]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-loop-distribution.c
re PR fortran/68426 (Simplification of SPREAD with a derived type element is unimplem...
[thirdparty/gcc.git] / gcc / tree-loop-distribution.c
CommitLineData
dea61d92 1/* Loop distribution.
a5544970 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
dea61d92
SP
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
5
6This file is part of GCC.
b8698a0f 7
dea61d92
SP
8GCC is free software; you can redistribute it and/or modify it
9under the terms of the GNU General Public License as published by the
10Free Software Foundation; either version 3, or (at your option) any
11later version.
b8698a0f 12
dea61d92
SP
13GCC is distributed in the hope that it will be useful, but WITHOUT
14ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
b8698a0f 17
dea61d92
SP
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* This pass performs loop distribution: for example, the loop
23
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
28
b8698a0f 29 is transformed to
dea61d92
SP
30
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
34 |
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
38
a8745cc2
BC
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
44
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
84
85 TODO:
163aa51b
BC
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
a8745cc2
BC
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
dea61d92
SP
91
92#include "config.h"
93#include "system.h"
94#include "coretypes.h"
c7131fb2 95#include "backend.h"
40e23961 96#include "tree.h"
c7131fb2 97#include "gimple.h"
957060b5
AM
98#include "cfghooks.h"
99#include "tree-pass.h"
c7131fb2 100#include "ssa.h"
957060b5 101#include "gimple-pretty-print.h"
c7131fb2 102#include "fold-const.h"
60393bbc 103#include "cfganal.h"
5be5c238 104#include "gimple-iterator.h"
18f429e2 105#include "gimplify-me.h"
d8a2d370 106#include "stor-layout.h"
442b4905 107#include "tree-cfg.h"
e28030cf 108#include "tree-ssa-loop-manip.h"
957f0d8f 109#include "tree-ssa-loop-ivopts.h"
442b4905
AM
110#include "tree-ssa-loop.h"
111#include "tree-into-ssa.h"
7a300452 112#include "tree-ssa.h"
dea61d92 113#include "cfgloop.h"
dea61d92 114#include "tree-scalar-evolution.h"
9fafb14a 115#include "params.h"
826a536d 116#include "tree-vectorizer.h"
80ab0b19
RB
117
118
9fafb14a
BC
119#define MAX_DATAREFS_NUM \
120 ((unsigned) PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
121
163aa51b
BC
122/* Threshold controlling number of distributed partitions. Given it may
123 be unnecessary if a memory stream cost model is invented in the future,
124 we define it as a temporary macro, rather than a parameter. */
125#define NUM_PARTITION_THRESHOLD (4)
126
17c5cbdf
BC
127/* Hashtable helpers. */
128
129struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
130{
131 static inline hashval_t hash (const data_dependence_relation *);
132 static inline bool equal (const data_dependence_relation *,
133 const data_dependence_relation *);
134};
135
136/* Hash function for data dependence. */
137
138inline hashval_t
139ddr_hasher::hash (const data_dependence_relation *ddr)
140{
141 inchash::hash h;
142 h.add_ptr (DDR_A (ddr));
143 h.add_ptr (DDR_B (ddr));
144 return h.end ();
145}
146
147/* Hash table equality function for data dependence. */
148
149inline bool
150ddr_hasher::equal (const data_dependence_relation *ddr1,
151 const data_dependence_relation *ddr2)
152{
153 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
154}
155
4084ea5f
BC
156/* The loop (nest) to be distributed. */
157static vec<loop_p> loop_nest;
158
9fafb14a
BC
159/* Vector of data references in the loop to be distributed. */
160static vec<data_reference_p> datarefs_vec;
161
162/* Store index of data reference in aux field. */
163#define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
164
17c5cbdf 165/* Hash table for data dependence relation in the loop to be distributed. */
1e485f89 166static hash_table<ddr_hasher> *ddrs_table;
17c5cbdf 167
80ab0b19 168/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
526ceb68 169struct rdg_vertex
80ab0b19
RB
170{
171 /* The statement represented by this vertex. */
355fe088 172 gimple *stmt;
80ab0b19
RB
173
174 /* Vector of data-references in this statement. */
175 vec<data_reference_p> datarefs;
176
177 /* True when the statement contains a write to memory. */
178 bool has_mem_write;
179
180 /* True when the statement contains a read from memory. */
181 bool has_mem_reads;
526ceb68 182};
80ab0b19
RB
183
184#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
185#define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
186#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
187#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
188#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
189#define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
190#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
191#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
192
193/* Data dependence type. */
194
195enum rdg_dep_type
196{
197 /* Read After Write (RAW). */
198 flow_dd = 'f',
199
36875e8f
RB
200 /* Control dependence (execute conditional on). */
201 control_dd = 'c'
80ab0b19
RB
202};
203
204/* Dependence information attached to an edge of the RDG. */
205
526ceb68 206struct rdg_edge
80ab0b19
RB
207{
208 /* Type of the dependence. */
209 enum rdg_dep_type type;
526ceb68 210};
80ab0b19
RB
211
212#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
80ab0b19 213
80ab0b19
RB
214/* Dump vertex I in RDG to FILE. */
215
216static void
217dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
218{
219 struct vertex *v = &(rdg->vertices[i]);
220 struct graph_edge *e;
221
222 fprintf (file, "(vertex %d: (%s%s) (in:", i,
223 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
224 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
225
226 if (v->pred)
227 for (e = v->pred; e; e = e->pred_next)
228 fprintf (file, " %d", e->src);
229
230 fprintf (file, ") (out:");
231
232 if (v->succ)
233 for (e = v->succ; e; e = e->succ_next)
234 fprintf (file, " %d", e->dest);
235
236 fprintf (file, ")\n");
237 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
238 fprintf (file, ")\n");
239}
240
241/* Call dump_rdg_vertex on stderr. */
242
243DEBUG_FUNCTION void
244debug_rdg_vertex (struct graph *rdg, int i)
245{
246 dump_rdg_vertex (stderr, rdg, i);
247}
248
80ab0b19
RB
249/* Dump the reduced dependence graph RDG to FILE. */
250
251static void
252dump_rdg (FILE *file, struct graph *rdg)
253{
80ab0b19 254 fprintf (file, "(rdg\n");
2fd5894f
RB
255 for (int i = 0; i < rdg->n_vertices; i++)
256 dump_rdg_vertex (file, rdg, i);
80ab0b19 257 fprintf (file, ")\n");
80ab0b19
RB
258}
259
260/* Call dump_rdg on stderr. */
261
262DEBUG_FUNCTION void
263debug_rdg (struct graph *rdg)
264{
265 dump_rdg (stderr, rdg);
266}
267
268static void
269dot_rdg_1 (FILE *file, struct graph *rdg)
270{
271 int i;
174ec470
RB
272 pretty_printer buffer;
273 pp_needs_newline (&buffer) = false;
274 buffer.buffer->stream = file;
80ab0b19
RB
275
276 fprintf (file, "digraph RDG {\n");
277
278 for (i = 0; i < rdg->n_vertices; i++)
279 {
280 struct vertex *v = &(rdg->vertices[i]);
281 struct graph_edge *e;
282
174ec470
RB
283 fprintf (file, "%d [label=\"[%d] ", i, i);
284 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
285 pp_flush (&buffer);
286 fprintf (file, "\"]\n");
287
80ab0b19
RB
288 /* Highlight reads from memory. */
289 if (RDG_MEM_READS_STMT (rdg, i))
290 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
291
292 /* Highlight stores to memory. */
293 if (RDG_MEM_WRITE_STMT (rdg, i))
294 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
295
296 if (v->succ)
297 for (e = v->succ; e; e = e->succ_next)
298 switch (RDGE_TYPE (e))
299 {
80ab0b19
RB
300 case flow_dd:
301 /* These are the most common dependences: don't print these. */
302 fprintf (file, "%d -> %d \n", i, e->dest);
303 break;
304
36875e8f
RB
305 case control_dd:
306 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
307 break;
308
80ab0b19
RB
309 default:
310 gcc_unreachable ();
311 }
312 }
313
314 fprintf (file, "}\n\n");
315}
316
317/* Display the Reduced Dependence Graph using dotty. */
318
319DEBUG_FUNCTION void
320dot_rdg (struct graph *rdg)
321{
174ec470 322 /* When debugging, you may want to enable the following code. */
b6d94045 323#ifdef HAVE_POPEN
c3284718 324 FILE *file = popen ("dot -Tx11", "w");
174ec470
RB
325 if (!file)
326 return;
80ab0b19 327 dot_rdg_1 (file, rdg);
174ec470
RB
328 fflush (file);
329 close (fileno (file));
330 pclose (file);
80ab0b19
RB
331#else
332 dot_rdg_1 (stderr, rdg);
333#endif
334}
335
336/* Returns the index of STMT in RDG. */
337
338static int
355fe088 339rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
80ab0b19
RB
340{
341 int index = gimple_uid (stmt);
342 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
343 return index;
344}
345
80ab0b19
RB
346/* Creates dependence edges in RDG for all the uses of DEF. IDEF is
347 the index of DEF in RDG. */
348
349static void
350create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
351{
352 use_operand_p imm_use_p;
353 imm_use_iterator iterator;
354
355 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
356 {
357 struct graph_edge *e;
358 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
359
360 if (use < 0)
361 continue;
362
363 e = add_edge (rdg, idef, use);
364 e->data = XNEW (struct rdg_edge);
365 RDGE_TYPE (e) = flow_dd;
80ab0b19
RB
366 }
367}
368
36875e8f
RB
369/* Creates an edge for the control dependences of BB to the vertex V. */
370
371static void
372create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
373 int v, control_dependences *cd)
374{
375 bitmap_iterator bi;
376 unsigned edge_n;
377 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
378 0, edge_n, bi)
379 {
30fd2977 380 basic_block cond_bb = cd->get_edge_src (edge_n);
355fe088 381 gimple *stmt = last_stmt (cond_bb);
36875e8f
RB
382 if (stmt && is_ctrl_stmt (stmt))
383 {
384 struct graph_edge *e;
385 int c = rdg_vertex_for_stmt (rdg, stmt);
386 if (c < 0)
387 continue;
388
389 e = add_edge (rdg, c, v);
390 e->data = XNEW (struct rdg_edge);
391 RDGE_TYPE (e) = control_dd;
36875e8f
RB
392 }
393 }
394}
395
80ab0b19
RB
396/* Creates the edges of the reduced dependence graph RDG. */
397
398static void
447f3223 399create_rdg_flow_edges (struct graph *rdg)
80ab0b19
RB
400{
401 int i;
80ab0b19
RB
402 def_operand_p def_p;
403 ssa_op_iter iter;
404
80ab0b19
RB
405 for (i = 0; i < rdg->n_vertices; i++)
406 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
407 iter, SSA_OP_DEF)
408 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
447f3223 409}
36875e8f 410
447f3223
RB
411/* Creates the edges of the reduced dependence graph RDG. */
412
413static void
b71b7a8e 414create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
447f3223
RB
415{
416 int i;
417
418 for (i = 0; i < rdg->n_vertices; i++)
419 {
355fe088 420 gimple *stmt = RDG_STMT (rdg, i);
447f3223
RB
421 if (gimple_code (stmt) == GIMPLE_PHI)
422 {
423 edge_iterator ei;
424 edge e;
425 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
b71b7a8e 426 if (flow_bb_inside_loop_p (loop, e->src))
36875e8f 427 create_edge_for_control_dependence (rdg, e->src, i, cd);
447f3223
RB
428 }
429 else
430 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
431 }
80ab0b19
RB
432}
433
434/* Build the vertices of the reduced dependence graph RDG. Return false
435 if that failed. */
436
437static bool
9fafb14a 438create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop)
80ab0b19
RB
439{
440 int i;
355fe088 441 gimple *stmt;
80ab0b19
RB
442
443 FOR_EACH_VEC_ELT (stmts, i, stmt)
444 {
445 struct vertex *v = &(rdg->vertices[i]);
446
447 /* Record statement to vertex mapping. */
448 gimple_set_uid (stmt, i);
449
450 v->data = XNEW (struct rdg_vertex);
451 RDGV_STMT (v) = stmt;
452 RDGV_DATAREFS (v).create (0);
453 RDGV_HAS_MEM_WRITE (v) = false;
454 RDGV_HAS_MEM_READS (v) = false;
455 if (gimple_code (stmt) == GIMPLE_PHI)
456 continue;
457
9fafb14a
BC
458 unsigned drp = datarefs_vec.length ();
459 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
80ab0b19 460 return false;
9fafb14a 461 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
80ab0b19 462 {
9fafb14a 463 data_reference_p dr = datarefs_vec[j];
80ab0b19
RB
464 if (DR_IS_READ (dr))
465 RDGV_HAS_MEM_READS (v) = true;
466 else
467 RDGV_HAS_MEM_WRITE (v) = true;
468 RDGV_DATAREFS (v).safe_push (dr);
469 }
470 }
471 return true;
472}
473
3be57c56
BC
474/* Array mapping basic block's index to its topological order. */
475static int *bb_top_order_index;
476/* And size of the array. */
477static int bb_top_order_index_size;
478
479/* If X has a smaller topological sort number than Y, returns -1;
480 if greater, returns 1. */
481
482static int
483bb_top_order_cmp (const void *x, const void *y)
484{
485 basic_block bb1 = *(const basic_block *) x;
486 basic_block bb2 = *(const basic_block *) y;
487
488 gcc_assert (bb1->index < bb_top_order_index_size
489 && bb2->index < bb_top_order_index_size);
490 gcc_assert (bb1 == bb2
491 || bb_top_order_index[bb1->index]
492 != bb_top_order_index[bb2->index]);
493
494 return (bb_top_order_index[bb1->index] - bb_top_order_index[bb2->index]);
495}
496
497/* Initialize STMTS with all the statements of LOOP. We use topological
498 order to discover all statements. The order is important because
499 generate_loops_for_partition is using the same traversal for identifying
500 statements in loop copies. */
80ab0b19
RB
501
502static void
355fe088 503stmts_from_loop (struct loop *loop, vec<gimple *> *stmts)
80ab0b19
RB
504{
505 unsigned int i;
3be57c56 506 basic_block *bbs = get_loop_body_in_custom_order (loop, bb_top_order_cmp);
80ab0b19
RB
507
508 for (i = 0; i < loop->num_nodes; i++)
509 {
510 basic_block bb = bbs[i];
80ab0b19 511
538dd0b7
DM
512 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
513 gsi_next (&bsi))
514 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
515 stmts->safe_push (bsi.phi ());
80ab0b19 516
538dd0b7
DM
517 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
518 gsi_next (&bsi))
80ab0b19 519 {
355fe088 520 gimple *stmt = gsi_stmt (bsi);
80ab0b19
RB
521 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
522 stmts->safe_push (stmt);
523 }
524 }
525
526 free (bbs);
527}
528
80ab0b19
RB
529/* Free the reduced dependence graph RDG. */
530
531static void
532free_rdg (struct graph *rdg)
533{
534 int i;
535
536 for (i = 0; i < rdg->n_vertices; i++)
537 {
538 struct vertex *v = &(rdg->vertices[i]);
539 struct graph_edge *e;
540
541 for (e = v->succ; e; e = e->succ_next)
447f3223 542 free (e->data);
80ab0b19
RB
543
544 if (v->data)
545 {
546 gimple_set_uid (RDGV_STMT (v), -1);
9fafb14a 547 (RDGV_DATAREFS (v)).release ();
80ab0b19
RB
548 free (v->data);
549 }
550 }
551
552 free_graph (rdg);
553}
554
4084ea5f
BC
555/* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
556 LOOP, and one edge per flow dependence or control dependence from control
9fafb14a
BC
557 dependence CD. During visiting each statement, data references are also
558 collected and recorded in global data DATAREFS_VEC. */
80ab0b19
RB
559
560static struct graph *
4084ea5f 561build_rdg (struct loop *loop, control_dependences *cd)
80ab0b19
RB
562{
563 struct graph *rdg;
80ab0b19 564
97463b2b 565 /* Create the RDG vertices from the stmts of the loop nest. */
355fe088 566 auto_vec<gimple *, 10> stmts;
4084ea5f 567 stmts_from_loop (loop, &stmts);
24f161fd 568 rdg = new_graph (stmts.length ());
9fafb14a 569 if (!create_rdg_vertices (rdg, stmts, loop))
80ab0b19 570 {
80ab0b19
RB
571 free_rdg (rdg);
572 return NULL;
573 }
574 stmts.release ();
97463b2b 575
447f3223
RB
576 create_rdg_flow_edges (rdg);
577 if (cd)
4084ea5f 578 create_rdg_cd_edges (rdg, cd, loop);
447f3223 579
80ab0b19
RB
580 return rdg;
581}
582
80ab0b19 583
f1eb4621 584/* Kind of distributed loop. */
b9fc0497 585enum partition_kind {
5955438a
BC
586 PKIND_NORMAL,
587 /* Partial memset stands for a paritition can be distributed into a loop
588 of memset calls, rather than a single memset call. It's handled just
589 like a normal parition, i.e, distributed as separate loop, no memset
590 call is generated.
591
592 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
593 loop nest as deep as possible. As a result, parloop achieves better
594 parallelization by parallelizing deeper loop nest. This hack should
595 be unnecessary and removed once distributed memset can be understood
596 and analyzed in data reference analysis. See PR82604 for more. */
597 PKIND_PARTIAL_MEMSET,
598 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
b9fc0497 599};
30d55936 600
f1eb4621
BC
601/* Type of distributed loop. */
602enum partition_type {
603 /* The distributed loop can be executed parallelly. */
604 PTYPE_PARALLEL = 0,
605 /* The distributed loop has to be executed sequentially. */
606 PTYPE_SEQUENTIAL
607};
608
939cf90f
BC
609/* Builtin info for loop distribution. */
610struct builtin_info
611{
612 /* data-references a kind != PKIND_NORMAL partition is about. */
613 data_reference_p dst_dr;
614 data_reference_p src_dr;
615 /* Base address and size of memory objects operated by the builtin. Note
616 both dest and source memory objects must have the same size. */
617 tree dst_base;
618 tree src_base;
619 tree size;
957f0d8f
BC
620 /* Base and offset part of dst_base after stripping constant offset. This
621 is only used in memset builtin distribution for now. */
622 tree dst_base_base;
623 unsigned HOST_WIDE_INT dst_base_offset;
939cf90f
BC
624};
625
a7a44c07 626/* Partition for loop distribution. */
526ceb68 627struct partition
c61f8985 628{
a7a44c07 629 /* Statements of the partition. */
c61f8985 630 bitmap stmts;
a7a44c07 631 /* True if the partition defines variable which is used outside of loop. */
826a536d 632 bool reduction_p;
30d55936 633 enum partition_kind kind;
f1eb4621 634 enum partition_type type;
a7a44c07
BC
635 /* Data references in the partition. */
636 bitmap datarefs;
939cf90f
BC
637 /* Information of builtin parition. */
638 struct builtin_info *builtin;
526ceb68 639};
c61f8985 640
c61f8985
RG
641
642/* Allocate and initialize a partition from BITMAP. */
643
526ceb68 644static partition *
a7a44c07 645partition_alloc (void)
c61f8985 646{
526ceb68 647 partition *partition = XCNEW (struct partition);
a7a44c07 648 partition->stmts = BITMAP_ALLOC (NULL);
826a536d 649 partition->reduction_p = false;
30d55936 650 partition->kind = PKIND_NORMAL;
a7a44c07 651 partition->datarefs = BITMAP_ALLOC (NULL);
c61f8985
RG
652 return partition;
653}
654
655/* Free PARTITION. */
656
657static void
526ceb68 658partition_free (partition *partition)
c61f8985
RG
659{
660 BITMAP_FREE (partition->stmts);
a7a44c07 661 BITMAP_FREE (partition->datarefs);
939cf90f
BC
662 if (partition->builtin)
663 free (partition->builtin);
664
c61f8985
RG
665 free (partition);
666}
667
30d55936
RG
668/* Returns true if the partition can be generated as a builtin. */
669
670static bool
526ceb68 671partition_builtin_p (partition *partition)
30d55936 672{
5955438a 673 return partition->kind > PKIND_PARTIAL_MEMSET;
30d55936 674}
c61f8985 675
826a536d 676/* Returns true if the partition contains a reduction. */
7ad672e4
RG
677
678static bool
526ceb68 679partition_reduction_p (partition *partition)
7ad672e4 680{
826a536d 681 return partition->reduction_p;
7ad672e4
RG
682}
683
821dbeef
BC
684/* Partitions are fused because of different reasons. */
685enum fuse_type
686{
687 FUSE_NON_BUILTIN = 0,
688 FUSE_REDUCTION = 1,
689 FUSE_SHARE_REF = 2,
690 FUSE_SAME_SCC = 3,
691 FUSE_FINALIZE = 4
692};
693
694/* Description on different fusing reason. */
695static const char *fuse_message[] = {
696 "they are non-builtins",
697 "they have reductions",
698 "they have shared memory refs",
699 "they are in the same dependence scc",
700 "there is no point to distribute loop"};
701
826a536d 702static void
f1eb4621 703update_type_for_merge (struct graph *, partition *, partition *);
821dbeef 704
f1eb4621
BC
705/* Merge PARTITION into the partition DEST. RDG is the reduced dependence
706 graph and we update type for result partition if it is non-NULL. */
a7a44c07 707
f1eb4621
BC
708static void
709partition_merge_into (struct graph *rdg, partition *dest,
710 partition *partition, enum fuse_type ft)
711{
821dbeef
BC
712 if (dump_file && (dump_flags & TDF_DETAILS))
713 {
714 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
715 fprintf (dump_file, " Part 1: ");
716 dump_bitmap (dump_file, dest->stmts);
717 fprintf (dump_file, " Part 2: ");
718 dump_bitmap (dump_file, partition->stmts);
719 }
f1eb4621
BC
720
721 dest->kind = PKIND_NORMAL;
722 if (dest->type == PTYPE_PARALLEL)
723 dest->type = partition->type;
724
725 bitmap_ior_into (dest->stmts, partition->stmts);
726 if (partition_reduction_p (partition))
727 dest->reduction_p = true;
728
729 /* Further check if any data dependence prevents us from executing the
730 new partition parallelly. */
731 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
732 update_type_for_merge (rdg, dest, partition);
733
734 bitmap_ior_into (dest->datarefs, partition->datarefs);
826a536d
RB
735}
736
737
c07a8cb3
RG
738/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
739 the LOOP. */
740
741static bool
742ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
743{
744 imm_use_iterator imm_iter;
745 use_operand_p use_p;
746
747 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
e665269a 748 {
163aa51b
BC
749 if (is_gimple_debug (USE_STMT (use_p)))
750 continue;
751
752 basic_block use_bb = gimple_bb (USE_STMT (use_p));
753 if (!flow_bb_inside_loop_p (loop, use_bb))
e665269a
RG
754 return true;
755 }
c07a8cb3
RG
756
757 return false;
758}
759
760/* Returns true when STMT defines a scalar variable used after the
88af7c1a 761 loop LOOP. */
c07a8cb3
RG
762
763static bool
355fe088 764stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
c07a8cb3 765{
88af7c1a
RG
766 def_operand_p def_p;
767 ssa_op_iter op_iter;
c07a8cb3 768
9ca86fc3
RG
769 if (gimple_code (stmt) == GIMPLE_PHI)
770 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
771
88af7c1a
RG
772 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
773 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
774 return true;
c07a8cb3 775
88af7c1a 776 return false;
c07a8cb3
RG
777}
778
dea61d92
SP
779/* Return a copy of LOOP placed before LOOP. */
780
781static struct loop *
782copy_loop_before (struct loop *loop)
783{
784 struct loop *res;
785 edge preheader = loop_preheader_edge (loop);
786
dea61d92 787 initialize_original_copy_tables ();
5ce9450f 788 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
30d55936 789 gcc_assert (res != NULL);
dea61d92 790 free_original_copy_tables ();
2cfc56b9 791 delete_update_ssa ();
dea61d92
SP
792
793 return res;
794}
795
796/* Creates an empty basic block after LOOP. */
797
798static void
799create_bb_after_loop (struct loop *loop)
800{
801 edge exit = single_exit (loop);
802
803 if (!exit)
804 return;
805
806 split_edge (exit);
807}
808
809/* Generate code for PARTITION from the code in LOOP. The loop is
810 copied when COPY_P is true. All the statements not flagged in the
811 PARTITION bitmap are removed from the loop or from its copy. The
812 statements are indexed in sequence inside a basic block, and the
30d55936 813 basic blocks of a loop are taken in dom order. */
dea61d92 814
30d55936 815static void
526ceb68 816generate_loops_for_partition (struct loop *loop, partition *partition,
c61f8985 817 bool copy_p)
dea61d92 818{
2fd5894f 819 unsigned i;
dea61d92
SP
820 basic_block *bbs;
821
822 if (copy_p)
823 {
a8745cc2 824 int orig_loop_num = loop->orig_loop_num;
dea61d92 825 loop = copy_loop_before (loop);
30d55936 826 gcc_assert (loop != NULL);
a8745cc2 827 loop->orig_loop_num = orig_loop_num;
dea61d92
SP
828 create_preheader (loop, CP_SIMPLE_PREHEADERS);
829 create_bb_after_loop (loop);
830 }
a8745cc2
BC
831 else
832 {
833 /* Origin number is set to the new versioned loop's num. */
834 gcc_assert (loop->orig_loop_num != loop->num);
835 }
dea61d92 836
2fd5894f 837 /* Remove stmts not in the PARTITION bitmap. */
dea61d92
SP
838 bbs = get_loop_body_in_dom_order (loop);
839
36f52e8f 840 if (MAY_HAVE_DEBUG_BIND_STMTS)
2fd5894f 841 for (i = 0; i < loop->num_nodes; i++)
b03c3082
JJ
842 {
843 basic_block bb = bbs[i];
844
538dd0b7
DM
845 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
846 gsi_next (&bsi))
2fd5894f 847 {
538dd0b7 848 gphi *phi = bsi.phi ();
2fd5894f
RB
849 if (!virtual_operand_p (gimple_phi_result (phi))
850 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
851 reset_debug_uses (phi);
852 }
b03c3082 853
538dd0b7 854 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b03c3082 855 {
355fe088 856 gimple *stmt = gsi_stmt (bsi);
b03c3082
JJ
857 if (gimple_code (stmt) != GIMPLE_LABEL
858 && !is_gimple_debug (stmt)
2fd5894f 859 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
b03c3082
JJ
860 reset_debug_uses (stmt);
861 }
862 }
863
2fd5894f 864 for (i = 0; i < loop->num_nodes; i++)
dea61d92
SP
865 {
866 basic_block bb = bbs[i];
efe040bf
BC
867 edge inner_exit = NULL;
868
869 if (loop != bb->loop_father)
870 inner_exit = single_exit (bb->loop_father);
dea61d92 871
538dd0b7 872 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
2fd5894f 873 {
538dd0b7 874 gphi *phi = bsi.phi ();
2fd5894f
RB
875 if (!virtual_operand_p (gimple_phi_result (phi))
876 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
2706a615 877 remove_phi_node (&bsi, true);
2fd5894f
RB
878 else
879 gsi_next (&bsi);
880 }
dea61d92 881
538dd0b7 882 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
2706a615 883 {
355fe088 884 gimple *stmt = gsi_stmt (bsi);
b03c3082
JJ
885 if (gimple_code (stmt) != GIMPLE_LABEL
886 && !is_gimple_debug (stmt)
2fd5894f 887 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
2706a615 888 {
efe040bf
BC
889 /* In distribution of loop nest, if bb is inner loop's exit_bb,
890 we choose its exit edge/path in order to avoid generating
891 infinite loop. For all other cases, we choose an arbitrary
892 path through the empty CFG part that this unnecessary
893 control stmt controls. */
538dd0b7 894 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
36875e8f 895 {
efe040bf
BC
896 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
897 gimple_cond_make_true (cond_stmt);
898 else
899 gimple_cond_make_false (cond_stmt);
36875e8f
RB
900 update_stmt (stmt);
901 }
902 else if (gimple_code (stmt) == GIMPLE_SWITCH)
903 {
538dd0b7 904 gswitch *switch_stmt = as_a <gswitch *> (stmt);
36875e8f 905 gimple_switch_set_index
538dd0b7 906 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
36875e8f
RB
907 update_stmt (stmt);
908 }
909 else
910 {
911 unlink_stmt_vdef (stmt);
912 gsi_remove (&bsi, true);
913 release_defs (stmt);
914 continue;
915 }
2706a615 916 }
36875e8f 917 gsi_next (&bsi);
2706a615 918 }
dea61d92
SP
919 }
920
921 free (bbs);
dea61d92
SP
922}
923
401f3a81
JJ
924/* If VAL memory representation contains the same value in all bytes,
925 return that value, otherwise return -1.
926 E.g. for 0x24242424 return 0x24, for IEEE double
927 747708026454360457216.0 return 0x44, etc. */
928
929static int
930const_with_all_bytes_same (tree val)
931{
932 unsigned char buf[64];
933 int i, len;
934
935 if (integer_zerop (val)
401f3a81
JJ
936 || (TREE_CODE (val) == CONSTRUCTOR
937 && !TREE_CLOBBER_P (val)
938 && CONSTRUCTOR_NELTS (val) == 0))
939 return 0;
940
9e207d6f
JJ
941 if (real_zerop (val))
942 {
943 /* Only return 0 for +0.0, not for -0.0, which doesn't have
944 an all bytes same memory representation. Don't transform
945 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
946 switch (TREE_CODE (val))
947 {
948 case REAL_CST:
949 if (!real_isneg (TREE_REAL_CST_PTR (val)))
950 return 0;
951 break;
952 case COMPLEX_CST:
953 if (!const_with_all_bytes_same (TREE_REALPART (val))
954 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
955 return 0;
956 break;
957 case VECTOR_CST:
63570af0
RS
958 {
959 unsigned int count = vector_cst_encoded_nelts (val);
960 unsigned int j;
961 for (j = 0; j < count; ++j)
962 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
963 break;
964 if (j == count)
965 return 0;
966 break;
967 }
9e207d6f
JJ
968 default:
969 break;
970 }
971 }
972
401f3a81
JJ
973 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
974 return -1;
975
976 len = native_encode_expr (val, buf, sizeof (buf));
977 if (len == 0)
978 return -1;
979 for (i = 1; i < len; i++)
980 if (buf[i] != buf[0])
981 return -1;
982 return buf[0];
983}
984
30d55936 985/* Generate a call to memset for PARTITION in LOOP. */
dea61d92 986
cfee318d 987static void
526ceb68 988generate_memset_builtin (struct loop *loop, partition *partition)
dea61d92 989{
30d55936 990 gimple_stmt_iterator gsi;
818625cf 991 tree mem, fn, nb_bytes;
b6dd5261 992 tree val;
939cf90f
BC
993 struct builtin_info *builtin = partition->builtin;
994 gimple *fn_call;
30d55936
RG
995
996 /* The new statements will be placed before LOOP. */
997 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
dea61d92 998
939cf90f 999 nb_bytes = builtin->size;
d0582dc1
RG
1000 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1001 false, GSI_CONTINUE_LINKING);
939cf90f 1002 mem = builtin->dst_base;
d0582dc1
RG
1003 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1004 false, GSI_CONTINUE_LINKING);
dea61d92 1005
b6dd5261 1006 /* This exactly matches the pattern recognition in classify_partition. */
939cf90f 1007 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
401f3a81
JJ
1008 /* Handle constants like 0x15151515 and similarly
1009 floating point constants etc. where all bytes are the same. */
1010 int bytev = const_with_all_bytes_same (val);
1011 if (bytev != -1)
1012 val = build_int_cst (integer_type_node, bytev);
1013 else if (TREE_CODE (val) == INTEGER_CST)
1014 val = fold_convert (integer_type_node, val);
1015 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
b6dd5261 1016 {
b731b390 1017 tree tem = make_ssa_name (integer_type_node);
355fe088 1018 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
401f3a81
JJ
1019 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1020 val = tem;
b6dd5261
RG
1021 }
1022
e79983f4 1023 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
b6dd5261 1024 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
d0582dc1 1025 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
dea61d92
SP
1026
1027 if (dump_file && (dump_flags & TDF_DETAILS))
b6dd5261
RG
1028 {
1029 fprintf (dump_file, "generated memset");
401f3a81 1030 if (bytev == 0)
b6dd5261 1031 fprintf (dump_file, " zero\n");
b6dd5261
RG
1032 else
1033 fprintf (dump_file, "\n");
1034 }
dea61d92
SP
1035}
1036
d0582dc1
RG
1037/* Generate a call to memcpy for PARTITION in LOOP. */
1038
1039static void
526ceb68 1040generate_memcpy_builtin (struct loop *loop, partition *partition)
d0582dc1
RG
1041{
1042 gimple_stmt_iterator gsi;
939cf90f 1043 gimple *fn_call;
818625cf 1044 tree dest, src, fn, nb_bytes;
d0582dc1 1045 enum built_in_function kind;
939cf90f 1046 struct builtin_info *builtin = partition->builtin;
d0582dc1
RG
1047
1048 /* The new statements will be placed before LOOP. */
1049 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1050
939cf90f 1051 nb_bytes = builtin->size;
d0582dc1
RG
1052 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1053 false, GSI_CONTINUE_LINKING);
939cf90f
BC
1054 dest = builtin->dst_base;
1055 src = builtin->src_base;
510d73a0
RB
1056 if (partition->kind == PKIND_MEMCPY
1057 || ! ptr_derefs_may_alias_p (dest, src))
d0582dc1 1058 kind = BUILT_IN_MEMCPY;
510d73a0
RB
1059 else
1060 kind = BUILT_IN_MEMMOVE;
d0582dc1
RG
1061
1062 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1063 false, GSI_CONTINUE_LINKING);
1064 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1065 false, GSI_CONTINUE_LINKING);
1066 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1067 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1068 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1069
1070 if (dump_file && (dump_flags & TDF_DETAILS))
1071 {
1072 if (kind == BUILT_IN_MEMCPY)
1073 fprintf (dump_file, "generated memcpy\n");
1074 else
1075 fprintf (dump_file, "generated memmove\n");
1076 }
1077}
1078
30d55936 1079/* Remove and destroy the loop LOOP. */
dea61d92 1080
30d55936
RG
1081static void
1082destroy_loop (struct loop *loop)
dea61d92 1083{
30d55936
RG
1084 unsigned nbbs = loop->num_nodes;
1085 edge exit = single_exit (loop);
1086 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
dea61d92 1087 basic_block *bbs;
30d55936 1088 unsigned i;
dea61d92
SP
1089
1090 bbs = get_loop_body_in_dom_order (loop);
1091
30d55936
RG
1092 redirect_edge_pred (exit, src);
1093 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1094 exit->flags |= EDGE_FALLTHRU;
1095 cancel_loop_tree (loop);
1096 rescan_loop_exit (exit, false, true);
dea61d92 1097
b9aba0a0
RB
1098 i = nbbs;
1099 do
c014f6f5
RG
1100 {
1101 /* We have made sure to not leave any dangling uses of SSA
1102 names defined in the loop. With the exception of virtuals.
1103 Make sure we replace all uses of virtual defs that will remain
1104 outside of the loop with the bare symbol as delete_basic_block
1105 will release them. */
b9aba0a0 1106 --i;
538dd0b7
DM
1107 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1108 gsi_next (&gsi))
c014f6f5 1109 {
538dd0b7 1110 gphi *phi = gsi.phi ();
ea057359 1111 if (virtual_operand_p (gimple_phi_result (phi)))
c014f6f5
RG
1112 mark_virtual_phi_result_for_renaming (phi);
1113 }
538dd0b7
DM
1114 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);
1115 gsi_next (&gsi))
c014f6f5 1116 {
355fe088 1117 gimple *stmt = gsi_stmt (gsi);
c014f6f5
RG
1118 tree vdef = gimple_vdef (stmt);
1119 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1120 mark_virtual_operand_for_renaming (vdef);
1121 }
1122 delete_basic_block (bbs[i]);
1123 }
b9aba0a0
RB
1124 while (i != 0);
1125
dea61d92 1126 free (bbs);
30d55936
RG
1127
1128 set_immediate_dominator (CDI_DOMINATORS, dest,
1129 recompute_dominator (CDI_DOMINATORS, dest));
dea61d92
SP
1130}
1131
b71b7a8e 1132/* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
dea61d92 1133
b71b7a8e 1134static bool
d0582dc1 1135generate_code_for_partition (struct loop *loop,
526ceb68 1136 partition *partition, bool copy_p)
dea61d92 1137{
30d55936
RG
1138 switch (partition->kind)
1139 {
826a536d 1140 case PKIND_NORMAL:
5955438a 1141 case PKIND_PARTIAL_MEMSET:
826a536d
RB
1142 /* Reductions all have to be in the last partition. */
1143 gcc_assert (!partition_reduction_p (partition)
1144 || !copy_p);
1145 generate_loops_for_partition (loop, partition, copy_p);
b71b7a8e 1146 return false;
826a536d 1147
30d55936 1148 case PKIND_MEMSET:
d0582dc1 1149 generate_memset_builtin (loop, partition);
d0582dc1
RG
1150 break;
1151
1152 case PKIND_MEMCPY:
510d73a0 1153 case PKIND_MEMMOVE:
d0582dc1 1154 generate_memcpy_builtin (loop, partition);
30d55936
RG
1155 break;
1156
1157 default:
1158 gcc_unreachable ();
1159 }
dea61d92 1160
826a536d
RB
1161 /* Common tail for partitions we turn into a call. If this was the last
1162 partition for which we generate code, we have to destroy the loop. */
1163 if (!copy_p)
b71b7a8e
RB
1164 return true;
1165 return false;
dea61d92
SP
1166}
1167
17c5cbdf
BC
1168/* Return data dependence relation for data references A and B. The two
1169 data references must be in lexicographic order wrto reduced dependence
1170 graph RDG. We firstly try to find ddr from global ddr hash table. If
1171 it doesn't exist, compute the ddr and cache it. */
1172
1173static data_dependence_relation *
1174get_data_dependence (struct graph *rdg, data_reference_p a, data_reference_p b)
1175{
1176 struct data_dependence_relation ent, **slot;
1177 struct data_dependence_relation *ddr;
1178
1179 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1180 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1181 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1182 ent.a = a;
1183 ent.b = b;
1e485f89 1184 slot = ddrs_table->find_slot (&ent, INSERT);
17c5cbdf
BC
1185 if (*slot == NULL)
1186 {
1187 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1188 compute_affine_dependence (ddr, loop_nest[0]);
1189 *slot = ddr;
1190 }
1191
1192 return *slot;
1193}
dea61d92 1194
f1eb4621
BC
1195/* In reduced dependence graph RDG for loop distribution, return true if
1196 dependence between references DR1 and DR2 leads to a dependence cycle
1197 and such dependence cycle can't be resolved by runtime alias check. */
1198
1199static bool
1200data_dep_in_cycle_p (struct graph *rdg,
1201 data_reference_p dr1, data_reference_p dr2)
1202{
1203 struct data_dependence_relation *ddr;
1204
1205 /* Re-shuffle data-refs to be in topological order. */
1206 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1207 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1208 std::swap (dr1, dr2);
1209
1210 ddr = get_data_dependence (rdg, dr1, dr2);
1211
1212 /* In case of no data dependence. */
1213 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1214 return false;
1215 /* For unknown data dependence or known data dependence which can't be
1216 expressed in classic distance vector, we check if it can be resolved
1217 by runtime alias check. If yes, we still consider data dependence
1218 as won't introduce data dependence cycle. */
1219 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1220 || DDR_NUM_DIST_VECTS (ddr) == 0)
1221 return !runtime_alias_check_p (ddr, NULL, true);
1222 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1223 return true;
1224 else if (DDR_REVERSED_P (ddr)
1225 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1226 return false;
1227
1228 return true;
1229}
1230
1231/* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
1232 PARTITION1's type after merging PARTITION2 into PARTITION1. */
1233
1234static void
1235update_type_for_merge (struct graph *rdg,
1236 partition *partition1, partition *partition2)
1237{
1238 unsigned i, j;
1239 bitmap_iterator bi, bj;
1240 data_reference_p dr1, dr2;
1241
1242 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1243 {
1244 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1245
1246 dr1 = datarefs_vec[i];
1247 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1248 {
1249 dr2 = datarefs_vec[j];
1250 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1251 continue;
1252
1253 /* Partition can only be executed sequentially if there is any
1254 data dependence cycle. */
1255 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1256 {
1257 partition1->type = PTYPE_SEQUENTIAL;
1258 return;
1259 }
1260 }
1261 }
1262}
1263
24f161fd
RB
1264/* Returns a partition with all the statements needed for computing
1265 the vertex V of the RDG, also including the loop exit conditions. */
dea61d92 1266
526ceb68 1267static partition *
24f161fd 1268build_rdg_partition_for_vertex (struct graph *rdg, int v)
dea61d92 1269{
a7a44c07 1270 partition *partition = partition_alloc ();
00f96dc9 1271 auto_vec<int, 3> nodes;
a7a44c07 1272 unsigned i, j;
dea61d92 1273 int x;
a7a44c07 1274 data_reference_p dr;
dea61d92 1275
174ec470 1276 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
dea61d92 1277
9771b263 1278 FOR_EACH_VEC_ELT (nodes, i, x)
24f161fd
RB
1279 {
1280 bitmap_set_bit (partition->stmts, x);
a7a44c07
BC
1281
1282 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1283 {
1284 unsigned idx = (unsigned) DR_INDEX (dr);
1285 gcc_assert (idx < datarefs_vec.length ());
1286
f1eb4621
BC
1287 /* Partition can only be executed sequentially if there is any
1288 unknown data reference. */
1289 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1290 || !DR_INIT (dr) || !DR_STEP (dr))
1291 partition->type = PTYPE_SEQUENTIAL;
1292
a7a44c07
BC
1293 bitmap_set_bit (partition->datarefs, idx);
1294 }
24f161fd 1295 }
dea61d92 1296
f1eb4621
BC
1297 if (partition->type == PTYPE_SEQUENTIAL)
1298 return partition;
1299
1300 /* Further check if any data dependence prevents us from executing the
1301 partition parallelly. */
1302 update_type_for_merge (rdg, partition, partition);
1303
dea61d92
SP
1304 return partition;
1305}
1306
85aa9ed6
BC
1307/* Given PARTITION of LOOP and RDG, record single load/store data references
1308 for builtin partition in SRC_DR/DST_DR, return false if there is no such
939cf90f 1309 data references. */
cfee318d 1310
939cf90f 1311static bool
85aa9ed6 1312find_single_drs (struct loop *loop, struct graph *rdg, partition *partition,
939cf90f 1313 data_reference_p *dst_dr, data_reference_p *src_dr)
cfee318d 1314{
30d55936 1315 unsigned i;
939cf90f
BC
1316 data_reference_p single_ld = NULL, single_st = NULL;
1317 bitmap_iterator bi;
b9fc0497 1318
30d55936
RG
1319 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1320 {
355fe088 1321 gimple *stmt = RDG_STMT (rdg, i);
d0582dc1 1322 data_reference_p dr;
30d55936
RG
1323
1324 if (gimple_code (stmt) == GIMPLE_PHI)
1325 continue;
1326
1327 /* Any scalar stmts are ok. */
1328 if (!gimple_vuse (stmt))
1329 continue;
1330
d0582dc1
RG
1331 /* Otherwise just regular loads/stores. */
1332 if (!gimple_assign_single_p (stmt))
939cf90f 1333 return false;
d0582dc1
RG
1334
1335 /* But exactly one store and/or load. */
939cf90f 1336 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
30d55936 1337 {
d002d099
JJ
1338 tree type = TREE_TYPE (DR_REF (dr));
1339
1340 /* The memset, memcpy and memmove library calls are only
1341 able to deal with generic address space. */
1342 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
939cf90f 1343 return false;
d002d099 1344
d0582dc1
RG
1345 if (DR_IS_READ (dr))
1346 {
939cf90f
BC
1347 if (single_ld != NULL)
1348 return false;
1349 single_ld = dr;
d0582dc1
RG
1350 }
1351 else
1352 {
939cf90f
BC
1353 if (single_st != NULL)
1354 return false;
1355 single_st = dr;
d0582dc1 1356 }
30d55936 1357 }
30d55936
RG
1358 }
1359
939cf90f
BC
1360 if (!single_st)
1361 return false;
1362
1363 /* Bail out if this is a bitfield memory reference. */
1364 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1365 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1366 return false;
818625cf 1367
85aa9ed6
BC
1368 /* Data reference must be executed exactly once per iteration of each
1369 loop in the loop nest. We only need to check dominance information
1370 against the outermost one in a perfect loop nest because a bb can't
1371 dominate outermost loop's latch without dominating inner loop's. */
939cf90f 1372 basic_block bb_st = gimple_bb (DR_STMT (single_st));
85aa9ed6 1373 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
939cf90f
BC
1374 return false;
1375
1376 if (single_ld)
163aa51b 1377 {
939cf90f
BC
1378 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1379 /* Direct aggregate copy or via an SSA name temporary. */
1380 if (load != store
1381 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1382 return false;
163aa51b 1383
939cf90f
BC
1384 /* Bail out if this is a bitfield memory reference. */
1385 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1386 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1387 return false;
1388
1389 /* Load and store must be in the same loop nest. */
1390 basic_block bb_ld = gimple_bb (DR_STMT (single_ld));
85aa9ed6 1391 if (bb_st->loop_father != bb_ld->loop_father)
939cf90f
BC
1392 return false;
1393
85aa9ed6
BC
1394 /* Data reference must be executed exactly once per iteration.
1395 Same as single_st, we only need to check against the outermost
1396 loop. */
1397 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
939cf90f
BC
1398 return false;
1399
85aa9ed6 1400 edge e = single_exit (bb_st->loop_father);
939cf90f
BC
1401 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1402 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1403 if (dom_ld != dom_st)
1404 return false;
1405 }
1406
1407 *src_dr = single_ld;
1408 *dst_dr = single_st;
1409 return true;
1410}
1411
1412/* Given data reference DR in LOOP_NEST, this function checks the enclosing
1413 loops from inner to outer to see if loop's step equals to access size at
5955438a
BC
1414 each level of loop. Return 2 if we can prove this at all level loops;
1415 record access base and size in BASE and SIZE; save loop's step at each
1416 level of loop in STEPS if it is not null. For example:
939cf90f
BC
1417
1418 int arr[100][100][100];
1419 for (i = 0; i < 100; i++) ;steps[2] = 40000
1420 for (j = 100; j > 0; j--) ;steps[1] = -400
1421 for (k = 0; k < 100; k++) ;steps[0] = 4
5955438a 1422 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
939cf90f 1423
5955438a
BC
1424 Return 1 if we can prove the equality at the innermost loop, but not all
1425 level loops. In this case, no information is recorded.
1426
1427 Return 0 if no equality can be proven at any level loops. */
1428
1429static int
939cf90f
BC
1430compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1431 tree *size, vec<tree> *steps = NULL)
1432{
1433 location_t loc = gimple_location (DR_STMT (dr));
1434 basic_block bb = gimple_bb (DR_STMT (dr));
1435 struct loop *loop = bb->loop_father;
1436 tree ref = DR_REF (dr);
1437 tree access_base = build_fold_addr_expr (ref);
1438 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
5955438a 1439 int res = 0;
939cf90f
BC
1440
1441 do {
1442 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1443 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
5955438a 1444 return res;
163aa51b 1445
939cf90f
BC
1446 access_base = CHREC_LEFT (scev_fn);
1447 if (tree_contains_chrecs (access_base, NULL))
5955438a 1448 return res;
939cf90f
BC
1449
1450 tree scev_step = CHREC_RIGHT (scev_fn);
1451 /* Only support constant steps. */
1452 if (TREE_CODE (scev_step) != INTEGER_CST)
5955438a 1453 return res;
939cf90f
BC
1454
1455 enum ev_direction access_dir = scev_direction (scev_fn);
1456 if (access_dir == EV_DIR_UNKNOWN)
5955438a 1457 return res;
939cf90f
BC
1458
1459 if (steps != NULL)
1460 steps->safe_push (scev_step);
1461
1462 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1463 /* Compute absolute value of scev step. */
1464 if (access_dir == EV_DIR_DECREASES)
1465 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1466
1467 /* At each level of loop, scev step must equal to access size. In other
1468 words, DR must access consecutive memory between loop iterations. */
1469 if (!operand_equal_p (scev_step, access_size, 0))
5955438a
BC
1470 return res;
1471
1472 /* Access stride can be computed for data reference at least for the
1473 innermost loop. */
1474 res = 1;
939cf90f
BC
1475
1476 /* Compute DR's execution times in loop. */
1477 tree niters = number_of_latch_executions (loop);
1478 niters = fold_convert_loc (loc, sizetype, niters);
1479 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1480 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1481
1482 /* Compute DR's overall access size in loop. */
1483 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1484 niters, scev_step);
1485 /* Adjust base address in case of negative step. */
1486 if (access_dir == EV_DIR_DECREASES)
163aa51b 1487 {
939cf90f
BC
1488 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1489 scev_step, access_size);
1490 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
163aa51b 1491 }
939cf90f
BC
1492 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1493
1494 *base = access_base;
1495 *size = access_size;
5955438a
BC
1496 /* Access stride can be computed for data reference at each level loop. */
1497 return 2;
939cf90f
BC
1498}
1499
1500/* Allocate and return builtin struct. Record information like DST_DR,
1501 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1502
1503static struct builtin_info *
1504alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1505 tree dst_base, tree src_base, tree size)
1506{
1507 struct builtin_info *builtin = XNEW (struct builtin_info);
1508 builtin->dst_dr = dst_dr;
1509 builtin->src_dr = src_dr;
1510 builtin->dst_base = dst_base;
1511 builtin->src_base = src_base;
1512 builtin->size = size;
1513 return builtin;
1514}
1515
1516/* Given data reference DR in loop nest LOOP, classify if it forms builtin
1517 memset call. */
1518
1519static void
1520classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1521{
1522 gimple *stmt = DR_STMT (dr);
1523 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1524
1525 if (const_with_all_bytes_same (rhs) == -1
1526 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1527 || (TYPE_MODE (TREE_TYPE (rhs))
1528 != TYPE_MODE (unsigned_char_type_node))))
1529 return;
1530
1531 if (TREE_CODE (rhs) == SSA_NAME
1532 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1533 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1534 return;
1535
5955438a
BC
1536 int res = compute_access_range (loop, dr, &base, &size);
1537 if (res == 0)
939cf90f 1538 return;
5955438a
BC
1539 if (res == 1)
1540 {
1541 partition->kind = PKIND_PARTIAL_MEMSET;
1542 return;
1543 }
939cf90f 1544
d2fd6a04
RS
1545 poly_uint64 base_offset;
1546 unsigned HOST_WIDE_INT const_base_offset;
1547 tree base_base = strip_offset (base, &base_offset);
1548 if (!base_offset.is_constant (&const_base_offset))
1549 return;
1550
957f0d8f
BC
1551 struct builtin_info *builtin;
1552 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
d2fd6a04
RS
1553 builtin->dst_base_base = base_base;
1554 builtin->dst_base_offset = const_base_offset;
957f0d8f 1555 partition->builtin = builtin;
939cf90f
BC
1556 partition->kind = PKIND_MEMSET;
1557}
1558
1559/* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1560 if it forms builtin memcpy or memmove call. */
1561
1562static void
1563classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
1564 data_reference_p dst_dr, data_reference_p src_dr)
1565{
1566 tree base, size, src_base, src_size;
1567 auto_vec<tree> dst_steps, src_steps;
1568
5955438a
BC
1569 /* Compute access range of both load and store. */
1570 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1571 if (res != 2)
1572 return;
1573 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1574 if (res != 2)
1575 return;
1576
1577 /* They much have the same access size. */
1578 if (!operand_equal_p (size, src_size, 0))
939cf90f
BC
1579 return;
1580
1581 /* Load and store in loop nest must access memory in the same way, i.e,
1582 their must have the same steps in each loop of the nest. */
1583 if (dst_steps.length () != src_steps.length ())
1584 return;
1585 for (unsigned i = 0; i < dst_steps.length (); ++i)
1586 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1587 return;
1588
1589 /* Now check that if there is a dependence. */
1590 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1591
1592 /* Classify as memcpy if no dependence between load and store. */
1593 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1594 {
1595 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1596 partition->kind = PKIND_MEMCPY;
1597 return;
163aa51b
BC
1598 }
1599
939cf90f
BC
1600 /* Can't do memmove in case of unknown dependence or dependence without
1601 classical distance vector. */
1602 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1603 || DDR_NUM_DIST_VECTS (ddr) == 0)
1604 return;
818625cf 1605
939cf90f
BC
1606 unsigned i;
1607 lambda_vector dist_v;
1608 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1609 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
d0582dc1 1610 {
939cf90f
BC
1611 unsigned dep_lev = dependence_level (dist_v, num_lev);
1612 /* Can't do memmove if load depends on store. */
1613 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
d0582dc1 1614 return;
d0582dc1 1615 }
939cf90f
BC
1616
1617 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1618 partition->kind = PKIND_MEMMOVE;
1619 return;
1620}
1621
1622/* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
1623 For the moment we detect memset, memcpy and memmove patterns. Bitmap
1624 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions. */
1625
1626static void
1627classify_partition (loop_p loop, struct graph *rdg, partition *partition,
1628 bitmap stmt_in_all_partitions)
1629{
1630 bitmap_iterator bi;
1631 unsigned i;
1632 data_reference_p single_ld = NULL, single_st = NULL;
1633 bool volatiles_p = false, has_reduction = false;
1634
1635 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
d0582dc1 1636 {
939cf90f 1637 gimple *stmt = RDG_STMT (rdg, i);
17c5cbdf 1638
939cf90f
BC
1639 if (gimple_has_volatile_ops (stmt))
1640 volatiles_p = true;
17c5cbdf 1641
939cf90f
BC
1642 /* If the stmt is not included by all partitions and there is uses
1643 outside of the loop, then mark the partition as reduction. */
1644 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1645 {
1646 /* Due to limitation in the transform phase we have to fuse all
1647 reduction partitions. As a result, this could cancel valid
1648 loop distribution especially for loop that induction variable
1649 is used outside of loop. To workaround this issue, we skip
1650 marking partition as reudction if the reduction stmt belongs
1651 to all partitions. In such case, reduction will be computed
1652 correctly no matter how partitions are fused/distributed. */
1653 if (!bitmap_bit_p (stmt_in_all_partitions, i))
f20132e7 1654 {
939cf90f
BC
1655 partition->reduction_p = true;
1656 return;
f20132e7 1657 }
939cf90f 1658 has_reduction = true;
f20132e7 1659 }
d0582dc1 1660 }
939cf90f
BC
1661
1662 /* Perform general partition disqualification for builtins. */
1663 if (volatiles_p
1664 /* Simple workaround to prevent classifying the partition as builtin
1665 if it contains any use outside of loop. */
1666 || has_reduction
1667 || !flag_tree_loop_distribute_patterns)
1668 return;
1669
1670 /* Find single load/store data references for builtin partition. */
85aa9ed6 1671 if (!find_single_drs (loop, rdg, partition, &single_st, &single_ld))
939cf90f
BC
1672 return;
1673
1674 /* Classify the builtin kind. */
1675 if (single_ld == NULL)
1676 classify_builtin_st (loop, partition, single_st);
1677 else
1678 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
cfee318d
SP
1679}
1680
95f7d11b
BC
1681/* Returns true when PARTITION1 and PARTITION2 access the same memory
1682 object in RDG. */
cfee318d
SP
1683
1684static bool
95f7d11b
BC
1685share_memory_accesses (struct graph *rdg,
1686 partition *partition1, partition *partition2)
cfee318d 1687{
95f7d11b 1688 unsigned i, j;
cfee318d 1689 bitmap_iterator bi, bj;
95f7d11b 1690 data_reference_p dr1, dr2;
1fa0c180
RG
1691
1692 /* First check whether in the intersection of the two partitions are
1693 any loads or stores. Common loads are the situation that happens
1694 most often. */
1695 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1696 if (RDG_MEM_WRITE_STMT (rdg, i)
1697 || RDG_MEM_READS_STMT (rdg, i))
1698 return true;
cfee318d 1699
95f7d11b
BC
1700 /* Then check whether the two partitions access the same memory object. */
1701 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1702 {
1703 dr1 = datarefs_vec[i];
1704
1705 if (!DR_BASE_ADDRESS (dr1)
1706 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1707 continue;
1708
1709 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1710 {
1711 dr2 = datarefs_vec[j];
1712
1713 if (!DR_BASE_ADDRESS (dr2)
1714 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1715 continue;
1716
1717 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1718 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1719 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1720 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1721 return true;
1722 }
1723 }
cfee318d
SP
1724
1725 return false;
1726}
1727
4a52eb19
BC
1728/* For each seed statement in STARTING_STMTS, this function builds
1729 partition for it by adding depended statements according to RDG.
1730 All partitions are recorded in PARTITIONS. */
dea61d92
SP
1731
1732static void
83a95546 1733rdg_build_partitions (struct graph *rdg,
355fe088 1734 vec<gimple *> starting_stmts,
526ceb68 1735 vec<partition *> *partitions)
dea61d92 1736{
0e3de1d4 1737 auto_bitmap processed;
2fd5894f 1738 int i;
355fe088 1739 gimple *stmt;
dea61d92 1740
2fd5894f 1741 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
dea61d92 1742 {
2fd5894f
RB
1743 int v = rdg_vertex_for_stmt (rdg, stmt);
1744
1745 if (dump_file && (dump_flags & TDF_DETAILS))
1746 fprintf (dump_file,
1747 "ldist asked to generate code for vertex %d\n", v);
b8698a0f 1748
24f161fd
RB
1749 /* If the vertex is already contained in another partition so
1750 is the partition rooted at it. */
dea61d92
SP
1751 if (bitmap_bit_p (processed, v))
1752 continue;
b8698a0f 1753
526ceb68 1754 partition *partition = build_rdg_partition_for_vertex (rdg, v);
24f161fd 1755 bitmap_ior_into (processed, partition->stmts);
dea61d92 1756
826a536d 1757 if (dump_file && (dump_flags & TDF_DETAILS))
dea61d92 1758 {
f1eb4621
BC
1759 fprintf (dump_file, "ldist creates useful %s partition:\n",
1760 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1761 bitmap_print (dump_file, partition->stmts, " ", "\n");
dea61d92 1762 }
826a536d
RB
1763
1764 partitions->safe_push (partition);
dea61d92
SP
1765 }
1766
83a95546
RB
1767 /* All vertices should have been assigned to at least one partition now,
1768 other than vertices belonging to dead code. */
dea61d92
SP
1769}
1770
1771/* Dump to FILE the PARTITIONS. */
1772
1773static void
526ceb68 1774dump_rdg_partitions (FILE *file, vec<partition *> partitions)
dea61d92
SP
1775{
1776 int i;
526ceb68 1777 partition *partition;
dea61d92 1778
9771b263 1779 FOR_EACH_VEC_ELT (partitions, i, partition)
c61f8985 1780 debug_bitmap_file (file, partition->stmts);
dea61d92
SP
1781}
1782
1783/* Debug PARTITIONS. */
526ceb68 1784extern void debug_rdg_partitions (vec<partition *> );
dea61d92 1785
24e47c76 1786DEBUG_FUNCTION void
526ceb68 1787debug_rdg_partitions (vec<partition *> partitions)
dea61d92
SP
1788{
1789 dump_rdg_partitions (stderr, partitions);
1790}
1791
2b8aee8e
SP
1792/* Returns the number of read and write operations in the RDG. */
1793
1794static int
1795number_of_rw_in_rdg (struct graph *rdg)
1796{
1797 int i, res = 0;
1798
1799 for (i = 0; i < rdg->n_vertices; i++)
1800 {
1801 if (RDG_MEM_WRITE_STMT (rdg, i))
1802 ++res;
1803
1804 if (RDG_MEM_READS_STMT (rdg, i))
1805 ++res;
1806 }
1807
1808 return res;
1809}
1810
1811/* Returns the number of read and write operations in a PARTITION of
1812 the RDG. */
1813
1814static int
526ceb68 1815number_of_rw_in_partition (struct graph *rdg, partition *partition)
2b8aee8e
SP
1816{
1817 int res = 0;
1818 unsigned i;
1819 bitmap_iterator ii;
1820
c61f8985 1821 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
2b8aee8e
SP
1822 {
1823 if (RDG_MEM_WRITE_STMT (rdg, i))
1824 ++res;
1825
1826 if (RDG_MEM_READS_STMT (rdg, i))
1827 ++res;
1828 }
1829
1830 return res;
1831}
1832
1833/* Returns true when one of the PARTITIONS contains all the read or
1834 write operations of RDG. */
1835
1836static bool
9771b263 1837partition_contains_all_rw (struct graph *rdg,
526ceb68 1838 vec<partition *> partitions)
2b8aee8e
SP
1839{
1840 int i;
526ceb68 1841 partition *partition;
2b8aee8e
SP
1842 int nrw = number_of_rw_in_rdg (rdg);
1843
9771b263 1844 FOR_EACH_VEC_ELT (partitions, i, partition)
2b8aee8e
SP
1845 if (nrw == number_of_rw_in_partition (rdg, partition))
1846 return true;
1847
1848 return false;
1849}
1850
447f3223 1851/* Compute partition dependence created by the data references in DRS1
a8745cc2
BC
1852 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
1853 not NULL, we record dependence introduced by possible alias between
1854 two data references in ALIAS_DDRS; otherwise, we simply ignore such
1855 dependence as if it doesn't exist at all. */
447f3223
RB
1856
1857static int
4084ea5f 1858pg_add_dependence_edges (struct graph *rdg, int dir,
a8745cc2 1859 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
447f3223 1860{
a7a44c07
BC
1861 unsigned i, j;
1862 bitmap_iterator bi, bj;
1863 data_reference_p dr1, dr2, saved_dr1;
447f3223
RB
1864
1865 /* dependence direction - 0 is no dependence, -1 is back,
1866 1 is forth, 2 is both (we can stop then, merging will occur). */
a7a44c07
BC
1867 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
1868 {
1869 dr1 = datarefs_vec[i];
1870
1871 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
1872 {
a8745cc2
BC
1873 int res, this_dir = 1;
1874 ddr_p ddr;
1875
a7a44c07
BC
1876 dr2 = datarefs_vec[j];
1877
1878 /* Skip all <read, read> data dependence. */
1879 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1880 continue;
1881
1882 saved_dr1 = dr1;
a8745cc2 1883 /* Re-shuffle data-refs to be in topological order. */
a7a44c07
BC
1884 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1885 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1886 {
1887 std::swap (dr1, dr2);
1888 this_dir = -this_dir;
1889 }
17c5cbdf 1890 ddr = get_data_dependence (rdg, dr1, dr2);
a7a44c07 1891 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
a8745cc2
BC
1892 {
1893 this_dir = 0;
1894 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
1895 DR_BASE_ADDRESS (dr2));
1896 /* Be conservative. If data references are not well analyzed,
1897 or the two data references have the same base address and
1898 offset, add dependence and consider it alias to each other.
1899 In other words, the dependence can not be resolved by
1900 runtime alias check. */
1901 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
1902 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
1903 || !DR_INIT (dr1) || !DR_INIT (dr2)
1904 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
1905 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
1906 || res == 0)
1907 this_dir = 2;
1908 /* Data dependence could be resolved by runtime alias check,
1909 record it in ALIAS_DDRS. */
1910 else if (alias_ddrs != NULL)
1911 alias_ddrs->safe_push (ddr);
1912 /* Or simply ignore it. */
1913 }
a7a44c07
BC
1914 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1915 {
1916 if (DDR_REVERSED_P (ddr))
a8745cc2
BC
1917 this_dir = -this_dir;
1918
a7a44c07
BC
1919 /* Known dependences can still be unordered througout the
1920 iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
1921 if (DDR_NUM_DIST_VECTS (ddr) != 1)
1922 this_dir = 2;
1923 /* If the overlap is exact preserve stmt order. */
0df7c778
BC
1924 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
1925 DDR_NB_LOOPS (ddr)))
a7a44c07 1926 ;
a8745cc2
BC
1927 /* Else as the distance vector is lexicographic positive swap
1928 the dependence direction. */
a7a44c07 1929 else
a8745cc2 1930 this_dir = -this_dir;
a7a44c07
BC
1931 }
1932 else
1933 this_dir = 0;
a7a44c07
BC
1934 if (this_dir == 2)
1935 return 2;
1936 else if (dir == 0)
1937 dir = this_dir;
1938 else if (this_dir != 0 && dir != this_dir)
1939 return 2;
1940 /* Shuffle "back" dr1. */
1941 dr1 = saved_dr1;
1942 }
1943 }
447f3223
RB
1944 return dir;
1945}
1946
1947/* Compare postorder number of the partition graph vertices V1 and V2. */
1948
1949static int
1950pgcmp (const void *v1_, const void *v2_)
1951{
1952 const vertex *v1 = (const vertex *)v1_;
1953 const vertex *v2 = (const vertex *)v2_;
1954 return v2->post - v1->post;
1955}
2fd5894f 1956
a8745cc2
BC
1957/* Data attached to vertices of partition dependence graph. */
1958struct pg_vdata
1959{
1960 /* ID of the corresponding partition. */
1961 int id;
1962 /* The partition. */
1963 struct partition *partition;
1964};
1965
1966/* Data attached to edges of partition dependence graph. */
1967struct pg_edata
1968{
1969 /* If the dependence edge can be resolved by runtime alias check,
1970 this vector contains data dependence relations for runtime alias
1971 check. On the other hand, if the dependence edge is introduced
1972 because of compilation time known data dependence, this vector
1973 contains nothing. */
1974 vec<ddr_p> alias_ddrs;
1975};
1976
1977/* Callback data for traversing edges in graph. */
1978struct pg_edge_callback_data
1979{
1980 /* Bitmap contains strong connected components should be merged. */
1981 bitmap sccs_to_merge;
1982 /* Array constains component information for all vertices. */
1983 int *vertices_component;
1984 /* Vector to record all data dependence relations which are needed
1985 to break strong connected components by runtime alias checks. */
1986 vec<ddr_p> *alias_ddrs;
1987};
1988
1989/* Initialize vertice's data for partition dependence graph PG with
1990 PARTITIONS. */
1991
1992static void
1993init_partition_graph_vertices (struct graph *pg,
1994 vec<struct partition *> *partitions)
1995{
1996 int i;
1997 partition *partition;
1998 struct pg_vdata *data;
1999
2000 for (i = 0; partitions->iterate (i, &partition); ++i)
2001 {
2002 data = new pg_vdata;
2003 pg->vertices[i].data = data;
2004 data->id = i;
2005 data->partition = partition;
2006 }
2007}
2008
2009/* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2010 dependence relations to the EDGE if DDRS isn't NULL. */
2011
2012static void
2013add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2014{
2015 struct graph_edge *e = add_edge (pg, i, j);
2016
2017 /* If the edge is attached with data dependence relations, it means this
2018 dependence edge can be resolved by runtime alias checks. */
2019 if (ddrs != NULL)
2020 {
2021 struct pg_edata *data = new pg_edata;
2022
2023 gcc_assert (ddrs->length () > 0);
2024 e->data = data;
2025 data->alias_ddrs = vNULL;
2026 data->alias_ddrs.safe_splice (*ddrs);
2027 }
2028}
2029
2030/* Callback function for graph travesal algorithm. It returns true
2031 if edge E should skipped when traversing the graph. */
2032
2033static bool
2034pg_skip_alias_edge (struct graph_edge *e)
2035{
2036 struct pg_edata *data = (struct pg_edata *)e->data;
2037 return (data != NULL && data->alias_ddrs.length () > 0);
2038}
2039
2040/* Callback function freeing data attached to edge E of graph. */
2041
2042static void
2043free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2044{
2045 if (e->data != NULL)
2046 {
2047 struct pg_edata *data = (struct pg_edata *)e->data;
2048 data->alias_ddrs.release ();
2049 delete data;
2050 }
2051}
2052
2053/* Free data attached to vertice of partition dependence graph PG. */
2054
2055static void
2056free_partition_graph_vdata (struct graph *pg)
2057{
2058 int i;
2059 struct pg_vdata *data;
2060
2061 for (i = 0; i < pg->n_vertices; ++i)
2062 {
2063 data = (struct pg_vdata *)pg->vertices[i].data;
2064 delete data;
2065 }
2066}
2067
2068/* Build and return partition dependence graph for PARTITIONS. RDG is
2069 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2070 is true, data dependence caused by possible alias between references
2071 is ignored, as if it doesn't exist at all; otherwise all depdendences
2072 are considered. */
2073
2074static struct graph *
2075build_partition_graph (struct graph *rdg,
2076 vec<struct partition *> *partitions,
2077 bool ignore_alias_p)
2078{
2079 int i, j;
2080 struct partition *partition1, *partition2;
2081 graph *pg = new_graph (partitions->length ());
2082 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2083
2084 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2085
2086 init_partition_graph_vertices (pg, partitions);
2087
2088 for (i = 0; partitions->iterate (i, &partition1); ++i)
2089 {
2090 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2091 {
2092 /* dependence direction - 0 is no dependence, -1 is back,
2093 1 is forth, 2 is both (we can stop then, merging will occur). */
2094 int dir = 0;
2095
2096 /* If the first partition has reduction, add back edge; if the
2097 second partition has reduction, add forth edge. This makes
2098 sure that reduction partition will be sorted as the last one. */
2099 if (partition_reduction_p (partition1))
2100 dir = -1;
2101 else if (partition_reduction_p (partition2))
2102 dir = 1;
2103
2104 /* Cleanup the temporary vector. */
2105 alias_ddrs.truncate (0);
2106
2107 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2108 partition2->datarefs, alias_ddrs_p);
2109
2110 /* Add edge to partition graph if there exists dependence. There
2111 are two types of edges. One type edge is caused by compilation
2112 time known dependence, this type can not be resolved by runtime
2113 alias check. The other type can be resolved by runtime alias
2114 check. */
2115 if (dir == 1 || dir == 2
2116 || alias_ddrs.length () > 0)
2117 {
2118 /* Attach data dependence relations to edge that can be resolved
2119 by runtime alias check. */
2120 bool alias_edge_p = (dir != 1 && dir != 2);
2121 add_partition_graph_edge (pg, i, j,
2122 (alias_edge_p) ? &alias_ddrs : NULL);
2123 }
2124 if (dir == -1 || dir == 2
2125 || alias_ddrs.length () > 0)
2126 {
2127 /* Attach data dependence relations to edge that can be resolved
2128 by runtime alias check. */
2129 bool alias_edge_p = (dir != -1 && dir != 2);
2130 add_partition_graph_edge (pg, j, i,
2131 (alias_edge_p) ? &alias_ddrs : NULL);
2132 }
2133 }
2134 }
2135 return pg;
2136}
2137
b4ec1d31
BC
2138/* Sort partitions in PG in descending post order and store them in
2139 PARTITIONS. */
a8745cc2
BC
2140
2141static void
2142sort_partitions_by_post_order (struct graph *pg,
2143 vec<struct partition *> *partitions)
2144{
2145 int i;
2146 struct pg_vdata *data;
2147
b4ec1d31 2148 /* Now order the remaining nodes in descending postorder. */
a8745cc2
BC
2149 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2150 partitions->truncate (0);
2151 for (i = 0; i < pg->n_vertices; ++i)
2152 {
2153 data = (struct pg_vdata *)pg->vertices[i].data;
2154 if (data->partition)
2155 partitions->safe_push (data->partition);
2156 }
2157}
2158
2159/* Given reduced dependence graph RDG merge strong connected components
163aa51b
BC
2160 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
2161 possible alias between references is ignored, as if it doesn't exist
2162 at all; otherwise all depdendences are considered. */
a8745cc2
BC
2163
2164static void
2165merge_dep_scc_partitions (struct graph *rdg,
163aa51b
BC
2166 vec<struct partition *> *partitions,
2167 bool ignore_alias_p)
a8745cc2
BC
2168{
2169 struct partition *partition1, *partition2;
2170 struct pg_vdata *data;
163aa51b 2171 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
a8745cc2
BC
2172 int i, j, num_sccs = graphds_scc (pg, NULL);
2173
2174 /* Strong connected compoenent means dependence cycle, we cannot distribute
2175 them. So fuse them together. */
2176 if ((unsigned) num_sccs < partitions->length ())
2177 {
2178 for (i = 0; i < num_sccs; ++i)
2179 {
2180 for (j = 0; partitions->iterate (j, &partition1); ++j)
2181 if (pg->vertices[j].component == i)
2182 break;
2183 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2184 if (pg->vertices[j].component == i)
2185 {
2186 partition_merge_into (NULL, partition1,
2187 partition2, FUSE_SAME_SCC);
2188 partition1->type = PTYPE_SEQUENTIAL;
2189 (*partitions)[j] = NULL;
2190 partition_free (partition2);
2191 data = (struct pg_vdata *)pg->vertices[j].data;
2192 data->partition = NULL;
2193 }
2194 }
a8745cc2 2195 }
aa1528b5
BC
2196
2197 sort_partitions_by_post_order (pg, partitions);
a8745cc2
BC
2198 gcc_assert (partitions->length () == (unsigned)num_sccs);
2199 free_partition_graph_vdata (pg);
2200 free_graph (pg);
2201}
2202
2203/* Callback function for traversing edge E in graph G. DATA is private
2204 callback data. */
2205
2206static void
2207pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2208{
2209 int i, j, component;
2210 struct pg_edge_callback_data *cbdata;
2211 struct pg_edata *edata = (struct pg_edata *) e->data;
2212
2213 /* If the edge doesn't have attached data dependence, it represents
2214 compilation time known dependences. This type dependence cannot
2215 be resolved by runtime alias check. */
2216 if (edata == NULL || edata->alias_ddrs.length () == 0)
2217 return;
2218
2219 cbdata = (struct pg_edge_callback_data *) data;
2220 i = e->src;
2221 j = e->dest;
2222 component = cbdata->vertices_component[i];
2223 /* Vertices are topologically sorted according to compilation time
2224 known dependences, so we can break strong connected components
2225 by removing edges of the opposite direction, i.e, edges pointing
2226 from vertice with smaller post number to vertice with bigger post
2227 number. */
2228 if (g->vertices[i].post < g->vertices[j].post
2229 /* We only need to remove edges connecting vertices in the same
2230 strong connected component to break it. */
2231 && component == cbdata->vertices_component[j]
2232 /* Check if we want to break the strong connected component or not. */
2233 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2234 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2235}
2236
2237/* This is the main function breaking strong conected components in
2238 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2239 relations for runtime alias check in ALIAS_DDRS. */
2240
2241static void
2242break_alias_scc_partitions (struct graph *rdg,
2243 vec<struct partition *> *partitions,
2244 vec<ddr_p> *alias_ddrs)
2245{
b4ec1d31 2246 int i, j, k, num_sccs, num_sccs_no_alias;
a8745cc2
BC
2247 /* Build partition dependence graph. */
2248 graph *pg = build_partition_graph (rdg, partitions, false);
2249
2250 alias_ddrs->truncate (0);
2251 /* Find strong connected components in the graph, with all dependence edges
2252 considered. */
2253 num_sccs = graphds_scc (pg, NULL);
2254 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2255 compilation time known dependences are merged before this function. */
2256 if ((unsigned) num_sccs < partitions->length ())
2257 {
2258 struct pg_edge_callback_data cbdata;
2259 auto_bitmap sccs_to_merge;
2260 auto_vec<enum partition_type> scc_types;
2261 struct partition *partition, *first;
2262
6dc29d3a 2263 /* If all partitions in a SCC have the same type, we can simply merge the
a8745cc2
BC
2264 SCC. This loop finds out such SCCS and record them in bitmap. */
2265 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2266 for (i = 0; i < num_sccs; ++i)
2267 {
2268 for (j = 0; partitions->iterate (j, &first); ++j)
2269 if (pg->vertices[j].component == i)
2270 break;
1623d9f3
BC
2271
2272 bool same_type = true, all_builtins = partition_builtin_p (first);
a8745cc2
BC
2273 for (++j; partitions->iterate (j, &partition); ++j)
2274 {
2275 if (pg->vertices[j].component != i)
2276 continue;
2277
2278 if (first->type != partition->type)
2279 {
1623d9f3 2280 same_type = false;
a8745cc2
BC
2281 break;
2282 }
1623d9f3 2283 all_builtins &= partition_builtin_p (partition);
a8745cc2 2284 }
1623d9f3
BC
2285 /* Merge SCC if all partitions in SCC have the same type, though the
2286 result partition is sequential, because vectorizer can do better
2287 runtime alias check. One expecption is all partitions in SCC are
2288 builtins. */
2289 if (!same_type || all_builtins)
2290 bitmap_clear_bit (sccs_to_merge, i);
a8745cc2
BC
2291 }
2292
2293 /* Initialize callback data for traversing. */
2294 cbdata.sccs_to_merge = sccs_to_merge;
2295 cbdata.alias_ddrs = alias_ddrs;
2296 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2297 /* Record the component information which will be corrupted by next
2298 graph scc finding call. */
2299 for (i = 0; i < pg->n_vertices; ++i)
2300 cbdata.vertices_component[i] = pg->vertices[i].component;
2301
2302 /* Collect data dependences for runtime alias checks to break SCCs. */
2303 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2304 {
2305 /* Run SCC finding algorithm again, with alias dependence edges
6dc29d3a 2306 skipped. This is to topologically sort partitions according to
a8745cc2
BC
2307 compilation time known dependence. Note the topological order
2308 is stored in the form of pg's post order number. */
2309 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2310 gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
2311 /* With topological order, we can construct two subgraphs L and R.
2312 L contains edge <x, y> where x < y in terms of post order, while
2313 R contains edge <x, y> where x > y. Edges for compilation time
2314 known dependence all fall in R, so we break SCCs by removing all
2315 (alias) edges of in subgraph L. */
2316 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2317 }
2318
2319 /* For SCC that doesn't need to be broken, merge it. */
2320 for (i = 0; i < num_sccs; ++i)
2321 {
2322 if (!bitmap_bit_p (sccs_to_merge, i))
2323 continue;
2324
2325 for (j = 0; partitions->iterate (j, &first); ++j)
2326 if (cbdata.vertices_component[j] == i)
2327 break;
b4ec1d31 2328 for (k = j + 1; partitions->iterate (k, &partition); ++k)
a8745cc2
BC
2329 {
2330 struct pg_vdata *data;
2331
b4ec1d31 2332 if (cbdata.vertices_component[k] != i)
a8745cc2
BC
2333 continue;
2334
b4ec1d31
BC
2335 /* Update postorder number so that merged reduction partition is
2336 sorted after other partitions. */
2337 if (!partition_reduction_p (first)
2338 && partition_reduction_p (partition))
2339 {
2340 gcc_assert (pg->vertices[k].post < pg->vertices[j].post);
2341 pg->vertices[j].post = pg->vertices[k].post;
2342 }
a8745cc2 2343 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
b4ec1d31 2344 (*partitions)[k] = NULL;
a8745cc2 2345 partition_free (partition);
b4ec1d31
BC
2346 data = (struct pg_vdata *)pg->vertices[k].data;
2347 gcc_assert (data->id == k);
a8745cc2 2348 data->partition = NULL;
6dc29d3a
BC
2349 /* The result partition of merged SCC must be sequential. */
2350 first->type = PTYPE_SEQUENTIAL;
a8745cc2
BC
2351 }
2352 }
2353 }
2354
2355 sort_partitions_by_post_order (pg, partitions);
2356 free_partition_graph_vdata (pg);
2357 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2358 free_graph (pg);
2359
2360 if (dump_file && (dump_flags & TDF_DETAILS))
2361 {
2362 fprintf (dump_file, "Possible alias data dependence to break:\n");
2363 dump_data_dependence_relations (dump_file, *alias_ddrs);
2364 }
2365}
2366
2367/* Compute and return an expression whose value is the segment length which
2368 will be accessed by DR in NITERS iterations. */
2369
2370static tree
2371data_ref_segment_size (struct data_reference *dr, tree niters)
2372{
a57776a1
RS
2373 niters = size_binop (MINUS_EXPR,
2374 fold_convert (sizetype, niters),
2375 size_one_node);
2376 return size_binop (MULT_EXPR,
2377 fold_convert (sizetype, DR_STEP (dr)),
2378 fold_convert (sizetype, niters));
a8745cc2
BC
2379}
2380
2381/* Return true if LOOP's latch is dominated by statement for data reference
2382 DR. */
2383
2384static inline bool
2385latch_dominated_by_data_ref (struct loop *loop, data_reference *dr)
2386{
2387 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2388 gimple_bb (DR_STMT (dr)));
2389}
2390
2391/* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2392 data dependence relations ALIAS_DDRS. */
2393
2394static void
2395compute_alias_check_pairs (struct loop *loop, vec<ddr_p> *alias_ddrs,
2396 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2397{
2398 unsigned int i;
2399 unsigned HOST_WIDE_INT factor = 1;
2400 tree niters_plus_one, niters = number_of_latch_executions (loop);
2401
2402 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2403 niters = fold_convert (sizetype, niters);
2404 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2405
2406 if (dump_file && (dump_flags & TDF_DETAILS))
2407 fprintf (dump_file, "Creating alias check pairs:\n");
2408
2409 /* Iterate all data dependence relations and compute alias check pairs. */
2410 for (i = 0; i < alias_ddrs->length (); i++)
2411 {
2412 ddr_p ddr = (*alias_ddrs)[i];
2413 struct data_reference *dr_a = DDR_A (ddr);
2414 struct data_reference *dr_b = DDR_B (ddr);
2415 tree seg_length_a, seg_length_b;
2416 int comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
2417 DR_BASE_ADDRESS (dr_b));
2418
2419 if (comp_res == 0)
2420 comp_res = data_ref_compare_tree (DR_OFFSET (dr_a), DR_OFFSET (dr_b));
2421 gcc_assert (comp_res != 0);
2422
2423 if (latch_dominated_by_data_ref (loop, dr_a))
2424 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2425 else
2426 seg_length_a = data_ref_segment_size (dr_a, niters);
2427
2428 if (latch_dominated_by_data_ref (loop, dr_b))
2429 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2430 else
2431 seg_length_b = data_ref_segment_size (dr_b, niters);
2432
a57776a1
RS
2433 unsigned HOST_WIDE_INT access_size_a
2434 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2435 unsigned HOST_WIDE_INT access_size_b
2436 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2437 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2438 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2439
a8745cc2 2440 dr_with_seg_len_pair_t dr_with_seg_len_pair
a57776a1
RS
2441 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2442 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b));
a8745cc2
BC
2443
2444 /* Canonicalize pairs by sorting the two DR members. */
2445 if (comp_res > 0)
2446 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2447
2448 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2449 }
2450
2451 if (tree_fits_uhwi_p (niters))
2452 factor = tree_to_uhwi (niters);
2453
2454 /* Prune alias check pairs. */
2455 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2456 if (dump_file && (dump_flags & TDF_DETAILS))
2457 fprintf (dump_file,
2458 "Improved number of alias checks from %d to %d\n",
2459 alias_ddrs->length (), comp_alias_pairs->length ());
2460}
2461
2462/* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2463 checks and version LOOP under condition of these runtime alias checks. */
2464
2465static void
1623d9f3
BC
2466version_loop_by_alias_check (vec<struct partition *> *partitions,
2467 struct loop *loop, vec<ddr_p> *alias_ddrs)
a8745cc2
BC
2468{
2469 profile_probability prob;
2470 basic_block cond_bb;
2471 struct loop *nloop;
2472 tree lhs, arg0, cond_expr = NULL_TREE;
2473 gimple_seq cond_stmts = NULL;
2474 gimple *call_stmt = NULL;
2475 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2476
2477 /* Generate code for runtime alias checks if necessary. */
2478 gcc_assert (alias_ddrs->length () > 0);
2479
2480 if (dump_file && (dump_flags & TDF_DETAILS))
2481 fprintf (dump_file,
2482 "Version loop <%d> with runtime alias check\n", loop->num);
2483
2484 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2485 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2486 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
8d2d0de9 2487 is_gimple_val, NULL_TREE);
a8745cc2
BC
2488
2489 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
1623d9f3
BC
2490 bool cancelable_p = flag_tree_loop_vectorize;
2491 if (cancelable_p)
2492 {
2493 unsigned i = 0;
2494 struct partition *partition;
2495 for (; partitions->iterate (i, &partition); ++i)
2496 if (!partition_builtin_p (partition))
2497 break;
2498
2499 /* If all partitions are builtins, distributing it would be profitable and
2500 we don't want to cancel the runtime alias checks. */
2501 if (i == partitions->length ())
2502 cancelable_p = false;
2503 }
2504
2505 /* Generate internal function call for loop distribution alias check if the
2506 runtime alias check should be cancelable. */
2507 if (cancelable_p)
a8745cc2 2508 {
a8745cc2
BC
2509 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2510 2, NULL_TREE, cond_expr);
2511 lhs = make_ssa_name (boolean_type_node);
2512 gimple_call_set_lhs (call_stmt, lhs);
2513 }
2514 else
2515 lhs = cond_expr;
2516
2517 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2518 initialize_original_copy_tables ();
2519 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2520 prob, prob.invert (), true);
2521 free_original_copy_tables ();
2522 /* Record the original loop number in newly generated loops. In case of
2523 distribution, the original loop will be distributed and the new loop
2524 is kept. */
2525 loop->orig_loop_num = nloop->num;
2526 nloop->orig_loop_num = nloop->num;
2527 nloop->dont_vectorize = true;
2528 nloop->force_vectorize = false;
2529
2530 if (call_stmt)
2531 {
2532 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2533 loop could be destroyed. */
2534 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2535 gimple_call_set_arg (call_stmt, 0, arg0);
2536 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2537 }
2538
2539 if (cond_stmts)
2540 {
2541 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2542 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2543 }
2544 update_ssa (TODO_update_ssa);
2545}
2546
2547/* Return true if loop versioning is needed to distrubute PARTITIONS.
2548 ALIAS_DDRS are data dependence relations for runtime alias check. */
2549
2550static inline bool
2551version_for_distribution_p (vec<struct partition *> *partitions,
2552 vec<ddr_p> *alias_ddrs)
2553{
2554 /* No need to version loop if we have only one partition. */
2555 if (partitions->length () == 1)
2556 return false;
2557
2558 /* Need to version loop if runtime alias check is necessary. */
2559 return (alias_ddrs->length () > 0);
2560}
2561
957f0d8f
BC
2562/* Compare base offset of builtin mem* partitions P1 and P2. */
2563
d2391983
AM
2564static int
2565offset_cmp (const void *vp1, const void *vp2)
957f0d8f 2566{
d2391983
AM
2567 struct partition *p1 = *(struct partition *const *) vp1;
2568 struct partition *p2 = *(struct partition *const *) vp2;
2569 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2570 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2571 return (o2 < o1) - (o1 < o2);
957f0d8f
BC
2572}
2573
2574/* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2575 case optimization transforming below code:
2576
2577 __builtin_memset (&obj, 0, 100);
2578 _1 = &obj + 100;
2579 __builtin_memset (_1, 0, 200);
2580 _2 = &obj + 300;
2581 __builtin_memset (_2, 0, 100);
2582
2583 into:
2584
2585 __builtin_memset (&obj, 0, 400);
2586
2587 Note we don't have dependence information between different partitions
2588 at this point, as a result, we can't handle nonadjacent memset builtin
2589 partitions since dependence might be broken. */
2590
2591static void
2592fuse_memset_builtins (vec<struct partition *> *partitions)
2593{
2594 unsigned i, j;
2595 struct partition *part1, *part2;
49e4ca31 2596 tree rhs1, rhs2;
957f0d8f
BC
2597
2598 for (i = 0; partitions->iterate (i, &part1);)
2599 {
2600 if (part1->kind != PKIND_MEMSET)
2601 {
2602 i++;
2603 continue;
2604 }
2605
2606 /* Find sub-array of memset builtins of the same base. Index range
2607 of the sub-array is [i, j) with "j > i". */
2608 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2609 {
2610 if (part2->kind != PKIND_MEMSET
2611 || !operand_equal_p (part1->builtin->dst_base_base,
2612 part2->builtin->dst_base_base, 0))
2613 break;
49e4ca31
BC
2614
2615 /* Memset calls setting different values can't be merged. */
2616 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2617 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2618 if (!operand_equal_p (rhs1, rhs2, 0))
2619 break;
957f0d8f
BC
2620 }
2621
2622 /* Stable sort is required in order to avoid breaking dependence. */
d2391983
AM
2623 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2624 offset_cmp);
957f0d8f
BC
2625 /* Continue with next partition. */
2626 i = j;
2627 }
2628
2629 /* Merge all consecutive memset builtin partitions. */
2630 for (i = 0; i < partitions->length () - 1;)
2631 {
2632 part1 = (*partitions)[i];
2633 if (part1->kind != PKIND_MEMSET)
2634 {
2635 i++;
2636 continue;
2637 }
2638
2639 part2 = (*partitions)[i + 1];
2640 /* Only merge memset partitions of the same base and with constant
2641 access sizes. */
2642 if (part2->kind != PKIND_MEMSET
2643 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2644 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2645 || !operand_equal_p (part1->builtin->dst_base_base,
2646 part2->builtin->dst_base_base, 0))
2647 {
2648 i++;
2649 continue;
2650 }
49e4ca31
BC
2651 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2652 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
957f0d8f
BC
2653 int bytev1 = const_with_all_bytes_same (rhs1);
2654 int bytev2 = const_with_all_bytes_same (rhs2);
2655 /* Only merge memset partitions of the same value. */
2656 if (bytev1 != bytev2 || bytev1 == -1)
2657 {
2658 i++;
2659 continue;
2660 }
2661 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2662 wi::to_wide (part1->builtin->size));
2663 /* Only merge adjacent memset partitions. */
2664 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2665 {
2666 i++;
2667 continue;
2668 }
2669 /* Merge partitions[i] and partitions[i+1]. */
2670 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2671 part1->builtin->size,
2672 part2->builtin->size);
2673 partition_free (part2);
2674 partitions->ordered_remove (i + 1);
2675 }
2676}
2677
163aa51b
BC
2678/* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
2679 ALIAS_DDRS contains ddrs which need runtime alias check. */
a8745cc2
BC
2680
2681static void
163aa51b 2682finalize_partitions (struct loop *loop, vec<struct partition *> *partitions,
a8745cc2
BC
2683 vec<ddr_p> *alias_ddrs)
2684{
2685 unsigned i;
163aa51b 2686 struct partition *partition, *a;
a8745cc2
BC
2687
2688 if (partitions->length () == 1
2689 || alias_ddrs->length () > 0)
2690 return;
2691
5955438a 2692 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
163aa51b
BC
2693 bool same_type_p = true;
2694 enum partition_type type = ((*partitions)[0])->type;
2695 for (i = 0; partitions->iterate (i, &partition); ++i)
a8745cc2 2696 {
163aa51b 2697 same_type_p &= (type == partition->type);
5955438a
BC
2698 if (partition_builtin_p (partition))
2699 {
2700 num_builtin++;
2701 continue;
2702 }
2703 num_normal++;
2704 if (partition->kind == PKIND_PARTIAL_MEMSET)
2705 num_partial_memset++;
a8745cc2
BC
2706 }
2707
163aa51b
BC
2708 /* Don't distribute current loop into too many loops given we don't have
2709 memory stream cost model. Be even more conservative in case of loop
2710 nest distribution. */
5955438a
BC
2711 if ((same_type_p && num_builtin == 0
2712 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
163aa51b
BC
2713 || (loop->inner != NULL
2714 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2715 || (loop->inner == NULL
2716 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
a8745cc2 2717 {
163aa51b
BC
2718 a = (*partitions)[0];
2719 for (i = 1; partitions->iterate (i, &partition); ++i)
2720 {
2721 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2722 partition_free (partition);
2723 }
2724 partitions->truncate (1);
a8745cc2 2725 }
957f0d8f
BC
2726
2727 /* Fuse memset builtins if possible. */
2728 if (partitions->length () > 1)
2729 fuse_memset_builtins (partitions);
a8745cc2
BC
2730}
2731
2732/* Distributes the code from LOOP in such a way that producer statements
2733 are placed before consumer statements. Tries to separate only the
2734 statements from STMTS into separate loops. Returns the number of
2735 distributed loops. Set NB_CALLS to number of generated builtin calls.
2736 Set *DESTROY_P to whether LOOP needs to be destroyed. */
dea61d92
SP
2737
2738static int
355fe088 2739distribute_loop (struct loop *loop, vec<gimple *> stmts,
b71b7a8e 2740 control_dependences *cd, int *nb_calls, bool *destroy_p)
dea61d92 2741{
1e485f89 2742 ddrs_table = new hash_table<ddr_hasher> (389);
2fd5894f 2743 struct graph *rdg;
526ceb68 2744 partition *partition;
be6b029b 2745 bool any_builtin;
2fd5894f 2746 int i, nbp;
dea61d92 2747
c9326aef 2748 *destroy_p = false;
826a536d 2749 *nb_calls = 0;
4084ea5f 2750 loop_nest.create (0);
2fd5894f 2751 if (!find_loop_nest (loop, &loop_nest))
4084ea5f
BC
2752 {
2753 loop_nest.release ();
1e485f89 2754 delete ddrs_table;
4084ea5f
BC
2755 return 0;
2756 }
2fd5894f 2757
9fafb14a 2758 datarefs_vec.create (20);
4084ea5f 2759 rdg = build_rdg (loop, cd);
2fd5894f
RB
2760 if (!rdg)
2761 {
2762 if (dump_file && (dump_flags & TDF_DETAILS))
2763 fprintf (dump_file,
2764 "Loop %d not distributed: failed to build the RDG.\n",
2765 loop->num);
2766
4084ea5f 2767 loop_nest.release ();
9fafb14a 2768 free_data_refs (datarefs_vec);
1e485f89 2769 delete ddrs_table;
9fafb14a
BC
2770 return 0;
2771 }
2772
2773 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
2774 {
2775 if (dump_file && (dump_flags & TDF_DETAILS))
2776 fprintf (dump_file,
2777 "Loop %d not distributed: too many memory references.\n",
2778 loop->num);
2779
2780 free_rdg (rdg);
2781 loop_nest.release ();
2782 free_data_refs (datarefs_vec);
1e485f89 2783 delete ddrs_table;
2fd5894f
RB
2784 return 0;
2785 }
2786
9fafb14a
BC
2787 data_reference_p dref;
2788 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
2789 dref->aux = (void *) (uintptr_t) i;
2790
2fd5894f
RB
2791 if (dump_file && (dump_flags & TDF_DETAILS))
2792 dump_rdg (dump_file, rdg);
2793
526ceb68 2794 auto_vec<struct partition *, 3> partitions;
2fd5894f 2795 rdg_build_partitions (rdg, stmts, &partitions);
dea61d92 2796
a8745cc2
BC
2797 auto_vec<ddr_p> alias_ddrs;
2798
4a52eb19
BC
2799 auto_bitmap stmt_in_all_partitions;
2800 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
2801 for (i = 1; partitions.iterate (i, &partition); ++i)
2802 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
2803
be6b029b 2804 any_builtin = false;
9771b263 2805 FOR_EACH_VEC_ELT (partitions, i, partition)
be6b029b 2806 {
4a52eb19 2807 classify_partition (loop, rdg, partition, stmt_in_all_partitions);
be6b029b
RG
2808 any_builtin |= partition_builtin_p (partition);
2809 }
30d55936 2810
447f3223
RB
2811 /* If we are only distributing patterns but did not detect any,
2812 simply bail out. */
9fed7f3a
RB
2813 if (!flag_tree_loop_distribution
2814 && !any_builtin)
2815 {
2816 nbp = 0;
2817 goto ldist_done;
2818 }
2819
447f3223
RB
2820 /* If we are only distributing patterns fuse all partitions that
2821 were not classified as builtins. This also avoids chopping
2822 a loop into pieces, separated by builtin calls. That is, we
2823 only want no or a single loop body remaining. */
526ceb68 2824 struct partition *into;
447f3223
RB
2825 if (!flag_tree_loop_distribution)
2826 {
2827 for (i = 0; partitions.iterate (i, &into); ++i)
2828 if (!partition_builtin_p (into))
2829 break;
2830 for (++i; partitions.iterate (i, &partition); ++i)
2831 if (!partition_builtin_p (partition))
2832 {
f1eb4621 2833 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
447f3223
RB
2834 partitions.unordered_remove (i);
2835 partition_free (partition);
2836 i--;
2837 }
2838 }
2839
2840 /* Due to limitations in the transform phase we have to fuse all
2841 reduction partitions into the last partition so the existing
2842 loop will contain all loop-closed PHI nodes. */
2843 for (i = 0; partitions.iterate (i, &into); ++i)
2844 if (partition_reduction_p (into))
2845 break;
2846 for (i = i + 1; partitions.iterate (i, &partition); ++i)
2847 if (partition_reduction_p (partition))
2848 {
f1eb4621 2849 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
447f3223
RB
2850 partitions.unordered_remove (i);
2851 partition_free (partition);
2852 i--;
2853 }
2854
9fed7f3a
RB
2855 /* Apply our simple cost model - fuse partitions with similar
2856 memory accesses. */
9fed7f3a
RB
2857 for (i = 0; partitions.iterate (i, &into); ++i)
2858 {
16eba420 2859 bool changed = false;
5955438a 2860 if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
9fed7f3a
RB
2861 continue;
2862 for (int j = i + 1;
2863 partitions.iterate (j, &partition); ++j)
2864 {
95f7d11b 2865 if (share_memory_accesses (rdg, into, partition))
9fed7f3a 2866 {
f1eb4621 2867 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
447f3223 2868 partitions.unordered_remove (j);
9fed7f3a
RB
2869 partition_free (partition);
2870 j--;
16eba420 2871 changed = true;
9fed7f3a
RB
2872 }
2873 }
16eba420
RB
2874 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
2875 accesses when 1 and 2 have similar accesses but not 0 and 1
2876 then in the next iteration we will fail to consider merging
2877 1 into 0,2. So try again if we did any merging into 0. */
2878 if (changed)
2879 i--;
9fed7f3a
RB
2880 }
2881
163aa51b
BC
2882 /* Build the partition dependency graph and fuse partitions in strong
2883 connected component. */
447f3223 2884 if (partitions.length () > 1)
c014f6f5 2885 {
163aa51b
BC
2886 /* Don't support loop nest distribution under runtime alias check
2887 since it's not likely to enable many vectorization opportunities. */
2888 if (loop->inner)
2889 merge_dep_scc_partitions (rdg, &partitions, false);
2890 else
2891 {
2892 merge_dep_scc_partitions (rdg, &partitions, true);
2893 if (partitions.length () > 1)
2894 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
2895 }
b9fc0497
RB
2896 }
2897
163aa51b 2898 finalize_partitions (loop, &partitions, &alias_ddrs);
a8745cc2 2899
9771b263 2900 nbp = partitions.length ();
a4293fa6 2901 if (nbp == 0
9771b263
DN
2902 || (nbp == 1 && !partition_builtin_p (partitions[0]))
2903 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
c014f6f5
RG
2904 {
2905 nbp = 0;
2906 goto ldist_done;
2907 }
dea61d92 2908
a8745cc2 2909 if (version_for_distribution_p (&partitions, &alias_ddrs))
1623d9f3 2910 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
a8745cc2 2911
dea61d92 2912 if (dump_file && (dump_flags & TDF_DETAILS))
a8745cc2
BC
2913 {
2914 fprintf (dump_file,
2915 "distribute loop <%d> into partitions:\n", loop->num);
2916 dump_rdg_partitions (dump_file, partitions);
2917 }
dea61d92 2918
9771b263 2919 FOR_EACH_VEC_ELT (partitions, i, partition)
826a536d
RB
2920 {
2921 if (partition_builtin_p (partition))
2922 (*nb_calls)++;
b71b7a8e 2923 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
826a536d 2924 }
dea61d92 2925
dea61d92 2926 ldist_done:
4084ea5f 2927 loop_nest.release ();
9fafb14a 2928 free_data_refs (datarefs_vec);
1e485f89
ML
2929 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
2930 iter != ddrs_table->end (); ++iter)
17c5cbdf
BC
2931 {
2932 free_dependence_relation (*iter);
2933 *iter = NULL;
2934 }
1e485f89 2935 delete ddrs_table;
dea61d92 2936
9771b263 2937 FOR_EACH_VEC_ELT (partitions, i, partition)
c61f8985 2938 partition_free (partition);
dea61d92 2939
dea61d92 2940 free_rdg (rdg);
826a536d 2941 return nbp - *nb_calls;
dea61d92
SP
2942}
2943
2944/* Distribute all loops in the current function. */
2945
be55bfe6
TS
2946namespace {
2947
2948const pass_data pass_data_loop_distribution =
2949{
2950 GIMPLE_PASS, /* type */
2951 "ldist", /* name */
2952 OPTGROUP_LOOP, /* optinfo_flags */
be55bfe6
TS
2953 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
2954 ( PROP_cfg | PROP_ssa ), /* properties_required */
2955 0, /* properties_provided */
2956 0, /* properties_destroyed */
2957 0, /* todo_flags_start */
3bea341f 2958 0, /* todo_flags_finish */
be55bfe6
TS
2959};
2960
2961class pass_loop_distribution : public gimple_opt_pass
2962{
2963public:
2964 pass_loop_distribution (gcc::context *ctxt)
2965 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
2966 {}
2967
2968 /* opt_pass methods: */
2969 virtual bool gate (function *)
2970 {
2971 return flag_tree_loop_distribution
2972 || flag_tree_loop_distribute_patterns;
2973 }
2974
2975 virtual unsigned int execute (function *);
2976
2977}; // class pass_loop_distribution
2978
163aa51b
BC
2979
2980/* Given LOOP, this function records seed statements for distribution in
2981 WORK_LIST. Return false if there is nothing for distribution. */
2982
2983static bool
2984find_seed_stmts_for_distribution (struct loop *loop, vec<gimple *> *work_list)
2985{
2986 basic_block *bbs = get_loop_body_in_dom_order (loop);
2987
2988 /* Initialize the worklist with stmts we seed the partitions with. */
2989 for (unsigned i = 0; i < loop->num_nodes; ++i)
2990 {
2991 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
2992 !gsi_end_p (gsi); gsi_next (&gsi))
2993 {
2994 gphi *phi = gsi.phi ();
2995 if (virtual_operand_p (gimple_phi_result (phi)))
2996 continue;
2997 /* Distribute stmts which have defs that are used outside of
2998 the loop. */
2999 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3000 continue;
3001 work_list->safe_push (phi);
3002 }
3003 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3004 !gsi_end_p (gsi); gsi_next (&gsi))
3005 {
3006 gimple *stmt = gsi_stmt (gsi);
3007
3008 /* If there is a stmt with side-effects bail out - we
3009 cannot and should not distribute this loop. */
3010 if (gimple_has_side_effects (stmt))
3011 {
3012 free (bbs);
3013 return false;
3014 }
3015
3016 /* Distribute stmts which have defs that are used outside of
3017 the loop. */
3018 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3019 ;
3020 /* Otherwise only distribute stores for now. */
3021 else if (!gimple_vdef (stmt))
3022 continue;
3023
3024 work_list->safe_push (stmt);
3025 }
3026 }
3027 free (bbs);
3028 return work_list->length () > 0;
3029}
3030
3031/* Given innermost LOOP, return the outermost enclosing loop that forms a
3032 perfect loop nest. */
3033
3034static struct loop *
3035prepare_perfect_loop_nest (struct loop *loop)
3036{
3037 struct loop *outer = loop_outer (loop);
3038 tree niters = number_of_latch_executions (loop);
3039
5955438a 3040 /* TODO: We only support the innermost 3-level loop nest distribution
163aa51b 3041 because of compilation time issue for now. This should be relaxed
5955438a
BC
3042 in the future. Note we only allow 3-level loop nest distribution
3043 when parallelizing loops. */
3044 while ((loop->inner == NULL
3045 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
163aa51b
BC
3046 && loop_outer (outer)
3047 && outer->inner == loop && loop->next == NULL
3048 && single_exit (outer)
3049 && optimize_loop_for_speed_p (outer)
3050 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3051 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3052 && niters != chrec_dont_know)
3053 {
3054 loop = outer;
3055 outer = loop_outer (loop);
3056 }
3057
3058 return loop;
3059}
3060
be55bfe6
TS
3061unsigned int
3062pass_loop_distribution::execute (function *fun)
dea61d92
SP
3063{
3064 struct loop *loop;
c014f6f5 3065 bool changed = false;
1fa0c180 3066 basic_block bb;
36875e8f 3067 control_dependences *cd = NULL;
b71b7a8e 3068 auto_vec<loop_p> loops_to_be_destroyed;
1fa0c180 3069
773d9217
BC
3070 if (number_of_loops (fun) <= 1)
3071 return 0;
3072
3be57c56
BC
3073 /* Compute topological order for basic blocks. Topological order is
3074 needed because data dependence is computed for data references in
3075 lexicographical order. */
3076 if (bb_top_order_index == NULL)
3077 {
3fb82452 3078 int rpo_num;
3be57c56
BC
3079 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3080
3081 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3fb82452
BC
3082 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3083 rpo_num = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, true);
3084 for (int i = 0; i < rpo_num; i++)
3be57c56
BC
3085 bb_top_order_index[rpo[i]] = i;
3086
3087 free (rpo);
3088 }
3089
be55bfe6 3090 FOR_ALL_BB_FN (bb, fun)
1fa0c180
RG
3091 {
3092 gimple_stmt_iterator gsi;
3093 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3094 gimple_set_uid (gsi_stmt (gsi), -1);
3095 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3096 gimple_set_uid (gsi_stmt (gsi), -1);
3097 }
dea61d92 3098
c014f6f5
RG
3099 /* We can at the moment only distribute non-nested loops, thus restrict
3100 walking to innermost loops. */
f0bd40b1 3101 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
dea61d92 3102 {
163aa51b
BC
3103 /* Don't distribute multiple exit edges loop, or cold loop. */
3104 if (!single_exit (loop)
3105 || !optimize_loop_for_speed_p (loop))
f56f2d33
JH
3106 continue;
3107
6ff37519
BC
3108 /* Don't distribute loop if niters is unknown. */
3109 tree niters = number_of_latch_executions (loop);
3110 if (niters == NULL_TREE || niters == chrec_dont_know)
3111 continue;
3112
163aa51b
BC
3113 /* Get the perfect loop nest for distribution. */
3114 loop = prepare_perfect_loop_nest (loop);
3115 for (; loop; loop = loop->inner)
be6b029b 3116 {
163aa51b
BC
3117 auto_vec<gimple *> work_list;
3118 if (!find_seed_stmts_for_distribution (loop, &work_list))
3119 break;
c014f6f5 3120
163aa51b 3121 const char *str = loop->inner ? " nest" : "";
4f5b9c80 3122 dump_user_location_t loc = find_loop_location (loop);
36875e8f
RB
3123 if (!cd)
3124 {
ca406576 3125 calculate_dominance_info (CDI_DOMINATORS);
36875e8f 3126 calculate_dominance_info (CDI_POST_DOMINATORS);
30fd2977 3127 cd = new control_dependences ();
36875e8f
RB
3128 free_dominance_info (CDI_POST_DOMINATORS);
3129 }
163aa51b 3130
b71b7a8e 3131 bool destroy_p;
163aa51b 3132 int nb_generated_loops, nb_generated_calls;
826a536d 3133 nb_generated_loops = distribute_loop (loop, work_list, cd,
b71b7a8e
RB
3134 &nb_generated_calls,
3135 &destroy_p);
3136 if (destroy_p)
3137 loops_to_be_destroyed.safe_push (loop);
c014f6f5 3138
163aa51b
BC
3139 if (nb_generated_loops + nb_generated_calls > 0)
3140 {
3141 changed = true;
bbeeac91
DM
3142 if (dump_enabled_p ())
3143 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3144 loc, "Loop%s %d distributed: split to %d loops "
3145 "and %d library calls.\n", str, loop->num,
3146 nb_generated_loops, nb_generated_calls);
163aa51b
BC
3147
3148 break;
3149 }
3150
3151 if (dump_file && (dump_flags & TDF_DETAILS))
3152 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
dea61d92 3153 }
dea61d92
SP
3154 }
3155
36875e8f
RB
3156 if (cd)
3157 delete cd;
3158
3be57c56
BC
3159 if (bb_top_order_index != NULL)
3160 {
3161 free (bb_top_order_index);
3162 bb_top_order_index = NULL;
3163 bb_top_order_index_size = 0;
3164 }
3165
c014f6f5
RG
3166 if (changed)
3167 {
30fd2977
RB
3168 /* Destroy loop bodies that could not be reused. Do this late as we
3169 otherwise can end up refering to stale data in control dependences. */
3170 unsigned i;
3171 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3be57c56 3172 destroy_loop (loop);
30fd2977 3173
d0ed943c
RB
3174 /* Cached scalar evolutions now may refer to wrong or non-existing
3175 loops. */
3176 scev_reset_htab ();
be55bfe6 3177 mark_virtual_operands_for_renaming (fun);
c014f6f5
RG
3178 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3179 }
3180
b2b29377 3181 checking_verify_loop_structure ();
c014f6f5 3182
1bfb3b8b 3183 return changed ? TODO_cleanup_cfg : 0;
dea61d92
SP
3184}
3185
27a4cd48
DM
3186} // anon namespace
3187
3188gimple_opt_pass *
3189make_pass_loop_distribution (gcc::context *ctxt)
3190{
3191 return new pass_loop_distribution (ctxt);
3192}