]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-complex.c
Remove trailing white spaces.
[thirdparty/gcc.git] / gcc / tree-complex.c
CommitLineData
2b725155 1/* Lower complex number operations to scalar operations.
7072a650
ILT
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
6de9cd9a
DN
4
5This file is part of GCC.
b8698a0f 6
6de9cd9a
DN
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9dcd6f09 9Free Software Foundation; either version 3, or (at your option) any
6de9cd9a 10later version.
b8698a0f 11
6de9cd9a
DN
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
b8698a0f 16
6de9cd9a 17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
6de9cd9a 24#include "tm.h"
e41d82f5 25#include "tree.h"
26277d41 26#include "rtl.h"
e41d82f5
RH
27#include "real.h"
28#include "flags.h"
6de9cd9a 29#include "tree-flow.h"
726a989a 30#include "gimple.h"
6de9cd9a
DN
31#include "tree-iterator.h"
32#include "tree-pass.h"
e41d82f5 33#include "tree-ssa-propagate.h"
5306ec31 34#include "diagnostic.h"
e41d82f5
RH
35
36
37/* For each complex ssa name, a lattice value. We're interested in finding
38 out whether a complex number is degenerate in some way, having only real
39 or only complex parts. */
40
32e8bb8e 41enum
e41d82f5
RH
42{
43 UNINITIALIZED = 0,
44 ONLY_REAL = 1,
45 ONLY_IMAG = 2,
46 VARYING = 3
32e8bb8e
ILT
47};
48
49/* The type complex_lattice_t holds combinations of the above
50 constants. */
51typedef int complex_lattice_t;
e41d82f5
RH
52
53#define PAIR(a, b) ((a) << 2 | (b))
54
55DEF_VEC_I(complex_lattice_t);
56DEF_VEC_ALLOC_I(complex_lattice_t, heap);
57
58static VEC(complex_lattice_t, heap) *complex_lattice_values;
59
a3648cfc
DB
60/* For each complex variable, a pair of variables for the components exists in
61 the hashtable. */
62static htab_t complex_variable_components;
63
95a8c155
RH
64/* For each complex SSA_NAME, a pair of ssa names for the components. */
65static VEC(tree, heap) *complex_ssa_name_components;
66
a3648cfc
DB
67/* Lookup UID in the complex_variable_components hashtable and return the
68 associated tree. */
b8698a0f 69static tree
a3648cfc
DB
70cvc_lookup (unsigned int uid)
71{
72 struct int_tree_map *h, in;
73 in.uid = uid;
3d9a9f94 74 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
95a8c155 75 return h ? h->to : NULL;
a3648cfc 76}
b8698a0f 77
a3648cfc
DB
78/* Insert the pair UID, TO into the complex_variable_components hashtable. */
79
b8698a0f 80static void
a3648cfc 81cvc_insert (unsigned int uid, tree to)
b8698a0f 82{
a3648cfc
DB
83 struct int_tree_map *h;
84 void **loc;
85
5ed6ace5 86 h = XNEW (struct int_tree_map);
a3648cfc
DB
87 h->uid = uid;
88 h->to = to;
89 loc = htab_find_slot_with_hash (complex_variable_components, h,
90 uid, INSERT);
95a8c155 91 *(struct int_tree_map **) loc = h;
a3648cfc 92}
e41d82f5 93
e41d82f5
RH
94/* Return true if T is not a zero constant. In the case of real values,
95 we're only interested in +0.0. */
96
97static int
98some_nonzerop (tree t)
99{
100 int zerop = false;
101
2ca862e9
JM
102 /* Operations with real or imaginary part of a complex number zero
103 cannot be treated the same as operations with a real or imaginary
104 operand if we care about the signs of zeros in the result. */
105 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
e41d82f5 106 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
325217ed
CF
107 else if (TREE_CODE (t) == FIXED_CST)
108 zerop = fixed_zerop (t);
e41d82f5
RH
109 else if (TREE_CODE (t) == INTEGER_CST)
110 zerop = integer_zerop (t);
111
112 return !zerop;
113}
114
726a989a
RB
115
116/* Compute a lattice value from the components of a complex type REAL
117 and IMAG. */
6de9cd9a 118
e41d82f5 119static complex_lattice_t
726a989a 120find_lattice_value_parts (tree real, tree imag)
e41d82f5 121{
e41d82f5
RH
122 int r, i;
123 complex_lattice_t ret;
124
726a989a
RB
125 r = some_nonzerop (real);
126 i = some_nonzerop (imag);
127 ret = r * ONLY_REAL + i * ONLY_IMAG;
128
129 /* ??? On occasion we could do better than mapping 0+0i to real, but we
130 certainly don't want to leave it UNINITIALIZED, which eventually gets
131 mapped to VARYING. */
132 if (ret == UNINITIALIZED)
133 ret = ONLY_REAL;
134
135 return ret;
136}
137
138
139/* Compute a lattice value from gimple_val T. */
140
141static complex_lattice_t
142find_lattice_value (tree t)
143{
144 tree real, imag;
145
e41d82f5
RH
146 switch (TREE_CODE (t))
147 {
148 case SSA_NAME:
149 return VEC_index (complex_lattice_t, complex_lattice_values,
150 SSA_NAME_VERSION (t));
151
152 case COMPLEX_CST:
153 real = TREE_REALPART (t);
154 imag = TREE_IMAGPART (t);
155 break;
156
e41d82f5
RH
157 default:
158 gcc_unreachable ();
159 }
160
726a989a 161 return find_lattice_value_parts (real, imag);
e41d82f5
RH
162}
163
164/* Determine if LHS is something for which we're interested in seeing
165 simulation results. */
166
167static bool
168is_complex_reg (tree lhs)
169{
170 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
171}
172
173/* Mark the incoming parameters to the function as VARYING. */
174
175static void
176init_parameter_lattice_values (void)
177{
f0a77246 178 tree parm, ssa_name;
e41d82f5
RH
179
180 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
f0a77246
RG
181 if (is_complex_reg (parm)
182 && var_ann (parm) != NULL
183 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
184 VEC_replace (complex_lattice_t, complex_lattice_values,
185 SSA_NAME_VERSION (ssa_name), VARYING);
e41d82f5
RH
186}
187
726a989a
RB
188/* Initialize simulation state for each statement. Return false if we
189 found no statements we want to simulate, and thus there's nothing
190 for the entire pass to do. */
e41d82f5
RH
191
192static bool
193init_dont_simulate_again (void)
194{
195 basic_block bb;
726a989a
RB
196 gimple_stmt_iterator gsi;
197 gimple phi;
8f8abce4 198 bool saw_a_complex_op = false;
e41d82f5
RH
199
200 FOR_EACH_BB (bb)
201 {
726a989a
RB
202 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
203 {
204 phi = gsi_stmt (gsi);
205 prop_set_simulate_again (phi,
206 is_complex_reg (gimple_phi_result (phi)));
207 }
e41d82f5 208
726a989a 209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e41d82f5 210 {
726a989a
RB
211 gimple stmt;
212 tree op0, op1;
213 bool sim_again_p;
e41d82f5 214
726a989a
RB
215 stmt = gsi_stmt (gsi);
216 op0 = op1 = NULL_TREE;
99e6bdda 217
b8698a0f 218 /* Most control-altering statements must be initially
99e6bdda 219 simulated, else we won't cover the entire cfg. */
726a989a 220 sim_again_p = stmt_ends_bb_p (stmt);
99e6bdda 221
726a989a 222 switch (gimple_code (stmt))
e41d82f5 223 {
726a989a
RB
224 case GIMPLE_CALL:
225 if (gimple_call_lhs (stmt))
226 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
227 break;
8f8abce4 228
726a989a
RB
229 case GIMPLE_ASSIGN:
230 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
231 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
232 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
233 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
234 else
235 op0 = gimple_assign_rhs1 (stmt);
236 if (gimple_num_ops (stmt) > 2)
237 op1 = gimple_assign_rhs2 (stmt);
8f8abce4
RH
238 break;
239
726a989a
RB
240 case GIMPLE_COND:
241 op0 = gimple_cond_lhs (stmt);
242 op1 = gimple_cond_rhs (stmt);
8f8abce4
RH
243 break;
244
245 default:
246 break;
e41d82f5
RH
247 }
248
726a989a
RB
249 if (op0 || op1)
250 switch (gimple_expr_code (stmt))
8f8abce4
RH
251 {
252 case EQ_EXPR:
253 case NE_EXPR:
8f8abce4
RH
254 case PLUS_EXPR:
255 case MINUS_EXPR:
256 case MULT_EXPR:
257 case TRUNC_DIV_EXPR:
258 case CEIL_DIV_EXPR:
259 case FLOOR_DIV_EXPR:
260 case ROUND_DIV_EXPR:
261 case RDIV_EXPR:
726a989a
RB
262 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
263 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
264 saw_a_complex_op = true;
265 break;
266
8f8abce4
RH
267 case NEGATE_EXPR:
268 case CONJ_EXPR:
726a989a 269 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
8f8abce4
RH
270 saw_a_complex_op = true;
271 break;
272
7b7e6ecd
EB
273 case REALPART_EXPR:
274 case IMAGPART_EXPR:
275 /* The total store transformation performed during
726a989a
RB
276 gimplification creates such uninitialized loads
277 and we need to lower the statement to be able
278 to fix things up. */
279 if (TREE_CODE (op0) == SSA_NAME
280 && ssa_undefined_value_p (op0))
7b7e6ecd
EB
281 saw_a_complex_op = true;
282 break;
283
8f8abce4
RH
284 default:
285 break;
286 }
287
726a989a 288 prop_set_simulate_again (stmt, sim_again_p);
e41d82f5
RH
289 }
290 }
291
8f8abce4 292 return saw_a_complex_op;
e41d82f5
RH
293}
294
295
296/* Evaluate statement STMT against the complex lattice defined above. */
297
298static enum ssa_prop_result
726a989a 299complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
e41d82f5
RH
300 tree *result_p)
301{
302 complex_lattice_t new_l, old_l, op1_l, op2_l;
303 unsigned int ver;
726a989a 304 tree lhs;
e41d82f5 305
726a989a
RB
306 lhs = gimple_get_lhs (stmt);
307 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
308 if (!lhs)
99e6bdda 309 return SSA_PROP_VARYING;
e41d82f5 310
99e6bdda
RH
311 /* These conditions should be satisfied due to the initial filter
312 set up in init_dont_simulate_again. */
e41d82f5
RH
313 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
314 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
315
316 *result_p = lhs;
317 ver = SSA_NAME_VERSION (lhs);
318 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
319
726a989a 320 switch (gimple_expr_code (stmt))
e41d82f5
RH
321 {
322 case SSA_NAME:
e41d82f5 323 case COMPLEX_CST:
726a989a
RB
324 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
325 break;
326
327 case COMPLEX_EXPR:
328 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
329 gimple_assign_rhs2 (stmt));
e41d82f5
RH
330 break;
331
332 case PLUS_EXPR:
333 case MINUS_EXPR:
726a989a
RB
334 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
336
337 /* We've set up the lattice values such that IOR neatly
338 models addition. */
339 new_l = op1_l | op2_l;
340 break;
341
342 case MULT_EXPR:
343 case RDIV_EXPR:
344 case TRUNC_DIV_EXPR:
345 case CEIL_DIV_EXPR:
346 case FLOOR_DIV_EXPR:
347 case ROUND_DIV_EXPR:
726a989a
RB
348 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
349 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
350
351 /* Obviously, if either varies, so does the result. */
352 if (op1_l == VARYING || op2_l == VARYING)
353 new_l = VARYING;
354 /* Don't prematurely promote variables if we've not yet seen
355 their inputs. */
356 else if (op1_l == UNINITIALIZED)
357 new_l = op2_l;
358 else if (op2_l == UNINITIALIZED)
359 new_l = op1_l;
360 else
361 {
362 /* At this point both numbers have only one component. If the
363 numbers are of opposite kind, the result is imaginary,
364 otherwise the result is real. The add/subtract translates
365 the real/imag from/to 0/1; the ^ performs the comparison. */
366 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
367
368 /* Don't allow the lattice value to flip-flop indefinitely. */
369 new_l |= old_l;
370 }
371 break;
372
373 case NEGATE_EXPR:
374 case CONJ_EXPR:
726a989a 375 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
e41d82f5
RH
376 break;
377
378 default:
379 new_l = VARYING;
380 break;
381 }
382
383 /* If nothing changed this round, let the propagator know. */
384 if (new_l == old_l)
385 return SSA_PROP_NOT_INTERESTING;
386
387 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
388 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
389}
390
391/* Evaluate a PHI node against the complex lattice defined above. */
392
393static enum ssa_prop_result
726a989a 394complex_visit_phi (gimple phi)
e41d82f5
RH
395{
396 complex_lattice_t new_l, old_l;
397 unsigned int ver;
398 tree lhs;
399 int i;
400
726a989a 401 lhs = gimple_phi_result (phi);
e41d82f5
RH
402
403 /* This condition should be satisfied due to the initial filter
404 set up in init_dont_simulate_again. */
405 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
406
407 /* We've set up the lattice values such that IOR neatly models PHI meet. */
408 new_l = UNINITIALIZED;
726a989a
RB
409 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
410 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
e41d82f5
RH
411
412 ver = SSA_NAME_VERSION (lhs);
413 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
414
415 if (new_l == old_l)
416 return SSA_PROP_NOT_INTERESTING;
417
418 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
419 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
420}
421
95a8c155 422/* Create one backing variable for a complex component of ORIG. */
e41d82f5 423
95a8c155
RH
424static tree
425create_one_component_var (tree type, tree orig, const char *prefix,
426 const char *suffix, enum tree_code code)
e41d82f5 427{
95a8c155 428 tree r = create_tmp_var (type, prefix);
f004ab02 429 add_referenced_var (r);
e41d82f5 430
95a8c155
RH
431 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
432 DECL_ARTIFICIAL (r) = 1;
8f8abce4 433
95a8c155
RH
434 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
435 {
436 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
437 tree inner_type;
438
439 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
e41d82f5 440
95a8c155
RH
441 inner_type = TREE_TYPE (TREE_TYPE (orig));
442 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
443 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
444 DECL_IGNORED_P (r) = 0;
445 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
446 }
447 else
e41d82f5 448 {
95a8c155
RH
449 DECL_IGNORED_P (r) = 1;
450 TREE_NO_WARNING (r) = 1;
451 }
e41d82f5 452
95a8c155
RH
453 return r;
454}
e41d82f5 455
95a8c155 456/* Retrieve a value for a complex component of VAR. */
e41d82f5 457
95a8c155
RH
458static tree
459get_component_var (tree var, bool imag_p)
460{
461 size_t decl_index = DECL_UID (var) * 2 + imag_p;
462 tree ret = cvc_lookup (decl_index);
463
464 if (ret == NULL)
465 {
466 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
467 imag_p ? "CI" : "CR",
468 imag_p ? "$imag" : "$real",
469 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
470 cvc_insert (decl_index, ret);
471 }
472
473 return ret;
474}
e41d82f5 475
95a8c155 476/* Retrieve a value for a complex component of SSA_NAME. */
e41d82f5 477
95a8c155
RH
478static tree
479get_component_ssa_name (tree ssa_name, bool imag_p)
480{
481 complex_lattice_t lattice = find_lattice_value (ssa_name);
482 size_t ssa_name_index;
483 tree ret;
e41d82f5 484
95a8c155
RH
485 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
486 {
487 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
488 if (SCALAR_FLOAT_TYPE_P (inner_type))
489 return build_real (inner_type, dconst0);
490 else
491 return build_int_cst (inner_type, 0);
492 }
e41d82f5 493
95a8c155
RH
494 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
495 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
496 if (ret == NULL)
497 {
498 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
499 ret = make_ssa_name (ret, NULL);
500
501 /* Copy some properties from the original. In particular, whether it
502 is used in an abnormal phi, and whether it's uninitialized. */
503 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
504 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
505 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
726a989a 506 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
95a8c155
RH
507 {
508 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
509 set_default_def (SSA_NAME_VAR (ret), ret);
e41d82f5
RH
510 }
511
95a8c155 512 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
e41d82f5 513 }
95a8c155
RH
514
515 return ret;
516}
517
726a989a
RB
518/* Set a value for a complex component of SSA_NAME, return a
519 gimple_seq of stuff that needs doing. */
95a8c155 520
726a989a 521static gimple_seq
95a8c155
RH
522set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
523{
524 complex_lattice_t lattice = find_lattice_value (ssa_name);
525 size_t ssa_name_index;
726a989a
RB
526 tree comp;
527 gimple last;
528 gimple_seq list;
95a8c155
RH
529
530 /* We know the value must be zero, else there's a bug in our lattice
531 analysis. But the value may well be a variable known to contain
532 zero. We should be safe ignoring it. */
533 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
534 return NULL;
535
536 /* If we've already assigned an SSA_NAME to this component, then this
537 means that our walk of the basic blocks found a use before the set.
538 This is fine. Now we should create an initialization for the value
539 we created earlier. */
540 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
541 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
542 if (comp)
543 ;
544
545 /* If we've nothing assigned, and the value we're given is already stable,
536fa7b7 546 then install that as the value for this SSA_NAME. This preemptively
95a8c155 547 copy-propagates the value, which avoids unnecessary memory allocation. */
35a45bd4
RH
548 else if (is_gimple_min_invariant (value)
549 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
95a8c155
RH
550 {
551 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
552 return NULL;
553 }
554 else if (TREE_CODE (value) == SSA_NAME
555 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
556 {
557 /* Replace an anonymous base value with the variable from cvc_lookup.
558 This should result in better debug info. */
559 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
560 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
561 {
562 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
db753fa1 563 replace_ssa_name_symbol (value, comp);
95a8c155
RH
564 }
565
566 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
567 return NULL;
568 }
569
570 /* Finally, we need to stabilize the result by installing the value into
571 a new ssa name. */
572 else
573 comp = get_component_ssa_name (ssa_name, imag_p);
b8698a0f 574
95a8c155 575 /* Do all the work to assign VALUE to COMP. */
726a989a 576 list = NULL;
95a8c155 577 value = force_gimple_operand (value, &list, false, NULL);
726a989a
RB
578 last = gimple_build_assign (comp, value);
579 gimple_seq_add_stmt (&list, last);
580 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
95a8c155
RH
581
582 return list;
e41d82f5 583}
6de9cd9a 584
6de9cd9a
DN
585/* Extract the real or imaginary part of a complex variable or constant.
586 Make sure that it's a proper gimple_val and gimplify it if not.
726a989a 587 Emit any new code before gsi. */
6de9cd9a
DN
588
589static tree
726a989a 590extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
e41d82f5 591 bool gimple_p)
6de9cd9a 592{
6de9cd9a
DN
593 switch (TREE_CODE (t))
594 {
595 case COMPLEX_CST:
e41d82f5 596 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
6de9cd9a
DN
597
598 case COMPLEX_EXPR:
726a989a 599 gcc_unreachable ();
6de9cd9a
DN
600
601 case VAR_DECL:
f35a986c 602 case RESULT_DECL:
6de9cd9a 603 case PARM_DECL:
e41d82f5
RH
604 case INDIRECT_REF:
605 case COMPONENT_REF:
606 case ARRAY_REF:
7ec49257 607 case VIEW_CONVERT_EXPR:
e41d82f5
RH
608 {
609 tree inner_type = TREE_TYPE (TREE_TYPE (t));
610
611 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
612 inner_type, unshare_expr (t));
613
614 if (gimple_p)
726a989a
RB
615 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
616 GSI_SAME_STMT);
e41d82f5
RH
617
618 return t;
619 }
620
621 case SSA_NAME:
95a8c155 622 return get_component_ssa_name (t, imagpart_p);
6de9cd9a
DN
623
624 default:
1e128c5f 625 gcc_unreachable ();
6de9cd9a 626 }
e41d82f5
RH
627}
628
629/* Update the complex components of the ssa name on the lhs of STMT. */
6de9cd9a 630
e41d82f5 631static void
726a989a
RB
632update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
633 tree i)
e41d82f5 634{
726a989a
RB
635 tree lhs;
636 gimple_seq list;
637
638 lhs = gimple_get_lhs (stmt);
95a8c155
RH
639
640 list = set_component_ssa_name (lhs, false, r);
641 if (list)
726a989a 642 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
95a8c155
RH
643
644 list = set_component_ssa_name (lhs, true, i);
645 if (list)
726a989a 646 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
6de9cd9a
DN
647}
648
5d6b3bba 649static void
95a8c155 650update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
5d6b3bba 651{
726a989a 652 gimple_seq list;
5d6b3bba 653
95a8c155
RH
654 list = set_component_ssa_name (lhs, false, r);
655 if (list)
726a989a 656 gsi_insert_seq_on_edge (e, list);
5d6b3bba 657
95a8c155
RH
658 list = set_component_ssa_name (lhs, true, i);
659 if (list)
726a989a 660 gsi_insert_seq_on_edge (e, list);
5d6b3bba
RH
661}
662
726a989a 663
6de9cd9a
DN
664/* Update an assignment to a complex variable in place. */
665
666static void
726a989a 667update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
6de9cd9a 668{
726a989a
RB
669 gimple_stmt_iterator orig_si = *gsi;
670
671 if (gimple_in_ssa_p (cfun))
672 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
673
674 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
675 update_stmt (gsi_stmt (orig_si));
e41d82f5
RH
676}
677
726a989a 678
e41d82f5
RH
679/* Generate code at the entry point of the function to initialize the
680 component variables for a complex parameter. */
681
682static void
683update_parameter_components (void)
684{
685 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
686 tree parm;
687
688 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
689 {
690 tree type = TREE_TYPE (parm);
5d6b3bba 691 tree ssa_name, r, i;
e41d82f5
RH
692
693 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
694 continue;
695
696 type = TREE_TYPE (type);
5cd4ec7f 697 ssa_name = gimple_default_def (cfun, parm);
c0a3f887
RG
698 if (!ssa_name)
699 continue;
e41d82f5 700
5d6b3bba
RH
701 r = build1 (REALPART_EXPR, type, ssa_name);
702 i = build1 (IMAGPART_EXPR, type, ssa_name);
95a8c155 703 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
e41d82f5
RH
704 }
705}
706
707/* Generate code to set the component variables of a complex variable
708 to match the PHI statements in block BB. */
709
710static void
711update_phi_components (basic_block bb)
712{
726a989a 713 gimple_stmt_iterator gsi;
e41d82f5 714
726a989a
RB
715 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
716 {
717 gimple phi = gsi_stmt (gsi);
e41d82f5 718
726a989a
RB
719 if (is_complex_reg (gimple_phi_result (phi)))
720 {
721 tree lr, li;
722 gimple pr = NULL, pi = NULL;
723 unsigned int i, n;
95a8c155 724
726a989a
RB
725 lr = get_component_ssa_name (gimple_phi_result (phi), false);
726 if (TREE_CODE (lr) == SSA_NAME)
727 {
728 pr = create_phi_node (lr, bb);
729 SSA_NAME_DEF_STMT (lr) = pr;
730 }
731
732 li = get_component_ssa_name (gimple_phi_result (phi), true);
733 if (TREE_CODE (li) == SSA_NAME)
734 {
735 pi = create_phi_node (li, bb);
736 SSA_NAME_DEF_STMT (li) = pi;
737 }
738
739 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
740 {
741 tree comp, arg = gimple_phi_arg_def (phi, i);
742 if (pr)
743 {
744 comp = extract_component (NULL, arg, false, false);
745 SET_PHI_ARG_DEF (pr, i, comp);
746 }
747 if (pi)
748 {
749 comp = extract_component (NULL, arg, true, false);
750 SET_PHI_ARG_DEF (pi, i, comp);
751 }
752 }
753 }
754 }
e41d82f5
RH
755}
756
e41d82f5
RH
757/* Expand a complex move to scalars. */
758
759static void
726a989a 760expand_complex_move (gimple_stmt_iterator *gsi, tree type)
e41d82f5
RH
761{
762 tree inner_type = TREE_TYPE (type);
726a989a
RB
763 tree r, i, lhs, rhs;
764 gimple stmt = gsi_stmt (*gsi);
765
766 if (is_gimple_assign (stmt))
767 {
768 lhs = gimple_assign_lhs (stmt);
769 if (gimple_num_ops (stmt) == 2)
770 rhs = gimple_assign_rhs1 (stmt);
771 else
772 rhs = NULL_TREE;
773 }
774 else if (is_gimple_call (stmt))
775 {
776 lhs = gimple_call_lhs (stmt);
777 rhs = NULL_TREE;
778 }
779 else
780 gcc_unreachable ();
e41d82f5
RH
781
782 if (TREE_CODE (lhs) == SSA_NAME)
783 {
726a989a 784 if (is_ctrl_altering_stmt (stmt))
5d6b3bba
RH
785 {
786 edge_iterator ei;
787 edge e;
788
789 /* The value is not assigned on the exception edges, so we need not
790 concern ourselves there. We do need to update on the fallthru
791 edge. Find it. */
726a989a 792 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
5d6b3bba
RH
793 if (e->flags & EDGE_FALLTHRU)
794 goto found_fallthru;
795 gcc_unreachable ();
796 found_fallthru:
797
798 r = build1 (REALPART_EXPR, inner_type, lhs);
799 i = build1 (IMAGPART_EXPR, inner_type, lhs);
95a8c155 800 update_complex_components_on_edge (e, lhs, r, i);
5d6b3bba 801 }
726a989a
RB
802 else if (is_gimple_call (stmt)
803 || gimple_has_side_effects (stmt)
804 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
e41d82f5 805 {
5d6b3bba
RH
806 r = build1 (REALPART_EXPR, inner_type, lhs);
807 i = build1 (IMAGPART_EXPR, inner_type, lhs);
726a989a 808 update_complex_components (gsi, stmt, r, i);
e41d82f5
RH
809 }
810 else
811 {
726a989a
RB
812 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
813 {
814 r = extract_component (gsi, rhs, 0, true);
815 i = extract_component (gsi, rhs, 1, true);
816 }
817 else
818 {
819 r = gimple_assign_rhs1 (stmt);
820 i = gimple_assign_rhs2 (stmt);
821 }
822 update_complex_assignment (gsi, r, i);
e41d82f5
RH
823 }
824 }
726a989a 825 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
e41d82f5
RH
826 {
827 tree x;
726a989a 828 gimple t;
e41d82f5 829
726a989a
RB
830 r = extract_component (gsi, rhs, 0, false);
831 i = extract_component (gsi, rhs, 1, false);
e41d82f5
RH
832
833 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
834 t = gimple_build_assign (x, r);
835 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 836
726a989a 837 if (stmt == gsi_stmt (*gsi))
e41d82f5
RH
838 {
839 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
840 gimple_assign_set_lhs (stmt, x);
841 gimple_assign_set_rhs1 (stmt, i);
e41d82f5
RH
842 }
843 else
844 {
845 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
846 t = gimple_build_assign (x, i);
847 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 848
726a989a
RB
849 stmt = gsi_stmt (*gsi);
850 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
851 gimple_return_set_retval (stmt, lhs);
e41d82f5
RH
852 }
853
e41d82f5
RH
854 update_stmt (stmt);
855 }
6de9cd9a
DN
856}
857
858/* Expand complex addition to scalars:
859 a + b = (ar + br) + i(ai + bi)
860 a - b = (ar - br) + i(ai + bi)
861*/
862
863static void
726a989a 864expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 865 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
866 enum tree_code code,
867 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a
DN
868{
869 tree rr, ri;
870
e41d82f5
RH
871 switch (PAIR (al, bl))
872 {
873 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 874 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
875 ri = ai;
876 break;
877
878 case PAIR (ONLY_REAL, ONLY_IMAG):
879 rr = ar;
880 if (code == MINUS_EXPR)
726a989a 881 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
e41d82f5
RH
882 else
883 ri = bi;
884 break;
885
886 case PAIR (ONLY_IMAG, ONLY_REAL):
887 if (code == MINUS_EXPR)
726a989a 888 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
e41d82f5
RH
889 else
890 rr = br;
891 ri = ai;
892 break;
893
894 case PAIR (ONLY_IMAG, ONLY_IMAG):
895 rr = ar;
726a989a 896 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
897 break;
898
899 case PAIR (VARYING, ONLY_REAL):
726a989a 900 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
901 ri = ai;
902 break;
903
904 case PAIR (VARYING, ONLY_IMAG):
905 rr = ar;
726a989a 906 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
907 break;
908
909 case PAIR (ONLY_REAL, VARYING):
910 if (code == MINUS_EXPR)
911 goto general;
726a989a 912 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
913 ri = bi;
914 break;
915
916 case PAIR (ONLY_IMAG, VARYING):
917 if (code == MINUS_EXPR)
918 goto general;
919 rr = br;
726a989a 920 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
921 break;
922
923 case PAIR (VARYING, VARYING):
924 general:
726a989a
RB
925 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
926 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
927 break;
928
929 default:
930 gcc_unreachable ();
931 }
6de9cd9a 932
726a989a 933 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
934}
935
7e7e470f
RH
936/* Expand a complex multiplication or division to a libcall to the c99
937 compliant routines. */
938
939static void
726a989a 940expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
7e7e470f
RH
941 tree br, tree bi, enum tree_code code)
942{
943 enum machine_mode mode;
944 enum built_in_function bcode;
726a989a 945 tree fn, type, lhs;
04be6ff5 946 gimple old_stmt, stmt;
7e7e470f 947
04be6ff5
JJ
948 old_stmt = gsi_stmt (*gsi);
949 lhs = gimple_assign_lhs (old_stmt);
726a989a 950 type = TREE_TYPE (lhs);
7e7e470f
RH
951
952 mode = TYPE_MODE (type);
953 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
726a989a 954
7e7e470f 955 if (code == MULT_EXPR)
32e8bb8e
ILT
956 bcode = ((enum built_in_function)
957 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f 958 else if (code == RDIV_EXPR)
32e8bb8e
ILT
959 bcode = ((enum built_in_function)
960 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f
RH
961 else
962 gcc_unreachable ();
963 fn = built_in_decls[bcode];
964
726a989a
RB
965 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
966 gimple_call_set_lhs (stmt, lhs);
f430bae8 967 update_stmt (stmt);
04be6ff5
JJ
968 gsi_replace (gsi, stmt, false);
969
970 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
971 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
e41d82f5 972
5cd4ec7f 973 if (gimple_in_ssa_p (cfun))
e41d82f5 974 {
d5c77941 975 type = TREE_TYPE (type);
726a989a 976 update_complex_components (gsi, stmt,
e41d82f5
RH
977 build1 (REALPART_EXPR, type, lhs),
978 build1 (IMAGPART_EXPR, type, lhs));
726a989a 979 SSA_NAME_DEF_STMT (lhs) = stmt;
e41d82f5 980 }
7e7e470f
RH
981}
982
6de9cd9a
DN
983/* Expand complex multiplication to scalars:
984 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
985*/
986
987static void
726a989a 988expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
e41d82f5
RH
989 tree ar, tree ai, tree br, tree bi,
990 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 991{
e41d82f5 992 tree rr, ri;
6de9cd9a 993
e41d82f5 994 if (al < bl)
7e7e470f 995 {
e41d82f5
RH
996 complex_lattice_t tl;
997 rr = ar, ar = br, br = rr;
998 ri = ai, ai = bi, bi = ri;
999 tl = al, al = bl, bl = tl;
7e7e470f
RH
1000 }
1001
e41d82f5
RH
1002 switch (PAIR (al, bl))
1003 {
1004 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1005 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
e41d82f5
RH
1006 ri = ai;
1007 break;
6de9cd9a 1008
e41d82f5
RH
1009 case PAIR (ONLY_IMAG, ONLY_REAL):
1010 rr = ar;
1011 if (TREE_CODE (ai) == REAL_CST
1012 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1013 ri = br;
1014 else
726a989a 1015 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1016 break;
6de9cd9a 1017
e41d82f5 1018 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a
RB
1019 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1020 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
e41d82f5
RH
1021 ri = ar;
1022 break;
1023
1024 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1025 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1026 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5
RH
1027 break;
1028
1029 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1030 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1031 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1032 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1033 break;
1034
1035 case PAIR (VARYING, VARYING):
1036 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1037 {
726a989a 1038 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
e41d82f5
RH
1039 return;
1040 }
1041 else
1042 {
1043 tree t1, t2, t3, t4;
1044
726a989a
RB
1045 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1046 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1047 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1048
1049 /* Avoid expanding redundant multiplication for the common
1050 case of squaring a complex number. */
1051 if (ar == br && ai == bi)
1052 t4 = t3;
1053 else
726a989a 1054 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1055
726a989a
RB
1056 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1057 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
e41d82f5
RH
1058 }
1059 break;
1060
1061 default:
1062 gcc_unreachable ();
1063 }
6de9cd9a 1064
726a989a 1065 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1066}
1067
e3d5405d 1068/* Keep this algorithm in sync with fold-const.c:const_binop().
b8698a0f 1069
e3d5405d 1070 Expand complex division to scalars, straightforward algorithm.
6de9cd9a
DN
1071 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1072 t = br*br + bi*bi
1073*/
1074
1075static void
726a989a 1076expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1077 tree ar, tree ai, tree br, tree bi,
1078 enum tree_code code)
1079{
1080 tree rr, ri, div, t1, t2, t3;
1081
726a989a
RB
1082 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1083 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1084 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
6de9cd9a 1085
726a989a
RB
1086 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1087 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1088 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1089 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1090
726a989a
RB
1091 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1092 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1093 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1094 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1095
726a989a 1096 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1097}
1098
e3d5405d
KG
1099/* Keep this algorithm in sync with fold-const.c:const_binop().
1100
1101 Expand complex division to scalars, modified algorithm to minimize
6de9cd9a
DN
1102 overflow with wide input ranges. */
1103
1104static void
726a989a 1105expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1106 tree ar, tree ai, tree br, tree bi,
1107 enum tree_code code)
1108{
04b03edb 1109 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
c63f5a42 1110 basic_block bb_cond, bb_true, bb_false, bb_join;
726a989a 1111 gimple stmt;
6de9cd9a
DN
1112
1113 /* Examine |br| < |bi|, and branch. */
726a989a
RB
1114 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1115 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
db3927fb 1116 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
b57d8e6f 1117 LT_EXPR, boolean_type_node, t1, t2);
04b03edb 1118 STRIP_NOPS (compare);
6de9cd9a 1119
c63f5a42
RH
1120 bb_cond = bb_true = bb_false = bb_join = NULL;
1121 rr = ri = tr = ti = NULL;
b57d8e6f 1122 if (TREE_CODE (compare) != INTEGER_CST)
6de9cd9a 1123 {
6de9cd9a 1124 edge e;
726a989a 1125 gimple stmt;
04b03edb 1126 tree cond, tmp;
6de9cd9a 1127
04b03edb 1128 tmp = create_tmp_var (boolean_type_node, NULL);
726a989a 1129 stmt = gimple_build_assign (tmp, compare);
04b03edb 1130 if (gimple_in_ssa_p (cfun))
726a989a
RB
1131 {
1132 tmp = make_ssa_name (tmp, stmt);
1133 gimple_assign_set_lhs (stmt, tmp);
1134 }
1135
1136 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
04b03edb 1137
db3927fb
AH
1138 cond = fold_build2_loc (gimple_location (stmt),
1139 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
726a989a
RB
1140 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1141 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
6de9cd9a 1142
6de9cd9a 1143 /* Split the original block, and create the TRUE and FALSE blocks. */
726a989a 1144 e = split_block (gsi_bb (*gsi), stmt);
6de9cd9a
DN
1145 bb_cond = e->src;
1146 bb_join = e->dest;
1147 bb_true = create_empty_bb (bb_cond);
1148 bb_false = create_empty_bb (bb_true);
1149
1150 /* Wire the blocks together. */
1151 e->flags = EDGE_TRUE_VALUE;
1152 redirect_edge_succ (e, bb_true);
1153 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
520f34fa
RH
1154 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1155 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
6de9cd9a
DN
1156
1157 /* Update dominance info. Note that bb_join's data was
1158 updated by split_block. */
fce22de5 1159 if (dom_info_available_p (CDI_DOMINATORS))
6de9cd9a
DN
1160 {
1161 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1162 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1163 }
1164
c63f5a42
RH
1165 rr = make_rename_temp (inner_type, NULL);
1166 ri = make_rename_temp (inner_type, NULL);
6de9cd9a 1167 }
c63f5a42
RH
1168
1169 /* In the TRUE branch, we compute
1170 ratio = br/bi;
1171 div = (br * ratio) + bi;
1172 tr = (ar * ratio) + ai;
1173 ti = (ai * ratio) - ar;
1174 tr = tr / div;
1175 ti = ti / div; */
04b03edb 1176 if (bb_true || integer_nonzerop (compare))
c63f5a42
RH
1177 {
1178 if (bb_true)
1179 {
726a989a
RB
1180 *gsi = gsi_last_bb (bb_true);
1181 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1182 }
1183
726a989a 1184 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
c63f5a42 1185
726a989a
RB
1186 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1187 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
c63f5a42 1188
726a989a
RB
1189 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1190 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
c63f5a42 1191
726a989a
RB
1192 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1193 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
c63f5a42 1194
726a989a
RB
1195 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1196 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1197
1198 if (bb_true)
1199 {
726a989a
RB
1200 stmt = gimple_build_assign (rr, tr);
1201 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1202 stmt = gimple_build_assign (ri, ti);
1203 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1204 gsi_remove (gsi, true);
c63f5a42
RH
1205 }
1206 }
1207
1208 /* In the FALSE branch, we compute
1209 ratio = d/c;
1210 divisor = (d * ratio) + c;
1211 tr = (b * ratio) + a;
1212 ti = b - (a * ratio);
1213 tr = tr / div;
1214 ti = ti / div; */
04b03edb 1215 if (bb_false || integer_zerop (compare))
c63f5a42
RH
1216 {
1217 if (bb_false)
1218 {
726a989a
RB
1219 *gsi = gsi_last_bb (bb_false);
1220 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1221 }
1222
726a989a 1223 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
c63f5a42 1224
726a989a
RB
1225 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1226 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
c63f5a42 1227
726a989a
RB
1228 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1229 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
c63f5a42 1230
726a989a
RB
1231 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1232 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
c63f5a42 1233
726a989a
RB
1234 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1235 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1236
1237 if (bb_false)
1238 {
726a989a
RB
1239 stmt = gimple_build_assign (rr, tr);
1240 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1241 stmt = gimple_build_assign (ri, ti);
1242 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1243 gsi_remove (gsi, true);
c63f5a42
RH
1244 }
1245 }
1246
1247 if (bb_join)
726a989a 1248 *gsi = gsi_start_bb (bb_join);
c63f5a42
RH
1249 else
1250 rr = tr, ri = ti;
6de9cd9a 1251
726a989a 1252 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1253}
1254
1255/* Expand complex division to scalars. */
1256
1257static void
726a989a 1258expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 1259 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
1260 enum tree_code code,
1261 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 1262{
e41d82f5
RH
1263 tree rr, ri;
1264
1265 switch (PAIR (al, bl))
6de9cd9a 1266 {
e41d82f5 1267 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1268 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5 1269 ri = ai;
6de9cd9a 1270 break;
7e7e470f 1271
e41d82f5
RH
1272 case PAIR (ONLY_REAL, ONLY_IMAG):
1273 rr = ai;
726a989a
RB
1274 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1275 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1276 break;
1277
1278 case PAIR (ONLY_IMAG, ONLY_REAL):
1279 rr = ar;
726a989a 1280 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5 1281 break;
7e7e470f 1282
e41d82f5 1283 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a 1284 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5 1285 ri = ar;
6de9cd9a 1286 break;
7e7e470f 1287
e41d82f5 1288 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1289 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1290 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5
RH
1291 break;
1292
1293 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1294 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1295 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1296 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1297
1298 case PAIR (ONLY_REAL, VARYING):
1299 case PAIR (ONLY_IMAG, VARYING):
1300 case PAIR (VARYING, VARYING):
1301 switch (flag_complex_method)
1302 {
1303 case 0:
1304 /* straightforward implementation of complex divide acceptable. */
726a989a 1305 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1306 break;
1307
1308 case 2:
1309 if (SCALAR_FLOAT_TYPE_P (inner_type))
1310 {
726a989a 1311 expand_complex_libcall (gsi, ar, ai, br, bi, code);
e41d82f5
RH
1312 break;
1313 }
1314 /* FALLTHRU */
1315
1316 case 1:
1317 /* wide ranges of inputs must work for complex divide. */
726a989a 1318 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1319 break;
1320
1321 default:
1322 gcc_unreachable ();
1323 }
1324 return;
1325
6de9cd9a 1326 default:
1e128c5f 1327 gcc_unreachable ();
6de9cd9a 1328 }
e41d82f5 1329
726a989a 1330 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1331}
1332
1333/* Expand complex negation to scalars:
1334 -a = (-ar) + i(-ai)
1335*/
1336
1337static void
726a989a 1338expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1339 tree ar, tree ai)
1340{
1341 tree rr, ri;
1342
726a989a
RB
1343 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1344 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1345
726a989a 1346 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1347}
1348
1349/* Expand complex conjugate to scalars:
1350 ~a = (ar) + i(-ai)
1351*/
1352
1353static void
726a989a 1354expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1355 tree ar, tree ai)
1356{
1357 tree ri;
1358
726a989a 1359 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1360
726a989a 1361 update_complex_assignment (gsi, ar, ri);
6de9cd9a
DN
1362}
1363
1364/* Expand complex comparison (EQ or NE only). */
1365
1366static void
726a989a 1367expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
6de9cd9a
DN
1368 tree br, tree bi, enum tree_code code)
1369{
726a989a
RB
1370 tree cr, ci, cc, type;
1371 gimple stmt;
6de9cd9a 1372
726a989a
RB
1373 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1374 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1375 cc = gimplify_build2 (gsi,
26277d41
PB
1376 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1377 boolean_type_node, cr, ci);
6de9cd9a 1378
726a989a 1379 stmt = gsi_stmt (*gsi);
6de9cd9a 1380
726a989a 1381 switch (gimple_code (stmt))
6de9cd9a 1382 {
726a989a
RB
1383 case GIMPLE_RETURN:
1384 type = TREE_TYPE (gimple_return_retval (stmt));
1385 gimple_return_set_retval (stmt, fold_convert (type, cc));
6de9cd9a 1386 break;
726a989a
RB
1387
1388 case GIMPLE_ASSIGN:
1389 type = TREE_TYPE (gimple_assign_lhs (stmt));
1390 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1391 stmt = gsi_stmt (*gsi);
6de9cd9a 1392 break;
726a989a
RB
1393
1394 case GIMPLE_COND:
1395 gimple_cond_set_code (stmt, EQ_EXPR);
1396 gimple_cond_set_lhs (stmt, cc);
1397 gimple_cond_set_rhs (stmt, boolean_true_node);
1398 break;
1399
6de9cd9a 1400 default:
1e128c5f 1401 gcc_unreachable ();
6de9cd9a 1402 }
68b9f53b 1403
e41d82f5 1404 update_stmt (stmt);
6de9cd9a
DN
1405}
1406
726a989a 1407
6de9cd9a
DN
1408/* Process one statement. If we identify a complex operation, expand it. */
1409
1410static void
726a989a 1411expand_complex_operations_1 (gimple_stmt_iterator *gsi)
6de9cd9a 1412{
726a989a
RB
1413 gimple stmt = gsi_stmt (*gsi);
1414 tree type, inner_type, lhs;
6de9cd9a 1415 tree ac, ar, ai, bc, br, bi;
e41d82f5 1416 complex_lattice_t al, bl;
6de9cd9a
DN
1417 enum tree_code code;
1418
726a989a
RB
1419 lhs = gimple_get_lhs (stmt);
1420 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1421 return;
6de9cd9a 1422
726a989a
RB
1423 type = TREE_TYPE (gimple_op (stmt, 0));
1424 code = gimple_expr_code (stmt);
6de9cd9a
DN
1425
1426 /* Initial filter for operations we handle. */
1427 switch (code)
1428 {
1429 case PLUS_EXPR:
1430 case MINUS_EXPR:
1431 case MULT_EXPR:
1432 case TRUNC_DIV_EXPR:
1433 case CEIL_DIV_EXPR:
1434 case FLOOR_DIV_EXPR:
1435 case ROUND_DIV_EXPR:
1436 case RDIV_EXPR:
1437 case NEGATE_EXPR:
1438 case CONJ_EXPR:
1439 if (TREE_CODE (type) != COMPLEX_TYPE)
1440 return;
1441 inner_type = TREE_TYPE (type);
1442 break;
1443
1444 case EQ_EXPR:
1445 case NE_EXPR:
726a989a
RB
1446 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1447 subocde, so we need to access the operands using gimple_op. */
1448 inner_type = TREE_TYPE (gimple_op (stmt, 1));
6de9cd9a
DN
1449 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1450 return;
1451 break;
1452
1453 default:
e41d82f5 1454 {
726a989a 1455 tree rhs;
a9b77cd1 1456
726a989a
RB
1457 /* GIMPLE_COND may also fallthru here, but we do not need to
1458 do anything with it. */
1459 if (gimple_code (stmt) == GIMPLE_COND)
a9b77cd1
ZD
1460 return;
1461
e41d82f5 1462 if (TREE_CODE (type) == COMPLEX_TYPE)
726a989a
RB
1463 expand_complex_move (gsi, type);
1464 else if (is_gimple_assign (stmt)
1465 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1466 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1467 && TREE_CODE (lhs) == SSA_NAME)
e41d82f5 1468 {
726a989a
RB
1469 rhs = gimple_assign_rhs1 (stmt);
1470 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1471 gimple_assign_rhs_code (stmt)
1472 == IMAGPART_EXPR,
1473 false);
1474 gimple_assign_set_rhs_from_tree (gsi, rhs);
1475 stmt = gsi_stmt (*gsi);
e41d82f5
RH
1476 update_stmt (stmt);
1477 }
1478 }
6de9cd9a
DN
1479 return;
1480 }
1481
1482 /* Extract the components of the two complex values. Make sure and
1483 handle the common case of the same value used twice specially. */
726a989a
RB
1484 if (is_gimple_assign (stmt))
1485 {
1486 ac = gimple_assign_rhs1 (stmt);
1487 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1488 }
1489 /* GIMPLE_CALL can not get here. */
6de9cd9a
DN
1490 else
1491 {
726a989a
RB
1492 ac = gimple_cond_lhs (stmt);
1493 bc = gimple_cond_rhs (stmt);
1494 }
1495
1496 ar = extract_component (gsi, ac, false, true);
1497 ai = extract_component (gsi, ac, true, true);
1498
1499 if (ac == bc)
1500 br = ar, bi = ai;
1501 else if (bc)
1502 {
1503 br = extract_component (gsi, bc, 0, true);
1504 bi = extract_component (gsi, bc, 1, true);
6de9cd9a 1505 }
726a989a
RB
1506 else
1507 br = bi = NULL_TREE;
6de9cd9a 1508
5cd4ec7f 1509 if (gimple_in_ssa_p (cfun))
e41d82f5
RH
1510 {
1511 al = find_lattice_value (ac);
1512 if (al == UNINITIALIZED)
1513 al = VARYING;
1514
1515 if (TREE_CODE_CLASS (code) == tcc_unary)
1516 bl = UNINITIALIZED;
1517 else if (ac == bc)
1518 bl = al;
1519 else
1520 {
1521 bl = find_lattice_value (bc);
1522 if (bl == UNINITIALIZED)
1523 bl = VARYING;
1524 }
1525 }
1526 else
1527 al = bl = VARYING;
1528
6de9cd9a
DN
1529 switch (code)
1530 {
1531 case PLUS_EXPR:
1532 case MINUS_EXPR:
726a989a 1533 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a
DN
1534 break;
1535
1536 case MULT_EXPR:
726a989a 1537 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
6de9cd9a
DN
1538 break;
1539
1540 case TRUNC_DIV_EXPR:
1541 case CEIL_DIV_EXPR:
1542 case FLOOR_DIV_EXPR:
1543 case ROUND_DIV_EXPR:
1544 case RDIV_EXPR:
726a989a 1545 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a 1546 break;
b8698a0f 1547
6de9cd9a 1548 case NEGATE_EXPR:
726a989a 1549 expand_complex_negation (gsi, inner_type, ar, ai);
6de9cd9a
DN
1550 break;
1551
1552 case CONJ_EXPR:
726a989a 1553 expand_complex_conjugate (gsi, inner_type, ar, ai);
6de9cd9a
DN
1554 break;
1555
1556 case EQ_EXPR:
1557 case NE_EXPR:
726a989a 1558 expand_complex_comparison (gsi, ar, ai, br, bi, code);
6de9cd9a
DN
1559 break;
1560
1561 default:
1e128c5f 1562 gcc_unreachable ();
6de9cd9a
DN
1563 }
1564}
26277d41 1565
e41d82f5
RH
1566\f
1567/* Entry point for complex operation lowering during optimization. */
1568
c2924966 1569static unsigned int
2b725155 1570tree_lower_complex (void)
6de9cd9a 1571{
e41d82f5 1572 int old_last_basic_block;
726a989a 1573 gimple_stmt_iterator gsi;
6de9cd9a
DN
1574 basic_block bb;
1575
e41d82f5 1576 if (!init_dont_simulate_again ())
c2924966 1577 return 0;
e41d82f5
RH
1578
1579 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
a590ac65
KH
1580 VEC_safe_grow_cleared (complex_lattice_t, heap,
1581 complex_lattice_values, num_ssa_names);
e41d82f5 1582
95a8c155 1583 init_parameter_lattice_values ();
e41d82f5
RH
1584 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1585
95a8c155
RH
1586 complex_variable_components = htab_create (10, int_tree_map_hash,
1587 int_tree_map_eq, free);
1588
1589 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
a590ac65
KH
1590 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1591 2 * num_ssa_names);
95a8c155 1592
e41d82f5
RH
1593 update_parameter_components ();
1594
95a8c155 1595 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
e41d82f5 1596 old_last_basic_block = last_basic_block;
6de9cd9a
DN
1597 FOR_EACH_BB (bb)
1598 {
1599 if (bb->index >= old_last_basic_block)
1600 continue;
726a989a 1601
e41d82f5 1602 update_phi_components (bb);
726a989a
RB
1603 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1604 expand_complex_operations_1 (&gsi);
6de9cd9a 1605 }
6de9cd9a 1606
726a989a 1607 gsi_commit_edge_inserts ();
e41d82f5 1608
95a8c155
RH
1609 htab_delete (complex_variable_components);
1610 VEC_free (tree, heap, complex_ssa_name_components);
e41d82f5 1611 VEC_free (complex_lattice_t, heap, complex_lattice_values);
c2924966 1612 return 0;
e41d82f5 1613}
26277d41 1614
b8698a0f 1615struct gimple_opt_pass pass_lower_complex =
26277d41 1616{
8ddbbcae
JH
1617 {
1618 GIMPLE_PASS,
2b725155 1619 "cplxlower", /* name */
26277d41 1620 0, /* gate */
2b725155 1621 tree_lower_complex, /* execute */
26277d41
PB
1622 NULL, /* sub */
1623 NULL, /* next */
1624 0, /* static_pass_number */
7072a650 1625 TV_NONE, /* tv_id */
e41d82f5
RH
1626 PROP_ssa, /* properties_required */
1627 0, /* properties_provided */
ae07b463 1628 0, /* properties_destroyed */
e41d82f5 1629 0, /* todo_flags_start */
706ca88e
DN
1630 TODO_dump_func
1631 | TODO_ggc_collect
1632 | TODO_update_ssa
8ddbbcae
JH
1633 | TODO_verify_stmts /* todo_flags_finish */
1634 }
e41d82f5
RH
1635};
1636
1637\f
1638/* Entry point for complex operation lowering without optimization. */
1639
c2924966 1640static unsigned int
e41d82f5
RH
1641tree_lower_complex_O0 (void)
1642{
1643 int old_last_basic_block = last_basic_block;
726a989a 1644 gimple_stmt_iterator gsi;
e41d82f5
RH
1645 basic_block bb;
1646
1647 FOR_EACH_BB (bb)
1648 {
1649 if (bb->index >= old_last_basic_block)
1650 continue;
726a989a
RB
1651
1652 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1653 expand_complex_operations_1 (&gsi);
e41d82f5 1654 }
c2924966 1655 return 0;
e41d82f5
RH
1656}
1657
1658static bool
1659gate_no_optimization (void)
1660{
5306ec31
RH
1661 /* With errors, normal optimization passes are not run. If we don't
1662 lower complex operations at all, rtl expansion will abort. */
1663 return optimize == 0 || sorrycount || errorcount;
e41d82f5
RH
1664}
1665
b8698a0f 1666struct gimple_opt_pass pass_lower_complex_O0 =
e41d82f5 1667{
8ddbbcae
JH
1668 {
1669 GIMPLE_PASS,
e41d82f5
RH
1670 "cplxlower0", /* name */
1671 gate_no_optimization, /* gate */
1672 tree_lower_complex_O0, /* execute */
1673 NULL, /* sub */
1674 NULL, /* next */
1675 0, /* static_pass_number */
7072a650 1676 TV_NONE, /* tv_id */
26277d41
PB
1677 PROP_cfg, /* properties_required */
1678 0, /* properties_provided */
1679 0, /* properties_destroyed */
1680 0, /* todo_flags_start */
1681 TODO_dump_func | TODO_ggc_collect
9f8628ba 1682 | TODO_verify_stmts, /* todo_flags_finish */
8ddbbcae 1683 }
6de9cd9a 1684};