]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-complex.c
gcc/ada/
[thirdparty/gcc.git] / gcc / tree-complex.c
CommitLineData
0501cacc 1/* Lower complex number operations to scalar operations.
3aea1f79 2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4ee9c684 3
4This file is part of GCC.
48e1416a 5
4ee9c684 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
4ee9c684 9later version.
48e1416a 10
4ee9c684 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
48e1416a 15
4ee9c684 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
4ee9c684 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
4ee9c684 23#include "tm.h"
50c96bdc 24#include "tree.h"
9ed99284 25#include "stor-layout.h"
50c96bdc 26#include "flags.h"
94ea8568 27#include "predict.h"
28#include "vec.h"
29#include "hashtab.h"
30#include "hash-set.h"
31#include "machmode.h"
32#include "hard-reg-set.h"
33#include "input.h"
34#include "function.h"
35#include "dominance.h"
36#include "cfg.h"
bc61cadb 37#include "basic-block.h"
38#include "tree-ssa-alias.h"
39#include "internal-fn.h"
40#include "tree-eh.h"
41#include "gimple-expr.h"
42#include "is-a.h"
e795d6e1 43#include "gimple.h"
a8783bee 44#include "gimplify.h"
dcf1a1ec 45#include "gimple-iterator.h"
e795d6e1 46#include "gimplify-me.h"
073c1fd5 47#include "gimple-ssa.h"
48#include "tree-cfg.h"
49#include "tree-phinodes.h"
50#include "ssa-iterators.h"
9ed99284 51#include "stringpool.h"
073c1fd5 52#include "tree-ssanames.h"
9ed99284 53#include "expr.h"
073c1fd5 54#include "tree-dfa.h"
55#include "tree-ssa.h"
4ee9c684 56#include "tree-iterator.h"
57#include "tree-pass.h"
50c96bdc 58#include "tree-ssa-propagate.h"
d9dd21a8 59#include "tree-hasher.h"
f6568ea4 60#include "cfgloop.h"
50c96bdc 61
62
63/* For each complex ssa name, a lattice value. We're interested in finding
64 out whether a complex number is degenerate in some way, having only real
65 or only complex parts. */
66
8458f4ca 67enum
50c96bdc 68{
69 UNINITIALIZED = 0,
70 ONLY_REAL = 1,
71 ONLY_IMAG = 2,
72 VARYING = 3
8458f4ca 73};
74
75/* The type complex_lattice_t holds combinations of the above
76 constants. */
77typedef int complex_lattice_t;
50c96bdc 78
79#define PAIR(a, b) ((a) << 2 | (b))
80
50c96bdc 81
f1f41a6c 82static vec<complex_lattice_t> complex_lattice_values;
50c96bdc 83
a55dc2cd 84/* For each complex variable, a pair of variables for the components exists in
85 the hashtable. */
c1f445d2 86static int_tree_htab_type *complex_variable_components;
a55dc2cd 87
ff296ce1 88/* For each complex SSA_NAME, a pair of ssa names for the components. */
f1f41a6c 89static vec<tree> complex_ssa_name_components;
ff296ce1 90
a55dc2cd 91/* Lookup UID in the complex_variable_components hashtable and return the
92 associated tree. */
48e1416a 93static tree
a55dc2cd 94cvc_lookup (unsigned int uid)
95{
2933f7af 96 struct int_tree_map in;
a55dc2cd 97 in.uid = uid;
2933f7af 98 return complex_variable_components->find_with_hash (in, uid).to;
a55dc2cd 99}
48e1416a 100
a55dc2cd 101/* Insert the pair UID, TO into the complex_variable_components hashtable. */
102
48e1416a 103static void
a55dc2cd 104cvc_insert (unsigned int uid, tree to)
48e1416a 105{
2933f7af 106 int_tree_map h;
107 int_tree_map *loc;
a55dc2cd 108
2933f7af 109 h.uid = uid;
c1f445d2 110 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
2933f7af 111 loc->uid = uid;
112 loc->to = to;
a55dc2cd 113}
50c96bdc 114
50c96bdc 115/* Return true if T is not a zero constant. In the case of real values,
116 we're only interested in +0.0. */
117
118static int
119some_nonzerop (tree t)
120{
121 int zerop = false;
122
0f241d3f 123 /* Operations with real or imaginary part of a complex number zero
124 cannot be treated the same as operations with a real or imaginary
125 operand if we care about the signs of zeros in the result. */
126 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
50c96bdc 127 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
06f0b99c 128 else if (TREE_CODE (t) == FIXED_CST)
129 zerop = fixed_zerop (t);
50c96bdc 130 else if (TREE_CODE (t) == INTEGER_CST)
131 zerop = integer_zerop (t);
132
133 return !zerop;
134}
135
75a70cf9 136
137/* Compute a lattice value from the components of a complex type REAL
138 and IMAG. */
4ee9c684 139
50c96bdc 140static complex_lattice_t
75a70cf9 141find_lattice_value_parts (tree real, tree imag)
50c96bdc 142{
50c96bdc 143 int r, i;
144 complex_lattice_t ret;
145
75a70cf9 146 r = some_nonzerop (real);
147 i = some_nonzerop (imag);
148 ret = r * ONLY_REAL + i * ONLY_IMAG;
149
150 /* ??? On occasion we could do better than mapping 0+0i to real, but we
151 certainly don't want to leave it UNINITIALIZED, which eventually gets
152 mapped to VARYING. */
153 if (ret == UNINITIALIZED)
154 ret = ONLY_REAL;
155
156 return ret;
157}
158
159
160/* Compute a lattice value from gimple_val T. */
161
162static complex_lattice_t
163find_lattice_value (tree t)
164{
165 tree real, imag;
166
50c96bdc 167 switch (TREE_CODE (t))
168 {
169 case SSA_NAME:
f1f41a6c 170 return complex_lattice_values[SSA_NAME_VERSION (t)];
50c96bdc 171
172 case COMPLEX_CST:
173 real = TREE_REALPART (t);
174 imag = TREE_IMAGPART (t);
175 break;
176
50c96bdc 177 default:
178 gcc_unreachable ();
179 }
180
75a70cf9 181 return find_lattice_value_parts (real, imag);
50c96bdc 182}
183
184/* Determine if LHS is something for which we're interested in seeing
185 simulation results. */
186
187static bool
188is_complex_reg (tree lhs)
189{
190 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
191}
192
193/* Mark the incoming parameters to the function as VARYING. */
194
195static void
196init_parameter_lattice_values (void)
197{
89cd38e0 198 tree parm, ssa_name;
50c96bdc 199
1767a056 200 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
89cd38e0 201 if (is_complex_reg (parm)
c6dfe037 202 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
f1f41a6c 203 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
50c96bdc 204}
205
75a70cf9 206/* Initialize simulation state for each statement. Return false if we
207 found no statements we want to simulate, and thus there's nothing
208 for the entire pass to do. */
50c96bdc 209
210static bool
211init_dont_simulate_again (void)
212{
213 basic_block bb;
75a70cf9 214 gimple_stmt_iterator gsi;
215 gimple phi;
4c70bf73 216 bool saw_a_complex_op = false;
50c96bdc 217
fc00614f 218 FOR_EACH_BB_FN (bb, cfun)
50c96bdc 219 {
75a70cf9 220 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
221 {
222 phi = gsi_stmt (gsi);
223 prop_set_simulate_again (phi,
224 is_complex_reg (gimple_phi_result (phi)));
225 }
50c96bdc 226
75a70cf9 227 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
50c96bdc 228 {
75a70cf9 229 gimple stmt;
230 tree op0, op1;
231 bool sim_again_p;
50c96bdc 232
75a70cf9 233 stmt = gsi_stmt (gsi);
234 op0 = op1 = NULL_TREE;
3e52527d 235
48e1416a 236 /* Most control-altering statements must be initially
3e52527d 237 simulated, else we won't cover the entire cfg. */
75a70cf9 238 sim_again_p = stmt_ends_bb_p (stmt);
3e52527d 239
75a70cf9 240 switch (gimple_code (stmt))
50c96bdc 241 {
75a70cf9 242 case GIMPLE_CALL:
243 if (gimple_call_lhs (stmt))
244 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
245 break;
4c70bf73 246
75a70cf9 247 case GIMPLE_ASSIGN:
248 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
249 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
250 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
251 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
252 else
253 op0 = gimple_assign_rhs1 (stmt);
254 if (gimple_num_ops (stmt) > 2)
255 op1 = gimple_assign_rhs2 (stmt);
4c70bf73 256 break;
257
75a70cf9 258 case GIMPLE_COND:
259 op0 = gimple_cond_lhs (stmt);
260 op1 = gimple_cond_rhs (stmt);
4c70bf73 261 break;
262
263 default:
264 break;
50c96bdc 265 }
266
75a70cf9 267 if (op0 || op1)
268 switch (gimple_expr_code (stmt))
4c70bf73 269 {
270 case EQ_EXPR:
271 case NE_EXPR:
4c70bf73 272 case PLUS_EXPR:
273 case MINUS_EXPR:
274 case MULT_EXPR:
275 case TRUNC_DIV_EXPR:
276 case CEIL_DIV_EXPR:
277 case FLOOR_DIV_EXPR:
278 case ROUND_DIV_EXPR:
279 case RDIV_EXPR:
75a70cf9 280 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
281 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
282 saw_a_complex_op = true;
283 break;
284
4c70bf73 285 case NEGATE_EXPR:
286 case CONJ_EXPR:
75a70cf9 287 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
4c70bf73 288 saw_a_complex_op = true;
289 break;
290
a70770d2 291 case REALPART_EXPR:
292 case IMAGPART_EXPR:
293 /* The total store transformation performed during
75a70cf9 294 gimplification creates such uninitialized loads
295 and we need to lower the statement to be able
296 to fix things up. */
297 if (TREE_CODE (op0) == SSA_NAME
298 && ssa_undefined_value_p (op0))
a70770d2 299 saw_a_complex_op = true;
300 break;
301
4c70bf73 302 default:
303 break;
304 }
305
75a70cf9 306 prop_set_simulate_again (stmt, sim_again_p);
50c96bdc 307 }
308 }
309
4c70bf73 310 return saw_a_complex_op;
50c96bdc 311}
312
313
314/* Evaluate statement STMT against the complex lattice defined above. */
315
316static enum ssa_prop_result
75a70cf9 317complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
50c96bdc 318 tree *result_p)
319{
320 complex_lattice_t new_l, old_l, op1_l, op2_l;
321 unsigned int ver;
75a70cf9 322 tree lhs;
50c96bdc 323
75a70cf9 324 lhs = gimple_get_lhs (stmt);
325 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
326 if (!lhs)
3e52527d 327 return SSA_PROP_VARYING;
50c96bdc 328
3e52527d 329 /* These conditions should be satisfied due to the initial filter
330 set up in init_dont_simulate_again. */
50c96bdc 331 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
332 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
333
334 *result_p = lhs;
335 ver = SSA_NAME_VERSION (lhs);
f1f41a6c 336 old_l = complex_lattice_values[ver];
50c96bdc 337
75a70cf9 338 switch (gimple_expr_code (stmt))
50c96bdc 339 {
340 case SSA_NAME:
50c96bdc 341 case COMPLEX_CST:
75a70cf9 342 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
343 break;
344
345 case COMPLEX_EXPR:
346 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
347 gimple_assign_rhs2 (stmt));
50c96bdc 348 break;
349
350 case PLUS_EXPR:
351 case MINUS_EXPR:
75a70cf9 352 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
353 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
50c96bdc 354
355 /* We've set up the lattice values such that IOR neatly
356 models addition. */
357 new_l = op1_l | op2_l;
358 break;
359
360 case MULT_EXPR:
361 case RDIV_EXPR:
362 case TRUNC_DIV_EXPR:
363 case CEIL_DIV_EXPR:
364 case FLOOR_DIV_EXPR:
365 case ROUND_DIV_EXPR:
75a70cf9 366 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
367 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
50c96bdc 368
369 /* Obviously, if either varies, so does the result. */
370 if (op1_l == VARYING || op2_l == VARYING)
371 new_l = VARYING;
372 /* Don't prematurely promote variables if we've not yet seen
373 their inputs. */
374 else if (op1_l == UNINITIALIZED)
375 new_l = op2_l;
376 else if (op2_l == UNINITIALIZED)
377 new_l = op1_l;
378 else
379 {
380 /* At this point both numbers have only one component. If the
381 numbers are of opposite kind, the result is imaginary,
382 otherwise the result is real. The add/subtract translates
383 the real/imag from/to 0/1; the ^ performs the comparison. */
384 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
385
386 /* Don't allow the lattice value to flip-flop indefinitely. */
387 new_l |= old_l;
388 }
389 break;
390
391 case NEGATE_EXPR:
392 case CONJ_EXPR:
75a70cf9 393 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
50c96bdc 394 break;
395
396 default:
397 new_l = VARYING;
398 break;
399 }
400
401 /* If nothing changed this round, let the propagator know. */
402 if (new_l == old_l)
403 return SSA_PROP_NOT_INTERESTING;
404
f1f41a6c 405 complex_lattice_values[ver] = new_l;
50c96bdc 406 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
407}
408
409/* Evaluate a PHI node against the complex lattice defined above. */
410
411static enum ssa_prop_result
75a70cf9 412complex_visit_phi (gimple phi)
50c96bdc 413{
414 complex_lattice_t new_l, old_l;
415 unsigned int ver;
416 tree lhs;
417 int i;
418
75a70cf9 419 lhs = gimple_phi_result (phi);
50c96bdc 420
421 /* This condition should be satisfied due to the initial filter
422 set up in init_dont_simulate_again. */
423 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
424
425 /* We've set up the lattice values such that IOR neatly models PHI meet. */
426 new_l = UNINITIALIZED;
75a70cf9 427 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
428 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
50c96bdc 429
430 ver = SSA_NAME_VERSION (lhs);
f1f41a6c 431 old_l = complex_lattice_values[ver];
50c96bdc 432
433 if (new_l == old_l)
434 return SSA_PROP_NOT_INTERESTING;
435
f1f41a6c 436 complex_lattice_values[ver] = new_l;
50c96bdc 437 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
438}
439
ff296ce1 440/* Create one backing variable for a complex component of ORIG. */
50c96bdc 441
ff296ce1 442static tree
443create_one_component_var (tree type, tree orig, const char *prefix,
444 const char *suffix, enum tree_code code)
50c96bdc 445{
ff296ce1 446 tree r = create_tmp_var (type, prefix);
50c96bdc 447
ff296ce1 448 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
449 DECL_ARTIFICIAL (r) = 1;
4c70bf73 450
ff296ce1 451 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
452 {
453 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
ff296ce1 454
455 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
50c96bdc 456
ff296ce1 457 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
8e966116 458 DECL_HAS_DEBUG_EXPR_P (r) = 1;
ff296ce1 459 DECL_IGNORED_P (r) = 0;
460 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
461 }
462 else
50c96bdc 463 {
ff296ce1 464 DECL_IGNORED_P (r) = 1;
465 TREE_NO_WARNING (r) = 1;
466 }
50c96bdc 467
ff296ce1 468 return r;
469}
50c96bdc 470
ff296ce1 471/* Retrieve a value for a complex component of VAR. */
50c96bdc 472
ff296ce1 473static tree
474get_component_var (tree var, bool imag_p)
475{
476 size_t decl_index = DECL_UID (var) * 2 + imag_p;
477 tree ret = cvc_lookup (decl_index);
478
479 if (ret == NULL)
480 {
481 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
482 imag_p ? "CI" : "CR",
483 imag_p ? "$imag" : "$real",
484 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
485 cvc_insert (decl_index, ret);
486 }
487
488 return ret;
489}
50c96bdc 490
ff296ce1 491/* Retrieve a value for a complex component of SSA_NAME. */
50c96bdc 492
ff296ce1 493static tree
494get_component_ssa_name (tree ssa_name, bool imag_p)
495{
496 complex_lattice_t lattice = find_lattice_value (ssa_name);
497 size_t ssa_name_index;
498 tree ret;
50c96bdc 499
ff296ce1 500 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
501 {
502 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
503 if (SCALAR_FLOAT_TYPE_P (inner_type))
504 return build_real (inner_type, dconst0);
505 else
506 return build_int_cst (inner_type, 0);
507 }
50c96bdc 508
ff296ce1 509 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
f1f41a6c 510 ret = complex_ssa_name_components[ssa_name_index];
ff296ce1 511 if (ret == NULL)
512 {
ec11736b 513 if (SSA_NAME_VAR (ssa_name))
514 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
515 else
516 ret = TREE_TYPE (TREE_TYPE (ssa_name));
ff296ce1 517 ret = make_ssa_name (ret, NULL);
518
519 /* Copy some properties from the original. In particular, whether it
520 is used in an abnormal phi, and whether it's uninitialized. */
521 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
522 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
2f4ec87c 523 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
524 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
ff296ce1 525 {
526 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
c6dfe037 527 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
50c96bdc 528 }
529
f1f41a6c 530 complex_ssa_name_components[ssa_name_index] = ret;
50c96bdc 531 }
ff296ce1 532
533 return ret;
534}
535
75a70cf9 536/* Set a value for a complex component of SSA_NAME, return a
537 gimple_seq of stuff that needs doing. */
ff296ce1 538
75a70cf9 539static gimple_seq
ff296ce1 540set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
541{
542 complex_lattice_t lattice = find_lattice_value (ssa_name);
543 size_t ssa_name_index;
75a70cf9 544 tree comp;
545 gimple last;
546 gimple_seq list;
ff296ce1 547
548 /* We know the value must be zero, else there's a bug in our lattice
549 analysis. But the value may well be a variable known to contain
550 zero. We should be safe ignoring it. */
551 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
552 return NULL;
553
554 /* If we've already assigned an SSA_NAME to this component, then this
555 means that our walk of the basic blocks found a use before the set.
556 This is fine. Now we should create an initialization for the value
557 we created earlier. */
558 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
f1f41a6c 559 comp = complex_ssa_name_components[ssa_name_index];
ff296ce1 560 if (comp)
561 ;
562
563 /* If we've nothing assigned, and the value we're given is already stable,
738571e8 564 then install that as the value for this SSA_NAME. This preemptively
ff296ce1 565 copy-propagates the value, which avoids unnecessary memory allocation. */
09c1e135 566 else if (is_gimple_min_invariant (value)
567 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
ff296ce1 568 {
f1f41a6c 569 complex_ssa_name_components[ssa_name_index] = value;
ff296ce1 570 return NULL;
571 }
572 else if (TREE_CODE (value) == SSA_NAME
573 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
574 {
575 /* Replace an anonymous base value with the variable from cvc_lookup.
576 This should result in better debug info. */
ec11736b 577 if (SSA_NAME_VAR (ssa_name)
578 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
ff296ce1 579 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
580 {
581 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
10c7b13c 582 replace_ssa_name_symbol (value, comp);
ff296ce1 583 }
584
f1f41a6c 585 complex_ssa_name_components[ssa_name_index] = value;
ff296ce1 586 return NULL;
587 }
588
589 /* Finally, we need to stabilize the result by installing the value into
590 a new ssa name. */
591 else
592 comp = get_component_ssa_name (ssa_name, imag_p);
48e1416a 593
ff296ce1 594 /* Do all the work to assign VALUE to COMP. */
75a70cf9 595 list = NULL;
ff296ce1 596 value = force_gimple_operand (value, &list, false, NULL);
75a70cf9 597 last = gimple_build_assign (comp, value);
598 gimple_seq_add_stmt (&list, last);
599 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
ff296ce1 600
601 return list;
50c96bdc 602}
4ee9c684 603
4ee9c684 604/* Extract the real or imaginary part of a complex variable or constant.
605 Make sure that it's a proper gimple_val and gimplify it if not.
75a70cf9 606 Emit any new code before gsi. */
4ee9c684 607
608static tree
75a70cf9 609extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
50c96bdc 610 bool gimple_p)
4ee9c684 611{
4ee9c684 612 switch (TREE_CODE (t))
613 {
614 case COMPLEX_CST:
50c96bdc 615 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
4ee9c684 616
617 case COMPLEX_EXPR:
75a70cf9 618 gcc_unreachable ();
4ee9c684 619
620 case VAR_DECL:
a0e0d272 621 case RESULT_DECL:
4ee9c684 622 case PARM_DECL:
50c96bdc 623 case COMPONENT_REF:
624 case ARRAY_REF:
b39bfa08 625 case VIEW_CONVERT_EXPR:
182cf5a9 626 case MEM_REF:
50c96bdc 627 {
628 tree inner_type = TREE_TYPE (TREE_TYPE (t));
629
630 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
631 inner_type, unshare_expr (t));
632
633 if (gimple_p)
75a70cf9 634 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
635 GSI_SAME_STMT);
50c96bdc 636
637 return t;
638 }
639
640 case SSA_NAME:
ff296ce1 641 return get_component_ssa_name (t, imagpart_p);
4ee9c684 642
643 default:
8c0963c4 644 gcc_unreachable ();
4ee9c684 645 }
50c96bdc 646}
647
648/* Update the complex components of the ssa name on the lhs of STMT. */
4ee9c684 649
50c96bdc 650static void
75a70cf9 651update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
652 tree i)
50c96bdc 653{
75a70cf9 654 tree lhs;
655 gimple_seq list;
656
657 lhs = gimple_get_lhs (stmt);
ff296ce1 658
659 list = set_component_ssa_name (lhs, false, r);
660 if (list)
75a70cf9 661 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
ff296ce1 662
663 list = set_component_ssa_name (lhs, true, i);
664 if (list)
75a70cf9 665 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
4ee9c684 666}
667
a8b94d35 668static void
ff296ce1 669update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
a8b94d35 670{
75a70cf9 671 gimple_seq list;
a8b94d35 672
ff296ce1 673 list = set_component_ssa_name (lhs, false, r);
674 if (list)
75a70cf9 675 gsi_insert_seq_on_edge (e, list);
a8b94d35 676
ff296ce1 677 list = set_component_ssa_name (lhs, true, i);
678 if (list)
75a70cf9 679 gsi_insert_seq_on_edge (e, list);
a8b94d35 680}
681
75a70cf9 682
4ee9c684 683/* Update an assignment to a complex variable in place. */
684
685static void
75a70cf9 686update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
4ee9c684 687{
aa9d6f35 688 gimple stmt;
75a70cf9 689
e3a19533 690 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
691 stmt = gsi_stmt (*gsi);
aa9d6f35 692 update_stmt (stmt);
693 if (maybe_clean_eh_stmt (stmt))
694 gimple_purge_dead_eh_edges (gimple_bb (stmt));
e3a19533 695
696 if (gimple_in_ssa_p (cfun))
697 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
50c96bdc 698}
699
75a70cf9 700
50c96bdc 701/* Generate code at the entry point of the function to initialize the
702 component variables for a complex parameter. */
703
704static void
705update_parameter_components (void)
706{
34154e27 707 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
50c96bdc 708 tree parm;
709
1767a056 710 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
50c96bdc 711 {
712 tree type = TREE_TYPE (parm);
a8b94d35 713 tree ssa_name, r, i;
50c96bdc 714
715 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
716 continue;
717
718 type = TREE_TYPE (type);
c6dfe037 719 ssa_name = ssa_default_def (cfun, parm);
f3640b8a 720 if (!ssa_name)
721 continue;
50c96bdc 722
a8b94d35 723 r = build1 (REALPART_EXPR, type, ssa_name);
724 i = build1 (IMAGPART_EXPR, type, ssa_name);
ff296ce1 725 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
50c96bdc 726 }
727}
728
729/* Generate code to set the component variables of a complex variable
730 to match the PHI statements in block BB. */
731
732static void
733update_phi_components (basic_block bb)
734{
75a70cf9 735 gimple_stmt_iterator gsi;
50c96bdc 736
75a70cf9 737 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
738 {
739 gimple phi = gsi_stmt (gsi);
50c96bdc 740
75a70cf9 741 if (is_complex_reg (gimple_phi_result (phi)))
742 {
743 tree lr, li;
744 gimple pr = NULL, pi = NULL;
745 unsigned int i, n;
ff296ce1 746
75a70cf9 747 lr = get_component_ssa_name (gimple_phi_result (phi), false);
748 if (TREE_CODE (lr) == SSA_NAME)
9c06f260 749 pr = create_phi_node (lr, bb);
75a70cf9 750
751 li = get_component_ssa_name (gimple_phi_result (phi), true);
752 if (TREE_CODE (li) == SSA_NAME)
9c06f260 753 pi = create_phi_node (li, bb);
75a70cf9 754
755 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
756 {
757 tree comp, arg = gimple_phi_arg_def (phi, i);
758 if (pr)
759 {
760 comp = extract_component (NULL, arg, false, false);
761 SET_PHI_ARG_DEF (pr, i, comp);
762 }
763 if (pi)
764 {
765 comp = extract_component (NULL, arg, true, false);
766 SET_PHI_ARG_DEF (pi, i, comp);
767 }
768 }
769 }
770 }
50c96bdc 771}
772
50c96bdc 773/* Expand a complex move to scalars. */
774
775static void
75a70cf9 776expand_complex_move (gimple_stmt_iterator *gsi, tree type)
50c96bdc 777{
778 tree inner_type = TREE_TYPE (type);
75a70cf9 779 tree r, i, lhs, rhs;
780 gimple stmt = gsi_stmt (*gsi);
781
782 if (is_gimple_assign (stmt))
783 {
784 lhs = gimple_assign_lhs (stmt);
785 if (gimple_num_ops (stmt) == 2)
786 rhs = gimple_assign_rhs1 (stmt);
787 else
788 rhs = NULL_TREE;
789 }
790 else if (is_gimple_call (stmt))
791 {
792 lhs = gimple_call_lhs (stmt);
793 rhs = NULL_TREE;
794 }
795 else
796 gcc_unreachable ();
50c96bdc 797
798 if (TREE_CODE (lhs) == SSA_NAME)
799 {
75a70cf9 800 if (is_ctrl_altering_stmt (stmt))
a8b94d35 801 {
a8b94d35 802 edge e;
803
804 /* The value is not assigned on the exception edges, so we need not
805 concern ourselves there. We do need to update on the fallthru
806 edge. Find it. */
7f58c05e 807 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
808 if (!e)
809 gcc_unreachable ();
a8b94d35 810
811 r = build1 (REALPART_EXPR, inner_type, lhs);
812 i = build1 (IMAGPART_EXPR, inner_type, lhs);
ff296ce1 813 update_complex_components_on_edge (e, lhs, r, i);
a8b94d35 814 }
75a70cf9 815 else if (is_gimple_call (stmt)
816 || gimple_has_side_effects (stmt)
817 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
50c96bdc 818 {
a8b94d35 819 r = build1 (REALPART_EXPR, inner_type, lhs);
820 i = build1 (IMAGPART_EXPR, inner_type, lhs);
75a70cf9 821 update_complex_components (gsi, stmt, r, i);
50c96bdc 822 }
823 else
824 {
75a70cf9 825 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
826 {
827 r = extract_component (gsi, rhs, 0, true);
828 i = extract_component (gsi, rhs, 1, true);
829 }
830 else
831 {
832 r = gimple_assign_rhs1 (stmt);
833 i = gimple_assign_rhs2 (stmt);
834 }
835 update_complex_assignment (gsi, r, i);
50c96bdc 836 }
837 }
75a70cf9 838 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
50c96bdc 839 {
840 tree x;
75a70cf9 841 gimple t;
f772e50c 842 location_t loc;
50c96bdc 843
f772e50c 844 loc = gimple_location (stmt);
75a70cf9 845 r = extract_component (gsi, rhs, 0, false);
846 i = extract_component (gsi, rhs, 1, false);
50c96bdc 847
848 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
75a70cf9 849 t = gimple_build_assign (x, r);
f772e50c 850 gimple_set_location (t, loc);
75a70cf9 851 gsi_insert_before (gsi, t, GSI_SAME_STMT);
50c96bdc 852
75a70cf9 853 if (stmt == gsi_stmt (*gsi))
50c96bdc 854 {
855 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
75a70cf9 856 gimple_assign_set_lhs (stmt, x);
857 gimple_assign_set_rhs1 (stmt, i);
50c96bdc 858 }
859 else
860 {
861 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
75a70cf9 862 t = gimple_build_assign (x, i);
f772e50c 863 gimple_set_location (t, loc);
75a70cf9 864 gsi_insert_before (gsi, t, GSI_SAME_STMT);
50c96bdc 865
75a70cf9 866 stmt = gsi_stmt (*gsi);
867 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
868 gimple_return_set_retval (stmt, lhs);
50c96bdc 869 }
870
50c96bdc 871 update_stmt (stmt);
872 }
4ee9c684 873}
874
875/* Expand complex addition to scalars:
876 a + b = (ar + br) + i(ai + bi)
877 a - b = (ar - br) + i(ai + bi)
878*/
879
880static void
75a70cf9 881expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
4ee9c684 882 tree ar, tree ai, tree br, tree bi,
50c96bdc 883 enum tree_code code,
884 complex_lattice_t al, complex_lattice_t bl)
4ee9c684 885{
886 tree rr, ri;
887
50c96bdc 888 switch (PAIR (al, bl))
889 {
890 case PAIR (ONLY_REAL, ONLY_REAL):
75a70cf9 891 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
50c96bdc 892 ri = ai;
893 break;
894
895 case PAIR (ONLY_REAL, ONLY_IMAG):
896 rr = ar;
897 if (code == MINUS_EXPR)
75a70cf9 898 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
50c96bdc 899 else
900 ri = bi;
901 break;
902
903 case PAIR (ONLY_IMAG, ONLY_REAL):
904 if (code == MINUS_EXPR)
75a70cf9 905 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
50c96bdc 906 else
907 rr = br;
908 ri = ai;
909 break;
910
911 case PAIR (ONLY_IMAG, ONLY_IMAG):
912 rr = ar;
75a70cf9 913 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
50c96bdc 914 break;
915
916 case PAIR (VARYING, ONLY_REAL):
75a70cf9 917 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
50c96bdc 918 ri = ai;
919 break;
920
921 case PAIR (VARYING, ONLY_IMAG):
922 rr = ar;
75a70cf9 923 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
50c96bdc 924 break;
925
926 case PAIR (ONLY_REAL, VARYING):
927 if (code == MINUS_EXPR)
928 goto general;
75a70cf9 929 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
50c96bdc 930 ri = bi;
931 break;
932
933 case PAIR (ONLY_IMAG, VARYING):
934 if (code == MINUS_EXPR)
935 goto general;
936 rr = br;
75a70cf9 937 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
50c96bdc 938 break;
939
940 case PAIR (VARYING, VARYING):
941 general:
75a70cf9 942 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
943 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
50c96bdc 944 break;
945
946 default:
947 gcc_unreachable ();
948 }
4ee9c684 949
75a70cf9 950 update_complex_assignment (gsi, rr, ri);
4ee9c684 951}
952
0dfc45b5 953/* Expand a complex multiplication or division to a libcall to the c99
954 compliant routines. */
955
956static void
75a70cf9 957expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
0dfc45b5 958 tree br, tree bi, enum tree_code code)
959{
3754d046 960 machine_mode mode;
0dfc45b5 961 enum built_in_function bcode;
75a70cf9 962 tree fn, type, lhs;
3985d017 963 gimple old_stmt, stmt;
0dfc45b5 964
3985d017 965 old_stmt = gsi_stmt (*gsi);
966 lhs = gimple_assign_lhs (old_stmt);
75a70cf9 967 type = TREE_TYPE (lhs);
0dfc45b5 968
969 mode = TYPE_MODE (type);
970 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
75a70cf9 971
0dfc45b5 972 if (code == MULT_EXPR)
8458f4ca 973 bcode = ((enum built_in_function)
974 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
0dfc45b5 975 else if (code == RDIV_EXPR)
8458f4ca 976 bcode = ((enum built_in_function)
977 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
0dfc45b5 978 else
979 gcc_unreachable ();
b9a16870 980 fn = builtin_decl_explicit (bcode);
0dfc45b5 981
75a70cf9 982 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
983 gimple_call_set_lhs (stmt, lhs);
22aa74c4 984 update_stmt (stmt);
3985d017 985 gsi_replace (gsi, stmt, false);
986
987 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
988 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
50c96bdc 989
2d04fd8d 990 if (gimple_in_ssa_p (cfun))
50c96bdc 991 {
1737b88c 992 type = TREE_TYPE (type);
75a70cf9 993 update_complex_components (gsi, stmt,
50c96bdc 994 build1 (REALPART_EXPR, type, lhs),
995 build1 (IMAGPART_EXPR, type, lhs));
75a70cf9 996 SSA_NAME_DEF_STMT (lhs) = stmt;
50c96bdc 997 }
0dfc45b5 998}
999
4ee9c684 1000/* Expand complex multiplication to scalars:
1001 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1002*/
1003
1004static void
75a70cf9 1005expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
50c96bdc 1006 tree ar, tree ai, tree br, tree bi,
1007 complex_lattice_t al, complex_lattice_t bl)
4ee9c684 1008{
50c96bdc 1009 tree rr, ri;
4ee9c684 1010
50c96bdc 1011 if (al < bl)
0dfc45b5 1012 {
50c96bdc 1013 complex_lattice_t tl;
1014 rr = ar, ar = br, br = rr;
1015 ri = ai, ai = bi, bi = ri;
1016 tl = al, al = bl, bl = tl;
0dfc45b5 1017 }
1018
50c96bdc 1019 switch (PAIR (al, bl))
1020 {
1021 case PAIR (ONLY_REAL, ONLY_REAL):
75a70cf9 1022 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
50c96bdc 1023 ri = ai;
1024 break;
4ee9c684 1025
50c96bdc 1026 case PAIR (ONLY_IMAG, ONLY_REAL):
1027 rr = ar;
1028 if (TREE_CODE (ai) == REAL_CST
1029 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1030 ri = br;
1031 else
75a70cf9 1032 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
50c96bdc 1033 break;
4ee9c684 1034
50c96bdc 1035 case PAIR (ONLY_IMAG, ONLY_IMAG):
75a70cf9 1036 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1037 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
50c96bdc 1038 ri = ar;
1039 break;
1040
1041 case PAIR (VARYING, ONLY_REAL):
75a70cf9 1042 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1043 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
50c96bdc 1044 break;
1045
1046 case PAIR (VARYING, ONLY_IMAG):
75a70cf9 1047 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1048 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1049 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
50c96bdc 1050 break;
1051
1052 case PAIR (VARYING, VARYING):
1053 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1054 {
75a70cf9 1055 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
50c96bdc 1056 return;
1057 }
1058 else
1059 {
1060 tree t1, t2, t3, t4;
1061
75a70cf9 1062 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1063 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1064 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
50c96bdc 1065
1066 /* Avoid expanding redundant multiplication for the common
1067 case of squaring a complex number. */
1068 if (ar == br && ai == bi)
1069 t4 = t3;
1070 else
75a70cf9 1071 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
50c96bdc 1072
75a70cf9 1073 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1074 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
50c96bdc 1075 }
1076 break;
1077
1078 default:
1079 gcc_unreachable ();
1080 }
4ee9c684 1081
75a70cf9 1082 update_complex_assignment (gsi, rr, ri);
4ee9c684 1083}
1084
03a7d9e9 1085/* Keep this algorithm in sync with fold-const.c:const_binop().
48e1416a 1086
03a7d9e9 1087 Expand complex division to scalars, straightforward algorithm.
4ee9c684 1088 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1089 t = br*br + bi*bi
1090*/
1091
1092static void
75a70cf9 1093expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
4ee9c684 1094 tree ar, tree ai, tree br, tree bi,
1095 enum tree_code code)
1096{
1097 tree rr, ri, div, t1, t2, t3;
1098
75a70cf9 1099 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1100 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1101 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
4ee9c684 1102
75a70cf9 1103 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1104 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1105 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1106 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
4ee9c684 1107
75a70cf9 1108 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1109 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1110 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1111 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
4ee9c684 1112
75a70cf9 1113 update_complex_assignment (gsi, rr, ri);
4ee9c684 1114}
1115
03a7d9e9 1116/* Keep this algorithm in sync with fold-const.c:const_binop().
1117
1118 Expand complex division to scalars, modified algorithm to minimize
4ee9c684 1119 overflow with wide input ranges. */
1120
1121static void
75a70cf9 1122expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
4ee9c684 1123 tree ar, tree ai, tree br, tree bi,
1124 enum tree_code code)
1125{
7076cb5d 1126 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
51009286 1127 basic_block bb_cond, bb_true, bb_false, bb_join;
75a70cf9 1128 gimple stmt;
4ee9c684 1129
1130 /* Examine |br| < |bi|, and branch. */
75a70cf9 1131 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1132 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
389dd41b 1133 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
2cbde604 1134 LT_EXPR, boolean_type_node, t1, t2);
7076cb5d 1135 STRIP_NOPS (compare);
4ee9c684 1136
51009286 1137 bb_cond = bb_true = bb_false = bb_join = NULL;
1138 rr = ri = tr = ti = NULL;
2cbde604 1139 if (TREE_CODE (compare) != INTEGER_CST)
4ee9c684 1140 {
4ee9c684 1141 edge e;
75a70cf9 1142 gimple stmt;
7076cb5d 1143 tree cond, tmp;
4ee9c684 1144
7076cb5d 1145 tmp = create_tmp_var (boolean_type_node, NULL);
75a70cf9 1146 stmt = gimple_build_assign (tmp, compare);
7076cb5d 1147 if (gimple_in_ssa_p (cfun))
75a70cf9 1148 {
1149 tmp = make_ssa_name (tmp, stmt);
1150 gimple_assign_set_lhs (stmt, tmp);
1151 }
1152
1153 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
7076cb5d 1154
389dd41b 1155 cond = fold_build2_loc (gimple_location (stmt),
1156 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
75a70cf9 1157 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1158 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
4ee9c684 1159
4ee9c684 1160 /* Split the original block, and create the TRUE and FALSE blocks. */
75a70cf9 1161 e = split_block (gsi_bb (*gsi), stmt);
4ee9c684 1162 bb_cond = e->src;
1163 bb_join = e->dest;
1164 bb_true = create_empty_bb (bb_cond);
1165 bb_false = create_empty_bb (bb_true);
1166
1167 /* Wire the blocks together. */
1168 e->flags = EDGE_TRUE_VALUE;
1169 redirect_edge_succ (e, bb_true);
1170 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
ba65f12f 1171 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1172 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
b3083327 1173 add_bb_to_loop (bb_true, bb_cond->loop_father);
1174 add_bb_to_loop (bb_false, bb_cond->loop_father);
4ee9c684 1175
1176 /* Update dominance info. Note that bb_join's data was
1177 updated by split_block. */
6b9d2769 1178 if (dom_info_available_p (CDI_DOMINATORS))
4ee9c684 1179 {
1180 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1181 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1182 }
1183
072f7ab1 1184 rr = create_tmp_reg (inner_type, NULL);
1185 ri = create_tmp_reg (inner_type, NULL);
4ee9c684 1186 }
51009286 1187
1188 /* In the TRUE branch, we compute
1189 ratio = br/bi;
1190 div = (br * ratio) + bi;
1191 tr = (ar * ratio) + ai;
1192 ti = (ai * ratio) - ar;
1193 tr = tr / div;
1194 ti = ti / div; */
7076cb5d 1195 if (bb_true || integer_nonzerop (compare))
51009286 1196 {
1197 if (bb_true)
1198 {
75a70cf9 1199 *gsi = gsi_last_bb (bb_true);
1200 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
51009286 1201 }
1202
75a70cf9 1203 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
51009286 1204
75a70cf9 1205 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1206 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
51009286 1207
75a70cf9 1208 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1209 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
51009286 1210
75a70cf9 1211 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1212 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
51009286 1213
75a70cf9 1214 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1215 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
51009286 1216
1217 if (bb_true)
1218 {
75a70cf9 1219 stmt = gimple_build_assign (rr, tr);
1220 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1221 stmt = gimple_build_assign (ri, ti);
1222 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1223 gsi_remove (gsi, true);
51009286 1224 }
1225 }
1226
1227 /* In the FALSE branch, we compute
1228 ratio = d/c;
1229 divisor = (d * ratio) + c;
1230 tr = (b * ratio) + a;
1231 ti = b - (a * ratio);
1232 tr = tr / div;
1233 ti = ti / div; */
7076cb5d 1234 if (bb_false || integer_zerop (compare))
51009286 1235 {
1236 if (bb_false)
1237 {
75a70cf9 1238 *gsi = gsi_last_bb (bb_false);
1239 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
51009286 1240 }
1241
75a70cf9 1242 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
51009286 1243
75a70cf9 1244 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1245 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
51009286 1246
75a70cf9 1247 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1248 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
51009286 1249
75a70cf9 1250 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1251 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
51009286 1252
75a70cf9 1253 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1254 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
51009286 1255
1256 if (bb_false)
1257 {
75a70cf9 1258 stmt = gimple_build_assign (rr, tr);
1259 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1260 stmt = gimple_build_assign (ri, ti);
1261 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1262 gsi_remove (gsi, true);
51009286 1263 }
1264 }
1265
1266 if (bb_join)
75a70cf9 1267 *gsi = gsi_start_bb (bb_join);
51009286 1268 else
1269 rr = tr, ri = ti;
4ee9c684 1270
75a70cf9 1271 update_complex_assignment (gsi, rr, ri);
4ee9c684 1272}
1273
1274/* Expand complex division to scalars. */
1275
1276static void
75a70cf9 1277expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
4ee9c684 1278 tree ar, tree ai, tree br, tree bi,
50c96bdc 1279 enum tree_code code,
1280 complex_lattice_t al, complex_lattice_t bl)
4ee9c684 1281{
50c96bdc 1282 tree rr, ri;
1283
1284 switch (PAIR (al, bl))
4ee9c684 1285 {
50c96bdc 1286 case PAIR (ONLY_REAL, ONLY_REAL):
75a70cf9 1287 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
50c96bdc 1288 ri = ai;
4ee9c684 1289 break;
0dfc45b5 1290
50c96bdc 1291 case PAIR (ONLY_REAL, ONLY_IMAG):
1292 rr = ai;
75a70cf9 1293 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1294 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
50c96bdc 1295 break;
1296
1297 case PAIR (ONLY_IMAG, ONLY_REAL):
1298 rr = ar;
75a70cf9 1299 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
50c96bdc 1300 break;
0dfc45b5 1301
50c96bdc 1302 case PAIR (ONLY_IMAG, ONLY_IMAG):
75a70cf9 1303 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
50c96bdc 1304 ri = ar;
4ee9c684 1305 break;
0dfc45b5 1306
50c96bdc 1307 case PAIR (VARYING, ONLY_REAL):
75a70cf9 1308 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1309 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
50c96bdc 1310 break;
1311
1312 case PAIR (VARYING, ONLY_IMAG):
75a70cf9 1313 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1314 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1315 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
50c96bdc 1316
1317 case PAIR (ONLY_REAL, VARYING):
1318 case PAIR (ONLY_IMAG, VARYING):
1319 case PAIR (VARYING, VARYING):
1320 switch (flag_complex_method)
1321 {
1322 case 0:
1323 /* straightforward implementation of complex divide acceptable. */
75a70cf9 1324 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
50c96bdc 1325 break;
1326
1327 case 2:
1328 if (SCALAR_FLOAT_TYPE_P (inner_type))
1329 {
75a70cf9 1330 expand_complex_libcall (gsi, ar, ai, br, bi, code);
50c96bdc 1331 break;
1332 }
1333 /* FALLTHRU */
1334
1335 case 1:
1336 /* wide ranges of inputs must work for complex divide. */
75a70cf9 1337 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
50c96bdc 1338 break;
1339
1340 default:
1341 gcc_unreachable ();
1342 }
1343 return;
1344
4ee9c684 1345 default:
8c0963c4 1346 gcc_unreachable ();
4ee9c684 1347 }
50c96bdc 1348
75a70cf9 1349 update_complex_assignment (gsi, rr, ri);
4ee9c684 1350}
1351
1352/* Expand complex negation to scalars:
1353 -a = (-ar) + i(-ai)
1354*/
1355
1356static void
75a70cf9 1357expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
4ee9c684 1358 tree ar, tree ai)
1359{
1360 tree rr, ri;
1361
75a70cf9 1362 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1363 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
4ee9c684 1364
75a70cf9 1365 update_complex_assignment (gsi, rr, ri);
4ee9c684 1366}
1367
1368/* Expand complex conjugate to scalars:
1369 ~a = (ar) + i(-ai)
1370*/
1371
1372static void
75a70cf9 1373expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
4ee9c684 1374 tree ar, tree ai)
1375{
1376 tree ri;
1377
75a70cf9 1378 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
4ee9c684 1379
75a70cf9 1380 update_complex_assignment (gsi, ar, ri);
4ee9c684 1381}
1382
1383/* Expand complex comparison (EQ or NE only). */
1384
1385static void
75a70cf9 1386expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
4ee9c684 1387 tree br, tree bi, enum tree_code code)
1388{
75a70cf9 1389 tree cr, ci, cc, type;
1390 gimple stmt;
4ee9c684 1391
75a70cf9 1392 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1393 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1394 cc = gimplify_build2 (gsi,
83e2a11b 1395 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1396 boolean_type_node, cr, ci);
4ee9c684 1397
75a70cf9 1398 stmt = gsi_stmt (*gsi);
4ee9c684 1399
75a70cf9 1400 switch (gimple_code (stmt))
4ee9c684 1401 {
75a70cf9 1402 case GIMPLE_RETURN:
1403 type = TREE_TYPE (gimple_return_retval (stmt));
1404 gimple_return_set_retval (stmt, fold_convert (type, cc));
4ee9c684 1405 break;
75a70cf9 1406
1407 case GIMPLE_ASSIGN:
1408 type = TREE_TYPE (gimple_assign_lhs (stmt));
1409 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1410 stmt = gsi_stmt (*gsi);
4ee9c684 1411 break;
75a70cf9 1412
1413 case GIMPLE_COND:
1414 gimple_cond_set_code (stmt, EQ_EXPR);
1415 gimple_cond_set_lhs (stmt, cc);
1416 gimple_cond_set_rhs (stmt, boolean_true_node);
1417 break;
1418
4ee9c684 1419 default:
8c0963c4 1420 gcc_unreachable ();
4ee9c684 1421 }
ac4bd4cc 1422
50c96bdc 1423 update_stmt (stmt);
4ee9c684 1424}
1425
349ff920 1426/* Expand inline asm that sets some complex SSA_NAMEs. */
1427
1428static void
1429expand_complex_asm (gimple_stmt_iterator *gsi)
1430{
1431 gimple stmt = gsi_stmt (*gsi);
1432 unsigned int i;
1433
1434 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1435 {
1436 tree link = gimple_asm_output_op (stmt, i);
1437 tree op = TREE_VALUE (link);
1438 if (TREE_CODE (op) == SSA_NAME
1439 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1440 {
1441 tree type = TREE_TYPE (op);
1442 tree inner_type = TREE_TYPE (type);
1443 tree r = build1 (REALPART_EXPR, inner_type, op);
1444 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1445 gimple_seq list = set_component_ssa_name (op, false, r);
1446
1447 if (list)
1448 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1449
1450 list = set_component_ssa_name (op, true, i);
1451 if (list)
1452 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1453 }
1454 }
1455}
75a70cf9 1456
4ee9c684 1457/* Process one statement. If we identify a complex operation, expand it. */
1458
1459static void
75a70cf9 1460expand_complex_operations_1 (gimple_stmt_iterator *gsi)
4ee9c684 1461{
75a70cf9 1462 gimple stmt = gsi_stmt (*gsi);
1463 tree type, inner_type, lhs;
4ee9c684 1464 tree ac, ar, ai, bc, br, bi;
50c96bdc 1465 complex_lattice_t al, bl;
4ee9c684 1466 enum tree_code code;
1467
349ff920 1468 if (gimple_code (stmt) == GIMPLE_ASM)
1469 {
1470 expand_complex_asm (gsi);
1471 return;
1472 }
1473
75a70cf9 1474 lhs = gimple_get_lhs (stmt);
1475 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1476 return;
4ee9c684 1477
75a70cf9 1478 type = TREE_TYPE (gimple_op (stmt, 0));
1479 code = gimple_expr_code (stmt);
4ee9c684 1480
1481 /* Initial filter for operations we handle. */
1482 switch (code)
1483 {
1484 case PLUS_EXPR:
1485 case MINUS_EXPR:
1486 case MULT_EXPR:
1487 case TRUNC_DIV_EXPR:
1488 case CEIL_DIV_EXPR:
1489 case FLOOR_DIV_EXPR:
1490 case ROUND_DIV_EXPR:
1491 case RDIV_EXPR:
1492 case NEGATE_EXPR:
1493 case CONJ_EXPR:
1494 if (TREE_CODE (type) != COMPLEX_TYPE)
1495 return;
1496 inner_type = TREE_TYPE (type);
1497 break;
1498
1499 case EQ_EXPR:
1500 case NE_EXPR:
75a70cf9 1501 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
4d6b2b7e 1502 subcode, so we need to access the operands using gimple_op. */
75a70cf9 1503 inner_type = TREE_TYPE (gimple_op (stmt, 1));
4ee9c684 1504 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1505 return;
1506 break;
1507
1508 default:
50c96bdc 1509 {
75a70cf9 1510 tree rhs;
63f88450 1511
75a70cf9 1512 /* GIMPLE_COND may also fallthru here, but we do not need to
1513 do anything with it. */
1514 if (gimple_code (stmt) == GIMPLE_COND)
63f88450 1515 return;
1516
50c96bdc 1517 if (TREE_CODE (type) == COMPLEX_TYPE)
75a70cf9 1518 expand_complex_move (gsi, type);
1519 else if (is_gimple_assign (stmt)
1520 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1521 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1522 && TREE_CODE (lhs) == SSA_NAME)
50c96bdc 1523 {
75a70cf9 1524 rhs = gimple_assign_rhs1 (stmt);
1525 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1526 gimple_assign_rhs_code (stmt)
1527 == IMAGPART_EXPR,
1528 false);
1529 gimple_assign_set_rhs_from_tree (gsi, rhs);
1530 stmt = gsi_stmt (*gsi);
50c96bdc 1531 update_stmt (stmt);
1532 }
1533 }
4ee9c684 1534 return;
1535 }
1536
1537 /* Extract the components of the two complex values. Make sure and
1538 handle the common case of the same value used twice specially. */
75a70cf9 1539 if (is_gimple_assign (stmt))
1540 {
1541 ac = gimple_assign_rhs1 (stmt);
1542 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1543 }
1544 /* GIMPLE_CALL can not get here. */
4ee9c684 1545 else
1546 {
75a70cf9 1547 ac = gimple_cond_lhs (stmt);
1548 bc = gimple_cond_rhs (stmt);
1549 }
1550
1551 ar = extract_component (gsi, ac, false, true);
1552 ai = extract_component (gsi, ac, true, true);
1553
1554 if (ac == bc)
1555 br = ar, bi = ai;
1556 else if (bc)
1557 {
1558 br = extract_component (gsi, bc, 0, true);
1559 bi = extract_component (gsi, bc, 1, true);
4ee9c684 1560 }
75a70cf9 1561 else
1562 br = bi = NULL_TREE;
4ee9c684 1563
2d04fd8d 1564 if (gimple_in_ssa_p (cfun))
50c96bdc 1565 {
1566 al = find_lattice_value (ac);
1567 if (al == UNINITIALIZED)
1568 al = VARYING;
1569
1570 if (TREE_CODE_CLASS (code) == tcc_unary)
1571 bl = UNINITIALIZED;
1572 else if (ac == bc)
1573 bl = al;
1574 else
1575 {
1576 bl = find_lattice_value (bc);
1577 if (bl == UNINITIALIZED)
1578 bl = VARYING;
1579 }
1580 }
1581 else
1582 al = bl = VARYING;
1583
4ee9c684 1584 switch (code)
1585 {
1586 case PLUS_EXPR:
1587 case MINUS_EXPR:
75a70cf9 1588 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
4ee9c684 1589 break;
1590
1591 case MULT_EXPR:
75a70cf9 1592 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
4ee9c684 1593 break;
1594
1595 case TRUNC_DIV_EXPR:
1596 case CEIL_DIV_EXPR:
1597 case FLOOR_DIV_EXPR:
1598 case ROUND_DIV_EXPR:
1599 case RDIV_EXPR:
75a70cf9 1600 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
4ee9c684 1601 break;
48e1416a 1602
4ee9c684 1603 case NEGATE_EXPR:
75a70cf9 1604 expand_complex_negation (gsi, inner_type, ar, ai);
4ee9c684 1605 break;
1606
1607 case CONJ_EXPR:
75a70cf9 1608 expand_complex_conjugate (gsi, inner_type, ar, ai);
4ee9c684 1609 break;
1610
1611 case EQ_EXPR:
1612 case NE_EXPR:
75a70cf9 1613 expand_complex_comparison (gsi, ar, ai, br, bi, code);
4ee9c684 1614 break;
1615
1616 default:
8c0963c4 1617 gcc_unreachable ();
4ee9c684 1618 }
1619}
83e2a11b 1620
50c96bdc 1621\f
1622/* Entry point for complex operation lowering during optimization. */
1623
2a1990e9 1624static unsigned int
0501cacc 1625tree_lower_complex (void)
4ee9c684 1626{
50c96bdc 1627 int old_last_basic_block;
75a70cf9 1628 gimple_stmt_iterator gsi;
4ee9c684 1629 basic_block bb;
1630
50c96bdc 1631 if (!init_dont_simulate_again ())
2a1990e9 1632 return 0;
50c96bdc 1633
f1f41a6c 1634 complex_lattice_values.create (num_ssa_names);
1635 complex_lattice_values.safe_grow_cleared (num_ssa_names);
50c96bdc 1636
ff296ce1 1637 init_parameter_lattice_values ();
50c96bdc 1638 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1639
c1f445d2 1640 complex_variable_components = new int_tree_htab_type (10);
ff296ce1 1641
f1f41a6c 1642 complex_ssa_name_components.create (2 * num_ssa_names);
1643 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
ff296ce1 1644
50c96bdc 1645 update_parameter_components ();
1646
ff296ce1 1647 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
fe672ac0 1648 old_last_basic_block = last_basic_block_for_fn (cfun);
fc00614f 1649 FOR_EACH_BB_FN (bb, cfun)
4ee9c684 1650 {
1651 if (bb->index >= old_last_basic_block)
1652 continue;
75a70cf9 1653
50c96bdc 1654 update_phi_components (bb);
75a70cf9 1655 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1656 expand_complex_operations_1 (&gsi);
4ee9c684 1657 }
4ee9c684 1658
75a70cf9 1659 gsi_commit_edge_inserts ();
50c96bdc 1660
c1f445d2 1661 delete complex_variable_components;
1662 complex_variable_components = NULL;
f1f41a6c 1663 complex_ssa_name_components.release ();
1664 complex_lattice_values.release ();
2a1990e9 1665 return 0;
50c96bdc 1666}
83e2a11b 1667
cbe8bda8 1668namespace {
1669
1670const pass_data pass_data_lower_complex =
83e2a11b 1671{
cbe8bda8 1672 GIMPLE_PASS, /* type */
1673 "cplxlower", /* name */
1674 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1675 TV_NONE, /* tv_id */
1676 PROP_ssa, /* properties_required */
1677 PROP_gimple_lcx, /* properties_provided */
1678 0, /* properties_destroyed */
1679 0, /* todo_flags_start */
8b88439e 1680 TODO_update_ssa, /* todo_flags_finish */
50c96bdc 1681};
1682
cbe8bda8 1683class pass_lower_complex : public gimple_opt_pass
1684{
1685public:
9af5ce0c 1686 pass_lower_complex (gcc::context *ctxt)
1687 : gimple_opt_pass (pass_data_lower_complex, ctxt)
cbe8bda8 1688 {}
1689
1690 /* opt_pass methods: */
ae84f584 1691 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
65b0537f 1692 virtual unsigned int execute (function *) { return tree_lower_complex (); }
cbe8bda8 1693
1694}; // class pass_lower_complex
1695
1696} // anon namespace
1697
1698gimple_opt_pass *
1699make_pass_lower_complex (gcc::context *ctxt)
1700{
1701 return new pass_lower_complex (ctxt);
1702}
1703
50c96bdc 1704\f
cbe8bda8 1705namespace {
1706
1707const pass_data pass_data_lower_complex_O0 =
50c96bdc 1708{
cbe8bda8 1709 GIMPLE_PASS, /* type */
1710 "cplxlower0", /* name */
1711 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1712 TV_NONE, /* tv_id */
1713 PROP_cfg, /* properties_required */
1714 PROP_gimple_lcx, /* properties_provided */
1715 0, /* properties_destroyed */
1716 0, /* todo_flags_start */
8b88439e 1717 TODO_update_ssa, /* todo_flags_finish */
4ee9c684 1718};
cbe8bda8 1719
1720class pass_lower_complex_O0 : public gimple_opt_pass
1721{
1722public:
9af5ce0c 1723 pass_lower_complex_O0 (gcc::context *ctxt)
1724 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
cbe8bda8 1725 {}
1726
1727 /* opt_pass methods: */
31315c24 1728 virtual bool gate (function *fun)
1729 {
1730 /* With errors, normal optimization passes are not run. If we don't
1731 lower complex operations at all, rtl expansion will abort. */
1732 return !(fun->curr_properties & PROP_gimple_lcx);
1733 }
1734
65b0537f 1735 virtual unsigned int execute (function *) { return tree_lower_complex (); }
cbe8bda8 1736
1737}; // class pass_lower_complex_O0
1738
1739} // anon namespace
1740
1741gimple_opt_pass *
1742make_pass_lower_complex_O0 (gcc::context *ctxt)
1743{
1744 return new pass_lower_complex_O0 (ctxt);
1745}