]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-data-ref.h
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-data-ref.h
CommitLineData
b8698a0f 1/* Data references and dependences detectors.
a5544970 2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
0ff4040e 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
56cf8686
SP
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
56cf8686
SP
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
56cf8686
SP
20
21#ifndef GCC_TREE_DATA_REF_H
22#define GCC_TREE_DATA_REF_H
23
3a796c6f 24#include "graphds.h"
dea61d92 25#include "tree-chrec.h"
f4ebbd24 26#include "opt-problem.h"
36d59cf7 27
98b44b0e 28/*
3cb960c7
ZD
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
b8698a0f
L
33 constant offset (INIT). Examples, in loop nest
34
3cb960c7
ZD
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
98b44b0e 37
86a07404 38 Example 1 Example 2
3cb960c7 39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
b8698a0f 40
dea61d92 41
3cb960c7
ZD
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
86a07404 46 step D_j 4
86a07404 47
98b44b0e 48 */
3cb960c7 49struct innermost_loop_behavior
86a07404
IR
50{
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
3cb960c7 55
bb642979
RS
56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57 from an alignment boundary of BASE_ALIGNMENT bytes. For example,
58 if we had:
59
60 struct S __attribute__((aligned(16))) { ... };
61
62 char *ptr;
63 ... *(struct S *) (ptr - 4) ...;
64
65 the information would be:
66
67 base_address: ptr
68 base_aligment: 16
69 base_misalignment: 4
70 init: -4
71
72 where init cancels the base misalignment. If instead we had a
73 reference to a particular field:
74
75 struct S __attribute__((aligned(16))) { ... int f; ... };
76
77 char *ptr;
78 ... ((struct S *) (ptr - 4))->f ...;
79
80 the information would be:
81
82 base_address: ptr
83 base_aligment: 16
84 base_misalignment: 4
85 init: -4 + offsetof (S, f)
86
87 where base_address + init might also be misaligned, and by a different
88 amount from base_address. */
89 unsigned int base_alignment;
90 unsigned int base_misalignment;
91
e054a185
RS
92 /* The largest power of two that divides OFFSET, capped to a suitably
93 high value if the offset is zero. This is a byte rather than a bit
94 quantity. */
95 unsigned int offset_alignment;
832b4117
RS
96
97 /* Likewise for STEP. */
98 unsigned int step_alignment;
86a07404
IR
99};
100
3cb960c7 101/* Describes the evolutions of indices of the memory reference. The indices
c4ddde1b
RG
102 are indices of the ARRAY_REFs, indexes in artificial dimensions
103 added for member selection of records and the operands of MEM_REFs.
104 BASE_OBJECT is the part of the reference that is loop-invariant
105 (note that this reference does not have to cover the whole object
106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107 not recommended to use BASE_OBJECT in any code generation).
108 For the examples above,
109
110 base_object: a *(p + x + 4B * j_0)
3cb960c7 111 indices: {j_0, +, 1}_2 {16, +, 4}_2
c4ddde1b 112 4
3cb960c7
ZD
113 {i_0, +, 1}_1
114 {j_0, +, 1}_2
115*/
116
117struct indices
86a07404
IR
118{
119 /* The object. */
120 tree base_object;
b8698a0f 121
3cb960c7 122 /* A list of chrecs. Access functions of the indices. */
9771b263 123 vec<tree> access_fns;
f3ae4add
RB
124
125 /* Whether BASE_OBJECT is an access representing the whole object
126 or whether the access could not be constrained. */
127 bool unconstrained_base;
86a07404
IR
128};
129
3cb960c7
ZD
130struct dr_alias
131{
132 /* The alias information that should be used for new pointers to this
c4ddde1b 133 location. */
3cb960c7 134 struct ptr_info_def *ptr_info;
86a07404
IR
135};
136
b305e3da
SP
137/* An integer vector. A vector formally consists of an element of a vector
138 space. A vector space is a set that is closed under vector addition
139 and scalar multiplication. In this vector space, an element is a list of
140 integers. */
1c8badf6
RB
141typedef HOST_WIDE_INT lambda_int;
142typedef lambda_int *lambda_vector;
b305e3da
SP
143
144/* An integer matrix. A matrix consists of m vectors of length n (IE
145 all vectors are the same length). */
146typedef lambda_vector *lambda_matrix;
147
9f275479 148
9f275479 149
36d59cf7 150struct data_reference
56cf8686 151{
56cf8686 152 /* A pointer to the statement that contains this DR. */
355fe088 153 gimple *stmt;
b8698a0f 154
3cb960c7 155 /* A pointer to the memory reference. */
56cf8686
SP
156 tree ref;
157
56cf8686 158 /* Auxiliary info specific to a pass. */
5417e022 159 void *aux;
56cf8686
SP
160
161 /* True when the data reference is in RHS of a stmt. */
162 bool is_read;
163
62c8a2cf
RS
164 /* True when the data reference is conditional within STMT,
165 i.e. if it might not occur even when the statement is executed
166 and runs to completion. */
167 bool is_conditional_in_stmt;
168
3cb960c7
ZD
169 /* Behavior of the memory reference in the innermost loop. */
170 struct innermost_loop_behavior innermost;
86a07404 171
f8bf9252 172 /* Subscripts of this data reference. */
3cb960c7 173 struct indices indices;
86a07404 174
3cb960c7
ZD
175 /* Alias information for the data reference. */
176 struct dr_alias alias;
9f275479 177};
ebf78a47 178
86a07404
IR
179#define DR_STMT(DR) (DR)->stmt
180#define DR_REF(DR) (DR)->ref
3cb960c7 181#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
f3ae4add 182#define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
3cb960c7 183#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
9771b263
DN
184#define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
185#define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
86a07404 186#define DR_IS_READ(DR) (DR)->is_read
b0af49c4 187#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
62c8a2cf 188#define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
3cb960c7
ZD
189#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
190#define DR_OFFSET(DR) (DR)->innermost.offset
191#define DR_INIT(DR) (DR)->innermost.init
192#define DR_STEP(DR) (DR)->innermost.step
3cb960c7 193#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
bb642979
RS
194#define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment
195#define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment
e054a185 196#define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment
832b4117 197#define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment
fad08d12 198#define DR_INNERMOST(DR) (DR)->innermost
9f275479
JS
199
200typedef struct data_reference *data_reference_p;
56cf8686 201
8d44cf72
BC
202/* This struct is used to store the information of a data reference,
203 including the data ref itself and the segment length for aliasing
204 checks. This is used to merge alias checks. */
205
206struct dr_with_seg_len
207{
a57776a1
RS
208 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
209 unsigned int a)
210 : dr (d), seg_len (len), access_size (size), align (a) {}
8d44cf72
BC
211
212 data_reference_p dr;
a57776a1
RS
213 /* The offset of the last access that needs to be checked minus
214 the offset of the first. */
8d44cf72 215 tree seg_len;
a57776a1
RS
216 /* A value that, when added to abs (SEG_LEN), gives the total number of
217 bytes in the segment. */
218 poly_uint64 access_size;
219 /* The minimum common alignment of DR's start address, SEG_LEN and
220 ACCESS_SIZE. */
221 unsigned int align;
8d44cf72
BC
222};
223
224/* This struct contains two dr_with_seg_len objects with aliasing data
225 refs. Two comparisons are generated from them. */
226
227struct dr_with_seg_len_pair_t
228{
229 dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
230 const dr_with_seg_len& d2)
231 : first (d1), second (d2) {}
232
233 dr_with_seg_len first;
234 dr_with_seg_len second;
235};
236
56cf8686 237enum data_dependence_direction {
b8698a0f
L
238 dir_positive,
239 dir_negative,
240 dir_equal,
56cf8686
SP
241 dir_positive_or_negative,
242 dir_positive_or_equal,
243 dir_negative_or_equal,
244 dir_star,
245 dir_independent
246};
247
d93817c4
ZD
248/* The description of the grid of iterations that overlap. At most
249 two loops are considered at the same time just now, hence at most
250 two functions are needed. For each of the functions, we store
251 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
252 where x, y, ... are variables. */
253
254#define MAX_DIM 2
255
256/* Special values of N. */
257#define NO_DEPENDENCE 0
258#define NOT_KNOWN (MAX_DIM + 1)
259#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
260#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
261#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
262
9771b263 263typedef vec<tree> affine_fn;
d93817c4 264
84562394 265struct conflict_function
d93817c4
ZD
266{
267 unsigned n;
268 affine_fn fns[MAX_DIM];
84562394 269};
d93817c4 270
56cf8686
SP
271/* What is a subscript? Given two array accesses a subscript is the
272 tuple composed of the access functions for a given dimension.
273 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
274 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
275 are stored in the data_dependence_relation structure under the form
276 of an array of subscripts. */
277
36d59cf7 278struct subscript
56cf8686 279{
dfbddbeb
RS
280 /* The access functions of the two references. */
281 tree access_fn[2];
282
56cf8686
SP
283 /* A description of the iterations for which the elements are
284 accessed twice. */
d93817c4
ZD
285 conflict_function *conflicting_iterations_in_a;
286 conflict_function *conflicting_iterations_in_b;
b8698a0f 287
86df10e3 288 /* This field stores the information about the iteration domain
56cf8686 289 validity of the dependence relation. */
86df10e3 290 tree last_conflict;
b8698a0f 291
56cf8686
SP
292 /* Distance from the iteration that access a conflicting element in
293 A to the iteration that access this same conflicting element in
89dbed81 294 B. The distance is a tree scalar expression, i.e. a constant or a
56cf8686
SP
295 symbolic expression, but certainly not a chrec function. */
296 tree distance;
56cf8686
SP
297};
298
ebf78a47 299typedef struct subscript *subscript_p;
ebf78a47 300
dfbddbeb 301#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
45d93414
RS
302#define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
303#define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
304#define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
305#define SUB_DISTANCE(SUB) (SUB)->distance
56cf8686
SP
306
307/* A data_dependence_relation represents a relation between two
308 data_references A and B. */
309
36d59cf7 310struct data_dependence_relation
56cf8686 311{
b8698a0f 312
56cf8686
SP
313 struct data_reference *a;
314 struct data_reference *b;
315
316 /* A "yes/no/maybe" field for the dependence relation:
b8698a0f 317
56cf8686
SP
318 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
319 relation between A and B, and the description of this relation
320 is given in the SUBSCRIPTS array,
b8698a0f 321
56cf8686
SP
322 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
323 SUBSCRIPTS is empty,
b8698a0f 324
56cf8686
SP
325 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
326 but the analyzer cannot be more specific. */
327 tree are_dependent;
b8698a0f 328
9adee305
RS
329 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
330 independent when the runtime addresses of OBJECT_A and OBJECT_B
331 are different. The addresses of both objects are invariant in the
332 loop nest. */
333 tree object_a;
334 tree object_b;
335
56cf8686
SP
336 /* For each subscript in the dependence test, there is an element in
337 this array. This is the attribute that labels the edge A->B of
338 the data_dependence_relation. */
9771b263 339 vec<subscript_p> subscripts;
36d59cf7 340
ba42e045 341 /* The analyzed loop nest. */
9771b263 342 vec<loop_p> loop_nest;
86df10e3 343
36d59cf7 344 /* The classic direction vector. */
9771b263 345 vec<lambda_vector> dir_vects;
36d59cf7
DB
346
347 /* The classic distance vector. */
9771b263 348 vec<lambda_vector> dist_vects;
71d5b5e1 349
8f5929e1
JJ
350 /* An index in loop_nest for the innermost loop that varies for
351 this data dependence relation. */
352 unsigned inner_loop;
353
71d5b5e1
SP
354 /* Is the dependence reversed with respect to the lexicographic order? */
355 bool reversed_p;
8f5929e1
JJ
356
357 /* When the dependence relation is affine, it can be represented by
358 a distance vector. */
359 bool affine_p;
360
361 /* Set to true when the dependence relation is on the same data
362 access. */
363 bool self_reference_p;
dfbddbeb
RS
364
365 /* True if the dependence described is conservatively correct rather
366 than exact, and if it is still possible for the accesses to be
367 conditionally independent. For example, the a and b references in:
368
369 struct s *a, *b;
370 for (int i = 0; i < n; ++i)
371 a->f[i] += b->f[i];
372
373 conservatively have a distance vector of (0), for the case in which
374 a == b, but the accesses are independent if a != b. Similarly,
375 the a and b references in:
376
377 struct s *a, *b;
378 for (int i = 0; i < n; ++i)
379 a[0].f[i] += b[i].f[i];
380
381 conservatively have a distance vector of (0), but they are indepenent
382 when a != b + i. In contrast, the references in:
383
384 struct s *a;
385 for (int i = 0; i < n; ++i)
386 a->f[i] += a->f[i];
387
388 have the same distance vector of (0), but the accesses can never be
389 independent. */
390 bool could_be_independent_p;
56cf8686
SP
391};
392
0ff4040e 393typedef struct data_dependence_relation *ddr_p;
0ff4040e 394
45d93414
RS
395#define DDR_A(DDR) (DDR)->a
396#define DDR_B(DDR) (DDR)->b
397#define DDR_AFFINE_P(DDR) (DDR)->affine_p
398#define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
9adee305
RS
399#define DDR_OBJECT_A(DDR) (DDR)->object_a
400#define DDR_OBJECT_B(DDR) (DDR)->object_b
45d93414 401#define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
9771b263
DN
402#define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
403#define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
ba42e045 404
45d93414 405#define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
ba42e045
SP
406/* The size of the direction/distance vectors: the number of loops in
407 the loop nest. */
9771b263 408#define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
45d93414
RS
409#define DDR_INNER_LOOP(DDR) (DDR)->inner_loop
410#define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
304afda6
SP
411
412#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
413#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
414#define DDR_NUM_DIST_VECTS(DDR) \
9771b263 415 (DDR_DIST_VECTS (DDR).length ())
304afda6 416#define DDR_NUM_DIR_VECTS(DDR) \
9771b263 417 (DDR_DIR_VECTS (DDR).length ())
304afda6 418#define DDR_DIR_VECT(DDR, I) \
9771b263 419 DDR_DIR_VECTS (DDR)[I]
304afda6 420#define DDR_DIST_VECT(DDR, I) \
9771b263 421 DDR_DIST_VECTS (DDR)[I]
45d93414 422#define DDR_REVERSED_P(DDR) (DDR)->reversed_p
dfbddbeb 423#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
56cf8686
SP
424
425\f
f4ebbd24
DM
426opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
427 struct loop *, const gimple *);
9f275479 428extern bool compute_data_dependences_for_loop (struct loop *, bool,
9771b263
DN
429 vec<loop_p> *,
430 vec<data_reference_p> *,
431 vec<ddr_p> *);
9771b263 432extern void debug_ddrs (vec<ddr_p> );
56cf8686 433extern void dump_data_reference (FILE *, struct data_reference *);
7b3b6ae4
LC
434extern void debug (data_reference &ref);
435extern void debug (data_reference *ptr);
a37d995a 436extern void debug_data_reference (struct data_reference *);
9771b263 437extern void debug_data_references (vec<data_reference_p> );
7b3b6ae4
LC
438extern void debug (vec<data_reference_p> &ref);
439extern void debug (vec<data_reference_p> *ptr);
ba42e045 440extern void debug_data_dependence_relation (struct data_dependence_relation *);
9771b263 441extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
7b3b6ae4
LC
442extern void debug (vec<ddr_p> &ref);
443extern void debug (vec<ddr_p> *ptr);
9771b263 444extern void debug_data_dependence_relations (vec<ddr_p> );
36d59cf7 445extern void free_dependence_relation (struct data_dependence_relation *);
9771b263 446extern void free_dependence_relations (vec<ddr_p> );
dea61d92 447extern void free_data_ref (data_reference_p);
9771b263 448extern void free_data_refs (vec<data_reference_p> );
f4ebbd24
DM
449extern opt_result find_data_references_in_stmt (struct loop *, gimple *,
450 vec<data_reference_p> *);
a68f286c 451extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
9771b263 452 vec<data_reference_p> *);
fcac74a1 453tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
74032f47 454bool loop_nest_has_data_refs (loop_p loop);
a68f286c 455struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
62c8a2cf 456 bool);
9771b263 457extern bool find_loop_nest (struct loop *, vec<loop_p> *);
aec7ae7d 458extern struct data_dependence_relation *initialize_data_dependence_relation
9771b263 459 (struct data_reference *, struct data_reference *, vec<loop_p>);
f20132e7
RG
460extern void compute_affine_dependence (struct data_dependence_relation *,
461 loop_p);
aec7ae7d 462extern void compute_self_dependence (struct data_dependence_relation *);
9771b263
DN
463extern bool compute_all_dependences (vec<data_reference_p> ,
464 vec<ddr_p> *,
465 vec<loop_p>, bool);
bfe068c3 466extern tree find_data_references_in_bb (struct loop *, basic_block,
9771b263 467 vec<data_reference_p> *);
25f68d90 468extern unsigned int dr_alignment (innermost_loop_behavior *);
a199d5e7 469extern tree get_base_for_alignment (tree, unsigned int *);
25f68d90
RS
470
471/* Return the alignment in bytes that DR is guaranteed to have at all
472 times. */
473
474inline unsigned int
475dr_alignment (data_reference *dr)
476{
477 return dr_alignment (&DR_INNERMOST (dr));
478}
f8bf9252 479
f8bf9252 480extern bool dr_may_alias_p (const struct data_reference *,
02f5d6c5 481 const struct data_reference *, bool);
bfe068c3
IR
482extern bool dr_equal_offsets_p (struct data_reference *,
483 struct data_reference *);
e1fd038a 484
f4ebbd24 485extern opt_result runtime_alias_check_p (ddr_p, struct loop *, bool);
2c8f03ad 486extern int data_ref_compare_tree (tree, tree);
8d44cf72 487extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
079b4a9c 488 poly_uint64);
9cbd2d97
BC
489extern void create_runtime_alias_checks (struct loop *,
490 vec<dr_with_seg_len_pair_t> *, tree*);
a57776a1
RS
491extern tree dr_direction_indicator (struct data_reference *);
492extern tree dr_zero_step_indicator (struct data_reference *);
493extern bool dr_known_forward_stride_p (struct data_reference *);
494
e1fd038a
SP
495/* Return true when the base objects of data references A and B are
496 the same memory object. */
497
498static inline bool
499same_data_refs_base_objects (data_reference_p a, data_reference_p b)
500{
501 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
502 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
503}
504
505/* Return true when the data references A and B are accessing the same
506 memory object with the same access functions. */
507
508static inline bool
509same_data_refs (data_reference_p a, data_reference_p b)
510{
511 unsigned int i;
512
513 /* The references are exactly the same. */
514 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
515 return true;
516
517 if (!same_data_refs_base_objects (a, b))
518 return false;
519
520 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
521 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
522 return false;
523
524 return true;
525}
526
2fd5894f
RB
527/* Returns true when all the dependences are computable. */
528
529inline bool
530known_dependences_p (vec<ddr_p> dependence_relations)
531{
532 ddr_p ddr;
533 unsigned int i;
534
535 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
536 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
537 return false;
538
539 return true;
540}
541
b305e3da
SP
542/* Returns the dependence level for a vector DIST of size LENGTH.
543 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
544 to the sequence of statements, not carried by any loop. */
545
546static inline unsigned
547dependence_level (lambda_vector dist_vect, int length)
548{
549 int i;
550
551 for (i = 0; i < length; i++)
552 if (dist_vect[i] != 0)
553 return i + 1;
554
555 return 0;
556}
557
dea61d92
SP
558/* Return the dependence level for the DDR relation. */
559
560static inline unsigned
561ddr_dependence_level (ddr_p ddr)
562{
563 unsigned vector;
564 unsigned level = 0;
565
9771b263 566 if (DDR_DIST_VECTS (ddr).exists ())
dea61d92
SP
567 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
568
569 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
570 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
571 DDR_NB_LOOPS (ddr)));
572 return level;
573}
574
ba42e045
SP
575/* Return the index of the variable VAR in the LOOP_NEST array. */
576
577static inline int
9771b263 578index_in_loop_nest (int var, vec<loop_p> loop_nest)
ba42e045
SP
579{
580 struct loop *loopi;
581 int var_index;
582
9771b263 583 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
ba42e045
SP
584 var_index++)
585 if (loopi->num == var)
586 break;
587
588 return var_index;
589}
590
be6b029b
RG
591/* Returns true when the data reference DR the form "A[i] = ..."
592 with a stride equal to its unit type size. */
5e37ea0e
SP
593
594static inline bool
d0582dc1 595adjacent_dr_p (struct data_reference *dr)
5e37ea0e 596{
be6b029b
RG
597 /* If this is a bitfield store bail out. */
598 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
599 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
600 return false;
601
602 if (!DR_STEP (dr)
603 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
604 return false;
605
606 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
607 DR_STEP (dr)),
608 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
5e37ea0e
SP
609}
610
468c2ac0
DN
611void split_constant_offset (tree , tree *, tree *);
612
b305e3da
SP
613/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
614
1c8badf6 615static inline lambda_int
b305e3da
SP
616lambda_vector_gcd (lambda_vector vector, int size)
617{
618 int i;
1c8badf6 619 lambda_int gcd1 = 0;
b305e3da
SP
620
621 if (size > 0)
622 {
623 gcd1 = vector[0];
624 for (i = 1; i < size; i++)
625 gcd1 = gcd (gcd1, vector[i]);
626 }
627 return gcd1;
628}
629
630/* Allocate a new vector of given SIZE. */
631
632static inline lambda_vector
633lambda_vector_new (int size)
634{
6f4f1a50 635 /* ??? We shouldn't abuse the GC allocator here. */
1c8badf6 636 return ggc_cleared_vec_alloc<lambda_int> (size);
b305e3da
SP
637}
638
639/* Clear out vector VEC1 of length SIZE. */
640
641static inline void
642lambda_vector_clear (lambda_vector vec1, int size)
643{
644 memset (vec1, 0, size * sizeof (*vec1));
645}
646
647/* Returns true when the vector V is lexicographically positive, in
648 other words, when the first nonzero element is positive. */
649
650static inline bool
651lambda_vector_lexico_pos (lambda_vector v,
652 unsigned n)
653{
654 unsigned i;
655 for (i = 0; i < n; i++)
656 {
657 if (v[i] == 0)
658 continue;
659 if (v[i] < 0)
660 return false;
661 if (v[i] > 0)
662 return true;
663 }
664 return true;
665}
666
667/* Return true if vector VEC1 of length SIZE is the zero vector. */
668
669static inline bool
670lambda_vector_zerop (lambda_vector vec1, int size)
671{
672 int i;
673 for (i = 0; i < size; i++)
674 if (vec1[i] != 0)
675 return false;
676 return true;
677}
678
679/* Allocate a matrix of M rows x N cols. */
680
681static inline lambda_matrix
682lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
683{
684 lambda_matrix mat;
685 int i;
686
6f4f1a50 687 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
b305e3da
SP
688
689 for (i = 0; i < m; i++)
1c8badf6 690 mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
b305e3da
SP
691
692 return mat;
693}
694
56cf8686 695#endif /* GCC_TREE_DATA_REF_H */