]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-complex.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / tree-complex.c
CommitLineData
2b725155 1/* Lower complex number operations to scalar operations.
d1e082c2 2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
6de9cd9a
DN
3
4This file is part of GCC.
b8698a0f 5
6de9cd9a
DN
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
6de9cd9a 9later version.
b8698a0f 10
6de9cd9a
DN
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
6de9cd9a 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
6de9cd9a 23#include "tm.h"
e41d82f5 24#include "tree.h"
d8a2d370 25#include "stor-layout.h"
e41d82f5 26#include "flags.h"
18f429e2 27#include "gimple.h"
45b0be94 28#include "gimplify.h"
5be5c238 29#include "gimple-iterator.h"
18f429e2 30#include "gimplify-me.h"
442b4905
AM
31#include "gimple-ssa.h"
32#include "tree-cfg.h"
33#include "tree-phinodes.h"
34#include "ssa-iterators.h"
d8a2d370 35#include "stringpool.h"
442b4905 36#include "tree-ssanames.h"
d8a2d370 37#include "expr.h"
442b4905
AM
38#include "tree-dfa.h"
39#include "tree-ssa.h"
6de9cd9a
DN
40#include "tree-iterator.h"
41#include "tree-pass.h"
e41d82f5 42#include "tree-ssa-propagate.h"
4a8fb1a1 43#include "tree-hasher.h"
a9e0d843 44#include "cfgloop.h"
e41d82f5
RH
45
46
47/* For each complex ssa name, a lattice value. We're interested in finding
48 out whether a complex number is degenerate in some way, having only real
49 or only complex parts. */
50
32e8bb8e 51enum
e41d82f5
RH
52{
53 UNINITIALIZED = 0,
54 ONLY_REAL = 1,
55 ONLY_IMAG = 2,
56 VARYING = 3
32e8bb8e
ILT
57};
58
59/* The type complex_lattice_t holds combinations of the above
60 constants. */
61typedef int complex_lattice_t;
e41d82f5
RH
62
63#define PAIR(a, b) ((a) << 2 | (b))
64
e41d82f5 65
9771b263 66static vec<complex_lattice_t> complex_lattice_values;
e41d82f5 67
a3648cfc
DB
68/* For each complex variable, a pair of variables for the components exists in
69 the hashtable. */
4a8fb1a1 70static int_tree_htab_type complex_variable_components;
a3648cfc 71
95a8c155 72/* For each complex SSA_NAME, a pair of ssa names for the components. */
9771b263 73static vec<tree> complex_ssa_name_components;
95a8c155 74
a3648cfc
DB
75/* Lookup UID in the complex_variable_components hashtable and return the
76 associated tree. */
b8698a0f 77static tree
a3648cfc
DB
78cvc_lookup (unsigned int uid)
79{
80 struct int_tree_map *h, in;
81 in.uid = uid;
4a8fb1a1 82 h = complex_variable_components.find_with_hash (&in, uid);
95a8c155 83 return h ? h->to : NULL;
a3648cfc 84}
b8698a0f 85
a3648cfc
DB
86/* Insert the pair UID, TO into the complex_variable_components hashtable. */
87
b8698a0f 88static void
a3648cfc 89cvc_insert (unsigned int uid, tree to)
b8698a0f 90{
a3648cfc 91 struct int_tree_map *h;
4a8fb1a1 92 int_tree_map **loc;
a3648cfc 93
5ed6ace5 94 h = XNEW (struct int_tree_map);
a3648cfc
DB
95 h->uid = uid;
96 h->to = to;
4a8fb1a1
LC
97 loc = complex_variable_components.find_slot_with_hash (h, uid, INSERT);
98 *loc = h;
a3648cfc 99}
e41d82f5 100
e41d82f5
RH
101/* Return true if T is not a zero constant. In the case of real values,
102 we're only interested in +0.0. */
103
104static int
105some_nonzerop (tree t)
106{
107 int zerop = false;
108
2ca862e9
JM
109 /* Operations with real or imaginary part of a complex number zero
110 cannot be treated the same as operations with a real or imaginary
111 operand if we care about the signs of zeros in the result. */
112 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
e41d82f5 113 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
325217ed
CF
114 else if (TREE_CODE (t) == FIXED_CST)
115 zerop = fixed_zerop (t);
e41d82f5
RH
116 else if (TREE_CODE (t) == INTEGER_CST)
117 zerop = integer_zerop (t);
118
119 return !zerop;
120}
121
726a989a
RB
122
123/* Compute a lattice value from the components of a complex type REAL
124 and IMAG. */
6de9cd9a 125
e41d82f5 126static complex_lattice_t
726a989a 127find_lattice_value_parts (tree real, tree imag)
e41d82f5 128{
e41d82f5
RH
129 int r, i;
130 complex_lattice_t ret;
131
726a989a
RB
132 r = some_nonzerop (real);
133 i = some_nonzerop (imag);
134 ret = r * ONLY_REAL + i * ONLY_IMAG;
135
136 /* ??? On occasion we could do better than mapping 0+0i to real, but we
137 certainly don't want to leave it UNINITIALIZED, which eventually gets
138 mapped to VARYING. */
139 if (ret == UNINITIALIZED)
140 ret = ONLY_REAL;
141
142 return ret;
143}
144
145
146/* Compute a lattice value from gimple_val T. */
147
148static complex_lattice_t
149find_lattice_value (tree t)
150{
151 tree real, imag;
152
e41d82f5
RH
153 switch (TREE_CODE (t))
154 {
155 case SSA_NAME:
9771b263 156 return complex_lattice_values[SSA_NAME_VERSION (t)];
e41d82f5
RH
157
158 case COMPLEX_CST:
159 real = TREE_REALPART (t);
160 imag = TREE_IMAGPART (t);
161 break;
162
e41d82f5
RH
163 default:
164 gcc_unreachable ();
165 }
166
726a989a 167 return find_lattice_value_parts (real, imag);
e41d82f5
RH
168}
169
170/* Determine if LHS is something for which we're interested in seeing
171 simulation results. */
172
173static bool
174is_complex_reg (tree lhs)
175{
176 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
177}
178
179/* Mark the incoming parameters to the function as VARYING. */
180
181static void
182init_parameter_lattice_values (void)
183{
f0a77246 184 tree parm, ssa_name;
e41d82f5 185
910ad8de 186 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
f0a77246 187 if (is_complex_reg (parm)
32244553 188 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
9771b263 189 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
e41d82f5
RH
190}
191
726a989a
RB
192/* Initialize simulation state for each statement. Return false if we
193 found no statements we want to simulate, and thus there's nothing
194 for the entire pass to do. */
e41d82f5
RH
195
196static bool
197init_dont_simulate_again (void)
198{
199 basic_block bb;
726a989a
RB
200 gimple_stmt_iterator gsi;
201 gimple phi;
8f8abce4 202 bool saw_a_complex_op = false;
e41d82f5
RH
203
204 FOR_EACH_BB (bb)
205 {
726a989a
RB
206 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
207 {
208 phi = gsi_stmt (gsi);
209 prop_set_simulate_again (phi,
210 is_complex_reg (gimple_phi_result (phi)));
211 }
e41d82f5 212
726a989a 213 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e41d82f5 214 {
726a989a
RB
215 gimple stmt;
216 tree op0, op1;
217 bool sim_again_p;
e41d82f5 218
726a989a
RB
219 stmt = gsi_stmt (gsi);
220 op0 = op1 = NULL_TREE;
99e6bdda 221
b8698a0f 222 /* Most control-altering statements must be initially
99e6bdda 223 simulated, else we won't cover the entire cfg. */
726a989a 224 sim_again_p = stmt_ends_bb_p (stmt);
99e6bdda 225
726a989a 226 switch (gimple_code (stmt))
e41d82f5 227 {
726a989a
RB
228 case GIMPLE_CALL:
229 if (gimple_call_lhs (stmt))
230 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
231 break;
8f8abce4 232
726a989a
RB
233 case GIMPLE_ASSIGN:
234 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
235 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
236 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
237 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
238 else
239 op0 = gimple_assign_rhs1 (stmt);
240 if (gimple_num_ops (stmt) > 2)
241 op1 = gimple_assign_rhs2 (stmt);
8f8abce4
RH
242 break;
243
726a989a
RB
244 case GIMPLE_COND:
245 op0 = gimple_cond_lhs (stmt);
246 op1 = gimple_cond_rhs (stmt);
8f8abce4
RH
247 break;
248
249 default:
250 break;
e41d82f5
RH
251 }
252
726a989a
RB
253 if (op0 || op1)
254 switch (gimple_expr_code (stmt))
8f8abce4
RH
255 {
256 case EQ_EXPR:
257 case NE_EXPR:
8f8abce4
RH
258 case PLUS_EXPR:
259 case MINUS_EXPR:
260 case MULT_EXPR:
261 case TRUNC_DIV_EXPR:
262 case CEIL_DIV_EXPR:
263 case FLOOR_DIV_EXPR:
264 case ROUND_DIV_EXPR:
265 case RDIV_EXPR:
726a989a
RB
266 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
267 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
268 saw_a_complex_op = true;
269 break;
270
8f8abce4
RH
271 case NEGATE_EXPR:
272 case CONJ_EXPR:
726a989a 273 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
8f8abce4
RH
274 saw_a_complex_op = true;
275 break;
276
7b7e6ecd
EB
277 case REALPART_EXPR:
278 case IMAGPART_EXPR:
279 /* The total store transformation performed during
726a989a
RB
280 gimplification creates such uninitialized loads
281 and we need to lower the statement to be able
282 to fix things up. */
283 if (TREE_CODE (op0) == SSA_NAME
284 && ssa_undefined_value_p (op0))
7b7e6ecd
EB
285 saw_a_complex_op = true;
286 break;
287
8f8abce4
RH
288 default:
289 break;
290 }
291
726a989a 292 prop_set_simulate_again (stmt, sim_again_p);
e41d82f5
RH
293 }
294 }
295
8f8abce4 296 return saw_a_complex_op;
e41d82f5
RH
297}
298
299
300/* Evaluate statement STMT against the complex lattice defined above. */
301
302static enum ssa_prop_result
726a989a 303complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
e41d82f5
RH
304 tree *result_p)
305{
306 complex_lattice_t new_l, old_l, op1_l, op2_l;
307 unsigned int ver;
726a989a 308 tree lhs;
e41d82f5 309
726a989a
RB
310 lhs = gimple_get_lhs (stmt);
311 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
312 if (!lhs)
99e6bdda 313 return SSA_PROP_VARYING;
e41d82f5 314
99e6bdda
RH
315 /* These conditions should be satisfied due to the initial filter
316 set up in init_dont_simulate_again. */
e41d82f5
RH
317 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
318 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
319
320 *result_p = lhs;
321 ver = SSA_NAME_VERSION (lhs);
9771b263 322 old_l = complex_lattice_values[ver];
e41d82f5 323
726a989a 324 switch (gimple_expr_code (stmt))
e41d82f5
RH
325 {
326 case SSA_NAME:
e41d82f5 327 case COMPLEX_CST:
726a989a
RB
328 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
329 break;
330
331 case COMPLEX_EXPR:
332 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
333 gimple_assign_rhs2 (stmt));
e41d82f5
RH
334 break;
335
336 case PLUS_EXPR:
337 case MINUS_EXPR:
726a989a
RB
338 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
339 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
340
341 /* We've set up the lattice values such that IOR neatly
342 models addition. */
343 new_l = op1_l | op2_l;
344 break;
345
346 case MULT_EXPR:
347 case RDIV_EXPR:
348 case TRUNC_DIV_EXPR:
349 case CEIL_DIV_EXPR:
350 case FLOOR_DIV_EXPR:
351 case ROUND_DIV_EXPR:
726a989a
RB
352 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
353 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
e41d82f5
RH
354
355 /* Obviously, if either varies, so does the result. */
356 if (op1_l == VARYING || op2_l == VARYING)
357 new_l = VARYING;
358 /* Don't prematurely promote variables if we've not yet seen
359 their inputs. */
360 else if (op1_l == UNINITIALIZED)
361 new_l = op2_l;
362 else if (op2_l == UNINITIALIZED)
363 new_l = op1_l;
364 else
365 {
366 /* At this point both numbers have only one component. If the
367 numbers are of opposite kind, the result is imaginary,
368 otherwise the result is real. The add/subtract translates
369 the real/imag from/to 0/1; the ^ performs the comparison. */
370 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
371
372 /* Don't allow the lattice value to flip-flop indefinitely. */
373 new_l |= old_l;
374 }
375 break;
376
377 case NEGATE_EXPR:
378 case CONJ_EXPR:
726a989a 379 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
e41d82f5
RH
380 break;
381
382 default:
383 new_l = VARYING;
384 break;
385 }
386
387 /* If nothing changed this round, let the propagator know. */
388 if (new_l == old_l)
389 return SSA_PROP_NOT_INTERESTING;
390
9771b263 391 complex_lattice_values[ver] = new_l;
e41d82f5
RH
392 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
393}
394
395/* Evaluate a PHI node against the complex lattice defined above. */
396
397static enum ssa_prop_result
726a989a 398complex_visit_phi (gimple phi)
e41d82f5
RH
399{
400 complex_lattice_t new_l, old_l;
401 unsigned int ver;
402 tree lhs;
403 int i;
404
726a989a 405 lhs = gimple_phi_result (phi);
e41d82f5
RH
406
407 /* This condition should be satisfied due to the initial filter
408 set up in init_dont_simulate_again. */
409 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
410
411 /* We've set up the lattice values such that IOR neatly models PHI meet. */
412 new_l = UNINITIALIZED;
726a989a
RB
413 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
414 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
e41d82f5
RH
415
416 ver = SSA_NAME_VERSION (lhs);
9771b263 417 old_l = complex_lattice_values[ver];
e41d82f5
RH
418
419 if (new_l == old_l)
420 return SSA_PROP_NOT_INTERESTING;
421
9771b263 422 complex_lattice_values[ver] = new_l;
e41d82f5
RH
423 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
424}
425
95a8c155 426/* Create one backing variable for a complex component of ORIG. */
e41d82f5 427
95a8c155
RH
428static tree
429create_one_component_var (tree type, tree orig, const char *prefix,
430 const char *suffix, enum tree_code code)
e41d82f5 431{
95a8c155 432 tree r = create_tmp_var (type, prefix);
e41d82f5 433
95a8c155
RH
434 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
435 DECL_ARTIFICIAL (r) = 1;
8f8abce4 436
95a8c155
RH
437 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
438 {
439 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
95a8c155
RH
440
441 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
e41d82f5 442
95a8c155 443 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
839b422f 444 DECL_HAS_DEBUG_EXPR_P (r) = 1;
95a8c155
RH
445 DECL_IGNORED_P (r) = 0;
446 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
447 }
448 else
e41d82f5 449 {
95a8c155
RH
450 DECL_IGNORED_P (r) = 1;
451 TREE_NO_WARNING (r) = 1;
452 }
e41d82f5 453
95a8c155
RH
454 return r;
455}
e41d82f5 456
95a8c155 457/* Retrieve a value for a complex component of VAR. */
e41d82f5 458
95a8c155
RH
459static tree
460get_component_var (tree var, bool imag_p)
461{
462 size_t decl_index = DECL_UID (var) * 2 + imag_p;
463 tree ret = cvc_lookup (decl_index);
464
465 if (ret == NULL)
466 {
467 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
468 imag_p ? "CI" : "CR",
469 imag_p ? "$imag" : "$real",
470 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
471 cvc_insert (decl_index, ret);
472 }
473
474 return ret;
475}
e41d82f5 476
95a8c155 477/* Retrieve a value for a complex component of SSA_NAME. */
e41d82f5 478
95a8c155
RH
479static tree
480get_component_ssa_name (tree ssa_name, bool imag_p)
481{
482 complex_lattice_t lattice = find_lattice_value (ssa_name);
483 size_t ssa_name_index;
484 tree ret;
e41d82f5 485
95a8c155
RH
486 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
487 {
488 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
489 if (SCALAR_FLOAT_TYPE_P (inner_type))
490 return build_real (inner_type, dconst0);
491 else
492 return build_int_cst (inner_type, 0);
493 }
e41d82f5 494
95a8c155 495 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
9771b263 496 ret = complex_ssa_name_components[ssa_name_index];
95a8c155
RH
497 if (ret == NULL)
498 {
70b5e7dc
RG
499 if (SSA_NAME_VAR (ssa_name))
500 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
501 else
502 ret = TREE_TYPE (TREE_TYPE (ssa_name));
95a8c155
RH
503 ret = make_ssa_name (ret, NULL);
504
505 /* Copy some properties from the original. In particular, whether it
506 is used in an abnormal phi, and whether it's uninitialized. */
507 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
508 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
67386041
RG
509 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
510 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
95a8c155
RH
511 {
512 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
32244553 513 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
e41d82f5
RH
514 }
515
9771b263 516 complex_ssa_name_components[ssa_name_index] = ret;
e41d82f5 517 }
95a8c155
RH
518
519 return ret;
520}
521
726a989a
RB
522/* Set a value for a complex component of SSA_NAME, return a
523 gimple_seq of stuff that needs doing. */
95a8c155 524
726a989a 525static gimple_seq
95a8c155
RH
526set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
527{
528 complex_lattice_t lattice = find_lattice_value (ssa_name);
529 size_t ssa_name_index;
726a989a
RB
530 tree comp;
531 gimple last;
532 gimple_seq list;
95a8c155
RH
533
534 /* We know the value must be zero, else there's a bug in our lattice
535 analysis. But the value may well be a variable known to contain
536 zero. We should be safe ignoring it. */
537 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
538 return NULL;
539
540 /* If we've already assigned an SSA_NAME to this component, then this
541 means that our walk of the basic blocks found a use before the set.
542 This is fine. Now we should create an initialization for the value
543 we created earlier. */
544 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
9771b263 545 comp = complex_ssa_name_components[ssa_name_index];
95a8c155
RH
546 if (comp)
547 ;
548
549 /* If we've nothing assigned, and the value we're given is already stable,
536fa7b7 550 then install that as the value for this SSA_NAME. This preemptively
95a8c155 551 copy-propagates the value, which avoids unnecessary memory allocation. */
35a45bd4
RH
552 else if (is_gimple_min_invariant (value)
553 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
95a8c155 554 {
9771b263 555 complex_ssa_name_components[ssa_name_index] = value;
95a8c155
RH
556 return NULL;
557 }
558 else if (TREE_CODE (value) == SSA_NAME
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
560 {
561 /* Replace an anonymous base value with the variable from cvc_lookup.
562 This should result in better debug info. */
70b5e7dc
RG
563 if (SSA_NAME_VAR (ssa_name)
564 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
95a8c155
RH
565 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
566 {
567 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
db753fa1 568 replace_ssa_name_symbol (value, comp);
95a8c155
RH
569 }
570
9771b263 571 complex_ssa_name_components[ssa_name_index] = value;
95a8c155
RH
572 return NULL;
573 }
574
575 /* Finally, we need to stabilize the result by installing the value into
576 a new ssa name. */
577 else
578 comp = get_component_ssa_name (ssa_name, imag_p);
b8698a0f 579
95a8c155 580 /* Do all the work to assign VALUE to COMP. */
726a989a 581 list = NULL;
95a8c155 582 value = force_gimple_operand (value, &list, false, NULL);
726a989a
RB
583 last = gimple_build_assign (comp, value);
584 gimple_seq_add_stmt (&list, last);
585 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
95a8c155
RH
586
587 return list;
e41d82f5 588}
6de9cd9a 589
6de9cd9a
DN
590/* Extract the real or imaginary part of a complex variable or constant.
591 Make sure that it's a proper gimple_val and gimplify it if not.
726a989a 592 Emit any new code before gsi. */
6de9cd9a
DN
593
594static tree
726a989a 595extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
e41d82f5 596 bool gimple_p)
6de9cd9a 597{
6de9cd9a
DN
598 switch (TREE_CODE (t))
599 {
600 case COMPLEX_CST:
e41d82f5 601 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
6de9cd9a
DN
602
603 case COMPLEX_EXPR:
726a989a 604 gcc_unreachable ();
6de9cd9a
DN
605
606 case VAR_DECL:
f35a986c 607 case RESULT_DECL:
6de9cd9a 608 case PARM_DECL:
e41d82f5
RH
609 case COMPONENT_REF:
610 case ARRAY_REF:
7ec49257 611 case VIEW_CONVERT_EXPR:
70f34814 612 case MEM_REF:
e41d82f5
RH
613 {
614 tree inner_type = TREE_TYPE (TREE_TYPE (t));
615
616 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
617 inner_type, unshare_expr (t));
618
619 if (gimple_p)
726a989a
RB
620 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
621 GSI_SAME_STMT);
e41d82f5
RH
622
623 return t;
624 }
625
626 case SSA_NAME:
95a8c155 627 return get_component_ssa_name (t, imagpart_p);
6de9cd9a
DN
628
629 default:
1e128c5f 630 gcc_unreachable ();
6de9cd9a 631 }
e41d82f5
RH
632}
633
634/* Update the complex components of the ssa name on the lhs of STMT. */
6de9cd9a 635
e41d82f5 636static void
726a989a
RB
637update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
638 tree i)
e41d82f5 639{
726a989a
RB
640 tree lhs;
641 gimple_seq list;
642
643 lhs = gimple_get_lhs (stmt);
95a8c155
RH
644
645 list = set_component_ssa_name (lhs, false, r);
646 if (list)
726a989a 647 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
95a8c155
RH
648
649 list = set_component_ssa_name (lhs, true, i);
650 if (list)
726a989a 651 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
6de9cd9a
DN
652}
653
5d6b3bba 654static void
95a8c155 655update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
5d6b3bba 656{
726a989a 657 gimple_seq list;
5d6b3bba 658
95a8c155
RH
659 list = set_component_ssa_name (lhs, false, r);
660 if (list)
726a989a 661 gsi_insert_seq_on_edge (e, list);
5d6b3bba 662
95a8c155
RH
663 list = set_component_ssa_name (lhs, true, i);
664 if (list)
726a989a 665 gsi_insert_seq_on_edge (e, list);
5d6b3bba
RH
666}
667
726a989a 668
6de9cd9a
DN
669/* Update an assignment to a complex variable in place. */
670
671static void
726a989a 672update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
6de9cd9a 673{
f5e5b46c 674 gimple stmt;
726a989a 675
355a7673
MM
676 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
677 stmt = gsi_stmt (*gsi);
f5e5b46c
RG
678 update_stmt (stmt);
679 if (maybe_clean_eh_stmt (stmt))
680 gimple_purge_dead_eh_edges (gimple_bb (stmt));
355a7673
MM
681
682 if (gimple_in_ssa_p (cfun))
683 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
e41d82f5
RH
684}
685
726a989a 686
e41d82f5
RH
687/* Generate code at the entry point of the function to initialize the
688 component variables for a complex parameter. */
689
690static void
691update_parameter_components (void)
692{
693 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
694 tree parm;
695
910ad8de 696 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
e41d82f5
RH
697 {
698 tree type = TREE_TYPE (parm);
5d6b3bba 699 tree ssa_name, r, i;
e41d82f5
RH
700
701 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
702 continue;
703
704 type = TREE_TYPE (type);
32244553 705 ssa_name = ssa_default_def (cfun, parm);
c0a3f887
RG
706 if (!ssa_name)
707 continue;
e41d82f5 708
5d6b3bba
RH
709 r = build1 (REALPART_EXPR, type, ssa_name);
710 i = build1 (IMAGPART_EXPR, type, ssa_name);
95a8c155 711 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
e41d82f5
RH
712 }
713}
714
715/* Generate code to set the component variables of a complex variable
716 to match the PHI statements in block BB. */
717
718static void
719update_phi_components (basic_block bb)
720{
726a989a 721 gimple_stmt_iterator gsi;
e41d82f5 722
726a989a
RB
723 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
724 {
725 gimple phi = gsi_stmt (gsi);
e41d82f5 726
726a989a
RB
727 if (is_complex_reg (gimple_phi_result (phi)))
728 {
729 tree lr, li;
730 gimple pr = NULL, pi = NULL;
731 unsigned int i, n;
95a8c155 732
726a989a
RB
733 lr = get_component_ssa_name (gimple_phi_result (phi), false);
734 if (TREE_CODE (lr) == SSA_NAME)
dcc748dd 735 pr = create_phi_node (lr, bb);
726a989a
RB
736
737 li = get_component_ssa_name (gimple_phi_result (phi), true);
738 if (TREE_CODE (li) == SSA_NAME)
dcc748dd 739 pi = create_phi_node (li, bb);
726a989a
RB
740
741 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
742 {
743 tree comp, arg = gimple_phi_arg_def (phi, i);
744 if (pr)
745 {
746 comp = extract_component (NULL, arg, false, false);
747 SET_PHI_ARG_DEF (pr, i, comp);
748 }
749 if (pi)
750 {
751 comp = extract_component (NULL, arg, true, false);
752 SET_PHI_ARG_DEF (pi, i, comp);
753 }
754 }
755 }
756 }
e41d82f5
RH
757}
758
e41d82f5
RH
759/* Expand a complex move to scalars. */
760
761static void
726a989a 762expand_complex_move (gimple_stmt_iterator *gsi, tree type)
e41d82f5
RH
763{
764 tree inner_type = TREE_TYPE (type);
726a989a
RB
765 tree r, i, lhs, rhs;
766 gimple stmt = gsi_stmt (*gsi);
767
768 if (is_gimple_assign (stmt))
769 {
770 lhs = gimple_assign_lhs (stmt);
771 if (gimple_num_ops (stmt) == 2)
772 rhs = gimple_assign_rhs1 (stmt);
773 else
774 rhs = NULL_TREE;
775 }
776 else if (is_gimple_call (stmt))
777 {
778 lhs = gimple_call_lhs (stmt);
779 rhs = NULL_TREE;
780 }
781 else
782 gcc_unreachable ();
e41d82f5
RH
783
784 if (TREE_CODE (lhs) == SSA_NAME)
785 {
726a989a 786 if (is_ctrl_altering_stmt (stmt))
5d6b3bba 787 {
5d6b3bba
RH
788 edge e;
789
790 /* The value is not assigned on the exception edges, so we need not
791 concern ourselves there. We do need to update on the fallthru
792 edge. Find it. */
0fd4b31d
NF
793 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
794 if (!e)
795 gcc_unreachable ();
5d6b3bba
RH
796
797 r = build1 (REALPART_EXPR, inner_type, lhs);
798 i = build1 (IMAGPART_EXPR, inner_type, lhs);
95a8c155 799 update_complex_components_on_edge (e, lhs, r, i);
5d6b3bba 800 }
726a989a
RB
801 else if (is_gimple_call (stmt)
802 || gimple_has_side_effects (stmt)
803 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
e41d82f5 804 {
5d6b3bba
RH
805 r = build1 (REALPART_EXPR, inner_type, lhs);
806 i = build1 (IMAGPART_EXPR, inner_type, lhs);
726a989a 807 update_complex_components (gsi, stmt, r, i);
e41d82f5
RH
808 }
809 else
810 {
726a989a
RB
811 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
812 {
813 r = extract_component (gsi, rhs, 0, true);
814 i = extract_component (gsi, rhs, 1, true);
815 }
816 else
817 {
818 r = gimple_assign_rhs1 (stmt);
819 i = gimple_assign_rhs2 (stmt);
820 }
821 update_complex_assignment (gsi, r, i);
e41d82f5
RH
822 }
823 }
726a989a 824 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
e41d82f5
RH
825 {
826 tree x;
726a989a 827 gimple t;
e41d82f5 828
726a989a
RB
829 r = extract_component (gsi, rhs, 0, false);
830 i = extract_component (gsi, rhs, 1, false);
e41d82f5
RH
831
832 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
833 t = gimple_build_assign (x, r);
834 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 835
726a989a 836 if (stmt == gsi_stmt (*gsi))
e41d82f5
RH
837 {
838 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
839 gimple_assign_set_lhs (stmt, x);
840 gimple_assign_set_rhs1 (stmt, i);
e41d82f5
RH
841 }
842 else
843 {
844 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
726a989a
RB
845 t = gimple_build_assign (x, i);
846 gsi_insert_before (gsi, t, GSI_SAME_STMT);
e41d82f5 847
726a989a
RB
848 stmt = gsi_stmt (*gsi);
849 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
850 gimple_return_set_retval (stmt, lhs);
e41d82f5
RH
851 }
852
e41d82f5
RH
853 update_stmt (stmt);
854 }
6de9cd9a
DN
855}
856
857/* Expand complex addition to scalars:
858 a + b = (ar + br) + i(ai + bi)
859 a - b = (ar - br) + i(ai + bi)
860*/
861
862static void
726a989a 863expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 864 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
865 enum tree_code code,
866 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a
DN
867{
868 tree rr, ri;
869
e41d82f5
RH
870 switch (PAIR (al, bl))
871 {
872 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 873 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
874 ri = ai;
875 break;
876
877 case PAIR (ONLY_REAL, ONLY_IMAG):
878 rr = ar;
879 if (code == MINUS_EXPR)
726a989a 880 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
e41d82f5
RH
881 else
882 ri = bi;
883 break;
884
885 case PAIR (ONLY_IMAG, ONLY_REAL):
886 if (code == MINUS_EXPR)
726a989a 887 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
e41d82f5
RH
888 else
889 rr = br;
890 ri = ai;
891 break;
892
893 case PAIR (ONLY_IMAG, ONLY_IMAG):
894 rr = ar;
726a989a 895 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
896 break;
897
898 case PAIR (VARYING, ONLY_REAL):
726a989a 899 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
900 ri = ai;
901 break;
902
903 case PAIR (VARYING, ONLY_IMAG):
904 rr = ar;
726a989a 905 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
906 break;
907
908 case PAIR (ONLY_REAL, VARYING):
909 if (code == MINUS_EXPR)
910 goto general;
726a989a 911 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5
RH
912 ri = bi;
913 break;
914
915 case PAIR (ONLY_IMAG, VARYING):
916 if (code == MINUS_EXPR)
917 goto general;
918 rr = br;
726a989a 919 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
920 break;
921
922 case PAIR (VARYING, VARYING):
923 general:
726a989a
RB
924 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
925 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5
RH
926 break;
927
928 default:
929 gcc_unreachable ();
930 }
6de9cd9a 931
726a989a 932 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
933}
934
7e7e470f
RH
935/* Expand a complex multiplication or division to a libcall to the c99
936 compliant routines. */
937
938static void
726a989a 939expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
7e7e470f
RH
940 tree br, tree bi, enum tree_code code)
941{
942 enum machine_mode mode;
943 enum built_in_function bcode;
726a989a 944 tree fn, type, lhs;
04be6ff5 945 gimple old_stmt, stmt;
7e7e470f 946
04be6ff5
JJ
947 old_stmt = gsi_stmt (*gsi);
948 lhs = gimple_assign_lhs (old_stmt);
726a989a 949 type = TREE_TYPE (lhs);
7e7e470f
RH
950
951 mode = TYPE_MODE (type);
952 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
726a989a 953
7e7e470f 954 if (code == MULT_EXPR)
32e8bb8e
ILT
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f 957 else if (code == RDIV_EXPR)
32e8bb8e
ILT
958 bcode = ((enum built_in_function)
959 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
7e7e470f
RH
960 else
961 gcc_unreachable ();
e79983f4 962 fn = builtin_decl_explicit (bcode);
7e7e470f 963
726a989a
RB
964 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
965 gimple_call_set_lhs (stmt, lhs);
f430bae8 966 update_stmt (stmt);
04be6ff5
JJ
967 gsi_replace (gsi, stmt, false);
968
969 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
970 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
e41d82f5 971
5cd4ec7f 972 if (gimple_in_ssa_p (cfun))
e41d82f5 973 {
d5c77941 974 type = TREE_TYPE (type);
726a989a 975 update_complex_components (gsi, stmt,
e41d82f5
RH
976 build1 (REALPART_EXPR, type, lhs),
977 build1 (IMAGPART_EXPR, type, lhs));
726a989a 978 SSA_NAME_DEF_STMT (lhs) = stmt;
e41d82f5 979 }
7e7e470f
RH
980}
981
6de9cd9a
DN
982/* Expand complex multiplication to scalars:
983 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
984*/
985
986static void
726a989a 987expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
e41d82f5
RH
988 tree ar, tree ai, tree br, tree bi,
989 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 990{
e41d82f5 991 tree rr, ri;
6de9cd9a 992
e41d82f5 993 if (al < bl)
7e7e470f 994 {
e41d82f5
RH
995 complex_lattice_t tl;
996 rr = ar, ar = br, br = rr;
997 ri = ai, ai = bi, bi = ri;
998 tl = al, al = bl, bl = tl;
7e7e470f
RH
999 }
1000
e41d82f5
RH
1001 switch (PAIR (al, bl))
1002 {
1003 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1004 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
e41d82f5
RH
1005 ri = ai;
1006 break;
6de9cd9a 1007
e41d82f5
RH
1008 case PAIR (ONLY_IMAG, ONLY_REAL):
1009 rr = ar;
1010 if (TREE_CODE (ai) == REAL_CST
1011 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1012 ri = br;
1013 else
726a989a 1014 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1015 break;
6de9cd9a 1016
e41d82f5 1017 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a
RB
1018 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1019 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
e41d82f5
RH
1020 ri = ar;
1021 break;
1022
1023 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1024 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1025 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5
RH
1026 break;
1027
1028 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1029 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1030 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1031 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1032 break;
1033
1034 case PAIR (VARYING, VARYING):
1035 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1036 {
726a989a 1037 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
e41d82f5
RH
1038 return;
1039 }
1040 else
1041 {
1042 tree t1, t2, t3, t4;
1043
726a989a
RB
1044 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1045 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1046 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
e41d82f5
RH
1047
1048 /* Avoid expanding redundant multiplication for the common
1049 case of squaring a complex number. */
1050 if (ar == br && ai == bi)
1051 t4 = t3;
1052 else
726a989a 1053 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
e41d82f5 1054
726a989a
RB
1055 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1056 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
e41d82f5
RH
1057 }
1058 break;
1059
1060 default:
1061 gcc_unreachable ();
1062 }
6de9cd9a 1063
726a989a 1064 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1065}
1066
e3d5405d 1067/* Keep this algorithm in sync with fold-const.c:const_binop().
b8698a0f 1068
e3d5405d 1069 Expand complex division to scalars, straightforward algorithm.
6de9cd9a
DN
1070 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1071 t = br*br + bi*bi
1072*/
1073
1074static void
726a989a 1075expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1076 tree ar, tree ai, tree br, tree bi,
1077 enum tree_code code)
1078{
1079 tree rr, ri, div, t1, t2, t3;
1080
726a989a
RB
1081 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1082 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1083 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
6de9cd9a 1084
726a989a
RB
1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1087 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1088 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1089
726a989a
RB
1090 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1091 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1092 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1093 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
6de9cd9a 1094
726a989a 1095 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1096}
1097
e3d5405d
KG
1098/* Keep this algorithm in sync with fold-const.c:const_binop().
1099
1100 Expand complex division to scalars, modified algorithm to minimize
6de9cd9a
DN
1101 overflow with wide input ranges. */
1102
1103static void
726a989a 1104expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1105 tree ar, tree ai, tree br, tree bi,
1106 enum tree_code code)
1107{
04b03edb 1108 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
c63f5a42 1109 basic_block bb_cond, bb_true, bb_false, bb_join;
726a989a 1110 gimple stmt;
6de9cd9a
DN
1111
1112 /* Examine |br| < |bi|, and branch. */
726a989a
RB
1113 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1114 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
db3927fb 1115 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
b57d8e6f 1116 LT_EXPR, boolean_type_node, t1, t2);
04b03edb 1117 STRIP_NOPS (compare);
6de9cd9a 1118
c63f5a42
RH
1119 bb_cond = bb_true = bb_false = bb_join = NULL;
1120 rr = ri = tr = ti = NULL;
b57d8e6f 1121 if (TREE_CODE (compare) != INTEGER_CST)
6de9cd9a 1122 {
6de9cd9a 1123 edge e;
726a989a 1124 gimple stmt;
04b03edb 1125 tree cond, tmp;
6de9cd9a 1126
04b03edb 1127 tmp = create_tmp_var (boolean_type_node, NULL);
726a989a 1128 stmt = gimple_build_assign (tmp, compare);
04b03edb 1129 if (gimple_in_ssa_p (cfun))
726a989a
RB
1130 {
1131 tmp = make_ssa_name (tmp, stmt);
1132 gimple_assign_set_lhs (stmt, tmp);
1133 }
1134
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
04b03edb 1136
db3927fb
AH
1137 cond = fold_build2_loc (gimple_location (stmt),
1138 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
726a989a
RB
1139 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1140 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
6de9cd9a 1141
6de9cd9a 1142 /* Split the original block, and create the TRUE and FALSE blocks. */
726a989a 1143 e = split_block (gsi_bb (*gsi), stmt);
6de9cd9a
DN
1144 bb_cond = e->src;
1145 bb_join = e->dest;
1146 bb_true = create_empty_bb (bb_cond);
1147 bb_false = create_empty_bb (bb_true);
1148
1149 /* Wire the blocks together. */
1150 e->flags = EDGE_TRUE_VALUE;
1151 redirect_edge_succ (e, bb_true);
1152 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
520f34fa
RH
1153 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1154 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
a9e0d843
RB
1155 if (current_loops)
1156 {
1157 add_bb_to_loop (bb_true, bb_cond->loop_father);
1158 add_bb_to_loop (bb_false, bb_cond->loop_father);
1159 }
6de9cd9a
DN
1160
1161 /* Update dominance info. Note that bb_join's data was
1162 updated by split_block. */
fce22de5 1163 if (dom_info_available_p (CDI_DOMINATORS))
6de9cd9a
DN
1164 {
1165 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1166 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1167 }
1168
7cc434a3
RG
1169 rr = create_tmp_reg (inner_type, NULL);
1170 ri = create_tmp_reg (inner_type, NULL);
6de9cd9a 1171 }
c63f5a42
RH
1172
1173 /* In the TRUE branch, we compute
1174 ratio = br/bi;
1175 div = (br * ratio) + bi;
1176 tr = (ar * ratio) + ai;
1177 ti = (ai * ratio) - ar;
1178 tr = tr / div;
1179 ti = ti / div; */
04b03edb 1180 if (bb_true || integer_nonzerop (compare))
c63f5a42
RH
1181 {
1182 if (bb_true)
1183 {
726a989a
RB
1184 *gsi = gsi_last_bb (bb_true);
1185 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1186 }
1187
726a989a 1188 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
c63f5a42 1189
726a989a
RB
1190 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1191 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
c63f5a42 1192
726a989a
RB
1193 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1194 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
c63f5a42 1195
726a989a
RB
1196 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1197 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
c63f5a42 1198
726a989a
RB
1199 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1200 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1201
1202 if (bb_true)
1203 {
726a989a
RB
1204 stmt = gimple_build_assign (rr, tr);
1205 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1206 stmt = gimple_build_assign (ri, ti);
1207 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1208 gsi_remove (gsi, true);
c63f5a42
RH
1209 }
1210 }
1211
1212 /* In the FALSE branch, we compute
1213 ratio = d/c;
1214 divisor = (d * ratio) + c;
1215 tr = (b * ratio) + a;
1216 ti = b - (a * ratio);
1217 tr = tr / div;
1218 ti = ti / div; */
04b03edb 1219 if (bb_false || integer_zerop (compare))
c63f5a42
RH
1220 {
1221 if (bb_false)
1222 {
726a989a
RB
1223 *gsi = gsi_last_bb (bb_false);
1224 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
c63f5a42
RH
1225 }
1226
726a989a 1227 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
c63f5a42 1228
726a989a
RB
1229 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1230 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
c63f5a42 1231
726a989a
RB
1232 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1233 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
c63f5a42 1234
726a989a
RB
1235 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1236 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
c63f5a42 1237
726a989a
RB
1238 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1239 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
c63f5a42
RH
1240
1241 if (bb_false)
1242 {
726a989a
RB
1243 stmt = gimple_build_assign (rr, tr);
1244 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1245 stmt = gimple_build_assign (ri, ti);
1246 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1247 gsi_remove (gsi, true);
c63f5a42
RH
1248 }
1249 }
1250
1251 if (bb_join)
726a989a 1252 *gsi = gsi_start_bb (bb_join);
c63f5a42
RH
1253 else
1254 rr = tr, ri = ti;
6de9cd9a 1255
726a989a 1256 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1257}
1258
1259/* Expand complex division to scalars. */
1260
1261static void
726a989a 1262expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a 1263 tree ar, tree ai, tree br, tree bi,
e41d82f5
RH
1264 enum tree_code code,
1265 complex_lattice_t al, complex_lattice_t bl)
6de9cd9a 1266{
e41d82f5
RH
1267 tree rr, ri;
1268
1269 switch (PAIR (al, bl))
6de9cd9a 1270 {
e41d82f5 1271 case PAIR (ONLY_REAL, ONLY_REAL):
726a989a 1272 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
e41d82f5 1273 ri = ai;
6de9cd9a 1274 break;
7e7e470f 1275
e41d82f5
RH
1276 case PAIR (ONLY_REAL, ONLY_IMAG):
1277 rr = ai;
726a989a
RB
1278 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1279 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1280 break;
1281
1282 case PAIR (ONLY_IMAG, ONLY_REAL):
1283 rr = ar;
726a989a 1284 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5 1285 break;
7e7e470f 1286
e41d82f5 1287 case PAIR (ONLY_IMAG, ONLY_IMAG):
726a989a 1288 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
e41d82f5 1289 ri = ar;
6de9cd9a 1290 break;
7e7e470f 1291
e41d82f5 1292 case PAIR (VARYING, ONLY_REAL):
726a989a
RB
1293 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1294 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
e41d82f5
RH
1295 break;
1296
1297 case PAIR (VARYING, ONLY_IMAG):
726a989a
RB
1298 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1299 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1300 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
e41d82f5
RH
1301
1302 case PAIR (ONLY_REAL, VARYING):
1303 case PAIR (ONLY_IMAG, VARYING):
1304 case PAIR (VARYING, VARYING):
1305 switch (flag_complex_method)
1306 {
1307 case 0:
1308 /* straightforward implementation of complex divide acceptable. */
726a989a 1309 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1310 break;
1311
1312 case 2:
1313 if (SCALAR_FLOAT_TYPE_P (inner_type))
1314 {
726a989a 1315 expand_complex_libcall (gsi, ar, ai, br, bi, code);
e41d82f5
RH
1316 break;
1317 }
1318 /* FALLTHRU */
1319
1320 case 1:
1321 /* wide ranges of inputs must work for complex divide. */
726a989a 1322 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
e41d82f5
RH
1323 break;
1324
1325 default:
1326 gcc_unreachable ();
1327 }
1328 return;
1329
6de9cd9a 1330 default:
1e128c5f 1331 gcc_unreachable ();
6de9cd9a 1332 }
e41d82f5 1333
726a989a 1334 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1335}
1336
1337/* Expand complex negation to scalars:
1338 -a = (-ar) + i(-ai)
1339*/
1340
1341static void
726a989a 1342expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1343 tree ar, tree ai)
1344{
1345 tree rr, ri;
1346
726a989a
RB
1347 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1348 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1349
726a989a 1350 update_complex_assignment (gsi, rr, ri);
6de9cd9a
DN
1351}
1352
1353/* Expand complex conjugate to scalars:
1354 ~a = (ar) + i(-ai)
1355*/
1356
1357static void
726a989a 1358expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
6de9cd9a
DN
1359 tree ar, tree ai)
1360{
1361 tree ri;
1362
726a989a 1363 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
6de9cd9a 1364
726a989a 1365 update_complex_assignment (gsi, ar, ri);
6de9cd9a
DN
1366}
1367
1368/* Expand complex comparison (EQ or NE only). */
1369
1370static void
726a989a 1371expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
6de9cd9a
DN
1372 tree br, tree bi, enum tree_code code)
1373{
726a989a
RB
1374 tree cr, ci, cc, type;
1375 gimple stmt;
6de9cd9a 1376
726a989a
RB
1377 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1378 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1379 cc = gimplify_build2 (gsi,
26277d41
PB
1380 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1381 boolean_type_node, cr, ci);
6de9cd9a 1382
726a989a 1383 stmt = gsi_stmt (*gsi);
6de9cd9a 1384
726a989a 1385 switch (gimple_code (stmt))
6de9cd9a 1386 {
726a989a
RB
1387 case GIMPLE_RETURN:
1388 type = TREE_TYPE (gimple_return_retval (stmt));
1389 gimple_return_set_retval (stmt, fold_convert (type, cc));
6de9cd9a 1390 break;
726a989a
RB
1391
1392 case GIMPLE_ASSIGN:
1393 type = TREE_TYPE (gimple_assign_lhs (stmt));
1394 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1395 stmt = gsi_stmt (*gsi);
6de9cd9a 1396 break;
726a989a
RB
1397
1398 case GIMPLE_COND:
1399 gimple_cond_set_code (stmt, EQ_EXPR);
1400 gimple_cond_set_lhs (stmt, cc);
1401 gimple_cond_set_rhs (stmt, boolean_true_node);
1402 break;
1403
6de9cd9a 1404 default:
1e128c5f 1405 gcc_unreachable ();
6de9cd9a 1406 }
68b9f53b 1407
e41d82f5 1408 update_stmt (stmt);
6de9cd9a
DN
1409}
1410
a57fc743
JJ
1411/* Expand inline asm that sets some complex SSA_NAMEs. */
1412
1413static void
1414expand_complex_asm (gimple_stmt_iterator *gsi)
1415{
1416 gimple stmt = gsi_stmt (*gsi);
1417 unsigned int i;
1418
1419 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1420 {
1421 tree link = gimple_asm_output_op (stmt, i);
1422 tree op = TREE_VALUE (link);
1423 if (TREE_CODE (op) == SSA_NAME
1424 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1425 {
1426 tree type = TREE_TYPE (op);
1427 tree inner_type = TREE_TYPE (type);
1428 tree r = build1 (REALPART_EXPR, inner_type, op);
1429 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1430 gimple_seq list = set_component_ssa_name (op, false, r);
1431
1432 if (list)
1433 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1434
1435 list = set_component_ssa_name (op, true, i);
1436 if (list)
1437 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1438 }
1439 }
1440}
726a989a 1441
6de9cd9a
DN
1442/* Process one statement. If we identify a complex operation, expand it. */
1443
1444static void
726a989a 1445expand_complex_operations_1 (gimple_stmt_iterator *gsi)
6de9cd9a 1446{
726a989a
RB
1447 gimple stmt = gsi_stmt (*gsi);
1448 tree type, inner_type, lhs;
6de9cd9a 1449 tree ac, ar, ai, bc, br, bi;
e41d82f5 1450 complex_lattice_t al, bl;
6de9cd9a
DN
1451 enum tree_code code;
1452
a57fc743
JJ
1453 if (gimple_code (stmt) == GIMPLE_ASM)
1454 {
1455 expand_complex_asm (gsi);
1456 return;
1457 }
1458
726a989a
RB
1459 lhs = gimple_get_lhs (stmt);
1460 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1461 return;
6de9cd9a 1462
726a989a
RB
1463 type = TREE_TYPE (gimple_op (stmt, 0));
1464 code = gimple_expr_code (stmt);
6de9cd9a
DN
1465
1466 /* Initial filter for operations we handle. */
1467 switch (code)
1468 {
1469 case PLUS_EXPR:
1470 case MINUS_EXPR:
1471 case MULT_EXPR:
1472 case TRUNC_DIV_EXPR:
1473 case CEIL_DIV_EXPR:
1474 case FLOOR_DIV_EXPR:
1475 case ROUND_DIV_EXPR:
1476 case RDIV_EXPR:
1477 case NEGATE_EXPR:
1478 case CONJ_EXPR:
1479 if (TREE_CODE (type) != COMPLEX_TYPE)
1480 return;
1481 inner_type = TREE_TYPE (type);
1482 break;
1483
1484 case EQ_EXPR:
1485 case NE_EXPR:
726a989a 1486 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
207156e4 1487 subcode, so we need to access the operands using gimple_op. */
726a989a 1488 inner_type = TREE_TYPE (gimple_op (stmt, 1));
6de9cd9a
DN
1489 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1490 return;
1491 break;
1492
1493 default:
e41d82f5 1494 {
726a989a 1495 tree rhs;
a9b77cd1 1496
726a989a
RB
1497 /* GIMPLE_COND may also fallthru here, but we do not need to
1498 do anything with it. */
1499 if (gimple_code (stmt) == GIMPLE_COND)
a9b77cd1
ZD
1500 return;
1501
e41d82f5 1502 if (TREE_CODE (type) == COMPLEX_TYPE)
726a989a
RB
1503 expand_complex_move (gsi, type);
1504 else if (is_gimple_assign (stmt)
1505 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1506 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1507 && TREE_CODE (lhs) == SSA_NAME)
e41d82f5 1508 {
726a989a
RB
1509 rhs = gimple_assign_rhs1 (stmt);
1510 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1511 gimple_assign_rhs_code (stmt)
1512 == IMAGPART_EXPR,
1513 false);
1514 gimple_assign_set_rhs_from_tree (gsi, rhs);
1515 stmt = gsi_stmt (*gsi);
e41d82f5
RH
1516 update_stmt (stmt);
1517 }
1518 }
6de9cd9a
DN
1519 return;
1520 }
1521
1522 /* Extract the components of the two complex values. Make sure and
1523 handle the common case of the same value used twice specially. */
726a989a
RB
1524 if (is_gimple_assign (stmt))
1525 {
1526 ac = gimple_assign_rhs1 (stmt);
1527 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1528 }
1529 /* GIMPLE_CALL can not get here. */
6de9cd9a
DN
1530 else
1531 {
726a989a
RB
1532 ac = gimple_cond_lhs (stmt);
1533 bc = gimple_cond_rhs (stmt);
1534 }
1535
1536 ar = extract_component (gsi, ac, false, true);
1537 ai = extract_component (gsi, ac, true, true);
1538
1539 if (ac == bc)
1540 br = ar, bi = ai;
1541 else if (bc)
1542 {
1543 br = extract_component (gsi, bc, 0, true);
1544 bi = extract_component (gsi, bc, 1, true);
6de9cd9a 1545 }
726a989a
RB
1546 else
1547 br = bi = NULL_TREE;
6de9cd9a 1548
5cd4ec7f 1549 if (gimple_in_ssa_p (cfun))
e41d82f5
RH
1550 {
1551 al = find_lattice_value (ac);
1552 if (al == UNINITIALIZED)
1553 al = VARYING;
1554
1555 if (TREE_CODE_CLASS (code) == tcc_unary)
1556 bl = UNINITIALIZED;
1557 else if (ac == bc)
1558 bl = al;
1559 else
1560 {
1561 bl = find_lattice_value (bc);
1562 if (bl == UNINITIALIZED)
1563 bl = VARYING;
1564 }
1565 }
1566 else
1567 al = bl = VARYING;
1568
6de9cd9a
DN
1569 switch (code)
1570 {
1571 case PLUS_EXPR:
1572 case MINUS_EXPR:
726a989a 1573 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a
DN
1574 break;
1575
1576 case MULT_EXPR:
726a989a 1577 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
6de9cd9a
DN
1578 break;
1579
1580 case TRUNC_DIV_EXPR:
1581 case CEIL_DIV_EXPR:
1582 case FLOOR_DIV_EXPR:
1583 case ROUND_DIV_EXPR:
1584 case RDIV_EXPR:
726a989a 1585 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
6de9cd9a 1586 break;
b8698a0f 1587
6de9cd9a 1588 case NEGATE_EXPR:
726a989a 1589 expand_complex_negation (gsi, inner_type, ar, ai);
6de9cd9a
DN
1590 break;
1591
1592 case CONJ_EXPR:
726a989a 1593 expand_complex_conjugate (gsi, inner_type, ar, ai);
6de9cd9a
DN
1594 break;
1595
1596 case EQ_EXPR:
1597 case NE_EXPR:
726a989a 1598 expand_complex_comparison (gsi, ar, ai, br, bi, code);
6de9cd9a
DN
1599 break;
1600
1601 default:
1e128c5f 1602 gcc_unreachable ();
6de9cd9a
DN
1603 }
1604}
26277d41 1605
e41d82f5
RH
1606\f
1607/* Entry point for complex operation lowering during optimization. */
1608
c2924966 1609static unsigned int
2b725155 1610tree_lower_complex (void)
6de9cd9a 1611{
e41d82f5 1612 int old_last_basic_block;
726a989a 1613 gimple_stmt_iterator gsi;
6de9cd9a
DN
1614 basic_block bb;
1615
e41d82f5 1616 if (!init_dont_simulate_again ())
c2924966 1617 return 0;
e41d82f5 1618
9771b263
DN
1619 complex_lattice_values.create (num_ssa_names);
1620 complex_lattice_values.safe_grow_cleared (num_ssa_names);
e41d82f5 1621
95a8c155 1622 init_parameter_lattice_values ();
e41d82f5
RH
1623 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1624
4a8fb1a1 1625 complex_variable_components.create (10);
95a8c155 1626
9771b263
DN
1627 complex_ssa_name_components.create (2 * num_ssa_names);
1628 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
95a8c155 1629
e41d82f5
RH
1630 update_parameter_components ();
1631
95a8c155 1632 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
e41d82f5 1633 old_last_basic_block = last_basic_block;
6de9cd9a
DN
1634 FOR_EACH_BB (bb)
1635 {
1636 if (bb->index >= old_last_basic_block)
1637 continue;
726a989a 1638
e41d82f5 1639 update_phi_components (bb);
726a989a
RB
1640 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1641 expand_complex_operations_1 (&gsi);
6de9cd9a 1642 }
6de9cd9a 1643
726a989a 1644 gsi_commit_edge_inserts ();
e41d82f5 1645
4a8fb1a1 1646 complex_variable_components.dispose ();
9771b263
DN
1647 complex_ssa_name_components.release ();
1648 complex_lattice_values.release ();
c2924966 1649 return 0;
e41d82f5 1650}
26277d41 1651
27a4cd48
DM
1652namespace {
1653
1654const pass_data pass_data_lower_complex =
26277d41 1655{
27a4cd48
DM
1656 GIMPLE_PASS, /* type */
1657 "cplxlower", /* name */
1658 OPTGROUP_NONE, /* optinfo_flags */
1659 false, /* has_gate */
1660 true, /* has_execute */
1661 TV_NONE, /* tv_id */
1662 PROP_ssa, /* properties_required */
1663 PROP_gimple_lcx, /* properties_provided */
1664 0, /* properties_destroyed */
1665 0, /* todo_flags_start */
1666 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
e41d82f5
RH
1667};
1668
27a4cd48
DM
1669class pass_lower_complex : public gimple_opt_pass
1670{
1671public:
c3284718
RS
1672 pass_lower_complex (gcc::context *ctxt)
1673 : gimple_opt_pass (pass_data_lower_complex, ctxt)
27a4cd48
DM
1674 {}
1675
1676 /* opt_pass methods: */
65d3284b 1677 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
27a4cd48
DM
1678 unsigned int execute () { return tree_lower_complex (); }
1679
1680}; // class pass_lower_complex
1681
1682} // anon namespace
1683
1684gimple_opt_pass *
1685make_pass_lower_complex (gcc::context *ctxt)
1686{
1687 return new pass_lower_complex (ctxt);
1688}
1689
e41d82f5 1690\f
e41d82f5
RH
1691static bool
1692gate_no_optimization (void)
1693{
1f9081d1
XDL
1694 /* With errors, normal optimization passes are not run. If we don't
1695 lower complex operations at all, rtl expansion will abort. */
1696 return !(cfun->curr_properties & PROP_gimple_lcx);
e41d82f5
RH
1697}
1698
27a4cd48
DM
1699namespace {
1700
1701const pass_data pass_data_lower_complex_O0 =
e41d82f5 1702{
27a4cd48
DM
1703 GIMPLE_PASS, /* type */
1704 "cplxlower0", /* name */
1705 OPTGROUP_NONE, /* optinfo_flags */
1706 true, /* has_gate */
1707 true, /* has_execute */
1708 TV_NONE, /* tv_id */
1709 PROP_cfg, /* properties_required */
1710 PROP_gimple_lcx, /* properties_provided */
1711 0, /* properties_destroyed */
1712 0, /* todo_flags_start */
1713 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
6de9cd9a 1714};
27a4cd48
DM
1715
1716class pass_lower_complex_O0 : public gimple_opt_pass
1717{
1718public:
c3284718
RS
1719 pass_lower_complex_O0 (gcc::context *ctxt)
1720 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
27a4cd48
DM
1721 {}
1722
1723 /* opt_pass methods: */
1724 bool gate () { return gate_no_optimization (); }
1725 unsigned int execute () { return tree_lower_complex (); }
1726
1727}; // class pass_lower_complex_O0
1728
1729} // anon namespace
1730
1731gimple_opt_pass *
1732make_pass_lower_complex_O0 (gcc::context *ctxt)
1733{
1734 return new pass_lower_complex_O0 (ctxt);
1735}