238 stmt = gsi_stmt (gsi);
1239 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a 1240 break;
726a989a 1241 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
6de9cd9a
DN
1242 return false;
1243 }
1244
2b271002
ZD
1245 /* Protect the loop latches. */
1246 if (current_loops
1247 && b->loop_father->latch == b)
1248 return false;
1249
6de9cd9a
DN
1250 return true;
1251}
1252
38965eb2
ZD
1253/* Replaces all uses of NAME by VAL. */
1254
684aaf29 1255void
38965eb2
ZD
1256replace_uses_by (tree name, tree val)
1257{
1258 imm_use_iterator imm_iter;
1259 use_operand_p use;
726a989a 1260 gimple stmt;
38965eb2 1261 edge e;
38965eb2 1262
6c00f606 1263 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
38965eb2 1264 {
726a989a 1265 if (gimple_code (stmt) != GIMPLE_PHI)
cfaab3a9
DN
1266 push_stmt_changes (&stmt);
1267
6c00f606
AM
1268 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1269 {
1270 replace_exp (use, val);
38965eb2 1271
726a989a 1272 if (gimple_code (stmt) == GIMPLE_PHI)
38965eb2 1273 {
726a989a 1274 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
6c00f606
AM
1275 if (e->flags & EDGE_ABNORMAL)
1276 {
1277 /* This can only occur for virtual operands, since
1278 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1279 would prevent replacement. */
1280 gcc_assert (!is_gimple_reg (name));
1281 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1282 }
38965eb2
ZD
1283 }
1284 }
cfaab3a9 1285
726a989a 1286 if (gimple_code (stmt) != GIMPLE_PHI)
6c00f606 1287 {
726a989a 1288 size_t i;
9af0df6b 1289
6c00f606 1290 fold_stmt_inplace (stmt);
672987e8 1291 if (cfgcleanup_altered_bbs)
726a989a 1292 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
cfaab3a9
DN
1293
1294 /* FIXME. This should go in pop_stmt_changes. */
726a989a
RB
1295 for (i = 0; i < gimple_num_ops (stmt); i++)
1296 {
1297 tree op = gimple_op (stmt, i);
1298 /* Operands may be empty here. For example, the labels
1299 of a GIMPLE_COND are nulled out following the creation
1300 of the corresponding CFG edges. */
1301 if (op && TREE_CODE (op) == ADDR_EXPR)
1302 recompute_tree_invariant_for_addr_expr (op);
1303 }
9af0df6b 1304
6c00f606 1305 maybe_clean_or_replace_eh_stmt (stmt, stmt);
cfaab3a9
DN
1306
1307 pop_stmt_changes (&stmt);
6c00f606 1308 }
38965eb2 1309 }
6531d1be 1310
40b448ef 1311 gcc_assert (has_zero_uses (name));
d5ab5675
ZD
1312
1313 /* Also update the trees stored in loop structures. */
1314 if (current_loops)
1315 {
1316 struct loop *loop;
42fd6772 1317 loop_iterator li;
d5ab5675 1318
42fd6772 1319 FOR_EACH_LOOP (li, loop, 0)
d5ab5675 1320 {
42fd6772 1321 substitute_in_loop_info (loop, name, val);
d5ab5675
ZD
1322 }
1323 }
38965eb2 1324}
6de9cd9a
DN
1325
1326/* Merge block B into block A. */
1327
1328static void
726a989a 1329gimple_merge_blocks (basic_block a, basic_block b)
6de9cd9a 1330{
726a989a
RB
1331 gimple_stmt_iterator last, gsi, psi;
1332 gimple_seq phis = phi_nodes (b);
6de9cd9a
DN
1333
1334 if (dump_file)
1335 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1336
c4f548b8
DN
1337 /* Remove all single-valued PHI nodes from block B of the form
1338 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
726a989a
RB
1339 gsi = gsi_last_bb (a);
1340 for (psi = gsi_start (phis); !gsi_end_p (psi); )
38965eb2 1341 {
726a989a
RB
1342 gimple phi = gsi_stmt (psi);
1343 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1344 gimple copy;
1345 bool may_replace_uses = !is_gimple_reg (def)
1346 || may_propagate_copy (def, use);
d7f0e25c 1347
7c8eb293
ZD
1348 /* In case we maintain loop closed ssa form, do not propagate arguments
1349 of loop exit phi nodes. */
d7f0e25c 1350 if (current_loops
f87000d0 1351 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
d7f0e25c
ZD
1352 && is_gimple_reg (def)
1353 && TREE_CODE (use) == SSA_NAME
1354 && a->loop_father != b->loop_father)
1355 may_replace_uses = false;
1356
1357 if (!may_replace_uses)
38965eb2
ZD
1358 {
1359 gcc_assert (is_gimple_reg (def));
1360
128a79fb 1361 /* Note that just emitting the copies is fine -- there is no problem
38965eb2
ZD
1362 with ordering of phi nodes. This is because A is the single
1363 predecessor of B, therefore results of the phi nodes cannot
1364 appear as arguments of the phi nodes. */
726a989a
RB
1365 copy = gimple_build_assign (def, use);
1366 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1367 remove_phi_node (&psi, false);
38965eb2
ZD
1368 }
1369 else
611021e1 1370 {
d0f76c4b
RG
1371 /* If we deal with a PHI for virtual operands, we can simply
1372 propagate these without fussing with folding or updating
1373 the stmt. */
1374 if (!is_gimple_reg (def))
1375 {
1376 imm_use_iterator iter;
1377 use_operand_p use_p;
726a989a 1378 gimple stmt;
d0f76c4b
RG
1379
1380 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1381 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1382 SET_USE (use_p, use);
1383 }
1384 else
1385 replace_uses_by (def, use);
726a989a
RB
1386
1387 remove_phi_node (&psi, true);
611021e1 1388 }
38965eb2
ZD
1389 }
1390
6de9cd9a
DN
1391 /* Ensure that B follows A. */
1392 move_block_after (b, a);
1393
c5cbcccf 1394 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1e128c5f 1395 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
6de9cd9a 1396
726a989a
RB
1397 /* Remove labels from B and set gimple_bb to A for other statements. */
1398 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
6de9cd9a 1399 {
726a989a 1400 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
be477406 1401 {
726a989a
RB
1402 gimple label = gsi_stmt (gsi);
1403
1404 gsi_remove (&gsi, false);
be477406 1405
be477406
JL
1406 /* Now that we can thread computed gotos, we might have
1407 a situation where we have a forced label in block B
1408 However, the label at the start of block B might still be
1409 used in other ways (think about the runtime checking for
1410 Fortran assigned gotos). So we can not just delete the
1411 label. Instead we move the label to the start of block A. */
726a989a 1412 if (FORCED_LABEL (gimple_label_label (label)))
be477406 1413 {
726a989a
RB
1414 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1415 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
be477406
JL
1416 }
1417 }
6de9cd9a
DN
1418 else
1419 {
726a989a
RB
1420 gimple_set_bb (gsi_stmt (gsi), a);
1421 gsi_next (&gsi);
6de9cd9a
DN
1422 }
1423 }
1424
726a989a
RB
1425 /* Merge the sequences. */
1426 last = gsi_last_bb (a);
1427 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1428 set_bb_seq (b, NULL);
672987e8
ZD
1429
1430 if (cfgcleanup_altered_bbs)
1431 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
6de9cd9a
DN
1432}
1433
1434
bc23502b
PB
1435/* Return the one of two successors of BB that is not reachable by a
1436 reached by a complex edge, if there is one. Else, return BB. We use
1437 this in optimizations that use post-dominators for their heuristics,
1438 to catch the cases in C++ where function calls are involved. */
6531d1be 1439
bc23502b 1440basic_block
6531d1be 1441single_noncomplex_succ (basic_block bb)
bc23502b
PB
1442{
1443 edge e0, e1;
1444 if (EDGE_COUNT (bb->succs) != 2)
1445 return bb;
6531d1be 1446
bc23502b
PB
1447 e0 = EDGE_SUCC (bb, 0);
1448 e1 = EDGE_SUCC (bb, 1);
1449 if (e0->flags & EDGE_COMPLEX)
1450 return e1->dest;
1451 if (e1->flags & EDGE_COMPLEX)
1452 return e0->dest;
6531d1be 1453
bc23502b 1454 return bb;
6531d1be 1455}
bc23502b
PB
1456
1457
6de9cd9a
DN
1458/* Walk the function tree removing unnecessary statements.
1459
1460 * Empty statement nodes are removed
1461
1462 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1463
1464 * Unnecessary COND_EXPRs are removed
1465
1466 * Some unnecessary BIND_EXPRs are removed
1467
726a989a
RB
1468 * GOTO_EXPRs immediately preceding destination are removed.
1469
6de9cd9a
DN
1470 Clearly more work could be done. The trick is doing the analysis
1471 and removal fast enough to be a net improvement in compile times.
1472
1473 Note that when we remove a control structure such as a COND_EXPR
1474 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1475 to ensure we eliminate all the useless code. */
1476
1477struct rus_data
1478{
6de9cd9a
DN
1479 bool repeat;
1480 bool may_throw;
1481 bool may_branch;
1482 bool has_label;
726a989a
RB
1483 bool last_was_goto;
1484 gimple_stmt_iterator last_goto_gsi;
6de9cd9a
DN
1485};
1486
726a989a
RB
1487
1488static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1489
1490/* Given a statement sequence, find the first executable statement with
1491 location information, and warn that it is unreachable. When searching,
1492 descend into containers in execution order. */
6de9cd9a
DN
1493
1494static bool
726a989a 1495remove_useless_stmts_warn_notreached (gimple_seq stmts)
6de9cd9a 1496{
726a989a 1497 gimple_stmt_iterator gsi;
6de9cd9a 1498
726a989a 1499 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 1500 {
726a989a 1501 gimple stmt = gsi_stmt (gsi);
6de9cd9a 1502
726a989a
RB
1503 if (gimple_has_location (stmt))
1504 {
1505 location_t loc = gimple_location (stmt);
1506 if (LOCATION_LINE (loc) > 0)
1507 {
1508 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
1509 return true;
1510 }
1511 }
6de9cd9a 1512
726a989a
RB
1513 switch (gimple_code (stmt))
1514 {
1515 /* Unfortunately, we need the CFG now to detect unreachable
1516 branches in a conditional, so conditionals are not handled here. */
6de9cd9a 1517
726a989a
RB
1518 case GIMPLE_TRY:
1519 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1520 return true;
1521 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1522 return true;
1523 break;
6de9cd9a 1524
726a989a
RB
1525 case GIMPLE_CATCH:
1526 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1527
1528 case GIMPLE_EH_FILTER:
1529 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1530
1531 case GIMPLE_BIND:
1532 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1533
1534 default:
1535 break;
1536 }
6de9cd9a
DN
1537 }
1538
1539 return false;
1540}
1541
726a989a
RB
1542/* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1543
6de9cd9a 1544static void
726a989a 1545remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
6de9cd9a 1546{
726a989a 1547 gimple stmt = gsi_stmt (*gsi);
6de9cd9a 1548
726a989a
RB
1549 /* The folded result must still be a conditional statement. */
1550 fold_stmt_inplace (stmt);
6de9cd9a 1551
726a989a 1552 data->may_branch = true;
6de9cd9a 1553
726a989a
RB
1554 /* Replace trivial conditionals with gotos. */
1555 if (gimple_cond_true_p (stmt))
6de9cd9a 1556 {
726a989a
RB
1557 /* Goto THEN label. */
1558 tree then_label = gimple_cond_true_label (stmt);
6de9cd9a 1559
726a989a
RB
1560 gsi_replace (gsi, gimple_build_goto (then_label), false);
1561 data->last_goto_gsi = *gsi;
1562 data->last_was_goto = true;
6de9cd9a
DN
1563 data->repeat = true;
1564 }
726a989a 1565 else if (gimple_cond_false_p (stmt))
6de9cd9a 1566 {
726a989a
RB
1567 /* Goto ELSE label. */
1568 tree else_label = gimple_cond_false_label (stmt);
1569
1570 gsi_replace (gsi, gimple_build_goto (else_label), false);
1571 data->last_goto_gsi = *gsi;
1572 data->last_was_goto = true;
6de9cd9a
DN
1573 data->repeat = true;
1574 }
6de9cd9a
DN
1575 else
1576 {
726a989a
RB
1577 tree then_label = gimple_cond_true_label (stmt);
1578 tree else_label = gimple_cond_false_label (stmt);
6de9cd9a 1579
726a989a
RB
1580 if (then_label == else_label)
1581 {
1582 /* Goto common destination. */
1583 gsi_replace (gsi, gimple_build_goto (then_label), false);
1584 data->last_goto_gsi = *gsi;
1585 data->last_was_goto = true;
6de9cd9a
DN
1586 data->repeat = true;
1587 }
6de9cd9a
DN
1588 }
1589
726a989a
RB
1590 gsi_next (gsi);
1591
1592 data->last_was_goto = false;
6de9cd9a
DN
1593}
1594
726a989a
RB
1595/* Helper for remove_useless_stmts_1.
1596 Handle the try-finally case for GIMPLE_TRY statements. */
6de9cd9a
DN
1597
1598static void
726a989a 1599remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
6de9cd9a
DN
1600{
1601 bool save_may_branch, save_may_throw;
1602 bool this_may_branch, this_may_throw;
1603
726a989a
RB
1604 gimple_seq eval_seq, cleanup_seq;
1605 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1606
1607 gimple stmt = gsi_stmt (*gsi);
1608
6de9cd9a
DN
1609 /* Collect may_branch and may_throw information for the body only. */
1610 save_may_branch = data->may_branch;
1611 save_may_throw = data->may_throw;
1612 data->may_branch = false;
1613 data->may_throw = false;
726a989a 1614 data->last_was_goto = false;
6de9cd9a 1615
726a989a
RB
1616 eval_seq = gimple_try_eval (stmt);
1617 eval_gsi = gsi_start (eval_seq);
1618 remove_useless_stmts_1 (&eval_gsi, data);
6de9cd9a
DN
1619
1620 this_may_branch = data->may_branch;
1621 this_may_throw = data->may_throw;
1622 data->may_branch |= save_may_branch;
1623 data->may_throw |= save_may_throw;
726a989a 1624 data->last_was_goto = false;
6de9cd9a 1625
726a989a
RB
1626 cleanup_seq = gimple_try_cleanup (stmt);
1627 cleanup_gsi = gsi_start (cleanup_seq);
1628 remove_useless_stmts_1 (&cleanup_gsi, data);
6de9cd9a
DN
1629
1630 /* If the body is empty, then we can emit the FINALLY block without
1631 the enclosing TRY_FINALLY_EXPR. */
726a989a 1632 if (gimple_seq_empty_p (eval_seq))
6de9cd9a 1633 {
726a989a
RB
1634 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1635 gsi_remove (gsi, false);
6de9cd9a
DN
1636 data->repeat = true;
1637 }
1638
1639 /* If the handler is empty, then we can emit the TRY block without
1640 the enclosing TRY_FINALLY_EXPR. */
726a989a 1641 else if (gimple_seq_empty_p (cleanup_seq))
6de9cd9a 1642 {
726a989a
RB
1643 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1644 gsi_remove (gsi, false);
6de9cd9a
DN
1645 data->repeat = true;
1646 }
1647
1648 /* If the body neither throws, nor branches, then we can safely
1649 string the TRY and FINALLY blocks together. */
1650 else if (!this_may_branch && !this_may_throw)
1651 {
726a989a
RB
1652 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1653 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1654 gsi_remove (gsi, false);
6de9cd9a
DN
1655 data->repeat = true;
1656 }
726a989a
RB
1657 else
1658 gsi_next (gsi);
6de9cd9a
DN
1659}
1660
726a989a
RB
1661/* Helper for remove_useless_stmts_1.
1662 Handle the try-catch case for GIMPLE_TRY statements. */
6de9cd9a
DN
1663
1664static void
726a989a 1665remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
6de9cd9a
DN
1666{
1667 bool save_may_throw, this_may_throw;
726a989a
RB
1668
1669 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1670 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1671
1672 gimple stmt = gsi_stmt (*gsi);
6de9cd9a
DN
1673
1674 /* Collect may_throw information for the body only. */
1675 save_may_throw = data->may_throw;
1676 data->may_throw = false;
726a989a 1677 data->last_was_goto = false;
6de9cd9a 1678
726a989a
RB
1679 eval_seq = gimple_try_eval (stmt);
1680 eval_gsi = gsi_start (eval_seq);
1681 remove_useless_stmts_1 (&eval_gsi, data);
6de9cd9a
DN
1682
1683 this_may_throw = data->may_throw;
1684 data->may_throw = save_may_throw;
1685
726a989a
RB
1686 cleanup_seq = gimple_try_cleanup (stmt);
1687
6de9cd9a
DN
1688 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1689 if (!this_may_throw)
1690 {
1691 if (warn_notreached)
726a989a
RB
1692 {
1693 remove_useless_stmts_warn_notreached (cleanup_seq);
1694 }
1695 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1696 gsi_remove (gsi, false);
6de9cd9a
DN
1697 data->repeat = true;
1698 return;
1699 }
1700
1701 /* Process the catch clause specially. We may be able to tell that
1702 no exceptions propagate past this point. */
1703
1704 this_may_throw = true;
726a989a
RB
1705 cleanup_gsi = gsi_start (cleanup_seq);
1706 stmt = gsi_stmt (cleanup_gsi);
1707 data->last_was_goto = false;
6de9cd9a 1708
726a989a 1709 switch (gimple_code (stmt))
6de9cd9a 1710 {
726a989a
RB
1711 case GIMPLE_CATCH:
1712 /* If the first element is a catch, they all must be. */
1713 while (!gsi_end_p (cleanup_gsi))
1714 {
1715 stmt = gsi_stmt (cleanup_gsi);
6de9cd9a
DN
1716 /* If we catch all exceptions, then the body does not
1717 propagate exceptions past this point. */
726a989a 1718 if (gimple_catch_types (stmt) == NULL)
6de9cd9a 1719 this_may_throw = false;
726a989a
RB
1720 data->last_was_goto = false;
1721 handler_seq = gimple_catch_handler (stmt);
1722 handler_gsi = gsi_start (handler_seq);
1723 remove_useless_stmts_1 (&handler_gsi, data);
1724 gsi_next (&cleanup_gsi);
6de9cd9a 1725 }
726a989a 1726 gsi_next (gsi);
6de9cd9a
DN
1727 break;
1728
726a989a
RB
1729 case GIMPLE_EH_FILTER:
1730 /* If the first element is an eh_filter, it should stand alone. */
1731 if (gimple_eh_filter_must_not_throw (stmt))
6de9cd9a 1732 this_may_throw = false;
726a989a 1733 else if (gimple_eh_filter_types (stmt) == NULL)
6de9cd9a 1734 this_may_throw = false;
726a989a
RB
1735 failure_seq = gimple_eh_filter_failure (stmt);
1736 failure_gsi = gsi_start (failure_seq);
1737 remove_useless_stmts_1 (&failure_gsi, data);
1738 gsi_next (gsi);
6de9cd9a
DN
1739 break;
1740
1741 default:
726a989a
RB
1742 /* Otherwise this is a list of cleanup statements. */
1743 remove_useless_stmts_1 (&cleanup_gsi, data);
6de9cd9a
DN
1744
1745 /* If the cleanup is empty, then we can emit the TRY block without
1746 the enclosing TRY_CATCH_EXPR. */
726a989a 1747 if (gimple_seq_empty_p (cleanup_seq))
6de9cd9a 1748 {
726a989a
RB
1749 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1750 gsi_remove(gsi, false);
6de9cd9a
DN
1751 data->repeat = true;
1752 }
726a989a
RB
1753 else
1754 gsi_next (gsi);
6de9cd9a
DN
1755 break;
1756 }
726a989a 1757
6de9cd9a
DN
1758 data->may_throw |= this_may_throw;
1759}
1760
726a989a 1761/* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
6de9cd9a
DN
1762
1763static void
726a989a 1764remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
6de9cd9a
DN
1765{
1766 tree block;
726a989a
RB
1767 gimple_seq body_seq, fn_body_seq;
1768 gimple_stmt_iterator body_gsi;
1769
1770 gimple stmt = gsi_stmt (*gsi);
6de9cd9a
DN
1771
1772 /* First remove anything underneath the BIND_EXPR. */
726a989a
RB
1773
1774 body_seq = gimple_bind_body (stmt);
1775 body_gsi = gsi_start (body_seq);
1776 remove_useless_stmts_1 (&body_gsi, data);
6de9cd9a 1777
726a989a
RB
1778 /* If the GIMPLE_BIND has no variables, then we can pull everything
1779 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1780 GIMPLE_BIND for the current function or an inlined function.
6de9cd9a
DN
1781
1782 When this situation occurs we will want to apply this
1783 optimization again. */
726a989a
RB
1784 block = gimple_bind_block (stmt);
1785 fn_body_seq = gimple_body (current_function_decl);
1786 if (gimple_bind_vars (stmt) == NULL_TREE
1787 && (gimple_seq_empty_p (fn_body_seq)
1788 || stmt != gimple_seq_first_stmt (fn_body_seq))
6de9cd9a
DN
1789 && (! block
1790 || ! BLOCK_ABSTRACT_ORIGIN (block)
1791 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1792 != FUNCTION_DECL)))
1793 {
726a989a
RB
1794 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1795 gsi_remove (gsi, false);
6de9cd9a
DN
1796 data->repeat = true;
1797 }
726a989a
RB
1798 else
1799 gsi_next (gsi);
6de9cd9a
DN
1800}
1801
726a989a 1802/* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
6de9cd9a
DN
1803
1804static void
726a989a 1805remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
6de9cd9a 1806{
726a989a
RB
1807 gimple stmt = gsi_stmt (*gsi);
1808
1809 tree dest = gimple_goto_dest (stmt);
6de9cd9a
DN
1810
1811 data->may_branch = true;
726a989a 1812 data->last_was_goto = false;
6de9cd9a 1813
726a989a 1814 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
6de9cd9a 1815 if (TREE_CODE (dest) == LABEL_DECL)
726a989a
RB
1816 {
1817 data->last_goto_gsi = *gsi;
1818 data->last_was_goto = true;
1819 }
1820
1821 gsi_next(gsi);
6de9cd9a
DN
1822}
1823
726a989a 1824/* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
6de9cd9a
DN
1825
1826static void
726a989a 1827remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
6de9cd9a 1828{
726a989a
RB
1829 gimple stmt = gsi_stmt (*gsi);
1830
1831 tree label = gimple_label_label (stmt);
6de9cd9a
DN
1832
1833 data->has_label = true;
1834
1835 /* We do want to jump across non-local label receiver code. */
1836 if (DECL_NONLOCAL (label))
726a989a 1837 data->last_was_goto = false;
6de9cd9a 1838
726a989a
RB
1839 else if (data->last_was_goto
1840 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
6de9cd9a 1841 {
726a989a
RB
1842 /* Replace the preceding GIMPLE_GOTO statement with
1843 a GIMPLE_NOP, which will be subsequently removed.
1844 In this way, we avoid invalidating other iterators
1845 active on the statement sequence. */
1846 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
1847 data->last_was_goto = false;
6de9cd9a
DN
1848 data->repeat = true;
1849 }
1850
1851 /* ??? Add something here to delete unused labels. */
6de9cd9a 1852
726a989a 1853 gsi_next (gsi);
6de9cd9a
DN
1854}
1855
1856
1857/* T is CALL_EXPR. Set current_function_calls_* flags. */
1858
1859void
726a989a 1860notice_special_calls (gimple call)
6de9cd9a 1861{
726a989a 1862 int flags = gimple_call_flags (call);
6de9cd9a
DN
1863
1864 if (flags & ECF_MAY_BE_ALLOCA)
e3b5732b 1865 cfun->calls_alloca = true;
6de9cd9a 1866 if (flags & ECF_RETURNS_TWICE)
e3b5732b 1867 cfun->calls_setjmp = true;
6de9cd9a
DN
1868}
1869
1870
1871/* Clear flags set by notice_special_calls. Used by dead code removal
1872 to update the flags. */
1873
1874void
1875clear_special_calls (void)
1876{
e3b5732b
JH
1877 cfun->calls_alloca = false;
1878 cfun->calls_setjmp = false;
6de9cd9a
DN
1879}
1880
726a989a
RB
1881/* Remove useless statements from a statement sequence, and perform
1882 some preliminary simplifications. */
6de9cd9a
DN
1883
1884static void
726a989a 1885remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
6de9cd9a 1886{
726a989a 1887 while (!gsi_end_p (*gsi))
6de9cd9a 1888 {
726a989a 1889 gimple stmt = gsi_stmt (*gsi);
6de9cd9a 1890
726a989a
RB
1891 switch (gimple_code (stmt))
1892 {
1893 case GIMPLE_COND:
1894 remove_useless_stmts_cond (gsi, data);
1895 break;
1896
1897 case GIMPLE_GOTO:
1898 remove_useless_stmts_goto (gsi, data);
1899 break;
1900
1901 case GIMPLE_LABEL:
1902 remove_useless_stmts_label (gsi, data);
1903 break;
1904
1905 case GIMPLE_ASSIGN:
1906 fold_stmt (gsi);
1907 stmt = gsi_stmt (*gsi);
1908 data->last_was_goto = false;
1909 if (stmt_could_throw_p (stmt))
1910 data->may_throw = true;
1911 gsi_next (gsi);
1912 break;
1913
1914 case GIMPLE_ASM:
1915 fold_stmt (gsi);
1916 data->last_was_goto = false;
1917 gsi_next (gsi);
1918 break;
1919
1920 case GIMPLE_CALL:
1921 fold_stmt (gsi);
1922 stmt = gsi_stmt (*gsi);
1923 data->last_was_goto = false;
1924 if (is_gimple_call (stmt))
1925 notice_special_calls (stmt);
1926
1927 /* We used to call update_gimple_call_flags here,
1928 which copied side-effects and nothrows status
1929 from the function decl to the call. In the new
1930 tuplified GIMPLE, the accessors for this information
1931 always consult the function decl, so this copying
1932 is no longer necessary. */
1933 if (stmt_could_throw_p (stmt))
1934 data->may_throw = true;
1935 gsi_next (gsi);
1936 break;
1937
1938 case GIMPLE_RETURN:
1939 fold_stmt (gsi);
1940 data->last_was_goto = false;
1941 data->may_branch = true;
1942 gsi_next (gsi);
1943 break;
1944
1945 case GIMPLE_BIND:
1946 remove_useless_stmts_bind (gsi, data);
1947 break;
1948
1949 case GIMPLE_TRY:
1950 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
1951 remove_useless_stmts_tc (gsi, data);
1952 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1953 remove_useless_stmts_tf (gsi, data);
1954 else
1955 gcc_unreachable ();
1956 break;
1957
1958 case GIMPLE_CATCH:
1959 gcc_unreachable ();
1960 break;
1961
1962 case GIMPLE_NOP:
1963 gsi_remove (gsi, false);
1964 break;
1965
1966 case GIMPLE_OMP_FOR:
1967 {
1968 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
1969 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
1970
1971 remove_useless_stmts_1 (&pre_body_gsi, data);
1972 data->last_was_goto = false;
1973 }
1974 /* FALLTHROUGH */
1975 case GIMPLE_OMP_CRITICAL:
1976 case GIMPLE_OMP_CONTINUE:
1977 case GIMPLE_OMP_MASTER:
1978 case GIMPLE_OMP_ORDERED:
1979 case GIMPLE_OMP_SECTION:
1980 case GIMPLE_OMP_SECTIONS:
1981 case GIMPLE_OMP_SINGLE:
1982 {
1983 gimple_seq body_seq = gimple_omp_body (stmt);
1984 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
1985
1986 remove_useless_stmts_1 (&body_gsi, data);
1987 data->last_was_goto = false;
1988 gsi_next (gsi);
1989 }
1990 break;
1991
1992 case GIMPLE_OMP_PARALLEL:
1993 case GIMPLE_OMP_TASK:
1994 {
1995 /* Make sure the outermost GIMPLE_BIND isn't removed
1996 as useless. */
1997 gimple_seq body_seq = gimple_omp_body (stmt);
1998 gimple bind = gimple_seq_first_stmt (body_seq);
1999 gimple_seq bind_seq = gimple_bind_body (bind);
2000 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2001
2002 remove_useless_stmts_1 (&bind_gsi, data);
2003 data->last_was_goto = false;
2004 gsi_next (gsi);
2005 }
2006 break;
2007
3d9fbb9a
RG
2008 case GIMPLE_CHANGE_DYNAMIC_TYPE:
2009 /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
2010 expansion is confused about them and we only remove them
2011 during alias computation otherwise. */
2012 if (!optimize)
2013 {
2014 data->last_was_goto = false;
2015 gsi_remove (gsi, false);
2016 break;
2017 }
2018 /* Fallthru. */
2019
726a989a
RB
2020 default:
2021 data->last_was_goto = false;
2022 gsi_next (gsi);
2023 break;
2024 }
6de9cd9a
DN
2025 }
2026}
2027
726a989a
RB
2028/* Walk the function tree, removing useless statements and performing
2029 some preliminary simplifications. */
2030
c2924966 2031static unsigned int
6de9cd9a
DN
2032remove_useless_stmts (void)
2033{
2034 struct rus_data data;
2035
2036 clear_special_calls ();
2037
2038 do
2039 {
726a989a
RB
2040 gimple_stmt_iterator gsi;
2041
2042 gsi = gsi_start (gimple_body (current_function_decl));
6de9cd9a 2043 memset (&data, 0, sizeof (data));
726a989a 2044 remove_useless_stmts_1 (&gsi, &data);
6de9cd9a
DN
2045 }
2046 while (data.repeat);
c2924966 2047 return 0;
6de9cd9a
DN
2048}
2049
2050
8ddbbcae 2051struct gimple_opt_pass pass_remove_useless_stmts =
6de9cd9a 2052{
8ddbbcae
JH
2053 {
2054 GIMPLE_PASS,
6de9cd9a
DN
2055 "useless", /* name */
2056 NULL, /* gate */
2057 remove_useless_stmts, /* execute */
2058 NULL, /* sub */
2059 NULL, /* next */
2060 0, /* static_pass_number */
2061 0, /* tv_id */
9e5a3e6c
RH
2062 PROP_gimple_any, /* properties_required */
2063 0, /* properties_provided */
6de9cd9a
DN
2064 0, /* properties_destroyed */
2065 0, /* todo_flags_start */
8ddbbcae
JH
2066 TODO_dump_func /* todo_flags_finish */
2067 }
6de9cd9a
DN
2068};
2069
6de9cd9a
DN
2070/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2071
2072static void
2073remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2074{
6de9cd9a
DN
2075 /* Since this block is no longer reachable, we can just delete all
2076 of its PHI nodes. */
81b822d5 2077 remove_phi_nodes (bb);
6de9cd9a
DN
2078
2079 /* Remove edges to BB's successors. */
628f6a4e 2080 while (EDGE_COUNT (bb->succs) > 0)
d0d2cc21 2081 remove_edge (EDGE_SUCC (bb, 0));
6de9cd9a
DN
2082}
2083
2084
2085/* Remove statements of basic block BB. */
2086
2087static void
2088remove_bb (basic_block bb)
2089{
726a989a 2090 gimple_stmt_iterator i;
dbce1570 2091 source_location loc = UNKNOWN_LOCATION;
6de9cd9a
DN
2092
2093 if (dump_file)
2094 {
2095 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2096 if (dump_flags & TDF_DETAILS)
2097 {
2098 dump_bb (bb, dump_file, 0);
2099 fprintf (dump_file, "\n");
2100 }
2101 }
2102
2b271002
ZD
2103 if (current_loops)
2104 {
2105 struct loop *loop = bb->loop_father;
2106
598ec7bd
ZD
2107 /* If a loop gets removed, clean up the information associated
2108 with it. */
2b271002
ZD
2109 if (loop->latch == bb
2110 || loop->header == bb)
598ec7bd 2111 free_numbers_of_iterations_estimates_loop (loop);
2b271002
ZD
2112 }
2113
6de9cd9a 2114 /* Remove all the instructions in the block. */
726a989a 2115 if (bb_seq (bb) != NULL)
6de9cd9a 2116 {
726a989a 2117 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
77568960 2118 {
726a989a
RB
2119 gimple stmt = gsi_stmt (i);
2120 if (gimple_code (stmt) == GIMPLE_LABEL
2121 && (FORCED_LABEL (gimple_label_label (stmt))
2122 || DECL_NONLOCAL (gimple_label_label (stmt))))
7506e1cb
ZD
2123 {
2124 basic_block new_bb;
726a989a 2125 gimple_stmt_iterator new_gsi;
7506e1cb
ZD
2126
2127 /* A non-reachable non-local label may still be referenced.
2128 But it no longer needs to carry the extra semantics of
2129 non-locality. */
726a989a 2130 if (DECL_NONLOCAL (gimple_label_label (stmt)))
7506e1cb 2131 {
726a989a
RB
2132 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2133 FORCED_LABEL (gimple_label_label (stmt)) = 1;
7506e1cb 2134 }
bb1ecfe8 2135
7506e1cb 2136 new_bb = bb->prev_bb;
726a989a
RB
2137 new_gsi = gsi_start_bb (new_bb);
2138 gsi_remove (&i, false);
2139 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
7506e1cb
ZD
2140 }
2141 else
bb1ecfe8 2142 {
7506e1cb
ZD
2143 /* Release SSA definitions if we are in SSA. Note that we
2144 may be called when not in SSA. For example,
2145 final_cleanup calls this function via
2146 cleanup_tree_cfg. */
2147 if (gimple_in_ssa_p (cfun))
2148 release_defs (stmt);
2149
726a989a 2150 gsi_remove (&i, true);
bb1ecfe8 2151 }
6531d1be 2152
7506e1cb
ZD
2153 /* Don't warn for removed gotos. Gotos are often removed due to
2154 jump threading, thus resulting in bogus warnings. Not great,
2155 since this way we lose warnings for gotos in the original
2156 program that are indeed unreachable. */
726a989a
RB
2157 if (gimple_code (stmt) != GIMPLE_GOTO
2158 && gimple_has_location (stmt)
2159 && !loc)
2160 loc = gimple_location (stmt);
43e05e45 2161 }
6de9cd9a
DN
2162 }
2163
2164 /* If requested, give a warning that the first statement in the
2165 block is unreachable. We walk statements backwards in the
2166 loop above, so the last statement we process is the first statement
2167 in the block. */
5ffeb913 2168 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
44c21c7f 2169 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
6de9cd9a
DN
2170
2171 remove_phi_nodes_and_edges_for_unreachable_block (bb);
726a989a 2172 bb->il.gimple = NULL;
6de9cd9a
DN
2173}
2174
6de9cd9a 2175
35920270
KH
2176/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2177 predicate VAL, return the edge that will be taken out of the block.
2178 If VAL does not match a unique edge, NULL is returned. */
6de9cd9a
DN
2179
2180edge
2181find_taken_edge (basic_block bb, tree val)
2182{
726a989a 2183 gimple stmt;
6de9cd9a
DN
2184
2185 stmt = last_stmt (bb);
2186
1e128c5f
GB
2187 gcc_assert (stmt);
2188 gcc_assert (is_ctrl_stmt (stmt));
6de9cd9a 2189
726a989a
RB
2190 if (val == NULL)
2191 return NULL;
2192
2193 if (!is_gimple_min_invariant (val))
6de9cd9a
DN
2194 return NULL;
2195
726a989a 2196 if (gimple_code (stmt) == GIMPLE_COND)
6de9cd9a
DN
2197 return find_taken_edge_cond_expr (bb, val);
2198
726a989a 2199 if (gimple_code (stmt) == GIMPLE_SWITCH)
6de9cd9a
DN
2200 return find_taken_edge_switch_expr (bb, val);
2201
be477406 2202 if (computed_goto_p (stmt))
1799efef
JL
2203 {
2204 /* Only optimize if the argument is a label, if the argument is
2205 not a label then we can not construct a proper CFG.
2206
2207 It may be the case that we only need to allow the LABEL_REF to
2208 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2209 appear inside a LABEL_EXPR just to be safe. */
2210 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2211 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2212 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2213 return NULL;
2214 }
be477406 2215
35920270 2216 gcc_unreachable ();
6de9cd9a
DN
2217}
2218
be477406
JL
2219/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2220 statement, determine which of the outgoing edges will be taken out of the
2221 block. Return NULL if either edge may be taken. */
2222
2223static edge
2224find_taken_edge_computed_goto (basic_block bb, tree val)
2225{
2226 basic_block dest;
2227 edge e = NULL;
2228
2229 dest = label_to_block (val);
2230 if (dest)
2231 {
2232 e = find_edge (bb, dest);
2233 gcc_assert (e != NULL);
2234 }
2235
2236 return e;
2237}
6de9cd9a
DN
2238
2239/* Given a constant value VAL and the entry block BB to a COND_EXPR
2240 statement, determine which of the two edges will be taken out of the
2241 block. Return NULL if either edge may be taken. */
2242
2243static edge
2244find_taken_edge_cond_expr (basic_block bb, tree val)
2245{
2246 edge true_edge, false_edge;
2247
2248 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
6531d1be 2249
f1b19062 2250 gcc_assert (TREE_CODE (val) == INTEGER_CST);
6e682d7e 2251 return (integer_zerop (val) ? false_edge : true_edge);
6de9cd9a
DN
2252}
2253
fca01525 2254/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
6de9cd9a
DN
2255 statement, determine which edge will be taken out of the block. Return
2256 NULL if any edge may be taken. */
2257
2258static edge
2259find_taken_edge_switch_expr (basic_block bb, tree val)
2260{
6de9cd9a
DN
2261 basic_block dest_bb;
2262 edge e;
726a989a
RB
2263 gimple switch_stmt;
2264 tree taken_case;
6de9cd9a 2265
726a989a
RB
2266 switch_stmt = last_stmt (bb);
2267 taken_case = find_case_label_for_value (switch_stmt, val);
6de9cd9a
DN
2268 dest_bb = label_to_block (CASE_LABEL (taken_case));
2269
2270 e = find_edge (bb, dest_bb);
1e128c5f 2271 gcc_assert (e);
6de9cd9a
DN
2272 return e;
2273}
2274
2275
726a989a 2276/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
f667741c
SB
2277 We can make optimal use here of the fact that the case labels are
2278 sorted: We can do a binary search for a case matching VAL. */
6de9cd9a
DN
2279
2280static tree
726a989a 2281find_case_label_for_value (gimple switch_stmt, tree val)
6de9cd9a 2282{
726a989a
RB
2283 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2284 tree default_case = gimple_switch_default_label (switch_stmt);
6de9cd9a 2285
726a989a 2286 for (low = 0, high = n; high - low > 1; )
6de9cd9a 2287 {
f667741c 2288 size_t i = (high + low) / 2;
726a989a 2289 tree t = gimple_switch_label (switch_stmt, i);
f667741c
SB
2290 int cmp;
2291
2292 /* Cache the result of comparing CASE_LOW and val. */
2293 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6de9cd9a 2294
f667741c
SB
2295 if (cmp > 0)
2296 high = i;
2297 else
2298 low = i;
2299
2300 if (CASE_HIGH (t) == NULL)
6de9cd9a 2301 {
f667741c
SB
2302 /* A singe-valued case label. */
2303 if (cmp == 0)
6de9cd9a
DN
2304 return t;
2305 }
2306 else
2307 {
2308 /* A case range. We can only handle integer ranges. */
f667741c 2309 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6de9cd9a
DN
2310 return t;
2311 }
2312 }
2313
6de9cd9a
DN
2314 return default_case;
2315}
2316
2317
6de9cd9a
DN
2318/* Dump a basic block on stderr. */
2319
2320void
726a989a 2321gimple_debug_bb (basic_block bb)
6de9cd9a 2322{
726a989a 2323 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
6de9cd9a
DN
2324}
2325
2326
2327/* Dump basic block with index N on stderr. */
2328
2329basic_block
726a989a 2330gimple_debug_bb_n (int n)
6de9cd9a 2331{
726a989a 2332 gimple_debug_bb (BASIC_BLOCK (n));
6de9cd9a 2333 return BASIC_BLOCK (n);
6531d1be 2334}
6de9cd9a
DN
2335
2336
2337/* Dump the CFG on stderr.
2338
2339 FLAGS are the same used by the tree dumping functions
6531d1be 2340 (see TDF_* in tree-pass.h). */
6de9cd9a
DN
2341
2342void
726a989a 2343gimple_debug_cfg (int flags)
6de9cd9a 2344{
726a989a 2345 gimple_dump_cfg (stderr, flags);
6de9cd9a
DN
2346}
2347
2348
2349/* Dump the program showing basic block boundaries on the given FILE.
2350
2351 FLAGS are the same used by the tree dumping functions (see TDF_* in
2352 tree.h). */
2353
2354void
726a989a 2355gimple_dump_cfg (FILE *file, int flags)
6de9cd9a
DN
2356{
2357 if (flags & TDF_DETAILS)
2358 {
2359 const char *funcname
673fda6b 2360 = lang_hooks.decl_printable_name (current_function_decl, 2);
6de9cd9a
DN
2361
2362 fputc ('\n', file);
2363 fprintf (file, ";; Function %s\n\n", funcname);
2364 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2365 n_basic_blocks, n_edges, last_basic_block);
2366
2367 brief_dump_cfg (file);
2368 fprintf (file, "\n");
2369 }
2370
2371 if (flags & TDF_STATS)
2372 dump_cfg_stats (file);
2373
2374 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2375}
2376
2377
2378/* Dump CFG statistics on FILE. */
2379
2380void
2381dump_cfg_stats (FILE *file)
2382{
2383 static long max_num_merged_labels = 0;
2384 unsigned long size, total = 0;
7b0cab99 2385 long num_edges;
6de9cd9a
DN
2386 basic_block bb;
2387 const char * const fmt_str = "%-30s%-13s%12s\n";
f7fda749 2388 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
cac50d94 2389 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
6de9cd9a
DN
2390 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2391 const char *funcname
673fda6b 2392 = lang_hooks.decl_printable_name (current_function_decl, 2);
6de9cd9a
DN
2393
2394
2395 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2396
2397 fprintf (file, "---------------------------------------------------------\n");
2398 fprintf (file, fmt_str, "", " Number of ", "Memory");
2399 fprintf (file, fmt_str, "", " instances ", "used ");
2400 fprintf (file, "---------------------------------------------------------\n");
2401
2402 size = n_basic_blocks * sizeof (struct basic_block_def);
2403 total += size;
f7fda749
RH
2404 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2405 SCALE (size), LABEL (size));
6de9cd9a 2406
7b0cab99 2407 num_edges = 0;
6de9cd9a 2408 FOR_EACH_BB (bb)
7b0cab99
JH
2409 num_edges += EDGE_COUNT (bb->succs);
2410 size = num_edges * sizeof (struct edge_def);
6de9cd9a 2411 total += size;
cac50d94 2412 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
6de9cd9a 2413
6de9cd9a
DN
2414 fprintf (file, "---------------------------------------------------------\n");
2415 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2416 LABEL (total));
2417 fprintf (file, "---------------------------------------------------------\n");
2418 fprintf (file, "\n");
2419
2420 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2421 max_num_merged_labels = cfg_stats.num_merged_labels;
2422
2423 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2424 cfg_stats.num_merged_labels, max_num_merged_labels);
2425
2426 fprintf (file, "\n");
2427}
2428
2429
2430/* Dump CFG statistics on stderr. Keep extern so that it's always
2431 linked in the final executable. */
2432
2433void
2434debug_cfg_stats (void)
2435{
2436 dump_cfg_stats (stderr);
2437}
2438
2439
2440/* Dump the flowgraph to a .vcg FILE. */
2441
2442static void
726a989a 2443gimple_cfg2vcg (FILE *file)
6de9cd9a
DN
2444{
2445 edge e;
628f6a4e 2446 edge_iterator ei;
6de9cd9a
DN
2447 basic_block bb;
2448 const char *funcname
673fda6b 2449 = lang_hooks.decl_printable_name (current_function_decl, 2);
6de9cd9a
DN
2450
2451 /* Write the file header. */
2452 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2453 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2454 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2455
2456 /* Write blocks and edges. */
628f6a4e 2457 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
6de9cd9a
DN
2458 {
2459 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2460 e->dest->index);
2461
2462 if (e->flags & EDGE_FAKE)
2463 fprintf (file, " linestyle: dotted priority: 10");
2464 else
2465 fprintf (file, " linestyle: solid priority: 100");
2466
2467 fprintf (file, " }\n");
2468 }
2469 fputc ('\n', file);
2470
2471 FOR_EACH_BB (bb)
2472 {
726a989a 2473 enum gimple_code head_code, end_code;
6de9cd9a
DN
2474 const char *head_name, *end_name;
2475 int head_line = 0;
2476 int end_line = 0;
726a989a
RB
2477 gimple first = first_stmt (bb);
2478 gimple last = last_stmt (bb);
6de9cd9a
DN
2479
2480 if (first)
2481 {
726a989a
RB
2482 head_code = gimple_code (first);
2483 head_name = gimple_code_name[head_code];
6de9cd9a
DN
2484 head_line = get_lineno (first);
2485 }
2486 else
2487 head_name = "no-statement";
2488
2489 if (last)
2490 {
726a989a
RB
2491 end_code = gimple_code (last);
2492 end_name = gimple_code_name[end_code];
6de9cd9a
DN
2493 end_line = get_lineno (last);
2494 }
2495 else
2496 end_name = "no-statement";
2497
2498 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2499 bb->index, bb->index, head_name, head_line, end_name,
2500 end_line);
2501
628f6a4e 2502 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
2503 {
2504 if (e->dest == EXIT_BLOCK_PTR)
2505 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2506 else
2507 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2508
2509 if (e->flags & EDGE_FAKE)
2510 fprintf (file, " priority: 10 linestyle: dotted");
2511 else
2512 fprintf (file, " priority: 100 linestyle: solid");
2513
2514 fprintf (file, " }\n");
2515 }
2516
2517 if (bb->next_bb != EXIT_BLOCK_PTR)
2518 fputc ('\n', file);
2519 }
2520
2521 fputs ("}\n\n", file);
2522}
2523
2524
2525
2526/*---------------------------------------------------------------------------
2527 Miscellaneous helpers
2528---------------------------------------------------------------------------*/
2529
2530/* Return true if T represents a stmt that always transfers control. */
2531
2532bool
726a989a 2533is_ctrl_stmt (gimple t)
6de9cd9a 2534{
726a989a
RB
2535 return gimple_code (t) == GIMPLE_COND
2536 || gimple_code (t) == GIMPLE_SWITCH
2537 || gimple_code (t) == GIMPLE_GOTO
2538 || gimple_code (t) == GIMPLE_RETURN
2539 || gimple_code (t) == GIMPLE_RESX;
6de9cd9a
DN
2540}
2541
2542
2543/* Return true if T is a statement that may alter the flow of control
2544 (e.g., a call to a non-returning function). */
2545
2546bool
726a989a 2547is_ctrl_altering_stmt (gimple t)
6de9cd9a 2548{
1e128c5f 2549 gcc_assert (t);
726a989a
RB
2550
2551 if (is_gimple_call (t))
6de9cd9a 2552 {
726a989a
RB
2553 int flags = gimple_call_flags (t);
2554
2555 /* A non-pure/const call alters flow control if the current
6de9cd9a 2556 function has nonlocal labels. */
726a989a
RB
2557 if (!(flags & (ECF_CONST | ECF_PURE))
2558 && cfun->has_nonlocal_label)
6de9cd9a
DN
2559 return true;
2560
726a989a
RB
2561 /* A call also alters control flow if it does not return. */
2562 if (gimple_call_flags (t) & ECF_NORETURN)
6de9cd9a 2563 return true;
6de9cd9a
DN
2564 }
2565
50674e96 2566 /* OpenMP directives alter control flow. */
726a989a 2567 if (is_gimple_omp (t))
50674e96
DN
2568 return true;
2569
6de9cd9a 2570 /* If a statement can throw, it alters control flow. */
726a989a 2571 return stmt_can_throw_internal (t);
6de9cd9a
DN
2572}
2573
2574
4f6c2131 2575/* Return true if T is a simple local goto. */
6de9cd9a
DN
2576
2577bool
726a989a 2578simple_goto_p (gimple t)
6de9cd9a 2579{
726a989a
RB
2580 return (gimple_code (t) == GIMPLE_GOTO
2581 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
4f6c2131
EB
2582}
2583
2584
2585/* Return true if T can make an abnormal transfer of control flow.
2586 Transfers of control flow associated with EH are excluded. */
2587
2588bool
726a989a 2589stmt_can_make_abnormal_goto (gimple t)
4f6c2131
EB
2590{
2591 if (computed_goto_p (t))
2592 return true;
726a989a
RB
2593 if (is_gimple_call (t))
2594 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
4f6c2131 2595 return false;
6de9cd9a
DN
2596}
2597
2598
726a989a
RB
2599/* Return true if STMT should start a new basic block. PREV_STMT is
2600 the statement preceding STMT. It is used when STMT is a label or a
2601 case label. Labels should only start a new basic block if their
2602 previous statement wasn't a label. Otherwise, sequence of labels
2603 would generate unnecessary basic blocks that only contain a single
2604 label. */
6de9cd9a
DN
2605
2606static inline bool
726a989a 2607stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
6de9cd9a 2608{
726a989a 2609 if (stmt == NULL)
6de9cd9a
DN
2610 return false;
2611
726a989a
RB
2612 /* Labels start a new basic block only if the preceding statement
2613 wasn't a label of the same type. This prevents the creation of
2614 consecutive blocks that have nothing but a single label. */
2615 if (gimple_code (stmt) == GIMPLE_LABEL)
6de9cd9a
DN
2616 {
2617 /* Nonlocal and computed GOTO targets always start a new block. */
726a989a
RB
2618 if (DECL_NONLOCAL (gimple_label_label (stmt))
2619 || FORCED_LABEL (gimple_label_label (stmt)))
6de9cd9a
DN
2620 return true;
2621
726a989a 2622 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
6de9cd9a 2623 {
726a989a 2624 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
6de9cd9a
DN
2625 return true;
2626
2627 cfg_stats.num_merged_labels++;
2628 return false;
2629 }
2630 else
2631 return true;
2632 }
2633
2634 return false;
2635}
2636
2637
2638/* Return true if T should end a basic block. */
2639
2640bool
726a989a 2641stmt_ends_bb_p (gimple t)
6de9cd9a
DN
2642{
2643 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2644}
2645
726a989a 2646/* Remove block annotations and other data structures. */
6de9cd9a
DN
2647
2648void
242229bb 2649delete_tree_cfg_annotations (void)
6de9cd9a 2650{
6de9cd9a 2651 label_to_block_map = NULL;
6de9cd9a
DN
2652}
2653
2654
2655/* Return the first statement in basic block BB. */
2656
726a989a 2657gimple
6de9cd9a
DN
2658first_stmt (basic_block bb)
2659{
726a989a
RB
2660 gimple_stmt_iterator i = gsi_start_bb (bb);
2661 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
6de9cd9a
DN
2662}
2663
6de9cd9a
DN
2664/* Return the last statement in basic block BB. */
2665
726a989a 2666gimple
6de9cd9a
DN
2667last_stmt (basic_block bb)
2668{
726a989a
RB
2669 gimple_stmt_iterator b = gsi_last_bb (bb);
2670 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
6de9cd9a
DN
2671}
2672
6de9cd9a
DN
2673/* Return the last statement of an otherwise empty block. Return NULL
2674 if the block is totally empty, or if it contains more than one
2675 statement. */
2676
726a989a 2677gimple
6de9cd9a
DN
2678last_and_only_stmt (basic_block bb)
2679{
726a989a
RB
2680 gimple_stmt_iterator i = gsi_last_bb (bb);
2681 gimple last, prev;
6de9cd9a 2682
726a989a
RB
2683 if (gsi_end_p (i))
2684 return NULL;
6de9cd9a 2685
726a989a
RB
2686 last = gsi_stmt (i);
2687 gsi_prev (&i);
2688 if (gsi_end_p (i))
6de9cd9a
DN
2689 return last;
2690
2691 /* Empty statements should no longer appear in the instruction stream.
2692 Everything that might have appeared before should be deleted by
726a989a 2693 remove_useless_stmts, and the optimizers should just gsi_remove
6de9cd9a
DN
2694 instead of smashing with build_empty_stmt.
2695
2696 Thus the only thing that should appear here in a block containing
2697 one executable statement is a label. */
726a989a
RB
2698 prev = gsi_stmt (i);
2699 if (gimple_code (prev) == GIMPLE_LABEL)
6de9cd9a
DN
2700 return last;
2701 else
726a989a 2702 return NULL;
82b85a85 2703}
6de9cd9a 2704
4f7db7f7
KH
2705/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2706
2707static void
2708reinstall_phi_args (edge new_edge, edge old_edge)
2709{
ea7e6d5a
AH
2710 edge_var_map_vector v;
2711 edge_var_map *vm;
2712 int i;
726a989a
RB
2713 gimple_stmt_iterator phis;
2714
ea7e6d5a
AH
2715 v = redirect_edge_var_map_vector (old_edge);
2716 if (!v)
4f7db7f7 2717 return;
726a989a
RB
2718
2719 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2720 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2721 i++, gsi_next (&phis))
4f7db7f7 2722 {
726a989a 2723 gimple phi = gsi_stmt (phis);
ea7e6d5a
AH
2724 tree result = redirect_edge_var_map_result (vm);
2725 tree arg = redirect_edge_var_map_def (vm);
726a989a
RB
2726
2727 gcc_assert (result == gimple_phi_result (phi));
2728
d2e398df 2729 add_phi_arg (phi, arg, new_edge);
4f7db7f7 2730 }
726a989a 2731
ea7e6d5a 2732 redirect_edge_var_map_clear (old_edge);
4f7db7f7
KH
2733}
2734
2a8a8292 2735/* Returns the basic block after which the new basic block created
b9a66240
ZD
2736 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2737 near its "logical" location. This is of most help to humans looking
2738 at debugging dumps. */
2739
2740static basic_block
2741split_edge_bb_loc (edge edge_in)
2742{
2743 basic_block dest = edge_in->dest;
2744
2745 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2746 return edge_in->src;
2747 else
2748 return dest->prev_bb;
2749}
2750
6de9cd9a
DN
2751/* Split a (typically critical) edge EDGE_IN. Return the new block.
2752 Abort on abnormal edges. */
2753
2754static basic_block
726a989a 2755gimple_split_edge (edge edge_in)
6de9cd9a 2756{
4741d956 2757 basic_block new_bb, after_bb, dest;
6de9cd9a 2758 edge new_edge, e;
6de9cd9a
DN
2759
2760 /* Abnormal edges cannot be split. */
1e128c5f 2761 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
6de9cd9a 2762
6de9cd9a
DN
2763 dest = edge_in->dest;
2764
b9a66240 2765 after_bb = split_edge_bb_loc (edge_in);
6de9cd9a
DN
2766
2767 new_bb = create_empty_bb (after_bb);
b829f3fa
JH
2768 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2769 new_bb->count = edge_in->count;
6de9cd9a 2770 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
b829f3fa
JH
2771 new_edge->probability = REG_BR_PROB_BASE;
2772 new_edge->count = edge_in->count;
6de9cd9a 2773
1e128c5f 2774 e = redirect_edge_and_branch (edge_in, new_bb);
c7b852c8 2775 gcc_assert (e == edge_in);
4f7db7f7 2776 reinstall_phi_args (new_edge, e);
6de9cd9a
DN
2777
2778 return new_bb;
2779}
2780
6de9cd9a 2781/* Callback for walk_tree, check that all elements with address taken are
7a442a1d
SB
2782 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2783 inside a PHI node. */
6de9cd9a
DN
2784
2785static tree
2fbe90f2 2786verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
6de9cd9a
DN
2787{
2788 tree t = *tp, x;
2789
2790 if (TYPE_P (t))
2791 *walk_subtrees = 0;
6531d1be 2792
e8ca4159 2793 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2fbe90f2 2794#define CHECK_OP(N, MSG) \
e8ca4159 2795 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2fbe90f2 2796 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
6de9cd9a
DN
2797
2798 switch (TREE_CODE (t))
2799 {
2800 case SSA_NAME:
2801 if (SSA_NAME_IN_FREE_LIST (t))
2802 {
2803 error ("SSA name in freelist but still referenced");
2804 return *tp;
2805 }
2806 break;
2807
0bca51f0
DN
2808 case ASSERT_EXPR:
2809 x = fold (ASSERT_EXPR_COND (t));
2810 if (x == boolean_false_node)
2811 {
2812 error ("ASSERT_EXPR with an always-false condition");
2813 return *tp;
2814 }
2815 break;
2816
6de9cd9a 2817 case MODIFY_EXPR:
726a989a 2818 x = TREE_OPERAND (t, 0);
6de9cd9a
DN
2819 if (TREE_CODE (x) == BIT_FIELD_REF
2820 && is_gimple_reg (TREE_OPERAND (x, 0)))
2821 {
2822 error ("GIMPLE register modified with BIT_FIELD_REF");
2fbe90f2 2823 return t;
6de9cd9a
DN
2824 }
2825 break;
2826
2827 case ADDR_EXPR:
81fc3052 2828 {
81fc3052
DB
2829 bool old_constant;
2830 bool old_side_effects;
81fc3052
DB
2831 bool new_constant;
2832 bool new_side_effects;
2833
51eed280
PB
2834 gcc_assert (is_gimple_address (t));
2835
81fc3052
DB
2836 old_constant = TREE_CONSTANT (t);
2837 old_side_effects = TREE_SIDE_EFFECTS (t);
2838
127203ac 2839 recompute_tree_invariant_for_addr_expr (t);
81fc3052
DB
2840 new_side_effects = TREE_SIDE_EFFECTS (t);
2841 new_constant = TREE_CONSTANT (t);
2842
81fc3052
DB
2843 if (old_constant != new_constant)
2844 {
2845 error ("constant not recomputed when ADDR_EXPR changed");
2846 return t;
2847 }
2848 if (old_side_effects != new_side_effects)
2849 {
2850 error ("side effects not recomputed when ADDR_EXPR changed");
2851 return t;
2852 }
2853
2854 /* Skip any references (they will be checked when we recurse down the
2855 tree) and ensure that any variable used as a prefix is marked
2856 addressable. */
2857 for (x = TREE_OPERAND (t, 0);
2858 handled_component_p (x);
2859 x = TREE_OPERAND (x, 0))
2860 ;
2861
2862 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
2863 return NULL;
2864 if (!TREE_ADDRESSABLE (x))
2865 {
2866 error ("address taken, but ADDRESSABLE bit not set");
2867 return x;
2868 }
bdb69bee 2869
81fc3052
DB
2870 break;
2871 }
6de9cd9a
DN
2872
2873 case COND_EXPR:
a6234684 2874 x = COND_EXPR_COND (t);
d40055ab 2875 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
6de9cd9a 2876 {
d40055ab 2877 error ("non-integral used in condition");
6de9cd9a
DN
2878 return x;
2879 }
9c691961
AP
2880 if (!is_gimple_condexpr (x))
2881 {
ab532386 2882 error ("invalid conditional operand");
9c691961
AP
2883 return x;
2884 }
6de9cd9a
DN
2885 break;
2886
a134e5f3
TB
2887 case NON_LVALUE_EXPR:
2888 gcc_unreachable ();
2889
1043771b 2890 CASE_CONVERT:
6de9cd9a 2891 case FIX_TRUNC_EXPR:
6de9cd9a
DN
2892 case FLOAT_EXPR:
2893 case NEGATE_EXPR:
2894 case ABS_EXPR:
2895 case BIT_NOT_EXPR:
6de9cd9a 2896 case TRUTH_NOT_EXPR:
ab532386 2897 CHECK_OP (0, "invalid operand to unary operator");
6de9cd9a
DN
2898 break;
2899
2900 case REALPART_EXPR:
2901 case IMAGPART_EXPR:
2fbe90f2
RK
2902 case COMPONENT_REF:
2903 case ARRAY_REF:
2904 case ARRAY_RANGE_REF:
2905 case BIT_FIELD_REF:
2906 case VIEW_CONVERT_EXPR:
2907 /* We have a nest of references. Verify that each of the operands
2908 that determine where to reference is either a constant or a variable,
2909 verify that the base is valid, and then show we've already checked
2910 the subtrees. */
afe84921 2911 while (handled_component_p (t))
2fbe90f2
RK
2912 {
2913 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
ab532386 2914 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2fbe90f2
RK
2915 else if (TREE_CODE (t) == ARRAY_REF
2916 || TREE_CODE (t) == ARRAY_RANGE_REF)
2917 {
ab532386 2918 CHECK_OP (1, "invalid array index");
2fbe90f2 2919 if (TREE_OPERAND (t, 2))
ab532386 2920 CHECK_OP (2, "invalid array lower bound");
2fbe90f2 2921 if (TREE_OPERAND (t, 3))
ab532386 2922 CHECK_OP (3, "invalid array stride");
2fbe90f2
RK
2923 }
2924 else if (TREE_CODE (t) == BIT_FIELD_REF)
2925 {
e55f42fb
RG
2926 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2927 || !host_integerp (TREE_OPERAND (t, 2), 1))
2928 {
2929 error ("invalid position or size operand to BIT_FIELD_REF");
2930 return t;
2931 }
fc0f49f3
RG
2932 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2933 && (TYPE_PRECISION (TREE_TYPE (t))
2934 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2935 {
2936 error ("integral result type precision does not match "
2937 "field size of BIT_FIELD_REF");
2938 return t;
2939 }
2940 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2941 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2942 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2943 {
2944 error ("mode precision of non-integral result does not "
2945 "match field size of BIT_FIELD_REF");
2946 return t;
2947 }
2fbe90f2
RK
2948 }
2949
2950 t = TREE_OPERAND (t, 0);
2951 }
2952
bb0c55f6 2953 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2fbe90f2 2954 {
ab532386 2955 error ("invalid reference prefix");
2fbe90f2
RK
2956 return t;
2957 }
2958 *walk_subtrees = 0;
6de9cd9a 2959 break;
5be014d5
AP
2960 case PLUS_EXPR:
2961 case MINUS_EXPR:
2962 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2963 POINTER_PLUS_EXPR. */
2964 if (POINTER_TYPE_P (TREE_TYPE (t)))
2965 {
2966 error ("invalid operand to plus/minus, type is a pointer");
2967 return t;
2968 }
2969 CHECK_OP (0, "invalid operand to binary operator");
2970 CHECK_OP (1, "invalid operand to binary operator");
2971 break;
6de9cd9a 2972
5be014d5
AP
2973 case POINTER_PLUS_EXPR:
2974 /* Check to make sure the first operand is a pointer or reference type. */
2975 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2976 {
2977 error ("invalid operand to pointer plus, first operand is not a pointer");
2978 return t;
2979 }
2980 /* Check to make sure the second operand is an integer with type of
2981 sizetype. */
36618b93
RG
2982 if (!useless_type_conversion_p (sizetype,
2983 TREE_TYPE (TREE_OPERAND (t, 1))))
5be014d5
AP
2984 {
2985 error ("invalid operand to pointer plus, second operand is not an "
2986 "integer with type of sizetype.");
2987 return t;
2988 }
2989 /* FALLTHROUGH */
6de9cd9a
DN
2990 case LT_EXPR:
2991 case LE_EXPR:
2992 case GT_EXPR:
2993 case GE_EXPR:
2994 case EQ_EXPR:
2995 case NE_EXPR:
2996 case UNORDERED_EXPR:
2997 case ORDERED_EXPR:
2998 case UNLT_EXPR:
2999 case UNLE_EXPR:
3000 case UNGT_EXPR:
3001 case UNGE_EXPR:
3002 case UNEQ_EXPR:
d1a7edaf 3003 case LTGT_EXPR:
6de9cd9a
DN
3004 case MULT_EXPR:
3005 case TRUNC_DIV_EXPR:
3006 case CEIL_DIV_EXPR:
3007 case FLOOR_DIV_EXPR:
3008 case ROUND_DIV_EXPR:
3009 case TRUNC_MOD_EXPR:
3010 case CEIL_MOD_EXPR:
3011 case FLOOR_MOD_EXPR:
3012 case ROUND_MOD_EXPR:
3013 case RDIV_EXPR:
3014 case EXACT_DIV_EXPR:
3015 case MIN_EXPR:
3016 case MAX_EXPR:
3017 case LSHIFT_EXPR:
3018 case RSHIFT_EXPR:
3019 case LROTATE_EXPR:
3020 case RROTATE_EXPR:
3021 case BIT_IOR_EXPR:
3022 case BIT_XOR_EXPR:
3023 case BIT_AND_EXPR:
ab532386
JM
3024 CHECK_OP (0, "invalid operand to binary operator");
3025 CHECK_OP (1, "invalid operand to binary operator");
6de9cd9a
DN
3026 break;
3027
84816907
JM
3028 case CONSTRUCTOR:
3029 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3030 *walk_subtrees = 0;
3031 break;
3032
6de9cd9a
DN
3033 default:
3034 break;
3035 }
3036 return NULL;
2fbe90f2
RK
3037
3038#undef CHECK_OP
6de9cd9a
DN
3039}
3040
7e98624c
RG
3041
3042/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3043 Returns true if there is an error, otherwise false. */
3044
3045static bool
726a989a 3046verify_types_in_gimple_min_lval (tree expr)
7e98624c
RG
3047{
3048 tree op;
3049
3050 if (is_gimple_id (expr))
3051 return false;
3052
9f509004
RG
3053 if (!INDIRECT_REF_P (expr)
3054 && TREE_CODE (expr) != TARGET_MEM_REF)
7e98624c
RG
3055 {
3056 error ("invalid expression for min lvalue");
3057 return true;
3058 }
3059
9f509004
RG
3060 /* TARGET_MEM_REFs are strange beasts. */
3061 if (TREE_CODE (expr) == TARGET_MEM_REF)
3062 return false;
3063
7e98624c
RG
3064 op = TREE_OPERAND (expr, 0);
3065 if (!is_gimple_val (op))
3066 {
3067 error ("invalid operand in indirect reference");
3068 debug_generic_stmt (op);
3069 return true;
3070 }
3071 if (!useless_type_conversion_p (TREE_TYPE (expr),
3072 TREE_TYPE (TREE_TYPE (op))))
3073 {
3074 error ("type mismatch in indirect reference");
3075 debug_generic_stmt (TREE_TYPE (expr));
3076 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3077 return true;
3078 }
3079
3080 return false;
3081}
3082
3083/* Verify if EXPR is a valid GIMPLE reference expression. Returns true
3084 if there is an error, otherwise false. */
3085
3086static bool
726a989a 3087verify_types_in_gimple_reference (tree expr)
7e98624c
RG
3088{
3089 while (handled_component_p (expr))
3090 {
3091 tree op = TREE_OPERAND (expr, 0);
3092
3093 if (TREE_CODE (expr) == ARRAY_REF
3094 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3095 {
3096 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3097 || (TREE_OPERAND (expr, 2)
3098 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3099 || (TREE_OPERAND (expr, 3)
3100 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3101 {
3102 error ("invalid operands to array reference");
3103 debug_generic_stmt (expr);
3104 return true;
3105 }
3106 }
3107
3108 /* Verify if the reference array element types are compatible. */
3109 if (TREE_CODE (expr) == ARRAY_REF
3110 && !useless_type_conversion_p (TREE_TYPE (expr),
3111 TREE_TYPE (TREE_TYPE (op))))
3112 {
3113 error ("type mismatch in array reference");
3114 debug_generic_stmt (TREE_TYPE (expr));
3115 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3116 return true;
3117 }
3118 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3119 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3120 TREE_TYPE (TREE_TYPE (op))))
3121 {
3122 error ("type mismatch in array range reference");
3123 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3124 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3125 return true;
3126 }
3127
3128 if ((TREE_CODE (expr) == REALPART_EXPR
3129 || TREE_CODE (expr) == IMAGPART_EXPR)
3130 && !useless_type_conversion_p (TREE_TYPE (expr),
3131 TREE_TYPE (TREE_TYPE (op))))
3132 {
3133 error ("type mismatch in real/imagpart reference");
3134 debug_generic_stmt (TREE_TYPE (expr));
3135 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3136 return true;
3137 }
3138
3139 if (TREE_CODE (expr) == COMPONENT_REF
3140 && !useless_type_conversion_p (TREE_TYPE (expr),
3141 TREE_TYPE (TREE_OPERAND (expr, 1))))
3142 {
3143 error ("type mismatch in component reference");
3144 debug_generic_stmt (TREE_TYPE (expr));
3145 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3146 return true;
3147 }
3148
3149 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3150 is nothing to verify. Gross mismatches at most invoke
3151 undefined behavior. */
9f509004
RG
3152 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3153 && !handled_component_p (op))
3154 return false;
7e98624c
RG
3155
3156 expr = op;
3157 }
3158
726a989a 3159 return verify_types_in_gimple_min_lval (expr);
7e98624c
RG
3160}
3161
20dcff2a
RG
3162/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3163 list of pointer-to types that is trivially convertible to DEST. */
3164
3165static bool
3166one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3167{
3168 tree src;
3169
3170 if (!TYPE_POINTER_TO (src_obj))
3171 return true;
3172
3173 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3174 if (useless_type_conversion_p (dest, src))
3175 return true;
3176
3177 return false;
3178}
3179
726a989a
RB
3180/* Return true if TYPE1 is a fixed-point type and if conversions to and
3181 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3182
3183static bool
3184valid_fixed_convert_types_p (tree type1, tree type2)
3185{
3186 return (FIXED_POINT_TYPE_P (type1)
3187 && (INTEGRAL_TYPE_P (type2)
3188 || SCALAR_FLOAT_TYPE_P (type2)
3189 || FIXED_POINT_TYPE_P (type2)));
3190}
3191
726a989a
RB
3192/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3193 is a problem, otherwise false. */
3194
3195static bool
b59d3976 3196verify_gimple_call (gimple stmt)
726a989a 3197{
b59d3976
RG
3198 tree fn = gimple_call_fn (stmt);
3199 tree fntype;
726a989a 3200
b59d3976
RG
3201 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3202 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3203 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3204 {
3205 error ("non-function in gimple call");
3206 return true;
3207 }
726a989a 3208
b59d3976
RG
3209 if (gimple_call_lhs (stmt)
3210 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3211 {
3212 error ("invalid LHS in gimple call");
3213 return true;
3214 }
726a989a 3215
b59d3976
RG
3216 fntype = TREE_TYPE (TREE_TYPE (fn));
3217 if (gimple_call_lhs (stmt)
3218 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3219 TREE_TYPE (fntype))
3220 /* ??? At least C++ misses conversions at assignments from
3221 void * call results.
3222 ??? Java is completely off. Especially with functions
3223 returning java.lang.Object.
3224 For now simply allow arbitrary pointer type conversions. */
3225 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3226 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3227 {
3228 error ("invalid conversion in gimple call");
3229 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3230 debug_generic_stmt (TREE_TYPE (fntype));
3231 return true;
3232 }
726a989a 3233
b59d3976
RG
3234 /* ??? The C frontend passes unpromoted arguments in case it
3235 didn't see a function declaration before the call. So for now
3236 leave the call arguments unverified. Once we gimplify
3237 unit-at-a-time we have a chance to fix this. */
726a989a 3238
b59d3976 3239 return false;
726a989a
RB
3240}
3241
b59d3976
RG
3242/* Verifies the gimple comparison with the result type TYPE and
3243 the operands OP0 and OP1. */
17d23165
RS
3244
3245static bool
b59d3976 3246verify_gimple_comparison (tree type, tree op0, tree op1)
17d23165 3247{
b59d3976
RG
3248 tree op0_type = TREE_TYPE (op0);
3249 tree op1_type = TREE_TYPE (op1);
726a989a 3250
b59d3976
RG
3251 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3252 {
3253 error ("invalid operands in gimple comparison");
3254 return true;
3255 }
17d23165 3256
b59d3976
RG
3257 /* For comparisons we do not have the operations type as the
3258 effective type the comparison is carried out in. Instead
3259 we require that either the first operand is trivially
3260 convertible into the second, or the other way around.
3261 The resulting type of a comparison may be any integral type.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if ((!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3269 || !INTEGRAL_TYPE_P (type))
3270 {
3271 error ("type mismatch in comparison expression");
3272 debug_generic_expr (type);
3273 debug_generic_expr (op0_type);
3274 debug_generic_expr (op1_type);
3275 return true;
3276 }
3277
3278 return false;
3279}
726a989a 3280
9f509004
RG
3281/* Verify a gimple assignment statement STMT with an unary rhs.
3282 Returns true if anything is wrong. */
7e98624c
RG
3283
3284static bool
9f509004 3285verify_gimple_assign_unary (gimple stmt)
7e98624c 3286{
726a989a
RB
3287 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3288 tree lhs = gimple_assign_lhs (stmt);
726a989a 3289 tree lhs_type = TREE_TYPE (lhs);
9f509004 3290 tree rhs1 = gimple_assign_rhs1 (stmt);
726a989a 3291 tree rhs1_type = TREE_TYPE (rhs1);
7e98624c 3292
9f509004
RG
3293 if (!is_gimple_reg (lhs)
3294 && !(optimize == 0
3295 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3296 {
3297 error ("non-register as LHS of unary operation");
3298 return true;
3299 }
3300
3301 if (!is_gimple_val (rhs1))
3302 {
3303 error ("invalid operand in unary operation");
3304 return true;
3305 }
3306
3307 /* First handle conversions. */
726a989a 3308 switch (rhs_code)
7e98624c 3309 {
1043771b 3310 CASE_CONVERT:
7e98624c 3311 {
7e98624c 3312 /* Allow conversions between integral types and pointers only if
9f509004
RG
3313 there is no sign or zero extension involved.
3314 For targets were the precision of sizetype doesn't match that
3315 of pointers we need to allow arbitrary conversions from and
3316 to sizetype. */
3317 if ((POINTER_TYPE_P (lhs_type)
3318 && INTEGRAL_TYPE_P (rhs1_type)
3319 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3320 || rhs1_type == sizetype))
3321 || (POINTER_TYPE_P (rhs1_type)
3322 && INTEGRAL_TYPE_P (lhs_type)
3323 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3324 || lhs_type == sizetype)))
7e98624c
RG
3325 return false;
3326
3327 /* Allow conversion from integer to offset type and vice versa. */
726a989a
RB
3328 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3329 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3330 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3331 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
7e98624c
RG
3332 return false;
3333
3334 /* Otherwise assert we are converting between types of the
3335 same kind. */
726a989a 3336 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
7e98624c
RG
3337 {
3338 error ("invalid types in nop conversion");
726a989a
RB
3339 debug_generic_expr (lhs_type);
3340 debug_generic_expr (rhs1_type);
7e98624c
RG
3341 return true;
3342 }
3343
3344 return false;
3345 }
3346
17d23165
RS
3347 case FIXED_CONVERT_EXPR:
3348 {
726a989a
RB
3349 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3350 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
17d23165
RS
3351 {
3352 error ("invalid types in fixed-point conversion");
726a989a
RB
3353 debug_generic_expr (lhs_type);
3354 debug_generic_expr (rhs1_type);
17d23165
RS
3355 return true;
3356 }
3357
3358 return false;
3359 }
3360
7e98624c
RG
3361 case FLOAT_EXPR:
3362 {
726a989a 3363 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
7e98624c
RG
3364 {
3365 error ("invalid types in conversion to floating point");
726a989a
RB
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
7e98624c
RG
3368 return true;
3369 }
726a989a 3370
7e98624c
RG
3371 return false;
3372 }
3373
3374 case FIX_TRUNC_EXPR:
3375 {
726a989a 3376 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
7e98624c
RG
3377 {
3378 error ("invalid types in conversion to integer");
726a989a
RB
3379 debug_generic_expr (lhs_type);
3380 debug_generic_expr (rhs1_type);
7e98624c
RG
3381 return true;
3382 }
726a989a 3383
7e98624c
RG
3384 return false;
3385 }
3386
9f509004 3387 case TRUTH_NOT_EXPR:
7e98624c 3388 {
9f509004
RG
3389 }
3390
3391 case NEGATE_EXPR:
3392 case ABS_EXPR:
3393 case BIT_NOT_EXPR:
3394 case PAREN_EXPR:
3395 case NON_LVALUE_EXPR:
3396 case CONJ_EXPR:
3397 case REDUC_MAX_EXPR:
3398 case REDUC_MIN_EXPR:
3399 case REDUC_PLUS_EXPR:
3400 case VEC_UNPACK_HI_EXPR:
3401 case VEC_UNPACK_LO_EXPR:
3402 case VEC_UNPACK_FLOAT_HI_EXPR:
3403 case VEC_UNPACK_FLOAT_LO_EXPR:
3404 break;
3405
3406 default:
3407 gcc_unreachable ();
3408 }
3409
3410 /* For the remaining codes assert there is no conversion involved. */
3411 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3412 {
3413 error ("non-trivial conversion in unary operation");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 return true;
3417 }
3418
3419 return false;
3420}
3421
3422/* Verify a gimple assignment statement STMT with a binary rhs.
3423 Returns true if anything is wrong. */
3424
3425static bool
3426verify_gimple_assign_binary (gimple stmt)
3427{
3428 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3429 tree lhs = gimple_assign_lhs (stmt);
3430 tree lhs_type = TREE_TYPE (lhs);
3431 tree rhs1 = gimple_assign_rhs1 (stmt);
3432 tree rhs1_type = TREE_TYPE (rhs1);
3433 tree rhs2 = gimple_assign_rhs2 (stmt);
3434 tree rhs2_type = TREE_TYPE (rhs2);
3435
3436 if (!is_gimple_reg (lhs)
3437 && !(optimize == 0
3438 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3439 {
3440 error ("non-register as LHS of binary operation");
3441 return true;
3442 }
726a989a 3443
9f509004
RG
3444 if (!is_gimple_val (rhs1)
3445 || !is_gimple_val (rhs2))
3446 {
3447 error ("invalid operands in binary operation");
3448 return true;
3449 }
3450
3451 /* First handle operations that involve different types. */
3452 switch (rhs_code)
3453 {
3454 case COMPLEX_EXPR:
3455 {
3456 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3457 || !(INTEGRAL_TYPE_P (rhs1_type)
726a989a 3458 || SCALAR_FLOAT_TYPE_P (rhs1_type))
9f509004 3459 || !(INTEGRAL_TYPE_P (rhs2_type)
726a989a 3460 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
7e98624c
RG
3461 {
3462 error ("type mismatch in complex expression");
726a989a
RB
3463 debug_generic_expr (lhs_type);
3464 debug_generic_expr (rhs1_type);
3465 debug_generic_expr (rhs2_type);
7e98624c
RG
3466 return true;
3467 }
726a989a 3468
7e98624c
RG
3469 return false;
3470 }
3471
7e98624c
RG
3472 case LSHIFT_EXPR:
3473 case RSHIFT_EXPR:
3474 case LROTATE_EXPR:
3475 case RROTATE_EXPR:
3476 {
9f509004
RG
3477 if (!INTEGRAL_TYPE_P (rhs1_type)
3478 || !INTEGRAL_TYPE_P (rhs2_type)
726a989a 3479 || !useless_type_conversion_p (lhs_type, rhs1_type))
7e98624c
RG
3480 {
3481 error ("type mismatch in shift expression");
726a989a
RB
3482 debug_generic_expr (lhs_type);
3483 debug_generic_expr (rhs1_type);
3484 debug_generic_expr (rhs2_type);
7e98624c
RG
3485 return true;
3486 }
726a989a 3487
7e98624c
RG
3488 return false;
3489 }
3490
9f509004
RG
3491 case VEC_LSHIFT_EXPR:
3492 case VEC_RSHIFT_EXPR:
7e98624c 3493 {
9f509004
RG
3494 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3495 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3496 || (!INTEGRAL_TYPE_P (rhs2_type)
3497 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3498 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3499 || !useless_type_conversion_p (lhs_type, rhs1_type))
7e98624c 3500 {
9f509004
RG
3501 error ("type mismatch in vector shift expression");
3502 debug_generic_expr (lhs_type);
3503 debug_generic_expr (rhs1_type);
3504 debug_generic_expr (rhs2_type);
7e98624c
RG
3505 return true;
3506 }
726a989a 3507
9f509004 3508 return false;
7e98624c
RG
3509 }
3510
3511 case POINTER_PLUS_EXPR:
3512 {
726a989a
RB
3513 if (!POINTER_TYPE_P (rhs1_type)
3514 || !useless_type_conversion_p (lhs_type, rhs1_type)
3515 || !useless_type_conversion_p (sizetype, rhs2_type))
7e98624c
RG
3516 {
3517 error ("type mismatch in pointer plus expression");
726a989a
RB
3518 debug_generic_stmt (lhs_type);
3519 debug_generic_stmt (rhs1_type);
3520 debug_generic_stmt (rhs2_type);
7e98624c
RG
3521 return true;
3522 }
7e98624c 3523
726a989a
RB
3524 return false;
3525 }
7e98624c 3526
7e98624c
RG
3527 case TRUTH_ANDIF_EXPR:
3528 case TRUTH_ORIF_EXPR:
2893f753
RAE
3529 gcc_unreachable ();
3530
7e98624c
RG
3531 case TRUTH_AND_EXPR:
3532 case TRUTH_OR_EXPR:
3533 case TRUTH_XOR_EXPR:
3534 {
7e98624c 3535 /* We allow any kind of integral typed argument and result. */
726a989a
RB
3536 if (!INTEGRAL_TYPE_P (rhs1_type)
3537 || !INTEGRAL_TYPE_P (rhs2_type)
3538 || !INTEGRAL_TYPE_P (lhs_type))
7e98624c
RG
3539 {
3540 error ("type mismatch in binary truth expression");
726a989a
RB
3541 debug_generic_expr (lhs_type);
3542 debug_generic_expr (rhs1_type);
3543 debug_generic_expr (rhs2_type);
7e98624c
RG
3544 return true;
3545 }
3546
3547 return false;
3548 }
3549
9f509004
RG
3550 case LT_EXPR:
3551 case LE_EXPR:
3552 case GT_EXPR:
3553 case GE_EXPR:
3554 case EQ_EXPR:
3555 case NE_EXPR:
3556 case UNORDERED_EXPR:
3557 case ORDERED_EXPR:
3558 case UNLT_EXPR:
3559 case UNLE_EXPR:
3560 case UNGT_EXPR:
3561 case UNGE_EXPR:
3562 case UNEQ_EXPR:
3563 case LTGT_EXPR:
3564 /* Comparisons are also binary, but the result type is not
3565 connected to the operand types. */
3566 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
7e98624c 3567
9f509004
RG
3568 case PLUS_EXPR:
3569 case MINUS_EXPR:
3570 {
3571 if (POINTER_TYPE_P (lhs_type)
3572 || POINTER_TYPE_P (rhs1_type)
3573 || POINTER_TYPE_P (rhs2_type))
7e98624c 3574 {
9f509004 3575 error ("invalid (pointer) operands to plus/minus");
7e98624c
RG
3576 return true;
3577 }
3578
9f509004
RG
3579 /* Continue with generic binary expression handling. */
3580 break;
7e98624c
RG
3581 }
3582
9f509004
RG
3583 case MULT_EXPR:
3584 case TRUNC_DIV_EXPR:
3585 case CEIL_DIV_EXPR:
3586 case FLOOR_DIV_EXPR:
3587 case ROUND_DIV_EXPR:
3588 case TRUNC_MOD_EXPR:
3589 case CEIL_MOD_EXPR:
3590 case FLOOR_MOD_EXPR:
3591 case ROUND_MOD_EXPR:
3592 case RDIV_EXPR:
3593 case EXACT_DIV_EXPR:
3594 case MIN_EXPR:
3595 case MAX_EXPR:
3596 case BIT_IOR_EXPR:
3597 case BIT_XOR_EXPR:
3598 case BIT_AND_EXPR:
3599 case WIDEN_SUM_EXPR:
3600 case WIDEN_MULT_EXPR:
3601 case VEC_WIDEN_MULT_HI_EXPR:
3602 case VEC_WIDEN_MULT_LO_EXPR:
3603 case VEC_PACK_TRUNC_EXPR:
3604 case VEC_PACK_SAT_EXPR:
3605 case VEC_PACK_FIX_TRUNC_EXPR:
3606 case VEC_EXTRACT_EVEN_EXPR:
3607 case VEC_EXTRACT_ODD_EXPR:
3608 case VEC_INTERLEAVE_HIGH_EXPR:
3609 case VEC_INTERLEAVE_LOW_EXPR:
3610 /* Continue with generic binary expression handling. */
3611 break;
7e98624c 3612
9f509004
RG
3613 default:
3614 gcc_unreachable ();
3615 }
b691d4b0 3616
9f509004
RG
3617 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3618 || !useless_type_conversion_p (lhs_type, rhs2_type))
3619 {
3620 error ("type mismatch in binary expression");
3621 debug_generic_stmt (lhs_type);
3622 debug_generic_stmt (rhs1_type);
3623 debug_generic_stmt (rhs2_type);
3624 return true;
3625 }
3626
3627 return false;
3628}
3629
3630/* Verify a gimple assignment statement STMT with a single rhs.
3631 Returns true if anything is wrong. */
3632
3633static bool
3634verify_gimple_assign_single (gimple stmt)
3635{
3636 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3637 tree lhs = gimple_assign_lhs (stmt);
3638 tree lhs_type = TREE_TYPE (lhs);
3639 tree rhs1 = gimple_assign_rhs1 (stmt);
3640 tree rhs1_type = TREE_TYPE (rhs1);
3641 bool res = false;
3642
3643 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3644 {
3645 error ("non-trivial conversion at assignment");
3646 debug_generic_expr (lhs_type);
3647 debug_generic_expr (rhs1_type);
3648 return true;
7e98624c
RG
3649 }
3650
9f509004
RG
3651 if (handled_component_p (lhs))
3652 res |= verify_types_in_gimple_reference (lhs);
3653
3654 /* Special codes we cannot handle via their class. */
3655 switch (rhs_code)
7e98624c 3656 {
9f509004
RG
3657 case ADDR_EXPR:
3658 {
3659 tree op = TREE_OPERAND (rhs1, 0);
3660 if (!is_gimple_addressable (op))
3661 {
3662 error ("invalid operand in unary expression");
3663 return true;
3664 }
f5e85907 3665
9f509004
RG
3666 if (!one_pointer_to_useless_type_conversion_p (lhs_type, TREE_TYPE (op))
3667 /* FIXME: a longstanding wart, &a == &a[0]. */
3668 && (TREE_CODE (TREE_TYPE (op)) != ARRAY_TYPE
3669 || !one_pointer_to_useless_type_conversion_p (lhs_type,
3670 TREE_TYPE (TREE_TYPE (op)))))
3671 {
3672 error ("type mismatch in address expression");
3673 debug_generic_stmt (lhs_type);
3674 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
3675 return true;
3676 }
3677
3678 return verify_types_in_gimple_reference (op);
3679 }
3680
3681 /* tcc_reference */
3682 case COMPONENT_REF:
3683 case BIT_FIELD_REF:
3684 case INDIRECT_REF:
3685 case ALIGN_INDIRECT_REF:
3686 case MISALIGNED_INDIRECT_REF:
3687 case ARRAY_REF:
3688 case ARRAY_RANGE_REF:
3689 case VIEW_CONVERT_EXPR:
3690 case REALPART_EXPR:
3691 case IMAGPART_EXPR:
3692 case TARGET_MEM_REF:
3693 if (!is_gimple_reg (lhs)
3694 && is_gimple_reg_type (TREE_TYPE (lhs)))
f5e85907 3695 {
9f509004
RG
3696 error ("invalid rhs for gimple memory store");
3697 debug_generic_stmt (lhs);
3698 debug_generic_stmt (rhs1);
726a989a
RB
3699 return true;
3700 }
9f509004 3701 return res || verify_types_in_gimple_reference (rhs1);
7e98624c 3702
9f509004
RG
3703 /* tcc_constant */
3704 case SSA_NAME:
3705 case INTEGER_CST:
3706 case REAL_CST:
3707 case FIXED_CST:
3708 case COMPLEX_CST:
3709 case VECTOR_CST:
3710 case STRING_CST:
3711 return res;
3712
3713 /* tcc_declaration */
3714 case CONST_DECL:
3715 return res;
3716 case VAR_DECL:
3717 case PARM_DECL:
3718 if (!is_gimple_reg (lhs)
3719 && !is_gimple_reg (rhs1)
3720 && is_gimple_reg_type (TREE_TYPE (lhs)))
2f9864e6 3721 {
9f509004
RG
3722 error ("invalid rhs for gimple memory store");
3723 debug_generic_stmt (lhs);
3724 debug_generic_stmt (rhs1);
2f9864e6
RG
3725 return true;
3726 }
9f509004 3727 return res;
7e98624c 3728
9f509004
RG
3729 case COND_EXPR:
3730 case CONSTRUCTOR:
3731 case OBJ_TYPE_REF:
3732 case ASSERT_EXPR:
3733 case WITH_SIZE_EXPR:
3734 case EXC_PTR_EXPR:
3735 case FILTER_EXPR:
3736 case POLYNOMIAL_CHREC:
3737 case DOT_PROD_EXPR:
3738 case VEC_COND_EXPR:
3739 case REALIGN_LOAD_EXPR:
3740 /* FIXME. */
3741 return res;
7e98624c 3742
726a989a 3743 default:;
7e98624c
RG
3744 }
3745
9f509004 3746 return res;
7e98624c
RG
3747}
3748
9f509004
RG
3749/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3750 is a problem, otherwise false. */
3751
3752static bool
3753verify_gimple_assign (gimple stmt)
3754{
3755 switch (gimple_assign_rhs_class (stmt))
3756 {
3757 case GIMPLE_SINGLE_RHS:
3758 return verify_gimple_assign_single (stmt);
3759
3760 case GIMPLE_UNARY_RHS:
3761 return verify_gimple_assign_unary (stmt);
3762
3763 case GIMPLE_BINARY_RHS:
3764 return verify_gimple_assign_binary (stmt);
3765
3766 default:
3767 gcc_unreachable ();
3768 }
3769}
726a989a
RB
3770
3771/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3772 is a problem, otherwise false. */
7e98624c
RG
3773
3774static bool
b59d3976 3775verify_gimple_return (gimple stmt)
7e98624c 3776{
726a989a 3777 tree op = gimple_return_retval (stmt);
b59d3976 3778 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
726a989a 3779
b59d3976
RG
3780 /* We cannot test for present return values as we do not fix up missing
3781 return values from the original source. */
726a989a
RB
3782 if (op == NULL)
3783 return false;
b59d3976
RG
3784
3785 if (!is_gimple_val (op)
3786 && TREE_CODE (op) != RESULT_DECL)
3787 {
3788 error ("invalid operand in return statement");
3789 debug_generic_stmt (op);
3790 return true;
3791 }
3792
3793 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3794 /* ??? With C++ we can have the situation that the result
3795 decl is a reference type while the return type is an aggregate. */
3796 && !(TREE_CODE (op) == RESULT_DECL
3797 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3798 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3799 {
3800 error ("invalid conversion in return statement");
3801 debug_generic_stmt (restype);
3802 debug_generic_stmt (TREE_TYPE (op));
3803 return true;
3804 }
3805
3806 return false;
726a989a 3807}
7e98624c 3808
7e98624c 3809
b59d3976
RG
3810/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3811 is a problem, otherwise false. */
3812
3813static bool
3814verify_gimple_goto (gimple stmt)
3815{
3816 tree dest = gimple_goto_dest (stmt);
3817
3818 /* ??? We have two canonical forms of direct goto destinations, a
3819 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3820 if (TREE_CODE (dest) != LABEL_DECL
3821 && (!is_gimple_val (dest)
3822 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3823 {
3824 error ("goto destination is neither a label nor a pointer");
3825 return true;
3826 }
3827
3828 return false;
3829}
3830
726a989a
RB
3831/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3832 is a problem, otherwise false. */
3833
3834static bool
b59d3976 3835verify_gimple_switch (gimple stmt)
726a989a
RB
3836{
3837 if (!is_gimple_val (gimple_switch_index (stmt)))
7e98624c 3838 {
726a989a 3839 error ("invalid operand to switch statement");
b59d3976 3840 debug_generic_stmt (gimple_switch_index (stmt));
7e98624c
RG
3841 return true;
3842 }
3843
726a989a
RB
3844 return false;
3845}
7e98624c 3846
7e98624c 3847
726a989a
RB
3848/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3849 and false otherwise. */
7e98624c 3850
726a989a 3851static bool
b59d3976 3852verify_gimple_phi (gimple stmt)
726a989a 3853{
b59d3976
RG
3854 tree type = TREE_TYPE (gimple_phi_result (stmt));
3855 unsigned i;
7e98624c 3856
b59d3976
RG
3857 if (!is_gimple_variable (gimple_phi_result (stmt)))
3858 {
3859 error ("Invalid PHI result");
3860 return true;
3861 }
7e98624c 3862
726a989a 3863 for (i = 0; i < gimple_phi_num_args (stmt); i++)
b59d3976
RG
3864 {
3865 tree arg = gimple_phi_arg_def (stmt, i);
9f509004
RG
3866 if ((is_gimple_reg (gimple_phi_result (stmt))
3867 && !is_gimple_val (arg))
3868 || (!is_gimple_reg (gimple_phi_result (stmt))
3869 && !is_gimple_addressable (arg)))
b59d3976
RG
3870 {
3871 error ("Invalid PHI argument");
3872 debug_generic_stmt (arg);
3873 return true;
3874 }
3875 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3876 {
3877 error ("Incompatible types in PHI argument");
3878 debug_generic_stmt (type);
3879 debug_generic_stmt (TREE_TYPE (arg));
3880 return true;
3881 }
3882 }
726a989a 3883
7e98624c
RG
3884 return false;
3885}
3886
726a989a 3887
7e98624c
RG
3888/* Verify the GIMPLE statement STMT. Returns true if there is an
3889 error, otherwise false. */
3890
3891static bool
726a989a 3892verify_types_in_gimple_stmt (gimple stmt)
7e98624c 3893{
726a989a 3894 if (is_gimple_omp (stmt))
7e98624c
RG
3895 {
3896 /* OpenMP directives are validated by the FE and never operated
726a989a 3897 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
7e98624c
RG
3898 non-gimple expressions when the main index variable has had
3899 its address taken. This does not affect the loop itself
726a989a 3900 because the header of an GIMPLE_OMP_FOR is merely used to determine
7e98624c
RG
3901 how to setup the parallel iteration. */
3902 return false;
3903 }
3904
726a989a 3905 switch (gimple_code (stmt))
7e98624c 3906 {
726a989a 3907 case GIMPLE_ASSIGN:
9f509004 3908 return verify_gimple_assign (stmt);
7e98624c 3909
726a989a
RB
3910 case GIMPLE_LABEL:
3911 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
7e98624c 3912
726a989a 3913 case GIMPLE_CALL:
b59d3976 3914 return verify_gimple_call (stmt);
7e98624c 3915
726a989a 3916 case GIMPLE_COND:
b59d3976
RG
3917 return verify_gimple_comparison (boolean_type_node,
3918 gimple_cond_lhs (stmt),
3919 gimple_cond_rhs (stmt));
7e98624c 3920
726a989a 3921 case GIMPLE_GOTO:
b59d3976 3922 return verify_gimple_goto (stmt);
7e98624c 3923
726a989a 3924 case GIMPLE_SWITCH:
b59d3976 3925 return verify_gimple_switch (stmt);
7e98624c 3926
726a989a 3927 case GIMPLE_RETURN:
b59d3976 3928 return verify_gimple_return (stmt);
7e98624c 3929
726a989a 3930 case GIMPLE_ASM:
7e98624c
RG
3931 return false;
3932
726a989a 3933 case GIMPLE_CHANGE_DYNAMIC_TYPE:
9f509004 3934 return (!is_gimple_val (gimple_cdt_location (stmt))
b59d3976 3935 || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt))));
726a989a
RB
3936
3937 case GIMPLE_PHI:
b59d3976
RG
3938 return verify_gimple_phi (stmt);
3939
3940 /* Tuples that do not have tree operands. */
3941 case GIMPLE_NOP:
3942 case GIMPLE_RESX:
3943 case GIMPLE_PREDICT:
3944 return false;
726a989a 3945
7e98624c
RG
3946 default:
3947 gcc_unreachable ();
3948 }
3949}
3950
726a989a 3951/* Verify the GIMPLE statements inside the sequence STMTS. */
7e98624c 3952
7dc83ebc 3953static bool
726a989a 3954verify_types_in_gimple_seq_2 (gimple_seq stmts)
7e98624c 3955{
726a989a 3956 gimple_stmt_iterator ittr;
7dc83ebc 3957 bool err = false;
7e98624c 3958
726a989a 3959 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
7e98624c 3960 {
726a989a 3961 gimple stmt = gsi_stmt (ittr);
7e98624c 3962
726a989a
RB
3963 switch (gimple_code (stmt))
3964 {
b59d3976
RG
3965 case GIMPLE_BIND:
3966 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
3967 break;
3968
3969 case GIMPLE_TRY:
3970 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
3971 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
3972 break;
3973
3974 case GIMPLE_EH_FILTER:
3975 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
3976 break;
3977
3978 case GIMPLE_CATCH:
3979 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
3980 break;
7e98624c
RG
3981
3982 default:
7dc83ebc 3983 {
726a989a 3984 bool err2 = verify_types_in_gimple_stmt (stmt);
7dc83ebc 3985 if (err2)
726a989a 3986 debug_gimple_stmt (stmt);
7dc83ebc
RG
3987 err |= err2;
3988 }
7e98624c
RG
3989 }
3990 }
7dc83ebc
RG
3991
3992 return err;
3993}
3994
3995
3996/* Verify the GIMPLE statements inside the statement list STMTS. */
3997
3998void
726a989a 3999verify_types_in_gimple_seq (gimple_seq stmts)
7dc83ebc 4000{
726a989a 4001 if (verify_types_in_gimple_seq_2 (stmts))
7dc83ebc 4002 internal_error ("verify_gimple failed");
7e98624c
RG
4003}
4004
6de9cd9a
DN
4005
4006/* Verify STMT, return true if STMT is not in GIMPLE form.
4007 TODO: Implement type checking. */
4008
4009static bool
726a989a 4010verify_stmt (gimple_stmt_iterator *gsi)
6de9cd9a
DN
4011{
4012 tree addr;
726a989a
RB
4013 struct walk_stmt_info wi;
4014 bool last_in_block = gsi_one_before_end_p (*gsi);
4015 gimple stmt = gsi_stmt (*gsi);
6de9cd9a 4016
726a989a 4017 if (is_gimple_omp (stmt))
50674e96
DN
4018 {
4019 /* OpenMP directives are validated by the FE and never operated
726a989a 4020 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
50674e96
DN
4021 non-gimple expressions when the main index variable has had
4022 its address taken. This does not affect the loop itself
726a989a 4023 because the header of an GIMPLE_OMP_FOR is merely used to determine
50674e96
DN
4024 how to setup the parallel iteration. */
4025 return false;
4026 }
4027
726a989a
RB
4028 /* FIXME. The C frontend passes unpromoted arguments in case it
4029 didn't see a function declaration before the call. */
4030 if (is_gimple_call (stmt))
6de9cd9a 4031 {
7c9577be 4032 tree decl;
726a989a 4033
7c9577be
RG
4034 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4035 {
4036 error ("invalid function in call statement");
4037 return true;
4038 }
4039
4040 decl = gimple_call_fndecl (stmt);
4041 if (decl
4042 && TREE_CODE (decl) == FUNCTION_DECL
726a989a
RB
4043 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4044 && (!DECL_PURE_P (decl))
4045 && (!TREE_READONLY (decl)))
4046 {
4047 error ("invalid pure const state for function");
4048 return true;
4049 }
6de9cd9a
DN
4050 }
4051
726a989a
RB
4052 memset (&wi, 0, sizeof (wi));
4053 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
6de9cd9a
DN
4054 if (addr)
4055 {
726a989a 4056 debug_generic_expr (addr);
1f5b3869 4057 inform (input_location, "in statement");
726a989a 4058 debug_gimple_stmt (stmt);
6de9cd9a
DN
4059 return true;
4060 }
4061
1eaba2f2
RH
4062 /* If the statement is marked as part of an EH region, then it is
4063 expected that the statement could throw. Verify that when we
4064 have optimizations that simplify statements such that we prove
4065 that they cannot throw, that we update other data structures
4066 to match. */
4067 if (lookup_stmt_eh_region (stmt) >= 0)
4068 {
726a989a 4069 if (!stmt_could_throw_p (stmt))
1eaba2f2 4070 {
ab532386 4071 error ("statement marked for throw, but doesn%'t");
1eaba2f2
RH
4072 goto fail;
4073 }
726a989a 4074 if (!last_in_block && stmt_can_throw_internal (stmt))
1eaba2f2 4075 {
ab532386 4076 error ("statement marked for throw in middle of block");
1eaba2f2
RH
4077 goto fail;
4078 }
4079 }
4080
6de9cd9a 4081 return false;
1eaba2f2
RH
4082
4083 fail:
726a989a 4084 debug_gimple_stmt (stmt);
1eaba2f2 4085 return true;
6de9cd9a
DN
4086}
4087
4088
4089/* Return true when the T can be shared. */
4090
4091static bool
4092tree_node_can_be_shared (tree t)
4093{
6615c446 4094 if (IS_TYPE_OR_DECL_P (t)
6de9cd9a 4095 || is_gimple_min_invariant (t)
5e23162d 4096 || TREE_CODE (t) == SSA_NAME
953ff289
DN
4097 || t == error_mark_node
4098 || TREE_CODE (t) == IDENTIFIER_NODE)
6de9cd9a
DN
4099 return true;
4100
92b6dff3
JL
4101 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4102 return true;
4103
44de5aeb 4104 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
953ff289
DN
4105 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4106 || TREE_CODE (t) == COMPONENT_REF
4107 || TREE_CODE (t) == REALPART_EXPR
4108 || TREE_CODE (t) == IMAGPART_EXPR)
6de9cd9a
DN
4109 t = TREE_OPERAND (t, 0);
4110
4111 if (DECL_P (t))
4112 return true;
4113
4114 return false;
4115}
4116
4117
726a989a 4118/* Called via walk_gimple_stmt. Verify tree sharing. */
6de9cd9a
DN
4119
4120static tree
726a989a 4121verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
6de9cd9a 4122{
726a989a
RB
4123 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4124 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
6de9cd9a
DN
4125
4126 if (tree_node_can_be_shared (*tp))
4127 {
4128 *walk_subtrees = false;
4129 return NULL;
4130 }
4131
4437b50d
JH
4132 if (pointer_set_insert (visited, *tp))
4133 return *tp;
6de9cd9a
DN
4134
4135 return NULL;
4136}
4137
4138
4437b50d
JH
4139static bool eh_error_found;
4140static int
4141verify_eh_throw_stmt_node (void **slot, void *data)
4142{
4143 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4144 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4145
4146 if (!pointer_set_contains (visited, node->stmt))
4147 {
4148 error ("Dead STMT in EH table");
726a989a 4149 debug_gimple_stmt (node->stmt);
4437b50d
JH
4150 eh_error_found = true;
4151 }
4152 return 0;
4153}
4154
726a989a
RB
4155
4156/* Verify the GIMPLE statements in every basic block. */
6de9cd9a
DN
4157
4158void
4159verify_stmts (void)
4160{
4161 basic_block bb;
726a989a 4162 gimple_stmt_iterator gsi;
6de9cd9a 4163 bool err = false;
4437b50d 4164 struct pointer_set_t *visited, *visited_stmts;
6de9cd9a 4165 tree addr;
726a989a 4166 struct walk_stmt_info wi;
6de9cd9a
DN
4167
4168 timevar_push (TV_TREE_STMT_VERIFY);
4437b50d
JH
4169 visited = pointer_set_create ();
4170 visited_stmts = pointer_set_create ();
6de9cd9a 4171
726a989a
RB
4172 memset (&wi, 0, sizeof (wi));
4173 wi.info = (void *) visited;
4174
6de9cd9a
DN
4175 FOR_EACH_BB (bb)
4176 {
726a989a
RB
4177 gimple phi;
4178 size_t i;
6de9cd9a 4179
726a989a 4180 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4181 {
726a989a 4182 phi = gsi_stmt (gsi);
4437b50d 4183 pointer_set_insert (visited_stmts, phi);
726a989a 4184 if (gimple_bb (phi) != bb)
8de1fc1b 4185 {
726a989a 4186 error ("gimple_bb (phi) is set to a wrong basic block");
8de1fc1b
KH
4187 err |= true;
4188 }
4189
726a989a 4190 for (i = 0; i < gimple_phi_num_args (phi); i++)
6de9cd9a 4191 {
726a989a 4192 tree t = gimple_phi_arg_def (phi, i);
6de9cd9a
DN
4193 tree addr;
4194
e9705dc5
AO
4195 if (!t)
4196 {
4197 error ("missing PHI def");
726a989a 4198 debug_gimple_stmt (phi);
e9705dc5
AO
4199 err |= true;
4200 continue;
4201 }
6de9cd9a
DN
4202 /* Addressable variables do have SSA_NAMEs but they
4203 are not considered gimple values. */
e9705dc5
AO
4204 else if (TREE_CODE (t) != SSA_NAME
4205 && TREE_CODE (t) != FUNCTION_DECL
220f1c29 4206 && !is_gimple_min_invariant (t))
6de9cd9a 4207 {
726a989a
RB
4208 error ("PHI argument is not a GIMPLE value");
4209 debug_gimple_stmt (phi);
4210 debug_generic_expr (t);
6de9cd9a
DN
4211 err |= true;
4212 }
4213
4437b50d 4214 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
6de9cd9a
DN
4215 if (addr)
4216 {
ab532386 4217 error ("incorrect sharing of tree nodes");
726a989a
RB
4218 debug_gimple_stmt (phi);
4219 debug_generic_expr (addr);
6de9cd9a
DN
4220 err |= true;
4221 }
4222 }
4223 }
4224
726a989a 4225 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
6de9cd9a 4226 {
726a989a
RB
4227 gimple stmt = gsi_stmt (gsi);
4228
4229 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4230 || gimple_code (stmt) == GIMPLE_BIND)
4231 {
4232 error ("invalid GIMPLE statement");
4233 debug_gimple_stmt (stmt);
4234 err |= true;
4235 }
8de1fc1b 4236
4437b50d 4237 pointer_set_insert (visited_stmts, stmt);
07beea0d 4238
726a989a 4239 if (gimple_bb (stmt) != bb)
8de1fc1b 4240 {
726a989a 4241 error ("gimple_bb (stmt) is set to a wrong basic block");
8de1fc1b
KH
4242 err |= true;
4243 }
4244
726a989a
RB
4245 if (gimple_code (stmt) == GIMPLE_LABEL)
4246 {
4247 tree decl = gimple_label_label (stmt);
4248 int uid = LABEL_DECL_UID (decl);
4249
4250 if (uid == -1
4251 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4252 {
4253 error ("incorrect entry in label_to_block_map.\n");
4254 err |= true;
4255 }
4256 }
4257
4258 err |= verify_stmt (&gsi);
4259 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
6de9cd9a
DN
4260 if (addr)
4261 {
ab532386 4262 error ("incorrect sharing of tree nodes");
726a989a
RB
4263 debug_gimple_stmt (stmt);
4264 debug_generic_expr (addr);
6de9cd9a
DN
4265 err |= true;
4266 }
726a989a 4267 gsi_next (&gsi);
6de9cd9a
DN
4268 }
4269 }
726a989a 4270
4437b50d
JH
4271 eh_error_found = false;
4272 if (get_eh_throw_stmt_table (cfun))
4273 htab_traverse (get_eh_throw_stmt_table (cfun),
4274 verify_eh_throw_stmt_node,
4275 visited_stmts);
6de9cd9a 4276
4437b50d 4277 if (err | eh_error_found)
ab532386 4278 internal_error ("verify_stmts failed");
6de9cd9a 4279
4437b50d
JH
4280 pointer_set_destroy (visited);
4281 pointer_set_destroy (visited_stmts);
6946b3f7 4282 verify_histograms ();
6de9cd9a
DN
4283 timevar_pop (TV_TREE_STMT_VERIFY);
4284}
4285
4286
4287/* Verifies that the flow information is OK. */
4288
4289static int
726a989a 4290gimple_verify_flow_info (void)
6de9cd9a
DN
4291{
4292 int err = 0;
4293 basic_block bb;
726a989a
RB
4294 gimple_stmt_iterator gsi;
4295 gimple stmt;
6de9cd9a 4296 edge e;
628f6a4e 4297 edge_iterator ei;
6de9cd9a 4298
726a989a 4299 if (ENTRY_BLOCK_PTR->il.gimple)
6de9cd9a 4300 {
7506e1cb 4301 error ("ENTRY_BLOCK has IL associated with it");
6de9cd9a
DN
4302 err = 1;
4303 }
4304
726a989a 4305 if (EXIT_BLOCK_PTR->il.gimple)
6de9cd9a 4306 {
7506e1cb 4307 error ("EXIT_BLOCK has IL associated with it");
6de9cd9a
DN
4308 err = 1;
4309 }
4310
628f6a4e 4311 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6de9cd9a
DN
4312 if (e->flags & EDGE_FALLTHRU)
4313 {
ab532386 4314 error ("fallthru to exit from bb %d", e->src->index);
6de9cd9a
DN
4315 err = 1;
4316 }
4317
4318 FOR_EACH_BB (bb)
4319 {
4320 bool found_ctrl_stmt = false;
4321
726a989a 4322 stmt = NULL;
548414c6 4323
6de9cd9a 4324 /* Skip labels on the start of basic block. */
726a989a 4325 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4326 {
726a989a
RB
4327 tree label;
4328 gimple prev_stmt = stmt;
548414c6 4329
726a989a 4330 stmt = gsi_stmt (gsi);
548414c6 4331
726a989a 4332 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a
DN
4333 break;
4334
726a989a
RB
4335 label = gimple_label_label (stmt);
4336 if (prev_stmt && DECL_NONLOCAL (label))
548414c6 4337 {
953ff289 4338 error ("nonlocal label ");
726a989a 4339 print_generic_expr (stderr, label, 0);
953ff289
DN
4340 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4341 bb->index);
548414c6
KH
4342 err = 1;
4343 }
4344
726a989a 4345 if (label_to_block (label) != bb)
6de9cd9a 4346 {
953ff289 4347 error ("label ");
726a989a 4348 print_generic_expr (stderr, label, 0);
953ff289
DN
4349 fprintf (stderr, " to block does not match in bb %d",
4350 bb->index);
6de9cd9a
DN
4351 err = 1;
4352 }
4353
726a989a 4354 if (decl_function_context (label) != current_function_decl)
6de9cd9a 4355 {
953ff289 4356 error ("label ");
726a989a 4357 print_generic_expr (stderr, label, 0);
953ff289
DN
4358 fprintf (stderr, " has incorrect context in bb %d",
4359 bb->index);
6de9cd9a
DN
4360 err = 1;
4361 }
4362 }
4363
4364 /* Verify that body of basic block BB is free of control flow. */
726a989a 4365 for (; !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4366 {
726a989a 4367 gimple stmt = gsi_stmt (gsi);
6de9cd9a
DN
4368
4369 if (found_ctrl_stmt)
4370 {
ab532386 4371 error ("control flow in the middle of basic block %d",
6de9cd9a
DN
4372 bb->index);
4373 err = 1;
4374 }
4375
4376 if (stmt_ends_bb_p (stmt))
4377 found_ctrl_stmt = true;
4378
726a989a 4379 if (gimple_code (stmt) == GIMPLE_LABEL)
6de9cd9a 4380 {
953ff289 4381 error ("label ");
726a989a 4382 print_generic_expr (stderr, gimple_label_label (stmt), 0);
953ff289 4383 fprintf (stderr, " in the middle of basic block %d", bb->index);
6de9cd9a
DN
4384 err = 1;
4385 }
4386 }
953ff289 4387
726a989a
RB
4388 gsi = gsi_last_bb (bb);
4389 if (gsi_end_p (gsi))
6de9cd9a
DN
4390 continue;
4391
726a989a 4392 stmt = gsi_stmt (gsi);
6de9cd9a 4393
cc7220fd
JH
4394 err |= verify_eh_edges (stmt);
4395
6de9cd9a
DN
4396 if (is_ctrl_stmt (stmt))
4397 {
628f6a4e 4398 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
4399 if (e->flags & EDGE_FALLTHRU)
4400 {
ab532386 4401 error ("fallthru edge after a control statement in bb %d",
6de9cd9a
DN
4402 bb->index);
4403 err = 1;
4404 }
4405 }
4406
726a989a 4407 if (gimple_code (stmt) != GIMPLE_COND)
36b24193
ZD
4408 {
4409 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4410 after anything else but if statement. */
4411 FOR_EACH_EDGE (e, ei, bb->succs)
4412 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4413 {
726a989a 4414 error ("true/false edge after a non-GIMPLE_COND in bb %d",
36b24193
ZD
4415 bb->index);
4416 err = 1;
4417 }
4418 }
4419
726a989a 4420 switch (gimple_code (stmt))
6de9cd9a 4421 {
726a989a 4422 case GIMPLE_COND:
6de9cd9a
DN
4423 {
4424 edge true_edge;
4425 edge false_edge;
a9b77cd1 4426
6de9cd9a
DN
4427 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4428
726a989a
RB
4429 if (!true_edge
4430 || !false_edge
6de9cd9a
DN
4431 || !(true_edge->flags & EDGE_TRUE_VALUE)
4432 || !(false_edge->flags & EDGE_FALSE_VALUE)
4433 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4434 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
628f6a4e 4435 || EDGE_COUNT (bb->succs) >= 3)
6de9cd9a 4436 {
ab532386 4437 error ("wrong outgoing edge flags at end of bb %d",
6de9cd9a
DN
4438 bb->index);
4439 err = 1;
4440 }
6de9cd9a
DN
4441 }
4442 break;
4443
726a989a 4444 case GIMPLE_GOTO:
6de9cd9a
DN
4445 if (simple_goto_p (stmt))
4446 {
ab532386 4447 error ("explicit goto at end of bb %d", bb->index);
6531d1be 4448 err = 1;
6de9cd9a
DN
4449 }
4450 else
4451 {
6531d1be 4452 /* FIXME. We should double check that the labels in the
6de9cd9a 4453 destination blocks have their address taken. */
628f6a4e 4454 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
4455 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4456 | EDGE_FALSE_VALUE))
4457 || !(e->flags & EDGE_ABNORMAL))
4458 {
ab532386 4459 error ("wrong outgoing edge flags at end of bb %d",
6de9cd9a
DN
4460 bb->index);
4461 err = 1;
4462 }
4463 }
4464 break;
4465
726a989a 4466 case GIMPLE_RETURN:
c5cbcccf
ZD
4467 if (!single_succ_p (bb)
4468 || (single_succ_edge (bb)->flags
4469 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4470 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
6de9cd9a 4471 {
ab532386 4472 error ("wrong outgoing edge flags at end of bb %d", bb->index);
6de9cd9a
DN
4473 err = 1;
4474 }
c5cbcccf 4475 if (single_succ (bb) != EXIT_BLOCK_PTR)
6de9cd9a 4476 {
ab532386 4477 error ("return edge does not point to exit in bb %d",
6de9cd9a
DN
4478 bb->index);
4479 err = 1;
4480 }
4481 break;
4482
726a989a 4483 case GIMPLE_SWITCH:
6de9cd9a 4484 {
7853504d 4485 tree prev;
6de9cd9a
DN
4486 edge e;
4487 size_t i, n;
6de9cd9a 4488
726a989a 4489 n = gimple_switch_num_labels (stmt);
6de9cd9a
DN
4490
4491 /* Mark all the destination basic blocks. */
4492 for (i = 0; i < n; ++i)
4493 {
726a989a 4494 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
6de9cd9a 4495 basic_block label_bb = label_to_block (lab);
1e128c5f 4496 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
6de9cd9a
DN
4497 label_bb->aux = (void *)1;
4498 }
4499
7853504d 4500 /* Verify that the case labels are sorted. */
726a989a 4501 prev = gimple_switch_label (stmt, 0);
b7814a18 4502 for (i = 1; i < n; ++i)
7853504d 4503 {
726a989a
RB
4504 tree c = gimple_switch_label (stmt, i);
4505 if (!CASE_LOW (c))
7853504d 4506 {
726a989a
RB
4507 error ("found default case not at the start of "
4508 "case vector");
4509 err = 1;
7853504d
SB
4510 continue;
4511 }
726a989a
RB
4512 if (CASE_LOW (prev)
4513 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
7853504d 4514 {
953ff289 4515 error ("case labels not sorted: ");
7853504d
SB
4516 print_generic_expr (stderr, prev, 0);
4517 fprintf (stderr," is greater than ");
4518 print_generic_expr (stderr, c, 0);
4519 fprintf (stderr," but comes before it.\n");
4520 err = 1;
4521 }
4522 prev = c;
4523 }
b7814a18
RG
4524 /* VRP will remove the default case if it can prove it will
4525 never be executed. So do not verify there always exists
4526 a default case here. */
7853504d 4527
628f6a4e 4528 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
4529 {
4530 if (!e->dest->aux)
4531 {
ab532386 4532 error ("extra outgoing edge %d->%d",
6de9cd9a
DN
4533 bb->index, e->dest->index);
4534 err = 1;
4535 }
726a989a 4536
6de9cd9a
DN
4537 e->dest->aux = (void *)2;
4538 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4539 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4540 {
ab532386 4541 error ("wrong outgoing edge flags at end of bb %d",
6de9cd9a
DN
4542 bb->index);
4543 err = 1;
4544 }
4545 }
4546
4547 /* Check that we have all of them. */
4548 for (i = 0; i < n; ++i)
4549 {
726a989a 4550 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
6de9cd9a
DN
4551 basic_block label_bb = label_to_block (lab);
4552
4553 if (label_bb->aux != (void *)2)
4554 {
726a989a 4555 error ("missing edge %i->%i", bb->index, label_bb->index);
6de9cd9a
DN
4556 err = 1;
4557 }
4558 }
4559
628f6a4e 4560 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
4561 e->dest->aux = (void *)0;
4562 }
4563
4564 default: ;
4565 }
4566 }
4567
2b28c07a 4568 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
6de9cd9a
DN
4569 verify_dominators (CDI_DOMINATORS);
4570
4571 return err;
4572}
4573
4574
f0b698c1 4575/* Updates phi nodes after creating a forwarder block joined
6de9cd9a
DN
4576 by edge FALLTHRU. */
4577
4578static void
726a989a 4579gimple_make_forwarder_block (edge fallthru)
6de9cd9a
DN
4580{
4581 edge e;
628f6a4e 4582 edge_iterator ei;
6de9cd9a 4583 basic_block dummy, bb;
726a989a
RB
4584 tree var;
4585 gimple_stmt_iterator gsi;
6de9cd9a
DN
4586
4587 dummy = fallthru->src;
4588 bb = fallthru->dest;
4589
c5cbcccf 4590 if (single_pred_p (bb))
6de9cd9a
DN
4591 return;
4592
cfaab3a9 4593 /* If we redirected a branch we must create new PHI nodes at the
6de9cd9a 4594 start of BB. */
726a989a 4595 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4596 {
726a989a
RB
4597 gimple phi, new_phi;
4598
4599 phi = gsi_stmt (gsi);
4600 var = gimple_phi_result (phi);
6de9cd9a
DN
4601 new_phi = create_phi_node (var, bb);
4602 SSA_NAME_DEF_STMT (var) = new_phi;
726a989a
RB
4603 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4604 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru);
6de9cd9a
DN
4605 }
4606
6de9cd9a 4607 /* Add the arguments we have stored on edges. */
628f6a4e 4608 FOR_EACH_EDGE (e, ei, bb->preds)
6de9cd9a
DN
4609 {
4610 if (e == fallthru)
4611 continue;
4612
71882046 4613 flush_pending_stmts (e);
6de9cd9a
DN
4614 }
4615}
4616
4617
6de9cd9a
DN
4618/* Return a non-special label in the head of basic block BLOCK.
4619 Create one if it doesn't exist. */
4620
d7621d3c 4621tree
726a989a 4622gimple_block_label (basic_block bb)
6de9cd9a 4623{
726a989a 4624 gimple_stmt_iterator i, s = gsi_start_bb (bb);
6de9cd9a 4625 bool first = true;
726a989a
RB
4626 tree label;
4627 gimple stmt;
6de9cd9a 4628
726a989a 4629 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
6de9cd9a 4630 {
726a989a
RB
4631 stmt = gsi_stmt (i);
4632 if (gimple_code (stmt) != GIMPLE_LABEL)
6de9cd9a 4633 break;
726a989a 4634 label = gimple_label_label (stmt);
6de9cd9a
DN
4635 if (!DECL_NONLOCAL (label))
4636 {
4637 if (!first)
726a989a 4638 gsi_move_before (&i, &s);
6de9cd9a
DN
4639 return label;
4640 }
4641 }
4642
4643 label = create_artificial_label ();
726a989a
RB
4644 stmt = gimple_build_label (label);
4645 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
6de9cd9a
DN
4646 return label;
4647}
4648
4649
4650/* Attempt to perform edge redirection by replacing a possibly complex
4651 jump instruction by a goto or by removing the jump completely.
4652 This can apply only if all edges now point to the same block. The
4653 parameters and return values are equivalent to
4654 redirect_edge_and_branch. */
4655
4656static edge
726a989a 4657gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
6de9cd9a
DN
4658{
4659 basic_block src = e->src;
726a989a
RB
4660 gimple_stmt_iterator i;
4661 gimple stmt;
6de9cd9a 4662
07b43a87
KH
4663 /* We can replace or remove a complex jump only when we have exactly
4664 two edges. */
4665 if (EDGE_COUNT (src->succs) != 2
4666 /* Verify that all targets will be TARGET. Specifically, the
4667 edge that is not E must also go to TARGET. */
4668 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
6de9cd9a
DN
4669 return NULL;
4670
726a989a
RB
4671 i = gsi_last_bb (src);
4672 if (gsi_end_p (i))
6de9cd9a 4673 return NULL;
6de9cd9a 4674
726a989a
RB
4675 stmt = gsi_stmt (i);
4676
4677 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
6de9cd9a 4678 {
726a989a 4679 gsi_remove (&i, true);
6de9cd9a
DN
4680 e = ssa_redirect_edge (e, target);
4681 e->flags = EDGE_FALLTHRU;
4682 return e;
4683 }
4684
4685 return NULL;
4686}
4687
4688
4689/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4690 edge representing the redirected branch. */
4691
4692static edge
726a989a 4693gimple_redirect_edge_and_branch (edge e, basic_block dest)
6de9cd9a
DN
4694{
4695 basic_block bb = e->src;
726a989a 4696 gimple_stmt_iterator gsi;
6de9cd9a 4697 edge ret;
726a989a 4698 gimple stmt;
6de9cd9a 4699
4f6c2131 4700 if (e->flags & EDGE_ABNORMAL)
6de9cd9a
DN
4701 return NULL;
4702
6531d1be 4703 if (e->src != ENTRY_BLOCK_PTR
726a989a 4704 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
6de9cd9a
DN
4705 return ret;
4706
4707 if (e->dest == dest)
4708 return NULL;
4709
726a989a
RB
4710 gsi = gsi_last_bb (bb);
4711 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6de9cd9a 4712
726a989a 4713 switch (stmt ? gimple_code (stmt) : ERROR_MARK)
6de9cd9a 4714 {
726a989a 4715 case GIMPLE_COND:
a9b77cd1 4716 /* For COND_EXPR, we only need to redirect the edge. */
6de9cd9a
DN
4717 break;
4718
726a989a 4719 case GIMPLE_GOTO:
6de9cd9a
DN
4720 /* No non-abnormal edges should lead from a non-simple goto, and
4721 simple ones should be represented implicitly. */
1e128c5f 4722 gcc_unreachable ();
6de9cd9a 4723
726a989a 4724 case GIMPLE_SWITCH:
6de9cd9a 4725 {
726a989a 4726 tree label = gimple_block_label (dest);
d6be0d7f 4727 tree cases = get_cases_for_edge (e, stmt);
6de9cd9a 4728
d6be0d7f
JL
4729 /* If we have a list of cases associated with E, then use it
4730 as it's a lot faster than walking the entire case vector. */
4731 if (cases)
6de9cd9a 4732 {
4edbbd3f 4733 edge e2 = find_edge (e->src, dest);
d6be0d7f
JL
4734 tree last, first;
4735
4736 first = cases;
4737 while (cases)
4738 {
4739 last = cases;
4740 CASE_LABEL (cases) = label;
4741 cases = TREE_CHAIN (cases);
4742 }
4743
4744 /* If there was already an edge in the CFG, then we need
4745 to move all the cases associated with E to E2. */
4746 if (e2)
4747 {
4748 tree cases2 = get_cases_for_edge (e2, stmt);
4749
4750 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4751 TREE_CHAIN (cases2) = first;
4752 }
6de9cd9a 4753 }
92b6dff3
JL
4754 else
4755 {
726a989a 4756 size_t i, n = gimple_switch_num_labels (stmt);
d6be0d7f
JL
4757
4758 for (i = 0; i < n; i++)
4759 {
726a989a 4760 tree elt = gimple_switch_label (stmt, i);
d6be0d7f
JL
4761 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4762 CASE_LABEL (elt) = label;
4763 }
92b6dff3 4764 }
d6be0d7f 4765
92b6dff3 4766 break;
6de9cd9a 4767 }
6de9cd9a 4768
726a989a
RB
4769 case GIMPLE_RETURN:
4770 gsi_remove (&gsi, true);
6de9cd9a
DN
4771 e->flags |= EDGE_FALLTHRU;
4772 break;
4773
726a989a
RB
4774 case GIMPLE_OMP_RETURN:
4775 case GIMPLE_OMP_CONTINUE:
4776 case GIMPLE_OMP_SECTIONS_SWITCH:
4777 case GIMPLE_OMP_FOR:
e5c95afe
ZD
4778 /* The edges from OMP constructs can be simply redirected. */
4779 break;
4780
6de9cd9a
DN
4781 default:
4782 /* Otherwise it must be a fallthru edge, and we don't need to
4783 do anything besides redirecting it. */
1e128c5f 4784 gcc_assert (e->flags & EDGE_FALLTHRU);
6de9cd9a
DN
4785 break;
4786 }
4787
4788 /* Update/insert PHI nodes as necessary. */
4789
4790 /* Now update the edges in the CFG. */
4791 e = ssa_redirect_edge (e, dest);
4792
4793 return e;
4794}
4795
14fa2cc0
ZD
4796/* Returns true if it is possible to remove edge E by redirecting
4797 it to the destination of the other edge from E->src. */
4798
4799static bool
726a989a 4800gimple_can_remove_branch_p (const_edge e)
14fa2cc0
ZD
4801{
4802 if (e->flags & EDGE_ABNORMAL)
4803 return false;
4804
4805 return true;
4806}
6de9cd9a
DN
4807
4808/* Simple wrapper, as we can always redirect fallthru edges. */
4809
4810static basic_block
726a989a 4811gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6de9cd9a 4812{
726a989a 4813 e = gimple_redirect_edge_and_branch (e, dest);
1e128c5f 4814 gcc_assert (e);
6de9cd9a
DN
4815
4816 return NULL;
4817}
4818
4819
4820/* Splits basic block BB after statement STMT (but at least after the
4821 labels). If STMT is NULL, BB is split just after the labels. */
4822
4823static basic_block
726a989a 4824gimple_split_block (basic_block bb, void *stmt)
6de9cd9a 4825{
726a989a
RB
4826 gimple_stmt_iterator gsi;
4827 gimple_stmt_iterator gsi_tgt;
4828 gimple act;
4829 gimple_seq list;
6de9cd9a
DN
4830 basic_block new_bb;
4831 edge e;
628f6a4e 4832 edge_iterator ei;
6de9cd9a
DN
4833
4834 new_bb = create_empty_bb (bb);
4835
4836 /* Redirect the outgoing edges. */
628f6a4e
BE
4837 new_bb->succs = bb->succs;
4838 bb->succs = NULL;
4839 FOR_EACH_EDGE (e, ei, new_bb->succs)
6de9cd9a
DN
4840 e->src = new_bb;
4841
726a989a 4842 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
6de9cd9a
DN
4843 stmt = NULL;
4844
726a989a
RB
4845 /* Move everything from GSI to the new basic block. */
4846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4847 {
726a989a
RB
4848 act = gsi_stmt (gsi);
4849 if (gimple_code (act) == GIMPLE_LABEL)
6de9cd9a
DN
4850 continue;
4851
4852 if (!stmt)
4853 break;
4854
4855 if (stmt == act)
4856 {
726a989a 4857 gsi_next (&gsi);
6de9cd9a
DN
4858 break;
4859 }
4860 }
4861
726a989a 4862 if (gsi_end_p (gsi))
597ae074
JH
4863 return new_bb;
4864
4865 /* Split the statement list - avoid re-creating new containers as this
4866 brings ugly quadratic memory consumption in the inliner.
4867 (We are still quadratic since we need to update stmt BB pointers,
4868 sadly.) */
726a989a
RB
4869 list = gsi_split_seq_before (&gsi);
4870 set_bb_seq (new_bb, list);
4871 for (gsi_tgt = gsi_start (list);
4872 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4873 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6de9cd9a
DN
4874
4875 return new_bb;
4876}
4877
4878
4879/* Moves basic block BB after block AFTER. */
4880
4881static bool
726a989a 4882gimple_move_block_after (basic_block bb, basic_block after)
6de9cd9a
DN
4883{
4884 if (bb->prev_bb == after)
4885 return true;
4886
4887 unlink_block (bb);
4888 link_block (bb, after);
4889
4890 return true;
4891}
4892
4893
4894/* Return true if basic_block can be duplicated. */
4895
4896static bool
726a989a 4897gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6de9cd9a
DN
4898{
4899 return true;
4900}
4901
6de9cd9a
DN
4902/* Create a duplicate of the basic block BB. NOTE: This does not
4903 preserve SSA form. */
4904
4905static basic_block
726a989a 4906gimple_duplicate_bb (basic_block bb)
6de9cd9a
DN
4907{
4908 basic_block new_bb;
726a989a
RB
4909 gimple_stmt_iterator gsi, gsi_tgt;
4910 gimple_seq phis = phi_nodes (bb);
4911 gimple phi, stmt, copy;
6de9cd9a
DN
4912
4913 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
b0382c67 4914
84d65814
DN
4915 /* Copy the PHI nodes. We ignore PHI node arguments here because
4916 the incoming edges have not been setup yet. */
726a989a 4917 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
b0382c67 4918 {
726a989a
RB
4919 phi = gsi_stmt (gsi);
4920 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4921 create_new_def_for (gimple_phi_result (copy), copy,
4922 gimple_phi_result_ptr (copy));
b0382c67 4923 }
84d65814 4924
726a989a
RB
4925 gsi_tgt = gsi_start_bb (new_bb);
4926 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6de9cd9a 4927 {
84d65814
DN
4928 def_operand_p def_p;
4929 ssa_op_iter op_iter;
cc7220fd 4930 int region;
6de9cd9a 4931
726a989a
RB
4932 stmt = gsi_stmt (gsi);
4933 if (gimple_code (stmt) == GIMPLE_LABEL)
6de9cd9a
DN
4934 continue;
4935
84d65814
DN
4936 /* Create a new copy of STMT and duplicate STMT's virtual
4937 operands. */
726a989a
RB
4938 copy = gimple_copy (stmt);
4939 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
84d65814 4940 copy_virtual_operands (copy, stmt);
cc7220fd
JH
4941 region = lookup_stmt_eh_region (stmt);
4942 if (region >= 0)
4943 add_stmt_to_eh_region (copy, region);
6946b3f7 4944 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
84d65814
DN
4945
4946 /* Create new names for all the definitions created by COPY and
4947 add replacement mappings for each new name. */
4948 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4949 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6de9cd9a
DN
4950 }
4951
4952 return new_bb;
4953}
4954
5f40b3cb
ZD
4955/* Adds phi node arguments for edge E_COPY after basic block duplication. */
4956
4957static void
4958add_phi_args_after_copy_edge (edge e_copy)
4959{
4960 basic_block bb, bb_copy = e_copy->src, dest;
4961 edge e;
4962 edge_iterator ei;
726a989a
RB
4963 gimple phi, phi_copy;
4964 tree def;
4965 gimple_stmt_iterator psi, psi_copy;
5f40b3cb 4966
726a989a 4967 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5f40b3cb
ZD
4968 return;
4969
4970 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
4971
4972 if (e_copy->dest->flags & BB_DUPLICATED)
4973 dest = get_bb_original (e_copy->dest);
4974 else
4975 dest = e_copy->dest;
4976
4977 e = find_edge (bb, dest);
4978 if (!e)
4979 {
4980 /* During loop unrolling the target of the latch edge is copied.
4981 In this case we are not looking for edge to dest, but to
4982 duplicated block whose original was dest. */
4983 FOR_EACH_EDGE (e, ei, bb->succs)
4984 {
4985 if ((e->dest->flags & BB_DUPLICATED)
4986 && get_bb_original (e->dest) == dest)
4987 break;
4988 }
4989
4990 gcc_assert (e != NULL);
4991 }
4992
726a989a
RB
4993 for (psi = gsi_start_phis (e->dest),
4994 psi_copy = gsi_start_phis (e_copy->dest);
4995 !gsi_end_p (psi);
4996 gsi_next (&psi), gsi_next (&psi_copy))
5f40b3cb 4997 {
726a989a
RB
4998 phi = gsi_stmt (psi);
4999 phi_copy = gsi_stmt (psi_copy);
5f40b3cb
ZD
5000 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5001 add_phi_arg (phi_copy, def, e_copy);
5002 }
5003}
5004
84d65814 5005
42759f1e
ZD
5006/* Basic block BB_COPY was created by code duplication. Add phi node
5007 arguments for edges going out of BB_COPY. The blocks that were
6580ee77 5008 duplicated have BB_DUPLICATED set. */
42759f1e
ZD
5009
5010void
5011add_phi_args_after_copy_bb (basic_block bb_copy)
5012{
5f40b3cb 5013 edge e_copy;
726a989a 5014 edge_iterator ei;
42759f1e 5015
628f6a4e 5016 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
42759f1e 5017 {
5f40b3cb 5018 add_phi_args_after_copy_edge (e_copy);
42759f1e
ZD
5019 }
5020}
5021
5022/* Blocks in REGION_COPY array of length N_REGION were created by
5023 duplication of basic blocks. Add phi node arguments for edges
5f40b3cb
ZD
5024 going from these blocks. If E_COPY is not NULL, also add
5025 phi node arguments for its destination.*/
42759f1e
ZD
5026
5027void
5f40b3cb
ZD
5028add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5029 edge e_copy)
42759f1e
ZD
5030{
5031 unsigned i;
5032
5033 for (i = 0; i < n_region; i++)
6580ee77 5034 region_copy[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
5035
5036 for (i = 0; i < n_region; i++)
5037 add_phi_args_after_copy_bb (region_copy[i]);
5f40b3cb
ZD
5038 if (e_copy)
5039 add_phi_args_after_copy_edge (e_copy);
42759f1e
ZD
5040
5041 for (i = 0; i < n_region; i++)
6580ee77 5042 region_copy[i]->flags &= ~BB_DUPLICATED;
42759f1e
ZD
5043}
5044
42759f1e
ZD
5045/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5046 important exit edge EXIT. By important we mean that no SSA name defined
5047 inside region is live over the other exit edges of the region. All entry
5048 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5049 to the duplicate of the region. SSA form, dominance and loop information
5050 is updated. The new basic blocks are stored to REGION_COPY in the same
5051 order as they had in REGION, provided that REGION_COPY is not NULL.
5052 The function returns false if it is unable to copy the region,
5053 true otherwise. */
5054
5055bool
726a989a 5056gimple_duplicate_sese_region (edge entry, edge exit,
42759f1e
ZD
5057 basic_block *region, unsigned n_region,
5058 basic_block *region_copy)
5059{
66f97d31 5060 unsigned i;
42759f1e
ZD
5061 bool free_region_copy = false, copying_header = false;
5062 struct loop *loop = entry->dest->loop_father;
5063 edge exit_copy;
66f97d31 5064 VEC (basic_block, heap) *doms;
42759f1e 5065 edge redirected;
09bac500
JH
5066 int total_freq = 0, entry_freq = 0;
5067 gcov_type total_count = 0, entry_count = 0;
42759f1e
ZD
5068
5069 if (!can_copy_bbs_p (region, n_region))
5070 return false;
5071
5072 /* Some sanity checking. Note that we do not check for all possible
5073 missuses of the functions. I.e. if you ask to copy something weird,
5074 it will work, but the state of structures probably will not be
5075 correct. */
42759f1e
ZD
5076 for (i = 0; i < n_region; i++)
5077 {
5078 /* We do not handle subloops, i.e. all the blocks must belong to the
5079 same loop. */
5080 if (region[i]->loop_father != loop)
5081 return false;
5082
5083 if (region[i] != entry->dest
5084 && region[i] == loop->header)
5085 return false;
5086 }
5087
561e8a90 5088 set_loop_copy (loop, loop);
42759f1e
ZD
5089
5090 /* In case the function is used for loop header copying (which is the primary
5091 use), ensure that EXIT and its copy will be new latch and entry edges. */
5092 if (loop->header == entry->dest)
5093 {
5094 copying_header = true;
561e8a90 5095 set_loop_copy (loop, loop_outer (loop));
42759f1e
ZD
5096
5097 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5098 return false;
5099
5100 for (i = 0; i < n_region; i++)
5101 if (region[i] != exit->src
5102 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5103 return false;
5104 }
5105
5106 if (!region_copy)
5107 {
858904db 5108 region_copy = XNEWVEC (basic_block, n_region);
42759f1e
ZD
5109 free_region_copy = true;
5110 }
5111
84d65814 5112 gcc_assert (!need_ssa_update_p ());
42759f1e 5113
5deaef19 5114 /* Record blocks outside the region that are dominated by something
42759f1e 5115 inside. */
66f97d31 5116 doms = NULL;
6580ee77
JH
5117 initialize_original_copy_tables ();
5118
66f97d31 5119 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
42759f1e 5120
09bac500
JH
5121 if (entry->dest->count)
5122 {
5123 total_count = entry->dest->count;
5124 entry_count = entry->count;
5125 /* Fix up corner cases, to avoid division by zero or creation of negative
5126 frequencies. */
5127 if (entry_count > total_count)
5128 entry_count = total_count;
5129 }
5130 else
5131 {
5132 total_freq = entry->dest->frequency;
5133 entry_freq = EDGE_FREQUENCY (entry);
5134 /* Fix up corner cases, to avoid division by zero or creation of negative
5135 frequencies. */
5136 if (total_freq == 0)
5137 total_freq = 1;
5138 else if (entry_freq > total_freq)
5139 entry_freq = total_freq;
5140 }
5deaef19 5141
b9a66240
ZD
5142 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5143 split_edge_bb_loc (entry));
09bac500
JH
5144 if (total_count)
5145 {
5146 scale_bbs_frequencies_gcov_type (region, n_region,
5147 total_count - entry_count,
5148 total_count);
5149 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6531d1be 5150 total_count);
09bac500
JH
5151 }
5152 else
5153 {
5154 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5155 total_freq);
5156 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5157 }
42759f1e
ZD
5158
5159 if (copying_header)
5160 {
5161 loop->header = exit->dest;
5162 loop->latch = exit->src;
5163 }
5164
5165 /* Redirect the entry and add the phi node arguments. */
6580ee77 5166 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
42759f1e 5167 gcc_assert (redirected != NULL);
71882046 5168 flush_pending_stmts (entry);
42759f1e
ZD
5169
5170 /* Concerning updating of dominators: We must recount dominators
84d65814
DN
5171 for entry block and its copy. Anything that is outside of the
5172 region, but was dominated by something inside needs recounting as
5173 well. */
42759f1e 5174 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
66f97d31
ZD
5175 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5176 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5f40b3cb 5177 VEC_free (basic_block, heap, doms);
42759f1e 5178
84d65814 5179 /* Add the other PHI node arguments. */
5f40b3cb
ZD
5180 add_phi_args_after_copy (region_copy, n_region, NULL);
5181
5182 /* Update the SSA web. */
5183 update_ssa (TODO_update_ssa);
5184
5185 if (free_region_copy)
5186 free (region_copy);
5187
5188 free_original_copy_tables ();
5189 return true;
5190}
5191
5192/* Duplicates REGION consisting of N_REGION blocks. The new blocks
5193 are stored to REGION_COPY in the same order in that they appear
5194 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5195 the region, EXIT an exit from it. The condition guarding EXIT
5196 is moved to ENTRY. Returns true if duplication succeeds, false
5197 otherwise.
5198
5199 For example,
5200
5201 some_code;
5202 if (cond)
5203 A;
5204 else
5205 B;
5206
5207 is transformed to
5208
5209 if (cond)
5210 {
5211 some_code;
5212 A;
5213 }
5214 else
5215 {
5216 some_code;
5217 B;
5218 }
5219*/
5220
5221bool
726a989a
RB
5222gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5223 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5224 basic_block *region_copy ATTRIBUTE_UNUSED)
5f40b3cb
ZD
5225{
5226 unsigned i;
5227 bool free_region_copy = false;
5228 struct loop *loop = exit->dest->loop_father;
5229 struct loop *orig_loop = entry->dest->loop_father;
5230 basic_block switch_bb, entry_bb, nentry_bb;
5231 VEC (basic_block, heap) *doms;
5232 int total_freq = 0, exit_freq = 0;
5233 gcov_type total_count = 0, exit_count = 0;
5234 edge exits[2], nexits[2], e;
726a989a
RB
5235 gimple_stmt_iterator gsi;
5236 gimple cond_stmt;
5f40b3cb
ZD
5237 edge sorig, snew;
5238
5239 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5240 exits[0] = exit;
5241 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5242
5243 if (!can_copy_bbs_p (region, n_region))
5244 return false;
5245
5246 /* Some sanity checking. Note that we do not check for all possible
5247 missuses of the functions. I.e. if you ask to copy something weird
5248 (e.g., in the example, if there is a jump from inside to the middle
5249 of some_code, or come_code defines some of the values used in cond)
5250 it will work, but the resulting code will not be correct. */
5251 for (i = 0; i < n_region; i++)
5252 {
5253 /* We do not handle subloops, i.e. all the blocks must belong to the
5254 same loop. */
5255 if (region[i]->loop_father != orig_loop)
5256 return false;
5257
5258 if (region[i] == orig_loop->latch)
5259 return false;
5260 }
5261
5262 initialize_original_copy_tables ();
5263 set_loop_copy (orig_loop, loop);
5264
5265 if (!region_copy)
5266 {
5267 region_copy = XNEWVEC (basic_block, n_region);
5268 free_region_copy = true;
5269 }
5270
5271 gcc_assert (!need_ssa_update_p ());
5272
5273 /* Record blocks outside the region that are dominated by something
5274 inside. */
5275 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5276
5277 if (exit->src->count)
5278 {
5279 total_count = exit->src->count;
5280 exit_count = exit->count;
5281 /* Fix up corner cases, to avoid division by zero or creation of negative
5282 frequencies. */
5283 if (exit_count > total_count)
5284 exit_count = total_count;
5285 }
5286 else
5287 {
5288 total_freq = exit->src->frequency;
5289 exit_freq = EDGE_FREQUENCY (exit);
5290 /* Fix up corner cases, to avoid division by zero or creation of negative
5291 frequencies. */
5292 if (total_freq == 0)
5293 total_freq = 1;
5294 if (exit_freq > total_freq)
5295 exit_freq = total_freq;
5296 }
5297
5298 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5299 split_edge_bb_loc (exit));
5300 if (total_count)
5301 {
5302 scale_bbs_frequencies_gcov_type (region, n_region,
5303 total_count - exit_count,
5304 total_count);
5305 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5306 total_count);
5307 }
5308 else
5309 {
5310 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5311 total_freq);
5312 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5313 }
5314
5315 /* Create the switch block, and put the exit condition to it. */
5316 entry_bb = entry->dest;
5317 nentry_bb = get_bb_copy (entry_bb);
5318 if (!last_stmt (entry->src)
5319 || !stmt_ends_bb_p (last_stmt (entry->src)))
5320 switch_bb = entry->src;
5321 else
5322 switch_bb = split_edge (entry);
5323 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5324
726a989a
RB
5325 gsi = gsi_last_bb (switch_bb);
5326 cond_stmt = last_stmt (exit->src);
5327 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5328 cond_stmt = gimple_copy (cond_stmt);
5329 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5330 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5331 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5f40b3cb
ZD
5332
5333 sorig = single_succ_edge (switch_bb);
5334 sorig->flags = exits[1]->flags;
5335 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5336
5337 /* Register the new edge from SWITCH_BB in loop exit lists. */
5338 rescan_loop_exit (snew, true, false);
5339
5340 /* Add the PHI node arguments. */
5341 add_phi_args_after_copy (region_copy, n_region, snew);
5342
5343 /* Get rid of now superfluous conditions and associated edges (and phi node
5344 arguments). */
5345 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
726a989a 5346 PENDING_STMT (e) = NULL;
5f40b3cb 5347 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
726a989a 5348 PENDING_STMT (e) = NULL;
5f40b3cb
ZD
5349
5350 /* Anything that is outside of the region, but was dominated by something
5351 inside needs to update dominance info. */
5352 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5353 VEC_free (basic_block, heap, doms);
42759f1e 5354
84d65814
DN
5355 /* Update the SSA web. */
5356 update_ssa (TODO_update_ssa);
42759f1e
ZD
5357
5358 if (free_region_copy)
5359 free (region_copy);
5360
6580ee77 5361 free_original_copy_tables ();
42759f1e
ZD
5362 return true;
5363}
6de9cd9a 5364
50674e96
DN
5365/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5366 adding blocks when the dominator traversal reaches EXIT. This
5367 function silently assumes that ENTRY strictly dominates EXIT. */
5368
9f9f72aa 5369void
50674e96
DN
5370gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5371 VEC(basic_block,heap) **bbs_p)
5372{
5373 basic_block son;
5374
5375 for (son = first_dom_son (CDI_DOMINATORS, entry);
5376 son;
5377 son = next_dom_son (CDI_DOMINATORS, son))
5378 {
5379 VEC_safe_push (basic_block, heap, *bbs_p, son);
5380 if (son != exit)
5381 gather_blocks_in_sese_region (son, exit, bbs_p);
5382 }
5383}
5384
917948d3
ZD
5385/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5386 The duplicates are recorded in VARS_MAP. */
5387
5388static void
5389replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5390 tree to_context)
5391{
5392 tree t = *tp, new_t;
5393 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5394 void **loc;
5395
5396 if (DECL_CONTEXT (t) == to_context)
5397 return;
5398
5399 loc = pointer_map_contains (vars_map, t);
5400
5401 if (!loc)
5402 {
5403 loc = pointer_map_insert (vars_map, t);
5404
5405 if (SSA_VAR_P (t))
5406 {
5407 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
cb91fab0 5408 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
917948d3
ZD
5409 }
5410 else
5411 {
5412 gcc_assert (TREE_CODE (t) == CONST_DECL);
5413 new_t = copy_node (t);
5414 }
5415 DECL_CONTEXT (new_t) = to_context;
5416
5417 *loc = new_t;
5418 }
5419 else
3d9a9f94 5420 new_t = (tree) *loc;
917948d3
ZD
5421
5422 *tp = new_t;
5423}
5424
726a989a 5425
917948d3
ZD
5426/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5427 VARS_MAP maps old ssa names and var_decls to the new ones. */
5428
5429static tree
5430replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5431 tree to_context)
5432{
5433 void **loc;
5434 tree new_name, decl = SSA_NAME_VAR (name);
5435
5436 gcc_assert (is_gimple_reg (name));
5437
5438 loc = pointer_map_contains (vars_map, name);
5439
5440 if (!loc)
5441 {
5442 replace_by_duplicate_decl (&decl, vars_map, to_context);
5443
5444 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5445 if (gimple_in_ssa_p (cfun))
5446 add_referenced_var (decl);
5447
5448 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5449 if (SSA_NAME_IS_DEFAULT_DEF (name))
5450 set_default_def (decl, new_name);
5451 pop_cfun ();
5452
5453 loc = pointer_map_insert (vars_map, name);
5454 *loc = new_name;
5455 }
5456 else
3d9a9f94 5457 new_name = (tree) *loc;
917948d3
ZD
5458
5459 return new_name;
5460}
50674e96
DN
5461
5462struct move_stmt_d
5463{
b357f682
JJ
5464 tree orig_block;
5465 tree new_block;
50674e96
DN
5466 tree from_context;
5467 tree to_context;
917948d3 5468 struct pointer_map_t *vars_map;
fad41cd7 5469 htab_t new_label_map;
50674e96
DN
5470 bool remap_decls_p;
5471};
5472
5473/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
b357f682
JJ
5474 contained in *TP if it has been ORIG_BLOCK previously and change the
5475 DECL_CONTEXT of every local variable referenced in *TP. */
50674e96
DN
5476
5477static tree
726a989a 5478move_stmt_op (tree *tp, int *walk_subtrees, void *data)
50674e96 5479{
726a989a
RB
5480 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5481 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
fad41cd7 5482 tree t = *tp;
50674e96 5483
726a989a
RB
5484 if (EXPR_P (t))
5485 /* We should never have TREE_BLOCK set on non-statements. */
5486 gcc_assert (!TREE_BLOCK (t));
fad41cd7 5487
917948d3 5488 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
50674e96 5489 {
917948d3
ZD
5490 if (TREE_CODE (t) == SSA_NAME)
5491 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5492 else if (TREE_CODE (t) == LABEL_DECL)
fad41cd7
RH
5493 {
5494 if (p->new_label_map)
5495 {
5496 struct tree_map in, *out;
fc8600f9 5497 in.base.from = t;
3d9a9f94
KG
5498 out = (struct tree_map *)
5499 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
fad41cd7
RH
5500 if (out)
5501 *tp = t = out->to;
5502 }
50674e96 5503
fad41cd7
RH
5504 DECL_CONTEXT (t) = p->to_context;
5505 }
5506 else if (p->remap_decls_p)
50674e96 5507 {
917948d3
ZD
5508 /* Replace T with its duplicate. T should no longer appear in the
5509 parent function, so this looks wasteful; however, it may appear
5510 in referenced_vars, and more importantly, as virtual operands of
5511 statements, and in alias lists of other variables. It would be
5512 quite difficult to expunge it from all those places. ??? It might
5513 suffice to do this for addressable variables. */
5514 if ((TREE_CODE (t) == VAR_DECL
5515 && !is_global_var (t))
5516 || TREE_CODE (t) == CONST_DECL)
5517 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5518
5519 if (SSA_VAR_P (t)
5520 && gimple_in_ssa_p (cfun))
fad41cd7 5521 {
917948d3
ZD
5522 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5523 add_referenced_var (*tp);
5524 pop_cfun ();
fad41cd7 5525 }
50674e96 5526 }
917948d3 5527 *walk_subtrees = 0;
50674e96 5528 }
fad41cd7
RH
5529 else if (TYPE_P (t))
5530 *walk_subtrees = 0;
50674e96
DN
5531
5532 return NULL_TREE;
5533}
5534
726a989a
RB
5535/* Like move_stmt_op, but for gimple statements.
5536
5537 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5538 contained in the current statement in *GSI_P and change the
5539 DECL_CONTEXT of every local variable referenced in the current
5540 statement. */
5541
5542static tree
5543move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5544 struct walk_stmt_info *wi)
5545{
5546 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5547 gimple stmt = gsi_stmt (*gsi_p);
5548 tree block = gimple_block (stmt);
5549
5550 if (p->orig_block == NULL_TREE
5551 || block == p->orig_block
5552 || block == NULL_TREE)
5553 gimple_set_block (stmt, p->new_block);
5554#ifdef ENABLE_CHECKING
5555 else if (block != p->new_block)
5556 {
5557 while (block && block != p->orig_block)
5558 block = BLOCK_SUPERCONTEXT (block);
5559 gcc_assert (block);
5560 }
5561#endif
5562
5563 if (is_gimple_omp (stmt)
5564 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5565 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5566 {
5567 /* Do not remap variables inside OMP directives. Variables
5568 referenced in clauses and directive header belong to the
5569 parent function and should not be moved into the child
5570 function. */
5571 bool save_remap_decls_p = p->remap_decls_p;
5572 p->remap_decls_p = false;
5573 *handled_ops_p = true;
5574
5575 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5576
5577 p->remap_decls_p = save_remap_decls_p;
5578 }
5579
5580 return NULL_TREE;
5581}
5582
917948d3
ZD
5583/* Marks virtual operands of all statements in basic blocks BBS for
5584 renaming. */
5585
dea61d92
SP
5586void
5587mark_virtual_ops_in_bb (basic_block bb)
917948d3 5588{
726a989a 5589 gimple_stmt_iterator gsi;
dea61d92 5590
726a989a
RB
5591 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5592 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
dea61d92 5593
726a989a
RB
5594 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5595 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
dea61d92
SP
5596}
5597
5598/* Marks virtual operands of all statements in basic blocks BBS for
5599 renaming. */
5600
5601static void
5602mark_virtual_ops_in_region (VEC (basic_block,heap) *bbs)
5603{
917948d3
ZD
5604 basic_block bb;
5605 unsigned i;
5606
5607 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
dea61d92 5608 mark_virtual_ops_in_bb (bb);
917948d3 5609}
50674e96
DN
5610
5611/* Move basic block BB from function CFUN to function DEST_FN. The
5612 block is moved out of the original linked list and placed after
5613 block AFTER in the new list. Also, the block is removed from the
5614 original array of blocks and placed in DEST_FN's array of blocks.
5615 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5616 updated to reflect the moved edges.
6531d1be 5617
917948d3
ZD
5618 The local variables are remapped to new instances, VARS_MAP is used
5619 to record the mapping. */
50674e96
DN
5620
5621static void
5622move_block_to_fn (struct function *dest_cfun, basic_block bb,
5623 basic_block after, bool update_edge_count_p,
b357f682 5624 struct move_stmt_d *d, int eh_offset)
50674e96
DN
5625{
5626 struct control_flow_graph *cfg;
5627 edge_iterator ei;
5628 edge e;
726a989a 5629 gimple_stmt_iterator si;
728b26bb 5630 unsigned old_len, new_len;
50674e96 5631
3722506a
ZD
5632 /* Remove BB from dominance structures. */
5633 delete_from_dominance_info (CDI_DOMINATORS, bb);
5f40b3cb
ZD
5634 if (current_loops)
5635 remove_bb_from_loops (bb);
3722506a 5636
50674e96
DN
5637 /* Link BB to the new linked list. */
5638 move_block_after (bb, after);
5639
5640 /* Update the edge count in the corresponding flowgraphs. */
5641 if (update_edge_count_p)
5642 FOR_EACH_EDGE (e, ei, bb->succs)
5643 {
5644 cfun->cfg->x_n_edges--;
5645 dest_cfun->cfg->x_n_edges++;
5646 }
5647
5648 /* Remove BB from the original basic block array. */
5649 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5650 cfun->cfg->x_n_basic_blocks--;
5651
5652 /* Grow DEST_CFUN's basic block array if needed. */
5653 cfg = dest_cfun->cfg;
5654 cfg->x_n_basic_blocks++;
3722506a
ZD
5655 if (bb->index >= cfg->x_last_basic_block)
5656 cfg->x_last_basic_block = bb->index + 1;
50674e96 5657
728b26bb
DN
5658 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5659 if ((unsigned) cfg->x_last_basic_block >= old_len)
50674e96 5660 {
728b26bb 5661 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
a590ac65
KH
5662 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5663 new_len);
50674e96
DN
5664 }
5665
5666 VEC_replace (basic_block, cfg->x_basic_block_info,
e0310afb 5667 bb->index, bb);
50674e96 5668
917948d3 5669 /* Remap the variables in phi nodes. */
726a989a 5670 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
917948d3 5671 {
726a989a 5672 gimple phi = gsi_stmt (si);
917948d3
ZD
5673 use_operand_p use;
5674 tree op = PHI_RESULT (phi);
5675 ssa_op_iter oi;
5676
5677 if (!is_gimple_reg (op))
5f40b3cb
ZD
5678 {
5679 /* Remove the phi nodes for virtual operands (alias analysis will be
5680 run for the new function, anyway). */
726a989a 5681 remove_phi_node (&si, true);
5f40b3cb
ZD
5682 continue;
5683 }
917948d3 5684
b357f682
JJ
5685 SET_PHI_RESULT (phi,
5686 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
917948d3
ZD
5687 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5688 {
5689 op = USE_FROM_PTR (use);
5690 if (TREE_CODE (op) == SSA_NAME)
b357f682 5691 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
917948d3 5692 }
726a989a
RB
5693
5694 gsi_next (&si);
917948d3
ZD
5695 }
5696
726a989a 5697 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
50674e96 5698 {
726a989a 5699 gimple stmt = gsi_stmt (si);
fad41cd7 5700 int region;
726a989a 5701 struct walk_stmt_info wi;
50674e96 5702
726a989a
RB
5703 memset (&wi, 0, sizeof (wi));
5704 wi.info = d;
5705 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
50674e96 5706
726a989a 5707 if (gimple_code (stmt) == GIMPLE_LABEL)
50674e96 5708 {
726a989a 5709 tree label = gimple_label_label (stmt);
50674e96
DN
5710 int uid = LABEL_DECL_UID (label);
5711
5712 gcc_assert (uid > -1);
5713
5714 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5715 if (old_len <= (unsigned) uid)
5716 {
728b26bb 5717 new_len = 3 * uid / 2;
a590ac65
KH
5718 VEC_safe_grow_cleared (basic_block, gc,
5719 cfg->x_label_to_block_map, new_len);
50674e96
DN
5720 }
5721
5722 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5723 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5724
5725 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5726
cb91fab0
JH
5727 if (uid >= dest_cfun->cfg->last_label_uid)
5728 dest_cfun->cfg->last_label_uid = uid + 1;
50674e96 5729 }
726a989a
RB
5730 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5731 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
fad41cd7
RH
5732
5733 region = lookup_stmt_eh_region (stmt);
5734 if (region >= 0)
5735 {
5736 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5737 remove_stmt_from_eh_region (stmt);
6946b3f7
JH
5738 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5739 gimple_remove_stmt_histograms (cfun, stmt);
fad41cd7 5740 }
917948d3 5741
5f40b3cb
ZD
5742 /* We cannot leave any operands allocated from the operand caches of
5743 the current function. */
5744 free_stmt_operands (stmt);
5745 push_cfun (dest_cfun);
917948d3 5746 update_stmt (stmt);
5f40b3cb 5747 pop_cfun ();
fad41cd7 5748 }
7241571e
JJ
5749
5750 FOR_EACH_EDGE (e, ei, bb->succs)
5751 if (e->goto_locus)
5752 {
5753 tree block = e->goto_block;
5754 if (d->orig_block == NULL_TREE
5755 || block == d->orig_block)
5756 e->goto_block = d->new_block;
5757#ifdef ENABLE_CHECKING
5758 else if (block != d->new_block)
5759 {
5760 while (block && block != d->orig_block)
5761 block = BLOCK_SUPERCONTEXT (block);
5762 gcc_assert (block);
5763 }
5764#endif
5765 }
fad41cd7
RH
5766}
5767
5768/* Examine the statements in BB (which is in SRC_CFUN); find and return
5769 the outermost EH region. Use REGION as the incoming base EH region. */
5770
5771static int
5772find_outermost_region_in_block (struct function *src_cfun,
5773 basic_block bb, int region)
5774{
726a989a 5775 gimple_stmt_iterator si;
6531d1be 5776
726a989a 5777 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
fad41cd7 5778 {
726a989a 5779 gimple stmt = gsi_stmt (si);
fad41cd7 5780 int stmt_region;
1799e5d5 5781
726a989a
RB
5782 if (gimple_code (stmt) == GIMPLE_RESX)
5783 stmt_region = gimple_resx_region (stmt);
07ed51c9
JJ
5784 else
5785 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
7e2df4a1
JJ
5786 if (stmt_region > 0)
5787 {
5788 if (region < 0)
5789 region = stmt_region;
5790 else if (stmt_region != region)
5791 {
5792 region = eh_region_outermost (src_cfun, stmt_region, region);
5793 gcc_assert (region != -1);
5794 }
5795 }
50674e96 5796 }
fad41cd7
RH
5797
5798 return region;
50674e96
DN
5799}
5800
fad41cd7
RH
5801static tree
5802new_label_mapper (tree decl, void *data)
5803{
5804 htab_t hash = (htab_t) data;
5805 struct tree_map *m;
5806 void **slot;
5807
5808 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5809
3d9a9f94 5810 m = XNEW (struct tree_map);
fad41cd7 5811 m->hash = DECL_UID (decl);
fc8600f9 5812 m->base.from = decl;
fad41cd7
RH
5813 m->to = create_artificial_label ();
5814 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
cb91fab0
JH
5815 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5816 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
fad41cd7
RH
5817
5818 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5819 gcc_assert (*slot == NULL);
5820
5821 *slot = m;
5822
5823 return m->to;
5824}
50674e96 5825
b357f682
JJ
5826/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5827 subblocks. */
5828
5829static void
5830replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5831 tree to_context)
5832{
5833 tree *tp, t;
5834
5835 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5836 {
5837 t = *tp;
e1e2bac4
JJ
5838 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
5839 continue;
b357f682
JJ
5840 replace_by_duplicate_decl (&t, vars_map, to_context);
5841 if (t != *tp)
5842 {
5843 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5844 {
5845 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5846 DECL_HAS_VALUE_EXPR_P (t) = 1;
5847 }
5848 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5849 *tp = t;
5850 }
5851 }
5852
5853 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5854 replace_block_vars_by_duplicates (block, vars_map, to_context);
5855}
5856
50674e96
DN
5857/* Move a single-entry, single-exit region delimited by ENTRY_BB and
5858 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5859 single basic block in the original CFG and the new basic block is
5860 returned. DEST_CFUN must not have a CFG yet.
5861
5862 Note that the region need not be a pure SESE region. Blocks inside
5863 the region may contain calls to abort/exit. The only restriction
5864 is that ENTRY_BB should be the only entry point and it must
5865 dominate EXIT_BB.
5866
b357f682
JJ
5867 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5868 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5869 to the new function.
5870
50674e96
DN
5871 All local variables referenced in the region are assumed to be in
5872 the corresponding BLOCK_VARS and unexpanded variable lists
5873 associated with DEST_CFUN. */
5874
5875basic_block
5876move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
b357f682 5877 basic_block exit_bb, tree orig_block)
50674e96 5878{
917948d3
ZD
5879 VEC(basic_block,heap) *bbs, *dom_bbs;
5880 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5881 basic_block after, bb, *entry_pred, *exit_succ, abb;
5882 struct function *saved_cfun = cfun;
fad41cd7 5883 int *entry_flag, *exit_flag, eh_offset;
917948d3 5884 unsigned *entry_prob, *exit_prob;
50674e96
DN
5885 unsigned i, num_entry_edges, num_exit_edges;
5886 edge e;
5887 edge_iterator ei;
fad41cd7 5888 htab_t new_label_map;
917948d3 5889 struct pointer_map_t *vars_map;
5f40b3cb 5890 struct loop *loop = entry_bb->loop_father;
b357f682 5891 struct move_stmt_d d;
50674e96
DN
5892
5893 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5894 region. */
5895 gcc_assert (entry_bb != exit_bb
2aee3e57
JJ
5896 && (!exit_bb
5897 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
50674e96 5898
917948d3
ZD
5899 /* Collect all the blocks in the region. Manually add ENTRY_BB
5900 because it won't be added by dfs_enumerate_from. */
50674e96
DN
5901 bbs = NULL;
5902 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5903 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
5904
917948d3
ZD
5905 /* The blocks that used to be dominated by something in BBS will now be
5906 dominated by the new block. */
5907 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
5908 VEC_address (basic_block, bbs),
5909 VEC_length (basic_block, bbs));
5910
50674e96
DN
5911 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5912 the predecessor edges to ENTRY_BB and the successor edges to
5913 EXIT_BB so that we can re-attach them to the new basic block that
5914 will replace the region. */
5915 num_entry_edges = EDGE_COUNT (entry_bb->preds);
5916 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
5917 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
917948d3 5918 entry_prob = XNEWVEC (unsigned, num_entry_edges);
50674e96
DN
5919 i = 0;
5920 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
5921 {
917948d3 5922 entry_prob[i] = e->probability;
50674e96
DN
5923 entry_flag[i] = e->flags;
5924 entry_pred[i++] = e->src;
5925 remove_edge (e);
5926 }
5927
2aee3e57 5928 if (exit_bb)
50674e96 5929 {
2aee3e57
JJ
5930 num_exit_edges = EDGE_COUNT (exit_bb->succs);
5931 exit_succ = (basic_block *) xcalloc (num_exit_edges,
5932 sizeof (basic_block));
5933 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
917948d3 5934 exit_prob = XNEWVEC (unsigned, num_exit_edges);
2aee3e57
JJ
5935 i = 0;
5936 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
5937 {
917948d3 5938 exit_prob[i] = e->probability;
2aee3e57
JJ
5939 exit_flag[i] = e->flags;
5940 exit_succ[i++] = e->dest;
5941 remove_edge (e);
5942 }
5943 }
5944 else
5945 {
5946 num_exit_edges = 0;
5947 exit_succ = NULL;
5948 exit_flag = NULL;
917948d3 5949 exit_prob = NULL;
50674e96
DN
5950 }
5951
5952 /* Switch context to the child function to initialize DEST_FN's CFG. */
5953 gcc_assert (dest_cfun->cfg == NULL);
917948d3 5954 push_cfun (dest_cfun);
fad41cd7 5955
50674e96 5956 init_empty_tree_cfg ();
fad41cd7
RH
5957
5958 /* Initialize EH information for the new function. */
5959 eh_offset = 0;
5960 new_label_map = NULL;
5961 if (saved_cfun->eh)
5962 {
5963 int region = -1;
5964
5965 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5966 region = find_outermost_region_in_block (saved_cfun, bb, region);
5967
5968 init_eh_for_function ();
5969 if (region != -1)
5970 {
5971 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
5972 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
5973 new_label_map, region, 0);
5974 }
5975 }
5976
917948d3
ZD
5977 pop_cfun ();
5978
5979 /* The ssa form for virtual operands in the source function will have to
5980 be repaired. We do not care for the real operands -- the sese region
5981 must be closed with respect to those. */
5982 mark_virtual_ops_in_region (bbs);
50674e96
DN
5983
5984 /* Move blocks from BBS into DEST_CFUN. */
5985 gcc_assert (VEC_length (basic_block, bbs) >= 2);
5986 after = dest_cfun->cfg->x_entry_block_ptr;
917948d3 5987 vars_map = pointer_map_create ();
b357f682
JJ
5988
5989 memset (&d, 0, sizeof (d));
5990 d.vars_map = vars_map;
5991 d.from_context = cfun->decl;
5992 d.to_context = dest_cfun->decl;
5993 d.new_label_map = new_label_map;
5994 d.remap_decls_p = true;
5995 d.orig_block = orig_block;
5996 d.new_block = DECL_INITIAL (dest_cfun->decl);
5997
50674e96
DN
5998 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5999 {
6000 /* No need to update edge counts on the last block. It has
6001 already been updated earlier when we detached the region from
6002 the original CFG. */
b357f682 6003 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
50674e96
DN
6004 after = bb;
6005 }
6006
b357f682
JJ
6007 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6008 if (orig_block)
6009 {
6010 tree block;
6011 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6012 == NULL_TREE);
6013 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6014 = BLOCK_SUBBLOCKS (orig_block);
6015 for (block = BLOCK_SUBBLOCKS (orig_block);
6016 block; block = BLOCK_CHAIN (block))
6017 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6018 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6019 }
6020
6021 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6022 vars_map, dest_cfun->decl);
6023
fad41cd7
RH
6024 if (new_label_map)
6025 htab_delete (new_label_map);
917948d3 6026 pointer_map_destroy (vars_map);
50674e96
DN
6027
6028 /* Rewire the entry and exit blocks. The successor to the entry
6029 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6030 the child function. Similarly, the predecessor of DEST_FN's
6031 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6032 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6033 various CFG manipulation function get to the right CFG.
6034
6035 FIXME, this is silly. The CFG ought to become a parameter to
6036 these helpers. */
917948d3 6037 push_cfun (dest_cfun);
50674e96 6038 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
2aee3e57
JJ
6039 if (exit_bb)
6040 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
917948d3 6041 pop_cfun ();
50674e96
DN
6042
6043 /* Back in the original function, the SESE region has disappeared,
6044 create a new basic block in its place. */
6045 bb = create_empty_bb (entry_pred[0]);
5f40b3cb
ZD
6046 if (current_loops)
6047 add_bb_to_loop (bb, loop);
50674e96 6048 for (i = 0; i < num_entry_edges; i++)
917948d3
ZD
6049 {
6050 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6051 e->probability = entry_prob[i];
6052 }
50674e96
DN
6053
6054 for (i = 0; i < num_exit_edges; i++)
917948d3
ZD
6055 {
6056 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6057 e->probability = exit_prob[i];
6058 }
6059
6060 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6061 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6062 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6063 VEC_free (basic_block, heap, dom_bbs);
50674e96 6064
2aee3e57
JJ
6065 if (exit_bb)
6066 {
917948d3 6067 free (exit_prob);
2aee3e57
JJ
6068 free (exit_flag);
6069 free (exit_succ);
6070 }
917948d3 6071 free (entry_prob);
50674e96
DN
6072 free (entry_flag);
6073 free (entry_pred);
50674e96
DN
6074 VEC_free (basic_block, heap, bbs);
6075
6076 return bb;
6077}
6078
84d65814 6079
726a989a
RB
6080/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6081 */
6de9cd9a
DN
6082
6083void
6084dump_function_to_file (tree fn, FILE *file, int flags)
6085{
6086 tree arg, vars, var;
459ffad3 6087 struct function *dsf;
6de9cd9a
DN
6088 bool ignore_topmost_bind = false, any_var = false;
6089 basic_block bb;
6090 tree chain;
6531d1be 6091
673fda6b 6092 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6de9cd9a
DN
6093
6094 arg = DECL_ARGUMENTS (fn);
6095 while (arg)
6096 {
2f9ea521
RG
6097 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6098 fprintf (file, " ");
6de9cd9a 6099 print_generic_expr (file, arg, dump_flags);
3e894af1
KZ
6100 if (flags & TDF_VERBOSE)
6101 print_node (file, "", arg, 4);
6de9cd9a
DN
6102 if (TREE_CHAIN (arg))
6103 fprintf (file, ", ");
6104 arg = TREE_CHAIN (arg);
6105 }
6106 fprintf (file, ")\n");
6107
3e894af1
KZ
6108 if (flags & TDF_VERBOSE)
6109 print_node (file, "", fn, 2);
6110
459ffad3
EB
6111 dsf = DECL_STRUCT_FUNCTION (fn);
6112 if (dsf && (flags & TDF_DETAILS))
6113 dump_eh_tree (file, dsf);
6114
39ecc018 6115 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6de9cd9a
DN
6116 {
6117 dump_node (fn, TDF_SLIM | flags, file);
6118 return;
6119 }
6120
953ff289 6121 /* Switch CFUN to point to FN. */
db2960f4 6122 push_cfun (DECL_STRUCT_FUNCTION (fn));
953ff289 6123
6de9cd9a
DN
6124 /* When GIMPLE is lowered, the variables are no longer available in
6125 BIND_EXPRs, so display them separately. */
cb91fab0 6126 if (cfun && cfun->decl == fn && cfun->local_decls)
6de9cd9a
DN
6127 {
6128 ignore_topmost_bind = true;
6129
6130 fprintf (file, "{\n");
cb91fab0 6131 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6de9cd9a
DN
6132 {
6133 var = TREE_VALUE (vars);
6134
6135 print_generic_decl (file, var, flags);
3e894af1
KZ
6136 if (flags & TDF_VERBOSE)
6137 print_node (file, "", var, 4);
6de9cd9a
DN
6138 fprintf (file, "\n");
6139
6140 any_var = true;
6141 }
6142 }
6143
32a87d45 6144 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6de9cd9a 6145 {
726a989a 6146 /* If the CFG has been built, emit a CFG-based dump. */
878f99d2 6147 check_bb_profile (ENTRY_BLOCK_PTR, file);
6de9cd9a
DN
6148 if (!ignore_topmost_bind)
6149 fprintf (file, "{\n");
6150
6151 if (any_var && n_basic_blocks)
6152 fprintf (file, "\n");
6153
6154 FOR_EACH_BB (bb)
726a989a 6155 gimple_dump_bb (bb, file, 2, flags);
6531d1be 6156
6de9cd9a 6157 fprintf (file, "}\n");
878f99d2 6158 check_bb_profile (EXIT_BLOCK_PTR, file);
6de9cd9a 6159 }
726a989a
RB
6160 else if (DECL_SAVED_TREE (fn) == NULL)
6161 {
6162 /* The function is now in GIMPLE form but the CFG has not been
6163 built yet. Emit the single sequence of GIMPLE statements
6164 that make up its body. */
6165 gimple_seq body = gimple_body (fn);
6166
6167 if (gimple_seq_first_stmt (body)
6168 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6169 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6170 print_gimple_seq (file, body, 0, flags);
6171 else
6172 {
6173 if (!ignore_topmost_bind)
6174 fprintf (file, "{\n");
6175
6176 if (any_var)
6177 fprintf (file, "\n");
6178
6179 print_gimple_seq (file, body, 2, flags);
6180 fprintf (file, "}\n");
6181 }
6182 }
6de9cd9a
DN
6183 else
6184 {
6185 int indent;
6186
6187 /* Make a tree based dump. */
6188 chain = DECL_SAVED_TREE (fn);
6189
953ff289 6190 if (chain && TREE_CODE (chain) == BIND_EXPR)
6de9cd9a
DN
6191 {
6192 if (ignore_topmost_bind)
6193 {
6194 chain = BIND_EXPR_BODY (chain);
6195 indent = 2;
6196 }
6197 else
6198 indent = 0;
6199 }
6200 else
6201 {
6202 if (!ignore_topmost_bind)
6203 fprintf (file, "{\n");
6204 indent = 2;
6205 }
6206
6207 if (any_var)
6208 fprintf (file, "\n");
6209
6210 print_generic_stmt_indented (file, chain, flags, indent);
6211 if (ignore_topmost_bind)
6212 fprintf (file, "}\n");
6213 }
6214
6215 fprintf (file, "\n\n");
953ff289
DN
6216
6217 /* Restore CFUN. */
db2960f4 6218 pop_cfun ();
953ff289
DN
6219}
6220
6221
6222/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6223
6224void
6225debug_function (tree fn, int flags)
6226{
6227 dump_function_to_file (fn, stderr, flags);
6de9cd9a
DN
6228}
6229
6230
d7770457 6231/* Print on FILE the indexes for the predecessors of basic_block BB. */
6de9cd9a
DN
6232
6233static void
628f6a4e 6234print_pred_bbs (FILE *file, basic_block bb)
6de9cd9a 6235{
628f6a4e
BE
6236 edge e;
6237 edge_iterator ei;
6238
6239 FOR_EACH_EDGE (e, ei, bb->preds)
d7770457 6240 fprintf (file, "bb_%d ", e->src->index);
6de9cd9a
DN
6241}
6242
6243
d7770457 6244/* Print on FILE the indexes for the successors of basic_block BB. */
6de9cd9a
DN
6245
6246static void
628f6a4e 6247print_succ_bbs (FILE *file, basic_block bb)
6de9cd9a 6248{
628f6a4e
BE
6249 edge e;
6250 edge_iterator ei;
6251
6252 FOR_EACH_EDGE (e, ei, bb->succs)
d7770457 6253 fprintf (file, "bb_%d ", e->dest->index);
6de9cd9a
DN
6254}
6255
0c8efed8
SP
6256/* Print to FILE the basic block BB following the VERBOSITY level. */
6257
6258void
6259print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6260{
6261 char *s_indent = (char *) alloca ((size_t) indent + 1);
6262 memset ((void *) s_indent, ' ', (size_t) indent);
6263 s_indent[indent] = '\0';
6264
6265 /* Print basic_block's header. */
6266 if (verbosity >= 2)
6267 {
6268 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6269 print_pred_bbs (file, bb);
6270 fprintf (file, "}, succs = {");
6271 print_succ_bbs (file, bb);
6272 fprintf (file, "})\n");
6273 }
6274
6275 /* Print basic_block's body. */
6276 if (verbosity >= 3)
6277 {
6278 fprintf (file, "%s {\n", s_indent);
726a989a 6279 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
0c8efed8
SP
6280 fprintf (file, "%s }\n", s_indent);
6281 }
6282}
6283
6284static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6de9cd9a 6285
0c8efed8
SP
6286/* Pretty print LOOP on FILE, indented INDENT spaces. Following
6287 VERBOSITY level this outputs the contents of the loop, or just its
6288 structure. */
6de9cd9a
DN
6289
6290static void
0c8efed8 6291print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6de9cd9a
DN
6292{
6293 char *s_indent;
6294 basic_block bb;
6531d1be 6295
6de9cd9a
DN
6296 if (loop == NULL)
6297 return;
6298
6299 s_indent = (char *) alloca ((size_t) indent + 1);
6300 memset ((void *) s_indent, ' ', (size_t) indent);
6301 s_indent[indent] = '\0';
6302
0c8efed8
SP
6303 /* Print loop's header. */
6304 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6305 loop->num, loop->header->index, loop->latch->index);
6306 fprintf (file, ", niter = ");
6307 print_generic_expr (file, loop->nb_iterations, 0);
6531d1be 6308
0c8efed8
SP
6309 if (loop->any_upper_bound)
6310 {
6311 fprintf (file, ", upper_bound = ");
6312 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6313 }
6531d1be 6314
0c8efed8
SP
6315 if (loop->any_estimate)
6316 {
6317 fprintf (file, ", estimate = ");
6318 dump_double_int (file, loop->nb_iterations_estimate, true);
6319 }
6320 fprintf (file, ")\n");
6321
6322 /* Print loop's body. */
6323 if (verbosity >= 1)
6324 {
6325 fprintf (file, "%s{\n", s_indent);
6326 FOR_EACH_BB (bb)
6327 if (bb->loop_father == loop)
6328 print_loops_bb (file, bb, indent, verbosity);
6329
6330 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6331 fprintf (file, "%s}\n", s_indent);
6332 }
6de9cd9a
DN
6333}
6334
0c8efed8
SP
6335/* Print the LOOP and its sibling loops on FILE, indented INDENT
6336 spaces. Following VERBOSITY level this outputs the contents of the
6337 loop, or just its structure. */
6338
6339static void
6340print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6341{
6342 if (loop == NULL)
6343 return;
6344
6345 print_loop (file, loop, indent, verbosity);
6346 print_loop_and_siblings (file, loop->next, indent, verbosity);
6347}
6de9cd9a
DN
6348
6349/* Follow a CFG edge from the entry point of the program, and on entry
6350 of a loop, pretty print the loop structure on FILE. */
6351
6531d1be 6352void
0c8efed8 6353print_loops (FILE *file, int verbosity)
6de9cd9a
DN
6354{
6355 basic_block bb;
6531d1be 6356
f8bf9252 6357 bb = ENTRY_BLOCK_PTR;
6de9cd9a 6358 if (bb && bb->loop_father)
0c8efed8 6359 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6de9cd9a
DN
6360}
6361
6362
0c8efed8
SP
6363/* Debugging loops structure at tree level, at some VERBOSITY level. */
6364
6365void
6366debug_loops (int verbosity)
6367{
6368 print_loops (stderr, verbosity);
6369}
6370
6371/* Print on stderr the code of LOOP, at some VERBOSITY level. */
6de9cd9a 6372
6531d1be 6373void
0c8efed8 6374debug_loop (struct loop *loop, int verbosity)
6de9cd9a 6375{
0c8efed8 6376 print_loop (stderr, loop, 0, verbosity);
6de9cd9a
DN
6377}
6378
0c8efed8
SP
6379/* Print on stderr the code of loop number NUM, at some VERBOSITY
6380 level. */
6381
6382void
6383debug_loop_num (unsigned num, int verbosity)
6384{
6385 debug_loop (get_loop (num), verbosity);
6386}
6de9cd9a
DN
6387
6388/* Return true if BB ends with a call, possibly followed by some
6389 instructions that must stay with the call. Return false,
6390 otherwise. */
6391
6392static bool
726a989a 6393gimple_block_ends_with_call_p (basic_block bb)
6de9cd9a 6394{
726a989a
RB
6395 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6396 return is_gimple_call (gsi_stmt (gsi));
6de9cd9a
DN
6397}
6398
6399
6400/* Return true if BB ends with a conditional branch. Return false,
6401 otherwise. */
6402
6403static bool
726a989a 6404gimple_block_ends_with_condjump_p (const_basic_block bb)
6de9cd9a 6405{
726a989a
RB
6406 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6407 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6de9cd9a
DN
6408}
6409
6410
6411/* Return true if we need to add fake edge to exit at statement T.
726a989a 6412 Helper function for gimple_flow_call_edges_add. */
6de9cd9a
DN
6413
6414static bool
726a989a 6415need_fake_edge_p (gimple t)
6de9cd9a 6416{
726a989a
RB
6417 tree fndecl = NULL_TREE;
6418 int call_flags = 0;
6de9cd9a
DN
6419
6420 /* NORETURN and LONGJMP calls already have an edge to exit.
321cf1f2 6421 CONST and PURE calls do not need one.
6de9cd9a
DN
6422 We don't currently check for CONST and PURE here, although
6423 it would be a good idea, because those attributes are
6424 figured out from the RTL in mark_constant_function, and
6425 the counter incrementation code from -fprofile-arcs
6426 leads to different results from -fbranch-probabilities. */
726a989a 6427 if (is_gimple_call (t))
23ef6d21 6428 {
726a989a
RB
6429 fndecl = gimple_call_fndecl (t);
6430 call_flags = gimple_call_flags (t);
23ef6d21
BE
6431 }
6432
726a989a
RB
6433 if (is_gimple_call (t)
6434 && fndecl
6435 && DECL_BUILT_IN (fndecl)
23ef6d21
BE
6436 && (call_flags & ECF_NOTHROW)
6437 && !(call_flags & ECF_NORETURN)
6438 && !(call_flags & ECF_RETURNS_TWICE))
6439 return false;
6440
726a989a
RB
6441 if (is_gimple_call (t)
6442 && !(call_flags & ECF_NORETURN))
6de9cd9a
DN
6443 return true;
6444
e0c68ce9 6445 if (gimple_code (t) == GIMPLE_ASM
726a989a 6446 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6de9cd9a
DN
6447 return true;
6448
6449 return false;
6450}
6451
6452
6453/* Add fake edges to the function exit for any non constant and non
6454 noreturn calls, volatile inline assembly in the bitmap of blocks
6455 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6456 the number of blocks that were split.
6457
6458 The goal is to expose cases in which entering a basic block does
6459 not imply that all subsequent instructions must be executed. */
6460
6461static int
726a989a 6462gimple_flow_call_edges_add (sbitmap blocks)
6de9cd9a
DN
6463{
6464 int i;
6465 int blocks_split = 0;
6466 int last_bb = last_basic_block;
6467 bool check_last_block = false;
6468
24bd1a0b 6469 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6de9cd9a
DN
6470 return 0;
6471
6472 if (! blocks)
6473 check_last_block = true;
6474 else
6475 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6476
6477 /* In the last basic block, before epilogue generation, there will be
6478 a fallthru edge to EXIT. Special care is required if the last insn
6479 of the last basic block is a call because make_edge folds duplicate
6480 edges, which would result in the fallthru edge also being marked
6481 fake, which would result in the fallthru edge being removed by
6482 remove_fake_edges, which would result in an invalid CFG.
6483
6484 Moreover, we can't elide the outgoing fake edge, since the block
6485 profiler needs to take this into account in order to solve the minimal
6486 spanning tree in the case that the call doesn't return.
6487
6488 Handle this by adding a dummy instruction in a new last basic block. */
6489 if (check_last_block)
6490 {
6491 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
726a989a
RB
6492 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6493 gimple t = NULL;
6494
6495 if (!gsi_end_p (gsi))
6496 t = gsi_stmt (gsi);
6de9cd9a 6497
6a60530d 6498 if (t && need_fake_edge_p (t))
6de9cd9a
DN
6499 {
6500 edge e;
6501
9ff3d2de
JL
6502 e = find_edge (bb, EXIT_BLOCK_PTR);
6503 if (e)
6504 {
726a989a
RB
6505 gsi_insert_on_edge (e, gimple_build_nop ());
6506 gsi_commit_edge_inserts ();
9ff3d2de 6507 }
6de9cd9a
DN
6508 }
6509 }
6510
6511 /* Now add fake edges to the function exit for any non constant
6512 calls since there is no way that we can determine if they will
6513 return or not... */
6514 for (i = 0; i < last_bb; i++)
6515 {
6516 basic_block bb = BASIC_BLOCK (i);
726a989a
RB
6517 gimple_stmt_iterator gsi;
6518 gimple stmt, last_stmt;
6de9cd9a
DN
6519
6520 if (!bb)
6521 continue;
6522
6523 if (blocks && !TEST_BIT (blocks, i))
6524 continue;
6525
726a989a
RB
6526 gsi = gsi_last_bb (bb);
6527 if (!gsi_end_p (gsi))
6de9cd9a 6528 {
726a989a 6529 last_stmt = gsi_stmt (gsi);
6de9cd9a
DN
6530 do
6531 {
726a989a 6532 stmt = gsi_stmt (gsi);
6de9cd9a
DN
6533 if (need_fake_edge_p (stmt))
6534 {
6535 edge e;
726a989a 6536
6de9cd9a
DN
6537 /* The handling above of the final block before the
6538 epilogue should be enough to verify that there is
6539 no edge to the exit block in CFG already.
6540 Calling make_edge in such case would cause us to
6541 mark that edge as fake and remove it later. */
6542#ifdef ENABLE_CHECKING
6543 if (stmt == last_stmt)
628f6a4e 6544 {
9ff3d2de
JL
6545 e = find_edge (bb, EXIT_BLOCK_PTR);
6546 gcc_assert (e == NULL);
628f6a4e 6547 }
6de9cd9a
DN
6548#endif
6549
6550 /* Note that the following may create a new basic block
6551 and renumber the existing basic blocks. */
6552 if (stmt != last_stmt)
6553 {
6554 e = split_block (bb, stmt);
6555 if (e)
6556 blocks_split++;
6557 }
6558 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6559 }
726a989a 6560 gsi_prev (&gsi);
6de9cd9a 6561 }
726a989a 6562 while (!gsi_end_p (gsi));
6de9cd9a
DN
6563 }
6564 }
6565
6566 if (blocks_split)
6567 verify_flow_info ();
6568
6569 return blocks_split;
6570}
6571
4f6c2131
EB
6572/* Purge dead abnormal call edges from basic block BB. */
6573
6574bool
726a989a 6575gimple_purge_dead_abnormal_call_edges (basic_block bb)
4f6c2131 6576{
726a989a 6577 bool changed = gimple_purge_dead_eh_edges (bb);
4f6c2131 6578
e3b5732b 6579 if (cfun->has_nonlocal_label)
4f6c2131 6580 {
726a989a 6581 gimple stmt = last_stmt (bb);
4f6c2131
EB
6582 edge_iterator ei;
6583 edge e;
6584
726a989a 6585 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
4f6c2131
EB
6586 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6587 {
6588 if (e->flags & EDGE_ABNORMAL)
6589 {
6590 remove_edge (e);
6591 changed = true;
6592 }
6593 else
6594 ei_next (&ei);
6595 }
6596
726a989a 6597 /* See gimple_purge_dead_eh_edges below. */
4f6c2131
EB
6598 if (changed)
6599 free_dominance_info (CDI_DOMINATORS);
6600 }
6601
6602 return changed;
6603}
6604
672987e8
ZD
6605/* Stores all basic blocks dominated by BB to DOM_BBS. */
6606
6607static void
6608get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
6609{
6610 basic_block son;
6611
6612 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
6613 for (son = first_dom_son (CDI_DOMINATORS, bb);
6614 son;
6615 son = next_dom_son (CDI_DOMINATORS, son))
6616 get_all_dominated_blocks (son, dom_bbs);
6617}
6618
6619/* Removes edge E and all the blocks dominated by it, and updates dominance
6620 information. The IL in E->src needs to be updated separately.
6621 If dominance info is not available, only the edge E is removed.*/
6622
6623void
6624remove_edge_and_dominated_blocks (edge e)
6625{
6626 VEC (basic_block, heap) *bbs_to_remove = NULL;
6627 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6628 bitmap df, df_idom;
6629 edge f;
6630 edge_iterator ei;
6631 bool none_removed = false;
6632 unsigned i;
6633 basic_block bb, dbb;
6634 bitmap_iterator bi;
6635
2b28c07a 6636 if (!dom_info_available_p (CDI_DOMINATORS))
672987e8
ZD
6637 {
6638 remove_edge (e);
6639 return;
6640 }
6641
6642 /* No updating is needed for edges to exit. */
6643 if (e->dest == EXIT_BLOCK_PTR)
6644 {
6645 if (cfgcleanup_altered_bbs)
6646 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6647 remove_edge (e);
6648 return;
6649 }
6650
6651 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6652 that is not dominated by E->dest, then this set is empty. Otherwise,
6653 all the basic blocks dominated by E->dest are removed.
6654
6655 Also, to DF_IDOM we store the immediate dominators of the blocks in
6656 the dominance frontier of E (i.e., of the successors of the
6657 removed blocks, if there are any, and of E->dest otherwise). */
6658 FOR_EACH_EDGE (f, ei, e->dest->preds)
6659 {
6660 if (f == e)
6661 continue;
6662
6663 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6664 {
6665 none_removed = true;
6666 break;
6667 }
6668 }
6669
6670 df = BITMAP_ALLOC (NULL);
6671 df_idom = BITMAP_ALLOC (NULL);
6672
6673 if (none_removed)
6674 bitmap_set_bit (df_idom,
6675 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6676 else
6677 {
6678 get_all_dominated_blocks (e->dest, &bbs_to_remove);
6679 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6680 {
6681 FOR_EACH_EDGE (f, ei, bb->succs)
6682 {
6683 if (f->dest != EXIT_BLOCK_PTR)
6684 bitmap_set_bit (df, f->dest->index);
6685 }
6686 }
6687 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6688 bitmap_clear_bit (df, bb->index);
6689
6690 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6691 {
6692 bb = BASIC_BLOCK (i);
6693 bitmap_set_bit (df_idom,
6694 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6695 }
6696 }
6697
6698 if (cfgcleanup_altered_bbs)
6699 {
6700 /* Record the set of the altered basic blocks. */
6701 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6702 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6703 }
6704
6705 /* Remove E and the cancelled blocks. */
6706 if (none_removed)
6707 remove_edge (e);
6708 else
6709 {
6710 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6711 delete_basic_block (bb);
6712 }
6713
6714 /* Update the dominance information. The immediate dominator may change only
6715 for blocks whose immediate dominator belongs to DF_IDOM:
6716
6717 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6718 removal. Let Z the arbitrary block such that idom(Z) = Y and
6719 Z dominates X after the removal. Before removal, there exists a path P
6720 from Y to X that avoids Z. Let F be the last edge on P that is
6721 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6722 dominates W, and because of P, Z does not dominate W), and W belongs to
6723 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6724 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6725 {
6726 bb = BASIC_BLOCK (i);
6727 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6728 dbb;
6729 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6730 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6731 }
6732
66f97d31 6733 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
672987e8
ZD
6734
6735 BITMAP_FREE (df);
6736 BITMAP_FREE (df_idom);
6737 VEC_free (basic_block, heap, bbs_to_remove);
6738 VEC_free (basic_block, heap, bbs_to_fix_dom);
6739}
6740
4f6c2131
EB
6741/* Purge dead EH edges from basic block BB. */
6742
1eaba2f2 6743bool
726a989a 6744gimple_purge_dead_eh_edges (basic_block bb)
1eaba2f2
RH
6745{
6746 bool changed = false;
628f6a4e
BE
6747 edge e;
6748 edge_iterator ei;
726a989a 6749 gimple stmt = last_stmt (bb);
1eaba2f2 6750
726a989a 6751 if (stmt && stmt_can_throw_internal (stmt))
1eaba2f2
RH
6752 return false;
6753
628f6a4e 6754 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
1eaba2f2 6755 {
1eaba2f2
RH
6756 if (e->flags & EDGE_EH)
6757 {
672987e8 6758 remove_edge_and_dominated_blocks (e);
1eaba2f2
RH
6759 changed = true;
6760 }
628f6a4e
BE
6761 else
6762 ei_next (&ei);
1eaba2f2
RH
6763 }
6764
6765 return changed;
6766}
6767
6768bool
726a989a 6769gimple_purge_all_dead_eh_edges (const_bitmap blocks)
1eaba2f2
RH
6770{
6771 bool changed = false;
3cd8c58a 6772 unsigned i;
87c476a2 6773 bitmap_iterator bi;
1eaba2f2 6774
87c476a2
ZD
6775 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6776 {
833ee764
JJ
6777 basic_block bb = BASIC_BLOCK (i);
6778
6779 /* Earlier gimple_purge_dead_eh_edges could have removed
6780 this basic block already. */
6781 gcc_assert (bb || changed);
6782 if (bb != NULL)
6783 changed |= gimple_purge_dead_eh_edges (bb);
87c476a2 6784 }
1eaba2f2
RH
6785
6786 return changed;
6787}
6de9cd9a 6788
a100ac1e
KH
6789/* This function is called whenever a new edge is created or
6790 redirected. */
6791
6792static void
726a989a 6793gimple_execute_on_growing_pred (edge e)
a100ac1e
KH
6794{
6795 basic_block bb = e->dest;
6796
6797 if (phi_nodes (bb))
6798 reserve_phi_args_for_new_edge (bb);
6799}
6800
e51546f8
KH
6801/* This function is called immediately before edge E is removed from
6802 the edge vector E->dest->preds. */
6803
6804static void
726a989a 6805gimple_execute_on_shrinking_pred (edge e)
e51546f8
KH
6806{
6807 if (phi_nodes (e->dest))
6808 remove_phi_args (e);
6809}
6810
1cb7dfc3
MH
6811/*---------------------------------------------------------------------------
6812 Helper functions for Loop versioning
6813 ---------------------------------------------------------------------------*/
6814
6815/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6816 of 'first'. Both of them are dominated by 'new_head' basic block. When
6817 'new_head' was created by 'second's incoming edge it received phi arguments
6818 on the edge by split_edge(). Later, additional edge 'e' was created to
6531d1be
BF
6819 connect 'new_head' and 'first'. Now this routine adds phi args on this
6820 additional edge 'e' that new_head to second edge received as part of edge
726a989a 6821 splitting. */
1cb7dfc3
MH
6822
6823static void
726a989a
RB
6824gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6825 basic_block new_head, edge e)
1cb7dfc3 6826{
726a989a
RB
6827 gimple phi1, phi2;
6828 gimple_stmt_iterator psi1, psi2;
6829 tree def;
d0e12fc6
KH
6830 edge e2 = find_edge (new_head, second);
6831
6832 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6833 edge, we should always have an edge from NEW_HEAD to SECOND. */
6834 gcc_assert (e2 != NULL);
1cb7dfc3
MH
6835
6836 /* Browse all 'second' basic block phi nodes and add phi args to
6837 edge 'e' for 'first' head. PHI args are always in correct order. */
6838
726a989a
RB
6839 for (psi2 = gsi_start_phis (second),
6840 psi1 = gsi_start_phis (first);
6841 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6842 gsi_next (&psi2), gsi_next (&psi1))
1cb7dfc3 6843 {
726a989a
RB
6844 phi1 = gsi_stmt (psi1);
6845 phi2 = gsi_stmt (psi2);
6846 def = PHI_ARG_DEF (phi2, e2->dest_idx);
d0e12fc6 6847 add_phi_arg (phi1, def, e);
1cb7dfc3
MH
6848 }
6849}
6850
726a989a 6851
6531d1be
BF
6852/* Adds a if else statement to COND_BB with condition COND_EXPR.
6853 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
1cb7dfc3 6854 the destination of the ELSE part. */
726a989a 6855
1cb7dfc3 6856static void
726a989a
RB
6857gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6858 basic_block second_head ATTRIBUTE_UNUSED,
6859 basic_block cond_bb, void *cond_e)
1cb7dfc3 6860{
726a989a
RB
6861 gimple_stmt_iterator gsi;
6862 gimple new_cond_expr;
1cb7dfc3
MH
6863 tree cond_expr = (tree) cond_e;
6864 edge e0;
6865
6866 /* Build new conditional expr */
726a989a
RB
6867 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6868 NULL_TREE, NULL_TREE);
1cb7dfc3 6869
6531d1be 6870 /* Add new cond in cond_bb. */
726a989a
RB
6871 gsi = gsi_last_bb (cond_bb);
6872 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6873
1cb7dfc3
MH
6874 /* Adjust edges appropriately to connect new head with first head
6875 as well as second head. */
6876 e0 = single_succ_edge (cond_bb);
6877 e0->flags &= ~EDGE_FALLTHRU;
6878 e0->flags |= EDGE_FALSE_VALUE;
6879}
6880
726a989a
RB
6881struct cfg_hooks gimple_cfg_hooks = {
6882 "gimple",
6883 gimple_verify_flow_info,
6884 gimple_dump_bb, /* dump_bb */
6de9cd9a 6885 create_bb, /* create_basic_block */
726a989a
RB
6886 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6887 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6888 gimple_can_remove_branch_p, /* can_remove_branch_p */
6de9cd9a 6889 remove_bb, /* delete_basic_block */
726a989a
RB
6890 gimple_split_block, /* split_block */
6891 gimple_move_block_after, /* move_block_after */
6892 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6893 gimple_merge_blocks, /* merge_blocks */
6894 gimple_predict_edge, /* predict_edge */
6895 gimple_predicted_by_p, /* predicted_by_p */
6896 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6897 gimple_duplicate_bb, /* duplicate_block */
6898 gimple_split_edge, /* split_edge */
6899 gimple_make_forwarder_block, /* make_forward_block */
6de9cd9a 6900 NULL, /* tidy_fallthru_edge */
726a989a
RB
6901 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6902 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6903 gimple_flow_call_edges_add, /* flow_call_edges_add */
6904 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6905 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6906 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6907 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6908 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
1cb7dfc3 6909 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6531d1be 6910 flush_pending_stmts /* flush_pending_stmts */
6de9cd9a
DN
6911};
6912
6913
6914/* Split all critical edges. */
6915
c2924966 6916static unsigned int
6de9cd9a
DN
6917split_critical_edges (void)
6918{
6919 basic_block bb;
6920 edge e;
628f6a4e 6921 edge_iterator ei;
6de9cd9a 6922
d6be0d7f
JL
6923 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6924 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6925 mappings around the calls to split_edge. */
6926 start_recording_case_labels ();
6de9cd9a
DN
6927 FOR_ALL_BB (bb)
6928 {
628f6a4e 6929 FOR_EACH_EDGE (e, ei, bb->succs)
6de9cd9a
DN
6930 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6931 {
6932 split_edge (e);
6933 }
6934 }
d6be0d7f 6935 end_recording_case_labels ();
c2924966 6936 return 0;
6de9cd9a
DN
6937}
6938
8ddbbcae 6939struct gimple_opt_pass pass_split_crit_edges =
6de9cd9a 6940{
8ddbbcae
JH
6941 {
6942 GIMPLE_PASS,
5d44aeed 6943 "crited", /* name */
6de9cd9a
DN
6944 NULL, /* gate */
6945 split_critical_edges, /* execute */
6946 NULL, /* sub */
6947 NULL, /* next */
6948 0, /* static_pass_number */
6949 TV_TREE_SPLIT_EDGES, /* tv_id */
6950 PROP_cfg, /* properties required */
6951 PROP_no_crit_edges, /* properties_provided */
6952 0, /* properties_destroyed */
6953 0, /* todo_flags_start */
8ddbbcae
JH
6954 TODO_dump_func /* todo_flags_finish */
6955 }
6de9cd9a 6956};
26277d41 6957
26277d41 6958
726a989a 6959/* Build a ternary operation and gimplify it. Emit code before GSI.
26277d41
PB
6960 Return the gimple_val holding the result. */
6961
6962tree
726a989a 6963gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
26277d41
PB
6964 tree type, tree a, tree b, tree c)
6965{
6966 tree ret;
6967
987b67bc 6968 ret = fold_build3 (code, type, a, b, c);
26277d41
PB
6969 STRIP_NOPS (ret);
6970
726a989a
RB
6971 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6972 GSI_SAME_STMT);
26277d41
PB
6973}
6974
726a989a 6975/* Build a binary operation and gimplify it. Emit code before GSI.
26277d41
PB
6976 Return the gimple_val holding the result. */
6977
6978tree
726a989a 6979gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
26277d41
PB
6980 tree type, tree a, tree b)
6981{
6982 tree ret;
6983
987b67bc 6984 ret = fold_build2 (code, type, a, b);
26277d41
PB
6985 STRIP_NOPS (ret);
6986
726a989a
RB
6987 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6988 GSI_SAME_STMT);
26277d41
PB
6989}
6990
726a989a 6991/* Build a unary operation and gimplify it. Emit code before GSI.
26277d41
PB
6992 Return the gimple_val holding the result. */
6993
6994tree
726a989a 6995gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
26277d41
PB
6996 tree a)
6997{
6998 tree ret;
6999
987b67bc 7000 ret = fold_build1 (code, type, a);
26277d41
PB
7001 STRIP_NOPS (ret);
7002
726a989a
RB
7003 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7004 GSI_SAME_STMT);
26277d41
PB
7005}
7006
7007
6de9cd9a
DN
7008\f
7009/* Emit return warnings. */
7010
c2924966 7011static unsigned int
6de9cd9a
DN
7012execute_warn_function_return (void)
7013{
9506ac2b 7014 source_location location;
726a989a 7015 gimple last;
6de9cd9a 7016 edge e;
628f6a4e 7017 edge_iterator ei;
6de9cd9a 7018
6de9cd9a
DN
7019 /* If we have a path to EXIT, then we do return. */
7020 if (TREE_THIS_VOLATILE (cfun->decl)
628f6a4e 7021 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
6de9cd9a 7022 {
9506ac2b 7023 location = UNKNOWN_LOCATION;
628f6a4e 7024 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6de9cd9a
DN
7025 {
7026 last = last_stmt (e->src);
726a989a
RB
7027 if (gimple_code (last) == GIMPLE_RETURN
7028 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
6de9cd9a
DN
7029 break;
7030 }
9506ac2b
PB
7031 if (location == UNKNOWN_LOCATION)
7032 location = cfun->function_end_locus;
d4ee4d25 7033 warning (0, "%H%<noreturn%> function does return", &location);
6de9cd9a
DN
7034 }
7035
7036 /* If we see "return;" in some basic block, then we do reach the end
7037 without returning a value. */
7038 else if (warn_return_type
089efaa4 7039 && !TREE_NO_WARNING (cfun->decl)
628f6a4e 7040 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
6de9cd9a
DN
7041 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7042 {
628f6a4e 7043 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6de9cd9a 7044 {
726a989a
RB
7045 gimple last = last_stmt (e->src);
7046 if (gimple_code (last) == GIMPLE_RETURN
7047 && gimple_return_retval (last) == NULL
7048 && !gimple_no_warning_p (last))
6de9cd9a 7049 {
726a989a 7050 location = gimple_location (last);
9506ac2b
PB
7051 if (location == UNKNOWN_LOCATION)
7052 location = cfun->function_end_locus;
aa14403d 7053 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
089efaa4 7054 TREE_NO_WARNING (cfun->decl) = 1;
6de9cd9a
DN
7055 break;
7056 }
7057 }
7058 }
c2924966 7059 return 0;
6de9cd9a
DN
7060}
7061
7062
7063/* Given a basic block B which ends with a conditional and has
7064 precisely two successors, determine which of the edges is taken if
7065 the conditional is true and which is taken if the conditional is
7066 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7067
7068void
7069extract_true_false_edges_from_block (basic_block b,
7070 edge *true_edge,
7071 edge *false_edge)
7072{
628f6a4e 7073 edge e = EDGE_SUCC (b, 0);
6de9cd9a
DN
7074
7075 if (e->flags & EDGE_TRUE_VALUE)
7076 {
7077 *true_edge = e;
628f6a4e 7078 *false_edge = EDGE_SUCC (b, 1);
6de9cd9a
DN
7079 }
7080 else
7081 {
7082 *false_edge = e;
628f6a4e 7083 *true_edge = EDGE_SUCC (b, 1);
6de9cd9a
DN
7084 }
7085}
7086
8ddbbcae 7087struct gimple_opt_pass pass_warn_function_return =
6de9cd9a 7088{
8ddbbcae
JH
7089 {
7090 GIMPLE_PASS,
6de9cd9a
DN
7091 NULL, /* name */
7092 NULL, /* gate */
7093 execute_warn_function_return, /* execute */
7094 NULL, /* sub */
7095 NULL, /* next */
7096 0, /* static_pass_number */
7097 0, /* tv_id */
00bfee6f 7098 PROP_cfg, /* properties_required */
6de9cd9a
DN
7099 0, /* properties_provided */
7100 0, /* properties_destroyed */
7101 0, /* todo_flags_start */
8ddbbcae
JH
7102 0 /* todo_flags_finish */
7103 }
6de9cd9a 7104};
aa313ed4
JH
7105
7106/* Emit noreturn warnings. */
7107
c2924966 7108static unsigned int
aa313ed4
JH
7109execute_warn_function_noreturn (void)
7110{
7111 if (warn_missing_noreturn
7112 && !TREE_THIS_VOLATILE (cfun->decl)
7113 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
e8924938 7114 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
3176a0c2
DD
7115 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
7116 "for attribute %<noreturn%>",
aa313ed4 7117 cfun->decl);
c2924966 7118 return 0;
aa313ed4
JH
7119}
7120
8ddbbcae 7121struct gimple_opt_pass pass_warn_function_noreturn =
aa313ed4 7122{
8ddbbcae
JH
7123 {
7124 GIMPLE_PASS,
aa313ed4
JH
7125 NULL, /* name */
7126 NULL, /* gate */
7127 execute_warn_function_noreturn, /* execute */
7128 NULL, /* sub */
7129 NULL, /* next */
7130 0, /* static_pass_number */
7131 0, /* tv_id */
7132 PROP_cfg, /* properties_required */
7133 0, /* properties_provided */
7134 0, /* properties_destroyed */
7135 0, /* todo_flags_start */
8ddbbcae
JH
7136 0 /* todo_flags_finish */
7137 }
aa313ed4 7138};