]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-data-ref.h
* config/mips/mips.c (mips_final_postscan_insn): Modify call
[thirdparty/gcc.git] / gcc / tree-data-ref.h
CommitLineData
48e1416a 1/* Data references and dependences detectors.
fbd26352 2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
6b421feb 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
2146e26d 4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
2146e26d 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
2146e26d 20
21#ifndef GCC_TREE_DATA_REF_H
22#define GCC_TREE_DATA_REF_H
23
74c8f69a 24#include "graphds.h"
801c5610 25#include "tree-chrec.h"
ed9370cc 26#include "opt-problem.h"
6b6f234c 27
6b8dbb53 28/*
80bb306a 29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
48e1416a 33 constant offset (INIT). Examples, in loop nest
34
80bb306a 35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
6b8dbb53 37
516849c7 38 Example 1 Example 2
80bb306a 39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
48e1416a 40
801c5610 41
80bb306a 42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
516849c7 46 step D_j 4
516849c7 47
6b8dbb53 48 */
80bb306a 49struct innermost_loop_behavior
516849c7 50{
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
80bb306a 55
a5456a6d 56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57 from an alignment boundary of BASE_ALIGNMENT bytes. For example,
58 if we had:
59
60 struct S __attribute__((aligned(16))) { ... };
61
62 char *ptr;
63 ... *(struct S *) (ptr - 4) ...;
64
65 the information would be:
66
67 base_address: ptr
68 base_aligment: 16
69 base_misalignment: 4
70 init: -4
71
72 where init cancels the base misalignment. If instead we had a
73 reference to a particular field:
74
75 struct S __attribute__((aligned(16))) { ... int f; ... };
76
77 char *ptr;
78 ... ((struct S *) (ptr - 4))->f ...;
79
80 the information would be:
81
82 base_address: ptr
83 base_aligment: 16
84 base_misalignment: 4
85 init: -4 + offsetof (S, f)
86
87 where base_address + init might also be misaligned, and by a different
88 amount from base_address. */
89 unsigned int base_alignment;
90 unsigned int base_misalignment;
91
a7e05ef2 92 /* The largest power of two that divides OFFSET, capped to a suitably
93 high value if the offset is zero. This is a byte rather than a bit
94 quantity. */
95 unsigned int offset_alignment;
668dd7dc 96
97 /* Likewise for STEP. */
98 unsigned int step_alignment;
516849c7 99};
100
80bb306a 101/* Describes the evolutions of indices of the memory reference. The indices
95539e1d 102 are indices of the ARRAY_REFs, indexes in artificial dimensions
103 added for member selection of records and the operands of MEM_REFs.
104 BASE_OBJECT is the part of the reference that is loop-invariant
105 (note that this reference does not have to cover the whole object
106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107 not recommended to use BASE_OBJECT in any code generation).
108 For the examples above,
109
110 base_object: a *(p + x + 4B * j_0)
80bb306a 111 indices: {j_0, +, 1}_2 {16, +, 4}_2
95539e1d 112 4
80bb306a 113 {i_0, +, 1}_1
114 {j_0, +, 1}_2
115*/
116
117struct indices
516849c7 118{
119 /* The object. */
120 tree base_object;
48e1416a 121
80bb306a 122 /* A list of chrecs. Access functions of the indices. */
f1f41a6c 123 vec<tree> access_fns;
f146c442 124
125 /* Whether BASE_OBJECT is an access representing the whole object
126 or whether the access could not be constrained. */
127 bool unconstrained_base;
516849c7 128};
129
80bb306a 130struct dr_alias
131{
132 /* The alias information that should be used for new pointers to this
95539e1d 133 location. */
80bb306a 134 struct ptr_info_def *ptr_info;
516849c7 135};
136
e01f9f1f 137/* An integer vector. A vector formally consists of an element of a vector
138 space. A vector space is a set that is closed under vector addition
139 and scalar multiplication. In this vector space, an element is a list of
140 integers. */
7652827d 141typedef HOST_WIDE_INT lambda_int;
142typedef lambda_int *lambda_vector;
e01f9f1f 143
144/* An integer matrix. A matrix consists of m vectors of length n (IE
145 all vectors are the same length). */
146typedef lambda_vector *lambda_matrix;
147
b79b3386 148
b79b3386 149
6b6f234c 150struct data_reference
2146e26d 151{
2146e26d 152 /* A pointer to the statement that contains this DR. */
42acab1c 153 gimple *stmt;
48e1416a 154
80bb306a 155 /* A pointer to the memory reference. */
2146e26d 156 tree ref;
157
2146e26d 158 /* Auxiliary info specific to a pass. */
5c205353 159 void *aux;
2146e26d 160
161 /* True when the data reference is in RHS of a stmt. */
162 bool is_read;
163
4f372c2c 164 /* True when the data reference is conditional within STMT,
165 i.e. if it might not occur even when the statement is executed
166 and runs to completion. */
167 bool is_conditional_in_stmt;
168
80bb306a 169 /* Behavior of the memory reference in the innermost loop. */
170 struct innermost_loop_behavior innermost;
516849c7 171
255b6be7 172 /* Subscripts of this data reference. */
80bb306a 173 struct indices indices;
516849c7 174
80bb306a 175 /* Alias information for the data reference. */
176 struct dr_alias alias;
b79b3386 177};
41c7a324 178
516849c7 179#define DR_STMT(DR) (DR)->stmt
180#define DR_REF(DR) (DR)->ref
80bb306a 181#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
f146c442 182#define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
80bb306a 183#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
f1f41a6c 184#define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
185#define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
516849c7 186#define DR_IS_READ(DR) (DR)->is_read
9ff25603 187#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
4f372c2c 188#define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
80bb306a 189#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
190#define DR_OFFSET(DR) (DR)->innermost.offset
191#define DR_INIT(DR) (DR)->innermost.init
192#define DR_STEP(DR) (DR)->innermost.step
80bb306a 193#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
a5456a6d 194#define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment
195#define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment
a7e05ef2 196#define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment
668dd7dc 197#define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment
bd6f374c 198#define DR_INNERMOST(DR) (DR)->innermost
b79b3386 199
200typedef struct data_reference *data_reference_p;
2146e26d 201
cea441fd 202/* This struct is used to store the information of a data reference,
203 including the data ref itself and the segment length for aliasing
204 checks. This is used to merge alias checks. */
205
206struct dr_with_seg_len
207{
e85b4a5e 208 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
209 unsigned int a)
210 : dr (d), seg_len (len), access_size (size), align (a) {}
cea441fd 211
212 data_reference_p dr;
e85b4a5e 213 /* The offset of the last access that needs to be checked minus
214 the offset of the first. */
cea441fd 215 tree seg_len;
e85b4a5e 216 /* A value that, when added to abs (SEG_LEN), gives the total number of
217 bytes in the segment. */
218 poly_uint64 access_size;
219 /* The minimum common alignment of DR's start address, SEG_LEN and
220 ACCESS_SIZE. */
221 unsigned int align;
cea441fd 222};
223
224/* This struct contains two dr_with_seg_len objects with aliasing data
225 refs. Two comparisons are generated from them. */
226
227struct dr_with_seg_len_pair_t
228{
229 dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
230 const dr_with_seg_len& d2)
231 : first (d1), second (d2) {}
232
233 dr_with_seg_len first;
234 dr_with_seg_len second;
235};
236
2146e26d 237enum data_dependence_direction {
48e1416a 238 dir_positive,
239 dir_negative,
240 dir_equal,
2146e26d 241 dir_positive_or_negative,
242 dir_positive_or_equal,
243 dir_negative_or_equal,
244 dir_star,
245 dir_independent
246};
247
87da4f2e 248/* The description of the grid of iterations that overlap. At most
249 two loops are considered at the same time just now, hence at most
250 two functions are needed. For each of the functions, we store
251 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
252 where x, y, ... are variables. */
253
254#define MAX_DIM 2
255
256/* Special values of N. */
257#define NO_DEPENDENCE 0
258#define NOT_KNOWN (MAX_DIM + 1)
259#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
260#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
261#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
262
f1f41a6c 263typedef vec<tree> affine_fn;
87da4f2e 264
b3e7c666 265struct conflict_function
87da4f2e 266{
267 unsigned n;
268 affine_fn fns[MAX_DIM];
b3e7c666 269};
87da4f2e 270
2146e26d 271/* What is a subscript? Given two array accesses a subscript is the
272 tuple composed of the access functions for a given dimension.
273 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
274 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
275 are stored in the data_dependence_relation structure under the form
276 of an array of subscripts. */
277
6b6f234c 278struct subscript
2146e26d 279{
403965f7 280 /* The access functions of the two references. */
281 tree access_fn[2];
282
2146e26d 283 /* A description of the iterations for which the elements are
284 accessed twice. */
87da4f2e 285 conflict_function *conflicting_iterations_in_a;
286 conflict_function *conflicting_iterations_in_b;
48e1416a 287
bc3c8ad4 288 /* This field stores the information about the iteration domain
2146e26d 289 validity of the dependence relation. */
bc3c8ad4 290 tree last_conflict;
48e1416a 291
2146e26d 292 /* Distance from the iteration that access a conflicting element in
293 A to the iteration that access this same conflicting element in
5c9dae64 294 B. The distance is a tree scalar expression, i.e. a constant or a
2146e26d 295 symbolic expression, but certainly not a chrec function. */
296 tree distance;
2146e26d 297};
298
41c7a324 299typedef struct subscript *subscript_p;
41c7a324 300
403965f7 301#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
643e9393 302#define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
303#define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
304#define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
305#define SUB_DISTANCE(SUB) (SUB)->distance
2146e26d 306
307/* A data_dependence_relation represents a relation between two
308 data_references A and B. */
309
6b6f234c 310struct data_dependence_relation
2146e26d 311{
48e1416a 312
2146e26d 313 struct data_reference *a;
314 struct data_reference *b;
315
316 /* A "yes/no/maybe" field for the dependence relation:
48e1416a 317
2146e26d 318 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
319 relation between A and B, and the description of this relation
320 is given in the SUBSCRIPTS array,
48e1416a 321
2146e26d 322 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
323 SUBSCRIPTS is empty,
48e1416a 324
2146e26d 325 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
326 but the analyzer cannot be more specific. */
327 tree are_dependent;
48e1416a 328
f68a7726 329 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
330 independent when the runtime addresses of OBJECT_A and OBJECT_B
331 are different. The addresses of both objects are invariant in the
332 loop nest. */
333 tree object_a;
334 tree object_b;
335
2146e26d 336 /* For each subscript in the dependence test, there is an element in
337 this array. This is the attribute that labels the edge A->B of
338 the data_dependence_relation. */
f1f41a6c 339 vec<subscript_p> subscripts;
6b6f234c 340
b44d1046 341 /* The analyzed loop nest. */
f1f41a6c 342 vec<loop_p> loop_nest;
bc3c8ad4 343
6b6f234c 344 /* The classic direction vector. */
f1f41a6c 345 vec<lambda_vector> dir_vects;
6b6f234c 346
347 /* The classic distance vector. */
f1f41a6c 348 vec<lambda_vector> dist_vects;
0ecb94cf 349
350 /* Is the dependence reversed with respect to the lexicographic order? */
351 bool reversed_p;
0ac758f7 352
353 /* When the dependence relation is affine, it can be represented by
354 a distance vector. */
355 bool affine_p;
356
357 /* Set to true when the dependence relation is on the same data
358 access. */
359 bool self_reference_p;
403965f7 360
361 /* True if the dependence described is conservatively correct rather
362 than exact, and if it is still possible for the accesses to be
363 conditionally independent. For example, the a and b references in:
364
365 struct s *a, *b;
366 for (int i = 0; i < n; ++i)
367 a->f[i] += b->f[i];
368
369 conservatively have a distance vector of (0), for the case in which
370 a == b, but the accesses are independent if a != b. Similarly,
371 the a and b references in:
372
373 struct s *a, *b;
374 for (int i = 0; i < n; ++i)
375 a[0].f[i] += b[i].f[i];
376
377 conservatively have a distance vector of (0), but they are indepenent
378 when a != b + i. In contrast, the references in:
379
380 struct s *a;
381 for (int i = 0; i < n; ++i)
382 a->f[i] += a->f[i];
383
384 have the same distance vector of (0), but the accesses can never be
385 independent. */
386 bool could_be_independent_p;
2146e26d 387};
388
6b421feb 389typedef struct data_dependence_relation *ddr_p;
6b421feb 390
643e9393 391#define DDR_A(DDR) (DDR)->a
392#define DDR_B(DDR) (DDR)->b
393#define DDR_AFFINE_P(DDR) (DDR)->affine_p
394#define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
f68a7726 395#define DDR_OBJECT_A(DDR) (DDR)->object_a
396#define DDR_OBJECT_B(DDR) (DDR)->object_b
643e9393 397#define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
f1f41a6c 398#define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
399#define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
b44d1046 400
643e9393 401#define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
b44d1046 402/* The size of the direction/distance vectors: the number of loops in
403 the loop nest. */
f1f41a6c 404#define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
643e9393 405#define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
1532ec98 406
407#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
408#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
409#define DDR_NUM_DIST_VECTS(DDR) \
f1f41a6c 410 (DDR_DIST_VECTS (DDR).length ())
1532ec98 411#define DDR_NUM_DIR_VECTS(DDR) \
f1f41a6c 412 (DDR_DIR_VECTS (DDR).length ())
1532ec98 413#define DDR_DIR_VECT(DDR, I) \
f1f41a6c 414 DDR_DIR_VECTS (DDR)[I]
1532ec98 415#define DDR_DIST_VECT(DDR, I) \
f1f41a6c 416 DDR_DIST_VECTS (DDR)[I]
643e9393 417#define DDR_REVERSED_P(DDR) (DDR)->reversed_p
403965f7 418#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
2146e26d 419
420\f
ed9370cc 421opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
422 struct loop *, const gimple *);
b79b3386 423extern bool compute_data_dependences_for_loop (struct loop *, bool,
f1f41a6c 424 vec<loop_p> *,
425 vec<data_reference_p> *,
426 vec<ddr_p> *);
f1f41a6c 427extern void debug_ddrs (vec<ddr_p> );
2146e26d 428extern void dump_data_reference (FILE *, struct data_reference *);
c7d89805 429extern void debug (data_reference &ref);
430extern void debug (data_reference *ptr);
5df4cc8d 431extern void debug_data_reference (struct data_reference *);
f1f41a6c 432extern void debug_data_references (vec<data_reference_p> );
c7d89805 433extern void debug (vec<data_reference_p> &ref);
434extern void debug (vec<data_reference_p> *ptr);
b44d1046 435extern void debug_data_dependence_relation (struct data_dependence_relation *);
f1f41a6c 436extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
c7d89805 437extern void debug (vec<ddr_p> &ref);
438extern void debug (vec<ddr_p> *ptr);
f1f41a6c 439extern void debug_data_dependence_relations (vec<ddr_p> );
6b6f234c 440extern void free_dependence_relation (struct data_dependence_relation *);
f1f41a6c 441extern void free_dependence_relations (vec<ddr_p> );
801c5610 442extern void free_data_ref (data_reference_p);
f1f41a6c 443extern void free_data_refs (vec<data_reference_p> );
ed9370cc 444extern opt_result find_data_references_in_stmt (struct loop *, gimple *,
445 vec<data_reference_p> *);
453841f9 446extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
f1f41a6c 447 vec<data_reference_p> *);
07e3bcbf 448tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
fa4dba85 449bool loop_nest_has_data_refs (loop_p loop);
453841f9 450struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
4f372c2c 451 bool);
f1f41a6c 452extern bool find_loop_nest (struct loop *, vec<loop_p> *);
16dfb112 453extern struct data_dependence_relation *initialize_data_dependence_relation
f1f41a6c 454 (struct data_reference *, struct data_reference *, vec<loop_p>);
7b6f8db4 455extern void compute_affine_dependence (struct data_dependence_relation *,
456 loop_p);
16dfb112 457extern void compute_self_dependence (struct data_dependence_relation *);
f1f41a6c 458extern bool compute_all_dependences (vec<data_reference_p> ,
459 vec<ddr_p> *,
460 vec<loop_p>, bool);
ec611e12 461extern tree find_data_references_in_bb (struct loop *, basic_block,
f1f41a6c 462 vec<data_reference_p> *);
5528b2de 463extern unsigned int dr_alignment (innermost_loop_behavior *);
469f7bc0 464extern tree get_base_for_alignment (tree, unsigned int *);
5528b2de 465
466/* Return the alignment in bytes that DR is guaranteed to have at all
467 times. */
468
469inline unsigned int
470dr_alignment (data_reference *dr)
471{
472 return dr_alignment (&DR_INNERMOST (dr));
473}
255b6be7 474
255b6be7 475extern bool dr_may_alias_p (const struct data_reference *,
1b4e6584 476 const struct data_reference *, struct loop *);
ec611e12 477extern bool dr_equal_offsets_p (struct data_reference *,
478 struct data_reference *);
e1cc68bd 479
ed9370cc 480extern opt_result runtime_alias_check_p (ddr_p, struct loop *, bool);
38f2f513 481extern int data_ref_compare_tree (tree, tree);
cea441fd 482extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
886901f4 483 poly_uint64);
49ce332c 484extern void create_runtime_alias_checks (struct loop *,
485 vec<dr_with_seg_len_pair_t> *, tree*);
e85b4a5e 486extern tree dr_direction_indicator (struct data_reference *);
487extern tree dr_zero_step_indicator (struct data_reference *);
488extern bool dr_known_forward_stride_p (struct data_reference *);
489
e1cc68bd 490/* Return true when the base objects of data references A and B are
491 the same memory object. */
492
493static inline bool
494same_data_refs_base_objects (data_reference_p a, data_reference_p b)
495{
496 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
497 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
498}
499
500/* Return true when the data references A and B are accessing the same
501 memory object with the same access functions. */
502
503static inline bool
504same_data_refs (data_reference_p a, data_reference_p b)
505{
506 unsigned int i;
507
508 /* The references are exactly the same. */
509 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
510 return true;
511
512 if (!same_data_refs_base_objects (a, b))
513 return false;
514
515 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
516 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
517 return false;
518
519 return true;
520}
521
15c8650d 522/* Returns true when all the dependences are computable. */
523
524inline bool
525known_dependences_p (vec<ddr_p> dependence_relations)
526{
527 ddr_p ddr;
528 unsigned int i;
529
530 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
531 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
532 return false;
533
534 return true;
535}
536
e01f9f1f 537/* Returns the dependence level for a vector DIST of size LENGTH.
538 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
539 to the sequence of statements, not carried by any loop. */
540
541static inline unsigned
542dependence_level (lambda_vector dist_vect, int length)
543{
544 int i;
545
546 for (i = 0; i < length; i++)
547 if (dist_vect[i] != 0)
548 return i + 1;
549
550 return 0;
551}
552
801c5610 553/* Return the dependence level for the DDR relation. */
554
555static inline unsigned
556ddr_dependence_level (ddr_p ddr)
557{
558 unsigned vector;
559 unsigned level = 0;
560
f1f41a6c 561 if (DDR_DIST_VECTS (ddr).exists ())
801c5610 562 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
563
564 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
565 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
566 DDR_NB_LOOPS (ddr)));
567 return level;
568}
569
b44d1046 570/* Return the index of the variable VAR in the LOOP_NEST array. */
571
572static inline int
f1f41a6c 573index_in_loop_nest (int var, vec<loop_p> loop_nest)
b44d1046 574{
575 struct loop *loopi;
576 int var_index;
577
2199e93e 578 for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
b44d1046 579 if (loopi->num == var)
2199e93e 580 return var_index;
b44d1046 581
2199e93e 582 gcc_unreachable ();
b44d1046 583}
584
6198d968 585/* Returns true when the data reference DR the form "A[i] = ..."
586 with a stride equal to its unit type size. */
1c4f9959 587
588static inline bool
f689d33d 589adjacent_dr_p (struct data_reference *dr)
1c4f9959 590{
6198d968 591 /* If this is a bitfield store bail out. */
592 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
593 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
594 return false;
595
596 if (!DR_STEP (dr)
597 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
598 return false;
599
600 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
601 DR_STEP (dr)),
602 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1c4f9959 603}
604
b0eb8c66 605void split_constant_offset (tree , tree *, tree *);
606
e01f9f1f 607/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
608
7652827d 609static inline lambda_int
e01f9f1f 610lambda_vector_gcd (lambda_vector vector, int size)
611{
612 int i;
7652827d 613 lambda_int gcd1 = 0;
e01f9f1f 614
615 if (size > 0)
616 {
617 gcd1 = vector[0];
618 for (i = 1; i < size; i++)
619 gcd1 = gcd (gcd1, vector[i]);
620 }
621 return gcd1;
622}
623
624/* Allocate a new vector of given SIZE. */
625
626static inline lambda_vector
627lambda_vector_new (int size)
628{
eb352584 629 /* ??? We shouldn't abuse the GC allocator here. */
7652827d 630 return ggc_cleared_vec_alloc<lambda_int> (size);
e01f9f1f 631}
632
633/* Clear out vector VEC1 of length SIZE. */
634
635static inline void
636lambda_vector_clear (lambda_vector vec1, int size)
637{
638 memset (vec1, 0, size * sizeof (*vec1));
639}
640
641/* Returns true when the vector V is lexicographically positive, in
642 other words, when the first nonzero element is positive. */
643
644static inline bool
645lambda_vector_lexico_pos (lambda_vector v,
646 unsigned n)
647{
648 unsigned i;
649 for (i = 0; i < n; i++)
650 {
651 if (v[i] == 0)
652 continue;
653 if (v[i] < 0)
654 return false;
655 if (v[i] > 0)
656 return true;
657 }
658 return true;
659}
660
661/* Return true if vector VEC1 of length SIZE is the zero vector. */
662
663static inline bool
664lambda_vector_zerop (lambda_vector vec1, int size)
665{
666 int i;
667 for (i = 0; i < size; i++)
668 if (vec1[i] != 0)
669 return false;
670 return true;
671}
672
673/* Allocate a matrix of M rows x N cols. */
674
675static inline lambda_matrix
676lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
677{
678 lambda_matrix mat;
679 int i;
680
eb352584 681 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
e01f9f1f 682
683 for (i = 0; i < m; i++)
7652827d 684 mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
e01f9f1f 685
686 return mat;
687}
688
2146e26d 689#endif /* GCC_TREE_DATA_REF_H */