]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-complex.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / tree-complex.c
CommitLineData
2b725155 1/* Lower complex number operations to scalar operations.
5624e564 2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
6de9cd9a
DN
3
4This file is part of GCC.
b8698a0f 5
6de9cd9a
DN
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
6de9cd9a 9later version.
b8698a0f 10
6de9cd9a
DN
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
6de9cd9a 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
e41d82f5 24#include "tree.h"
c7131fb2
AM
25#include "gimple.h"
26#include "rtl.h"
27#include "ssa.h"
28#include "alias.h"
40e23961 29#include "fold-const.h"
d8a2d370 30#include "stor-layout.h"
e41d82f5 31#include "flags.h"
2fb9a547
AM
32#include "internal-fn.h"
33#include "tree-eh.h"
45b0be94 34#include "gimplify.h"
5be5c238 35#include "gimple-iterator.h"
18f429e2 36#include "gimplify-me.h"
442b4905 37#include "tree-cfg.h"
36566b39
PK
38#include "insn-config.h"
39#include "expmed.h"
40#include "dojump.h"
41#include "explow.h"
42#include "calls.h"
43#include "emit-rtl.h"
44#include "varasm.h"
45#include "stmt.h"
d8a2d370 46#include "expr.h"
442b4905
AM
47#include "tree-dfa.h"
48#include "tree-ssa.h"
6de9cd9a
DN
49#include "tree-iterator.h"
50#include "tree-pass.h"
e41d82f5 51#include "tree-ssa-propagate.h"
4a8fb1a1 52#include "tree-hasher.h"
a9e0d843 53#include "cfgloop.h"
e41d82f5
RH
54
55
56/* For each complex ssa name, a lattice value. We're interested in finding
57 out whether a complex number is degenerate in some way, having only real
58 or only complex parts. */
59
32e8bb8e 60enum
e41d82f5
RH
61{
62 UNINITIALIZED = 0,
63 ONLY_REAL = 1,
64 ONLY_IMAG = 2,
65 VARYING = 3
32e8bb8e
ILT
66};
67
68/* The type complex_lattice_t holds combinations of the above
69 constants. */
70typedef int complex_lattice_t;
e41d82f5
RH
71
72#define PAIR(a, b) ((a) << 2 | (b))
73
e41d82f5 74
9771b263 75static vec<complex_lattice_t> complex_lattice_values;
e41d82f5 76
a3648cfc
DB
77/* For each complex variable, a pair of variables for the components exists in
78 the hashtable. */
c203e8a7 79static int_tree_htab_type *complex_variable_components;
a3648cfc 80
95a8c155 81/* For each complex SSA_NAME, a pair of ssa names for the components. */
9771b263 82static vec<tree> complex_ssa_name_components;
95a8c155 83
a3648cfc
DB
84/* Lookup UID in the complex_variable_components hashtable and return the
85 associated tree. */
b8698a0f 86static tree
a3648cfc
DB
87cvc_lookup (unsigned int uid)
88{
84baa4b9 89 struct int_tree_map in;
a3648cfc 90 in.uid = uid;
84baa4b9 91 return complex_variable_components->find_with_hash (in, uid).to;
a3648cfc 92}
b8698a0f 93
a3648cfc
DB
94/* Insert the pair UID, TO into the complex_variable_components hashtable. */
95
b8698a0f 96static void
a3648cfc 97cvc_insert (unsigned int uid, tree to)
b8698a0f 98{
84baa4b9
TS
99 int_tree_map h;
100 int_tree_map *loc;
a3648cfc 101
84baa4b9 102 h.uid = uid;
c203e8a7 103 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
84baa4b9
TS
104 loc->uid = uid;
105 loc->to = to;
a3648cfc 106}
e41d82f5 107
e41d82f5
RH
108/* Return true if T is not a zero constant. In the case of real values,
109 we're only interested in +0.0. */
110
111static int
112some_nonzerop (tree t)
113{
114 int zerop = false;
115
2ca862e9
JM
116 /* Operations with real or imaginary part of a complex number zero
117 cannot be treated the same as operations with a real or imaginary
118 operand if we care about the signs of zeros in the result. */
119 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
e41d82f5 120 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
325217ed
CF
121 else if (TREE_CODE (t) == FIXED_CST)
122 zerop = fixed_zerop (t);
e41d82f5
RH
123 else if (TREE_CODE (t) == INTEGER_CST)
124 zerop = integer_zerop (t);
125
126 return !zerop;
127}
128
726a989a
RB
129
130/* Compute a lattice value from the components of a complex type REAL
131 and IMAG. */
6de9cd9a 132
e41d82f5 133static complex_lattice_t
726a989a 134find_lattice_value_parts (tree real, tree imag)
e41d82f5 135{
e41d82f5
RH
136 int r, i;
137 complex_lattice_t ret;
138
726a989a
RB
139 r = some_nonzerop (real);
140 i = some_nonzerop (imag);
141 ret = r * ONLY_REAL + i * ONLY_IMAG;
142
143 /* ??? On occasion we could do better than mapping 0+0i to real, but we
144 certainly don't want to leave it UNINITIALIZED, which eventually gets
145 mapped to VARYING. */
146 if (ret == UNINITIALIZED)
147 ret = ONLY_REAL;
148
149 return ret;
150}
151
152
153/* Compute a lattice value from gimple_val T. */
154
155static complex_lattice_t
156find_lattice_value (tree t)
157{
158 tree real, imag;
159
e41d82f5
RH
160 switch (TREE_CODE (t))
161 {
162 case SSA_NAME:
9771b263 163 return complex_lattice_values[SSA_NAME_VERSION (t)];
e41d82f5
RH
164
165 case COMPLEX_CST:
166 real = TREE_REALPART (t);
167 imag = TREE_IMAGPART (t);
168 break;
169
e41d82f5
RH
170 default:
171 gcc_unreachable ();
172 }
173
726a989a 174 return find_lattice_value_parts (real, imag);
e41d82f5
RH
175}
176
177/* Determine if LHS is something for which we're interested in seeing
178 simulation results. */
179
180static bool
181is_complex_reg (tree lhs)
182{
183 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
184}
185
186/* Mark the incoming parameters to the function as VARYING. */
187
188static void
189init_parameter_lattice_values (void)
190{
f0a77246 191 tree parm, ssa_name;
e41d82f5 192
910ad8de 193 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
f0a77246 194 if (is_complex_reg (parm)
32244553 195 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
9771b263 196 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
e41d82f5
RH
197}
198
726a989a
RB
199/* Initialize simulation state for each statement. Return false if we
200 found no statements we want to simulate, and thus there's nothing
201 for the entire pass to do. */
e41d82f5
RH
202
203static bool
204init_dont_simulate_again (void)
205{
206 basic_block bb;
8f8abce4 207 bool saw_a_complex_op = false;
e41d82f5 208
11cd3bed 209 FOR_EACH_BB_FN (bb, cfun)
e41d82f5 210 {
538dd0b7
DM
211 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
212 gsi_next (&gsi))
726a989a 213 {
538dd0b7 214 gphi *phi = gsi.phi ();
726a989a
RB
215 prop_set_simulate_again (phi,
216 is_complex_reg (gimple_phi_result (phi)));
217 }
e41d82f5 218
538dd0b7
DM
219 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
220 gsi_next (&gsi))
e41d82f5 221 {
726a989a
RB
222 gimple stmt;
223 tree op0, op1;
224 bool sim_again_p;
e41d82f5 225
726a989a
RB
226 stmt = gsi_stmt (gsi);
227 op0 = op1 = NULL_TREE;
99e6bdda 228
b8698a0f 229 /* Most control-altering statements must be initially
99e6bdda 230 simulated, else we won't cover the entire cfg. */
726a989a 231 sim_again_p = stmt_ends_bb_p (stmt);
99e6bdda 232
726a989a 233 switch (gimple_code (stmt))
e41d82f5 234 {
726a989a
RB
235 case GIMPLE_CALL:
236 if (gimple_call_lhs (stmt))
237 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
238 break;
8f8abce4 239
726a989a
RB
240 case GIMPLE_ASSIGN:
241 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
242 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
243 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
244 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
245 else
246 op0 = gimple_assign_rhs1 (stmt);
247 if (gimple_num_ops (stmt) > 2)
248 op1 = gimple_assign_rhs2 (stmt);
8f8abce4
RH
249 break;
250
726a989a
RB
251 case GIMPLE_COND:
252 op0 = gimple_cond_lhs (stmt);
253 op1 = gimple_cond_rhs (stmt);
8f8abce4
RH
254 break;
255
256 default:
257 break;
e41d82f5
RH
258 }
259
726a989a
RB
260 if (op0 || op1)
261 switch (gimple_expr_code (stmt))
8f8abce4
RH
262 {
263 case EQ_EXPR:
264 case NE_EXPR:
8f8abce4
RH
265 case PLUS_EXPR:
266 case MINUS_EXPR:
267 case MULT_EXPR:
268 case TRUNC_DIV_EXPR:
269 case CEIL_DIV_EXPR:
270 case FLOOR_DIV_EXPR:
271 case ROUND_DIV_EXPR:
272 case RDIV_EXPR:
726a989a
RB
273 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
274 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
275 saw_a_complex_op = true;
276 break;
277
8f8abce4
RH
278 case NEGATE_EXPR:
279 case CONJ_EXPR:
726a989a 280 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
8f8abce4
RH
281 saw_a_complex_op = true;
282 break;
283
7b7e6ecd
EB
284 case REALPART_EXPR:
285 case IMAGPART_EXPR:
286 /* The total store transformation performed during
726a989a
RB
287 gimplification creates such uninitialized loads
288 and we need to lower the statement to be able
289 to fix things up. */
290 if (TREE_CODE (op0) == SSA_NAME
291 && ssa_undefined_value_p (op0))
7b7e6ecd
EB
292 saw_a_complex_op = true;
293 break;
294
8f8abce4
RH
295 default:
296 break;
297 }
298
726a989a 299 prop_set_simulate_again (stmt, sim_again_p);
e41d82f5
RH
300 }
301 }
302
8f8abce4 303 return saw_a_complex_op;
e41d82f5
RH
304}
305
306
307/* Evaluate statement STMT against the complex lattice defined above. */
308
309static enum ssa_prop_result
726a989a 310complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
e41d82f5
RH
311 tree *result_p)
312{
313 complex_lattice_t new_l, old_l, op1_l, op2_l;
314 unsigned int ver;
726a989a 315 tree lhs;
e41d82f5 316
726a989a
RB
317 lhs = gimple_get_lhs (stmt);
318 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
319 if (!lhs)
99e6bdda 320 return SSA_PROP_VARYING;
e41d82f5 321
99e6bdda
RH
322 /* These conditions should be satisfied due to the initial filter
323 set up in init_dont_simulate_again. */
e41d82f5
RH
324 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
325 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
326
327 *result_p = lhs;
328 ver = SSA_NAME_VERSION (lhs);
9771b263 329 old_l = complex_lattice_values[ver];
e41d82f5 330
726a989a 331 switch (gimple_expr_code (stmt))
e41d82f5
RH
332 {
333 case SSA_NAME:
e41d82f5 334 case COMPLEX_CST:
726a989a
RB
335 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
336 break;
337
338 case COMPLEX_EXPR:
339 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
340 gimple_assign_rhs2 (stmt));
e41d82f5
RH
341 break;
342
343 case PLUS_EXPR:
344 case MINUS_EXPR:
726a989a
RB
345 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
346 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
347
348 /* We've set up the lattice values such that IOR neatly
349 models addition. */
350 new_l = op1_l | op2_l;
351 break;
352
353 case MULT_EXPR:
354 case RDIV_EXPR:
355 case TRUNC_DIV_EXPR:
356 case CEIL_DIV_EXPR:
357 case FLOOR_DIV_EXPR:
358 case ROUND_DIV_EXPR:
726a989a
RB
359 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
360 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
361
362 /* Obviously, if either varies, so does the result. */
363 if (op1_l == VARYING || op2_l == VARYING)
364 new_l = VARYING;
365 /* Don't prematurely promote variables if we've not yet seen
366 their inputs. */
367 else if (op1_l == UNINITIALIZED)
368 new_l = op2_l;
369 else if (op2_l == UNINITIALIZED)
370 new_l = op1_l;
371 else
372 {
373 /* At this point both numbers have only one component. If the
374 numbers are of opposite kind, the result is imaginary,
375 otherwise the result is real. The add/subtract translates
376 the real/imag from/to 0/1; the ^ performs the comparison. */
377 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
378
379 /* Don't allow the lattice value to flip-flop indefinitely. */
380 new_l |= old_l;
381 }
382 break;
383
384 case NEGATE_EXPR:
385 case CONJ_EXPR:
726a989a 386 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
e41d82f5
RH
387 break;
388
389 default:
390 new_l = VARYING;
391 break;
392 }
393
394 /* If nothing changed this round, let the propagator know. */
395 if (new_l == old_l)
396 return SSA_PROP_NOT_INTERESTING;
397
9771b263 398 complex_lattice_values[ver] = new_l;
e41d82f5
RH
399 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
400}
401
402/* Evaluate a PHI node against the complex lattice defined above. */
403
404static enum ssa_prop_result
538dd0b7 405complex_visit_phi (gphi *phi)
e41d82f5
RH
406{
407 complex_lattice_t new_l, old_l;
408 unsigned int ver;
409 tree lhs;
410 int i;
411
726a989a 412 lhs = gimple_phi_result (phi);
e41d82f5
RH
413
414 /* This condition should be satisfied due to the initial filter
415 set up in init_dont_simulate_again. */
416 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
417
418 /* We've set up the lattice values such that IOR neatly models PHI meet. */
419 new_l = UNINITIALIZED;
726a989a
RB
420 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
421 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
e41d82f5
RH
422
423 ver = SSA_NAME_VERSION (lhs);
9771b263 424 old_l = complex_lattice_values[ver];
e41d82f5
RH
425
426 if (new_l == old_l)
427 return SSA_PROP_NOT_INTERESTING;
428
9771b263 429 complex_lattice_values[ver] = new_l;
e41d82f5
RH
430 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
431}
432
95a8c155 433/* Create one backing variable for a complex component of ORIG. */
e41d82f5 434
95a8c155
RH
435static tree
436create_one_component_var (tree type, tree orig, const char *prefix,
437 const char *suffix, enum tree_code code)
e41d82f5 438{
95a8c155 439 tree r = create_tmp_var (type, prefix);
e41d82f5 440
95a8c155
RH
441 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
442 DECL_ARTIFICIAL (r) = 1;
8f8abce4 443
95a8c155
RH
444 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
445 {
446 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
95a8c155
RH
447
448 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
e41d82f5 449
95a8c155 450 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
839b422f 451 DECL_HAS_DEBUG_EXPR_P (r) = 1;
95a8c155
RH
452 DECL_IGNORED_P (r) = 0;
453 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
454 }
455 else
e41d82f5 456 {
95a8c155
RH
457 DECL_IGNORED_P (r) = 1;
458 TREE_NO_WARNING (r) = 1;
459 }
e41d82f5 460
95a8c155
RH
461 return r;
462}
e41d82f5 463
95a8c155 464/* Retrieve a value for a complex component of VAR. */
e41d82f5 465
95a8c155
RH
466static tree
467get_component_var (tree var, bool imag_p)
468{
469 size_t decl_index = DECL_UID (var) * 2 + imag_p;
470 tree ret = cvc_lookup (decl_index);
471
472 if (ret == NULL)
473 {
474 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
475 imag_p ? "CI" : "CR",
476 imag_p ? "$imag" : "$real",
477 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
478 cvc_insert (decl_index, ret);
479 }
480
481 return ret;
482}
e41d82f5 483
95a8c155 484/* Retrieve a value for a complex component of SSA_NAME. */
e41d82f5 485
95a8c155
RH
486static tree
487get_component_ssa_name (tree ssa_name, bool imag_p)
488{
489 complex_lattice_t lattice = find_lattice_value (ssa_name);
490 size_t ssa_name_index;
491 tree ret;
e41d82f5 492
95a8c155
RH
493 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
494 {
495 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
496 if (SCALAR_FLOAT_TYPE_P (inner_type))
497 return build_real (inner_type, dconst0);
498 else
499 return build_int_cst (inner_type, 0);
500 }
e41d82f5 501
95a8c155 502 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
9771b263 503 ret = complex_ssa_name_components[ssa_name_index];
95a8c155
RH
504 if (ret == NULL)
505 {
70b5e7dc
RG
506 if (SSA_NAME_VAR (ssa_name))
507 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
508 else
509 ret = TREE_TYPE (TREE_TYPE (ssa_name));
b731b390 510 ret = make_ssa_name (ret);
95a8c155
RH
511
512 /* Copy some properties from the original. In particular, whether it
513 is used in an abnormal phi, and whether it's uninitialized. */
514 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
515 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
67386041
RG
516 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
517 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
95a8c155
RH
518 {
519 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
32244553 520 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
e41d82f5
RH
521 }
522
9771b263 523 complex_ssa_name_components[ssa_name_index] = ret;
e41d82f5 524 }
95a8c155
RH
525
526 return ret;
527}
528
726a989a
RB
529/* Set a value for a complex component of SSA_NAME, return a
530 gimple_seq of stuff that needs doing. */
95a8c155 531
726a989a 532static gimple_seq
95a8c155
RH
533set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
534{
535 complex_lattice_t lattice = find_lattice_value (ssa_name);
536 size_t ssa_name_index;
726a989a
RB
537 tree comp;
538 gimple last;
539 gimple_seq list;
95a8c155
RH
540
541 /* We know the value must be zero, else there's a bug in our lattice
542 analysis. But the value may well be a variable known to contain
543 zero. We should be safe ignoring it. */
544 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
545 return NULL;
546
547 /* If we've already assigned an SSA_NAME to this component, then this
548 means that our walk of the basic blocks found a use before the set.
549 This is fine. Now we should create an initialization for the value
550 we created earlier. */
551 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
9771b263 552 comp = complex_ssa_name_components[ssa_name_index];
95a8c155
RH
553 if (comp)
554 ;
555
556 /* If we've nothing assigned, and the value we're given is already stable,
536fa7b7 557 then install that as the value for this SSA_NAME. This preemptively
95a8c155 558 copy-propagates the value, which avoids unnecessary memory allocation. */
35a45bd4
RH
559 else if (is_gimple_min_invariant (value)
560 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
95a8c155 561 {
9771b263 562 complex_ssa_name_components[ssa_name_index] = value;
95a8c155
RH
563 return NULL;
564 }
565 else if (TREE_CODE (value) == SSA_NAME
566 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
567 {
568 /* Replace an anonymous base value with the variable from cvc_lookup.
569 This should result in better debug info. */
70b5e7dc
RG
570 if (SSA_NAME_VAR (ssa_name)
571 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
95a8c155
RH
572 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
573 {
574 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
db753fa1 575 replace_ssa_name_symbol (value, comp);
95a8c155
RH
576 }
577
9771b263 578 complex_ssa_name_components[ssa_name_index] = value;
95a8c155
RH
579 return NULL;
580 }
581
582 /* Finally, we need to stabilize the result by installing the value into
583 a new ssa name. */
584 else
585 comp = get_component_ssa_name (ssa_name, imag_p);
b8698a0f 586
95a8c155 587 /* Do all the work to assign VALUE to COMP. */
726a989a 588 list = NULL;
95a8c155 589 value = force_gimple_operand (value, &list, false, NULL);
726a989a
RB
590 last = gimple_build_assign (comp, value);
591 gimple_seq_add_stmt (&list, last);
592 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
95a8c155
RH
593
594 return list;
e41d82f5 595}
6de9cd9a 596
6de9cd9a
DN
597/* Extract the real or imaginary part of a complex variable or constant.
598 Make sure that it's a proper gimple_val and gimplify it if not.
726a989a 599 Emit any new code before gsi. */
6de9cd9a
DN
600
601static tree
726a989a 602extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
e41d82f5 603 bool gimple_p)
6de9cd9a 604{
6de9cd9a
DN
605 switch (TREE_CODE (t))
606 {
607 case COMPLEX_CST:
e41d82f5 608 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
6de9cd9a
DN
609
610 case COMPLEX_EXPR:
726a989a 611 gcc_unreachable ();
6de9cd9a
DN
612
613 case VAR_DECL:
f35a986c 614 case RESULT_DECL:
6de9cd9a 615 case PARM_DECL:
e41d82f5
RH
616 case COMPONENT_REF:
617 case ARRAY_REF:
7ec49257 618 case VIEW_CONVERT_EXPR:
70f34814 619 case MEM_REF:
e41d82f5
RH
620 {
621 tree inner_type = TREE_TYPE (TREE_TYPE (t));
622
623 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
624 inner_type, unshare_expr (t));
625
626 if (gimple_p)
726a989a
RB
627 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
628 GSI_SAME_STMT);
e41d82f5
RH
629
630 return t;
631 }
632
633 case SSA_NAME:
95a8c155 634 return get_component_ssa_name (t, imagpart_p);
6de9cd9a
DN
635
636 default:
1e128c5f 637 gcc_unreachable ();
6de9cd9a 638 }
e41d82f5
RH
639}
640
641/* Update the complex components of the ssa name on the lhs of STMT. */
6de9cd9a 642
e41d82f5 643static void
726a989a
RB
644update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
645 tree i)
e41d82f5 646{
726a989a
RB
647 tree lhs;
648 gimple_seq list;
649
650 lhs = gimple_get_lhs (stmt);
95a8c155
RH
651
652 list = set_component_ssa_name (lhs, false, r);
653 if (list)
726a989a 654 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
95a8c155
RH
655
656 list = set_component_ssa_name (lhs, true, i);
657 if (list)
726a989a 658 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
6de9cd9a
DN
659}
660
5d6b3bba 661static void
95a8c155 662update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
5d6b3bba 663{
726a989a 664 gimple_seq list;
5d6b3bba 665
95a8c155
RH
666 list = set_component_ssa_name (lhs, false, r);
667 if (list)
726a989a 668 gsi_insert_seq_on_edge (e, list);
5d6b3bba 669
95a8c155
RH
670 list = set_component_ssa_name (lhs, true, i);
671 if (list)
726a989a 672 gsi_insert_seq_on_edge (e, list);
5d6b3bba
RH
673}
674
726a989a 675
6de9cd9a
DN
676/* Update an assignment to a complex variable in place. */
677
678static void
726a989a 679update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
6de9cd9a 680{
f5e5b46c 681 gimple stmt;
726a989a 682
355a7673
MM
683 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
684 stmt = gsi_stmt (*gsi);
f5e5b46c
RG
685 update_stmt (stmt);
686 if (maybe_clean_eh_stmt (stmt))
687 gimple_purge_dead_eh_edges (gimple_bb (stmt));
355a7673
MM
688
689 if (gimple_in_ssa_p (cfun))
690 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
e41d82f5
RH
691}
692
726a989a 693
e41d82f5
RH
694/* Generate code at the entry point of the function to initialize the
695 component variables for a complex parameter. */
696
697static void
698update_parameter_components (void)
699{
fefa31b5 700 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
e41d82f5
RH
701 tree parm;
702
910ad8de 703 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
e41d82f5
RH
704 {
705 tree type = TREE_TYPE (parm);
5d6b3bba 706 tree ssa_name, r, i;
e41d82f5
RH
707
708 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
709 continue;
710
711 type = TREE_TYPE (type);
32244553 712 ssa_name = ssa_default_def (cfun, parm);
c0a3f887
RG
713 if (!ssa_name)
714 continue;
e41d82f5 715
5d6b3bba
RH
716 r = build1 (REALPART_EXPR, type, ssa_name);
717 i = build1 (IMAGPART_EXPR, type, ssa_name);
95a8c155 718 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
e41d82f5
RH
719 }
720}
721
722/* Generate code to set the component variables of a complex variable
723 to match the PHI statements in block BB. */
724
725static void
726update_phi_components (basic_block bb)
727{
538dd0b7 728 gphi_iterator gsi;
e41d82f5 729
726a989a
RB
730 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
731 {
538dd0b7 732 gphi *phi = gsi.phi ();
e41d82f5 733
726a989a
RB
734 if (is_complex_reg (gimple_phi_result (phi)))
735 {
736 tree lr, li;
737 gimple pr = NULL, pi = NULL;
738 unsigned int i, n;
95a8c155 739
726a989a
RB
740 lr = get_component_ssa_name (gimple_phi_result (phi), false);
741 if (TREE_CODE (lr) == SSA_NAME)
dcc748dd 742 pr = create_phi_node (lr, bb);
726a989a
RB
743
744 li = get_component_ssa_name (gimple_phi_result (phi), true);
745 if (TREE_CODE (li) == SSA_NAME)
dcc748dd 746 pi = create_phi_node (li, bb);
726a989a
RB
747
748 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
749 {
750 tree comp, arg = gimple_phi_arg_def (phi, i);
751 if (pr)
752 {
753 comp = extract_component (NULL, arg, false, false);
754 SET_PHI_ARG_DEF (pr, i, comp);
755 }
756 if (pi)
757 {
758 comp = extract_component (NULL, arg, true, false);
759 SET_PHI_ARG_DEF (pi, i, comp);
760 }
761 }
762 }
763 }
e41d82f5
RH
764}
765
e41d82f5
RH
766/* Expand a complex move to scalars. */
767
768static void
726a989a 769expand_complex_move (gimple_stmt_iterator *gsi, tree type)
e41d82f5
RH
770{
771 tree inner_type = TREE_TYPE (type);
726a989a
RB
772 tree r, i, lhs, rhs;
773 gimple stmt = gsi_stmt (*gsi);
774
775 if (is_gimple_assign (stmt))
776 {
777 lhs = gimple_assign_lhs (stmt);
778 if (gimple_num_ops (stmt) == 2)
779 rhs = gimple_assign_rhs1 (stmt);
780 else
781 rhs = NULL_TREE;
782 }
783 else if (is_gimple_call (stmt))
784 {
785 lhs = gimple_call_lhs (stmt);
786 rhs = NULL_TREE;
787 }
788 else
789 gcc_unreachable ();
e41d82f5
RH
790
791 if (TREE_CODE (lhs) == SSA_NAME)
792 {
726a989a 793 if (is_ctrl_altering_stmt (stmt))
5d6b3bba 794 {
5d6b3bba
RH
795 edge e;
796
797 /* The value is not assigned on the exception edges, so we need not
798 concern ourselves there. We do need to update on the fallthru
799 edge. Find it. */
0fd4b31d
NF
800 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
801 if (!e)
802 gcc_unreachable ();
5d6b3bba
RH
803
804 r = build1 (REALPART_EXPR, inner_type, lhs);
805 i = build1 (IMAGPART_EXPR, inner_type, lhs);
95a8c155 806 update_complex_components_on_edge (e, lhs, r, i);
5d6b3bba 807 }
726a989a
RB
808 else if (is_gimple_call (stmt)
809 || gimple_has_side_effects (stmt)
810 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
e41d82f5 811 {
5d6b3bba
RH
812 r = build1 (REALPART_EXPR, inner_type, lhs);
813 i = build1 (IMAGPART_EXPR, inner_type, lhs);
726a989a 814 update_complex_components (gsi, stmt, r, i);
e41d82f5
RH
815 }
816 else
817 {
726a989a
RB
818 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
819 {
820 r = extract_component (gsi, rhs, 0, true);
821 i = extract_component (gsi, rhs, 1, true);
822 }
823 else
824 {
825 r = gimple_assign_rhs1 (stmt);
826 i = gimple_assign_rhs2 (stmt);
827 }
828 update_complex_assignment (gsi, r, i);
e41d82f5
RH
829 }
830 }
726a989a 831 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
e41d82f5
RH
832 {
833 tree x;
726a989a 834 gimple t;
e1ec47c4 835 location_t loc;
e41d82f5 836
e1ec47c4 837 loc = gimple_location (stmt);
726a989a
RB
838 r = extract_component (gsi, rhs, 0, false);
839 i = extract_component (gsi, rhs, 1, false);
e41d82f5
RH
840
841 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
726a989a 842 t = gimple_build_assign (x, r);
e1ec47c4 843 gimple_set_location (t, loc);
726a989a 844 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 845
726a989a 846 if (stmt == gsi_stmt (*gsi))
e41d82f5
RH
847 {
848 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
849 gimple_assign_set_lhs (stmt, x);
850 gimple_assign_set_rhs1 (stmt, i);
e41d82f5
RH
851 }
852 else
853 {
854 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a 855 t = gimple_build_assign (x, i);
e1ec47c4 856 gimple_set_location (t, loc);
726a989a 857 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 858
726a989a
RB
859 stmt = gsi_stmt (*gsi);
860 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
538dd0b7 861 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
e41d82f5
RH
862 }
863
e41d82f5
RH
864 update_stmt (stmt);
865 }
6de9cd9a
DN
866}
867
868/* Expand complex addition to scalars:
869 a + b = (ar + br) + i(ai + bi)
870 a - b = (ar - br) + i(ai + bi)
871*/
872
873static void
726a989a 874expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 875 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
876 enum tree_code code,
877 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a
DN
878{
879 tree rr, ri;
880
e41d82f5
RH
881 switch (PAIR (al, bl))
882 {
883 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 884 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
885 ri = ai;
886 break;
887
888 case PAIR (ONLY_REAL, ONLY_IMAG):
889 rr = ar;
890 if (code == MINUS_EXPR)
726a989a 891 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
e41d82f5
RH
892 else
893 ri = bi;
894 break;
895
896 case PAIR (ONLY_IMAG, ONLY_REAL):
897 if (code == MINUS_EXPR)
726a989a 898 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
e41d82f5
RH
899 else
900 rr = br;
901 ri = ai;
902 break;
903
904 case PAIR (ONLY_IMAG, ONLY_IMAG):
905 rr = ar;
726a989a 906 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
907 break;
908
909 case PAIR (VARYING, ONLY_REAL):
726a989a 910 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
911 ri = ai;
912 break;
913
914 case PAIR (VARYING, ONLY_IMAG):
915 rr = ar;
726a989a 916 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
917 break;
918
919 case PAIR (ONLY_REAL, VARYING):
920 if (code == MINUS_EXPR)
921 goto general;
726a989a 922 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
923 ri = bi;
924 break;
925
926 case PAIR (ONLY_IMAG, VARYING):
927 if (code == MINUS_EXPR)
928 goto general;
929 rr = br;
726a989a 930 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
931 break;
932
933 case PAIR (VARYING, VARYING):
934 general:
726a989a
RB
935 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
936 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
937 break;
938
939 default:
940 gcc_unreachable ();
941 }
6de9cd9a 942
726a989a 943 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
944}
945
7e7e470f
RH
946/* Expand a complex multiplication or division to a libcall to the c99
947 compliant routines. */
948
949static void
726a989a 950expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
7e7e470f
RH
951 tree br, tree bi, enum tree_code code)
952{
ef4bddc2 953 machine_mode mode;
7e7e470f 954 enum built_in_function bcode;
726a989a 955 tree fn, type, lhs;
538dd0b7
DM
956 gimple old_stmt;
957 gcall *stmt;
7e7e470f 958
04be6ff5
JJ
959 old_stmt = gsi_stmt (*gsi);
960 lhs = gimple_assign_lhs (old_stmt);
726a989a 961 type = TREE_TYPE (lhs);
7e7e470f
RH
962
963 mode = TYPE_MODE (type);
964 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
726a989a 965
7e7e470f 966 if (code == MULT_EXPR)
32e8bb8e
ILT
967 bcode = ((enum built_in_function)
968 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f 969 else if (code == RDIV_EXPR)
32e8bb8e
ILT
970 bcode = ((enum built_in_function)
971 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f
RH
972 else
973 gcc_unreachable ();
e79983f4 974 fn = builtin_decl_explicit (bcode);
7e7e470f 975
726a989a
RB
976 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
977 gimple_call_set_lhs (stmt, lhs);
f430bae8 978 update_stmt (stmt);
04be6ff5
JJ
979 gsi_replace (gsi, stmt, false);
980
981 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
982 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
e41d82f5 983
5cd4ec7f 984 if (gimple_in_ssa_p (cfun))
e41d82f5 985 {
d5c77941 986 type = TREE_TYPE (type);
726a989a 987 update_complex_components (gsi, stmt,
e41d82f5
RH
988 build1 (REALPART_EXPR, type, lhs),
989 build1 (IMAGPART_EXPR, type, lhs));
726a989a 990 SSA_NAME_DEF_STMT (lhs) = stmt;
e41d82f5 991 }
7e7e470f
RH
992}
993
6de9cd9a
DN
994/* Expand complex multiplication to scalars:
995 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
996*/
997
998static void
726a989a 999expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
e41d82f5
RH
1000 tree ar, tree ai, tree br, tree bi,
1001 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 1002{
e41d82f5 1003 tree rr, ri;
6de9cd9a 1004
e41d82f5 1005 if (al < bl)
7e7e470f 1006 {
e41d82f5
RH
1007 complex_lattice_t tl;
1008 rr = ar, ar = br, br = rr;
1009 ri = ai, ai = bi, bi = ri;
1010 tl = al, al = bl, bl = tl;
7e7e470f
RH
1011 }
1012
e41d82f5
RH
1013 switch (PAIR (al, bl))
1014 {
1015 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1016 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
e41d82f5
RH
1017 ri = ai;
1018 break;
6de9cd9a 1019
e41d82f5
RH
1020 case PAIR (ONLY_IMAG, ONLY_REAL):
1021 rr = ar;
1022 if (TREE_CODE (ai) == REAL_CST
1023 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1024 ri = br;
1025 else
726a989a 1026 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1027 break;
6de9cd9a 1028
e41d82f5 1029 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a
RB
1030 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1031 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
e41d82f5
RH
1032 ri = ar;
1033 break;
1034
1035 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1036 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1037 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5
RH
1038 break;
1039
1040 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1041 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1042 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1043 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1044 break;
1045
1046 case PAIR (VARYING, VARYING):
1047 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1048 {
726a989a 1049 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
e41d82f5
RH
1050 return;
1051 }
1052 else
1053 {
1054 tree t1, t2, t3, t4;
1055
726a989a
RB
1056 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1057 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1058 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1059
1060 /* Avoid expanding redundant multiplication for the common
1061 case of squaring a complex number. */
1062 if (ar == br && ai == bi)
1063 t4 = t3;
1064 else
726a989a 1065 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1066
726a989a
RB
1067 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1068 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
e41d82f5
RH
1069 }
1070 break;
1071
1072 default:
1073 gcc_unreachable ();
1074 }
6de9cd9a 1075
726a989a 1076 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1077}
1078
e3d5405d 1079/* Keep this algorithm in sync with fold-const.c:const_binop().
b8698a0f 1080
e3d5405d 1081 Expand complex division to scalars, straightforward algorithm.
6de9cd9a
DN
1082 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1083 t = br*br + bi*bi
1084*/
1085
1086static void
726a989a 1087expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1088 tree ar, tree ai, tree br, tree bi,
1089 enum tree_code code)
1090{
1091 tree rr, ri, div, t1, t2, t3;
1092
726a989a
RB
1093 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1094 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1095 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
6de9cd9a 1096
726a989a
RB
1097 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1098 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1099 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1100 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1101
726a989a
RB
1102 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1103 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1104 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1105 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1106
726a989a 1107 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1108}
1109
e3d5405d
KG
1110/* Keep this algorithm in sync with fold-const.c:const_binop().
1111
1112 Expand complex division to scalars, modified algorithm to minimize
6de9cd9a
DN
1113 overflow with wide input ranges. */
1114
1115static void
726a989a 1116expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1117 tree ar, tree ai, tree br, tree bi,
1118 enum tree_code code)
1119{
04b03edb 1120 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
c63f5a42 1121 basic_block bb_cond, bb_true, bb_false, bb_join;
726a989a 1122 gimple stmt;
6de9cd9a
DN
1123
1124 /* Examine |br| < |bi|, and branch. */
726a989a
RB
1125 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1126 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
db3927fb 1127 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
b57d8e6f 1128 LT_EXPR, boolean_type_node, t1, t2);
04b03edb 1129 STRIP_NOPS (compare);
6de9cd9a 1130
c63f5a42
RH
1131 bb_cond = bb_true = bb_false = bb_join = NULL;
1132 rr = ri = tr = ti = NULL;
b57d8e6f 1133 if (TREE_CODE (compare) != INTEGER_CST)
6de9cd9a 1134 {
6de9cd9a 1135 edge e;
726a989a 1136 gimple stmt;
04b03edb 1137 tree cond, tmp;
6de9cd9a 1138
b731b390 1139 tmp = create_tmp_var (boolean_type_node);
726a989a 1140 stmt = gimple_build_assign (tmp, compare);
04b03edb 1141 if (gimple_in_ssa_p (cfun))
726a989a 1142 {
b731b390 1143 tmp = make_ssa_name (tmp, stmt);
726a989a
RB
1144 gimple_assign_set_lhs (stmt, tmp);
1145 }
1146
1147 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
04b03edb 1148
db3927fb
AH
1149 cond = fold_build2_loc (gimple_location (stmt),
1150 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
726a989a
RB
1151 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1152 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
6de9cd9a 1153
6de9cd9a 1154 /* Split the original block, and create the TRUE and FALSE blocks. */
726a989a 1155 e = split_block (gsi_bb (*gsi), stmt);
6de9cd9a
DN
1156 bb_cond = e->src;
1157 bb_join = e->dest;
1158 bb_true = create_empty_bb (bb_cond);
1159 bb_false = create_empty_bb (bb_true);
1160
1161 /* Wire the blocks together. */
1162 e->flags = EDGE_TRUE_VALUE;
1163 redirect_edge_succ (e, bb_true);
1164 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
520f34fa
RH
1165 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1166 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
726338f4
RB
1167 add_bb_to_loop (bb_true, bb_cond->loop_father);
1168 add_bb_to_loop (bb_false, bb_cond->loop_father);
6de9cd9a
DN
1169
1170 /* Update dominance info. Note that bb_join's data was
1171 updated by split_block. */
fce22de5 1172 if (dom_info_available_p (CDI_DOMINATORS))
6de9cd9a
DN
1173 {
1174 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1175 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1176 }
1177
b731b390
JJ
1178 rr = create_tmp_reg (inner_type);
1179 ri = create_tmp_reg (inner_type);
6de9cd9a 1180 }
c63f5a42
RH
1181
1182 /* In the TRUE branch, we compute
1183 ratio = br/bi;
1184 div = (br * ratio) + bi;
1185 tr = (ar * ratio) + ai;
1186 ti = (ai * ratio) - ar;
1187 tr = tr / div;
1188 ti = ti / div; */
04b03edb 1189 if (bb_true || integer_nonzerop (compare))
c63f5a42
RH
1190 {
1191 if (bb_true)
1192 {
726a989a
RB
1193 *gsi = gsi_last_bb (bb_true);
1194 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1195 }
1196
726a989a 1197 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
c63f5a42 1198
726a989a
RB
1199 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1200 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
c63f5a42 1201
726a989a
RB
1202 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1203 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
c63f5a42 1204
726a989a
RB
1205 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1206 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
c63f5a42 1207
726a989a
RB
1208 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1209 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1210
1211 if (bb_true)
1212 {
726a989a
RB
1213 stmt = gimple_build_assign (rr, tr);
1214 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1215 stmt = gimple_build_assign (ri, ti);
1216 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1217 gsi_remove (gsi, true);
c63f5a42
RH
1218 }
1219 }
1220
1221 /* In the FALSE branch, we compute
1222 ratio = d/c;
1223 divisor = (d * ratio) + c;
1224 tr = (b * ratio) + a;
1225 ti = b - (a * ratio);
1226 tr = tr / div;
1227 ti = ti / div; */
04b03edb 1228 if (bb_false || integer_zerop (compare))
c63f5a42
RH
1229 {
1230 if (bb_false)
1231 {
726a989a
RB
1232 *gsi = gsi_last_bb (bb_false);
1233 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1234 }
1235
726a989a 1236 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
c63f5a42 1237
726a989a
RB
1238 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1239 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
c63f5a42 1240
726a989a
RB
1241 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1242 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
c63f5a42 1243
726a989a
RB
1244 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1245 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
c63f5a42 1246
726a989a
RB
1247 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1248 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1249
1250 if (bb_false)
1251 {
726a989a
RB
1252 stmt = gimple_build_assign (rr, tr);
1253 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1254 stmt = gimple_build_assign (ri, ti);
1255 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1256 gsi_remove (gsi, true);
c63f5a42
RH
1257 }
1258 }
1259
1260 if (bb_join)
726a989a 1261 *gsi = gsi_start_bb (bb_join);
c63f5a42
RH
1262 else
1263 rr = tr, ri = ti;
6de9cd9a 1264
726a989a 1265 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1266}
1267
1268/* Expand complex division to scalars. */
1269
1270static void
726a989a 1271expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 1272 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
1273 enum tree_code code,
1274 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 1275{
e41d82f5
RH
1276 tree rr, ri;
1277
1278 switch (PAIR (al, bl))
6de9cd9a 1279 {
e41d82f5 1280 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1281 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5 1282 ri = ai;
6de9cd9a 1283 break;
7e7e470f 1284
e41d82f5
RH
1285 case PAIR (ONLY_REAL, ONLY_IMAG):
1286 rr = ai;
726a989a
RB
1287 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1288 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1289 break;
1290
1291 case PAIR (ONLY_IMAG, ONLY_REAL):
1292 rr = ar;
726a989a 1293 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5 1294 break;
7e7e470f 1295
e41d82f5 1296 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a 1297 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5 1298 ri = ar;
6de9cd9a 1299 break;
7e7e470f 1300
e41d82f5 1301 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1302 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1303 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5
RH
1304 break;
1305
1306 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1307 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1308 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1309 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1310
1311 case PAIR (ONLY_REAL, VARYING):
1312 case PAIR (ONLY_IMAG, VARYING):
1313 case PAIR (VARYING, VARYING):
1314 switch (flag_complex_method)
1315 {
1316 case 0:
1317 /* straightforward implementation of complex divide acceptable. */
726a989a 1318 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1319 break;
1320
1321 case 2:
1322 if (SCALAR_FLOAT_TYPE_P (inner_type))
1323 {
726a989a 1324 expand_complex_libcall (gsi, ar, ai, br, bi, code);
e41d82f5
RH
1325 break;
1326 }
1327 /* FALLTHRU */
1328
1329 case 1:
1330 /* wide ranges of inputs must work for complex divide. */
726a989a 1331 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1332 break;
1333
1334 default:
1335 gcc_unreachable ();
1336 }
1337 return;
1338
6de9cd9a 1339 default:
1e128c5f 1340 gcc_unreachable ();
6de9cd9a 1341 }
e41d82f5 1342
726a989a 1343 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1344}
1345
1346/* Expand complex negation to scalars:
1347 -a = (-ar) + i(-ai)
1348*/
1349
1350static void
726a989a 1351expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1352 tree ar, tree ai)
1353{
1354 tree rr, ri;
1355
726a989a
RB
1356 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1357 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1358
726a989a 1359 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1360}
1361
1362/* Expand complex conjugate to scalars:
1363 ~a = (ar) + i(-ai)
1364*/
1365
1366static void
726a989a 1367expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1368 tree ar, tree ai)
1369{
1370 tree ri;
1371
726a989a 1372 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1373
726a989a 1374 update_complex_assignment (gsi, ar, ri);
6de9cd9a
DN
1375}
1376
1377/* Expand complex comparison (EQ or NE only). */
1378
1379static void
726a989a 1380expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
6de9cd9a
DN
1381 tree br, tree bi, enum tree_code code)
1382{
726a989a
RB
1383 tree cr, ci, cc, type;
1384 gimple stmt;
6de9cd9a 1385
726a989a
RB
1386 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1387 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1388 cc = gimplify_build2 (gsi,
26277d41
PB
1389 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1390 boolean_type_node, cr, ci);
6de9cd9a 1391
726a989a 1392 stmt = gsi_stmt (*gsi);
6de9cd9a 1393
726a989a 1394 switch (gimple_code (stmt))
6de9cd9a 1395 {
726a989a 1396 case GIMPLE_RETURN:
538dd0b7
DM
1397 {
1398 greturn *return_stmt = as_a <greturn *> (stmt);
1399 type = TREE_TYPE (gimple_return_retval (return_stmt));
1400 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1401 }
6de9cd9a 1402 break;
726a989a
RB
1403
1404 case GIMPLE_ASSIGN:
1405 type = TREE_TYPE (gimple_assign_lhs (stmt));
1406 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1407 stmt = gsi_stmt (*gsi);
6de9cd9a 1408 break;
726a989a
RB
1409
1410 case GIMPLE_COND:
538dd0b7
DM
1411 {
1412 gcond *cond_stmt = as_a <gcond *> (stmt);
1413 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1414 gimple_cond_set_lhs (cond_stmt, cc);
1415 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1416 }
726a989a
RB
1417 break;
1418
6de9cd9a 1419 default:
1e128c5f 1420 gcc_unreachable ();
6de9cd9a 1421 }
68b9f53b 1422
e41d82f5 1423 update_stmt (stmt);
6de9cd9a
DN
1424}
1425
a57fc743
JJ
1426/* Expand inline asm that sets some complex SSA_NAMEs. */
1427
1428static void
1429expand_complex_asm (gimple_stmt_iterator *gsi)
1430{
538dd0b7 1431 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
a57fc743
JJ
1432 unsigned int i;
1433
1434 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1435 {
1436 tree link = gimple_asm_output_op (stmt, i);
1437 tree op = TREE_VALUE (link);
1438 if (TREE_CODE (op) == SSA_NAME
1439 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1440 {
1441 tree type = TREE_TYPE (op);
1442 tree inner_type = TREE_TYPE (type);
1443 tree r = build1 (REALPART_EXPR, inner_type, op);
1444 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1445 gimple_seq list = set_component_ssa_name (op, false, r);
1446
1447 if (list)
1448 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1449
1450 list = set_component_ssa_name (op, true, i);
1451 if (list)
1452 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1453 }
1454 }
1455}
726a989a 1456
6de9cd9a
DN
1457/* Process one statement. If we identify a complex operation, expand it. */
1458
1459static void
726a989a 1460expand_complex_operations_1 (gimple_stmt_iterator *gsi)
6de9cd9a 1461{
726a989a
RB
1462 gimple stmt = gsi_stmt (*gsi);
1463 tree type, inner_type, lhs;
6de9cd9a 1464 tree ac, ar, ai, bc, br, bi;
e41d82f5 1465 complex_lattice_t al, bl;
6de9cd9a
DN
1466 enum tree_code code;
1467
a57fc743
JJ
1468 if (gimple_code (stmt) == GIMPLE_ASM)
1469 {
1470 expand_complex_asm (gsi);
1471 return;
1472 }
1473
726a989a
RB
1474 lhs = gimple_get_lhs (stmt);
1475 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1476 return;
6de9cd9a 1477
726a989a
RB
1478 type = TREE_TYPE (gimple_op (stmt, 0));
1479 code = gimple_expr_code (stmt);
6de9cd9a
DN
1480
1481 /* Initial filter for operations we handle. */
1482 switch (code)
1483 {
1484 case PLUS_EXPR:
1485 case MINUS_EXPR:
1486 case MULT_EXPR:
1487 case TRUNC_DIV_EXPR:
1488 case CEIL_DIV_EXPR:
1489 case FLOOR_DIV_EXPR:
1490 case ROUND_DIV_EXPR:
1491 case RDIV_EXPR:
1492 case NEGATE_EXPR:
1493 case CONJ_EXPR:
1494 if (TREE_CODE (type) != COMPLEX_TYPE)
1495 return;
1496 inner_type = TREE_TYPE (type);
1497 break;
1498
1499 case EQ_EXPR:
1500 case NE_EXPR:
726a989a 1501 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
207156e4 1502 subcode, so we need to access the operands using gimple_op. */
726a989a 1503 inner_type = TREE_TYPE (gimple_op (stmt, 1));
6de9cd9a
DN
1504 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1505 return;
1506 break;
1507
1508 default:
e41d82f5 1509 {
726a989a 1510 tree rhs;
a9b77cd1 1511
726a989a
RB
1512 /* GIMPLE_COND may also fallthru here, but we do not need to
1513 do anything with it. */
1514 if (gimple_code (stmt) == GIMPLE_COND)
a9b77cd1
ZD
1515 return;
1516
e41d82f5 1517 if (TREE_CODE (type) == COMPLEX_TYPE)
726a989a
RB
1518 expand_complex_move (gsi, type);
1519 else if (is_gimple_assign (stmt)
1520 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1521 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1522 && TREE_CODE (lhs) == SSA_NAME)
e41d82f5 1523 {
726a989a
RB
1524 rhs = gimple_assign_rhs1 (stmt);
1525 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1526 gimple_assign_rhs_code (stmt)
1527 == IMAGPART_EXPR,
1528 false);
1529 gimple_assign_set_rhs_from_tree (gsi, rhs);
1530 stmt = gsi_stmt (*gsi);
e41d82f5
RH
1531 update_stmt (stmt);
1532 }
1533 }
6de9cd9a
DN
1534 return;
1535 }
1536
1537 /* Extract the components of the two complex values. Make sure and
1538 handle the common case of the same value used twice specially. */
726a989a
RB
1539 if (is_gimple_assign (stmt))
1540 {
1541 ac = gimple_assign_rhs1 (stmt);
1542 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1543 }
1544 /* GIMPLE_CALL can not get here. */
6de9cd9a
DN
1545 else
1546 {
726a989a
RB
1547 ac = gimple_cond_lhs (stmt);
1548 bc = gimple_cond_rhs (stmt);
1549 }
1550
1551 ar = extract_component (gsi, ac, false, true);
1552 ai = extract_component (gsi, ac, true, true);
1553
1554 if (ac == bc)
1555 br = ar, bi = ai;
1556 else if (bc)
1557 {
1558 br = extract_component (gsi, bc, 0, true);
1559 bi = extract_component (gsi, bc, 1, true);
6de9cd9a 1560 }
726a989a
RB
1561 else
1562 br = bi = NULL_TREE;
6de9cd9a 1563
5cd4ec7f 1564 if (gimple_in_ssa_p (cfun))
e41d82f5
RH
1565 {
1566 al = find_lattice_value (ac);
1567 if (al == UNINITIALIZED)
1568 al = VARYING;
1569
1570 if (TREE_CODE_CLASS (code) == tcc_unary)
1571 bl = UNINITIALIZED;
1572 else if (ac == bc)
1573 bl = al;
1574 else
1575 {
1576 bl = find_lattice_value (bc);
1577 if (bl == UNINITIALIZED)
1578 bl = VARYING;
1579 }
1580 }
1581 else
1582 al = bl = VARYING;
1583
6de9cd9a
DN
1584 switch (code)
1585 {
1586 case PLUS_EXPR:
1587 case MINUS_EXPR:
726a989a 1588 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a
DN
1589 break;
1590
1591 case MULT_EXPR:
726a989a 1592 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
6de9cd9a
DN
1593 break;
1594
1595 case TRUNC_DIV_EXPR:
1596 case CEIL_DIV_EXPR:
1597 case FLOOR_DIV_EXPR:
1598 case ROUND_DIV_EXPR:
1599 case RDIV_EXPR:
726a989a 1600 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a 1601 break;
b8698a0f 1602
6de9cd9a 1603 case NEGATE_EXPR:
726a989a 1604 expand_complex_negation (gsi, inner_type, ar, ai);
6de9cd9a
DN
1605 break;
1606
1607 case CONJ_EXPR:
726a989a 1608 expand_complex_conjugate (gsi, inner_type, ar, ai);
6de9cd9a
DN
1609 break;
1610
1611 case EQ_EXPR:
1612 case NE_EXPR:
726a989a 1613 expand_complex_comparison (gsi, ar, ai, br, bi, code);
6de9cd9a
DN
1614 break;
1615
1616 default:
1e128c5f 1617 gcc_unreachable ();
6de9cd9a
DN
1618 }
1619}
26277d41 1620
e41d82f5
RH
1621\f
1622/* Entry point for complex operation lowering during optimization. */
1623
c2924966 1624static unsigned int
2b725155 1625tree_lower_complex (void)
6de9cd9a 1626{
e41d82f5 1627 int old_last_basic_block;
726a989a 1628 gimple_stmt_iterator gsi;
6de9cd9a
DN
1629 basic_block bb;
1630
e41d82f5 1631 if (!init_dont_simulate_again ())
c2924966 1632 return 0;
e41d82f5 1633
9771b263
DN
1634 complex_lattice_values.create (num_ssa_names);
1635 complex_lattice_values.safe_grow_cleared (num_ssa_names);
e41d82f5 1636
95a8c155 1637 init_parameter_lattice_values ();
e41d82f5
RH
1638 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1639
c203e8a7 1640 complex_variable_components = new int_tree_htab_type (10);
95a8c155 1641
9771b263
DN
1642 complex_ssa_name_components.create (2 * num_ssa_names);
1643 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
95a8c155 1644
e41d82f5
RH
1645 update_parameter_components ();
1646
95a8c155 1647 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
8b1c6fd7 1648 old_last_basic_block = last_basic_block_for_fn (cfun);
11cd3bed 1649 FOR_EACH_BB_FN (bb, cfun)
6de9cd9a
DN
1650 {
1651 if (bb->index >= old_last_basic_block)
1652 continue;
726a989a 1653
e41d82f5 1654 update_phi_components (bb);
726a989a
RB
1655 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1656 expand_complex_operations_1 (&gsi);
6de9cd9a 1657 }
6de9cd9a 1658
726a989a 1659 gsi_commit_edge_inserts ();
e41d82f5 1660
c203e8a7
TS
1661 delete complex_variable_components;
1662 complex_variable_components = NULL;
9771b263
DN
1663 complex_ssa_name_components.release ();
1664 complex_lattice_values.release ();
c2924966 1665 return 0;
e41d82f5 1666}
26277d41 1667
27a4cd48
DM
1668namespace {
1669
1670const pass_data pass_data_lower_complex =
26277d41 1671{
27a4cd48
DM
1672 GIMPLE_PASS, /* type */
1673 "cplxlower", /* name */
1674 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
1675 TV_NONE, /* tv_id */
1676 PROP_ssa, /* properties_required */
1677 PROP_gimple_lcx, /* properties_provided */
1678 0, /* properties_destroyed */
1679 0, /* todo_flags_start */
3bea341f 1680 TODO_update_ssa, /* todo_flags_finish */
e41d82f5
RH
1681};
1682
27a4cd48
DM
1683class pass_lower_complex : public gimple_opt_pass
1684{
1685public:
c3284718
RS
1686 pass_lower_complex (gcc::context *ctxt)
1687 : gimple_opt_pass (pass_data_lower_complex, ctxt)
27a4cd48
DM
1688 {}
1689
1690 /* opt_pass methods: */
65d3284b 1691 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
be55bfe6 1692 virtual unsigned int execute (function *) { return tree_lower_complex (); }
27a4cd48
DM
1693
1694}; // class pass_lower_complex
1695
1696} // anon namespace
1697
1698gimple_opt_pass *
1699make_pass_lower_complex (gcc::context *ctxt)
1700{
1701 return new pass_lower_complex (ctxt);
1702}
1703
e41d82f5 1704\f
27a4cd48
DM
1705namespace {
1706
1707const pass_data pass_data_lower_complex_O0 =
e41d82f5 1708{
27a4cd48
DM
1709 GIMPLE_PASS, /* type */
1710 "cplxlower0", /* name */
1711 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
1712 TV_NONE, /* tv_id */
1713 PROP_cfg, /* properties_required */
1714 PROP_gimple_lcx, /* properties_provided */
1715 0, /* properties_destroyed */
1716 0, /* todo_flags_start */
3bea341f 1717 TODO_update_ssa, /* todo_flags_finish */
6de9cd9a 1718};
27a4cd48
DM
1719
1720class pass_lower_complex_O0 : public gimple_opt_pass
1721{
1722public:
c3284718
RS
1723 pass_lower_complex_O0 (gcc::context *ctxt)
1724 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
27a4cd48
DM
1725 {}
1726
1727 /* opt_pass methods: */
1a3d085c
TS
1728 virtual bool gate (function *fun)
1729 {
1730 /* With errors, normal optimization passes are not run. If we don't
1731 lower complex operations at all, rtl expansion will abort. */
1732 return !(fun->curr_properties & PROP_gimple_lcx);
1733 }
1734
be55bfe6 1735 virtual unsigned int execute (function *) { return tree_lower_complex (); }
27a4cd48
DM
1736
1737}; // class pass_lower_complex_O0
1738
1739} // anon namespace
1740
1741gimple_opt_pass *
1742make_pass_lower_complex_O0 (gcc::context *ctxt)
1743{
1744 return new pass_lower_complex_O0 (ctxt);
1745}