]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-complex.c
tree-flow.h (make_rename_temp): Remove.
[thirdparty/gcc.git] / gcc / tree-complex.c
CommitLineData
2b725155 1/* Lower complex number operations to scalar operations.
c75c517d 2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
7072a650 3 Free Software Foundation, Inc.
6de9cd9a
DN
4
5This file is part of GCC.
b8698a0f 6
6de9cd9a
DN
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9dcd6f09 9Free Software Foundation; either version 3, or (at your option) any
6de9cd9a 10later version.
b8698a0f 11
6de9cd9a
DN
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
b8698a0f 16
6de9cd9a 17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
6de9cd9a 24#include "tm.h"
e41d82f5 25#include "tree.h"
e41d82f5 26#include "flags.h"
6de9cd9a 27#include "tree-flow.h"
726a989a 28#include "gimple.h"
6de9cd9a
DN
29#include "tree-iterator.h"
30#include "tree-pass.h"
e41d82f5
RH
31#include "tree-ssa-propagate.h"
32
33
34/* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
37
32e8bb8e 38enum
e41d82f5
RH
39{
40 UNINITIALIZED = 0,
41 ONLY_REAL = 1,
42 ONLY_IMAG = 2,
43 VARYING = 3
32e8bb8e
ILT
44};
45
46/* The type complex_lattice_t holds combinations of the above
47 constants. */
48typedef int complex_lattice_t;
e41d82f5
RH
49
50#define PAIR(a, b) ((a) << 2 | (b))
51
52DEF_VEC_I(complex_lattice_t);
53DEF_VEC_ALLOC_I(complex_lattice_t, heap);
54
55static VEC(complex_lattice_t, heap) *complex_lattice_values;
56
a3648cfc
DB
57/* For each complex variable, a pair of variables for the components exists in
58 the hashtable. */
59static htab_t complex_variable_components;
60
95a8c155
RH
61/* For each complex SSA_NAME, a pair of ssa names for the components. */
62static VEC(tree, heap) *complex_ssa_name_components;
63
a3648cfc
DB
64/* Lookup UID in the complex_variable_components hashtable and return the
65 associated tree. */
b8698a0f 66static tree
a3648cfc
DB
67cvc_lookup (unsigned int uid)
68{
69 struct int_tree_map *h, in;
70 in.uid = uid;
3d9a9f94 71 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
95a8c155 72 return h ? h->to : NULL;
a3648cfc 73}
b8698a0f 74
a3648cfc
DB
75/* Insert the pair UID, TO into the complex_variable_components hashtable. */
76
b8698a0f 77static void
a3648cfc 78cvc_insert (unsigned int uid, tree to)
b8698a0f 79{
a3648cfc
DB
80 struct int_tree_map *h;
81 void **loc;
82
5ed6ace5 83 h = XNEW (struct int_tree_map);
a3648cfc
DB
84 h->uid = uid;
85 h->to = to;
86 loc = htab_find_slot_with_hash (complex_variable_components, h,
87 uid, INSERT);
95a8c155 88 *(struct int_tree_map **) loc = h;
a3648cfc 89}
e41d82f5 90
e41d82f5
RH
91/* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
93
94static int
95some_nonzerop (tree t)
96{
97 int zerop = false;
98
2ca862e9
JM
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
e41d82f5 103 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
325217ed
CF
104 else if (TREE_CODE (t) == FIXED_CST)
105 zerop = fixed_zerop (t);
e41d82f5
RH
106 else if (TREE_CODE (t) == INTEGER_CST)
107 zerop = integer_zerop (t);
108
109 return !zerop;
110}
111
726a989a
RB
112
113/* Compute a lattice value from the components of a complex type REAL
114 and IMAG. */
6de9cd9a 115
e41d82f5 116static complex_lattice_t
726a989a 117find_lattice_value_parts (tree real, tree imag)
e41d82f5 118{
e41d82f5
RH
119 int r, i;
120 complex_lattice_t ret;
121
726a989a
RB
122 r = some_nonzerop (real);
123 i = some_nonzerop (imag);
124 ret = r * ONLY_REAL + i * ONLY_IMAG;
125
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret == UNINITIALIZED)
130 ret = ONLY_REAL;
131
132 return ret;
133}
134
135
136/* Compute a lattice value from gimple_val T. */
137
138static complex_lattice_t
139find_lattice_value (tree t)
140{
141 tree real, imag;
142
e41d82f5
RH
143 switch (TREE_CODE (t))
144 {
145 case SSA_NAME:
146 return VEC_index (complex_lattice_t, complex_lattice_values,
147 SSA_NAME_VERSION (t));
148
149 case COMPLEX_CST:
150 real = TREE_REALPART (t);
151 imag = TREE_IMAGPART (t);
152 break;
153
e41d82f5
RH
154 default:
155 gcc_unreachable ();
156 }
157
726a989a 158 return find_lattice_value_parts (real, imag);
e41d82f5
RH
159}
160
161/* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
163
164static bool
165is_complex_reg (tree lhs)
166{
167 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
168}
169
170/* Mark the incoming parameters to the function as VARYING. */
171
172static void
173init_parameter_lattice_values (void)
174{
f0a77246 175 tree parm, ssa_name;
e41d82f5 176
910ad8de 177 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
f0a77246 178 if (is_complex_reg (parm)
32244553 179 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
f0a77246
RG
180 VEC_replace (complex_lattice_t, complex_lattice_values,
181 SSA_NAME_VERSION (ssa_name), VARYING);
e41d82f5
RH
182}
183
726a989a
RB
184/* Initialize simulation state for each statement. Return false if we
185 found no statements we want to simulate, and thus there's nothing
186 for the entire pass to do. */
e41d82f5
RH
187
188static bool
189init_dont_simulate_again (void)
190{
191 basic_block bb;
726a989a
RB
192 gimple_stmt_iterator gsi;
193 gimple phi;
8f8abce4 194 bool saw_a_complex_op = false;
e41d82f5
RH
195
196 FOR_EACH_BB (bb)
197 {
726a989a
RB
198 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
199 {
200 phi = gsi_stmt (gsi);
201 prop_set_simulate_again (phi,
202 is_complex_reg (gimple_phi_result (phi)));
203 }
e41d82f5 204
726a989a 205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e41d82f5 206 {
726a989a
RB
207 gimple stmt;
208 tree op0, op1;
209 bool sim_again_p;
e41d82f5 210
726a989a
RB
211 stmt = gsi_stmt (gsi);
212 op0 = op1 = NULL_TREE;
99e6bdda 213
b8698a0f 214 /* Most control-altering statements must be initially
99e6bdda 215 simulated, else we won't cover the entire cfg. */
726a989a 216 sim_again_p = stmt_ends_bb_p (stmt);
99e6bdda 217
726a989a 218 switch (gimple_code (stmt))
e41d82f5 219 {
726a989a
RB
220 case GIMPLE_CALL:
221 if (gimple_call_lhs (stmt))
222 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
223 break;
8f8abce4 224
726a989a
RB
225 case GIMPLE_ASSIGN:
226 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
227 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
228 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
229 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
230 else
231 op0 = gimple_assign_rhs1 (stmt);
232 if (gimple_num_ops (stmt) > 2)
233 op1 = gimple_assign_rhs2 (stmt);
8f8abce4
RH
234 break;
235
726a989a
RB
236 case GIMPLE_COND:
237 op0 = gimple_cond_lhs (stmt);
238 op1 = gimple_cond_rhs (stmt);
8f8abce4
RH
239 break;
240
241 default:
242 break;
e41d82f5
RH
243 }
244
726a989a
RB
245 if (op0 || op1)
246 switch (gimple_expr_code (stmt))
8f8abce4
RH
247 {
248 case EQ_EXPR:
249 case NE_EXPR:
8f8abce4
RH
250 case PLUS_EXPR:
251 case MINUS_EXPR:
252 case MULT_EXPR:
253 case TRUNC_DIV_EXPR:
254 case CEIL_DIV_EXPR:
255 case FLOOR_DIV_EXPR:
256 case ROUND_DIV_EXPR:
257 case RDIV_EXPR:
726a989a
RB
258 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
259 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
260 saw_a_complex_op = true;
261 break;
262
8f8abce4
RH
263 case NEGATE_EXPR:
264 case CONJ_EXPR:
726a989a 265 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
8f8abce4
RH
266 saw_a_complex_op = true;
267 break;
268
7b7e6ecd
EB
269 case REALPART_EXPR:
270 case IMAGPART_EXPR:
271 /* The total store transformation performed during
726a989a
RB
272 gimplification creates such uninitialized loads
273 and we need to lower the statement to be able
274 to fix things up. */
275 if (TREE_CODE (op0) == SSA_NAME
276 && ssa_undefined_value_p (op0))
7b7e6ecd
EB
277 saw_a_complex_op = true;
278 break;
279
8f8abce4
RH
280 default:
281 break;
282 }
283
726a989a 284 prop_set_simulate_again (stmt, sim_again_p);
e41d82f5
RH
285 }
286 }
287
8f8abce4 288 return saw_a_complex_op;
e41d82f5
RH
289}
290
291
292/* Evaluate statement STMT against the complex lattice defined above. */
293
294static enum ssa_prop_result
726a989a 295complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
e41d82f5
RH
296 tree *result_p)
297{
298 complex_lattice_t new_l, old_l, op1_l, op2_l;
299 unsigned int ver;
726a989a 300 tree lhs;
e41d82f5 301
726a989a
RB
302 lhs = gimple_get_lhs (stmt);
303 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
304 if (!lhs)
99e6bdda 305 return SSA_PROP_VARYING;
e41d82f5 306
99e6bdda
RH
307 /* These conditions should be satisfied due to the initial filter
308 set up in init_dont_simulate_again. */
e41d82f5
RH
309 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
310 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
311
312 *result_p = lhs;
313 ver = SSA_NAME_VERSION (lhs);
314 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
315
726a989a 316 switch (gimple_expr_code (stmt))
e41d82f5
RH
317 {
318 case SSA_NAME:
e41d82f5 319 case COMPLEX_CST:
726a989a
RB
320 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
321 break;
322
323 case COMPLEX_EXPR:
324 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
325 gimple_assign_rhs2 (stmt));
e41d82f5
RH
326 break;
327
328 case PLUS_EXPR:
329 case MINUS_EXPR:
726a989a
RB
330 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
331 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
332
333 /* We've set up the lattice values such that IOR neatly
334 models addition. */
335 new_l = op1_l | op2_l;
336 break;
337
338 case MULT_EXPR:
339 case RDIV_EXPR:
340 case TRUNC_DIV_EXPR:
341 case CEIL_DIV_EXPR:
342 case FLOOR_DIV_EXPR:
343 case ROUND_DIV_EXPR:
726a989a
RB
344 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
346
347 /* Obviously, if either varies, so does the result. */
348 if (op1_l == VARYING || op2_l == VARYING)
349 new_l = VARYING;
350 /* Don't prematurely promote variables if we've not yet seen
351 their inputs. */
352 else if (op1_l == UNINITIALIZED)
353 new_l = op2_l;
354 else if (op2_l == UNINITIALIZED)
355 new_l = op1_l;
356 else
357 {
358 /* At this point both numbers have only one component. If the
359 numbers are of opposite kind, the result is imaginary,
360 otherwise the result is real. The add/subtract translates
361 the real/imag from/to 0/1; the ^ performs the comparison. */
362 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
363
364 /* Don't allow the lattice value to flip-flop indefinitely. */
365 new_l |= old_l;
366 }
367 break;
368
369 case NEGATE_EXPR:
370 case CONJ_EXPR:
726a989a 371 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
e41d82f5
RH
372 break;
373
374 default:
375 new_l = VARYING;
376 break;
377 }
378
379 /* If nothing changed this round, let the propagator know. */
380 if (new_l == old_l)
381 return SSA_PROP_NOT_INTERESTING;
382
383 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
384 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
385}
386
387/* Evaluate a PHI node against the complex lattice defined above. */
388
389static enum ssa_prop_result
726a989a 390complex_visit_phi (gimple phi)
e41d82f5
RH
391{
392 complex_lattice_t new_l, old_l;
393 unsigned int ver;
394 tree lhs;
395 int i;
396
726a989a 397 lhs = gimple_phi_result (phi);
e41d82f5
RH
398
399 /* This condition should be satisfied due to the initial filter
400 set up in init_dont_simulate_again. */
401 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
402
403 /* We've set up the lattice values such that IOR neatly models PHI meet. */
404 new_l = UNINITIALIZED;
726a989a
RB
405 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
406 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
e41d82f5
RH
407
408 ver = SSA_NAME_VERSION (lhs);
409 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
410
411 if (new_l == old_l)
412 return SSA_PROP_NOT_INTERESTING;
413
414 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
415 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
416}
417
95a8c155 418/* Create one backing variable for a complex component of ORIG. */
e41d82f5 419
95a8c155
RH
420static tree
421create_one_component_var (tree type, tree orig, const char *prefix,
422 const char *suffix, enum tree_code code)
e41d82f5 423{
95a8c155 424 tree r = create_tmp_var (type, prefix);
e41d82f5 425
95a8c155
RH
426 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
427 DECL_ARTIFICIAL (r) = 1;
8f8abce4 428
95a8c155
RH
429 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
430 {
431 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
95a8c155
RH
432
433 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
e41d82f5 434
95a8c155
RH
435 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
436 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
437 DECL_IGNORED_P (r) = 0;
438 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
439 }
440 else
e41d82f5 441 {
95a8c155
RH
442 DECL_IGNORED_P (r) = 1;
443 TREE_NO_WARNING (r) = 1;
444 }
e41d82f5 445
95a8c155
RH
446 return r;
447}
e41d82f5 448
95a8c155 449/* Retrieve a value for a complex component of VAR. */
e41d82f5 450
95a8c155
RH
451static tree
452get_component_var (tree var, bool imag_p)
453{
454 size_t decl_index = DECL_UID (var) * 2 + imag_p;
455 tree ret = cvc_lookup (decl_index);
456
457 if (ret == NULL)
458 {
459 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
460 imag_p ? "CI" : "CR",
461 imag_p ? "$imag" : "$real",
462 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
463 cvc_insert (decl_index, ret);
464 }
465
466 return ret;
467}
e41d82f5 468
95a8c155 469/* Retrieve a value for a complex component of SSA_NAME. */
e41d82f5 470
95a8c155
RH
471static tree
472get_component_ssa_name (tree ssa_name, bool imag_p)
473{
474 complex_lattice_t lattice = find_lattice_value (ssa_name);
475 size_t ssa_name_index;
476 tree ret;
e41d82f5 477
95a8c155
RH
478 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
479 {
480 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
481 if (SCALAR_FLOAT_TYPE_P (inner_type))
482 return build_real (inner_type, dconst0);
483 else
484 return build_int_cst (inner_type, 0);
485 }
e41d82f5 486
95a8c155
RH
487 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
488 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
489 if (ret == NULL)
490 {
491 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
492 ret = make_ssa_name (ret, NULL);
493
494 /* Copy some properties from the original. In particular, whether it
495 is used in an abnormal phi, and whether it's uninitialized. */
496 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
497 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
498 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
32244553 499 && SSA_NAME_IS_DEFAULT_DEF (ssa_name))
95a8c155
RH
500 {
501 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
32244553 502 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
e41d82f5
RH
503 }
504
95a8c155 505 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
e41d82f5 506 }
95a8c155
RH
507
508 return ret;
509}
510
726a989a
RB
511/* Set a value for a complex component of SSA_NAME, return a
512 gimple_seq of stuff that needs doing. */
95a8c155 513
726a989a 514static gimple_seq
95a8c155
RH
515set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
516{
517 complex_lattice_t lattice = find_lattice_value (ssa_name);
518 size_t ssa_name_index;
726a989a
RB
519 tree comp;
520 gimple last;
521 gimple_seq list;
95a8c155
RH
522
523 /* We know the value must be zero, else there's a bug in our lattice
524 analysis. But the value may well be a variable known to contain
525 zero. We should be safe ignoring it. */
526 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
527 return NULL;
528
529 /* If we've already assigned an SSA_NAME to this component, then this
530 means that our walk of the basic blocks found a use before the set.
531 This is fine. Now we should create an initialization for the value
532 we created earlier. */
533 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
534 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
535 if (comp)
536 ;
537
538 /* If we've nothing assigned, and the value we're given is already stable,
536fa7b7 539 then install that as the value for this SSA_NAME. This preemptively
95a8c155 540 copy-propagates the value, which avoids unnecessary memory allocation. */
35a45bd4
RH
541 else if (is_gimple_min_invariant (value)
542 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
95a8c155
RH
543 {
544 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
545 return NULL;
546 }
547 else if (TREE_CODE (value) == SSA_NAME
548 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
549 {
550 /* Replace an anonymous base value with the variable from cvc_lookup.
551 This should result in better debug info. */
552 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
553 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
554 {
555 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
db753fa1 556 replace_ssa_name_symbol (value, comp);
95a8c155
RH
557 }
558
559 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
560 return NULL;
561 }
562
563 /* Finally, we need to stabilize the result by installing the value into
564 a new ssa name. */
565 else
566 comp = get_component_ssa_name (ssa_name, imag_p);
b8698a0f 567
95a8c155 568 /* Do all the work to assign VALUE to COMP. */
726a989a 569 list = NULL;
95a8c155 570 value = force_gimple_operand (value, &list, false, NULL);
726a989a
RB
571 last = gimple_build_assign (comp, value);
572 gimple_seq_add_stmt (&list, last);
573 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
95a8c155
RH
574
575 return list;
e41d82f5 576}
6de9cd9a 577
6de9cd9a
DN
578/* Extract the real or imaginary part of a complex variable or constant.
579 Make sure that it's a proper gimple_val and gimplify it if not.
726a989a 580 Emit any new code before gsi. */
6de9cd9a
DN
581
582static tree
726a989a 583extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
e41d82f5 584 bool gimple_p)
6de9cd9a 585{
6de9cd9a
DN
586 switch (TREE_CODE (t))
587 {
588 case COMPLEX_CST:
e41d82f5 589 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
6de9cd9a
DN
590
591 case COMPLEX_EXPR:
726a989a 592 gcc_unreachable ();
6de9cd9a
DN
593
594 case VAR_DECL:
f35a986c 595 case RESULT_DECL:
6de9cd9a 596 case PARM_DECL:
e41d82f5
RH
597 case COMPONENT_REF:
598 case ARRAY_REF:
7ec49257 599 case VIEW_CONVERT_EXPR:
70f34814 600 case MEM_REF:
e41d82f5
RH
601 {
602 tree inner_type = TREE_TYPE (TREE_TYPE (t));
603
604 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
605 inner_type, unshare_expr (t));
606
607 if (gimple_p)
726a989a
RB
608 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
609 GSI_SAME_STMT);
e41d82f5
RH
610
611 return t;
612 }
613
614 case SSA_NAME:
95a8c155 615 return get_component_ssa_name (t, imagpart_p);
6de9cd9a
DN
616
617 default:
1e128c5f 618 gcc_unreachable ();
6de9cd9a 619 }
e41d82f5
RH
620}
621
622/* Update the complex components of the ssa name on the lhs of STMT. */
6de9cd9a 623
e41d82f5 624static void
726a989a
RB
625update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
626 tree i)
e41d82f5 627{
726a989a
RB
628 tree lhs;
629 gimple_seq list;
630
631 lhs = gimple_get_lhs (stmt);
95a8c155
RH
632
633 list = set_component_ssa_name (lhs, false, r);
634 if (list)
726a989a 635 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
95a8c155
RH
636
637 list = set_component_ssa_name (lhs, true, i);
638 if (list)
726a989a 639 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
6de9cd9a
DN
640}
641
5d6b3bba 642static void
95a8c155 643update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
5d6b3bba 644{
726a989a 645 gimple_seq list;
5d6b3bba 646
95a8c155
RH
647 list = set_component_ssa_name (lhs, false, r);
648 if (list)
726a989a 649 gsi_insert_seq_on_edge (e, list);
5d6b3bba 650
95a8c155
RH
651 list = set_component_ssa_name (lhs, true, i);
652 if (list)
726a989a 653 gsi_insert_seq_on_edge (e, list);
5d6b3bba
RH
654}
655
726a989a 656
6de9cd9a
DN
657/* Update an assignment to a complex variable in place. */
658
659static void
726a989a 660update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
6de9cd9a 661{
f5e5b46c 662 gimple stmt;
726a989a 663
355a7673
MM
664 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
665 stmt = gsi_stmt (*gsi);
f5e5b46c
RG
666 update_stmt (stmt);
667 if (maybe_clean_eh_stmt (stmt))
668 gimple_purge_dead_eh_edges (gimple_bb (stmt));
355a7673
MM
669
670 if (gimple_in_ssa_p (cfun))
671 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
e41d82f5
RH
672}
673
726a989a 674
e41d82f5
RH
675/* Generate code at the entry point of the function to initialize the
676 component variables for a complex parameter. */
677
678static void
679update_parameter_components (void)
680{
681 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
682 tree parm;
683
910ad8de 684 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
e41d82f5
RH
685 {
686 tree type = TREE_TYPE (parm);
5d6b3bba 687 tree ssa_name, r, i;
e41d82f5
RH
688
689 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
690 continue;
691
692 type = TREE_TYPE (type);
32244553 693 ssa_name = ssa_default_def (cfun, parm);
c0a3f887
RG
694 if (!ssa_name)
695 continue;
e41d82f5 696
5d6b3bba
RH
697 r = build1 (REALPART_EXPR, type, ssa_name);
698 i = build1 (IMAGPART_EXPR, type, ssa_name);
95a8c155 699 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
e41d82f5
RH
700 }
701}
702
703/* Generate code to set the component variables of a complex variable
704 to match the PHI statements in block BB. */
705
706static void
707update_phi_components (basic_block bb)
708{
726a989a 709 gimple_stmt_iterator gsi;
e41d82f5 710
726a989a
RB
711 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
712 {
713 gimple phi = gsi_stmt (gsi);
e41d82f5 714
726a989a
RB
715 if (is_complex_reg (gimple_phi_result (phi)))
716 {
717 tree lr, li;
718 gimple pr = NULL, pi = NULL;
719 unsigned int i, n;
95a8c155 720
726a989a
RB
721 lr = get_component_ssa_name (gimple_phi_result (phi), false);
722 if (TREE_CODE (lr) == SSA_NAME)
723 {
724 pr = create_phi_node (lr, bb);
725 SSA_NAME_DEF_STMT (lr) = pr;
726 }
727
728 li = get_component_ssa_name (gimple_phi_result (phi), true);
729 if (TREE_CODE (li) == SSA_NAME)
730 {
731 pi = create_phi_node (li, bb);
732 SSA_NAME_DEF_STMT (li) = pi;
733 }
734
735 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
736 {
737 tree comp, arg = gimple_phi_arg_def (phi, i);
738 if (pr)
739 {
740 comp = extract_component (NULL, arg, false, false);
741 SET_PHI_ARG_DEF (pr, i, comp);
742 }
743 if (pi)
744 {
745 comp = extract_component (NULL, arg, true, false);
746 SET_PHI_ARG_DEF (pi, i, comp);
747 }
748 }
749 }
750 }
e41d82f5
RH
751}
752
e41d82f5
RH
753/* Expand a complex move to scalars. */
754
755static void
726a989a 756expand_complex_move (gimple_stmt_iterator *gsi, tree type)
e41d82f5
RH
757{
758 tree inner_type = TREE_TYPE (type);
726a989a
RB
759 tree r, i, lhs, rhs;
760 gimple stmt = gsi_stmt (*gsi);
761
762 if (is_gimple_assign (stmt))
763 {
764 lhs = gimple_assign_lhs (stmt);
765 if (gimple_num_ops (stmt) == 2)
766 rhs = gimple_assign_rhs1 (stmt);
767 else
768 rhs = NULL_TREE;
769 }
770 else if (is_gimple_call (stmt))
771 {
772 lhs = gimple_call_lhs (stmt);
773 rhs = NULL_TREE;
774 }
775 else
776 gcc_unreachable ();
e41d82f5
RH
777
778 if (TREE_CODE (lhs) == SSA_NAME)
779 {
726a989a 780 if (is_ctrl_altering_stmt (stmt))
5d6b3bba 781 {
5d6b3bba
RH
782 edge e;
783
784 /* The value is not assigned on the exception edges, so we need not
785 concern ourselves there. We do need to update on the fallthru
786 edge. Find it. */
0fd4b31d
NF
787 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
788 if (!e)
789 gcc_unreachable ();
5d6b3bba
RH
790
791 r = build1 (REALPART_EXPR, inner_type, lhs);
792 i = build1 (IMAGPART_EXPR, inner_type, lhs);
95a8c155 793 update_complex_components_on_edge (e, lhs, r, i);
5d6b3bba 794 }
726a989a
RB
795 else if (is_gimple_call (stmt)
796 || gimple_has_side_effects (stmt)
797 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
e41d82f5 798 {
5d6b3bba
RH
799 r = build1 (REALPART_EXPR, inner_type, lhs);
800 i = build1 (IMAGPART_EXPR, inner_type, lhs);
726a989a 801 update_complex_components (gsi, stmt, r, i);
e41d82f5
RH
802 }
803 else
804 {
726a989a
RB
805 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
806 {
807 r = extract_component (gsi, rhs, 0, true);
808 i = extract_component (gsi, rhs, 1, true);
809 }
810 else
811 {
812 r = gimple_assign_rhs1 (stmt);
813 i = gimple_assign_rhs2 (stmt);
814 }
815 update_complex_assignment (gsi, r, i);
e41d82f5
RH
816 }
817 }
726a989a 818 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
e41d82f5
RH
819 {
820 tree x;
726a989a 821 gimple t;
e41d82f5 822
726a989a
RB
823 r = extract_component (gsi, rhs, 0, false);
824 i = extract_component (gsi, rhs, 1, false);
e41d82f5
RH
825
826 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
827 t = gimple_build_assign (x, r);
828 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 829
726a989a 830 if (stmt == gsi_stmt (*gsi))
e41d82f5
RH
831 {
832 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
833 gimple_assign_set_lhs (stmt, x);
834 gimple_assign_set_rhs1 (stmt, i);
e41d82f5
RH
835 }
836 else
837 {
838 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
839 t = gimple_build_assign (x, i);
840 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 841
726a989a
RB
842 stmt = gsi_stmt (*gsi);
843 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
844 gimple_return_set_retval (stmt, lhs);
e41d82f5
RH
845 }
846
e41d82f5
RH
847 update_stmt (stmt);
848 }
6de9cd9a
DN
849}
850
851/* Expand complex addition to scalars:
852 a + b = (ar + br) + i(ai + bi)
853 a - b = (ar - br) + i(ai + bi)
854*/
855
856static void
726a989a 857expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 858 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
859 enum tree_code code,
860 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a
DN
861{
862 tree rr, ri;
863
e41d82f5
RH
864 switch (PAIR (al, bl))
865 {
866 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 867 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
868 ri = ai;
869 break;
870
871 case PAIR (ONLY_REAL, ONLY_IMAG):
872 rr = ar;
873 if (code == MINUS_EXPR)
726a989a 874 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
e41d82f5
RH
875 else
876 ri = bi;
877 break;
878
879 case PAIR (ONLY_IMAG, ONLY_REAL):
880 if (code == MINUS_EXPR)
726a989a 881 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
e41d82f5
RH
882 else
883 rr = br;
884 ri = ai;
885 break;
886
887 case PAIR (ONLY_IMAG, ONLY_IMAG):
888 rr = ar;
726a989a 889 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
890 break;
891
892 case PAIR (VARYING, ONLY_REAL):
726a989a 893 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
894 ri = ai;
895 break;
896
897 case PAIR (VARYING, ONLY_IMAG):
898 rr = ar;
726a989a 899 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
900 break;
901
902 case PAIR (ONLY_REAL, VARYING):
903 if (code == MINUS_EXPR)
904 goto general;
726a989a 905 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
906 ri = bi;
907 break;
908
909 case PAIR (ONLY_IMAG, VARYING):
910 if (code == MINUS_EXPR)
911 goto general;
912 rr = br;
726a989a 913 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
914 break;
915
916 case PAIR (VARYING, VARYING):
917 general:
726a989a
RB
918 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
919 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
920 break;
921
922 default:
923 gcc_unreachable ();
924 }
6de9cd9a 925
726a989a 926 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
927}
928
7e7e470f
RH
929/* Expand a complex multiplication or division to a libcall to the c99
930 compliant routines. */
931
932static void
726a989a 933expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
7e7e470f
RH
934 tree br, tree bi, enum tree_code code)
935{
936 enum machine_mode mode;
937 enum built_in_function bcode;
726a989a 938 tree fn, type, lhs;
04be6ff5 939 gimple old_stmt, stmt;
7e7e470f 940
04be6ff5
JJ
941 old_stmt = gsi_stmt (*gsi);
942 lhs = gimple_assign_lhs (old_stmt);
726a989a 943 type = TREE_TYPE (lhs);
7e7e470f
RH
944
945 mode = TYPE_MODE (type);
946 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
726a989a 947
7e7e470f 948 if (code == MULT_EXPR)
32e8bb8e
ILT
949 bcode = ((enum built_in_function)
950 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f 951 else if (code == RDIV_EXPR)
32e8bb8e
ILT
952 bcode = ((enum built_in_function)
953 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f
RH
954 else
955 gcc_unreachable ();
e79983f4 956 fn = builtin_decl_explicit (bcode);
7e7e470f 957
726a989a
RB
958 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
959 gimple_call_set_lhs (stmt, lhs);
f430bae8 960 update_stmt (stmt);
04be6ff5
JJ
961 gsi_replace (gsi, stmt, false);
962
963 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
964 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
e41d82f5 965
5cd4ec7f 966 if (gimple_in_ssa_p (cfun))
e41d82f5 967 {
d5c77941 968 type = TREE_TYPE (type);
726a989a 969 update_complex_components (gsi, stmt,
e41d82f5
RH
970 build1 (REALPART_EXPR, type, lhs),
971 build1 (IMAGPART_EXPR, type, lhs));
726a989a 972 SSA_NAME_DEF_STMT (lhs) = stmt;
e41d82f5 973 }
7e7e470f
RH
974}
975
6de9cd9a
DN
976/* Expand complex multiplication to scalars:
977 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
978*/
979
980static void
726a989a 981expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
e41d82f5
RH
982 tree ar, tree ai, tree br, tree bi,
983 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 984{
e41d82f5 985 tree rr, ri;
6de9cd9a 986
e41d82f5 987 if (al < bl)
7e7e470f 988 {
e41d82f5
RH
989 complex_lattice_t tl;
990 rr = ar, ar = br, br = rr;
991 ri = ai, ai = bi, bi = ri;
992 tl = al, al = bl, bl = tl;
7e7e470f
RH
993 }
994
e41d82f5
RH
995 switch (PAIR (al, bl))
996 {
997 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 998 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
e41d82f5
RH
999 ri = ai;
1000 break;
6de9cd9a 1001
e41d82f5
RH
1002 case PAIR (ONLY_IMAG, ONLY_REAL):
1003 rr = ar;
1004 if (TREE_CODE (ai) == REAL_CST
1005 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1006 ri = br;
1007 else
726a989a 1008 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1009 break;
6de9cd9a 1010
e41d82f5 1011 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a
RB
1012 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1013 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
e41d82f5
RH
1014 ri = ar;
1015 break;
1016
1017 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1018 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1019 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5
RH
1020 break;
1021
1022 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1023 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1024 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1025 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1026 break;
1027
1028 case PAIR (VARYING, VARYING):
1029 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1030 {
726a989a 1031 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
e41d82f5
RH
1032 return;
1033 }
1034 else
1035 {
1036 tree t1, t2, t3, t4;
1037
726a989a
RB
1038 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1039 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1040 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1041
1042 /* Avoid expanding redundant multiplication for the common
1043 case of squaring a complex number. */
1044 if (ar == br && ai == bi)
1045 t4 = t3;
1046 else
726a989a 1047 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1048
726a989a
RB
1049 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1050 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
e41d82f5
RH
1051 }
1052 break;
1053
1054 default:
1055 gcc_unreachable ();
1056 }
6de9cd9a 1057
726a989a 1058 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1059}
1060
e3d5405d 1061/* Keep this algorithm in sync with fold-const.c:const_binop().
b8698a0f 1062
e3d5405d 1063 Expand complex division to scalars, straightforward algorithm.
6de9cd9a
DN
1064 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1065 t = br*br + bi*bi
1066*/
1067
1068static void
726a989a 1069expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1070 tree ar, tree ai, tree br, tree bi,
1071 enum tree_code code)
1072{
1073 tree rr, ri, div, t1, t2, t3;
1074
726a989a
RB
1075 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1076 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1077 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
6de9cd9a 1078
726a989a
RB
1079 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1080 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1081 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1082 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1083
726a989a
RB
1084 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1085 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1086 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1087 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1088
726a989a 1089 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1090}
1091
e3d5405d
KG
1092/* Keep this algorithm in sync with fold-const.c:const_binop().
1093
1094 Expand complex division to scalars, modified algorithm to minimize
6de9cd9a
DN
1095 overflow with wide input ranges. */
1096
1097static void
726a989a 1098expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1099 tree ar, tree ai, tree br, tree bi,
1100 enum tree_code code)
1101{
04b03edb 1102 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
c63f5a42 1103 basic_block bb_cond, bb_true, bb_false, bb_join;
726a989a 1104 gimple stmt;
6de9cd9a
DN
1105
1106 /* Examine |br| < |bi|, and branch. */
726a989a
RB
1107 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1108 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
db3927fb 1109 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
b57d8e6f 1110 LT_EXPR, boolean_type_node, t1, t2);
04b03edb 1111 STRIP_NOPS (compare);
6de9cd9a 1112
c63f5a42
RH
1113 bb_cond = bb_true = bb_false = bb_join = NULL;
1114 rr = ri = tr = ti = NULL;
b57d8e6f 1115 if (TREE_CODE (compare) != INTEGER_CST)
6de9cd9a 1116 {
6de9cd9a 1117 edge e;
726a989a 1118 gimple stmt;
04b03edb 1119 tree cond, tmp;
6de9cd9a 1120
04b03edb 1121 tmp = create_tmp_var (boolean_type_node, NULL);
726a989a 1122 stmt = gimple_build_assign (tmp, compare);
04b03edb 1123 if (gimple_in_ssa_p (cfun))
726a989a
RB
1124 {
1125 tmp = make_ssa_name (tmp, stmt);
1126 gimple_assign_set_lhs (stmt, tmp);
1127 }
1128
1129 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
04b03edb 1130
db3927fb
AH
1131 cond = fold_build2_loc (gimple_location (stmt),
1132 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
726a989a
RB
1133 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
6de9cd9a 1135
6de9cd9a 1136 /* Split the original block, and create the TRUE and FALSE blocks. */
726a989a 1137 e = split_block (gsi_bb (*gsi), stmt);
6de9cd9a
DN
1138 bb_cond = e->src;
1139 bb_join = e->dest;
1140 bb_true = create_empty_bb (bb_cond);
1141 bb_false = create_empty_bb (bb_true);
1142
1143 /* Wire the blocks together. */
1144 e->flags = EDGE_TRUE_VALUE;
1145 redirect_edge_succ (e, bb_true);
1146 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
520f34fa
RH
1147 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1148 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
6de9cd9a
DN
1149
1150 /* Update dominance info. Note that bb_join's data was
1151 updated by split_block. */
fce22de5 1152 if (dom_info_available_p (CDI_DOMINATORS))
6de9cd9a
DN
1153 {
1154 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1155 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1156 }
1157
7cc434a3
RG
1158 rr = create_tmp_reg (inner_type, NULL);
1159 ri = create_tmp_reg (inner_type, NULL);
6de9cd9a 1160 }
c63f5a42
RH
1161
1162 /* In the TRUE branch, we compute
1163 ratio = br/bi;
1164 div = (br * ratio) + bi;
1165 tr = (ar * ratio) + ai;
1166 ti = (ai * ratio) - ar;
1167 tr = tr / div;
1168 ti = ti / div; */
04b03edb 1169 if (bb_true || integer_nonzerop (compare))
c63f5a42
RH
1170 {
1171 if (bb_true)
1172 {
726a989a
RB
1173 *gsi = gsi_last_bb (bb_true);
1174 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1175 }
1176
726a989a 1177 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
c63f5a42 1178
726a989a
RB
1179 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1180 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
c63f5a42 1181
726a989a
RB
1182 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1183 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
c63f5a42 1184
726a989a
RB
1185 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1186 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
c63f5a42 1187
726a989a
RB
1188 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1189 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1190
1191 if (bb_true)
1192 {
726a989a
RB
1193 stmt = gimple_build_assign (rr, tr);
1194 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1195 stmt = gimple_build_assign (ri, ti);
1196 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1197 gsi_remove (gsi, true);
c63f5a42
RH
1198 }
1199 }
1200
1201 /* In the FALSE branch, we compute
1202 ratio = d/c;
1203 divisor = (d * ratio) + c;
1204 tr = (b * ratio) + a;
1205 ti = b - (a * ratio);
1206 tr = tr / div;
1207 ti = ti / div; */
04b03edb 1208 if (bb_false || integer_zerop (compare))
c63f5a42
RH
1209 {
1210 if (bb_false)
1211 {
726a989a
RB
1212 *gsi = gsi_last_bb (bb_false);
1213 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1214 }
1215
726a989a 1216 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
c63f5a42 1217
726a989a
RB
1218 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1219 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
c63f5a42 1220
726a989a
RB
1221 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1222 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
c63f5a42 1223
726a989a
RB
1224 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1225 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
c63f5a42 1226
726a989a
RB
1227 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1228 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1229
1230 if (bb_false)
1231 {
726a989a
RB
1232 stmt = gimple_build_assign (rr, tr);
1233 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1234 stmt = gimple_build_assign (ri, ti);
1235 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1236 gsi_remove (gsi, true);
c63f5a42
RH
1237 }
1238 }
1239
1240 if (bb_join)
726a989a 1241 *gsi = gsi_start_bb (bb_join);
c63f5a42
RH
1242 else
1243 rr = tr, ri = ti;
6de9cd9a 1244
726a989a 1245 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1246}
1247
1248/* Expand complex division to scalars. */
1249
1250static void
726a989a 1251expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 1252 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
1253 enum tree_code code,
1254 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 1255{
e41d82f5
RH
1256 tree rr, ri;
1257
1258 switch (PAIR (al, bl))
6de9cd9a 1259 {
e41d82f5 1260 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1261 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5 1262 ri = ai;
6de9cd9a 1263 break;
7e7e470f 1264
e41d82f5
RH
1265 case PAIR (ONLY_REAL, ONLY_IMAG):
1266 rr = ai;
726a989a
RB
1267 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1268 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1269 break;
1270
1271 case PAIR (ONLY_IMAG, ONLY_REAL):
1272 rr = ar;
726a989a 1273 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5 1274 break;
7e7e470f 1275
e41d82f5 1276 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a 1277 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5 1278 ri = ar;
6de9cd9a 1279 break;
7e7e470f 1280
e41d82f5 1281 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1282 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1283 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5
RH
1284 break;
1285
1286 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1287 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1288 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1289 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1290
1291 case PAIR (ONLY_REAL, VARYING):
1292 case PAIR (ONLY_IMAG, VARYING):
1293 case PAIR (VARYING, VARYING):
1294 switch (flag_complex_method)
1295 {
1296 case 0:
1297 /* straightforward implementation of complex divide acceptable. */
726a989a 1298 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1299 break;
1300
1301 case 2:
1302 if (SCALAR_FLOAT_TYPE_P (inner_type))
1303 {
726a989a 1304 expand_complex_libcall (gsi, ar, ai, br, bi, code);
e41d82f5
RH
1305 break;
1306 }
1307 /* FALLTHRU */
1308
1309 case 1:
1310 /* wide ranges of inputs must work for complex divide. */
726a989a 1311 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1312 break;
1313
1314 default:
1315 gcc_unreachable ();
1316 }
1317 return;
1318
6de9cd9a 1319 default:
1e128c5f 1320 gcc_unreachable ();
6de9cd9a 1321 }
e41d82f5 1322
726a989a 1323 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1324}
1325
1326/* Expand complex negation to scalars:
1327 -a = (-ar) + i(-ai)
1328*/
1329
1330static void
726a989a 1331expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1332 tree ar, tree ai)
1333{
1334 tree rr, ri;
1335
726a989a
RB
1336 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1337 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1338
726a989a 1339 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1340}
1341
1342/* Expand complex conjugate to scalars:
1343 ~a = (ar) + i(-ai)
1344*/
1345
1346static void
726a989a 1347expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1348 tree ar, tree ai)
1349{
1350 tree ri;
1351
726a989a 1352 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1353
726a989a 1354 update_complex_assignment (gsi, ar, ri);
6de9cd9a
DN
1355}
1356
1357/* Expand complex comparison (EQ or NE only). */
1358
1359static void
726a989a 1360expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
6de9cd9a
DN
1361 tree br, tree bi, enum tree_code code)
1362{
726a989a
RB
1363 tree cr, ci, cc, type;
1364 gimple stmt;
6de9cd9a 1365
726a989a
RB
1366 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1367 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1368 cc = gimplify_build2 (gsi,
26277d41
PB
1369 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1370 boolean_type_node, cr, ci);
6de9cd9a 1371
726a989a 1372 stmt = gsi_stmt (*gsi);
6de9cd9a 1373
726a989a 1374 switch (gimple_code (stmt))
6de9cd9a 1375 {
726a989a
RB
1376 case GIMPLE_RETURN:
1377 type = TREE_TYPE (gimple_return_retval (stmt));
1378 gimple_return_set_retval (stmt, fold_convert (type, cc));
6de9cd9a 1379 break;
726a989a
RB
1380
1381 case GIMPLE_ASSIGN:
1382 type = TREE_TYPE (gimple_assign_lhs (stmt));
1383 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1384 stmt = gsi_stmt (*gsi);
6de9cd9a 1385 break;
726a989a
RB
1386
1387 case GIMPLE_COND:
1388 gimple_cond_set_code (stmt, EQ_EXPR);
1389 gimple_cond_set_lhs (stmt, cc);
1390 gimple_cond_set_rhs (stmt, boolean_true_node);
1391 break;
1392
6de9cd9a 1393 default:
1e128c5f 1394 gcc_unreachable ();
6de9cd9a 1395 }
68b9f53b 1396
e41d82f5 1397 update_stmt (stmt);
6de9cd9a
DN
1398}
1399
726a989a 1400
6de9cd9a
DN
1401/* Process one statement. If we identify a complex operation, expand it. */
1402
1403static void
726a989a 1404expand_complex_operations_1 (gimple_stmt_iterator *gsi)
6de9cd9a 1405{
726a989a
RB
1406 gimple stmt = gsi_stmt (*gsi);
1407 tree type, inner_type, lhs;
6de9cd9a 1408 tree ac, ar, ai, bc, br, bi;
e41d82f5 1409 complex_lattice_t al, bl;
6de9cd9a
DN
1410 enum tree_code code;
1411
726a989a
RB
1412 lhs = gimple_get_lhs (stmt);
1413 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1414 return;
6de9cd9a 1415
726a989a
RB
1416 type = TREE_TYPE (gimple_op (stmt, 0));
1417 code = gimple_expr_code (stmt);
6de9cd9a
DN
1418
1419 /* Initial filter for operations we handle. */
1420 switch (code)
1421 {
1422 case PLUS_EXPR:
1423 case MINUS_EXPR:
1424 case MULT_EXPR:
1425 case TRUNC_DIV_EXPR:
1426 case CEIL_DIV_EXPR:
1427 case FLOOR_DIV_EXPR:
1428 case ROUND_DIV_EXPR:
1429 case RDIV_EXPR:
1430 case NEGATE_EXPR:
1431 case CONJ_EXPR:
1432 if (TREE_CODE (type) != COMPLEX_TYPE)
1433 return;
1434 inner_type = TREE_TYPE (type);
1435 break;
1436
1437 case EQ_EXPR:
1438 case NE_EXPR:
726a989a
RB
1439 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1440 subocde, so we need to access the operands using gimple_op. */
1441 inner_type = TREE_TYPE (gimple_op (stmt, 1));
6de9cd9a
DN
1442 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1443 return;
1444 break;
1445
1446 default:
e41d82f5 1447 {
726a989a 1448 tree rhs;
a9b77cd1 1449
726a989a
RB
1450 /* GIMPLE_COND may also fallthru here, but we do not need to
1451 do anything with it. */
1452 if (gimple_code (stmt) == GIMPLE_COND)
a9b77cd1
ZD
1453 return;
1454
e41d82f5 1455 if (TREE_CODE (type) == COMPLEX_TYPE)
726a989a
RB
1456 expand_complex_move (gsi, type);
1457 else if (is_gimple_assign (stmt)
1458 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1459 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1460 && TREE_CODE (lhs) == SSA_NAME)
e41d82f5 1461 {
726a989a
RB
1462 rhs = gimple_assign_rhs1 (stmt);
1463 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1464 gimple_assign_rhs_code (stmt)
1465 == IMAGPART_EXPR,
1466 false);
1467 gimple_assign_set_rhs_from_tree (gsi, rhs);
1468 stmt = gsi_stmt (*gsi);
e41d82f5
RH
1469 update_stmt (stmt);
1470 }
1471 }
6de9cd9a
DN
1472 return;
1473 }
1474
1475 /* Extract the components of the two complex values. Make sure and
1476 handle the common case of the same value used twice specially. */
726a989a
RB
1477 if (is_gimple_assign (stmt))
1478 {
1479 ac = gimple_assign_rhs1 (stmt);
1480 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1481 }
1482 /* GIMPLE_CALL can not get here. */
6de9cd9a
DN
1483 else
1484 {
726a989a
RB
1485 ac = gimple_cond_lhs (stmt);
1486 bc = gimple_cond_rhs (stmt);
1487 }
1488
1489 ar = extract_component (gsi, ac, false, true);
1490 ai = extract_component (gsi, ac, true, true);
1491
1492 if (ac == bc)
1493 br = ar, bi = ai;
1494 else if (bc)
1495 {
1496 br = extract_component (gsi, bc, 0, true);
1497 bi = extract_component (gsi, bc, 1, true);
6de9cd9a 1498 }
726a989a
RB
1499 else
1500 br = bi = NULL_TREE;
6de9cd9a 1501
5cd4ec7f 1502 if (gimple_in_ssa_p (cfun))
e41d82f5
RH
1503 {
1504 al = find_lattice_value (ac);
1505 if (al == UNINITIALIZED)
1506 al = VARYING;
1507
1508 if (TREE_CODE_CLASS (code) == tcc_unary)
1509 bl = UNINITIALIZED;
1510 else if (ac == bc)
1511 bl = al;
1512 else
1513 {
1514 bl = find_lattice_value (bc);
1515 if (bl == UNINITIALIZED)
1516 bl = VARYING;
1517 }
1518 }
1519 else
1520 al = bl = VARYING;
1521
6de9cd9a
DN
1522 switch (code)
1523 {
1524 case PLUS_EXPR:
1525 case MINUS_EXPR:
726a989a 1526 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a
DN
1527 break;
1528
1529 case MULT_EXPR:
726a989a 1530 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
6de9cd9a
DN
1531 break;
1532
1533 case TRUNC_DIV_EXPR:
1534 case CEIL_DIV_EXPR:
1535 case FLOOR_DIV_EXPR:
1536 case ROUND_DIV_EXPR:
1537 case RDIV_EXPR:
726a989a 1538 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a 1539 break;
b8698a0f 1540
6de9cd9a 1541 case NEGATE_EXPR:
726a989a 1542 expand_complex_negation (gsi, inner_type, ar, ai);
6de9cd9a
DN
1543 break;
1544
1545 case CONJ_EXPR:
726a989a 1546 expand_complex_conjugate (gsi, inner_type, ar, ai);
6de9cd9a
DN
1547 break;
1548
1549 case EQ_EXPR:
1550 case NE_EXPR:
726a989a 1551 expand_complex_comparison (gsi, ar, ai, br, bi, code);
6de9cd9a
DN
1552 break;
1553
1554 default:
1e128c5f 1555 gcc_unreachable ();
6de9cd9a
DN
1556 }
1557}
26277d41 1558
e41d82f5
RH
1559\f
1560/* Entry point for complex operation lowering during optimization. */
1561
c2924966 1562static unsigned int
2b725155 1563tree_lower_complex (void)
6de9cd9a 1564{
e41d82f5 1565 int old_last_basic_block;
726a989a 1566 gimple_stmt_iterator gsi;
6de9cd9a
DN
1567 basic_block bb;
1568
e41d82f5 1569 if (!init_dont_simulate_again ())
c2924966 1570 return 0;
e41d82f5
RH
1571
1572 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
a590ac65
KH
1573 VEC_safe_grow_cleared (complex_lattice_t, heap,
1574 complex_lattice_values, num_ssa_names);
e41d82f5 1575
95a8c155 1576 init_parameter_lattice_values ();
e41d82f5
RH
1577 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1578
95a8c155
RH
1579 complex_variable_components = htab_create (10, int_tree_map_hash,
1580 int_tree_map_eq, free);
1581
1582 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
a590ac65
KH
1583 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1584 2 * num_ssa_names);
95a8c155 1585
e41d82f5
RH
1586 update_parameter_components ();
1587
95a8c155 1588 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
e41d82f5 1589 old_last_basic_block = last_basic_block;
6de9cd9a
DN
1590 FOR_EACH_BB (bb)
1591 {
1592 if (bb->index >= old_last_basic_block)
1593 continue;
726a989a 1594
e41d82f5 1595 update_phi_components (bb);
726a989a
RB
1596 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1597 expand_complex_operations_1 (&gsi);
6de9cd9a 1598 }
6de9cd9a 1599
726a989a 1600 gsi_commit_edge_inserts ();
e41d82f5 1601
95a8c155
RH
1602 htab_delete (complex_variable_components);
1603 VEC_free (tree, heap, complex_ssa_name_components);
e41d82f5 1604 VEC_free (complex_lattice_t, heap, complex_lattice_values);
c2924966 1605 return 0;
e41d82f5 1606}
26277d41 1607
b8698a0f 1608struct gimple_opt_pass pass_lower_complex =
26277d41 1609{
8ddbbcae
JH
1610 {
1611 GIMPLE_PASS,
2b725155 1612 "cplxlower", /* name */
26277d41 1613 0, /* gate */
2b725155 1614 tree_lower_complex, /* execute */
26277d41
PB
1615 NULL, /* sub */
1616 NULL, /* next */
1617 0, /* static_pass_number */
7072a650 1618 TV_NONE, /* tv_id */
e41d82f5 1619 PROP_ssa, /* properties_required */
688a482d 1620 PROP_gimple_lcx, /* properties_provided */
ae07b463 1621 0, /* properties_destroyed */
e41d82f5 1622 0, /* todo_flags_start */
22c5fa5f 1623 TODO_ggc_collect
706ca88e 1624 | TODO_update_ssa
8ddbbcae
JH
1625 | TODO_verify_stmts /* todo_flags_finish */
1626 }
e41d82f5
RH
1627};
1628
1629\f
e41d82f5
RH
1630static bool
1631gate_no_optimization (void)
1632{
1f9081d1
XDL
1633 /* With errors, normal optimization passes are not run. If we don't
1634 lower complex operations at all, rtl expansion will abort. */
1635 return !(cfun->curr_properties & PROP_gimple_lcx);
e41d82f5
RH
1636}
1637
b8698a0f 1638struct gimple_opt_pass pass_lower_complex_O0 =
e41d82f5 1639{
8ddbbcae
JH
1640 {
1641 GIMPLE_PASS,
e41d82f5
RH
1642 "cplxlower0", /* name */
1643 gate_no_optimization, /* gate */
688a482d 1644 tree_lower_complex, /* execute */
e41d82f5
RH
1645 NULL, /* sub */
1646 NULL, /* next */
1647 0, /* static_pass_number */
7072a650 1648 TV_NONE, /* tv_id */
26277d41 1649 PROP_cfg, /* properties_required */
688a482d 1650 PROP_gimple_lcx, /* properties_provided */
26277d41
PB
1651 0, /* properties_destroyed */
1652 0, /* todo_flags_start */
22c5fa5f 1653 TODO_ggc_collect
688a482d
RG
1654 | TODO_update_ssa
1655 | TODO_verify_stmts /* todo_flags_finish */
8ddbbcae 1656 }
6de9cd9a 1657};