]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-data-ref.h
2009-05-04 Rafael Avila de Espindola <espindola@google.com>
[thirdparty/gcc.git] / gcc / tree-data-ref.h
CommitLineData
2146e26d 1/* Data references and dependences detectors.
12c697cd 2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
6b421feb 4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
2146e26d 5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
2146e26d 11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
2146e26d 21
22#ifndef GCC_TREE_DATA_REF_H
23#define GCC_TREE_DATA_REF_H
24
74c8f69a 25#include "graphds.h"
6b6f234c 26#include "lambda.h"
355572cc 27#include "omega.h"
801c5610 28#include "tree-chrec.h"
6b6f234c 29
6b8dbb53 30/*
80bb306a 31 innermost_loop_behavior describes the evolution of the address of the memory
32 reference in the innermost enclosing loop. The address is expressed as
33 BASE + STEP * # of iteration, and base is further decomposed as the base
34 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
35 constant offset (INIT). Examples, in loop nest
36
37 for (i = 0; i < 100; i++)
38 for (j = 3; j < 100; j++)
6b8dbb53 39
516849c7 40 Example 1 Example 2
80bb306a 41 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
516849c7 42
801c5610 43
80bb306a 44 innermost_loop_behavior
45 base_address &a p
46 offset i * D_i x
47 init 3 * D_j + offsetof (b) 28
516849c7 48 step D_j 4
516849c7 49
6b8dbb53 50 */
80bb306a 51struct innermost_loop_behavior
516849c7 52{
53 tree base_address;
54 tree offset;
55 tree init;
56 tree step;
80bb306a 57
58 /* Alignment information. ALIGNED_TO is set to the largest power of two
59 that divides OFFSET. */
60 tree aligned_to;
516849c7 61};
62
80bb306a 63/* Describes the evolutions of indices of the memory reference. The indices
64 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
65 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
66 (note that this reference does not have to be valid, if zero does not
67 belong to the range of the array; hence it is not recommended to use
68 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
69 set to the loop-invariant part of the address of the object, except for
70 the constant offset. For the examples above,
71
72 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
73 indices: {j_0, +, 1}_2 {16, +, 4}_2
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
76*/
77
78struct indices
516849c7 79{
80 /* The object. */
81 tree base_object;
82
80bb306a 83 /* A list of chrecs. Access functions of the indices. */
516849c7 84 VEC(tree,heap) *access_fns;
85};
86
80bb306a 87struct dr_alias
88{
89 /* The alias information that should be used for new pointers to this
90 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
80bb306a 91 struct ptr_info_def *ptr_info;
92
93 /* The set of virtual operands corresponding to this memory reference,
94 serving as a description of the alias information for the memory
95 reference. This could be eliminated if we had alias oracle. */
96 bitmap vops;
516849c7 97};
98
255b6be7 99typedef struct scop *scop_p;
100
b79b3386 101/* Each vector of the access matrix represents a linear access
102 function for a subscript. First elements correspond to the
103 leftmost indices, ie. for a[i][j] the first vector corresponds to
104 the subscript in "i". The elements of a vector are relative to
105 the loop nests in which the data reference is considered,
106 i.e. the vector is relative to the SCoP that provides the context
107 in which this data reference occurs.
108
109 For example, in
110
111 | loop_1
112 | loop_2
113 | a[i+3][2*j+n-1]
114
115 if "i" varies in loop_1 and "j" varies in loop_2, the access
116 matrix with respect to the loop nest {loop_1, loop_2} is:
117
118 | loop_1 loop_2 param_n cst
119 | 1 0 0 3
120 | 0 2 1 -1
121
122 whereas the access matrix with respect to loop_2 considers "i" as
123 a parameter:
124
125 | loop_2 param_i param_n cst
126 | 0 1 0 3
127 | 2 0 1 -1
128*/
129struct access_matrix
130{
2e54c85d 131 VEC (loop_p, heap) *loop_nest;
b79b3386 132 int nb_induction_vars;
133 VEC (tree, heap) *parameters;
12c697cd 134 VEC (lambda_vector, gc) *matrix;
b79b3386 135};
136
2e54c85d 137#define AM_LOOP_NEST(M) (M)->loop_nest
b79b3386 138#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
139#define AM_PARAMETERS(M) (M)->parameters
140#define AM_MATRIX(M) (M)->matrix
141#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
142#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
143#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
144#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
145#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
146
147/* Return the column in the access matrix of LOOP_NUM. */
148
149static inline int
150am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
151{
2e54c85d 152 int i;
153 loop_p l;
154
155 for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
156 if (l->num == loop_num)
157 return i;
158
159 gcc_unreachable();
b79b3386 160}
161
162int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
163
6b6f234c 164struct data_reference
2146e26d 165{
2146e26d 166 /* A pointer to the statement that contains this DR. */
75a70cf9 167 gimple stmt;
2146e26d 168
80bb306a 169 /* A pointer to the memory reference. */
2146e26d 170 tree ref;
171
2146e26d 172 /* Auxiliary info specific to a pass. */
5c205353 173 void *aux;
2146e26d 174
175 /* True when the data reference is in RHS of a stmt. */
176 bool is_read;
177
80bb306a 178 /* Behavior of the memory reference in the innermost loop. */
179 struct innermost_loop_behavior innermost;
516849c7 180
255b6be7 181 /* Subscripts of this data reference. */
80bb306a 182 struct indices indices;
516849c7 183
80bb306a 184 /* Alias information for the data reference. */
185 struct dr_alias alias;
2146e26d 186
255b6be7 187 /* The SCoP in which the data reference was analyzed. */
188 scop_p scop;
189
b79b3386 190 /* Matrix representation for the data access functions. */
191 struct access_matrix *access_matrix;
192};
41c7a324 193
255b6be7 194#define DR_SCOP(DR) (DR)->scop
516849c7 195#define DR_STMT(DR) (DR)->stmt
196#define DR_REF(DR) (DR)->ref
80bb306a 197#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
198#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
516849c7 199#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
200#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
201#define DR_IS_READ(DR) (DR)->is_read
80bb306a 202#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
203#define DR_OFFSET(DR) (DR)->innermost.offset
204#define DR_INIT(DR) (DR)->innermost.init
205#define DR_STEP(DR) (DR)->innermost.step
80bb306a 206#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
80bb306a 207#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
b79b3386 208#define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
209
210typedef struct data_reference *data_reference_p;
211DEF_VEC_P(data_reference_p);
212DEF_VEC_ALLOC_P (data_reference_p, heap);
2146e26d 213
214enum data_dependence_direction {
215 dir_positive,
216 dir_negative,
217 dir_equal,
218 dir_positive_or_negative,
219 dir_positive_or_equal,
220 dir_negative_or_equal,
221 dir_star,
222 dir_independent
223};
224
87da4f2e 225/* The description of the grid of iterations that overlap. At most
226 two loops are considered at the same time just now, hence at most
227 two functions are needed. For each of the functions, we store
228 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
229 where x, y, ... are variables. */
230
231#define MAX_DIM 2
232
233/* Special values of N. */
234#define NO_DEPENDENCE 0
235#define NOT_KNOWN (MAX_DIM + 1)
236#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
237#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
238#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
239
240typedef VEC (tree, heap) *affine_fn;
241
242typedef struct
243{
244 unsigned n;
245 affine_fn fns[MAX_DIM];
246} conflict_function;
247
2146e26d 248/* What is a subscript? Given two array accesses a subscript is the
249 tuple composed of the access functions for a given dimension.
250 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
251 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
252 are stored in the data_dependence_relation structure under the form
253 of an array of subscripts. */
254
6b6f234c 255struct subscript
2146e26d 256{
257 /* A description of the iterations for which the elements are
258 accessed twice. */
87da4f2e 259 conflict_function *conflicting_iterations_in_a;
260 conflict_function *conflicting_iterations_in_b;
2146e26d 261
bc3c8ad4 262 /* This field stores the information about the iteration domain
2146e26d 263 validity of the dependence relation. */
bc3c8ad4 264 tree last_conflict;
2146e26d 265
266 /* Distance from the iteration that access a conflicting element in
267 A to the iteration that access this same conflicting element in
5c9dae64 268 B. The distance is a tree scalar expression, i.e. a constant or a
2146e26d 269 symbolic expression, but certainly not a chrec function. */
270 tree distance;
2146e26d 271};
272
41c7a324 273typedef struct subscript *subscript_p;
274DEF_VEC_P(subscript_p);
275DEF_VEC_ALLOC_P (subscript_p, heap);
276
2146e26d 277#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
278#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
bc3c8ad4 279#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
2146e26d 280#define SUB_DISTANCE(SUB) SUB->distance
2146e26d 281
282/* A data_dependence_relation represents a relation between two
283 data_references A and B. */
284
6b6f234c 285struct data_dependence_relation
2146e26d 286{
287
288 struct data_reference *a;
289 struct data_reference *b;
290
291 /* A "yes/no/maybe" field for the dependence relation:
292
293 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
294 relation between A and B, and the description of this relation
295 is given in the SUBSCRIPTS array,
296
297 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
298 SUBSCRIPTS is empty,
299
300 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
301 but the analyzer cannot be more specific. */
302 tree are_dependent;
303
304 /* For each subscript in the dependence test, there is an element in
305 this array. This is the attribute that labels the edge A->B of
306 the data_dependence_relation. */
41c7a324 307 VEC (subscript_p, heap) *subscripts;
6b6f234c 308
b44d1046 309 /* The analyzed loop nest. */
310 VEC (loop_p, heap) *loop_nest;
bc3c8ad4 311
6b6f234c 312 /* The classic direction vector. */
41c7a324 313 VEC (lambda_vector, heap) *dir_vects;
6b6f234c 314
315 /* The classic distance vector. */
41c7a324 316 VEC (lambda_vector, heap) *dist_vects;
0ecb94cf 317
0ac758f7 318 /* An index in loop_nest for the innermost loop that varies for
319 this data dependence relation. */
320 unsigned inner_loop;
321
0ecb94cf 322 /* Is the dependence reversed with respect to the lexicographic order? */
323 bool reversed_p;
0ac758f7 324
325 /* When the dependence relation is affine, it can be represented by
326 a distance vector. */
327 bool affine_p;
328
329 /* Set to true when the dependence relation is on the same data
330 access. */
331 bool self_reference_p;
2146e26d 332};
333
6b421feb 334typedef struct data_dependence_relation *ddr_p;
335DEF_VEC_P(ddr_p);
336DEF_VEC_ALLOC_P(ddr_p,heap);
337
2146e26d 338#define DDR_A(DDR) DDR->a
339#define DDR_B(DDR) DDR->b
bc3c8ad4 340#define DDR_AFFINE_P(DDR) DDR->affine_p
2146e26d 341#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
342#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
41c7a324 343#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
344#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
b44d1046 345
346#define DDR_LOOP_NEST(DDR) DDR->loop_nest
347/* The size of the direction/distance vectors: the number of loops in
348 the loop nest. */
349#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
355572cc 350#define DDR_INNER_LOOP(DDR) DDR->inner_loop
c127dd86 351#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
1532ec98 352
353#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
354#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
355#define DDR_NUM_DIST_VECTS(DDR) \
356 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
357#define DDR_NUM_DIR_VECTS(DDR) \
358 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
359#define DDR_DIR_VECT(DDR, I) \
360 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
361#define DDR_DIST_VECT(DDR, I) \
362 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
0ecb94cf 363#define DDR_REVERSED_P(DDR) DDR->reversed_p
2146e26d 364
365\f
366
faa56cf9 367/* Describes a location of a memory reference. */
368
369typedef struct data_ref_loc_d
370{
371 /* Position of the memory reference. */
372 tree *pos;
373
374 /* True if the memory reference is read. */
375 bool is_read;
376} data_ref_loc;
377
378DEF_VEC_O (data_ref_loc);
379DEF_VEC_ALLOC_O (data_ref_loc, heap);
380
75a70cf9 381bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
880734c8 382bool dr_analyze_innermost (struct data_reference *);
b79b3386 383extern bool compute_data_dependences_for_loop (struct loop *, bool,
04bd1b81 384 VEC (data_reference_p, heap) **,
385 VEC (ddr_p, heap) **);
255b6be7 386extern tree find_data_references_in_loop (struct loop *,
387 VEC (data_reference_p, heap) **);
6b421feb 388extern void print_direction_vector (FILE *, lambda_vector, int);
b44d1046 389extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
390extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
bc3c8ad4 391extern void dump_subscript (FILE *, struct subscript *);
41c7a324 392extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
393extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
2146e26d 394extern void dump_data_reference (FILE *, struct data_reference *);
41c7a324 395extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
b44d1046 396extern void debug_data_dependence_relation (struct data_dependence_relation *);
2146e26d 397extern void dump_data_dependence_relation (FILE *,
398 struct data_dependence_relation *);
41c7a324 399extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
801c5610 400extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
2146e26d 401extern void dump_data_dependence_direction (FILE *,
402 enum data_dependence_direction);
6b6f234c 403extern void free_dependence_relation (struct data_dependence_relation *);
41c7a324 404extern void free_dependence_relations (VEC (ddr_p, heap) *);
801c5610 405extern void free_data_ref (data_reference_p);
41c7a324 406extern void free_data_refs (VEC (data_reference_p, heap) *);
255b6be7 407extern bool find_data_references_in_stmt (struct loop *, gimple,
408 VEC (data_reference_p, heap) **);
75a70cf9 409struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
255b6be7 410extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
411extern void compute_all_dependences (VEC (data_reference_p, heap) *,
412 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
413 bool);
414
415extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
416extern bool dr_may_alias_p (const struct data_reference *,
417 const struct data_reference *);
418extern bool stmt_simple_memref_p (struct loop *, gimple, tree);
41c7a324 419
801c5610 420/* Return true when the DDR contains two data references that have the
421 same access functions. */
422
423static inline bool
424same_access_functions (const struct data_dependence_relation *ddr)
425{
426 unsigned i;
427
428 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
429 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
430 DR_ACCESS_FN (DDR_B (ddr), i)))
431 return false;
432
433 return true;
434}
435
436/* Return true when DDR is an anti-dependence relation. */
437
438static inline bool
439ddr_is_anti_dependent (ddr_p ddr)
440{
441 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
442 && DR_IS_READ (DDR_A (ddr))
443 && !DR_IS_READ (DDR_B (ddr))
444 && !same_access_functions (ddr));
445}
446
447/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
448
449static inline bool
450ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
451{
452 unsigned i;
453 ddr_p ddr;
454
455 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
456 if (ddr_is_anti_dependent (ddr))
457 return true;
458
459 return false;
460}
461
462/* Return the dependence level for the DDR relation. */
463
464static inline unsigned
465ddr_dependence_level (ddr_p ddr)
466{
467 unsigned vector;
468 unsigned level = 0;
469
470 if (DDR_DIST_VECTS (ddr))
471 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
472
473 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
474 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
475 DDR_NB_LOOPS (ddr)));
476 return level;
477}
478
74c8f69a 479\f
480
801c5610 481/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
74c8f69a 482typedef struct rdg_vertex
483{
484 /* The statement represented by this vertex. */
75a70cf9 485 gimple stmt;
801c5610 486
487 /* True when the statement contains a write to memory. */
488 bool has_mem_write;
489
490 /* True when the statement contains a read from memory. */
491 bool has_mem_reads;
74c8f69a 492} *rdg_vertex_p;
493
801c5610 494#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
495#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
496#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
497#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
498#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
499#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
500
501void dump_rdg_vertex (FILE *, struct graph *, int);
502void debug_rdg_vertex (struct graph *, int);
503void dump_rdg_component (FILE *, struct graph *, int, bitmap);
504void debug_rdg_component (struct graph *, int);
505void dump_rdg (FILE *, struct graph *);
506void debug_rdg (struct graph *);
507void dot_rdg (struct graph *);
75a70cf9 508int rdg_vertex_for_stmt (struct graph *, gimple);
74c8f69a 509
510/* Data dependence type. */
511
512enum rdg_dep_type
513{
514 /* Read After Write (RAW). */
515 flow_dd = 'f',
516
517 /* Write After Read (WAR). */
518 anti_dd = 'a',
519
520 /* Write After Write (WAW). */
521 output_dd = 'o',
522
523 /* Read After Read (RAR). */
524 input_dd = 'i'
525};
526
527/* Dependence information attached to an edge of the RDG. */
528
529typedef struct rdg_edge
530{
531 /* Type of the dependence. */
532 enum rdg_dep_type type;
801c5610 533
255b6be7 534 /* Levels of the dependence: the depth of the loops that carry the
535 dependence. */
801c5610 536 unsigned level;
255b6be7 537
538 /* Dependence relation between data dependences, NULL when one of
539 the vertices is a scalar. */
540 ddr_p relation;
74c8f69a 541} *rdg_edge_p;
542
543#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
801c5610 544#define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
255b6be7 545#define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
74c8f69a 546
547struct graph *build_rdg (struct loop *);
255b6be7 548struct graph *build_empty_rdg (int);
801c5610 549void free_rdg (struct graph *);
74c8f69a 550
b44d1046 551/* Return the index of the variable VAR in the LOOP_NEST array. */
552
553static inline int
554index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
555{
556 struct loop *loopi;
557 int var_index;
558
559 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
560 var_index++)
561 if (loopi->num == var)
562 break;
563
564 return var_index;
565}
566
75a70cf9 567void stores_from_loop (struct loop *, VEC (gimple, heap) **);
568void remove_similar_memory_refs (VEC (gimple, heap) **);
801c5610 569bool rdg_defs_used_in_other_loops_p (struct graph *, int);
75a70cf9 570bool have_similar_memory_accesses (gimple, gimple);
801c5610 571
572/* Determines whether RDG vertices V1 and V2 access to similar memory
573 locations, in which case they have to be in the same partition. */
574
575static inline bool
576rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
577{
578 return have_similar_memory_accesses (RDG_STMT (rdg, v1),
579 RDG_STMT (rdg, v2));
580}
581
41c7a324 582/* In lambda-code.c */
b79b3386 583bool lambda_transform_legal_p (lambda_trans_matrix, int,
584 VEC (ddr_p, heap) *);
585void lambda_collect_parameters (VEC (data_reference_p, heap) *,
586 VEC (tree, heap) **);
587bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
2e54c85d 588 VEC (tree, heap) *, VEC (loop_p, heap) *);
2146e26d 589
255b6be7 590/* In tree-data-ref.c */
b0eb8c66 591void split_constant_offset (tree , tree *, tree *);
592
255b6be7 593/* Strongly connected components of the reduced data dependence graph. */
594
595typedef struct rdg_component
596{
597 int num;
598 VEC (int, heap) *vertices;
599} *rdgc;
600
601DEF_VEC_P (rdgc);
602DEF_VEC_ALLOC_P (rdgc, heap);
603
604DEF_VEC_P (bitmap);
605DEF_VEC_ALLOC_P (bitmap, heap);
606
2146e26d 607#endif /* GCC_TREE_DATA_REF_H */