]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-data-ref.c
fix PR68343: disable fuse-*.c tests for isl 0.14 or earlier
[thirdparty/gcc.git] / gcc / tree-data-ref.c
CommitLineData
56cf8686 1/* Data references and dependences detectors.
818ab71a 2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
0ff4040e 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
56cf8686
SP
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
56cf8686
SP
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
56cf8686
SP
20
21/* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
b8698a0f
L
23 in DATA_REFERENCE structures.
24
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
56cf8686
SP
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
b8698a0f 30
56cf8686 31 The goals of this analysis are:
b8698a0f 32
56cf8686
SP
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
b8698a0f 36
56cf8686
SP
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
b8698a0f 39
56cf8686
SP
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
b8698a0f
L
45
46 - to define a knowledge base for storing the data dependence
56cf8686 47 information,
b8698a0f 48
56cf8686 49 - to define an interface to access this data.
b8698a0f
L
50
51
56cf8686 52 Definitions:
b8698a0f 53
56cf8686
SP
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
58
59 - Diophantine equation: an equation whose coefficients and
b8698a0f 60 solutions are integer constants, for example the equation
56cf8686
SP
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
b8698a0f 63
56cf8686 64 References:
b8698a0f 65
56cf8686
SP
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
b8698a0f
L
68 http://citeseer.ist.psu.edu/goff91practical.html
69
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
56cf8686
SP
71 by Utpal Banerjee.
72
b8698a0f 73
56cf8686
SP
74*/
75
76#include "config.h"
77#include "system.h"
78#include "coretypes.h"
c7131fb2 79#include "backend.h"
957060b5 80#include "rtl.h"
cf2d1b38 81#include "tree.h"
c7131fb2 82#include "gimple.h"
957060b5
AM
83#include "gimple-pretty-print.h"
84#include "alias.h"
c7131fb2 85#include "fold-const.h"
36566b39 86#include "expr.h"
5be5c238 87#include "gimple-iterator.h"
e28030cf 88#include "tree-ssa-loop-niter.h"
442b4905 89#include "tree-ssa-loop.h"
7a300452 90#include "tree-ssa.h"
56cf8686 91#include "cfgloop.h"
56cf8686
SP
92#include "tree-data-ref.h"
93#include "tree-scalar-evolution.h"
7ee2468b 94#include "dumpfile.h"
02f5d6c5 95#include "tree-affine.h"
3881dee9 96#include "params.h"
56cf8686 97
0ff4040e
SP
98static struct datadep_stats
99{
100 int num_dependence_tests;
101 int num_dependence_dependent;
102 int num_dependence_independent;
103 int num_dependence_undetermined;
104
105 int num_subscript_tests;
106 int num_subscript_undetermined;
107 int num_same_subscript_function;
108
109 int num_ziv;
110 int num_ziv_independent;
111 int num_ziv_dependent;
112 int num_ziv_unimplemented;
113
114 int num_siv;
115 int num_siv_independent;
116 int num_siv_dependent;
117 int num_siv_unimplemented;
118
119 int num_miv;
120 int num_miv_independent;
121 int num_miv_dependent;
122 int num_miv_unimplemented;
123} dependence_stats;
124
ba42e045
SP
125static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
126 struct data_reference *,
da9a21f4
SP
127 struct data_reference *,
128 struct loop *);
56cf8686
SP
129/* Returns true iff A divides B. */
130
b8698a0f 131static inline bool
ed7a4b4b 132tree_fold_divides_p (const_tree a, const_tree b)
56cf8686 133{
b73a6056
RS
134 gcc_assert (TREE_CODE (a) == INTEGER_CST);
135 gcc_assert (TREE_CODE (b) == INTEGER_CST);
d35936ab 136 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
56cf8686
SP
137}
138
86df10e3
SP
139/* Returns true iff A divides B. */
140
b8698a0f 141static inline bool
86df10e3
SP
142int_divides_p (int a, int b)
143{
144 return ((b % a) == 0);
56cf8686
SP
145}
146
147\f
148
b8698a0f 149/* Dump into FILE all the data references from DATAREFS. */
56cf8686 150
aeb83f09 151static void
9771b263 152dump_data_references (FILE *file, vec<data_reference_p> datarefs)
56cf8686
SP
153{
154 unsigned int i;
ebf78a47
SP
155 struct data_reference *dr;
156
9771b263 157 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebf78a47 158 dump_data_reference (file, dr);
56cf8686
SP
159}
160
7b3b6ae4
LC
161/* Unified dump into FILE all the data references from DATAREFS. */
162
163DEBUG_FUNCTION void
164debug (vec<data_reference_p> &ref)
165{
166 dump_data_references (stderr, ref);
167}
168
169DEBUG_FUNCTION void
170debug (vec<data_reference_p> *ptr)
171{
172 if (ptr)
173 debug (*ptr);
174 else
175 fprintf (stderr, "<nil>\n");
176}
177
178
b8698a0f 179/* Dump into STDERR all the data references from DATAREFS. */
a37d995a 180
24e47c76 181DEBUG_FUNCTION void
9771b263 182debug_data_references (vec<data_reference_p> datarefs)
a37d995a
SP
183{
184 dump_data_references (stderr, datarefs);
185}
186
a37d995a
SP
187/* Print to STDERR the data_reference DR. */
188
24e47c76 189DEBUG_FUNCTION void
a37d995a
SP
190debug_data_reference (struct data_reference *dr)
191{
192 dump_data_reference (stderr, dr);
193}
194
56cf8686
SP
195/* Dump function for a DATA_REFERENCE structure. */
196
b8698a0f
L
197void
198dump_data_reference (FILE *outf,
56cf8686
SP
199 struct data_reference *dr)
200{
201 unsigned int i;
b8698a0f 202
28c5db57
SP
203 fprintf (outf, "#(Data Ref: \n");
204 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
205 fprintf (outf, "# stmt: ");
726a989a 206 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
03922af3 207 fprintf (outf, "# ref: ");
56cf8686 208 print_generic_stmt (outf, DR_REF (dr), 0);
03922af3 209 fprintf (outf, "# base_object: ");
86a07404 210 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
b8698a0f 211
56cf8686
SP
212 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
213 {
03922af3 214 fprintf (outf, "# Access function %d: ", i);
56cf8686
SP
215 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
216 }
03922af3 217 fprintf (outf, "#)\n");
56cf8686
SP
218}
219
7b3b6ae4
LC
220/* Unified dump function for a DATA_REFERENCE structure. */
221
222DEBUG_FUNCTION void
223debug (data_reference &ref)
224{
225 dump_data_reference (stderr, &ref);
226}
227
228DEBUG_FUNCTION void
229debug (data_reference *ptr)
230{
231 if (ptr)
232 debug (*ptr);
233 else
234 fprintf (stderr, "<nil>\n");
235}
236
237
d93817c4
ZD
238/* Dumps the affine function described by FN to the file OUTF. */
239
49b8fe6c 240DEBUG_FUNCTION void
d93817c4
ZD
241dump_affine_function (FILE *outf, affine_fn fn)
242{
243 unsigned i;
244 tree coef;
245
9771b263
DN
246 print_generic_expr (outf, fn[0], TDF_SLIM);
247 for (i = 1; fn.iterate (i, &coef); i++)
d93817c4
ZD
248 {
249 fprintf (outf, " + ");
250 print_generic_expr (outf, coef, TDF_SLIM);
251 fprintf (outf, " * x_%u", i);
252 }
253}
254
255/* Dumps the conflict function CF to the file OUTF. */
256
49b8fe6c 257DEBUG_FUNCTION void
d93817c4
ZD
258dump_conflict_function (FILE *outf, conflict_function *cf)
259{
260 unsigned i;
261
262 if (cf->n == NO_DEPENDENCE)
bcf1ef00 263 fprintf (outf, "no dependence");
d93817c4 264 else if (cf->n == NOT_KNOWN)
bcf1ef00 265 fprintf (outf, "not known");
d93817c4
ZD
266 else
267 {
268 for (i = 0; i < cf->n; i++)
269 {
bcf1ef00
RB
270 if (i != 0)
271 fprintf (outf, " ");
d93817c4
ZD
272 fprintf (outf, "[");
273 dump_affine_function (outf, cf->fns[i]);
bcf1ef00 274 fprintf (outf, "]");
d93817c4
ZD
275 }
276 }
277}
278
86df10e3
SP
279/* Dump function for a SUBSCRIPT structure. */
280
49b8fe6c 281DEBUG_FUNCTION void
86df10e3
SP
282dump_subscript (FILE *outf, struct subscript *subscript)
283{
d93817c4 284 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
86df10e3
SP
285
286 fprintf (outf, "\n (subscript \n");
287 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
d93817c4
ZD
288 dump_conflict_function (outf, cf);
289 if (CF_NONTRIVIAL_P (cf))
86df10e3
SP
290 {
291 tree last_iteration = SUB_LAST_CONFLICT (subscript);
bcf1ef00
RB
292 fprintf (outf, "\n last_conflict: ");
293 print_generic_expr (outf, last_iteration, 0);
86df10e3 294 }
b8698a0f 295
d93817c4 296 cf = SUB_CONFLICTS_IN_B (subscript);
bcf1ef00 297 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
d93817c4
ZD
298 dump_conflict_function (outf, cf);
299 if (CF_NONTRIVIAL_P (cf))
86df10e3
SP
300 {
301 tree last_iteration = SUB_LAST_CONFLICT (subscript);
bcf1ef00
RB
302 fprintf (outf, "\n last_conflict: ");
303 print_generic_expr (outf, last_iteration, 0);
86df10e3
SP
304 }
305
bcf1ef00
RB
306 fprintf (outf, "\n (Subscript distance: ");
307 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
308 fprintf (outf, " ))\n");
86df10e3
SP
309}
310
0ff4040e
SP
311/* Print the classic direction vector DIRV to OUTF. */
312
49b8fe6c 313DEBUG_FUNCTION void
0ff4040e
SP
314print_direction_vector (FILE *outf,
315 lambda_vector dirv,
316 int length)
317{
318 int eq;
319
320 for (eq = 0; eq < length; eq++)
321 {
81f40b79
ILT
322 enum data_dependence_direction dir = ((enum data_dependence_direction)
323 dirv[eq]);
0ff4040e
SP
324
325 switch (dir)
326 {
327 case dir_positive:
328 fprintf (outf, " +");
329 break;
330 case dir_negative:
331 fprintf (outf, " -");
332 break;
333 case dir_equal:
334 fprintf (outf, " =");
335 break;
336 case dir_positive_or_equal:
337 fprintf (outf, " +=");
338 break;
339 case dir_positive_or_negative:
340 fprintf (outf, " +-");
341 break;
342 case dir_negative_or_equal:
343 fprintf (outf, " -=");
344 break;
345 case dir_star:
346 fprintf (outf, " *");
347 break;
348 default:
349 fprintf (outf, "indep");
350 break;
351 }
352 }
353 fprintf (outf, "\n");
354}
355
ba42e045
SP
356/* Print a vector of direction vectors. */
357
49b8fe6c 358DEBUG_FUNCTION void
9771b263 359print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
ba42e045
SP
360 int length)
361{
362 unsigned j;
363 lambda_vector v;
364
9771b263 365 FOR_EACH_VEC_ELT (dir_vects, j, v)
ba42e045
SP
366 print_direction_vector (outf, v, length);
367}
368
b305e3da
SP
369/* Print out a vector VEC of length N to OUTFILE. */
370
49b8fe6c 371DEBUG_FUNCTION void
b305e3da
SP
372print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
373{
374 int i;
375
376 for (i = 0; i < n; i++)
377 fprintf (outfile, "%3d ", vector[i]);
378 fprintf (outfile, "\n");
379}
380
ba42e045
SP
381/* Print a vector of distance vectors. */
382
49b8fe6c 383DEBUG_FUNCTION void
9771b263 384print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
aeb83f09 385 int length)
ba42e045
SP
386{
387 unsigned j;
388 lambda_vector v;
389
9771b263 390 FOR_EACH_VEC_ELT (dist_vects, j, v)
ba42e045
SP
391 print_lambda_vector (outf, v, length);
392}
393
56cf8686
SP
394/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
395
49b8fe6c 396DEBUG_FUNCTION void
b8698a0f 397dump_data_dependence_relation (FILE *outf,
56cf8686
SP
398 struct data_dependence_relation *ddr)
399{
56cf8686 400 struct data_reference *dra, *drb;
86df10e3 401
86df10e3 402 fprintf (outf, "(Data Dep: \n");
dea61d92 403
ed2024ba
MJ
404 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
405 {
b61b1f17
MM
406 if (ddr)
407 {
408 dra = DDR_A (ddr);
409 drb = DDR_B (ddr);
410 if (dra)
411 dump_data_reference (outf, dra);
412 else
413 fprintf (outf, " (nil)\n");
414 if (drb)
415 dump_data_reference (outf, drb);
416 else
417 fprintf (outf, " (nil)\n");
418 }
ed2024ba
MJ
419 fprintf (outf, " (don't know)\n)\n");
420 return;
421 }
422
423 dra = DDR_A (ddr);
424 drb = DDR_B (ddr);
dea61d92
SP
425 dump_data_reference (outf, dra);
426 dump_data_reference (outf, drb);
427
ed2024ba 428 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
56cf8686 429 fprintf (outf, " (no dependence)\n");
b8698a0f 430
86df10e3 431 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
56cf8686 432 {
86df10e3 433 unsigned int i;
ba42e045 434 struct loop *loopi;
304afda6 435
56cf8686
SP
436 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
437 {
56cf8686
SP
438 fprintf (outf, " access_fn_A: ");
439 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
440 fprintf (outf, " access_fn_B: ");
441 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
86df10e3 442 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
56cf8686 443 }
304afda6 444
3d8864c0 445 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
ba42e045 446 fprintf (outf, " loop nest: (");
9771b263 447 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
ba42e045
SP
448 fprintf (outf, "%d ", loopi->num);
449 fprintf (outf, ")\n");
450
304afda6 451 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
56cf8686 452 {
304afda6
SP
453 fprintf (outf, " distance_vector: ");
454 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
ba42e045 455 DDR_NB_LOOPS (ddr));
86df10e3 456 }
304afda6
SP
457
458 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
86df10e3 459 {
304afda6 460 fprintf (outf, " direction_vector: ");
0ff4040e 461 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
ba42e045 462 DDR_NB_LOOPS (ddr));
56cf8686 463 }
56cf8686
SP
464 }
465
466 fprintf (outf, ")\n");
467}
468
aeb83f09 469/* Debug version. */
56cf8686 470
aeb83f09
RG
471DEBUG_FUNCTION void
472debug_data_dependence_relation (struct data_dependence_relation *ddr)
56cf8686 473{
aeb83f09
RG
474 dump_data_dependence_relation (stderr, ddr);
475}
b8698a0f 476
aeb83f09 477/* Dump into FILE all the dependence relations from DDRS. */
b8698a0f 478
49b8fe6c 479DEBUG_FUNCTION void
aeb83f09 480dump_data_dependence_relations (FILE *file,
9771b263 481 vec<ddr_p> ddrs)
aeb83f09
RG
482{
483 unsigned int i;
484 struct data_dependence_relation *ddr;
b8698a0f 485
9771b263 486 FOR_EACH_VEC_ELT (ddrs, i, ddr)
aeb83f09
RG
487 dump_data_dependence_relation (file, ddr);
488}
b8698a0f 489
7b3b6ae4
LC
490DEBUG_FUNCTION void
491debug (vec<ddr_p> &ref)
492{
493 dump_data_dependence_relations (stderr, ref);
494}
495
496DEBUG_FUNCTION void
497debug (vec<ddr_p> *ptr)
498{
499 if (ptr)
500 debug (*ptr);
501 else
502 fprintf (stderr, "<nil>\n");
503}
504
505
aeb83f09 506/* Dump to STDERR all the dependence relations from DDRS. */
b8698a0f 507
aeb83f09 508DEBUG_FUNCTION void
9771b263 509debug_data_dependence_relations (vec<ddr_p> ddrs)
aeb83f09
RG
510{
511 dump_data_dependence_relations (stderr, ddrs);
56cf8686
SP
512}
513
86df10e3
SP
514/* Dumps the distance and direction vectors in FILE. DDRS contains
515 the dependence relations, and VECT_SIZE is the size of the
516 dependence vectors, or in other words the number of loops in the
517 considered nest. */
518
49b8fe6c 519DEBUG_FUNCTION void
9771b263 520dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
86df10e3 521{
304afda6 522 unsigned int i, j;
ebf78a47
SP
523 struct data_dependence_relation *ddr;
524 lambda_vector v;
86df10e3 525
9771b263 526 FOR_EACH_VEC_ELT (ddrs, i, ddr)
ebf78a47
SP
527 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
528 {
9771b263 529 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
ebf78a47
SP
530 {
531 fprintf (file, "DISTANCE_V (");
532 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
533 fprintf (file, ")\n");
534 }
535
9771b263 536 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
ebf78a47
SP
537 {
538 fprintf (file, "DIRECTION_V (");
539 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
540 fprintf (file, ")\n");
541 }
542 }
304afda6 543
86df10e3
SP
544 fprintf (file, "\n\n");
545}
546
547/* Dumps the data dependence relations DDRS in FILE. */
548
49b8fe6c 549DEBUG_FUNCTION void
9771b263 550dump_ddrs (FILE *file, vec<ddr_p> ddrs)
86df10e3
SP
551{
552 unsigned int i;
ebf78a47
SP
553 struct data_dependence_relation *ddr;
554
9771b263 555 FOR_EACH_VEC_ELT (ddrs, i, ddr)
ebf78a47 556 dump_data_dependence_relation (file, ddr);
86df10e3 557
86df10e3
SP
558 fprintf (file, "\n\n");
559}
560
aeb83f09 561DEBUG_FUNCTION void
9771b263 562debug_ddrs (vec<ddr_p> ddrs)
aeb83f09
RG
563{
564 dump_ddrs (stderr, ddrs);
565}
566
726a989a
RB
567/* Helper function for split_constant_offset. Expresses OP0 CODE OP1
568 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
569 constant of type ssizetype, and returns true. If we cannot do this
570 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
571 is returned. */
86a07404 572
726a989a
RB
573static bool
574split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
575 tree *var, tree *off)
86a07404 576{
3cb960c7
ZD
577 tree var0, var1;
578 tree off0, off1;
726a989a 579 enum tree_code ocode = code;
86a07404 580
726a989a
RB
581 *var = NULL_TREE;
582 *off = NULL_TREE;
86a07404 583
5be014d5 584 switch (code)
86a07404 585 {
3cb960c7
ZD
586 case INTEGER_CST:
587 *var = build_int_cst (type, 0);
726a989a
RB
588 *off = fold_convert (ssizetype, op0);
589 return true;
86a07404 590
5be014d5 591 case POINTER_PLUS_EXPR:
726a989a 592 ocode = PLUS_EXPR;
5be014d5 593 /* FALLTHROUGH */
3cb960c7
ZD
594 case PLUS_EXPR:
595 case MINUS_EXPR:
726a989a
RB
596 split_constant_offset (op0, &var0, &off0);
597 split_constant_offset (op1, &var1, &off1);
598 *var = fold_build2 (code, type, var0, var1);
599 *off = size_binop (ocode, off0, off1);
600 return true;
86a07404 601
86a07404 602 case MULT_EXPR:
726a989a
RB
603 if (TREE_CODE (op1) != INTEGER_CST)
604 return false;
3cb960c7 605
726a989a
RB
606 split_constant_offset (op0, &var0, &off0);
607 *var = fold_build2 (MULT_EXPR, type, var0, op1);
608 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
609 return true;
86a07404 610
3cb960c7
ZD
611 case ADDR_EXPR:
612 {
726a989a 613 tree base, poffset;
3cb960c7 614 HOST_WIDE_INT pbitsize, pbitpos;
ef4bddc2 615 machine_mode pmode;
ee45a32d 616 int punsignedp, preversep, pvolatilep;
86a07404 617
da4b6efc 618 op0 = TREE_OPERAND (op0, 0);
ee45a32d
EB
619 base
620 = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
621 &punsignedp, &preversep, &pvolatilep, false);
86a07404 622
3cb960c7 623 if (pbitpos % BITS_PER_UNIT != 0)
726a989a 624 return false;
3cb960c7
ZD
625 base = build_fold_addr_expr (base);
626 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
86a07404 627
3cb960c7
ZD
628 if (poffset)
629 {
630 split_constant_offset (poffset, &poffset, &off1);
631 off0 = size_binop (PLUS_EXPR, off0, off1);
36ad7922 632 if (POINTER_TYPE_P (TREE_TYPE (base)))
5d49b6a7 633 base = fold_build_pointer_plus (base, poffset);
36ad7922
JJ
634 else
635 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
636 fold_convert (TREE_TYPE (base), poffset));
3cb960c7
ZD
637 }
638
6481b879
JJ
639 var0 = fold_convert (type, base);
640
641 /* If variable length types are involved, punt, otherwise casts
642 might be converted into ARRAY_REFs in gimplify_conversion.
643 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
644 possibly no longer appears in current GIMPLE, might resurface.
645 This perhaps could run
1a87cf0c 646 if (CONVERT_EXPR_P (var0))
6481b879
JJ
647 {
648 gimplify_conversion (&var0);
649 // Attempt to fill in any within var0 found ARRAY_REF's
650 // element size from corresponding op embedded ARRAY_REF,
651 // if unsuccessful, just punt.
652 } */
653 while (POINTER_TYPE_P (type))
654 type = TREE_TYPE (type);
655 if (int_size_in_bytes (type) < 0)
726a989a 656 return false;
6481b879
JJ
657
658 *var = var0;
3cb960c7 659 *off = off0;
726a989a 660 return true;
3cb960c7 661 }
86a07404 662
06cb4f79
JS
663 case SSA_NAME:
664 {
5721768d
RB
665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
666 return false;
667
355fe088 668 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
726a989a 669 enum tree_code subcode;
06cb4f79 670
726a989a
RB
671 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
672 return false;
673
674 var0 = gimple_assign_rhs1 (def_stmt);
675 subcode = gimple_assign_rhs_code (def_stmt);
676 var1 = gimple_assign_rhs2 (def_stmt);
677
678 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
06cb4f79 679 }
b61b1f17
MM
680 CASE_CONVERT:
681 {
682 /* We must not introduce undefined overflow, and we must not change the value.
683 Hence we're okay if the inner type doesn't overflow to start with
684 (pointer or signed), the outer type also is an integer or pointer
685 and the outer precision is at least as large as the inner. */
686 tree itype = TREE_TYPE (op0);
687 if ((POINTER_TYPE_P (itype)
688 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
689 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
690 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
691 {
692 split_constant_offset (op0, &var0, off);
693 *var = fold_convert (type, var0);
694 return true;
695 }
696 return false;
697 }
06cb4f79 698
86a07404 699 default:
726a989a 700 return false;
86a07404 701 }
726a989a
RB
702}
703
704/* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
705 will be ssizetype. */
706
707void
708split_constant_offset (tree exp, tree *var, tree *off)
709{
710 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
711 enum tree_code code;
86a07404 712
726a989a 713 *var = exp;
3cb960c7 714 *off = ssize_int (0);
726a989a
RB
715 STRIP_NOPS (exp);
716
ffd78b30
RG
717 if (tree_is_chrec (exp)
718 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
726a989a
RB
719 return;
720
721 otype = TREE_TYPE (exp);
722 code = TREE_CODE (exp);
723 extract_ops_from_tree (exp, &code, &op0, &op1);
724 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
725 {
726 *var = fold_convert (type, e);
727 *off = o;
728 }
86a07404
IR
729}
730
3cb960c7
ZD
731/* Returns the address ADDR of an object in a canonical shape (without nop
732 casts, and with type of pointer to the object). */
86a07404
IR
733
734static tree
3cb960c7 735canonicalize_base_object_address (tree addr)
86a07404 736{
bbc8a8dc
ZD
737 tree orig = addr;
738
3cb960c7 739 STRIP_NOPS (addr);
86a07404 740
bbc8a8dc
ZD
741 /* The base address may be obtained by casting from integer, in that case
742 keep the cast. */
743 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
744 return orig;
745
3cb960c7
ZD
746 if (TREE_CODE (addr) != ADDR_EXPR)
747 return addr;
86a07404 748
3cb960c7 749 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
86a07404
IR
750}
751
b8698a0f 752/* Analyzes the behavior of the memory reference DR in the innermost loop or
4e4452b6 753 basic block that contains it. Returns true if analysis succeed or false
a70d6342 754 otherwise. */
86a07404 755
3661e899 756bool
4e4452b6 757dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
86a07404 758{
355fe088 759 gimple *stmt = DR_STMT (dr);
3cb960c7
ZD
760 struct loop *loop = loop_containing_stmt (stmt);
761 tree ref = DR_REF (dr);
86a07404 762 HOST_WIDE_INT pbitsize, pbitpos;
3cb960c7 763 tree base, poffset;
ef4bddc2 764 machine_mode pmode;
ee45a32d 765 int punsignedp, preversep, pvolatilep;
3cb960c7
ZD
766 affine_iv base_iv, offset_iv;
767 tree init, dinit, step;
a70d6342 768 bool in_loop = (loop && loop->num);
3cb960c7
ZD
769
770 if (dump_file && (dump_flags & TDF_DETAILS))
771 fprintf (dump_file, "analyze_innermost: ");
86a07404 772
ee45a32d
EB
773 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
774 &punsignedp, &preversep, &pvolatilep, false);
3cb960c7 775 gcc_assert (base != NULL_TREE);
86a07404 776
3cb960c7 777 if (pbitpos % BITS_PER_UNIT != 0)
86a07404 778 {
3cb960c7
ZD
779 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "failed: bit offset alignment.\n");
3661e899 781 return false;
3cb960c7 782 }
86a07404 783
ee45a32d
EB
784 if (preversep)
785 {
786 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "failed: reverse storage order.\n");
788 return false;
789 }
790
70f34814
RG
791 if (TREE_CODE (base) == MEM_REF)
792 {
793 if (!integer_zerop (TREE_OPERAND (base, 1)))
794 {
807e902e
KZ
795 offset_int moff = mem_ref_offset (base);
796 tree mofft = wide_int_to_tree (sizetype, moff);
70f34814 797 if (!poffset)
673910d7 798 poffset = mofft;
70f34814 799 else
673910d7 800 poffset = size_binop (PLUS_EXPR, poffset, mofft);
70f34814
RG
801 }
802 base = TREE_OPERAND (base, 0);
803 }
804 else
805 base = build_fold_addr_expr (base);
4e4452b6 806
a70d6342 807 if (in_loop)
3cb960c7 808 {
b8698a0f 809 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
319e6439 810 nest ? true : false))
a70d6342 811 {
4e4452b6
IR
812 if (nest)
813 {
814 if (dump_file && (dump_flags & TDF_DETAILS))
815 fprintf (dump_file, "failed: evolution of base is not"
816 " affine.\n");
817 return false;
818 }
819 else
820 {
821 base_iv.base = base;
822 base_iv.step = ssize_int (0);
823 base_iv.no_overflow = true;
824 }
a70d6342
IR
825 }
826 }
827 else
828 {
829 base_iv.base = base;
830 base_iv.step = ssize_int (0);
831 base_iv.no_overflow = true;
3cb960c7 832 }
a70d6342 833
24adb18f 834 if (!poffset)
3cb960c7
ZD
835 {
836 offset_iv.base = ssize_int (0);
837 offset_iv.step = ssize_int (0);
838 }
24adb18f 839 else
3cb960c7 840 {
24adb18f
IR
841 if (!in_loop)
842 {
843 offset_iv.base = poffset;
844 offset_iv.step = ssize_int (0);
845 }
846 else if (!simple_iv (loop, loop_containing_stmt (stmt),
319e6439
RG
847 poffset, &offset_iv,
848 nest ? true : false))
24adb18f 849 {
4e4452b6
IR
850 if (nest)
851 {
852 if (dump_file && (dump_flags & TDF_DETAILS))
853 fprintf (dump_file, "failed: evolution of offset is not"
854 " affine.\n");
855 return false;
856 }
857 else
858 {
859 offset_iv.base = poffset;
860 offset_iv.step = ssize_int (0);
861 }
24adb18f 862 }
3cb960c7 863 }
86a07404 864
3cb960c7
ZD
865 init = ssize_int (pbitpos / BITS_PER_UNIT);
866 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
867 init = size_binop (PLUS_EXPR, init, dinit);
868 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
869 init = size_binop (PLUS_EXPR, init, dinit);
86a07404 870
3cb960c7
ZD
871 step = size_binop (PLUS_EXPR,
872 fold_convert (ssizetype, base_iv.step),
873 fold_convert (ssizetype, offset_iv.step));
86a07404 874
3cb960c7 875 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
86a07404 876
3cb960c7
ZD
877 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
878 DR_INIT (dr) = init;
879 DR_STEP (dr) = step;
86a07404 880
3cb960c7 881 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
86a07404 882
3cb960c7
ZD
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, "success.\n");
3661e899
TB
885
886 return true;
3cb960c7 887}
86a07404 888
3cb960c7 889/* Determines the base object and the list of indices of memory reference
5c640e29 890 DR, analyzed in LOOP and instantiated in loop nest NEST. */
86a07404 891
3cb960c7 892static void
5c640e29 893dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
3cb960c7 894{
6e1aa848 895 vec<tree> access_fns = vNULL;
c4ddde1b 896 tree ref, op;
9fcb758b
RG
897 tree base, off, access_fn;
898 basic_block before_loop;
b8698a0f 899
9fcb758b
RG
900 /* If analyzing a basic-block there are no indices to analyze
901 and thus no access functions. */
02f5d6c5
RG
902 if (!nest)
903 {
9fcb758b 904 DR_BASE_OBJECT (dr) = DR_REF (dr);
9771b263 905 DR_ACCESS_FNS (dr).create (0);
02f5d6c5
RG
906 return;
907 }
908
c4ddde1b 909 ref = DR_REF (dr);
02f5d6c5 910 before_loop = block_before_loop (nest);
b8698a0f 911
9fcb758b
RG
912 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
913 into a two element array with a constant index. The base is
914 then just the immediate underlying object. */
915 if (TREE_CODE (ref) == REALPART_EXPR)
916 {
917 ref = TREE_OPERAND (ref, 0);
9771b263 918 access_fns.safe_push (integer_zero_node);
9fcb758b
RG
919 }
920 else if (TREE_CODE (ref) == IMAGPART_EXPR)
921 {
922 ref = TREE_OPERAND (ref, 0);
9771b263 923 access_fns.safe_push (integer_one_node);
9fcb758b
RG
924 }
925
b8324815 926 /* Analyze access functions of dimensions we know to be independent. */
c4ddde1b 927 while (handled_component_p (ref))
86a07404 928 {
c4ddde1b 929 if (TREE_CODE (ref) == ARRAY_REF)
86a07404 930 {
c4ddde1b 931 op = TREE_OPERAND (ref, 1);
02f5d6c5
RG
932 access_fn = analyze_scalar_evolution (loop, op);
933 access_fn = instantiate_scev (before_loop, loop, access_fn);
9771b263 934 access_fns.safe_push (access_fn);
b8324815 935 }
c4ddde1b
RG
936 else if (TREE_CODE (ref) == COMPONENT_REF
937 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
938 {
939 /* For COMPONENT_REFs of records (but not unions!) use the
940 FIELD_DECL offset as constant access function so we can
941 disambiguate a[i].f1 and a[i].f2. */
942 tree off = component_ref_field_offset (ref);
943 off = size_binop (PLUS_EXPR,
944 size_binop (MULT_EXPR,
945 fold_convert (bitsizetype, off),
946 bitsize_int (BITS_PER_UNIT)),
947 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
9771b263 948 access_fns.safe_push (off);
c4ddde1b
RG
949 }
950 else
951 /* If we have an unhandled component we could not translate
952 to an access function stop analyzing. We have determined
953 our base object in this case. */
954 break;
b8698a0f 955
c4ddde1b 956 ref = TREE_OPERAND (ref, 0);
86a07404
IR
957 }
958
8c330caa
RG
959 /* If the address operand of a MEM_REF base has an evolution in the
960 analyzed nest, add it as an additional independent access-function. */
c4ddde1b 961 if (TREE_CODE (ref) == MEM_REF)
86a07404 962 {
c4ddde1b 963 op = TREE_OPERAND (ref, 0);
3cb960c7 964 access_fn = analyze_scalar_evolution (loop, op);
a213b219 965 access_fn = instantiate_scev (before_loop, loop, access_fn);
8c330caa 966 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
2946bd34 967 {
0a500dd3 968 tree orig_type;
c4ddde1b 969 tree memoff = TREE_OPERAND (ref, 1);
8c330caa 970 base = initial_condition (access_fn);
0a500dd3
RG
971 orig_type = TREE_TYPE (base);
972 STRIP_USELESS_TYPE_CONVERSION (base);
8c330caa 973 split_constant_offset (base, &base, &off);
f65586dc 974 STRIP_USELESS_TYPE_CONVERSION (base);
8c330caa
RG
975 /* Fold the MEM_REF offset into the evolutions initial
976 value to make more bases comparable. */
c4ddde1b 977 if (!integer_zerop (memoff))
8c330caa
RG
978 {
979 off = size_binop (PLUS_EXPR, off,
c4ddde1b
RG
980 fold_convert (ssizetype, memoff));
981 memoff = build_int_cst (TREE_TYPE (memoff), 0);
8c330caa 982 }
d679e96b
RB
983 /* Adjust the offset so it is a multiple of the access type
984 size and thus we separate bases that can possibly be used
985 to produce partial overlaps (which the access_fn machinery
986 cannot handle). */
987 wide_int rem;
988 if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
989 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
990 && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
991 rem = wi::mod_trunc (off, TYPE_SIZE_UNIT (TREE_TYPE (ref)), SIGNED);
992 else
993 /* If we can't compute the remainder simply force the initial
994 condition to zero. */
995 rem = off;
996 off = wide_int_to_tree (ssizetype, wi::sub (off, rem));
997 memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
998 /* And finally replace the initial condition. */
8c330caa 999 access_fn = chrec_replace_initial_condition
0a500dd3 1000 (access_fn, fold_convert (orig_type, off));
c4ddde1b
RG
1001 /* ??? This is still not a suitable base object for
1002 dr_may_alias_p - the base object needs to be an
1003 access that covers the object as whole. With
1004 an evolution in the pointer this cannot be
1005 guaranteed.
1006 As a band-aid, mark the access so we can special-case
1007 it in dr_may_alias_p. */
f3dccf50 1008 tree old = ref;
c4ddde1b
RG
1009 ref = fold_build2_loc (EXPR_LOCATION (ref),
1010 MEM_REF, TREE_TYPE (ref),
1011 base, memoff);
f3dccf50
RB
1012 MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
1013 MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
f3ae4add 1014 DR_UNCONSTRAINED_BASE (dr) = true;
9771b263 1015 access_fns.safe_push (access_fn);
2946bd34 1016 }
86a07404 1017 }
c4ddde1b
RG
1018 else if (DECL_P (ref))
1019 {
1020 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1021 ref = build2 (MEM_REF, TREE_TYPE (ref),
1022 build_fold_addr_expr (ref),
1023 build_int_cst (reference_alias_ptr_type (ref), 0));
1024 }
86a07404 1025
3cb960c7
ZD
1026 DR_BASE_OBJECT (dr) = ref;
1027 DR_ACCESS_FNS (dr) = access_fns;
86a07404
IR
1028}
1029
3cb960c7 1030/* Extracts the alias analysis information from the memory reference DR. */
86a07404 1031
3cb960c7
ZD
1032static void
1033dr_analyze_alias (struct data_reference *dr)
86a07404 1034{
3cb960c7 1035 tree ref = DR_REF (dr);
5006671f
RG
1036 tree base = get_base_address (ref), addr;
1037
70f34814
RG
1038 if (INDIRECT_REF_P (base)
1039 || TREE_CODE (base) == MEM_REF)
3cb960c7
ZD
1040 {
1041 addr = TREE_OPERAND (base, 0);
1042 if (TREE_CODE (addr) == SSA_NAME)
5006671f 1043 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
3cb960c7 1044 }
3cb960c7 1045}
86a07404 1046
3cb960c7 1047/* Frees data reference DR. */
8fdbc9c6 1048
dea61d92 1049void
8fdbc9c6
ZD
1050free_data_ref (data_reference_p dr)
1051{
9771b263 1052 DR_ACCESS_FNS (dr).release ();
8fdbc9c6
ZD
1053 free (dr);
1054}
86a07404 1055
3cb960c7
ZD
1056/* Analyzes memory reference MEMREF accessed in STMT. The reference
1057 is read if IS_READ is true, write otherwise. Returns the
5c640e29
SP
1058 data_reference description of MEMREF. NEST is the outermost loop
1059 in which the reference should be instantiated, LOOP is the loop in
1060 which the data reference should be analyzed. */
86a07404 1061
5417e022 1062struct data_reference *
355fe088 1063create_data_ref (loop_p nest, loop_p loop, tree memref, gimple *stmt,
5c640e29 1064 bool is_read)
86a07404 1065{
3cb960c7 1066 struct data_reference *dr;
0ff4040e 1067
3cb960c7 1068 if (dump_file && (dump_flags & TDF_DETAILS))
0ff4040e 1069 {
3cb960c7
ZD
1070 fprintf (dump_file, "Creating dr for ");
1071 print_generic_expr (dump_file, memref, TDF_SLIM);
1072 fprintf (dump_file, "\n");
0ff4040e 1073 }
e2157b49 1074
3cb960c7
ZD
1075 dr = XCNEW (struct data_reference);
1076 DR_STMT (dr) = stmt;
1077 DR_REF (dr) = memref;
1078 DR_IS_READ (dr) = is_read;
86a07404 1079
4e4452b6 1080 dr_analyze_innermost (dr, nest);
5c640e29 1081 dr_analyze_indices (dr, nest, loop);
3cb960c7 1082 dr_analyze_alias (dr);
86a07404
IR
1083
1084 if (dump_file && (dump_flags & TDF_DETAILS))
1085 {
b8324815 1086 unsigned i;
3cb960c7 1087 fprintf (dump_file, "\tbase_address: ");
86a07404
IR
1088 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1089 fprintf (dump_file, "\n\toffset from base address: ");
1090 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1091 fprintf (dump_file, "\n\tconstant offset from base address: ");
1092 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
86a07404
IR
1093 fprintf (dump_file, "\n\tstep: ");
1094 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
3cb960c7
ZD
1095 fprintf (dump_file, "\n\taligned to: ");
1096 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1097 fprintf (dump_file, "\n\tbase_object: ");
1098 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
86a07404 1099 fprintf (dump_file, "\n");
b8324815
RG
1100 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1101 {
1102 fprintf (dump_file, "\tAccess function %d: ", i);
1103 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1104 }
3cb960c7
ZD
1105 }
1106
b8698a0f 1107 return dr;
86a07404
IR
1108}
1109
bfe068c3
IR
1110/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1111 expressions. */
1112static bool
1113dr_equal_offsets_p1 (tree offset1, tree offset2)
1114{
1115 bool res;
1116
1117 STRIP_NOPS (offset1);
1118 STRIP_NOPS (offset2);
1119
1120 if (offset1 == offset2)
1121 return true;
1122
1123 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1124 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1125 return false;
1126
1127 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1128 TREE_OPERAND (offset2, 0));
1129
1130 if (!res || !BINARY_CLASS_P (offset1))
1131 return res;
1132
1133 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1134 TREE_OPERAND (offset2, 1));
1135
1136 return res;
1137}
1138
1139/* Check if DRA and DRB have equal offsets. */
1140bool
1141dr_equal_offsets_p (struct data_reference *dra,
1142 struct data_reference *drb)
1143{
1144 tree offset1, offset2;
1145
1146 offset1 = DR_OFFSET (dra);
1147 offset2 = DR_OFFSET (drb);
1148
1149 return dr_equal_offsets_p1 (offset1, offset2);
1150}
1151
d93817c4
ZD
1152/* Returns true if FNA == FNB. */
1153
1154static bool
1155affine_function_equal_p (affine_fn fna, affine_fn fnb)
1156{
9771b263 1157 unsigned i, n = fna.length ();
86a07404 1158
9771b263 1159 if (n != fnb.length ())
f86289d5 1160 return false;
86df10e3 1161
d93817c4 1162 for (i = 0; i < n; i++)
9771b263 1163 if (!operand_equal_p (fna[i], fnb[i], 0))
d93817c4
ZD
1164 return false;
1165
1166 return true;
1167}
1168
1169/* If all the functions in CF are the same, returns one of them,
1170 otherwise returns NULL. */
1171
1172static affine_fn
1173common_affine_function (conflict_function *cf)
86df10e3 1174{
d93817c4
ZD
1175 unsigned i;
1176 affine_fn comm;
1177
1178 if (!CF_NONTRIVIAL_P (cf))
c3284718 1179 return affine_fn ();
d93817c4
ZD
1180
1181 comm = cf->fns[0];
1182
1183 for (i = 1; i < cf->n; i++)
1184 if (!affine_function_equal_p (comm, cf->fns[i]))
c3284718 1185 return affine_fn ();
d93817c4
ZD
1186
1187 return comm;
1188}
86df10e3 1189
d93817c4
ZD
1190/* Returns the base of the affine function FN. */
1191
1192static tree
1193affine_function_base (affine_fn fn)
1194{
9771b263 1195 return fn[0];
d93817c4
ZD
1196}
1197
1198/* Returns true if FN is a constant. */
1199
1200static bool
1201affine_function_constant_p (affine_fn fn)
1202{
1203 unsigned i;
1204 tree coef;
1205
9771b263 1206 for (i = 1; fn.iterate (i, &coef); i++)
d93817c4 1207 if (!integer_zerop (coef))
e2157b49
SP
1208 return false;
1209
86df10e3
SP
1210 return true;
1211}
1212
1baf2906
SP
1213/* Returns true if FN is the zero constant function. */
1214
1215static bool
1216affine_function_zero_p (affine_fn fn)
1217{
1218 return (integer_zerop (affine_function_base (fn))
1219 && affine_function_constant_p (fn));
1220}
1221
33b30201
SP
1222/* Returns a signed integer type with the largest precision from TA
1223 and TB. */
1224
1225static tree
1226signed_type_for_types (tree ta, tree tb)
1227{
1228 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1229 return signed_type_for (ta);
1230 else
1231 return signed_type_for (tb);
1232}
1233
d93817c4
ZD
1234/* Applies operation OP on affine functions FNA and FNB, and returns the
1235 result. */
1236
1237static affine_fn
1238affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1239{
1240 unsigned i, n, m;
1241 affine_fn ret;
1242 tree coef;
1243
9771b263 1244 if (fnb.length () > fna.length ())
d93817c4 1245 {
9771b263
DN
1246 n = fna.length ();
1247 m = fnb.length ();
d93817c4
ZD
1248 }
1249 else
1250 {
9771b263
DN
1251 n = fnb.length ();
1252 m = fna.length ();
d93817c4
ZD
1253 }
1254
9771b263 1255 ret.create (m);
d93817c4 1256 for (i = 0; i < n; i++)
33b30201 1257 {
9771b263
DN
1258 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1259 TREE_TYPE (fnb[i]));
1260 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
33b30201 1261 }
d93817c4 1262
9771b263
DN
1263 for (; fna.iterate (i, &coef); i++)
1264 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
d93817c4 1265 coef, integer_zero_node));
9771b263
DN
1266 for (; fnb.iterate (i, &coef); i++)
1267 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
d93817c4
ZD
1268 integer_zero_node, coef));
1269
1270 return ret;
1271}
1272
1273/* Returns the sum of affine functions FNA and FNB. */
1274
1275static affine_fn
1276affine_fn_plus (affine_fn fna, affine_fn fnb)
1277{
1278 return affine_fn_op (PLUS_EXPR, fna, fnb);
1279}
1280
1281/* Returns the difference of affine functions FNA and FNB. */
1282
1283static affine_fn
1284affine_fn_minus (affine_fn fna, affine_fn fnb)
1285{
1286 return affine_fn_op (MINUS_EXPR, fna, fnb);
1287}
1288
1289/* Frees affine function FN. */
1290
1291static void
1292affine_fn_free (affine_fn fn)
1293{
9771b263 1294 fn.release ();
d93817c4
ZD
1295}
1296
86df10e3
SP
1297/* Determine for each subscript in the data dependence relation DDR
1298 the distance. */
56cf8686 1299
0ff4040e 1300static void
86df10e3 1301compute_subscript_distance (struct data_dependence_relation *ddr)
56cf8686 1302{
d93817c4
ZD
1303 conflict_function *cf_a, *cf_b;
1304 affine_fn fn_a, fn_b, diff;
1305
56cf8686
SP
1306 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1307 {
1308 unsigned int i;
b8698a0f 1309
56cf8686
SP
1310 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1311 {
56cf8686 1312 struct subscript *subscript;
b8698a0f 1313
56cf8686 1314 subscript = DDR_SUBSCRIPT (ddr, i);
d93817c4
ZD
1315 cf_a = SUB_CONFLICTS_IN_A (subscript);
1316 cf_b = SUB_CONFLICTS_IN_B (subscript);
86df10e3 1317
d93817c4
ZD
1318 fn_a = common_affine_function (cf_a);
1319 fn_b = common_affine_function (cf_b);
9771b263 1320 if (!fn_a.exists () || !fn_b.exists ())
86df10e3 1321 {
d93817c4
ZD
1322 SUB_DISTANCE (subscript) = chrec_dont_know;
1323 return;
86df10e3 1324 }
d93817c4 1325 diff = affine_fn_minus (fn_a, fn_b);
b8698a0f 1326
d93817c4
ZD
1327 if (affine_function_constant_p (diff))
1328 SUB_DISTANCE (subscript) = affine_function_base (diff);
56cf8686
SP
1329 else
1330 SUB_DISTANCE (subscript) = chrec_dont_know;
d93817c4
ZD
1331
1332 affine_fn_free (diff);
56cf8686
SP
1333 }
1334 }
1335}
1336
d93817c4
ZD
1337/* Returns the conflict function for "unknown". */
1338
1339static conflict_function *
1340conflict_fn_not_known (void)
1341{
1342 conflict_function *fn = XCNEW (conflict_function);
1343 fn->n = NOT_KNOWN;
1344
1345 return fn;
1346}
1347
1348/* Returns the conflict function for "independent". */
1349
1350static conflict_function *
1351conflict_fn_no_dependence (void)
1352{
1353 conflict_function *fn = XCNEW (conflict_function);
1354 fn->n = NO_DEPENDENCE;
1355
1356 return fn;
1357}
1358
3cb960c7
ZD
1359/* Returns true if the address of OBJ is invariant in LOOP. */
1360
1361static bool
ed7a4b4b 1362object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
3cb960c7
ZD
1363{
1364 while (handled_component_p (obj))
1365 {
1366 if (TREE_CODE (obj) == ARRAY_REF)
1367 {
1368 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1369 need to check the stride and the lower bound of the reference. */
1370 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1371 loop->num)
1372 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1373 loop->num))
1374 return false;
1375 }
1376 else if (TREE_CODE (obj) == COMPONENT_REF)
1377 {
1378 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1379 loop->num))
1380 return false;
1381 }
1382 obj = TREE_OPERAND (obj, 0);
1383 }
1384
70f34814
RG
1385 if (!INDIRECT_REF_P (obj)
1386 && TREE_CODE (obj) != MEM_REF)
3cb960c7
ZD
1387 return true;
1388
1389 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1390 loop->num);
1391}
1392
3cb960c7 1393/* Returns false if we can prove that data references A and B do not alias,
02f5d6c5
RG
1394 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1395 considered. */
3cb960c7 1396
f8bf9252 1397bool
02f5d6c5
RG
1398dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1399 bool loop_nest)
3cb960c7 1400{
7d36e538
RG
1401 tree addr_a = DR_BASE_OBJECT (a);
1402 tree addr_b = DR_BASE_OBJECT (b);
3cb960c7 1403
02f5d6c5
RG
1404 /* If we are not processing a loop nest but scalar code we
1405 do not need to care about possible cross-iteration dependences
1406 and thus can process the full original reference. Do so,
1407 similar to how loop invariant motion applies extra offset-based
1408 disambiguation. */
1409 if (!loop_nest)
1410 {
1411 aff_tree off1, off2;
807e902e 1412 widest_int size1, size2;
02f5d6c5
RG
1413 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1414 get_inner_reference_aff (DR_REF (b), &off2, &size2);
807e902e 1415 aff_combination_scale (&off1, -1);
02f5d6c5
RG
1416 aff_combination_add (&off2, &off1);
1417 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1418 return false;
1419 }
1420
f3dccf50
RB
1421 if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
1422 && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
1423 && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
1424 && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
1425 return false;
1426
6e2028ff
RB
1427 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1428 do not know the size of the base-object. So we cannot do any
1429 offset/overlap based analysis but have to rely on points-to
1430 information only. */
c4ddde1b 1431 if (TREE_CODE (addr_a) == MEM_REF
f3ae4add
RB
1432 && (DR_UNCONSTRAINED_BASE (a)
1433 || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
c4ddde1b 1434 {
6e2028ff
RB
1435 /* For true dependences we can apply TBAA. */
1436 if (flag_strict_aliasing
1437 && DR_IS_WRITE (a) && DR_IS_READ (b)
1438 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1439 get_alias_set (DR_REF (b))))
1440 return false;
1441 if (TREE_CODE (addr_b) == MEM_REF)
c4ddde1b
RG
1442 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1443 TREE_OPERAND (addr_b, 0));
1444 else
1445 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1446 build_fold_addr_expr (addr_b));
1447 }
1448 else if (TREE_CODE (addr_b) == MEM_REF
f3ae4add
RB
1449 && (DR_UNCONSTRAINED_BASE (b)
1450 || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
6e2028ff
RB
1451 {
1452 /* For true dependences we can apply TBAA. */
1453 if (flag_strict_aliasing
1454 && DR_IS_WRITE (a) && DR_IS_READ (b)
1455 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1456 get_alias_set (DR_REF (b))))
1457 return false;
1458 if (TREE_CODE (addr_a) == MEM_REF)
1459 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1460 TREE_OPERAND (addr_b, 0));
1461 else
1462 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1463 TREE_OPERAND (addr_b, 0));
1464 }
c4ddde1b
RG
1465
1466 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1467 that is being subsetted in the loop nest. */
b0af49c4 1468 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
7d36e538 1469 return refs_output_dependent_p (addr_a, addr_b);
b0af49c4 1470 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
7d36e538
RG
1471 return refs_anti_dependent_p (addr_a, addr_b);
1472 return refs_may_alias_p (addr_a, addr_b);
3cb960c7
ZD
1473}
1474
0ff4040e
SP
1475/* Initialize a data dependence relation between data accesses A and
1476 B. NB_LOOPS is the number of loops surrounding the references: the
1477 size of the classic distance/direction vectors. */
56cf8686 1478
aec7ae7d 1479struct data_dependence_relation *
b8698a0f 1480initialize_data_dependence_relation (struct data_reference *a,
0ff4040e 1481 struct data_reference *b,
9771b263 1482 vec<loop_p> loop_nest)
56cf8686
SP
1483{
1484 struct data_dependence_relation *res;
0ff4040e 1485 unsigned int i;
b8698a0f 1486
5ed6ace5 1487 res = XNEW (struct data_dependence_relation);
56cf8686
SP
1488 DDR_A (res) = a;
1489 DDR_B (res) = b;
9771b263 1490 DDR_LOOP_NEST (res).create (0);
71d5b5e1 1491 DDR_REVERSED_P (res) = false;
9771b263
DN
1492 DDR_SUBSCRIPTS (res).create (0);
1493 DDR_DIR_VECTS (res).create (0);
1494 DDR_DIST_VECTS (res).create (0);
56cf8686 1495
86a07404
IR
1496 if (a == NULL || b == NULL)
1497 {
b8698a0f 1498 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
86a07404 1499 return res;
b8698a0f 1500 }
86a07404 1501
3cb960c7 1502 /* If the data references do not alias, then they are independent. */
9771b263 1503 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
86a07404 1504 {
b8698a0f 1505 DDR_ARE_DEPENDENT (res) = chrec_known;
86a07404
IR
1506 return res;
1507 }
56cf8686 1508
fea99a37 1509 /* The case where the references are exactly the same. */
b3924be9
SP
1510 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1511 {
9771b263
DN
1512 if (loop_nest.exists ()
1513 && !object_address_invariant_in_loop_p (loop_nest[0],
1a4571cb
RL
1514 DR_BASE_OBJECT (a)))
1515 {
1516 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1517 return res;
1518 }
b3924be9
SP
1519 DDR_AFFINE_P (res) = true;
1520 DDR_ARE_DEPENDENT (res) = NULL_TREE;
9771b263 1521 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
b3924be9
SP
1522 DDR_LOOP_NEST (res) = loop_nest;
1523 DDR_INNER_LOOP (res) = 0;
1524 DDR_SELF_REFERENCE (res) = true;
1a4571cb
RL
1525 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1526 {
1527 struct subscript *subscript;
1528
1529 subscript = XNEW (struct subscript);
1530 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1531 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1532 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1533 SUB_DISTANCE (subscript) = chrec_dont_know;
9771b263 1534 DDR_SUBSCRIPTS (res).safe_push (subscript);
1a4571cb 1535 }
b3924be9
SP
1536 return res;
1537 }
1538
3cb960c7
ZD
1539 /* If the references do not access the same object, we do not know
1540 whether they alias or not. */
1541 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
56cf8686 1542 {
b8698a0f 1543 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
86a07404
IR
1544 return res;
1545 }
0ff4040e 1546
3cb960c7 1547 /* If the base of the object is not invariant in the loop nest, we cannot
0d52bcc1 1548 analyze it. TODO -- in fact, it would suffice to record that there may
c80b4100 1549 be arbitrary dependences in the loops where the base object varies. */
9771b263
DN
1550 if (loop_nest.exists ()
1551 && !object_address_invariant_in_loop_p (loop_nest[0],
a70d6342 1552 DR_BASE_OBJECT (a)))
86a07404 1553 {
b8698a0f 1554 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
86a07404
IR
1555 return res;
1556 }
3cb960c7 1557
19368333
RG
1558 /* If the number of dimensions of the access to not agree we can have
1559 a pointer access to a component of the array element type and an
1560 array access while the base-objects are still the same. Punt. */
1561 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1562 {
1563 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1564 return res;
1565 }
3cb960c7 1566
86a07404
IR
1567 DDR_AFFINE_P (res) = true;
1568 DDR_ARE_DEPENDENT (res) = NULL_TREE;
9771b263 1569 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
ba42e045 1570 DDR_LOOP_NEST (res) = loop_nest;
3d8864c0 1571 DDR_INNER_LOOP (res) = 0;
b3924be9 1572 DDR_SELF_REFERENCE (res) = false;
304afda6 1573
86a07404
IR
1574 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1575 {
1576 struct subscript *subscript;
b8698a0f 1577
5ed6ace5 1578 subscript = XNEW (struct subscript);
d93817c4
ZD
1579 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1580 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
86a07404
IR
1581 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1582 SUB_DISTANCE (subscript) = chrec_dont_know;
9771b263 1583 DDR_SUBSCRIPTS (res).safe_push (subscript);
56cf8686 1584 }
ebf78a47 1585
56cf8686
SP
1586 return res;
1587}
1588
d93817c4
ZD
1589/* Frees memory used by the conflict function F. */
1590
1591static void
1592free_conflict_function (conflict_function *f)
1593{
1594 unsigned i;
1595
1596 if (CF_NONTRIVIAL_P (f))
1597 {
1598 for (i = 0; i < f->n; i++)
1599 affine_fn_free (f->fns[i]);
1600 }
1601 free (f);
1602}
1603
1604/* Frees memory used by SUBSCRIPTS. */
1605
1606static void
9771b263 1607free_subscripts (vec<subscript_p> subscripts)
d93817c4
ZD
1608{
1609 unsigned i;
1610 subscript_p s;
1611
9771b263 1612 FOR_EACH_VEC_ELT (subscripts, i, s)
d93817c4
ZD
1613 {
1614 free_conflict_function (s->conflicting_iterations_in_a);
1615 free_conflict_function (s->conflicting_iterations_in_b);
a0044be5 1616 free (s);
d93817c4 1617 }
9771b263 1618 subscripts.release ();
d93817c4
ZD
1619}
1620
56cf8686
SP
1621/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1622 description. */
1623
1624static inline void
b8698a0f 1625finalize_ddr_dependent (struct data_dependence_relation *ddr,
56cf8686
SP
1626 tree chrec)
1627{
b8698a0f 1628 DDR_ARE_DEPENDENT (ddr) = chrec;
d93817c4 1629 free_subscripts (DDR_SUBSCRIPTS (ddr));
9771b263 1630 DDR_SUBSCRIPTS (ddr).create (0);
56cf8686
SP
1631}
1632
86df10e3
SP
1633/* The dependence relation DDR cannot be represented by a distance
1634 vector. */
1635
1636static inline void
1637non_affine_dependence_relation (struct data_dependence_relation *ddr)
1638{
1639 if (dump_file && (dump_flags & TDF_DETAILS))
1640 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1641
1642 DDR_AFFINE_P (ddr) = false;
1643}
1644
56cf8686
SP
1645\f
1646
1647/* This section contains the classic Banerjee tests. */
1648
1649/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1650 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1651
1652static inline bool
ed7a4b4b 1653ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
56cf8686
SP
1654{
1655 return (evolution_function_is_constant_p (chrec_a)
1656 && evolution_function_is_constant_p (chrec_b));
1657}
1658
1659/* Returns true iff CHREC_A and CHREC_B are dependent on an index
1660 variable, i.e., if the SIV (Single Index Variable) test is true. */
1661
1662static bool
ed7a4b4b 1663siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
56cf8686
SP
1664{
1665 if ((evolution_function_is_constant_p (chrec_a)
1666 && evolution_function_is_univariate_p (chrec_b))
1667 || (evolution_function_is_constant_p (chrec_b)
1668 && evolution_function_is_univariate_p (chrec_a)))
1669 return true;
b8698a0f 1670
56cf8686
SP
1671 if (evolution_function_is_univariate_p (chrec_a)
1672 && evolution_function_is_univariate_p (chrec_b))
1673 {
1674 switch (TREE_CODE (chrec_a))
1675 {
1676 case POLYNOMIAL_CHREC:
1677 switch (TREE_CODE (chrec_b))
1678 {
1679 case POLYNOMIAL_CHREC:
1680 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1681 return false;
b8698a0f 1682
56cf8686
SP
1683 default:
1684 return true;
1685 }
b8698a0f 1686
56cf8686
SP
1687 default:
1688 return true;
1689 }
1690 }
b8698a0f 1691
56cf8686
SP
1692 return false;
1693}
1694
d93817c4
ZD
1695/* Creates a conflict function with N dimensions. The affine functions
1696 in each dimension follow. */
1697
1698static conflict_function *
1699conflict_fn (unsigned n, ...)
1700{
1701 unsigned i;
1702 conflict_function *ret = XCNEW (conflict_function);
1703 va_list ap;
1704
b39c6706 1705 gcc_assert (0 < n && n <= MAX_DIM);
c3284718 1706 va_start (ap, n);
b8698a0f 1707
d93817c4
ZD
1708 ret->n = n;
1709 for (i = 0; i < n; i++)
1710 ret->fns[i] = va_arg (ap, affine_fn);
c3284718 1711 va_end (ap);
d93817c4
ZD
1712
1713 return ret;
1714}
1715
1716/* Returns constant affine function with value CST. */
1717
1718static affine_fn
1719affine_fn_cst (tree cst)
1720{
9771b263
DN
1721 affine_fn fn;
1722 fn.create (1);
1723 fn.quick_push (cst);
d93817c4
ZD
1724 return fn;
1725}
1726
1727/* Returns affine function with single variable, CST + COEF * x_DIM. */
1728
1729static affine_fn
1730affine_fn_univar (tree cst, unsigned dim, tree coef)
1731{
9771b263
DN
1732 affine_fn fn;
1733 fn.create (dim + 1);
d93817c4
ZD
1734 unsigned i;
1735
1736 gcc_assert (dim > 0);
9771b263 1737 fn.quick_push (cst);
d93817c4 1738 for (i = 1; i < dim; i++)
9771b263
DN
1739 fn.quick_push (integer_zero_node);
1740 fn.quick_push (coef);
d93817c4
ZD
1741 return fn;
1742}
1743
56cf8686
SP
1744/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1745 *OVERLAPS_B are initialized to the functions that describe the
1746 relation between the elements accessed twice by CHREC_A and
1747 CHREC_B. For k >= 0, the following property is verified:
1748
1749 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1750
b8698a0f
L
1751static void
1752analyze_ziv_subscript (tree chrec_a,
1753 tree chrec_b,
d93817c4 1754 conflict_function **overlaps_a,
b8698a0f 1755 conflict_function **overlaps_b,
86df10e3 1756 tree *last_conflicts)
56cf8686 1757{
33b30201 1758 tree type, difference;
0ff4040e 1759 dependence_stats.num_ziv++;
b8698a0f 1760
56cf8686
SP
1761 if (dump_file && (dump_flags & TDF_DETAILS))
1762 fprintf (dump_file, "(analyze_ziv_subscript \n");
33b30201
SP
1763
1764 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
726a989a
RB
1765 chrec_a = chrec_convert (type, chrec_a, NULL);
1766 chrec_b = chrec_convert (type, chrec_b, NULL);
33b30201 1767 difference = chrec_fold_minus (type, chrec_a, chrec_b);
b8698a0f 1768
56cf8686
SP
1769 switch (TREE_CODE (difference))
1770 {
1771 case INTEGER_CST:
1772 if (integer_zerop (difference))
1773 {
1774 /* The difference is equal to zero: the accessed index
1775 overlaps for each iteration in the loop. */
d93817c4
ZD
1776 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1777 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
86df10e3 1778 *last_conflicts = chrec_dont_know;
0ff4040e 1779 dependence_stats.num_ziv_dependent++;
56cf8686
SP
1780 }
1781 else
1782 {
1783 /* The accesses do not overlap. */
d93817c4
ZD
1784 *overlaps_a = conflict_fn_no_dependence ();
1785 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 1786 *last_conflicts = integer_zero_node;
0ff4040e 1787 dependence_stats.num_ziv_independent++;
56cf8686
SP
1788 }
1789 break;
b8698a0f 1790
56cf8686 1791 default:
b8698a0f 1792 /* We're not sure whether the indexes overlap. For the moment,
56cf8686 1793 conservatively answer "don't know". */
0ff4040e
SP
1794 if (dump_file && (dump_flags & TDF_DETAILS))
1795 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1796
d93817c4
ZD
1797 *overlaps_a = conflict_fn_not_known ();
1798 *overlaps_b = conflict_fn_not_known ();
86df10e3 1799 *last_conflicts = chrec_dont_know;
0ff4040e 1800 dependence_stats.num_ziv_unimplemented++;
56cf8686
SP
1801 break;
1802 }
b8698a0f 1803
56cf8686
SP
1804 if (dump_file && (dump_flags & TDF_DETAILS))
1805 fprintf (dump_file, ")\n");
1806}
1807
b4a9343c 1808/* Similar to max_stmt_executions_int, but returns the bound as a tree,
4839cb59 1809 and only if it fits to the int type. If this is not the case, or the
b4a9343c 1810 bound on the number of iterations of LOOP could not be derived, returns
4839cb59
ZD
1811 chrec_dont_know. */
1812
1813static tree
b4a9343c 1814max_stmt_executions_tree (struct loop *loop)
4839cb59 1815{
807e902e 1816 widest_int nit;
4839cb59 1817
652c4c71 1818 if (!max_stmt_executions (loop, &nit))
4839cb59
ZD
1819 return chrec_dont_know;
1820
807e902e 1821 if (!wi::fits_to_tree_p (nit, unsigned_type_node))
4839cb59
ZD
1822 return chrec_dont_know;
1823
807e902e 1824 return wide_int_to_tree (unsigned_type_node, nit);
4839cb59
ZD
1825}
1826
5f1fab58
RG
1827/* Determine whether the CHREC is always positive/negative. If the expression
1828 cannot be statically analyzed, return false, otherwise set the answer into
1829 VALUE. */
1830
1831static bool
1832chrec_is_positive (tree chrec, bool *value)
1833{
1834 bool value0, value1, value2;
1835 tree end_value, nb_iter;
1836
1837 switch (TREE_CODE (chrec))
1838 {
1839 case POLYNOMIAL_CHREC:
1840 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1841 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1842 return false;
1843
1844 /* FIXME -- overflows. */
1845 if (value0 == value1)
1846 {
1847 *value = value0;
1848 return true;
1849 }
1850
1851 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1852 and the proof consists in showing that the sign never
1853 changes during the execution of the loop, from 0 to
1854 loop->nb_iterations. */
1855 if (!evolution_function_is_affine_p (chrec))
1856 return false;
1857
1858 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1859 if (chrec_contains_undetermined (nb_iter))
1860 return false;
1861
1862#if 0
1863 /* TODO -- If the test is after the exit, we may decrease the number of
1864 iterations by one. */
1865 if (after_exit)
1866 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1867#endif
1868
1869 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1870
1871 if (!chrec_is_positive (end_value, &value2))
1872 return false;
1873
1874 *value = value0;
1875 return value0 == value1;
1876
1877 case INTEGER_CST:
1878 switch (tree_int_cst_sgn (chrec))
1879 {
1880 case -1:
1881 *value = false;
1882 break;
1883 case 1:
1884 *value = true;
1885 break;
1886 default:
1887 return false;
1888 }
1889 return true;
1890
1891 default:
1892 return false;
1893 }
1894}
1895
1896
56cf8686
SP
1897/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1898 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1899 *OVERLAPS_B are initialized to the functions that describe the
1900 relation between the elements accessed twice by CHREC_A and
1901 CHREC_B. For k >= 0, the following property is verified:
1902
1903 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1904
1905static void
b8698a0f 1906analyze_siv_subscript_cst_affine (tree chrec_a,
56cf8686 1907 tree chrec_b,
b8698a0f
L
1908 conflict_function **overlaps_a,
1909 conflict_function **overlaps_b,
86df10e3 1910 tree *last_conflicts)
56cf8686
SP
1911{
1912 bool value0, value1, value2;
33b30201 1913 tree type, difference, tmp;
e2157b49 1914
33b30201 1915 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
726a989a
RB
1916 chrec_a = chrec_convert (type, chrec_a, NULL);
1917 chrec_b = chrec_convert (type, chrec_b, NULL);
33b30201 1918 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
b8698a0f 1919
5f1fab58
RG
1920 /* Special case overlap in the first iteration. */
1921 if (integer_zerop (difference))
1922 {
1923 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1924 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1925 *last_conflicts = integer_one_node;
1926 return;
1927 }
1928
56cf8686
SP
1929 if (!chrec_is_positive (initial_condition (difference), &value0))
1930 {
0ff4040e 1931 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 1932 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
0ff4040e
SP
1933
1934 dependence_stats.num_siv_unimplemented++;
d93817c4
ZD
1935 *overlaps_a = conflict_fn_not_known ();
1936 *overlaps_b = conflict_fn_not_known ();
86df10e3 1937 *last_conflicts = chrec_dont_know;
56cf8686
SP
1938 return;
1939 }
1940 else
1941 {
1942 if (value0 == false)
1943 {
1944 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1945 {
0ff4040e
SP
1946 if (dump_file && (dump_flags & TDF_DETAILS))
1947 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1948
d93817c4 1949 *overlaps_a = conflict_fn_not_known ();
b8698a0f 1950 *overlaps_b = conflict_fn_not_known ();
86df10e3 1951 *last_conflicts = chrec_dont_know;
0ff4040e 1952 dependence_stats.num_siv_unimplemented++;
56cf8686
SP
1953 return;
1954 }
1955 else
1956 {
1957 if (value1 == true)
1958 {
b8698a0f 1959 /* Example:
56cf8686
SP
1960 chrec_a = 12
1961 chrec_b = {10, +, 1}
1962 */
b8698a0f 1963
f457cf40 1964 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
56cf8686 1965 {
4839cb59
ZD
1966 HOST_WIDE_INT numiter;
1967 struct loop *loop = get_chrec_loop (chrec_b);
416f403e 1968
d93817c4 1969 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
33b30201
SP
1970 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1971 fold_build1 (ABS_EXPR, type, difference),
d93817c4
ZD
1972 CHREC_RIGHT (chrec_b));
1973 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
86df10e3 1974 *last_conflicts = integer_one_node;
b8698a0f 1975
416f403e
DB
1976
1977 /* Perform weak-zero siv test to see if overlap is
1978 outside the loop bounds. */
652c4c71 1979 numiter = max_stmt_executions_int (loop);
416f403e 1980
4839cb59
ZD
1981 if (numiter >= 0
1982 && compare_tree_int (tmp, numiter) > 0)
416f403e 1983 {
d93817c4
ZD
1984 free_conflict_function (*overlaps_a);
1985 free_conflict_function (*overlaps_b);
1986 *overlaps_a = conflict_fn_no_dependence ();
1987 *overlaps_b = conflict_fn_no_dependence ();
416f403e 1988 *last_conflicts = integer_zero_node;
0ff4040e 1989 dependence_stats.num_siv_independent++;
416f403e 1990 return;
b8698a0f 1991 }
0ff4040e 1992 dependence_stats.num_siv_dependent++;
56cf8686
SP
1993 return;
1994 }
b8698a0f 1995
f457cf40 1996 /* When the step does not divide the difference, there are
56cf8686
SP
1997 no overlaps. */
1998 else
1999 {
d93817c4 2000 *overlaps_a = conflict_fn_no_dependence ();
b8698a0f 2001 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 2002 *last_conflicts = integer_zero_node;
0ff4040e 2003 dependence_stats.num_siv_independent++;
56cf8686
SP
2004 return;
2005 }
2006 }
b8698a0f 2007
56cf8686
SP
2008 else
2009 {
b8698a0f 2010 /* Example:
56cf8686
SP
2011 chrec_a = 12
2012 chrec_b = {10, +, -1}
b8698a0f 2013
56cf8686 2014 In this case, chrec_a will not overlap with chrec_b. */
d93817c4
ZD
2015 *overlaps_a = conflict_fn_no_dependence ();
2016 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 2017 *last_conflicts = integer_zero_node;
0ff4040e 2018 dependence_stats.num_siv_independent++;
56cf8686
SP
2019 return;
2020 }
2021 }
2022 }
b8698a0f 2023 else
56cf8686
SP
2024 {
2025 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
2026 {
0ff4040e
SP
2027 if (dump_file && (dump_flags & TDF_DETAILS))
2028 fprintf (dump_file, "siv test failed: chrec not positive.\n");
2029
d93817c4 2030 *overlaps_a = conflict_fn_not_known ();
b8698a0f 2031 *overlaps_b = conflict_fn_not_known ();
86df10e3 2032 *last_conflicts = chrec_dont_know;
0ff4040e 2033 dependence_stats.num_siv_unimplemented++;
56cf8686
SP
2034 return;
2035 }
2036 else
2037 {
2038 if (value2 == false)
2039 {
b8698a0f 2040 /* Example:
56cf8686
SP
2041 chrec_a = 3
2042 chrec_b = {10, +, -1}
2043 */
f457cf40 2044 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
56cf8686 2045 {
4839cb59
ZD
2046 HOST_WIDE_INT numiter;
2047 struct loop *loop = get_chrec_loop (chrec_b);
416f403e 2048
d93817c4 2049 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
33b30201 2050 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
d93817c4
ZD
2051 CHREC_RIGHT (chrec_b));
2052 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
86df10e3 2053 *last_conflicts = integer_one_node;
416f403e
DB
2054
2055 /* Perform weak-zero siv test to see if overlap is
2056 outside the loop bounds. */
652c4c71 2057 numiter = max_stmt_executions_int (loop);
416f403e 2058
4839cb59
ZD
2059 if (numiter >= 0
2060 && compare_tree_int (tmp, numiter) > 0)
416f403e 2061 {
d93817c4
ZD
2062 free_conflict_function (*overlaps_a);
2063 free_conflict_function (*overlaps_b);
2064 *overlaps_a = conflict_fn_no_dependence ();
2065 *overlaps_b = conflict_fn_no_dependence ();
416f403e 2066 *last_conflicts = integer_zero_node;
0ff4040e 2067 dependence_stats.num_siv_independent++;
416f403e 2068 return;
b8698a0f 2069 }
0ff4040e 2070 dependence_stats.num_siv_dependent++;
56cf8686
SP
2071 return;
2072 }
b8698a0f 2073
4286d8ce 2074 /* When the step does not divide the difference, there
56cf8686
SP
2075 are no overlaps. */
2076 else
2077 {
d93817c4 2078 *overlaps_a = conflict_fn_no_dependence ();
b8698a0f 2079 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 2080 *last_conflicts = integer_zero_node;
0ff4040e 2081 dependence_stats.num_siv_independent++;
56cf8686
SP
2082 return;
2083 }
2084 }
2085 else
2086 {
b8698a0f
L
2087 /* Example:
2088 chrec_a = 3
56cf8686 2089 chrec_b = {4, +, 1}
b8698a0f 2090
56cf8686 2091 In this case, chrec_a will not overlap with chrec_b. */
d93817c4
ZD
2092 *overlaps_a = conflict_fn_no_dependence ();
2093 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 2094 *last_conflicts = integer_zero_node;
0ff4040e 2095 dependence_stats.num_siv_independent++;
56cf8686
SP
2096 return;
2097 }
2098 }
2099 }
2100 }
2101}
2102
50300b4c 2103/* Helper recursive function for initializing the matrix A. Returns
86df10e3 2104 the initial value of CHREC. */
56cf8686 2105
5b78fc3e 2106static tree
86df10e3
SP
2107initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2108{
2109 gcc_assert (chrec);
2110
5b78fc3e
JS
2111 switch (TREE_CODE (chrec))
2112 {
2113 case POLYNOMIAL_CHREC:
2114 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2115
2116 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2117 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2118
2119 case PLUS_EXPR:
2120 case MULT_EXPR:
2121 case MINUS_EXPR:
2122 {
2123 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2124 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2125
2126 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2127 }
2128
625a9766 2129 CASE_CONVERT:
5b78fc3e
JS
2130 {
2131 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
726a989a 2132 return chrec_convert (chrec_type (chrec), op, NULL);
5b78fc3e
JS
2133 }
2134
418df9d7
JJ
2135 case BIT_NOT_EXPR:
2136 {
2137 /* Handle ~X as -1 - X. */
2138 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2139 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2140 build_int_cst (TREE_TYPE (chrec), -1), op);
2141 }
2142
5b78fc3e
JS
2143 case INTEGER_CST:
2144 return chrec;
a1a5996d 2145
5b78fc3e
JS
2146 default:
2147 gcc_unreachable ();
2148 return NULL_TREE;
2149 }
86df10e3
SP
2150}
2151
2152#define FLOOR_DIV(x,y) ((x) / (y))
2153
b8698a0f 2154/* Solves the special case of the Diophantine equation:
86df10e3
SP
2155 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2156
2157 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2158 number of iterations that loops X and Y run. The overlaps will be
2159 constructed as evolutions in dimension DIM. */
56cf8686
SP
2160
2161static void
b8698a0f 2162compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
d93817c4 2163 affine_fn *overlaps_a,
b8698a0f 2164 affine_fn *overlaps_b,
86df10e3
SP
2165 tree *last_conflicts, int dim)
2166{
2167 if (((step_a > 0 && step_b > 0)
2168 || (step_a < 0 && step_b < 0)))
2169 {
2170 int step_overlaps_a, step_overlaps_b;
2171 int gcd_steps_a_b, last_conflict, tau2;
2172
2173 gcd_steps_a_b = gcd (step_a, step_b);
2174 step_overlaps_a = step_b / gcd_steps_a_b;
2175 step_overlaps_b = step_a / gcd_steps_a_b;
2176
2c26cbfd
SP
2177 if (niter > 0)
2178 {
2179 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2180 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2181 last_conflict = tau2;
2182 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2183 }
2184 else
2185 *last_conflicts = chrec_dont_know;
86df10e3 2186
b8698a0f 2187 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
d93817c4
ZD
2188 build_int_cst (NULL_TREE,
2189 step_overlaps_a));
b8698a0f
L
2190 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2191 build_int_cst (NULL_TREE,
d93817c4 2192 step_overlaps_b));
86df10e3
SP
2193 }
2194
2195 else
2196 {
d93817c4
ZD
2197 *overlaps_a = affine_fn_cst (integer_zero_node);
2198 *overlaps_b = affine_fn_cst (integer_zero_node);
86df10e3
SP
2199 *last_conflicts = integer_zero_node;
2200 }
2201}
2202
86df10e3
SP
2203/* Solves the special case of a Diophantine equation where CHREC_A is
2204 an affine bivariate function, and CHREC_B is an affine univariate
b8698a0f 2205 function. For example,
86df10e3
SP
2206
2207 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
b8698a0f
L
2208
2209 has the following overlapping functions:
86df10e3
SP
2210
2211 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2212 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2213 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2214
35fd3193 2215 FORNOW: This is a specialized implementation for a case occurring in
86df10e3
SP
2216 a common benchmark. Implement the general algorithm. */
2217
2218static void
b8698a0f 2219compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
d93817c4 2220 conflict_function **overlaps_a,
b8698a0f 2221 conflict_function **overlaps_b,
86df10e3 2222 tree *last_conflicts)
56cf8686 2223{
86df10e3
SP
2224 bool xz_p, yz_p, xyz_p;
2225 int step_x, step_y, step_z;
4839cb59 2226 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
d93817c4
ZD
2227 affine_fn overlaps_a_xz, overlaps_b_xz;
2228 affine_fn overlaps_a_yz, overlaps_b_yz;
2229 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2230 affine_fn ova1, ova2, ovb;
2231 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
86df10e3 2232
6b6fa4e9
SP
2233 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2234 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2235 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
86df10e3 2236
652c4c71
RG
2237 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2238 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2239 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
b8698a0f 2240
4839cb59 2241 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
86df10e3 2242 {
0ff4040e
SP
2243 if (dump_file && (dump_flags & TDF_DETAILS))
2244 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
b8698a0f 2245
d93817c4
ZD
2246 *overlaps_a = conflict_fn_not_known ();
2247 *overlaps_b = conflict_fn_not_known ();
86df10e3
SP
2248 *last_conflicts = chrec_dont_know;
2249 return;
2250 }
2251
86df10e3
SP
2252 niter = MIN (niter_x, niter_z);
2253 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2254 &overlaps_a_xz,
2255 &overlaps_b_xz,
2256 &last_conflicts_xz, 1);
2257 niter = MIN (niter_y, niter_z);
2258 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2259 &overlaps_a_yz,
2260 &overlaps_b_yz,
2261 &last_conflicts_yz, 2);
2262 niter = MIN (niter_x, niter_z);
2263 niter = MIN (niter_y, niter);
2264 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2265 &overlaps_a_xyz,
2266 &overlaps_b_xyz,
2267 &last_conflicts_xyz, 3);
2268
2269 xz_p = !integer_zerop (last_conflicts_xz);
2270 yz_p = !integer_zerop (last_conflicts_yz);
2271 xyz_p = !integer_zerop (last_conflicts_xyz);
2272
2273 if (xz_p || yz_p || xyz_p)
2274 {
d93817c4
ZD
2275 ova1 = affine_fn_cst (integer_zero_node);
2276 ova2 = affine_fn_cst (integer_zero_node);
2277 ovb = affine_fn_cst (integer_zero_node);
86df10e3
SP
2278 if (xz_p)
2279 {
d93817c4
ZD
2280 affine_fn t0 = ova1;
2281 affine_fn t2 = ovb;
2282
2283 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2284 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2285 affine_fn_free (t0);
2286 affine_fn_free (t2);
86df10e3
SP
2287 *last_conflicts = last_conflicts_xz;
2288 }
2289 if (yz_p)
2290 {
d93817c4
ZD
2291 affine_fn t0 = ova2;
2292 affine_fn t2 = ovb;
2293
2294 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2295 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2296 affine_fn_free (t0);
2297 affine_fn_free (t2);
86df10e3
SP
2298 *last_conflicts = last_conflicts_yz;
2299 }
2300 if (xyz_p)
2301 {
d93817c4
ZD
2302 affine_fn t0 = ova1;
2303 affine_fn t2 = ova2;
2304 affine_fn t4 = ovb;
2305
2306 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2307 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2308 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2309 affine_fn_free (t0);
2310 affine_fn_free (t2);
2311 affine_fn_free (t4);
86df10e3
SP
2312 *last_conflicts = last_conflicts_xyz;
2313 }
d93817c4
ZD
2314 *overlaps_a = conflict_fn (2, ova1, ova2);
2315 *overlaps_b = conflict_fn (1, ovb);
86df10e3
SP
2316 }
2317 else
2318 {
d93817c4
ZD
2319 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2320 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
86df10e3
SP
2321 *last_conflicts = integer_zero_node;
2322 }
d93817c4
ZD
2323
2324 affine_fn_free (overlaps_a_xz);
2325 affine_fn_free (overlaps_b_xz);
2326 affine_fn_free (overlaps_a_yz);
2327 affine_fn_free (overlaps_b_yz);
2328 affine_fn_free (overlaps_a_xyz);
2329 affine_fn_free (overlaps_b_xyz);
56cf8686
SP
2330}
2331
b305e3da
SP
2332/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2333
2334static void
2335lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2336 int size)
2337{
2338 memcpy (vec2, vec1, size * sizeof (*vec1));
2339}
2340
2341/* Copy the elements of M x N matrix MAT1 to MAT2. */
2342
2343static void
2344lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2345 int m, int n)
2346{
2347 int i;
2348
2349 for (i = 0; i < m; i++)
2350 lambda_vector_copy (mat1[i], mat2[i], n);
2351}
2352
2353/* Store the N x N identity matrix in MAT. */
2354
2355static void
2356lambda_matrix_id (lambda_matrix mat, int size)
2357{
2358 int i, j;
2359
2360 for (i = 0; i < size; i++)
2361 for (j = 0; j < size; j++)
2362 mat[i][j] = (i == j) ? 1 : 0;
2363}
2364
2365/* Return the first nonzero element of vector VEC1 between START and N.
2366 We must have START <= N. Returns N if VEC1 is the zero vector. */
2367
2368static int
2369lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2370{
2371 int j = start;
2372 while (j < n && vec1[j] == 0)
2373 j++;
2374 return j;
2375}
2376
2377/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2378 R2 = R2 + CONST1 * R1. */
2379
2380static void
2381lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2382{
2383 int i;
2384
2385 if (const1 == 0)
2386 return;
2387
2388 for (i = 0; i < n; i++)
2389 mat[r2][i] += const1 * mat[r1][i];
2390}
2391
b305e3da
SP
2392/* Multiply vector VEC1 of length SIZE by a constant CONST1,
2393 and store the result in VEC2. */
2394
2395static void
2396lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2397 int size, int const1)
2398{
2399 int i;
2400
2401 if (const1 == 0)
2402 lambda_vector_clear (vec2, size);
2403 else
2404 for (i = 0; i < size; i++)
2405 vec2[i] = const1 * vec1[i];
2406}
2407
2408/* Negate vector VEC1 with length SIZE and store it in VEC2. */
2409
2410static void
2411lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2412 int size)
2413{
2414 lambda_vector_mult_const (vec1, vec2, size, -1);
2415}
2416
2417/* Negate row R1 of matrix MAT which has N columns. */
2418
2419static void
2420lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2421{
2422 lambda_vector_negate (mat[r1], mat[r1], n);
2423}
2424
2425/* Return true if two vectors are equal. */
2426
2427static bool
2428lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2429{
2430 int i;
2431 for (i = 0; i < size; i++)
2432 if (vec1[i] != vec2[i])
2433 return false;
2434 return true;
2435}
2436
2437/* Given an M x N integer matrix A, this function determines an M x
2438 M unimodular matrix U, and an M x N echelon matrix S such that
2439 "U.A = S". This decomposition is also known as "right Hermite".
2440
2441 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2442 Restructuring Compilers" Utpal Banerjee. */
2443
2444static void
2445lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2446 lambda_matrix S, lambda_matrix U)
2447{
2448 int i, j, i0 = 0;
2449
2450 lambda_matrix_copy (A, S, m, n);
2451 lambda_matrix_id (U, m);
2452
2453 for (j = 0; j < n; j++)
2454 {
2455 if (lambda_vector_first_nz (S[j], m, i0) < m)
2456 {
2457 ++i0;
2458 for (i = m - 1; i >= i0; i--)
2459 {
2460 while (S[i][j] != 0)
2461 {
2462 int sigma, factor, a, b;
2463
2464 a = S[i-1][j];
2465 b = S[i][j];
2466 sigma = (a * b < 0) ? -1: 1;
2467 a = abs (a);
2468 b = abs (b);
2469 factor = sigma * (a / b);
2470
2471 lambda_matrix_row_add (S, n, i, i-1, -factor);
fab27f52 2472 std::swap (S[i], S[i-1]);
b305e3da
SP
2473
2474 lambda_matrix_row_add (U, m, i, i-1, -factor);
fab27f52 2475 std::swap (U[i], U[i-1]);
b305e3da
SP
2476 }
2477 }
2478 }
2479 }
2480}
2481
56cf8686 2482/* Determines the overlapping elements due to accesses CHREC_A and
0ff4040e
SP
2483 CHREC_B, that are affine functions. This function cannot handle
2484 symbolic evolution functions, ie. when initial conditions are
2485 parameters, because it uses lambda matrices of integers. */
56cf8686
SP
2486
2487static void
b8698a0f 2488analyze_subscript_affine_affine (tree chrec_a,
56cf8686 2489 tree chrec_b,
b8698a0f
L
2490 conflict_function **overlaps_a,
2491 conflict_function **overlaps_b,
86df10e3 2492 tree *last_conflicts)
56cf8686 2493{
86df10e3 2494 unsigned nb_vars_a, nb_vars_b, dim;
fd727b34 2495 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
86df10e3 2496 lambda_matrix A, U, S;
f873b205 2497 struct obstack scratch_obstack;
86df10e3 2498
e2157b49 2499 if (eq_evolutions_p (chrec_a, chrec_b))
416f403e 2500 {
e2157b49
SP
2501 /* The accessed index overlaps for each iteration in the
2502 loop. */
d93817c4
ZD
2503 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2504 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
416f403e
DB
2505 *last_conflicts = chrec_dont_know;
2506 return;
2507 }
56cf8686
SP
2508 if (dump_file && (dump_flags & TDF_DETAILS))
2509 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
b8698a0f 2510
56cf8686
SP
2511 /* For determining the initial intersection, we have to solve a
2512 Diophantine equation. This is the most time consuming part.
b8698a0f 2513
56cf8686
SP
2514 For answering to the question: "Is there a dependence?" we have
2515 to prove that there exists a solution to the Diophantine
2516 equation, and that the solution is in the iteration domain,
89dbed81 2517 i.e. the solution is positive or zero, and that the solution
56cf8686
SP
2518 happens before the upper bound loop.nb_iterations. Otherwise
2519 there is no dependence. This function outputs a description of
2520 the iterations that hold the intersections. */
2521
86df10e3
SP
2522 nb_vars_a = nb_vars_in_chrec (chrec_a);
2523 nb_vars_b = nb_vars_in_chrec (chrec_b);
2524
f873b205
LB
2525 gcc_obstack_init (&scratch_obstack);
2526
86df10e3 2527 dim = nb_vars_a + nb_vars_b;
f873b205
LB
2528 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2529 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2530 S = lambda_matrix_new (dim, 1, &scratch_obstack);
86df10e3 2531
5b78fc3e
JS
2532 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2533 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
86df10e3
SP
2534 gamma = init_b - init_a;
2535
2536 /* Don't do all the hard work of solving the Diophantine equation
b8698a0f 2537 when we already know the solution: for example,
86df10e3
SP
2538 | {3, +, 1}_1
2539 | {3, +, 4}_2
2540 | gamma = 3 - 3 = 0.
b8698a0f 2541 Then the first overlap occurs during the first iterations:
86df10e3
SP
2542 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2543 */
2544 if (gamma == 0)
56cf8686 2545 {
86df10e3 2546 if (nb_vars_a == 1 && nb_vars_b == 1)
56cf8686 2547 {
fd727b34 2548 HOST_WIDE_INT step_a, step_b;
4839cb59 2549 HOST_WIDE_INT niter, niter_a, niter_b;
d93817c4 2550 affine_fn ova, ovb;
86df10e3 2551
652c4c71
RG
2552 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2553 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
86df10e3 2554 niter = MIN (niter_a, niter_b);
6b6fa4e9
SP
2555 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2556 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
86df10e3 2557
b8698a0f
L
2558 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2559 &ova, &ovb,
86df10e3 2560 last_conflicts, 1);
d93817c4
ZD
2561 *overlaps_a = conflict_fn (1, ova);
2562 *overlaps_b = conflict_fn (1, ovb);
56cf8686 2563 }
86df10e3
SP
2564
2565 else if (nb_vars_a == 2 && nb_vars_b == 1)
2566 compute_overlap_steps_for_affine_1_2
2567 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2568
2569 else if (nb_vars_a == 1 && nb_vars_b == 2)
2570 compute_overlap_steps_for_affine_1_2
2571 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2572
2573 else
56cf8686 2574 {
0ff4040e
SP
2575 if (dump_file && (dump_flags & TDF_DETAILS))
2576 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
d93817c4
ZD
2577 *overlaps_a = conflict_fn_not_known ();
2578 *overlaps_b = conflict_fn_not_known ();
86df10e3 2579 *last_conflicts = chrec_dont_know;
56cf8686 2580 }
0ff4040e 2581 goto end_analyze_subs_aa;
86df10e3
SP
2582 }
2583
2584 /* U.A = S */
2585 lambda_matrix_right_hermite (A, dim, 1, S, U);
2586
2587 if (S[0][0] < 0)
2588 {
2589 S[0][0] *= -1;
2590 lambda_matrix_row_negate (U, dim, 0);
2591 }
2592 gcd_alpha_beta = S[0][0];
2593
ba42e045
SP
2594 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2595 but that is a quite strange case. Instead of ICEing, answer
2596 don't know. */
2597 if (gcd_alpha_beta == 0)
2598 {
d93817c4
ZD
2599 *overlaps_a = conflict_fn_not_known ();
2600 *overlaps_b = conflict_fn_not_known ();
ba42e045
SP
2601 *last_conflicts = chrec_dont_know;
2602 goto end_analyze_subs_aa;
2603 }
2604
86df10e3
SP
2605 /* The classic "gcd-test". */
2606 if (!int_divides_p (gcd_alpha_beta, gamma))
2607 {
2608 /* The "gcd-test" has determined that there is no integer
2609 solution, i.e. there is no dependence. */
d93817c4
ZD
2610 *overlaps_a = conflict_fn_no_dependence ();
2611 *overlaps_b = conflict_fn_no_dependence ();
86df10e3
SP
2612 *last_conflicts = integer_zero_node;
2613 }
2614
2615 /* Both access functions are univariate. This includes SIV and MIV cases. */
2616 else if (nb_vars_a == 1 && nb_vars_b == 1)
2617 {
2618 /* Both functions should have the same evolution sign. */
2619 if (((A[0][0] > 0 && -A[1][0] > 0)
2620 || (A[0][0] < 0 && -A[1][0] < 0)))
56cf8686
SP
2621 {
2622 /* The solutions are given by:
b8698a0f 2623 |
86df10e3
SP
2624 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2625 | [u21 u22] [y0]
b8698a0f 2626
56cf8686 2627 For a given integer t. Using the following variables,
b8698a0f 2628
56cf8686
SP
2629 | i0 = u11 * gamma / gcd_alpha_beta
2630 | j0 = u12 * gamma / gcd_alpha_beta
2631 | i1 = u21
2632 | j1 = u22
b8698a0f 2633
56cf8686 2634 the solutions are:
b8698a0f
L
2635
2636 | x0 = i0 + i1 * t,
86df10e3 2637 | y0 = j0 + j1 * t. */
2c26cbfd 2638 HOST_WIDE_INT i0, j0, i1, j1;
86df10e3
SP
2639
2640 i0 = U[0][0] * gamma / gcd_alpha_beta;
2641 j0 = U[0][1] * gamma / gcd_alpha_beta;
2642 i1 = U[1][0];
2643 j1 = U[1][1];
2644
2645 if ((i1 == 0 && i0 < 0)
2646 || (j1 == 0 && j0 < 0))
56cf8686 2647 {
b8698a0f
L
2648 /* There is no solution.
2649 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2650 falls in here, but for the moment we don't look at the
56cf8686 2651 upper bound of the iteration domain. */
d93817c4
ZD
2652 *overlaps_a = conflict_fn_no_dependence ();
2653 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 2654 *last_conflicts = integer_zero_node;
2c26cbfd 2655 goto end_analyze_subs_aa;
86df10e3
SP
2656 }
2657
2c26cbfd 2658 if (i1 > 0 && j1 > 0)
56cf8686 2659 {
652c4c71
RG
2660 HOST_WIDE_INT niter_a
2661 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2662 HOST_WIDE_INT niter_b
2663 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2c26cbfd
SP
2664 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2665
2666 /* (X0, Y0) is a solution of the Diophantine equation:
2667 "chrec_a (X0) = chrec_b (Y0)". */
2668 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2669 CEIL (-j0, j1));
2670 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2671 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2672
2673 /* (X1, Y1) is the smallest positive solution of the eq
2674 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2675 first conflict occurs. */
2676 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2677 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2678 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2679
2680 if (niter > 0)
56cf8686 2681 {
2c26cbfd
SP
2682 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2683 FLOOR_DIV (niter - j0, j1));
2684 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
86df10e3 2685
2c26cbfd
SP
2686 /* If the overlap occurs outside of the bounds of the
2687 loop, there is no dependence. */
9e517d61 2688 if (x1 >= niter || y1 >= niter)
56cf8686 2689 {
2c26cbfd
SP
2690 *overlaps_a = conflict_fn_no_dependence ();
2691 *overlaps_b = conflict_fn_no_dependence ();
2692 *last_conflicts = integer_zero_node;
2693 goto end_analyze_subs_aa;
56cf8686
SP
2694 }
2695 else
2c26cbfd 2696 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
56cf8686 2697 }
56cf8686 2698 else
2c26cbfd
SP
2699 *last_conflicts = chrec_dont_know;
2700
2701 *overlaps_a
2702 = conflict_fn (1,
2703 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2704 1,
2705 build_int_cst (NULL_TREE, i1)));
2706 *overlaps_b
2707 = conflict_fn (1,
2708 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2709 1,
2710 build_int_cst (NULL_TREE, j1)));
2711 }
2712 else
2713 {
2714 /* FIXME: For the moment, the upper bound of the
2715 iteration domain for i and j is not checked. */
2716 if (dump_file && (dump_flags & TDF_DETAILS))
2717 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2718 *overlaps_a = conflict_fn_not_known ();
2719 *overlaps_b = conflict_fn_not_known ();
2720 *last_conflicts = chrec_dont_know;
56cf8686
SP
2721 }
2722 }
86df10e3
SP
2723 else
2724 {
0ff4040e
SP
2725 if (dump_file && (dump_flags & TDF_DETAILS))
2726 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
d93817c4
ZD
2727 *overlaps_a = conflict_fn_not_known ();
2728 *overlaps_b = conflict_fn_not_known ();
86df10e3
SP
2729 *last_conflicts = chrec_dont_know;
2730 }
56cf8686 2731 }
56cf8686
SP
2732 else
2733 {
0ff4040e
SP
2734 if (dump_file && (dump_flags & TDF_DETAILS))
2735 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
d93817c4
ZD
2736 *overlaps_a = conflict_fn_not_known ();
2737 *overlaps_b = conflict_fn_not_known ();
86df10e3 2738 *last_conflicts = chrec_dont_know;
56cf8686 2739 }
86df10e3 2740
b8698a0f 2741end_analyze_subs_aa:
f873b205 2742 obstack_free (&scratch_obstack, NULL);
56cf8686
SP
2743 if (dump_file && (dump_flags & TDF_DETAILS))
2744 {
2745 fprintf (dump_file, " (overlaps_a = ");
d93817c4 2746 dump_conflict_function (dump_file, *overlaps_a);
56cf8686 2747 fprintf (dump_file, ")\n (overlaps_b = ");
d93817c4 2748 dump_conflict_function (dump_file, *overlaps_b);
bcf1ef00 2749 fprintf (dump_file, "))\n");
56cf8686 2750 }
0ff4040e
SP
2751}
2752
2753/* Returns true when analyze_subscript_affine_affine can be used for
2754 determining the dependence relation between chrec_a and chrec_b,
2755 that contain symbols. This function modifies chrec_a and chrec_b
2756 such that the analysis result is the same, and such that they don't
b8698a0f 2757 contain symbols, and then can safely be passed to the analyzer.
0ff4040e
SP
2758
2759 Example: The analysis of the following tuples of evolutions produce
2760 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2761 vs. {0, +, 1}_1
b8698a0f 2762
0ff4040e
SP
2763 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2764 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2765*/
2766
2767static bool
2768can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2769{
16a2acea 2770 tree diff, type, left_a, left_b, right_b;
0ff4040e
SP
2771
2772 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2773 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2774 /* FIXME: For the moment not handled. Might be refined later. */
2775 return false;
2776
16a2acea
SP
2777 type = chrec_type (*chrec_a);
2778 left_a = CHREC_LEFT (*chrec_a);
726a989a 2779 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
16a2acea
SP
2780 diff = chrec_fold_minus (type, left_a, left_b);
2781
0ff4040e
SP
2782 if (!evolution_function_is_constant_p (diff))
2783 return false;
2784
56cf8686 2785 if (dump_file && (dump_flags & TDF_DETAILS))
0ff4040e
SP
2786 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2787
b8698a0f 2788 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
0ff4040e 2789 diff, CHREC_RIGHT (*chrec_a));
726a989a 2790 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
0ff4040e 2791 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
dc61cc6b 2792 build_int_cst (type, 0),
16a2acea 2793 right_b);
0ff4040e 2794 return true;
56cf8686
SP
2795}
2796
2797/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2798 *OVERLAPS_B are initialized to the functions that describe the
2799 relation between the elements accessed twice by CHREC_A and
2800 CHREC_B. For k >= 0, the following property is verified:
2801
2802 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2803
2804static void
b8698a0f 2805analyze_siv_subscript (tree chrec_a,
56cf8686 2806 tree chrec_b,
b8698a0f
L
2807 conflict_function **overlaps_a,
2808 conflict_function **overlaps_b,
5b78fc3e
JS
2809 tree *last_conflicts,
2810 int loop_nest_num)
56cf8686 2811{
0ff4040e 2812 dependence_stats.num_siv++;
b8698a0f 2813
56cf8686
SP
2814 if (dump_file && (dump_flags & TDF_DETAILS))
2815 fprintf (dump_file, "(analyze_siv_subscript \n");
b8698a0f 2816
56cf8686 2817 if (evolution_function_is_constant_p (chrec_a)
5b78fc3e 2818 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
b8698a0f 2819 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
86df10e3 2820 overlaps_a, overlaps_b, last_conflicts);
b8698a0f 2821
5b78fc3e 2822 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
56cf8686 2823 && evolution_function_is_constant_p (chrec_b))
b8698a0f 2824 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
86df10e3 2825 overlaps_b, overlaps_a, last_conflicts);
b8698a0f 2826
5b78fc3e
JS
2827 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2828 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
0ff4040e
SP
2829 {
2830 if (!chrec_contains_symbols (chrec_a)
2831 && !chrec_contains_symbols (chrec_b))
2832 {
b8698a0f
L
2833 analyze_subscript_affine_affine (chrec_a, chrec_b,
2834 overlaps_a, overlaps_b,
0ff4040e
SP
2835 last_conflicts);
2836
d93817c4
ZD
2837 if (CF_NOT_KNOWN_P (*overlaps_a)
2838 || CF_NOT_KNOWN_P (*overlaps_b))
0ff4040e 2839 dependence_stats.num_siv_unimplemented++;
d93817c4
ZD
2840 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2841 || CF_NO_DEPENDENCE_P (*overlaps_b))
0ff4040e
SP
2842 dependence_stats.num_siv_independent++;
2843 else
2844 dependence_stats.num_siv_dependent++;
2845 }
b8698a0f 2846 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
0ff4040e
SP
2847 &chrec_b))
2848 {
b8698a0f
L
2849 analyze_subscript_affine_affine (chrec_a, chrec_b,
2850 overlaps_a, overlaps_b,
0ff4040e 2851 last_conflicts);
0ff4040e 2852
d93817c4
ZD
2853 if (CF_NOT_KNOWN_P (*overlaps_a)
2854 || CF_NOT_KNOWN_P (*overlaps_b))
0ff4040e 2855 dependence_stats.num_siv_unimplemented++;
d93817c4
ZD
2856 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2857 || CF_NO_DEPENDENCE_P (*overlaps_b))
0ff4040e
SP
2858 dependence_stats.num_siv_independent++;
2859 else
2860 dependence_stats.num_siv_dependent++;
2861 }
2862 else
2863 goto siv_subscript_dontknow;
2864 }
2865
56cf8686
SP
2866 else
2867 {
0ff4040e
SP
2868 siv_subscript_dontknow:;
2869 if (dump_file && (dump_flags & TDF_DETAILS))
bcf1ef00 2870 fprintf (dump_file, " siv test failed: unimplemented");
d93817c4
ZD
2871 *overlaps_a = conflict_fn_not_known ();
2872 *overlaps_b = conflict_fn_not_known ();
86df10e3 2873 *last_conflicts = chrec_dont_know;
0ff4040e 2874 dependence_stats.num_siv_unimplemented++;
56cf8686 2875 }
b8698a0f 2876
56cf8686
SP
2877 if (dump_file && (dump_flags & TDF_DETAILS))
2878 fprintf (dump_file, ")\n");
2879}
2880
55a700ac
ZD
2881/* Returns false if we can prove that the greatest common divisor of the steps
2882 of CHREC does not divide CST, false otherwise. */
56cf8686
SP
2883
2884static bool
ed7a4b4b 2885gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
56cf8686 2886{
55a700ac
ZD
2887 HOST_WIDE_INT cd = 0, val;
2888 tree step;
0ff4040e 2889
9541ffee 2890 if (!tree_fits_shwi_p (cst))
55a700ac 2891 return true;
9439e9a1 2892 val = tree_to_shwi (cst);
55a700ac
ZD
2893
2894 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2895 {
2896 step = CHREC_RIGHT (chrec);
9541ffee 2897 if (!tree_fits_shwi_p (step))
55a700ac 2898 return true;
9439e9a1 2899 cd = gcd (cd, tree_to_shwi (step));
55a700ac 2900 chrec = CHREC_LEFT (chrec);
56cf8686 2901 }
55a700ac
ZD
2902
2903 return val % cd == 0;
56cf8686
SP
2904}
2905
da9a21f4
SP
2906/* Analyze a MIV (Multiple Index Variable) subscript with respect to
2907 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2908 functions that describe the relation between the elements accessed
2909 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2910 is verified:
56cf8686
SP
2911
2912 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2913
2914static void
b8698a0f
L
2915analyze_miv_subscript (tree chrec_a,
2916 tree chrec_b,
2917 conflict_function **overlaps_a,
2918 conflict_function **overlaps_b,
da9a21f4
SP
2919 tree *last_conflicts,
2920 struct loop *loop_nest)
56cf8686 2921{
33b30201
SP
2922 tree type, difference;
2923
0ff4040e 2924 dependence_stats.num_miv++;
56cf8686
SP
2925 if (dump_file && (dump_flags & TDF_DETAILS))
2926 fprintf (dump_file, "(analyze_miv_subscript \n");
e2157b49 2927
33b30201 2928 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
726a989a
RB
2929 chrec_a = chrec_convert (type, chrec_a, NULL);
2930 chrec_b = chrec_convert (type, chrec_b, NULL);
33b30201 2931 difference = chrec_fold_minus (type, chrec_a, chrec_b);
b8698a0f 2932
e2157b49 2933 if (eq_evolutions_p (chrec_a, chrec_b))
56cf8686
SP
2934 {
2935 /* Access functions are the same: all the elements are accessed
2936 in the same order. */
d93817c4
ZD
2937 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2938 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
b4a9343c 2939 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
0ff4040e 2940 dependence_stats.num_miv_dependent++;
56cf8686 2941 }
b8698a0f 2942
56cf8686
SP
2943 else if (evolution_function_is_constant_p (difference)
2944 /* For the moment, the following is verified:
da9a21f4
SP
2945 evolution_function_is_affine_multivariate_p (chrec_a,
2946 loop_nest->num) */
55a700ac 2947 && !gcd_of_steps_may_divide_p (chrec_a, difference))
56cf8686
SP
2948 {
2949 /* testsuite/.../ssa-chrec-33.c
b8698a0f
L
2950 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2951
55a700ac
ZD
2952 The difference is 1, and all the evolution steps are multiples
2953 of 2, consequently there are no overlapping elements. */
d93817c4
ZD
2954 *overlaps_a = conflict_fn_no_dependence ();
2955 *overlaps_b = conflict_fn_no_dependence ();
86df10e3 2956 *last_conflicts = integer_zero_node;
0ff4040e 2957 dependence_stats.num_miv_independent++;
56cf8686 2958 }
b8698a0f 2959
da9a21f4 2960 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
0ff4040e 2961 && !chrec_contains_symbols (chrec_a)
da9a21f4 2962 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
0ff4040e 2963 && !chrec_contains_symbols (chrec_b))
56cf8686
SP
2964 {
2965 /* testsuite/.../ssa-chrec-35.c
2966 {0, +, 1}_2 vs. {0, +, 1}_3
2967 the overlapping elements are respectively located at iterations:
b8698a0f
L
2968 {0, +, 1}_x and {0, +, 1}_x,
2969 in other words, we have the equality:
86df10e3 2970 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
b8698a0f
L
2971
2972 Other examples:
2973 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
86df10e3
SP
2974 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2975
b8698a0f 2976 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
86df10e3 2977 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
56cf8686 2978 */
b8698a0f 2979 analyze_subscript_affine_affine (chrec_a, chrec_b,
86df10e3 2980 overlaps_a, overlaps_b, last_conflicts);
0ff4040e 2981
d93817c4
ZD
2982 if (CF_NOT_KNOWN_P (*overlaps_a)
2983 || CF_NOT_KNOWN_P (*overlaps_b))
0ff4040e 2984 dependence_stats.num_miv_unimplemented++;
d93817c4
ZD
2985 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2986 || CF_NO_DEPENDENCE_P (*overlaps_b))
0ff4040e
SP
2987 dependence_stats.num_miv_independent++;
2988 else
2989 dependence_stats.num_miv_dependent++;
56cf8686 2990 }
b8698a0f 2991
56cf8686
SP
2992 else
2993 {
2994 /* When the analysis is too difficult, answer "don't know". */
0ff4040e
SP
2995 if (dump_file && (dump_flags & TDF_DETAILS))
2996 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
2997
d93817c4
ZD
2998 *overlaps_a = conflict_fn_not_known ();
2999 *overlaps_b = conflict_fn_not_known ();
86df10e3 3000 *last_conflicts = chrec_dont_know;
0ff4040e 3001 dependence_stats.num_miv_unimplemented++;
56cf8686 3002 }
b8698a0f 3003
56cf8686
SP
3004 if (dump_file && (dump_flags & TDF_DETAILS))
3005 fprintf (dump_file, ")\n");
3006}
3007
da9a21f4
SP
3008/* Determines the iterations for which CHREC_A is equal to CHREC_B in
3009 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
3010 OVERLAP_ITERATIONS_B are initialized with two functions that
3011 describe the iterations that contain conflicting elements.
b8698a0f 3012
56cf8686 3013 Remark: For an integer k >= 0, the following equality is true:
b8698a0f 3014
56cf8686
SP
3015 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3016*/
3017
b8698a0f
L
3018static void
3019analyze_overlapping_iterations (tree chrec_a,
3020 tree chrec_b,
3021 conflict_function **overlap_iterations_a,
3022 conflict_function **overlap_iterations_b,
da9a21f4 3023 tree *last_conflicts, struct loop *loop_nest)
56cf8686 3024{
da9a21f4
SP
3025 unsigned int lnn = loop_nest->num;
3026
0ff4040e 3027 dependence_stats.num_subscript_tests++;
b8698a0f 3028
56cf8686
SP
3029 if (dump_file && (dump_flags & TDF_DETAILS))
3030 {
3031 fprintf (dump_file, "(analyze_overlapping_iterations \n");
3032 fprintf (dump_file, " (chrec_a = ");
3033 print_generic_expr (dump_file, chrec_a, 0);
0ff4040e 3034 fprintf (dump_file, ")\n (chrec_b = ");
56cf8686
SP
3035 print_generic_expr (dump_file, chrec_b, 0);
3036 fprintf (dump_file, ")\n");
3037 }
0ff4040e 3038
56cf8686
SP
3039 if (chrec_a == NULL_TREE
3040 || chrec_b == NULL_TREE
3041 || chrec_contains_undetermined (chrec_a)
0ff4040e 3042 || chrec_contains_undetermined (chrec_b))
56cf8686 3043 {
0ff4040e 3044 dependence_stats.num_subscript_undetermined++;
b8698a0f 3045
d93817c4
ZD
3046 *overlap_iterations_a = conflict_fn_not_known ();
3047 *overlap_iterations_b = conflict_fn_not_known ();
56cf8686 3048 }
0ff4040e 3049
b8698a0f 3050 /* If they are the same chrec, and are affine, they overlap
0ff4040e
SP
3051 on every iteration. */
3052 else if (eq_evolutions_p (chrec_a, chrec_b)
3e6f8b56
SP
3053 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3054 || operand_equal_p (chrec_a, chrec_b, 0)))
0ff4040e
SP
3055 {
3056 dependence_stats.num_same_subscript_function++;
d93817c4
ZD
3057 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3058 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
0ff4040e
SP
3059 *last_conflicts = chrec_dont_know;
3060 }
3061
3062 /* If they aren't the same, and aren't affine, we can't do anything
3e6f8b56 3063 yet. */
b8698a0f 3064 else if ((chrec_contains_symbols (chrec_a)
0ff4040e 3065 || chrec_contains_symbols (chrec_b))
da9a21f4
SP
3066 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3067 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
0ff4040e
SP
3068 {
3069 dependence_stats.num_subscript_undetermined++;
d93817c4
ZD
3070 *overlap_iterations_a = conflict_fn_not_known ();
3071 *overlap_iterations_b = conflict_fn_not_known ();
0ff4040e
SP
3072 }
3073
56cf8686 3074 else if (ziv_subscript_p (chrec_a, chrec_b))
b8698a0f 3075 analyze_ziv_subscript (chrec_a, chrec_b,
86df10e3
SP
3076 overlap_iterations_a, overlap_iterations_b,
3077 last_conflicts);
b8698a0f 3078
56cf8686 3079 else if (siv_subscript_p (chrec_a, chrec_b))
b8698a0f
L
3080 analyze_siv_subscript (chrec_a, chrec_b,
3081 overlap_iterations_a, overlap_iterations_b,
5b78fc3e 3082 last_conflicts, lnn);
b8698a0f 3083
56cf8686 3084 else
b8698a0f 3085 analyze_miv_subscript (chrec_a, chrec_b,
86df10e3 3086 overlap_iterations_a, overlap_iterations_b,
da9a21f4 3087 last_conflicts, loop_nest);
b8698a0f 3088
56cf8686
SP
3089 if (dump_file && (dump_flags & TDF_DETAILS))
3090 {
3091 fprintf (dump_file, " (overlap_iterations_a = ");
d93817c4 3092 dump_conflict_function (dump_file, *overlap_iterations_a);
56cf8686 3093 fprintf (dump_file, ")\n (overlap_iterations_b = ");
d93817c4 3094 dump_conflict_function (dump_file, *overlap_iterations_b);
bcf1ef00 3095 fprintf (dump_file, "))\n");
56cf8686
SP
3096 }
3097}
3098
ba42e045 3099/* Helper function for uniquely inserting distance vectors. */
56cf8686 3100
ba42e045
SP
3101static void
3102save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3103{
3104 unsigned i;
3105 lambda_vector v;
56cf8686 3106
9771b263 3107 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
ba42e045
SP
3108 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3109 return;
56cf8686 3110
9771b263 3111 DDR_DIST_VECTS (ddr).safe_push (dist_v);
ba42e045 3112}
56cf8686 3113
ba42e045
SP
3114/* Helper function for uniquely inserting direction vectors. */
3115
3116static void
3117save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
56cf8686
SP
3118{
3119 unsigned i;
ba42e045 3120 lambda_vector v;
0ff4040e 3121
9771b263 3122 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
ba42e045
SP
3123 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3124 return;
3125
9771b263 3126 DDR_DIR_VECTS (ddr).safe_push (dir_v);
ba42e045
SP
3127}
3128
3129/* Add a distance of 1 on all the loops outer than INDEX. If we
3130 haven't yet determined a distance for this outer loop, push a new
3131 distance vector composed of the previous distance, and a distance
3132 of 1 for this outer loop. Example:
3133
3134 | loop_1
3135 | loop_2
3136 | A[10]
3137 | endloop_2
3138 | endloop_1
3139
3140 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3141 save (0, 1), then we have to save (1, 0). */
3142
3143static void
3144add_outer_distances (struct data_dependence_relation *ddr,
3145 lambda_vector dist_v, int index)
3146{
3147 /* For each outer loop where init_v is not set, the accesses are
3148 in dependence of distance 1 in the loop. */
3149 while (--index >= 0)
3150 {
3151 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3152 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3153 save_v[index] = 1;
3154 save_dist_v (ddr, save_v);
3155 }
3156}
3157
3158/* Return false when fail to represent the data dependence as a
3159 distance vector. INIT_B is set to true when a component has been
3160 added to the distance vector DIST_V. INDEX_CARRY is then set to
3161 the index in DIST_V that carries the dependence. */
3162
3163static bool
3164build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3165 struct data_reference *ddr_a,
3166 struct data_reference *ddr_b,
3167 lambda_vector dist_v, bool *init_b,
3168 int *index_carry)
3169{
3170 unsigned i;
3171 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
0ff4040e 3172
36d59cf7 3173 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
56cf8686 3174 {
86df10e3 3175 tree access_fn_a, access_fn_b;
36d59cf7 3176 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
56cf8686
SP
3177
3178 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
86df10e3
SP
3179 {
3180 non_affine_dependence_relation (ddr);
ba42e045 3181 return false;
86df10e3
SP
3182 }
3183
ba42e045
SP
3184 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3185 access_fn_b = DR_ACCESS_FN (ddr_b, i);
56cf8686 3186
b8698a0f 3187 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
86df10e3 3188 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
56cf8686 3189 {
ba42e045 3190 int dist, index;
a130584a
SP
3191 int var_a = CHREC_VARIABLE (access_fn_a);
3192 int var_b = CHREC_VARIABLE (access_fn_b);
ba42e045 3193
a130584a
SP
3194 if (var_a != var_b
3195 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
86df10e3
SP
3196 {
3197 non_affine_dependence_relation (ddr);
ba42e045 3198 return false;
86df10e3 3199 }
b8698a0f 3200
6b6fa4e9 3201 dist = int_cst_value (SUB_DISTANCE (subscript));
a130584a
SP
3202 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3203 *index_carry = MIN (index, *index_carry);
56cf8686 3204
ba42e045
SP
3205 /* This is the subscript coupling test. If we have already
3206 recorded a distance for this loop (a distance coming from
3207 another subscript), it should be the same. For example,
3208 in the following code, there is no dependence:
3209
56cf8686
SP
3210 | loop i = 0, N, 1
3211 | T[i+1][i] = ...
3212 | ... = T[i][i]
3213 | endloop
ba42e045
SP
3214 */
3215 if (init_v[index] != 0 && dist_v[index] != dist)
56cf8686 3216 {
36d59cf7 3217 finalize_ddr_dependent (ddr, chrec_known);
ba42e045 3218 return false;
56cf8686
SP
3219 }
3220
ba42e045
SP
3221 dist_v[index] = dist;
3222 init_v[index] = 1;
3223 *init_b = true;
3224 }
a50411de 3225 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
ba42e045
SP
3226 {
3227 /* This can be for example an affine vs. constant dependence
3228 (T[i] vs. T[3]) that is not an affine dependence and is
3229 not representable as a distance vector. */
3230 non_affine_dependence_relation (ddr);
3231 return false;
56cf8686
SP
3232 }
3233 }
304afda6 3234
ba42e045
SP
3235 return true;
3236}
304afda6 3237
1baf2906
SP
3238/* Return true when the DDR contains only constant access functions. */
3239
3240static bool
ed7a4b4b 3241constant_access_functions (const struct data_dependence_relation *ddr)
1baf2906
SP
3242{
3243 unsigned i;
3244
3245 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3246 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3247 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3248 return false;
3249
3250 return true;
3251}
3252
ba42e045 3253/* Helper function for the case where DDR_A and DDR_B are the same
097392de
SP
3254 multivariate access function with a constant step. For an example
3255 see pr34635-1.c. */
86df10e3 3256
ba42e045
SP
3257static void
3258add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3259{
3260 int x_1, x_2;
3261 tree c_1 = CHREC_LEFT (c_2);
3262 tree c_0 = CHREC_LEFT (c_1);
3263 lambda_vector dist_v;
0ca2faee 3264 int v1, v2, cd;
86df10e3 3265
b1e75954
SP
3266 /* Polynomials with more than 2 variables are not handled yet. When
3267 the evolution steps are parameters, it is not possible to
3268 represent the dependence using classical distance vectors. */
3269 if (TREE_CODE (c_0) != INTEGER_CST
3270 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3271 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3272 {
3273 DDR_AFFINE_P (ddr) = false;
ba42e045
SP
3274 return;
3275 }
304afda6 3276
ba42e045
SP
3277 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3278 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
304afda6 3279
ba42e045
SP
3280 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3281 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
6b6fa4e9
SP
3282 v1 = int_cst_value (CHREC_RIGHT (c_1));
3283 v2 = int_cst_value (CHREC_RIGHT (c_2));
0ca2faee
ZD
3284 cd = gcd (v1, v2);
3285 v1 /= cd;
3286 v2 /= cd;
3287
3288 if (v2 < 0)
3289 {
3290 v2 = -v2;
3291 v1 = -v1;
3292 }
3293
3294 dist_v[x_1] = v2;
3295 dist_v[x_2] = -v1;
ba42e045 3296 save_dist_v (ddr, dist_v);
304afda6 3297
ba42e045
SP
3298 add_outer_distances (ddr, dist_v, x_1);
3299}
304afda6 3300
ba42e045
SP
3301/* Helper function for the case where DDR_A and DDR_B are the same
3302 access functions. */
37b8a73b 3303
ba42e045
SP
3304static void
3305add_other_self_distances (struct data_dependence_relation *ddr)
3306{
3307 lambda_vector dist_v;
3308 unsigned i;
3309 int index_carry = DDR_NB_LOOPS (ddr);
304afda6 3310
ba42e045 3311 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
37b8a73b 3312 {
ba42e045 3313 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
304afda6 3314
ba42e045 3315 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
304afda6 3316 {
ba42e045
SP
3317 if (!evolution_function_is_univariate_p (access_fun))
3318 {
3319 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3320 {
3321 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3322 return;
3323 }
3324
097392de
SP
3325 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3326
3327 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3328 add_multivariate_self_dist (ddr, access_fun);
3329 else
3330 /* The evolution step is not constant: it varies in
3331 the outer loop, so this cannot be represented by a
3332 distance vector. For example in pr34635.c the
3333 evolution is {0, +, {0, +, 4}_1}_2. */
3334 DDR_AFFINE_P (ddr) = false;
3335
ba42e045
SP
3336 return;
3337 }
3338
3339 index_carry = MIN (index_carry,
3340 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3341 DDR_LOOP_NEST (ddr)));
304afda6 3342 }
37b8a73b
SP
3343 }
3344
ba42e045
SP
3345 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3346 add_outer_distances (ddr, dist_v, index_carry);
56cf8686
SP
3347}
3348
1baf2906
SP
3349static void
3350insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3351{
3352 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3353
3354 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3355 save_dist_v (ddr, dist_v);
3356}
3357
3358/* Adds a unit distance vector to DDR when there is a 0 overlap. This
3359 is the case for example when access functions are the same and
3360 equal to a constant, as in:
3361
3362 | loop_1
3363 | A[3] = ...
3364 | ... = A[3]
3365 | endloop_1
3366
3367 in which case the distance vectors are (0) and (1). */
3368
3369static void
3370add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3371{
3372 unsigned i, j;
3373
3374 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3375 {
3376 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3377 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3378 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3379
3380 for (j = 0; j < ca->n; j++)
3381 if (affine_function_zero_p (ca->fns[j]))
3382 {
3383 insert_innermost_unit_dist_vector (ddr);
3384 return;
3385 }
3386
3387 for (j = 0; j < cb->n; j++)
3388 if (affine_function_zero_p (cb->fns[j]))
3389 {
3390 insert_innermost_unit_dist_vector (ddr);
3391 return;
3392 }
3393 }
3394}
3395
ba42e045
SP
3396/* Compute the classic per loop distance vector. DDR is the data
3397 dependence relation to build a vector from. Return false when fail
3398 to represent the data dependence as a distance vector. */
56cf8686 3399
464f49d8 3400static bool
da9a21f4
SP
3401build_classic_dist_vector (struct data_dependence_relation *ddr,
3402 struct loop *loop_nest)
56cf8686 3403{
304afda6 3404 bool init_b = false;
ba42e045
SP
3405 int index_carry = DDR_NB_LOOPS (ddr);
3406 lambda_vector dist_v;
304afda6 3407
36d59cf7 3408 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
2f470326 3409 return false;
ba42e045
SP
3410
3411 if (same_access_functions (ddr))
56cf8686 3412 {
ba42e045
SP
3413 /* Save the 0 vector. */
3414 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3415 save_dist_v (ddr, dist_v);
56cf8686 3416
1baf2906
SP
3417 if (constant_access_functions (ddr))
3418 add_distance_for_zero_overlaps (ddr);
3419
ba42e045
SP
3420 if (DDR_NB_LOOPS (ddr) > 1)
3421 add_other_self_distances (ddr);
86df10e3 3422
ba42e045
SP
3423 return true;
3424 }
86df10e3 3425
ba42e045
SP
3426 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3427 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3428 dist_v, &init_b, &index_carry))
3429 return false;
86df10e3 3430
ba42e045
SP
3431 /* Save the distance vector if we initialized one. */
3432 if (init_b)
3433 {
3434 /* Verify a basic constraint: classic distance vectors should
3435 always be lexicographically positive.
3436
3437 Data references are collected in the order of execution of
3438 the program, thus for the following loop
3439
3440 | for (i = 1; i < 100; i++)
3441 | for (j = 1; j < 100; j++)
3442 | {
3443 | t = T[j+1][i-1]; // A
3444 | T[j][i] = t + 2; // B
3445 | }
3446
3447 references are collected following the direction of the wind:
3448 A then B. The data dependence tests are performed also
3449 following this order, such that we're looking at the distance
3450 separating the elements accessed by A from the elements later
3451 accessed by B. But in this example, the distance returned by
3452 test_dep (A, B) is lexicographically negative (-1, 1), that
3453 means that the access A occurs later than B with respect to
3454 the outer loop, ie. we're actually looking upwind. In this
3455 case we solve test_dep (B, A) looking downwind to the
3456 lexicographically positive solution, that returns the
3457 distance vector (1, -1). */
3458 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3459 {
3460 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
2f470326
JJ
3461 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3462 loop_nest))
3463 return false;
ba42e045 3464 compute_subscript_distance (ddr);
2f470326
JJ
3465 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3466 save_v, &init_b, &index_carry))
3467 return false;
ba42e045 3468 save_dist_v (ddr, save_v);
71d5b5e1 3469 DDR_REVERSED_P (ddr) = true;
ba42e045
SP
3470
3471 /* In this case there is a dependence forward for all the
3472 outer loops:
3473
3474 | for (k = 1; k < 100; k++)
3475 | for (i = 1; i < 100; i++)
3476 | for (j = 1; j < 100; j++)
3477 | {
3478 | t = T[j+1][i-1]; // A
3479 | T[j][i] = t + 2; // B
3480 | }
3481
b8698a0f 3482 the vectors are:
ba42e045
SP
3483 (0, 1, -1)
3484 (1, 1, -1)
3485 (1, -1, 1)
3486 */
3487 if (DDR_NB_LOOPS (ddr) > 1)
3488 {
3489 add_outer_distances (ddr, save_v, index_carry);
3490 add_outer_distances (ddr, dist_v, index_carry);
86df10e3 3491 }
ba42e045
SP
3492 }
3493 else
3494 {
3495 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3496 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
86df10e3 3497
ba42e045 3498 if (DDR_NB_LOOPS (ddr) > 1)
56cf8686 3499 {
ba42e045 3500 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
86df10e3 3501
2f470326
JJ
3502 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3503 DDR_A (ddr), loop_nest))
3504 return false;
ba42e045 3505 compute_subscript_distance (ddr);
2f470326
JJ
3506 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3507 opposite_v, &init_b,
3508 &index_carry))
3509 return false;
86df10e3 3510
2f470326 3511 save_dist_v (ddr, save_v);
ba42e045
SP
3512 add_outer_distances (ddr, dist_v, index_carry);
3513 add_outer_distances (ddr, opposite_v, index_carry);
56cf8686 3514 }
2f470326
JJ
3515 else
3516 save_dist_v (ddr, save_v);
56cf8686
SP
3517 }
3518 }
ba42e045
SP
3519 else
3520 {
3521 /* There is a distance of 1 on all the outer loops: Example:
3522 there is a dependence of distance 1 on loop_1 for the array A.
304afda6 3523
ba42e045
SP
3524 | loop_1
3525 | A[5] = ...
3526 | endloop
3527 */
3528 add_outer_distances (ddr, dist_v,
3529 lambda_vector_first_nz (dist_v,
3530 DDR_NB_LOOPS (ddr), 0));
3531 }
3532
3533 if (dump_file && (dump_flags & TDF_DETAILS))
304afda6 3534 {
ba42e045 3535 unsigned i;
304afda6 3536
ba42e045
SP
3537 fprintf (dump_file, "(build_classic_dist_vector\n");
3538 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3539 {
3540 fprintf (dump_file, " dist_vector = (");
3541 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3542 DDR_NB_LOOPS (ddr));
3543 fprintf (dump_file, " )\n");
3544 }
3545 fprintf (dump_file, ")\n");
304afda6
SP
3546 }
3547
ba42e045
SP
3548 return true;
3549}
56cf8686 3550
ba42e045
SP
3551/* Return the direction for a given distance.
3552 FIXME: Computing dir this way is suboptimal, since dir can catch
3553 cases that dist is unable to represent. */
86df10e3 3554
ba42e045
SP
3555static inline enum data_dependence_direction
3556dir_from_dist (int dist)
3557{
3558 if (dist > 0)
3559 return dir_positive;
3560 else if (dist < 0)
3561 return dir_negative;
3562 else
3563 return dir_equal;
3564}
304afda6 3565
ba42e045
SP
3566/* Compute the classic per loop direction vector. DDR is the data
3567 dependence relation to build a vector from. */
304afda6 3568
ba42e045
SP
3569static void
3570build_classic_dir_vector (struct data_dependence_relation *ddr)
3571{
3572 unsigned i, j;
3573 lambda_vector dist_v;
86df10e3 3574
9771b263 3575 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
ba42e045
SP
3576 {
3577 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
86df10e3 3578
ba42e045
SP
3579 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3580 dir_v[j] = dir_from_dist (dist_v[j]);
304afda6 3581
ba42e045
SP
3582 save_dir_v (ddr, dir_v);
3583 }
56cf8686
SP
3584}
3585
ba42e045
SP
3586/* Helper function. Returns true when there is a dependence between
3587 data references DRA and DRB. */
0ff4040e 3588
ba42e045
SP
3589static bool
3590subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3591 struct data_reference *dra,
da9a21f4
SP
3592 struct data_reference *drb,
3593 struct loop *loop_nest)
0ff4040e
SP
3594{
3595 unsigned int i;
0ff4040e 3596 tree last_conflicts;
ebf78a47 3597 struct subscript *subscript;
9b00587c 3598 tree res = NULL_TREE;
ba42e045 3599
9771b263 3600 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
0ff4040e 3601 {
d93817c4 3602 conflict_function *overlaps_a, *overlaps_b;
ebf78a47 3603
b8698a0f 3604 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
0ff4040e 3605 DR_ACCESS_FN (drb, i),
b8698a0f 3606 &overlaps_a, &overlaps_b,
da9a21f4 3607 &last_conflicts, loop_nest);
ebf78a47 3608
9b00587c
RG
3609 if (SUB_CONFLICTS_IN_A (subscript))
3610 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3611 if (SUB_CONFLICTS_IN_B (subscript))
3612 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3613
3614 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3615 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3616 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3617
3618 /* If there is any undetermined conflict function we have to
3619 give a conservative answer in case we cannot prove that
3620 no dependence exists when analyzing another subscript. */
d93817c4
ZD
3621 if (CF_NOT_KNOWN_P (overlaps_a)
3622 || CF_NOT_KNOWN_P (overlaps_b))
0ff4040e 3623 {
9b00587c
RG
3624 res = chrec_dont_know;
3625 continue;
0ff4040e 3626 }
ebf78a47 3627
9b00587c 3628 /* When there is a subscript with no dependence we can stop. */
d93817c4
ZD
3629 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3630 || CF_NO_DEPENDENCE_P (overlaps_b))
0ff4040e 3631 {
9b00587c
RG
3632 res = chrec_known;
3633 break;
0ff4040e
SP
3634 }
3635 }
3636
9b00587c
RG
3637 if (res == NULL_TREE)
3638 return true;
3639
3640 if (res == chrec_known)
3641 dependence_stats.num_dependence_independent++;
3642 else
3643 dependence_stats.num_dependence_undetermined++;
3644 finalize_ddr_dependent (ddr, res);
3645 return false;
ba42e045
SP
3646}
3647
da9a21f4 3648/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
ba42e045
SP
3649
3650static void
da9a21f4
SP
3651subscript_dependence_tester (struct data_dependence_relation *ddr,
3652 struct loop *loop_nest)
ba42e045 3653{
da9a21f4 3654 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
ba42e045 3655 dependence_stats.num_dependence_dependent++;
0ff4040e 3656
0ff4040e 3657 compute_subscript_distance (ddr);
da9a21f4 3658 if (build_classic_dist_vector (ddr, loop_nest))
ba42e045 3659 build_classic_dir_vector (ddr);
0ff4040e
SP
3660}
3661
56cf8686 3662/* Returns true when all the access functions of A are affine or
da9a21f4 3663 constant with respect to LOOP_NEST. */
56cf8686 3664
b8698a0f 3665static bool
ed7a4b4b
KG
3666access_functions_are_affine_or_constant_p (const struct data_reference *a,
3667 const struct loop *loop_nest)
56cf8686
SP
3668{
3669 unsigned int i;
9771b263 3670 vec<tree> fns = DR_ACCESS_FNS (a);
9cbb7989 3671 tree t;
3d8864c0 3672
9771b263 3673 FOR_EACH_VEC_ELT (fns, i, t)
da9a21f4
SP
3674 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3675 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
56cf8686 3676 return false;
b8698a0f 3677
56cf8686
SP
3678 return true;
3679}
3680
da9a21f4
SP
3681/* This computes the affine dependence relation between A and B with
3682 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
3683 independence between two accesses, while CHREC_DONT_KNOW is used
3684 for representing the unknown relation.
b8698a0f 3685
56cf8686
SP
3686 Note that it is possible to stop the computation of the dependence
3687 relation the first time we detect a CHREC_KNOWN element for a given
3688 subscript. */
3689
f20132e7 3690void
da9a21f4
SP
3691compute_affine_dependence (struct data_dependence_relation *ddr,
3692 struct loop *loop_nest)
56cf8686
SP
3693{
3694 struct data_reference *dra = DDR_A (ddr);
3695 struct data_reference *drb = DDR_B (ddr);
b8698a0f 3696
56cf8686
SP
3697 if (dump_file && (dump_flags & TDF_DETAILS))
3698 {
36d59cf7 3699 fprintf (dump_file, "(compute_affine_dependence\n");
c4ddde1b
RG
3700 fprintf (dump_file, " stmt_a: ");
3701 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
3702 fprintf (dump_file, " stmt_b: ");
3703 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
56cf8686 3704 }
0ff4040e 3705
56cf8686 3706 /* Analyze only when the dependence relation is not yet known. */
1a4571cb 3707 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
56cf8686 3708 {
0ff4040e
SP
3709 dependence_stats.num_dependence_tests++;
3710
da9a21f4
SP
3711 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
3712 && access_functions_are_affine_or_constant_p (drb, loop_nest))
49b8fe6c 3713 subscript_dependence_tester (ddr, loop_nest);
b8698a0f 3714
56cf8686
SP
3715 /* As a last case, if the dependence cannot be determined, or if
3716 the dependence is considered too difficult to determine, answer
3717 "don't know". */
3718 else
0ff4040e
SP
3719 {
3720 dependence_stats.num_dependence_undetermined++;
3721
3722 if (dump_file && (dump_flags & TDF_DETAILS))
3723 {
3724 fprintf (dump_file, "Data ref a:\n");
3725 dump_data_reference (dump_file, dra);
3726 fprintf (dump_file, "Data ref b:\n");
3727 dump_data_reference (dump_file, drb);
3728 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
3729 }
3730 finalize_ddr_dependent (ddr, chrec_dont_know);
3731 }
56cf8686 3732 }
b8698a0f 3733
56cf8686 3734 if (dump_file && (dump_flags & TDF_DETAILS))
c4ddde1b
RG
3735 {
3736 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
3737 fprintf (dump_file, ") -> no dependence\n");
3738 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
3739 fprintf (dump_file, ") -> dependence analysis failed\n");
3740 else
3741 fprintf (dump_file, ")\n");
3742 }
56cf8686
SP
3743}
3744
ba42e045
SP
3745/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
3746 the data references in DATAREFS, in the LOOP_NEST. When
ebf78a47 3747 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
3881dee9
AB
3748 relations. Return true when successful, i.e. data references number
3749 is small enough to be handled. */
56cf8686 3750
3881dee9 3751bool
9771b263
DN
3752compute_all_dependences (vec<data_reference_p> datarefs,
3753 vec<ddr_p> *dependence_relations,
3754 vec<loop_p> loop_nest,
ebf78a47 3755 bool compute_self_and_rr)
56cf8686 3756{
ebf78a47
SP
3757 struct data_dependence_relation *ddr;
3758 struct data_reference *a, *b;
3759 unsigned int i, j;
56cf8686 3760
9771b263 3761 if ((int) datarefs.length ()
3881dee9
AB
3762 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
3763 {
3764 struct data_dependence_relation *ddr;
3765
3766 /* Insert a single relation into dependence_relations:
3767 chrec_dont_know. */
3768 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
9771b263 3769 dependence_relations->safe_push (ddr);
3881dee9
AB
3770 return false;
3771 }
3772
9771b263
DN
3773 FOR_EACH_VEC_ELT (datarefs, i, a)
3774 for (j = i + 1; datarefs.iterate (j, &b); j++)
b0af49c4 3775 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
ebf78a47
SP
3776 {
3777 ddr = initialize_data_dependence_relation (a, b, loop_nest);
9771b263
DN
3778 dependence_relations->safe_push (ddr);
3779 if (loop_nest.exists ())
3780 compute_affine_dependence (ddr, loop_nest[0]);
ebf78a47 3781 }
789246d7 3782
ebf78a47 3783 if (compute_self_and_rr)
9771b263 3784 FOR_EACH_VEC_ELT (datarefs, i, a)
56cf8686 3785 {
ebf78a47 3786 ddr = initialize_data_dependence_relation (a, a, loop_nest);
9771b263
DN
3787 dependence_relations->safe_push (ddr);
3788 if (loop_nest.exists ())
3789 compute_affine_dependence (ddr, loop_nest[0]);
56cf8686 3790 }
3881dee9
AB
3791
3792 return true;
56cf8686
SP
3793}
3794
aeb83f09
RG
3795/* Describes a location of a memory reference. */
3796
50686850 3797struct data_ref_loc
aeb83f09 3798{
a3698dfc
JJ
3799 /* The memory reference. */
3800 tree ref;
aeb83f09 3801
fcac74a1
RB
3802 /* True if the memory reference is read. */
3803 bool is_read;
50686850 3804};
aeb83f09 3805
aeb83f09 3806
946e1bc7
ZD
3807/* Stores the locations of memory references in STMT to REFERENCES. Returns
3808 true if STMT clobbers memory, false otherwise. */
3809
aeb83f09 3810static bool
355fe088 3811get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
946e1bc7
ZD
3812{
3813 bool clobbers_memory = false;
f32682ca 3814 data_ref_loc ref;
a3698dfc 3815 tree op0, op1;
726a989a 3816 enum gimple_code stmt_code = gimple_code (stmt);
946e1bc7 3817
946e1bc7 3818 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
f2ea3c15
RG
3819 As we cannot model data-references to not spelled out
3820 accesses give up if they may occur. */
74bf76ed
JJ
3821 if (stmt_code == GIMPLE_CALL
3822 && !(gimple_call_flags (stmt) & ECF_CONST))
3823 {
3824 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
5ce9450f
JJ
3825 if (gimple_call_internal_p (stmt))
3826 switch (gimple_call_internal_fn (stmt))
3827 {
3828 case IFN_GOMP_SIMD_LANE:
3829 {
3830 struct loop *loop = gimple_bb (stmt)->loop_father;
3831 tree uid = gimple_call_arg (stmt, 0);
3832 gcc_assert (TREE_CODE (uid) == SSA_NAME);
3833 if (loop == NULL
3834 || loop->simduid != SSA_NAME_VAR (uid))
3835 clobbers_memory = true;
3836 break;
3837 }
3838 case IFN_MASK_LOAD:
3839 case IFN_MASK_STORE:
3840 break;
3841 default:
74bf76ed 3842 clobbers_memory = true;
5ce9450f
JJ
3843 break;
3844 }
74bf76ed
JJ
3845 else
3846 clobbers_memory = true;
3847 }
3848 else if (stmt_code == GIMPLE_ASM
538dd0b7
DM
3849 && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
3850 || gimple_vuse (stmt)))
946e1bc7
ZD
3851 clobbers_memory = true;
3852
5006671f 3853 if (!gimple_vuse (stmt))
946e1bc7
ZD
3854 return clobbers_memory;
3855
726a989a 3856 if (stmt_code == GIMPLE_ASSIGN)
946e1bc7 3857 {
c8ae0bec 3858 tree base;
a3698dfc
JJ
3859 op0 = gimple_assign_lhs (stmt);
3860 op1 = gimple_assign_rhs1 (stmt);
b8698a0f 3861
a3698dfc
JJ
3862 if (DECL_P (op1)
3863 || (REFERENCE_CLASS_P (op1)
3864 && (base = get_base_address (op1))
c8ae0bec 3865 && TREE_CODE (base) != SSA_NAME))
946e1bc7 3866 {
a3698dfc 3867 ref.ref = op1;
f32682ca 3868 ref.is_read = true;
9771b263 3869 references->safe_push (ref);
946e1bc7 3870 }
946e1bc7 3871 }
726a989a 3872 else if (stmt_code == GIMPLE_CALL)
946e1bc7 3873 {
1b14d815 3874 unsigned i, n;
08554c26
JJ
3875 tree ptr, type;
3876 unsigned int align;
ac84e05e 3877
5ce9450f
JJ
3878 ref.is_read = false;
3879 if (gimple_call_internal_p (stmt))
3880 switch (gimple_call_internal_fn (stmt))
3881 {
3882 case IFN_MASK_LOAD:
8e91d222
JJ
3883 if (gimple_call_lhs (stmt) == NULL_TREE)
3884 break;
5ce9450f
JJ
3885 ref.is_read = true;
3886 case IFN_MASK_STORE:
08554c26
JJ
3887 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
3888 align = tree_to_shwi (gimple_call_arg (stmt, 1));
3889 if (ref.is_read)
3890 type = TREE_TYPE (gimple_call_lhs (stmt));
3891 else
3892 type = TREE_TYPE (gimple_call_arg (stmt, 3));
3893 if (TYPE_ALIGN (type) != align)
3894 type = build_aligned_type (type, align);
3895 ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
3896 ptr);
5ce9450f
JJ
3897 references->safe_push (ref);
3898 return false;
3899 default:
3900 break;
3901 }
3902
a3698dfc 3903 op0 = gimple_call_lhs (stmt);
1b14d815 3904 n = gimple_call_num_args (stmt);
ac84e05e 3905 for (i = 0; i < n; i++)
946e1bc7 3906 {
a3698dfc 3907 op1 = gimple_call_arg (stmt, i);
ac84e05e 3908
a3698dfc
JJ
3909 if (DECL_P (op1)
3910 || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
946e1bc7 3911 {
a3698dfc 3912 ref.ref = op1;
f32682ca 3913 ref.is_read = true;
9771b263 3914 references->safe_push (ref);
946e1bc7
ZD
3915 }
3916 }
3917 }
1b14d815
RS
3918 else
3919 return clobbers_memory;
946e1bc7 3920
a3698dfc
JJ
3921 if (op0
3922 && (DECL_P (op0)
3923 || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
1b14d815 3924 {
a3698dfc 3925 ref.ref = op0;
f32682ca 3926 ref.is_read = false;
9771b263 3927 references->safe_push (ref);
1b14d815 3928 }
946e1bc7
ZD
3929 return clobbers_memory;
3930}
3931
74032f47
AK
3932
3933/* Returns true if the loop-nest has any data reference. */
3934
3935bool
3936loop_nest_has_data_refs (loop_p loop)
3937{
3938 basic_block *bbs = get_loop_body (loop);
3939 vec<data_ref_loc> references;
3940 references.create (3);
3941
3942 for (unsigned i = 0; i < loop->num_nodes; i++)
3943 {
3944 basic_block bb = bbs[i];
3945 gimple_stmt_iterator bsi;
3946
3947 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3948 {
355fe088 3949 gimple *stmt = gsi_stmt (bsi);
74032f47
AK
3950 get_references_in_stmt (stmt, &references);
3951 if (references.length ())
3952 {
3953 free (bbs);
3954 references.release ();
3955 return true;
3956 }
3957 }
3958 }
3959 free (bbs);
3960 references.release ();
3961
3962 if (loop->inner)
3963 {
3964 loop = loop->inner;
3965 while (loop)
3966 {
3967 if (loop_nest_has_data_refs (loop))
3968 return true;
3969 loop = loop->next;
3970 }
3971 }
3972 return false;
3973}
3974
946e1bc7 3975/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
3cb960c7 3976 reference, returns false, otherwise returns true. NEST is the outermost
f8bf9252 3977 loop of the loop nest in which the references should be analyzed. */
946e1bc7 3978
f8bf9252 3979bool
355fe088 3980find_data_references_in_stmt (struct loop *nest, gimple *stmt,
9771b263 3981 vec<data_reference_p> *datarefs)
946e1bc7
ZD
3982{
3983 unsigned i;
00f96dc9 3984 auto_vec<data_ref_loc, 2> references;
946e1bc7
ZD
3985 data_ref_loc *ref;
3986 bool ret = true;
3987 data_reference_p dr;
3988
3989 if (get_references_in_stmt (stmt, &references))
ff4c81cc 3990 return false;
946e1bc7 3991
9771b263 3992 FOR_EACH_VEC_ELT (references, i, ref)
946e1bc7 3993 {
5c640e29 3994 dr = create_data_ref (nest, loop_containing_stmt (stmt),
a3698dfc 3995 ref->ref, stmt, ref->is_read);
bbc8a8dc 3996 gcc_assert (dr != NULL);
9771b263 3997 datarefs->safe_push (dr);
946e1bc7 3998 }
9771b263 3999 references.release ();
946e1bc7
ZD
4000 return ret;
4001}
4002
5c640e29
SP
4003/* Stores the data references in STMT to DATAREFS. If there is an
4004 unanalyzable reference, returns false, otherwise returns true.
4005 NEST is the outermost loop of the loop nest in which the references
4006 should be instantiated, LOOP is the loop in which the references
4007 should be analyzed. */
ed91d661
SP
4008
4009bool
355fe088 4010graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple *stmt,
9771b263 4011 vec<data_reference_p> *datarefs)
ed91d661
SP
4012{
4013 unsigned i;
00f96dc9 4014 auto_vec<data_ref_loc, 2> references;
ed91d661
SP
4015 data_ref_loc *ref;
4016 bool ret = true;
4017 data_reference_p dr;
4018
4019 if (get_references_in_stmt (stmt, &references))
ff4c81cc 4020 return false;
ed91d661 4021
9771b263 4022 FOR_EACH_VEC_ELT (references, i, ref)
ed91d661 4023 {
a3698dfc 4024 dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read);
ed91d661 4025 gcc_assert (dr != NULL);
9771b263 4026 datarefs->safe_push (dr);
ed91d661
SP
4027 }
4028
9771b263 4029 references.release ();
ed91d661
SP
4030 return ret;
4031}
4032
a70d6342
IR
4033/* Search the data references in LOOP, and record the information into
4034 DATAREFS. Returns chrec_dont_know when failing to analyze a
4035 difficult case, returns NULL_TREE otherwise. */
4036
bfe068c3 4037tree
a70d6342 4038find_data_references_in_bb (struct loop *loop, basic_block bb,
9771b263 4039 vec<data_reference_p> *datarefs)
a70d6342
IR
4040{
4041 gimple_stmt_iterator bsi;
4042
4043 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4044 {
355fe088 4045 gimple *stmt = gsi_stmt (bsi);
a70d6342
IR
4046
4047 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4048 {
4049 struct data_reference *res;
4050 res = XCNEW (struct data_reference);
9771b263 4051 datarefs->safe_push (res);
a70d6342
IR
4052
4053 return chrec_dont_know;
4054 }
4055 }
4056
4057 return NULL_TREE;
4058}
4059
56cf8686
SP
4060/* Search the data references in LOOP, and record the information into
4061 DATAREFS. Returns chrec_dont_know when failing to analyze a
4062 difficult case, returns NULL_TREE otherwise.
3cb960c7 4063
464f49d8
DB
4064 TODO: This function should be made smarter so that it can handle address
4065 arithmetic as if they were array accesses, etc. */
56cf8686 4066
fcac74a1 4067tree
ebf78a47 4068find_data_references_in_loop (struct loop *loop,
9771b263 4069 vec<data_reference_p> *datarefs)
56cf8686 4070{
ccbdbf0a
JL
4071 basic_block bb, *bbs;
4072 unsigned int i;
86df10e3 4073
bbc8a8dc 4074 bbs = get_loop_body_in_dom_order (loop);
ccbdbf0a
JL
4075
4076 for (i = 0; i < loop->num_nodes; i++)
56cf8686 4077 {
ccbdbf0a
JL
4078 bb = bbs[i];
4079
a70d6342
IR
4080 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4081 {
4082 free (bbs);
4083 return chrec_dont_know;
4084 }
56cf8686 4085 }
ccbdbf0a
JL
4086 free (bbs);
4087
4aad410d 4088 return NULL_TREE;
56cf8686
SP
4089}
4090
ba42e045
SP
4091/* Recursive helper function. */
4092
4093static bool
9771b263 4094find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
ba42e045
SP
4095{
4096 /* Inner loops of the nest should not contain siblings. Example:
4097 when there are two consecutive loops,
4098
4099 | loop_0
4100 | loop_1
4101 | A[{0, +, 1}_1]
4102 | endloop_1
4103 | loop_2
4104 | A[{0, +, 1}_2]
4105 | endloop_2
4106 | endloop_0
4107
4108 the dependence relation cannot be captured by the distance
4109 abstraction. */
4110 if (loop->next)
4111 return false;
56cf8686 4112
9771b263 4113 loop_nest->safe_push (loop);
ba42e045
SP
4114 if (loop->inner)
4115 return find_loop_nest_1 (loop->inner, loop_nest);
4116 return true;
4117}
4118
4119/* Return false when the LOOP is not well nested. Otherwise return
4120 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4121 contain the loops from the outermost to the innermost, as they will
4122 appear in the classic distance vector. */
4123
5417e022 4124bool
9771b263 4125find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
ba42e045 4126{
9771b263 4127 loop_nest->safe_push (loop);
ba42e045
SP
4128 if (loop->inner)
4129 return find_loop_nest_1 (loop->inner, loop_nest);
4130 return true;
4131}
56cf8686 4132
9f275479
JS
4133/* Returns true when the data dependences have been computed, false otherwise.
4134 Given a loop nest LOOP, the following vectors are returned:
b8698a0f
L
4135 DATAREFS is initialized to all the array elements contained in this loop,
4136 DEPENDENCE_RELATIONS contains the relations between the data references.
4137 Compute read-read and self relations if
86a07404 4138 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
56cf8686 4139
9f275479 4140bool
b8698a0f 4141compute_data_dependences_for_loop (struct loop *loop,
86a07404 4142 bool compute_self_and_read_read_dependences,
9771b263
DN
4143 vec<loop_p> *loop_nest,
4144 vec<data_reference_p> *datarefs,
4145 vec<ddr_p> *dependence_relations)
56cf8686 4146{
9f275479 4147 bool res = true;
86a07404 4148
0ff4040e 4149 memset (&dependence_stats, 0, sizeof (dependence_stats));
56cf8686 4150
b8698a0f 4151 /* If the loop nest is not well formed, or one of the data references
ba42e045
SP
4152 is not computable, give up without spending time to compute other
4153 dependences. */
3cb960c7 4154 if (!loop
01be8516 4155 || !find_loop_nest (loop, loop_nest)
3881dee9
AB
4156 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4157 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4158 compute_self_and_read_read_dependences))
4159 res = false;
0ff4040e
SP
4160
4161 if (dump_file && (dump_flags & TDF_STATS))
56cf8686 4162 {
0ff4040e
SP
4163 fprintf (dump_file, "Dependence tester statistics:\n");
4164
b8698a0f 4165 fprintf (dump_file, "Number of dependence tests: %d\n",
0ff4040e 4166 dependence_stats.num_dependence_tests);
b8698a0f 4167 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
0ff4040e 4168 dependence_stats.num_dependence_dependent);
b8698a0f 4169 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
0ff4040e 4170 dependence_stats.num_dependence_independent);
b8698a0f 4171 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
0ff4040e
SP
4172 dependence_stats.num_dependence_undetermined);
4173
b8698a0f 4174 fprintf (dump_file, "Number of subscript tests: %d\n",
0ff4040e 4175 dependence_stats.num_subscript_tests);
b8698a0f 4176 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
0ff4040e 4177 dependence_stats.num_subscript_undetermined);
b8698a0f 4178 fprintf (dump_file, "Number of same subscript function: %d\n",
0ff4040e
SP
4179 dependence_stats.num_same_subscript_function);
4180
4181 fprintf (dump_file, "Number of ziv tests: %d\n",
4182 dependence_stats.num_ziv);
4183 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4184 dependence_stats.num_ziv_dependent);
4185 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4186 dependence_stats.num_ziv_independent);
4187 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
b8698a0f 4188 dependence_stats.num_ziv_unimplemented);
0ff4040e 4189
b8698a0f 4190 fprintf (dump_file, "Number of siv tests: %d\n",
0ff4040e
SP
4191 dependence_stats.num_siv);
4192 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4193 dependence_stats.num_siv_dependent);
4194 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4195 dependence_stats.num_siv_independent);
4196 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4197 dependence_stats.num_siv_unimplemented);
4198
b8698a0f 4199 fprintf (dump_file, "Number of miv tests: %d\n",
0ff4040e
SP
4200 dependence_stats.num_miv);
4201 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4202 dependence_stats.num_miv_dependent);
4203 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4204 dependence_stats.num_miv_independent);
4205 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4206 dependence_stats.num_miv_unimplemented);
9f275479
JS
4207 }
4208
4209 return res;
56cf8686
SP
4210}
4211
36d59cf7
DB
4212/* Free the memory used by a data dependence relation DDR. */
4213
4214void
4215free_dependence_relation (struct data_dependence_relation *ddr)
4216{
4217 if (ddr == NULL)
4218 return;
4219
9771b263 4220 if (DDR_SUBSCRIPTS (ddr).exists ())
d93817c4 4221 free_subscripts (DDR_SUBSCRIPTS (ddr));
9771b263
DN
4222 DDR_DIST_VECTS (ddr).release ();
4223 DDR_DIR_VECTS (ddr).release ();
ebf78a47 4224
36d59cf7
DB
4225 free (ddr);
4226}
4227
4228/* Free the memory used by the data dependence relations from
4229 DEPENDENCE_RELATIONS. */
4230
b8698a0f 4231void
9771b263 4232free_dependence_relations (vec<ddr_p> dependence_relations)
36d59cf7
DB
4233{
4234 unsigned int i;
ebf78a47 4235 struct data_dependence_relation *ddr;
36d59cf7 4236
9771b263 4237 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
01be8516 4238 if (ddr)
3ac57120 4239 free_dependence_relation (ddr);
ebf78a47 4240
9771b263 4241 dependence_relations.release ();
56cf8686
SP
4242}
4243
36d59cf7
DB
4244/* Free the memory used by the data references from DATAREFS. */
4245
4246void
9771b263 4247free_data_refs (vec<data_reference_p> datarefs)
36d59cf7
DB
4248{
4249 unsigned int i;
ebf78a47 4250 struct data_reference *dr;
56cf8686 4251
9771b263 4252 FOR_EACH_VEC_ELT (datarefs, i, dr)
8fdbc9c6 4253 free_data_ref (dr);
9771b263 4254 datarefs.release ();
36d59cf7 4255}