]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-parloops.c
Fix ICE with -fopt-info-inline (PR ipa/87955)
[thirdparty/gcc.git] / gcc / tree-parloops.c
CommitLineData
5f40b3cb 1/* Loop autoparallelization.
85ec4feb 2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
70837b71
RL
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5f40b3cb
ZD
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
6da7fc87 10Software Foundation; either version 3, or (at your option) any later
5f40b3cb
ZD
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
6da7fc87
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
5f40b3cb
ZD
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
c7131fb2 25#include "backend.h"
40e23961 26#include "tree.h"
c7131fb2 27#include "gimple.h"
957060b5
AM
28#include "cfghooks.h"
29#include "tree-pass.h"
c7131fb2 30#include "ssa.h"
957060b5
AM
31#include "cgraph.h"
32#include "gimple-pretty-print.h"
c7131fb2 33#include "fold-const.h"
45b0be94 34#include "gimplify.h"
5be5c238 35#include "gimple-iterator.h"
18f429e2 36#include "gimplify-me.h"
5be5c238 37#include "gimple-walk.h"
d8a2d370
DN
38#include "stor-layout.h"
39#include "tree-nested.h"
442b4905 40#include "tree-cfg.h"
e28030cf
AM
41#include "tree-ssa-loop-ivopts.h"
42#include "tree-ssa-loop-manip.h"
43#include "tree-ssa-loop-niter.h"
442b4905
AM
44#include "tree-ssa-loop.h"
45#include "tree-into-ssa.h"
5f40b3cb 46#include "cfgloop.h"
1bd6497c 47#include "tree-scalar-evolution.h"
5f40b3cb 48#include "langhooks.h"
a509ebb5 49#include "tree-vectorizer.h"
4a8fb1a1 50#include "tree-hasher.h"
c1bf2a39 51#include "tree-parloops.h"
629b3d75 52#include "omp-general.h"
0645c1a2 53#include "omp-low.h"
7c82d827 54#include "tree-ssa.h"
f7f18684 55#include "params.h"
1f600fea 56#include "params-enum.h"
61d9c527
TV
57#include "tree-ssa-alias.h"
58#include "tree-eh.h"
59#include "gomp-constants.h"
60#include "tree-dfa.h"
314e6352
ML
61#include "stringpool.h"
62#include "attribs.h"
5f40b3cb
ZD
63
64/* This pass tries to distribute iterations of loops into several threads.
65 The implementation is straightforward -- for each loop we test whether its
66 iterations are independent, and if it is the case (and some additional
67 conditions regarding profitability and correctness are satisfied), we
726a989a
RB
68 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
69 machinery do its job.
b8698a0f 70
5f40b3cb
ZD
71 The most of the complexity is in bringing the code into shape expected
72 by the omp expanders:
726a989a
RB
73 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
74 variable and that the exit test is at the start of the loop body
75 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
5f40b3cb
ZD
76 variables by accesses through pointers, and breaking up ssa chains
77 by storing the values incoming to the parallelized loop to a structure
78 passed to the new function as an argument (something similar is done
79 in omp gimplification, unfortunately only a small part of the code
80 can be shared).
81
82 TODO:
83 -- if there are several parallelizable loops in a function, it may be
84 possible to generate the threads just once (using synchronization to
85 ensure that cross-loop dependences are obeyed).
70837b71
RL
86 -- handling of common reduction patterns for outer loops.
87
88 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
b8698a0f 89/*
a509ebb5 90 Reduction handling:
8a9ecffd 91 currently we use vect_force_simple_reduction() to detect reduction patterns.
a509ebb5 92 The code transformation will be introduced by an example.
b8698a0f
L
93
94
a509ebb5
RL
95parloop
96{
97 int sum=1;
98
0eb7e7aa 99 for (i = 0; i < N; i++)
a509ebb5
RL
100 {
101 x[i] = i + 3;
102 sum+=x[i];
103 }
104}
105
0eb7e7aa 106gimple-like code:
a509ebb5
RL
107header_bb:
108
0eb7e7aa
RL
109 # sum_29 = PHI <sum_11(5), 1(3)>
110 # i_28 = PHI <i_12(5), 0(3)>
111 D.1795_8 = i_28 + 3;
112 x[i_28] = D.1795_8;
113 sum_11 = D.1795_8 + sum_29;
114 i_12 = i_28 + 1;
115 if (N_6(D) > i_12)
116 goto header_bb;
117
a509ebb5
RL
118
119exit_bb:
120
0eb7e7aa
RL
121 # sum_21 = PHI <sum_11(4)>
122 printf (&"%d"[0], sum_21);
a509ebb5
RL
123
124
125after reduction transformation (only relevant parts):
126
127parloop
128{
129
130....
131
0eb7e7aa 132
fa10beec 133 # Storing the initial value given by the user. #
0eb7e7aa 134
ae0bce62 135 .paral_data_store.32.sum.27 = 1;
b8698a0f
L
136
137 #pragma omp parallel num_threads(4)
a509ebb5 138
0eb7e7aa 139 #pragma omp for schedule(static)
ae0bce62
RL
140
141 # The neutral element corresponding to the particular
142 reduction's operation, e.g. 0 for PLUS_EXPR,
143 1 for MULT_EXPR, etc. replaces the user's initial value. #
144
145 # sum.27_29 = PHI <sum.27_11, 0>
146
0eb7e7aa 147 sum.27_11 = D.1827_8 + sum.27_29;
ae0bce62 148
726a989a 149 GIMPLE_OMP_CONTINUE
a509ebb5 150
0eb7e7aa
RL
151 # Adding this reduction phi is done at create_phi_for_local_result() #
152 # sum.27_56 = PHI <sum.27_11, 0>
726a989a 153 GIMPLE_OMP_RETURN
b8698a0f
L
154
155 # Creating the atomic operation is done at
0eb7e7aa 156 create_call_for_reduction_1() #
a509ebb5 157
0eb7e7aa
RL
158 #pragma omp atomic_load
159 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
160 D.1840_60 = sum.27_56 + D.1839_59;
161 #pragma omp atomic_store (D.1840_60);
b8698a0f 162
726a989a 163 GIMPLE_OMP_RETURN
b8698a0f 164
0eb7e7aa
RL
165 # collecting the result after the join of the threads is done at
166 create_loads_for_reductions().
ae0bce62
RL
167 The value computed by the threads is loaded from the
168 shared struct. #
169
b8698a0f 170
0eb7e7aa 171 .paral_data_load.33_52 = &.paral_data_store.32;
ae0bce62 172 sum_37 = .paral_data_load.33_52->sum.27;
0eb7e7aa
RL
173 sum_43 = D.1795_41 + sum_37;
174
175 exit bb:
176 # sum_21 = PHI <sum_43, sum_26>
177 printf (&"%d"[0], sum_21);
178
179...
180
a509ebb5
RL
181}
182
183*/
184
5f40b3cb
ZD
185/* Minimal number of iterations of a loop that should be executed in each
186 thread. */
a851ce04 187#define MIN_PER_THREAD PARAM_VALUE (PARAM_PARLOOPS_MIN_PER_THREAD)
5f40b3cb 188
b8698a0f 189/* Element of the hashtable, representing a
a509ebb5
RL
190 reduction in the current loop. */
191struct reduction_info
192{
355fe088
TS
193 gimple *reduc_stmt; /* reduction statement. */
194 gimple *reduc_phi; /* The phi node defining the reduction. */
726a989a 195 enum tree_code reduction_code;/* code for the reduction operation. */
5d1fd1de
JJ
196 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
197 result. */
538dd0b7 198 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
a509ebb5 199 of the reduction variable when existing the loop. */
ae0bce62 200 tree initial_value; /* The initial value of the reduction var before entering the loop. */
a509ebb5 201 tree field; /* the name of the field in the parloop data structure intended for reduction. */
61d9c527
TV
202 tree reduc_addr; /* The address of the reduction variable for
203 openacc reductions. */
a509ebb5 204 tree init; /* reduction initialization value. */
538dd0b7 205 gphi *new_phi; /* (helper field) Newly created phi node whose result
a509ebb5
RL
206 will be passed to the atomic operation. Represents
207 the local result each thread computed for the reduction
208 operation. */
209};
210
4a8fb1a1 211/* Reduction info hashtable helpers. */
a509ebb5 212
95fbe13e 213struct reduction_hasher : free_ptr_hash <reduction_info>
a509ebb5 214{
67f58944
TS
215 static inline hashval_t hash (const reduction_info *);
216 static inline bool equal (const reduction_info *, const reduction_info *);
4a8fb1a1
LC
217};
218
219/* Equality and hash functions for hashtab code. */
a509ebb5 220
4a8fb1a1 221inline bool
67f58944 222reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
4a8fb1a1 223{
a509ebb5
RL
224 return (a->reduc_phi == b->reduc_phi);
225}
226
4a8fb1a1 227inline hashval_t
67f58944 228reduction_hasher::hash (const reduction_info *a)
a509ebb5 229{
5d1fd1de 230 return a->reduc_version;
a509ebb5
RL
231}
232
c203e8a7 233typedef hash_table<reduction_hasher> reduction_info_table_type;
4a8fb1a1
LC
234
235
a509ebb5 236static struct reduction_info *
355fe088 237reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
a509ebb5
RL
238{
239 struct reduction_info tmpred, *red;
240
c203e8a7 241 if (reduction_list->elements () == 0 || phi == NULL)
a509ebb5
RL
242 return NULL;
243
fdce493d
TV
244 if (gimple_uid (phi) == (unsigned int)-1
245 || gimple_uid (phi) == 0)
246 return NULL;
247
a509ebb5 248 tmpred.reduc_phi = phi;
5d1fd1de 249 tmpred.reduc_version = gimple_uid (phi);
c203e8a7 250 red = reduction_list->find (&tmpred);
fdce493d 251 gcc_assert (red == NULL || red->reduc_phi == phi);
a509ebb5
RL
252
253 return red;
254}
255
5f40b3cb
ZD
256/* Element of hashtable of names to copy. */
257
258struct name_to_copy_elt
259{
260 unsigned version; /* The version of the name to copy. */
261 tree new_name; /* The new name used in the copy. */
262 tree field; /* The field of the structure used to pass the
263 value. */
264};
265
4a8fb1a1 266/* Name copies hashtable helpers. */
5f40b3cb 267
95fbe13e 268struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
5f40b3cb 269{
67f58944
TS
270 static inline hashval_t hash (const name_to_copy_elt *);
271 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
4a8fb1a1
LC
272};
273
274/* Equality and hash functions for hashtab code. */
5f40b3cb 275
4a8fb1a1 276inline bool
67f58944 277name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
4a8fb1a1 278{
5f40b3cb
ZD
279 return a->version == b->version;
280}
281
4a8fb1a1 282inline hashval_t
67f58944 283name_to_copy_hasher::hash (const name_to_copy_elt *a)
5f40b3cb 284{
5f40b3cb
ZD
285 return (hashval_t) a->version;
286}
287
c203e8a7 288typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
4a8fb1a1 289
b305e3da
SP
290/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
291 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
292 represents the denominator for every element in the matrix. */
293typedef struct lambda_trans_matrix_s
294{
295 lambda_matrix matrix;
296 int rowsize;
297 int colsize;
298 int denominator;
299} *lambda_trans_matrix;
300#define LTM_MATRIX(T) ((T)->matrix)
301#define LTM_ROWSIZE(T) ((T)->rowsize)
302#define LTM_COLSIZE(T) ((T)->colsize)
303#define LTM_DENOMINATOR(T) ((T)->denominator)
304
305/* Allocate a new transformation matrix. */
306
307static lambda_trans_matrix
308lambda_trans_matrix_new (int colsize, int rowsize,
309 struct obstack * lambda_obstack)
310{
311 lambda_trans_matrix ret;
312
313 ret = (lambda_trans_matrix)
314 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
315 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
316 LTM_ROWSIZE (ret) = rowsize;
317 LTM_COLSIZE (ret) = colsize;
318 LTM_DENOMINATOR (ret) = 1;
319 return ret;
320}
321
322/* Multiply a vector VEC by a matrix MAT.
323 MAT is an M*N matrix, and VEC is a vector with length N. The result
324 is stored in DEST which must be a vector of length M. */
325
326static void
327lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
328 lambda_vector vec, lambda_vector dest)
329{
330 int i, j;
331
332 lambda_vector_clear (dest, m);
333 for (i = 0; i < m; i++)
334 for (j = 0; j < n; j++)
335 dest[i] += matrix[i][j] * vec[j];
336}
337
338/* Return true if TRANS is a legal transformation matrix that respects
339 the dependence vectors in DISTS and DIRS. The conservative answer
340 is false.
341
342 "Wolfe proves that a unimodular transformation represented by the
343 matrix T is legal when applied to a loop nest with a set of
344 lexicographically non-negative distance vectors RDG if and only if
345 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
346 i.e.: if and only if it transforms the lexicographically positive
347 distance vectors to lexicographically positive vectors. Note that
348 a unimodular matrix must transform the zero vector (and only it) to
349 the zero vector." S.Muchnick. */
350
351static bool
352lambda_transform_legal_p (lambda_trans_matrix trans,
353 int nb_loops,
9771b263 354 vec<ddr_p> dependence_relations)
b305e3da
SP
355{
356 unsigned int i, j;
357 lambda_vector distres;
358 struct data_dependence_relation *ddr;
359
360 gcc_assert (LTM_COLSIZE (trans) == nb_loops
361 && LTM_ROWSIZE (trans) == nb_loops);
362
363 /* When there are no dependences, the transformation is correct. */
9771b263 364 if (dependence_relations.length () == 0)
b305e3da
SP
365 return true;
366
9771b263 367 ddr = dependence_relations[0];
b305e3da
SP
368 if (ddr == NULL)
369 return true;
370
371 /* When there is an unknown relation in the dependence_relations, we
372 know that it is no worth looking at this loop nest: give up. */
373 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
374 return false;
375
376 distres = lambda_vector_new (nb_loops);
377
378 /* For each distance vector in the dependence graph. */
9771b263 379 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
b305e3da
SP
380 {
381 /* Don't care about relations for which we know that there is no
382 dependence, nor about read-read (aka. output-dependences):
383 these data accesses can happen in any order. */
384 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
385 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
386 continue;
387
388 /* Conservatively answer: "this transformation is not valid". */
389 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
390 return false;
391
392 /* If the dependence could not be captured by a distance vector,
393 conservatively answer that the transform is not valid. */
394 if (DDR_NUM_DIST_VECTS (ddr) == 0)
395 return false;
396
397 /* Compute trans.dist_vect */
398 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
399 {
400 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
401 DDR_DIST_VECT (ddr, j), distres);
402
403 if (!lambda_vector_lexico_pos (distres, nb_loops))
404 return false;
405 }
406 }
407 return true;
408}
08dab97a
RL
409
410/* Data dependency analysis. Returns true if the iterations of LOOP
411 are independent on each other (that is, if we can execute them
412 in parallel). */
5f40b3cb
ZD
413
414static bool
f873b205 415loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
5f40b3cb 416{
9771b263
DN
417 vec<ddr_p> dependence_relations;
418 vec<data_reference_p> datarefs;
5f40b3cb
ZD
419 lambda_trans_matrix trans;
420 bool ret = false;
5f40b3cb
ZD
421
422 if (dump_file && (dump_flags & TDF_DETAILS))
48710229
RL
423 {
424 fprintf (dump_file, "Considering loop %d\n", loop->num);
425 if (!loop->inner)
426 fprintf (dump_file, "loop is innermost\n");
b8698a0f 427 else
48710229
RL
428 fprintf (dump_file, "loop NOT innermost\n");
429 }
5f40b3cb 430
5f40b3cb
ZD
431 /* Check for problems with dependences. If the loop can be reversed,
432 the iterations are independent. */
00f96dc9 433 auto_vec<loop_p, 3> loop_nest;
9771b263 434 datarefs.create (10);
07687835 435 dependence_relations.create (100);
9ca3d00e
AB
436 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
437 &dependence_relations))
438 {
439 if (dump_file && (dump_flags & TDF_DETAILS))
440 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
441 ret = false;
442 goto end;
443 }
5f40b3cb
ZD
444 if (dump_file && (dump_flags & TDF_DETAILS))
445 dump_data_dependence_relations (dump_file, dependence_relations);
446
f873b205 447 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
5f40b3cb
ZD
448 LTM_MATRIX (trans)[0][0] = -1;
449
450 if (lambda_transform_legal_p (trans, 1, dependence_relations))
451 {
452 ret = true;
453 if (dump_file && (dump_flags & TDF_DETAILS))
454 fprintf (dump_file, " SUCCESS: may be parallelized\n");
455 }
456 else if (dump_file && (dump_flags & TDF_DETAILS))
a509ebb5
RL
457 fprintf (dump_file,
458 " FAILED: data dependencies exist across iterations\n");
5f40b3cb 459
9ca3d00e 460 end:
5f40b3cb
ZD
461 free_dependence_relations (dependence_relations);
462 free_data_refs (datarefs);
463
464 return ret;
465}
466
1d4af1e8
SP
467/* Return true when LOOP contains basic blocks marked with the
468 BB_IRREDUCIBLE_LOOP flag. */
469
470static inline bool
471loop_has_blocks_with_irreducible_flag (struct loop *loop)
472{
473 unsigned i;
474 basic_block *bbs = get_loop_body_in_dom_order (loop);
475 bool res = true;
476
477 for (i = 0; i < loop->num_nodes; i++)
478 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
479 goto end;
480
481 res = false;
482 end:
483 free (bbs);
484 return res;
485}
486
8a171a59 487/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
9f9f72aa 488 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
8a171a59 489 to their addresses that can be reused. The address of OBJ is known to
cba1eb61
JJ
490 be invariant in the whole function. Other needed statements are placed
491 right before GSI. */
5f40b3cb
ZD
492
493static tree
4a8fb1a1 494take_address_of (tree obj, tree type, edge entry,
c203e8a7 495 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
5f40b3cb 496{
8a171a59 497 int uid;
83d5977e 498 tree *var_p, name, addr;
538dd0b7 499 gassign *stmt;
726a989a 500 gimple_seq stmts;
5f40b3cb 501
8a171a59
ZD
502 /* Since the address of OBJ is invariant, the trees may be shared.
503 Avoid rewriting unrelated parts of the code. */
504 obj = unshare_expr (obj);
505 for (var_p = &obj;
506 handled_component_p (*var_p);
507 var_p = &TREE_OPERAND (*var_p, 0))
508 continue;
8a171a59 509
c9a410f0
RG
510 /* Canonicalize the access to base on a MEM_REF. */
511 if (DECL_P (*var_p))
512 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
513
514 /* Assign a canonical SSA name to the address of the base decl used
515 in the address and share it for all accesses and addresses based
516 on it. */
517 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
84baa4b9
TS
518 int_tree_map elt;
519 elt.uid = uid;
520 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
521 if (!slot->to)
5f40b3cb 522 {
cba1eb61
JJ
523 if (gsi == NULL)
524 return NULL;
c9a410f0 525 addr = TREE_OPERAND (*var_p, 0);
29b89442
JJ
526 const char *obj_name
527 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
528 if (obj_name)
529 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
530 else
b731b390 531 name = make_ssa_name (TREE_TYPE (addr));
83d5977e 532 stmt = gimple_build_assign (name, addr);
726a989a 533 gsi_insert_on_edge_immediate (entry, stmt);
5f40b3cb 534
84baa4b9
TS
535 slot->uid = uid;
536 slot->to = name;
5f40b3cb 537 }
8a171a59 538 else
84baa4b9 539 name = slot->to;
5f40b3cb 540
c9a410f0
RG
541 /* Express the address in terms of the canonical SSA name. */
542 TREE_OPERAND (*var_p, 0) = name;
cba1eb61
JJ
543 if (gsi == NULL)
544 return build_fold_addr_expr_with_type (obj, type);
545
aa00059c 546 name = force_gimple_operand (build_addr (obj),
c9a410f0
RG
547 &stmts, true, NULL_TREE);
548 if (!gimple_seq_empty_p (stmts))
cba1eb61 549 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5f40b3cb 550
c9a410f0 551 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
8a171a59 552 {
726a989a 553 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
8a171a59 554 NULL_TREE);
726a989a 555 if (!gimple_seq_empty_p (stmts))
cba1eb61 556 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
8a171a59 557 }
5f40b3cb
ZD
558
559 return name;
560}
561
12efb1d7 562static tree
355fe088 563reduc_stmt_res (gimple *stmt)
12efb1d7
TV
564{
565 return (gimple_code (stmt) == GIMPLE_PHI
566 ? gimple_phi_result (stmt)
567 : gimple_assign_lhs (stmt));
568}
569
a509ebb5 570/* Callback for htab_traverse. Create the initialization statement
b8698a0f 571 for reduction described in SLOT, and place it at the preheader of
a509ebb5
RL
572 the loop described in DATA. */
573
4a8fb1a1
LC
574int
575initialize_reductions (reduction_info **slot, struct loop *loop)
a509ebb5 576{
f2c9f71d
TS
577 tree init;
578 tree type, arg;
a509ebb5
RL
579 edge e;
580
4a8fb1a1 581 struct reduction_info *const reduc = *slot;
a509ebb5 582
b8698a0f 583 /* Create initialization in preheader:
a509ebb5
RL
584 reduction_variable = initialization value of reduction. */
585
b8698a0f 586 /* In the phi node at the header, replace the argument coming
a509ebb5
RL
587 from the preheader with the reduction initialization value. */
588
f2c9f71d 589 /* Initialize the reduction. */
a509ebb5 590 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
f2c9f71d
TS
591 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
592 reduc->reduction_code, type);
a509ebb5
RL
593 reduc->init = init;
594
b8698a0f
L
595 /* Replace the argument representing the initialization value
596 with the initialization value for the reduction (neutral
597 element for the particular operation, e.g. 0 for PLUS_EXPR,
598 1 for MULT_EXPR, etc).
599 Keep the old value in a new variable "reduction_initial",
600 that will be taken in consideration after the parallel
0eb7e7aa 601 computing is done. */
a509ebb5
RL
602
603 e = loop_preheader_edge (loop);
604 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
605 /* Create new variable to hold the initial value. */
a509ebb5 606
a509ebb5 607 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
0eb7e7aa 608 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
ae0bce62 609 reduc->initial_value = arg;
a509ebb5
RL
610 return 1;
611}
5f40b3cb
ZD
612
613struct elv_data
614{
726a989a 615 struct walk_stmt_info info;
9f9f72aa 616 edge entry;
c203e8a7 617 int_tree_htab_type *decl_address;
cba1eb61 618 gimple_stmt_iterator *gsi;
5f40b3cb 619 bool changed;
cba1eb61 620 bool reset;
5f40b3cb
ZD
621};
622
9f9f72aa
AP
623/* Eliminates references to local variables in *TP out of the single
624 entry single exit region starting at DTA->ENTRY.
625 DECL_ADDRESS contains addresses of the references that had their
626 address taken already. If the expression is changed, CHANGED is
627 set to true. Callback for walk_tree. */
a509ebb5 628
5f40b3cb 629static tree
8a171a59 630eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
5f40b3cb 631{
3d9a9f94 632 struct elv_data *const dta = (struct elv_data *) data;
8a171a59 633 tree t = *tp, var, addr, addr_type, type, obj;
5f40b3cb
ZD
634
635 if (DECL_P (t))
636 {
637 *walk_subtrees = 0;
638
639 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
640 return NULL_TREE;
641
642 type = TREE_TYPE (t);
643 addr_type = build_pointer_type (type);
cba1eb61
JJ
644 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
645 dta->gsi);
646 if (dta->gsi == NULL && addr == NULL_TREE)
647 {
648 dta->reset = true;
649 return NULL_TREE;
650 }
651
70f34814 652 *tp = build_simple_mem_ref (addr);
5f40b3cb
ZD
653
654 dta->changed = true;
655 return NULL_TREE;
656 }
657
658 if (TREE_CODE (t) == ADDR_EXPR)
659 {
8a171a59
ZD
660 /* ADDR_EXPR may appear in two contexts:
661 -- as a gimple operand, when the address taken is a function invariant
662 -- as gimple rhs, when the resulting address in not a function
663 invariant
664 We do not need to do anything special in the latter case (the base of
665 the memory reference whose address is taken may be replaced in the
666 DECL_P case). The former case is more complicated, as we need to
667 ensure that the new address is still a gimple operand. Thus, it
668 is not sufficient to replace just the base of the memory reference --
669 we need to move the whole computation of the address out of the
670 loop. */
671 if (!is_gimple_val (t))
5f40b3cb
ZD
672 return NULL_TREE;
673
674 *walk_subtrees = 0;
8a171a59
ZD
675 obj = TREE_OPERAND (t, 0);
676 var = get_base_address (obj);
677 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
5f40b3cb
ZD
678 return NULL_TREE;
679
680 addr_type = TREE_TYPE (t);
cba1eb61
JJ
681 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
682 dta->gsi);
683 if (dta->gsi == NULL && addr == NULL_TREE)
684 {
685 dta->reset = true;
686 return NULL_TREE;
687 }
5f40b3cb
ZD
688 *tp = addr;
689
690 dta->changed = true;
691 return NULL_TREE;
692 }
693
726a989a 694 if (!EXPR_P (t))
5f40b3cb
ZD
695 *walk_subtrees = 0;
696
697 return NULL_TREE;
698}
699
cba1eb61 700/* Moves the references to local variables in STMT at *GSI out of the single
9f9f72aa
AP
701 entry single exit region starting at ENTRY. DECL_ADDRESS contains
702 addresses of the references that had their address taken
703 already. */
5f40b3cb
ZD
704
705static void
cba1eb61 706eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
c203e8a7 707 int_tree_htab_type *decl_address)
5f40b3cb
ZD
708{
709 struct elv_data dta;
355fe088 710 gimple *stmt = gsi_stmt (*gsi);
5f40b3cb 711
726a989a 712 memset (&dta.info, '\0', sizeof (dta.info));
9f9f72aa 713 dta.entry = entry;
5f40b3cb
ZD
714 dta.decl_address = decl_address;
715 dta.changed = false;
cba1eb61 716 dta.reset = false;
5f40b3cb 717
b5b8b0ac 718 if (gimple_debug_bind_p (stmt))
cba1eb61
JJ
719 {
720 dta.gsi = NULL;
721 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
722 eliminate_local_variables_1, &dta.info, NULL);
723 if (dta.reset)
724 {
725 gimple_debug_bind_reset_value (stmt);
726 dta.changed = true;
727 }
728 }
29b89442
JJ
729 else if (gimple_clobber_p (stmt))
730 {
42fb90d7 731 unlink_stmt_vdef (stmt);
29b89442
JJ
732 stmt = gimple_build_nop ();
733 gsi_replace (gsi, stmt, false);
734 dta.changed = true;
735 }
b5b8b0ac 736 else
cba1eb61
JJ
737 {
738 dta.gsi = gsi;
739 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
740 }
5f40b3cb
ZD
741
742 if (dta.changed)
743 update_stmt (stmt);
744}
745
9f9f72aa
AP
746/* Eliminates the references to local variables from the single entry
747 single exit region between the ENTRY and EXIT edges.
b8698a0f 748
a509ebb5 749 This includes:
b8698a0f
L
750 1) Taking address of a local variable -- these are moved out of the
751 region (and temporary variable is created to hold the address if
a509ebb5 752 necessary).
9f9f72aa 753
5f40b3cb 754 2) Dereferencing a local variable -- these are replaced with indirect
a509ebb5 755 references. */
5f40b3cb
ZD
756
757static void
9f9f72aa 758eliminate_local_variables (edge entry, edge exit)
5f40b3cb 759{
9f9f72aa 760 basic_block bb;
00f96dc9 761 auto_vec<basic_block, 3> body;
5f40b3cb 762 unsigned i;
726a989a 763 gimple_stmt_iterator gsi;
cba1eb61 764 bool has_debug_stmt = false;
c203e8a7 765 int_tree_htab_type decl_address (10);
9f9f72aa
AP
766 basic_block entry_bb = entry->src;
767 basic_block exit_bb = exit->dest;
5f40b3cb 768
9f9f72aa 769 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
5f40b3cb 770
9771b263 771 FOR_EACH_VEC_ELT (body, i, bb)
9f9f72aa 772 if (bb != entry_bb && bb != exit_bb)
6b37bdaf
PP
773 {
774 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
775 if (is_gimple_debug (gsi_stmt (gsi)))
776 {
777 if (gimple_debug_bind_p (gsi_stmt (gsi)))
778 has_debug_stmt = true;
779 }
780 else
781 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
782 }
cba1eb61
JJ
783
784 if (has_debug_stmt)
9771b263 785 FOR_EACH_VEC_ELT (body, i, bb)
cba1eb61
JJ
786 if (bb != entry_bb && bb != exit_bb)
787 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
788 if (gimple_debug_bind_p (gsi_stmt (gsi)))
c203e8a7 789 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
9f9f72aa
AP
790}
791
792/* Returns true if expression EXPR is not defined between ENTRY and
793 EXIT, i.e. if all its operands are defined outside of the region. */
794
795static bool
796expr_invariant_in_region_p (edge entry, edge exit, tree expr)
797{
798 basic_block entry_bb = entry->src;
799 basic_block exit_bb = exit->dest;
800 basic_block def_bb;
9f9f72aa
AP
801
802 if (is_gimple_min_invariant (expr))
803 return true;
804
805 if (TREE_CODE (expr) == SSA_NAME)
806 {
726a989a 807 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
9f9f72aa
AP
808 if (def_bb
809 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
810 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
811 return false;
812
813 return true;
814 }
815
726a989a 816 return false;
5f40b3cb
ZD
817}
818
819/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
820 The copies are stored to NAME_COPIES, if NAME was already duplicated,
821 its duplicate stored in NAME_COPIES is returned.
b8698a0f 822
5f40b3cb
ZD
823 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
824 duplicated, storing the copies in DECL_COPIES. */
825
826static tree
c203e8a7
TS
827separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
828 int_tree_htab_type *decl_copies,
829 bool copy_name_p)
5f40b3cb
ZD
830{
831 tree copy, var, var_copy;
832 unsigned idx, uid, nuid;
84baa4b9 833 struct int_tree_map ielt;
5f40b3cb 834 struct name_to_copy_elt elt, *nelt;
4a8fb1a1 835 name_to_copy_elt **slot;
84baa4b9 836 int_tree_map *dslot;
5f40b3cb
ZD
837
838 if (TREE_CODE (name) != SSA_NAME)
839 return name;
840
841 idx = SSA_NAME_VERSION (name);
842 elt.version = idx;
c203e8a7
TS
843 slot = name_copies->find_slot_with_hash (&elt, idx,
844 copy_name_p ? INSERT : NO_INSERT);
5f40b3cb 845 if (slot && *slot)
4a8fb1a1 846 return (*slot)->new_name;
5f40b3cb 847
70b5e7dc
RG
848 if (copy_name_p)
849 {
850 copy = duplicate_ssa_name (name, NULL);
851 nelt = XNEW (struct name_to_copy_elt);
852 nelt->version = idx;
853 nelt->new_name = copy;
854 nelt->field = NULL_TREE;
855 *slot = nelt;
856 }
857 else
858 {
859 gcc_assert (!slot);
860 copy = name;
861 }
862
5f40b3cb 863 var = SSA_NAME_VAR (name);
70b5e7dc
RG
864 if (!var)
865 return copy;
866
5f40b3cb
ZD
867 uid = DECL_UID (var);
868 ielt.uid = uid;
84baa4b9
TS
869 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
870 if (!dslot->to)
5f40b3cb
ZD
871 {
872 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
36ad7922 873 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
84baa4b9
TS
874 dslot->uid = uid;
875 dslot->to = var_copy;
5f40b3cb
ZD
876
877 /* Ensure that when we meet this decl next time, we won't duplicate
a509ebb5 878 it again. */
5f40b3cb
ZD
879 nuid = DECL_UID (var_copy);
880 ielt.uid = nuid;
84baa4b9
TS
881 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
882 gcc_assert (!dslot->to);
883 dslot->uid = nuid;
884 dslot->to = var_copy;
5f40b3cb
ZD
885 }
886 else
84baa4b9 887 var_copy = dslot->to;
5f40b3cb 888
b2ec94d4 889 replace_ssa_name_symbol (copy, var_copy);
5f40b3cb
ZD
890 return copy;
891}
892
9f9f72aa
AP
893/* Finds the ssa names used in STMT that are defined outside the
894 region between ENTRY and EXIT and replaces such ssa names with
895 their duplicates. The duplicates are stored to NAME_COPIES. Base
896 decls of all ssa names used in STMT (including those defined in
897 LOOP) are replaced with the new temporary variables; the
898 replacement decls are stored in DECL_COPIES. */
5f40b3cb
ZD
899
900static void
355fe088 901separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
c203e8a7
TS
902 name_to_copy_table_type *name_copies,
903 int_tree_htab_type *decl_copies)
5f40b3cb
ZD
904{
905 use_operand_p use;
906 def_operand_p def;
907 ssa_op_iter oi;
908 tree name, copy;
909 bool copy_name_p;
910
5f40b3cb 911 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
a509ebb5
RL
912 {
913 name = DEF_FROM_PTR (def);
914 gcc_assert (TREE_CODE (name) == SSA_NAME);
9f9f72aa
AP
915 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
916 false);
a509ebb5
RL
917 gcc_assert (copy == name);
918 }
5f40b3cb
ZD
919
920 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
a509ebb5
RL
921 {
922 name = USE_FROM_PTR (use);
923 if (TREE_CODE (name) != SSA_NAME)
924 continue;
925
9f9f72aa
AP
926 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
927 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
928 copy_name_p);
a509ebb5
RL
929 SET_USE (use, copy);
930 }
5f40b3cb
ZD
931}
932
b5b8b0ac
AO
933/* Finds the ssa names used in STMT that are defined outside the
934 region between ENTRY and EXIT and replaces such ssa names with
935 their duplicates. The duplicates are stored to NAME_COPIES. Base
936 decls of all ssa names used in STMT (including those defined in
937 LOOP) are replaced with the new temporary variables; the
938 replacement decls are stored in DECL_COPIES. */
939
940static bool
355fe088 941separate_decls_in_region_debug (gimple *stmt,
c203e8a7
TS
942 name_to_copy_table_type *name_copies,
943 int_tree_htab_type *decl_copies)
b5b8b0ac
AO
944{
945 use_operand_p use;
946 ssa_op_iter oi;
947 tree var, name;
948 struct int_tree_map ielt;
949 struct name_to_copy_elt elt;
4a8fb1a1 950 name_to_copy_elt **slot;
84baa4b9 951 int_tree_map *dslot;
b5b8b0ac 952
ddb555ed
JJ
953 if (gimple_debug_bind_p (stmt))
954 var = gimple_debug_bind_get_var (stmt);
955 else if (gimple_debug_source_bind_p (stmt))
956 var = gimple_debug_source_bind_get_var (stmt);
957 else
958 return true;
598e67d7 959 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
4f2a9af8 960 return true;
b5b8b0ac
AO
961 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
962 ielt.uid = DECL_UID (var);
84baa4b9 963 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
b5b8b0ac
AO
964 if (!dslot)
965 return true;
ddb555ed 966 if (gimple_debug_bind_p (stmt))
84baa4b9 967 gimple_debug_bind_set_var (stmt, dslot->to);
ddb555ed 968 else if (gimple_debug_source_bind_p (stmt))
84baa4b9 969 gimple_debug_source_bind_set_var (stmt, dslot->to);
b5b8b0ac
AO
970
971 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
972 {
973 name = USE_FROM_PTR (use);
974 if (TREE_CODE (name) != SSA_NAME)
975 continue;
976
977 elt.version = SSA_NAME_VERSION (name);
c203e8a7 978 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
b5b8b0ac
AO
979 if (!slot)
980 {
981 gimple_debug_bind_reset_value (stmt);
982 update_stmt (stmt);
983 break;
984 }
985
4a8fb1a1 986 SET_USE (use, (*slot)->new_name);
b5b8b0ac
AO
987 }
988
989 return false;
990}
991
0eb7e7aa
RL
992/* Callback for htab_traverse. Adds a field corresponding to the reduction
993 specified in SLOT. The type is passed in DATA. */
994
4a8fb1a1
LC
995int
996add_field_for_reduction (reduction_info **slot, tree type)
a509ebb5 997{
b8698a0f 998
4a8fb1a1 999 struct reduction_info *const red = *slot;
12efb1d7 1000 tree var = reduc_stmt_res (red->reduc_stmt);
aa06a978
RB
1001 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1002 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
0eb7e7aa
RL
1003
1004 insert_field_into_struct (type, field);
1005
1006 red->field = field;
1007
1008 return 1;
1009}
a509ebb5 1010
5f40b3cb 1011/* Callback for htab_traverse. Adds a field corresponding to a ssa name
b8698a0f 1012 described in SLOT. The type is passed in DATA. */
5f40b3cb 1013
4a8fb1a1
LC
1014int
1015add_field_for_name (name_to_copy_elt **slot, tree type)
5f40b3cb 1016{
4a8fb1a1 1017 struct name_to_copy_elt *const elt = *slot;
5f40b3cb 1018 tree name = ssa_name (elt->version);
70b5e7dc
RG
1019 tree field = build_decl (UNKNOWN_LOCATION,
1020 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1021 TREE_TYPE (name));
5f40b3cb
ZD
1022
1023 insert_field_into_struct (type, field);
1024 elt->field = field;
a509ebb5 1025
5f40b3cb
ZD
1026 return 1;
1027}
1028
b8698a0f
L
1029/* Callback for htab_traverse. A local result is the intermediate result
1030 computed by a single
fa10beec 1031 thread, or the initial value in case no iteration was executed.
b8698a0f
L
1032 This function creates a phi node reflecting these values.
1033 The phi's result will be stored in NEW_PHI field of the
1034 reduction's data structure. */
a509ebb5 1035
4a8fb1a1
LC
1036int
1037create_phi_for_local_result (reduction_info **slot, struct loop *loop)
a509ebb5 1038{
4a8fb1a1 1039 struct reduction_info *const reduc = *slot;
a509ebb5 1040 edge e;
538dd0b7 1041 gphi *new_phi;
e67d7a1e 1042 basic_block store_bb, continue_bb;
a509ebb5 1043 tree local_res;
f5045c96 1044 source_location locus;
a509ebb5 1045
b8698a0f
L
1046 /* STORE_BB is the block where the phi
1047 should be stored. It is the destination of the loop exit.
726a989a 1048 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
e67d7a1e
TV
1049 continue_bb = single_pred (loop->latch);
1050 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
a509ebb5
RL
1051
1052 /* STORE_BB has two predecessors. One coming from the loop
1053 (the reduction's result is computed at the loop),
b8698a0f
L
1054 and another coming from a block preceding the loop,
1055 when no iterations
1056 are executed (the initial value should be taken). */
e67d7a1e 1057 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
a509ebb5
RL
1058 e = EDGE_PRED (store_bb, 1);
1059 else
1060 e = EDGE_PRED (store_bb, 0);
12efb1d7
TV
1061 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1062 local_res = copy_ssa_name (lhs);
f5045c96 1063 locus = gimple_location (reduc->reduc_stmt);
a509ebb5 1064 new_phi = create_phi_node (local_res, store_bb);
9e227d60 1065 add_phi_arg (new_phi, reduc->init, e, locus);
e67d7a1e 1066 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
a509ebb5
RL
1067 reduc->new_phi = new_phi;
1068
1069 return 1;
1070}
5f40b3cb
ZD
1071
1072struct clsn_data
1073{
1074 tree store;
1075 tree load;
1076
1077 basic_block store_bb;
1078 basic_block load_bb;
1079};
1080
a509ebb5 1081/* Callback for htab_traverse. Create an atomic instruction for the
b8698a0f 1082 reduction described in SLOT.
a509ebb5
RL
1083 DATA annotates the place in memory the atomic operation relates to,
1084 and the basic block it needs to be generated in. */
1085
4a8fb1a1
LC
1086int
1087create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
a509ebb5 1088{
4a8fb1a1 1089 struct reduction_info *const reduc = *slot;
726a989a 1090 gimple_stmt_iterator gsi;
a509ebb5 1091 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
a509ebb5
RL
1092 tree load_struct;
1093 basic_block bb;
1094 basic_block new_bb;
1095 edge e;
0f900dfa 1096 tree t, addr, ref, x;
726a989a 1097 tree tmp_load, name;
355fe088 1098 gimple *load;
a509ebb5 1099
61d9c527
TV
1100 if (reduc->reduc_addr == NULL_TREE)
1101 {
1102 load_struct = build_simple_mem_ref (clsn_data->load);
1103 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
a509ebb5 1104
61d9c527
TV
1105 addr = build_addr (t);
1106 }
1107 else
1108 {
1109 /* Set the address for the atomic store. */
1110 addr = reduc->reduc_addr;
1111
1112 /* Remove the non-atomic store '*addr = sum'. */
1113 tree res = PHI_RESULT (reduc->keep_res);
1114 use_operand_p use_p;
1115 gimple *stmt;
1116 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1117 gcc_assert (single_use_p);
1118 replace_uses_by (gimple_vdef (stmt),
1119 gimple_vuse (stmt));
1120 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1121 gsi_remove (&gsi, true);
1122 }
a509ebb5
RL
1123
1124 /* Create phi node. */
1125 bb = clsn_data->load_bb;
1126
b13c907a
RB
1127 gsi = gsi_last_bb (bb);
1128 e = split_block (bb, gsi_stmt (gsi));
a509ebb5
RL
1129 new_bb = e->dest;
1130
b731b390
JJ
1131 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1132 tmp_load = make_ssa_name (tmp_load);
28567c40
JJ
1133 load = gimple_build_omp_atomic_load (tmp_load, addr,
1134 OMP_MEMORY_ORDER_RELAXED);
a509ebb5 1135 SSA_NAME_DEF_STMT (tmp_load) = load;
726a989a
RB
1136 gsi = gsi_start_bb (new_bb);
1137 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
a509ebb5
RL
1138
1139 e = split_block (new_bb, load);
1140 new_bb = e->dest;
726a989a 1141 gsi = gsi_start_bb (new_bb);
a509ebb5 1142 ref = tmp_load;
726a989a
RB
1143 x = fold_build2 (reduc->reduction_code,
1144 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1145 PHI_RESULT (reduc->new_phi));
a509ebb5 1146
726a989a
RB
1147 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1148 GSI_CONTINUE_LINKING);
a509ebb5 1149
28567c40
JJ
1150 gimple *store = gimple_build_omp_atomic_store (name,
1151 OMP_MEMORY_ORDER_RELAXED);
1152 gsi_insert_after (&gsi, store, GSI_NEW_STMT);
a509ebb5
RL
1153 return 1;
1154}
1155
b8698a0f
L
1156/* Create the atomic operation at the join point of the threads.
1157 REDUCTION_LIST describes the reductions in the LOOP.
1158 LD_ST_DATA describes the shared data structure where
a509ebb5
RL
1159 shared data is stored in and loaded from. */
1160static void
4a8fb1a1 1161create_call_for_reduction (struct loop *loop,
c203e8a7 1162 reduction_info_table_type *reduction_list,
a509ebb5
RL
1163 struct clsn_data *ld_st_data)
1164{
c203e8a7 1165 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
726a989a 1166 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
e67d7a1e
TV
1167 basic_block continue_bb = single_pred (loop->latch);
1168 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
4a8fb1a1 1169 reduction_list
c203e8a7 1170 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
a509ebb5
RL
1171}
1172
ae0bce62
RL
1173/* Callback for htab_traverse. Loads the final reduction value at the
1174 join point of all threads, and inserts it in the right place. */
a509ebb5 1175
4a8fb1a1
LC
1176int
1177create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
a509ebb5 1178{
4a8fb1a1 1179 struct reduction_info *const red = *slot;
355fe088 1180 gimple *stmt;
726a989a 1181 gimple_stmt_iterator gsi;
12efb1d7 1182 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
a509ebb5 1183 tree load_struct;
ae0bce62 1184 tree name;
a509ebb5
RL
1185 tree x;
1186
79855460
TV
1187 /* If there's no exit phi, the result of the reduction is unused. */
1188 if (red->keep_res == NULL)
1189 return 1;
1190
726a989a 1191 gsi = gsi_after_labels (clsn_data->load_bb);
70f34814 1192 load_struct = build_simple_mem_ref (clsn_data->load);
a509ebb5
RL
1193 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1194 NULL_TREE);
a509ebb5 1195
ae0bce62 1196 x = load_struct;
a509ebb5 1197 name = PHI_RESULT (red->keep_res);
726a989a 1198 stmt = gimple_build_assign (name, x);
a509ebb5 1199
726a989a 1200 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
a509ebb5 1201
726a989a
RB
1202 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1203 !gsi_end_p (gsi); gsi_next (&gsi))
1204 if (gsi_stmt (gsi) == red->keep_res)
1205 {
1206 remove_phi_node (&gsi, false);
1207 return 1;
1208 }
1209 gcc_unreachable ();
a509ebb5
RL
1210}
1211
b8698a0f 1212/* Load the reduction result that was stored in LD_ST_DATA.
a509ebb5 1213 REDUCTION_LIST describes the list of reductions that the
fa10beec 1214 loads should be generated for. */
a509ebb5 1215static void
c203e8a7 1216create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
a509ebb5
RL
1217 struct clsn_data *ld_st_data)
1218{
726a989a 1219 gimple_stmt_iterator gsi;
a509ebb5 1220 tree t;
355fe088 1221 gimple *stmt;
a509ebb5 1222
726a989a 1223 gsi = gsi_after_labels (ld_st_data->load_bb);
a509ebb5 1224 t = build_fold_addr_expr (ld_st_data->store);
726a989a 1225 stmt = gimple_build_assign (ld_st_data->load, t);
a509ebb5 1226
726a989a 1227 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
a509ebb5 1228
4a8fb1a1 1229 reduction_list
c203e8a7 1230 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
a509ebb5
RL
1231
1232}
1233
0eb7e7aa
RL
1234/* Callback for htab_traverse. Store the neutral value for the
1235 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1236 1 for MULT_EXPR, etc. into the reduction field.
b8698a0f
L
1237 The reduction is specified in SLOT. The store information is
1238 passed in DATA. */
0eb7e7aa 1239
4a8fb1a1
LC
1240int
1241create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
0eb7e7aa 1242{
4a8fb1a1 1243 struct reduction_info *const red = *slot;
726a989a 1244 tree t;
355fe088 1245 gimple *stmt;
726a989a 1246 gimple_stmt_iterator gsi;
12efb1d7 1247 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
726a989a
RB
1248
1249 gsi = gsi_last_bb (clsn_data->store_bb);
1250 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1251 stmt = gimple_build_assign (t, red->initial_value);
726a989a 1252 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
0eb7e7aa
RL
1253
1254 return 1;
1255}
1256
a509ebb5
RL
1257/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1258 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1259 specified in SLOT. */
1260
4a8fb1a1
LC
1261int
1262create_loads_and_stores_for_name (name_to_copy_elt **slot,
1263 struct clsn_data *clsn_data)
5f40b3cb 1264{
4a8fb1a1 1265 struct name_to_copy_elt *const elt = *slot;
726a989a 1266 tree t;
355fe088 1267 gimple *stmt;
726a989a 1268 gimple_stmt_iterator gsi;
5f40b3cb 1269 tree type = TREE_TYPE (elt->new_name);
5f40b3cb
ZD
1270 tree load_struct;
1271
726a989a
RB
1272 gsi = gsi_last_bb (clsn_data->store_bb);
1273 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1274 stmt = gimple_build_assign (t, ssa_name (elt->version));
726a989a 1275 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb 1276
726a989a 1277 gsi = gsi_last_bb (clsn_data->load_bb);
70f34814 1278 load_struct = build_simple_mem_ref (clsn_data->load);
726a989a
RB
1279 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1280 stmt = gimple_build_assign (elt->new_name, t);
726a989a 1281 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb
ZD
1282
1283 return 1;
1284}
1285
1286/* Moves all the variables used in LOOP and defined outside of it (including
1287 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1288 name) to a structure created for this purpose. The code
b8698a0f 1289
5f40b3cb
ZD
1290 while (1)
1291 {
1292 use (a);
1293 use (b);
1294 }
1295
1296 is transformed this way:
1297
1298 bb0:
1299 old.a = a;
1300 old.b = b;
1301
1302 bb1:
1303 a' = new->a;
1304 b' = new->b;
1305 while (1)
1306 {
1307 use (a');
1308 use (b');
1309 }
1310
1311 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1312 pointer `new' is intentionally not initialized (the loop will be split to a
1313 separate function later, and `new' will be initialized from its arguments).
a509ebb5 1314 LD_ST_DATA holds information about the shared data structure used to pass
b8698a0f
L
1315 information among the threads. It is initialized here, and
1316 gen_parallel_loop will pass it to create_call_for_reduction that
1317 needs this information. REDUCTION_LIST describes the reductions
a509ebb5 1318 in LOOP. */
5f40b3cb
ZD
1319
1320static void
4a8fb1a1 1321separate_decls_in_region (edge entry, edge exit,
c203e8a7 1322 reduction_info_table_type *reduction_list,
b8698a0f 1323 tree *arg_struct, tree *new_arg_struct,
9f9f72aa 1324 struct clsn_data *ld_st_data)
a509ebb5 1325
5f40b3cb 1326{
9f9f72aa 1327 basic_block bb1 = split_edge (entry);
5f40b3cb 1328 basic_block bb0 = single_pred (bb1);
c203e8a7
TS
1329 name_to_copy_table_type name_copies (10);
1330 int_tree_htab_type decl_copies (10);
5f40b3cb 1331 unsigned i;
726a989a
RB
1332 tree type, type_name, nvar;
1333 gimple_stmt_iterator gsi;
5f40b3cb 1334 struct clsn_data clsn_data;
00f96dc9 1335 auto_vec<basic_block, 3> body;
9f9f72aa
AP
1336 basic_block bb;
1337 basic_block entry_bb = bb1;
1338 basic_block exit_bb = exit->dest;
b5b8b0ac 1339 bool has_debug_stmt = false;
5f40b3cb 1340
726a989a 1341 entry = single_succ_edge (entry_bb);
9f9f72aa 1342 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
5f40b3cb 1343
9771b263 1344 FOR_EACH_VEC_ELT (body, i, bb)
9f9f72aa 1345 {
b8698a0f 1346 if (bb != entry_bb && bb != exit_bb)
9f9f72aa 1347 {
726a989a
RB
1348 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1349 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
c203e8a7 1350 &name_copies, &decl_copies);
726a989a
RB
1351
1352 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
b5b8b0ac 1353 {
355fe088 1354 gimple *stmt = gsi_stmt (gsi);
b5b8b0ac
AO
1355
1356 if (is_gimple_debug (stmt))
1357 has_debug_stmt = true;
1358 else
1359 separate_decls_in_region_stmt (entry, exit, stmt,
c203e8a7 1360 &name_copies, &decl_copies);
b5b8b0ac 1361 }
9f9f72aa 1362 }
5f40b3cb 1363 }
9f9f72aa 1364
b5b8b0ac
AO
1365 /* Now process debug bind stmts. We must not create decls while
1366 processing debug stmts, so we defer their processing so as to
1367 make sure we will have debug info for as many variables as
1368 possible (all of those that were dealt with in the loop above),
1369 and discard those for which we know there's nothing we can
1370 do. */
1371 if (has_debug_stmt)
9771b263 1372 FOR_EACH_VEC_ELT (body, i, bb)
b5b8b0ac
AO
1373 if (bb != entry_bb && bb != exit_bb)
1374 {
1375 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1376 {
355fe088 1377 gimple *stmt = gsi_stmt (gsi);
b5b8b0ac 1378
ddb555ed 1379 if (is_gimple_debug (stmt))
b5b8b0ac 1380 {
c203e8a7
TS
1381 if (separate_decls_in_region_debug (stmt, &name_copies,
1382 &decl_copies))
b5b8b0ac
AO
1383 {
1384 gsi_remove (&gsi, true);
1385 continue;
1386 }
1387 }
1388
1389 gsi_next (&gsi);
1390 }
1391 }
1392
c203e8a7 1393 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
5f40b3cb
ZD
1394 {
1395 /* It may happen that there is nothing to copy (if there are only
a509ebb5 1396 loop carried and external variables in the loop). */
5f40b3cb
ZD
1397 *arg_struct = NULL;
1398 *new_arg_struct = NULL;
1399 }
1400 else
1401 {
1402 /* Create the type for the structure to store the ssa names to. */
1403 type = lang_hooks.types.make_type (RECORD_TYPE);
9ff70652 1404 type_name = build_decl (UNKNOWN_LOCATION,
c2255bc4 1405 TYPE_DECL, create_tmp_var_name (".paral_data"),
5f40b3cb
ZD
1406 type);
1407 TYPE_NAME (type) = type_name;
1408
4a8fb1a1 1409 name_copies.traverse <tree, add_field_for_name> (type);
c203e8a7 1410 if (reduction_list && reduction_list->elements () > 0)
0eb7e7aa
RL
1411 {
1412 /* Create the fields for reductions. */
c203e8a7 1413 reduction_list->traverse <tree, add_field_for_reduction> (type);
0eb7e7aa 1414 }
5f40b3cb 1415 layout_type (type);
b8698a0f 1416
5f40b3cb
ZD
1417 /* Create the loads and stores. */
1418 *arg_struct = create_tmp_var (type, ".paral_data_store");
5f40b3cb 1419 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
b731b390 1420 *new_arg_struct = make_ssa_name (nvar);
5f40b3cb 1421
a509ebb5
RL
1422 ld_st_data->store = *arg_struct;
1423 ld_st_data->load = *new_arg_struct;
1424 ld_st_data->store_bb = bb0;
1425 ld_st_data->load_bb = bb1;
0eb7e7aa 1426
4a8fb1a1
LC
1427 name_copies
1428 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1429 (ld_st_data);
a509ebb5 1430
ae0bce62
RL
1431 /* Load the calculation from memory (after the join of the threads). */
1432
c203e8a7 1433 if (reduction_list && reduction_list->elements () > 0)
a509ebb5 1434 {
4a8fb1a1 1435 reduction_list
c203e8a7
TS
1436 ->traverse <struct clsn_data *, create_stores_for_reduction>
1437 (ld_st_data);
b731b390 1438 clsn_data.load = make_ssa_name (nvar);
9f9f72aa 1439 clsn_data.load_bb = exit->dest;
a509ebb5
RL
1440 clsn_data.store = ld_st_data->store;
1441 create_final_loads_for_reduction (reduction_list, &clsn_data);
1442 }
5f40b3cb 1443 }
5f40b3cb
ZD
1444}
1445
a79b7ec5 1446/* Returns true if FN was created to run in parallel. */
5f40b3cb 1447
62e0a1ed 1448bool
a79b7ec5 1449parallelized_function_p (tree fndecl)
5f40b3cb 1450{
a79b7ec5
TV
1451 cgraph_node *node = cgraph_node::get (fndecl);
1452 gcc_assert (node != NULL);
1453 return node->parallelized_function;
5f40b3cb
ZD
1454}
1455
1456/* Creates and returns an empty function that will receive the body of
1457 a parallelized loop. */
1458
1459static tree
9ff70652 1460create_loop_fn (location_t loc)
5f40b3cb
ZD
1461{
1462 char buf[100];
1463 char *tname;
1464 tree decl, type, name, t;
1465 struct function *act_cfun = cfun;
1466 static unsigned loopfn_num;
1467
5368224f 1468 loc = LOCATION_LOCUS (loc);
5f40b3cb
ZD
1469 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1470 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1471 clean_symbol_name (tname);
1472 name = get_identifier (tname);
1473 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1474
9ff70652 1475 decl = build_decl (loc, FUNCTION_DECL, name, type);
5f40b3cb
ZD
1476 TREE_STATIC (decl) = 1;
1477 TREE_USED (decl) = 1;
1478 DECL_ARTIFICIAL (decl) = 1;
1479 DECL_IGNORED_P (decl) = 0;
1480 TREE_PUBLIC (decl) = 0;
1481 DECL_UNINLINABLE (decl) = 1;
1482 DECL_EXTERNAL (decl) = 0;
1483 DECL_CONTEXT (decl) = NULL_TREE;
1484 DECL_INITIAL (decl) = make_node (BLOCK);
01771d43 1485 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
5f40b3cb 1486
9ff70652 1487 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
5f40b3cb
ZD
1488 DECL_ARTIFICIAL (t) = 1;
1489 DECL_IGNORED_P (t) = 1;
1490 DECL_RESULT (decl) = t;
1491
9ff70652 1492 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
5f40b3cb
ZD
1493 ptr_type_node);
1494 DECL_ARTIFICIAL (t) = 1;
1495 DECL_ARG_TYPE (t) = ptr_type_node;
1496 DECL_CONTEXT (t) = decl;
1497 TREE_USED (t) = 1;
1498 DECL_ARGUMENTS (decl) = t;
1499
182e0d71 1500 allocate_struct_function (decl, false);
5f40b3cb
ZD
1501
1502 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1503 it. */
5576d6f2 1504 set_cfun (act_cfun);
5f40b3cb
ZD
1505
1506 return decl;
1507}
1508
7c82d827
TV
1509/* Replace uses of NAME by VAL in block BB. */
1510
1511static void
1512replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1513{
355fe088 1514 gimple *use_stmt;
7c82d827
TV
1515 imm_use_iterator imm_iter;
1516
1517 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1518 {
1519 if (gimple_bb (use_stmt) != bb)
1520 continue;
1521
1522 use_operand_p use_p;
1523 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1524 SET_USE (use_p, val);
1525 }
1526}
1527
7c82d827
TV
1528/* Do transformation from:
1529
1530 <bb preheader>:
1531 ...
1532 goto <bb header>
1533
1534 <bb header>:
1535 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1536 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1537 ...
1538 use (ivtmp_a)
1539 ...
1540 sum_b = sum_a + sum_update
1541 ...
1542 if (ivtmp_a < n)
1543 goto <bb latch>;
1544 else
1545 goto <bb exit>;
1546
1547 <bb latch>:
1548 ivtmp_b = ivtmp_a + 1;
1549 goto <bb header>
1550
1551 <bb exit>:
712cb0bb 1552 sum_z = PHI <sum_b (cond[1]), ...>
7c82d827
TV
1553
1554 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1555 that's <bb header>.
1556
1557 to:
1558
1559 <bb preheader>:
1560 ...
1561 goto <bb newheader>
1562
1563 <bb header>:
1564 ivtmp_a = PHI <ivtmp_c (latch)>
1565 sum_a = PHI <sum_c (latch)>
1566 ...
1567 use (ivtmp_a)
1568 ...
1569 sum_b = sum_a + sum_update
1570 ...
1571 goto <bb latch>;
1572
1573 <bb newheader>:
1574 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1575 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1576 if (ivtmp_c < n + 1)
1577 goto <bb header>;
1578 else
712cb0bb 1579 goto <bb newexit>;
7c82d827
TV
1580
1581 <bb latch>:
1582 ivtmp_b = ivtmp_a + 1;
1583 goto <bb newheader>
1584
712cb0bb
TV
1585 <bb newexit>:
1586 sum_y = PHI <sum_c (newheader)>
1587
7c82d827 1588 <bb exit>:
712cb0bb 1589 sum_z = PHI <sum_y (newexit), ...>
7c82d827
TV
1590
1591
1592 In unified diff format:
1593
1594 <bb preheader>:
1595 ...
1596- goto <bb header>
1597+ goto <bb newheader>
1598
1599 <bb header>:
1600- ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1601- sum_a = PHI <sum_init (preheader), sum_b (latch)>
1602+ ivtmp_a = PHI <ivtmp_c (latch)>
1603+ sum_a = PHI <sum_c (latch)>
1604 ...
1605 use (ivtmp_a)
1606 ...
1607 sum_b = sum_a + sum_update
1608 ...
1609- if (ivtmp_a < n)
1610- goto <bb latch>;
1611+ goto <bb latch>;
1612+
1613+ <bb newheader>:
1614+ ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1615+ sum_c = PHI <sum_init (preheader), sum_b (latch)>
1616+ if (ivtmp_c < n + 1)
1617+ goto <bb header>;
1618 else
1619 goto <bb exit>;
1620
1621 <bb latch>:
1622 ivtmp_b = ivtmp_a + 1;
1623- goto <bb header>
1624+ goto <bb newheader>
1625
712cb0bb
TV
1626+ <bb newexit>:
1627+ sum_y = PHI <sum_c (newheader)>
1628
7c82d827 1629 <bb exit>:
712cb0bb
TV
1630- sum_z = PHI <sum_b (cond[1]), ...>
1631+ sum_z = PHI <sum_y (newexit), ...>
7c82d827
TV
1632
1633 Note: the example does not show any virtual phis, but these are handled more
1634 or less as reductions.
b8698a0f 1635
7c82d827
TV
1636
1637 Moves the exit condition of LOOP to the beginning of its header.
1638 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1639 bound. */
1640
1641static void
1642transform_to_exit_first_loop_alt (struct loop *loop,
1643 reduction_info_table_type *reduction_list,
1644 tree bound)
1645{
1646 basic_block header = loop->header;
1647 basic_block latch = loop->latch;
1648 edge exit = single_dom_exit (loop);
1649 basic_block exit_block = exit->dest;
1650 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1651 tree control = gimple_cond_lhs (cond_stmt);
1652 edge e;
1653
338392ed
TV
1654 /* Rewriting virtuals into loop-closed ssa normal form makes this
1655 transformation simpler. It also ensures that the virtuals are in
1656 loop-closed ssa normal from after the transformation, which is required by
1657 create_parallel_loop. */
1658 rewrite_virtuals_into_loop_closed_ssa (loop);
7c82d827
TV
1659
1660 /* Create the new_header block. */
1661 basic_block new_header = split_block_before_cond_jump (exit->src);
712cb0bb 1662 edge edge_at_split = single_pred_edge (new_header);
7c82d827
TV
1663
1664 /* Redirect entry edge to new_header. */
1665 edge entry = loop_preheader_edge (loop);
1666 e = redirect_edge_and_branch (entry, new_header);
1667 gcc_assert (e == entry);
1668
1669 /* Redirect post_inc_edge to new_header. */
1670 edge post_inc_edge = single_succ_edge (latch);
1671 e = redirect_edge_and_branch (post_inc_edge, new_header);
1672 gcc_assert (e == post_inc_edge);
1673
1674 /* Redirect post_cond_edge to header. */
1675 edge post_cond_edge = single_pred_edge (latch);
1676 e = redirect_edge_and_branch (post_cond_edge, header);
1677 gcc_assert (e == post_cond_edge);
1678
712cb0bb
TV
1679 /* Redirect edge_at_split to latch. */
1680 e = redirect_edge_and_branch (edge_at_split, latch);
1681 gcc_assert (e == edge_at_split);
7c82d827
TV
1682
1683 /* Set the new loop bound. */
1684 gimple_cond_set_rhs (cond_stmt, bound);
5a5fd951 1685 update_stmt (cond_stmt);
7c82d827
TV
1686
1687 /* Repair the ssa. */
1688 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1689 edge_var_map *vm;
1690 gphi_iterator gsi;
338392ed 1691 int i;
7c82d827
TV
1692 for (gsi = gsi_start_phis (header), i = 0;
1693 !gsi_end_p (gsi) && v->iterate (i, &vm);
1694 gsi_next (&gsi), i++)
1695 {
1696 gphi *phi = gsi.phi ();
1697 tree res_a = PHI_RESULT (phi);
1698
1699 /* Create new phi. */
1700 tree res_c = copy_ssa_name (res_a, phi);
1701 gphi *nphi = create_phi_node (res_c, new_header);
1702
1703 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1704 replace_uses_in_bb_by (res_a, res_c, new_header);
1705
1706 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1707 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1708
338392ed 1709 /* Replace sum_b with sum_c in exit phi. */
7c82d827 1710 tree res_b = redirect_edge_var_map_def (vm);
338392ed 1711 replace_uses_in_bb_by (res_b, res_c, exit_block);
7c82d827
TV
1712
1713 struct reduction_info *red = reduction_phi (reduction_list, phi);
1714 gcc_assert (virtual_operand_p (res_a)
1715 || res_a == control
1716 || red != NULL);
1717
1718 if (red)
1719 {
1720 /* Register the new reduction phi. */
1721 red->reduc_phi = nphi;
1722 gimple_set_uid (red->reduc_phi, red->reduc_version);
1723 }
1724 }
1725 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
7c82d827
TV
1726
1727 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1728 flush_pending_stmts (entry);
1729
1730 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1731 flush_pending_stmts (post_inc_edge);
1732
d42ba2d2
TV
1733
1734 basic_block new_exit_block = NULL;
1735 if (!single_pred_p (exit->dest))
1736 {
1737 /* Create a new empty exit block, inbetween the new loop header and the
1738 old exit block. The function separate_decls_in_region needs this block
1739 to insert code that is active on loop exit, but not any other path. */
1740 new_exit_block = split_edge (exit);
1741 }
712cb0bb
TV
1742
1743 /* Insert and register the reduction exit phis. */
7c82d827
TV
1744 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1745 !gsi_end_p (gsi);
1746 gsi_next (&gsi))
1747 {
1748 gphi *phi = gsi.phi ();
d42ba2d2 1749 gphi *nphi = NULL;
7c82d827 1750 tree res_z = PHI_RESULT (phi);
d42ba2d2 1751 tree res_c;
712cb0bb 1752
d42ba2d2
TV
1753 if (new_exit_block != NULL)
1754 {
1755 /* Now that we have a new exit block, duplicate the phi of the old
1756 exit block in the new exit block to preserve loop-closed ssa. */
1757 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1758 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1759 tree res_y = copy_ssa_name (res_z, phi);
1760 nphi = create_phi_node (res_y, new_exit_block);
1761 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1762 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1763 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1764 }
1765 else
1766 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
712cb0bb 1767
7c82d827
TV
1768 if (virtual_operand_p (res_z))
1769 continue;
1770
355fe088 1771 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
7c82d827
TV
1772 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1773 if (red != NULL)
d42ba2d2
TV
1774 red->keep_res = (nphi != NULL
1775 ? nphi
1776 : phi);
7c82d827
TV
1777 }
1778
1779 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1780 then we're still using some fields, so only bother about fields that are
1781 still used: header and latch.
1782 The loop has a new header bb, so we update it. The latch bb stays the
1783 same. */
1784 loop->header = new_header;
1785
1786 /* Recalculate dominance info. */
1787 free_dominance_info (CDI_DOMINATORS);
1788 calculate_dominance_info (CDI_DOMINATORS);
4a4b6c4c
TV
1789
1790 checking_verify_ssa (true, true);
7c82d827
TV
1791}
1792
1793/* Tries to moves the exit condition of LOOP to the beginning of its header
1794 without duplication of the loop body. NIT is the number of iterations of the
1795 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1796 transformation is successful. */
1797
1798static bool
1799try_transform_to_exit_first_loop_alt (struct loop *loop,
1800 reduction_info_table_type *reduction_list,
1801 tree nit)
1802{
1803 /* Check whether the latch contains a single statement. */
1b7f61eb
TV
1804 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1805 return false;
7c82d827 1806
d95167ee
TV
1807 /* Check whether the latch contains no phis. */
1808 if (phi_nodes (loop->latch) != NULL)
1809 return false;
1810
7c82d827
TV
1811 /* Check whether the latch contains the loop iv increment. */
1812 edge back = single_succ_edge (loop->latch);
1813 edge exit = single_dom_exit (loop);
1814 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1815 tree control = gimple_cond_lhs (cond_stmt);
1816 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1817 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1818 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1819 return false;
1820
1821 /* Check whether there's no code between the loop condition and the latch. */
1822 if (!single_pred_p (loop->latch)
1823 || single_pred (loop->latch) != exit->src)
1824 return false;
1825
1826 tree alt_bound = NULL_TREE;
1827 tree nit_type = TREE_TYPE (nit);
1828
1829 /* Figure out whether nit + 1 overflows. */
1830 if (TREE_CODE (nit) == INTEGER_CST)
1831 {
ff22eb12 1832 if (!tree_int_cst_equal (nit, TYPE_MAX_VALUE (nit_type)))
7c82d827
TV
1833 {
1834 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1835 nit, build_one_cst (nit_type));
1836
1837 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
fd7b3ef5
TV
1838 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1839 return true;
7c82d827
TV
1840 }
1841 else
1842 {
1843 /* Todo: Figure out if we can trigger this, if it's worth to handle
1844 optimally, and if we can handle it optimally. */
fd7b3ef5 1845 return false;
7c82d827
TV
1846 }
1847 }
7c82d827 1848
fd7b3ef5 1849 gcc_assert (TREE_CODE (nit) == SSA_NAME);
7c82d827 1850
4f75d608
TV
1851 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1852 iv with base 0 and step 1 that is incremented in the latch, like this:
1853
1854 <bb header>:
1855 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1856 ...
1857 if (iv_1 < nit)
1858 goto <bb latch>;
1859 else
1860 goto <bb exit>;
1861
1862 <bb latch>:
1863 iv_2 = iv_1 + 1;
1864 goto <bb header>;
1865
1866 The range of iv_1 is [0, nit]. The latch edge is taken for
1867 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1868 number of latch executions is equal to nit.
1869
1870 The function max_loop_iterations gives us the maximum number of latch
1871 executions, so it gives us the maximum value of nit. */
1872 widest_int nit_max;
1873 if (!max_loop_iterations (loop, &nit_max))
1874 return false;
1875
1876 /* Check if nit + 1 overflows. */
ff22eb12 1877 widest_int type_max = wi::to_widest (TYPE_MAX_VALUE (nit_type));
032c80e9 1878 if (nit_max >= type_max)
4f75d608
TV
1879 return false;
1880
355fe088 1881 gimple *def = SSA_NAME_DEF_STMT (nit);
7c82d827 1882
4f75d608 1883 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
fd7b3ef5
TV
1884 if (def
1885 && is_gimple_assign (def)
1886 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1887 {
1888 tree op1 = gimple_assign_rhs1 (def);
1889 tree op2 = gimple_assign_rhs2 (def);
1890 if (integer_minus_onep (op1))
1891 alt_bound = op2;
1892 else if (integer_minus_onep (op2))
1893 alt_bound = op1;
7c82d827
TV
1894 }
1895
9f620bf1 1896 /* If not found, insert nit + 1. */
7c82d827 1897 if (alt_bound == NULL_TREE)
9f620bf1
TV
1898 {
1899 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1900 build_int_cst_type (nit_type, 1));
1901
1902 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1903
1904 alt_bound
1905 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1906 GSI_CONTINUE_LINKING);
1907 }
7c82d827
TV
1908
1909 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1910 return true;
1911}
1912
1913/* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1914 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1915 LOOP. */
5f40b3cb
ZD
1916
1917static void
4a8fb1a1 1918transform_to_exit_first_loop (struct loop *loop,
c203e8a7 1919 reduction_info_table_type *reduction_list,
4a8fb1a1 1920 tree nit)
5f40b3cb
ZD
1921{
1922 basic_block *bbs, *nbbs, ex_bb, orig_header;
1923 unsigned n;
1924 bool ok;
1925 edge exit = single_dom_exit (loop), hpred;
726a989a 1926 tree control, control_name, res, t;
538dd0b7
DM
1927 gphi *phi, *nphi;
1928 gassign *stmt;
1929 gcond *cond_stmt, *cond_nit;
48710229 1930 tree nit_1;
5f40b3cb
ZD
1931
1932 split_block_after_labels (loop->header);
1933 orig_header = single_succ (loop->header);
1934 hpred = single_succ_edge (loop->header);
1935
538dd0b7 1936 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
726a989a
RB
1937 control = gimple_cond_lhs (cond_stmt);
1938 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
5f40b3cb
ZD
1939
1940 /* Make sure that we have phi nodes on exit for all loop header phis
1941 (create_parallel_loop requires that). */
538dd0b7
DM
1942 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1943 !gsi_end_p (gsi);
1944 gsi_next (&gsi))
5f40b3cb 1945 {
538dd0b7 1946 phi = gsi.phi ();
5f40b3cb 1947 res = PHI_RESULT (phi);
070ecdfd 1948 t = copy_ssa_name (res, phi);
5f40b3cb 1949 SET_PHI_RESULT (phi, t);
5f40b3cb 1950 nphi = create_phi_node (res, orig_header);
9e227d60 1951 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
5f40b3cb
ZD
1952
1953 if (res == control)
1954 {
726a989a 1955 gimple_cond_set_lhs (cond_stmt, t);
5f40b3cb
ZD
1956 update_stmt (cond_stmt);
1957 control = t;
1958 }
1959 }
12037899 1960
5f40b3cb 1961 bbs = get_loop_body_in_dom_order (loop);
48710229 1962
69958396
RL
1963 for (n = 0; bbs[n] != exit->src; n++)
1964 continue;
5f40b3cb 1965 nbbs = XNEWVEC (basic_block, n);
726a989a
RB
1966 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1967 bbs + 1, n, nbbs);
5f40b3cb
ZD
1968 gcc_assert (ok);
1969 free (bbs);
1970 ex_bb = nbbs[0];
1971 free (nbbs);
1972
b8698a0f 1973 /* Other than reductions, the only gimple reg that should be copied
726a989a 1974 out of the loop is the control variable. */
69958396 1975 exit = single_dom_exit (loop);
5f40b3cb 1976 control_name = NULL_TREE;
538dd0b7
DM
1977 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1978 !gsi_end_p (gsi); )
5f40b3cb 1979 {
538dd0b7 1980 phi = gsi.phi ();
5f40b3cb 1981 res = PHI_RESULT (phi);
ea057359 1982 if (virtual_operand_p (res))
726a989a
RB
1983 {
1984 gsi_next (&gsi);
1985 continue;
1986 }
5f40b3cb 1987
a509ebb5 1988 /* Check if it is a part of reduction. If it is,
b8698a0f
L
1989 keep the phi at the reduction's keep_res field. The
1990 PHI_RESULT of this phi is the resulting value of the reduction
a509ebb5
RL
1991 variable when exiting the loop. */
1992
c203e8a7 1993 if (reduction_list->elements () > 0)
a509ebb5
RL
1994 {
1995 struct reduction_info *red;
1996
1997 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
a509ebb5
RL
1998 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1999 if (red)
726a989a
RB
2000 {
2001 red->keep_res = phi;
2002 gsi_next (&gsi);
2003 continue;
2004 }
a509ebb5 2005 }
726a989a
RB
2006 gcc_assert (control_name == NULL_TREE
2007 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
5f40b3cb 2008 control_name = res;
726a989a 2009 remove_phi_node (&gsi, false);
5f40b3cb
ZD
2010 }
2011 gcc_assert (control_name != NULL_TREE);
5f40b3cb 2012
b8698a0f 2013 /* Initialize the control variable to number of iterations
48710229 2014 according to the rhs of the exit condition. */
538dd0b7
DM
2015 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2016 cond_nit = as_a <gcond *> (last_stmt (exit->src));
48710229
RL
2017 nit_1 = gimple_cond_rhs (cond_nit);
2018 nit_1 = force_gimple_operand_gsi (&gsi,
2019 fold_convert (TREE_TYPE (control_name), nit_1),
726a989a 2020 false, NULL_TREE, false, GSI_SAME_STMT);
48710229 2021 stmt = gimple_build_assign (control_name, nit_1);
726a989a 2022 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb
ZD
2023}
2024
2025/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
726a989a 2026 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
5f40b3cb 2027 NEW_DATA is the variable that should be initialized from the argument
f99c3557
TS
2028 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2029 that number is to be determined later. */
5f40b3cb 2030
a6f4d493 2031static void
5f40b3cb 2032create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
61d9c527
TV
2033 tree new_data, unsigned n_threads, location_t loc,
2034 bool oacc_kernels_p)
5f40b3cb 2035{
726a989a 2036 gimple_stmt_iterator gsi;
61d9c527 2037 basic_block for_bb, ex_bb, continue_bb;
0f900dfa 2038 tree t, param;
538dd0b7 2039 gomp_parallel *omp_par_stmt;
355fe088
TS
2040 gimple *omp_return_stmt1, *omp_return_stmt2;
2041 gimple *phi;
538dd0b7
DM
2042 gcond *cond_stmt;
2043 gomp_for *for_stmt;
2044 gomp_continue *omp_cont_stmt;
726a989a 2045 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
5f40b3cb
ZD
2046 edge exit, nexit, guard, end, e;
2047
61d9c527
TV
2048 if (oacc_kernels_p)
2049 {
25651634
TS
2050 gcc_checking_assert (lookup_attribute ("oacc kernels",
2051 DECL_ATTRIBUTES (cfun->decl)));
b0f271ce
TS
2052 /* Indicate to later processing that this is a parallelized OpenACC
2053 kernels construct. */
2054 DECL_ATTRIBUTES (cfun->decl)
2055 = tree_cons (get_identifier ("oacc kernels parallelized"),
2056 NULL_TREE, DECL_ATTRIBUTES (cfun->decl));
61d9c527
TV
2057 }
2058 else
2059 {
b0f271ce
TS
2060 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2061
61d9c527
TV
2062 basic_block bb = loop_preheader_edge (loop)->src;
2063 basic_block paral_bb = single_pred (bb);
2064 gsi = gsi_last_bb (paral_bb);
5f40b3cb 2065
f99c3557 2066 gcc_checking_assert (n_threads != 0);
61d9c527
TV
2067 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2068 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2069 = build_int_cst (integer_type_node, n_threads);
2070 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2071 gimple_set_location (omp_par_stmt, loc);
5f40b3cb 2072
61d9c527 2073 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
5f40b3cb 2074
61d9c527
TV
2075 /* Initialize NEW_DATA. */
2076 if (data)
2077 {
2078 gassign *assign_stmt;
538dd0b7 2079
61d9c527 2080 gsi = gsi_after_labels (bb);
726a989a 2081
61d9c527
TV
2082 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2083 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2084 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
726a989a 2085
61d9c527
TV
2086 assign_stmt = gimple_build_assign (new_data,
2087 fold_convert (TREE_TYPE (new_data), param));
2088 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2089 }
5f40b3cb 2090
61d9c527
TV
2091 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2092 bb = split_loop_exit_edge (single_dom_exit (loop));
2093 gsi = gsi_last_bb (bb);
2094 omp_return_stmt1 = gimple_build_omp_return (false);
2095 gimple_set_location (omp_return_stmt1, loc);
2096 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2097 }
5f40b3cb 2098
726a989a 2099 /* Extract data for GIMPLE_OMP_FOR. */
5f40b3cb 2100 gcc_assert (loop->header == single_dom_exit (loop)->src);
538dd0b7 2101 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
5f40b3cb 2102
726a989a 2103 cvar = gimple_cond_lhs (cond_stmt);
5f40b3cb
ZD
2104 cvar_base = SSA_NAME_VAR (cvar);
2105 phi = SSA_NAME_DEF_STMT (cvar);
2106 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
b731b390 2107 initvar = copy_ssa_name (cvar);
5f40b3cb
ZD
2108 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2109 initvar);
2110 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2111
1dff453d 2112 gsi = gsi_last_nondebug_bb (loop->latch);
726a989a
RB
2113 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2114 gsi_remove (&gsi, true);
5f40b3cb
ZD
2115
2116 /* Prepare cfg. */
2117 for_bb = split_edge (loop_preheader_edge (loop));
2118 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2119 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2120 gcc_assert (exit == single_dom_exit (loop));
2121
2122 guard = make_edge (for_bb, ex_bb, 0);
357067f2
JH
2123 /* FIXME: What is the probability? */
2124 guard->probability = profile_probability::guessed_never ();
e67d7a1e
TV
2125 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2126 loop->latch = split_edge (single_succ_edge (loop->latch));
2127 single_pred_edge (loop->latch)->flags = 0;
357067f2 2128 end = make_single_succ_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
e67d7a1e
TV
2129 rescan_loop_exit (end, true, false);
2130
538dd0b7
DM
2131 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2132 !gsi_end_p (gpi); gsi_next (&gpi))
5f40b3cb 2133 {
f5045c96 2134 source_location locus;
538dd0b7 2135 gphi *phi = gpi.phi ();
7781d262 2136 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
355fe088 2137 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
538dd0b7 2138
7781d262
TV
2139 /* If the exit phi is not connected to a header phi in the same loop, this
2140 value is not modified in the loop, and we're done with this phi. */
2141 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2142 && gimple_bb (def_stmt) == loop->header))
1c5211b1
TV
2143 {
2144 locus = gimple_phi_arg_location_from_edge (phi, exit);
2145 add_phi_arg (phi, def, guard, locus);
2146 add_phi_arg (phi, def, end, locus);
2147 continue;
2148 }
f5045c96 2149
7781d262 2150 gphi *stmt = as_a <gphi *> (def_stmt);
f5045c96 2151 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
b8698a0f 2152 locus = gimple_phi_arg_location_from_edge (stmt,
f5045c96 2153 loop_preheader_edge (loop));
9e227d60 2154 add_phi_arg (phi, def, guard, locus);
f5045c96
AM
2155
2156 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2157 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
9e227d60 2158 add_phi_arg (phi, def, end, locus);
5f40b3cb
ZD
2159 }
2160 e = redirect_edge_and_branch (exit, nexit->dest);
2161 PENDING_STMT (e) = NULL;
2162
726a989a 2163 /* Emit GIMPLE_OMP_FOR. */
61d9c527 2164 if (oacc_kernels_p)
b0f271ce
TS
2165 /* Parallelized OpenACC kernels constructs use gang parallelism. See also
2166 omp-offload.c:execute_oacc_device_lower. */
61d9c527
TV
2167 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2168 else
1f600fea 2169 {
61d9c527
TV
2170 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2171 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2172 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2173 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2174 switch (schedule_type)
2175 {
2176 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2177 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2178 break;
2179 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2180 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2181 break;
2182 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2183 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2184 break;
2185 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2186 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2187 chunk_size = 0;
2188 break;
2189 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2190 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2191 chunk_size = 0;
2192 break;
2193 default:
2194 gcc_unreachable ();
2195 }
2196 if (chunk_size != 0)
2197 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2198 = build_int_cst (integer_type_node, chunk_size);
1f600fea 2199 }
5f40b3cb 2200
61d9c527
TV
2201 for_stmt = gimple_build_omp_for (NULL,
2202 (oacc_kernels_p
2203 ? GF_OMP_FOR_KIND_OACC_LOOP
2204 : GF_OMP_FOR_KIND_FOR),
2205 t, 1, NULL);
2206
2207 gimple_cond_set_lhs (cond_stmt, cvar_base);
2208 type = TREE_TYPE (cvar);
9ff70652 2209 gimple_set_location (for_stmt, loc);
726a989a
RB
2210 gimple_omp_for_set_index (for_stmt, 0, initvar);
2211 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2212 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2213 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2214 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2215 cvar_base,
2216 build_int_cst (type, 1)));
2217
2218 gsi = gsi_last_bb (for_bb);
2219 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
5f40b3cb
ZD
2220 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2221
726a989a 2222 /* Emit GIMPLE_OMP_CONTINUE. */
e67d7a1e
TV
2223 continue_bb = single_pred (loop->latch);
2224 gsi = gsi_last_bb (continue_bb);
538dd0b7
DM
2225 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2226 gimple_set_location (omp_cont_stmt, loc);
2227 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2228 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
5f40b3cb 2229
726a989a
RB
2230 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2231 gsi = gsi_last_bb (ex_bb);
538dd0b7
DM
2232 omp_return_stmt2 = gimple_build_omp_return (true);
2233 gimple_set_location (omp_return_stmt2, loc);
2234 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
5f40b3cb 2235
cd7d9fd7
RG
2236 /* After the above dom info is hosed. Re-compute it. */
2237 free_dominance_info (CDI_DOMINATORS);
2238 calculate_dominance_info (CDI_DOMINATORS);
5f40b3cb
ZD
2239}
2240
c75c35e0
TV
2241/* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the
2242 virtual phi. */
2243
2244static unsigned int
2245num_phis (basic_block bb, bool count_virtual_p)
2246{
2247 unsigned int nr_phis = 0;
2248 gphi_iterator gsi;
2249 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2250 {
2251 if (!count_virtual_p && virtual_operand_p (PHI_RESULT (gsi.phi ())))
2252 continue;
2253
2254 nr_phis++;
2255 }
2256
2257 return nr_phis;
2258}
2259
08dab97a 2260/* Generates code to execute the iterations of LOOP in N_THREADS
f99c3557
TS
2261 threads in parallel, which can be 0 if that number is to be determined
2262 later.
08dab97a
RL
2263
2264 NITER describes number of iterations of LOOP.
fa10beec 2265 REDUCTION_LIST describes the reductions existent in the LOOP. */
5f40b3cb
ZD
2266
2267static void
c203e8a7
TS
2268gen_parallel_loop (struct loop *loop,
2269 reduction_info_table_type *reduction_list,
61d9c527
TV
2270 unsigned n_threads, struct tree_niter_desc *niter,
2271 bool oacc_kernels_p)
5f40b3cb 2272{
5f40b3cb 2273 tree many_iterations_cond, type, nit;
726a989a
RB
2274 tree arg_struct, new_arg_struct;
2275 gimple_seq stmts;
9f9f72aa 2276 edge entry, exit;
a509ebb5 2277 struct clsn_data clsn_data;
9ff70652 2278 location_t loc;
355fe088 2279 gimple *cond_stmt;
768da0da 2280 unsigned int m_p_thread=2;
5f40b3cb
ZD
2281
2282 /* From
2283
2284 ---------------------------------------------------------------------
2285 loop
2286 {
2287 IV = phi (INIT, IV + STEP)
2288 BODY1;
2289 if (COND)
2290 break;
2291 BODY2;
2292 }
2293 ---------------------------------------------------------------------
2294
2295 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2296 we generate the following code:
2297
2298 ---------------------------------------------------------------------
2299
2300 if (MAY_BE_ZERO
a509ebb5
RL
2301 || NITER < MIN_PER_THREAD * N_THREADS)
2302 goto original;
5f40b3cb
ZD
2303
2304 BODY1;
2305 store all local loop-invariant variables used in body of the loop to DATA.
726a989a 2306 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
5f40b3cb 2307 load the variables from DATA.
726a989a 2308 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
5f40b3cb
ZD
2309 BODY2;
2310 BODY1;
726a989a
RB
2311 GIMPLE_OMP_CONTINUE;
2312 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2313 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
5f40b3cb
ZD
2314 goto end;
2315
2316 original:
2317 loop
2318 {
2319 IV = phi (INIT, IV + STEP)
2320 BODY1;
2321 if (COND)
2322 break;
2323 BODY2;
2324 }
2325
2326 end:
2327
2328 */
2329
2330 /* Create two versions of the loop -- in the old one, we know that the
2331 number of iterations is large enough, and we will transform it into the
2332 loop that will be split to loop_fn, the new one will be used for the
2333 remaining iterations. */
a509ebb5 2334
768da0da
RL
2335 /* We should compute a better number-of-iterations value for outer loops.
2336 That is, if we have
2337
2338 for (i = 0; i < n; ++i)
2339 for (j = 0; j < m; ++j)
2340 ...
2341
2342 we should compute nit = n * m, not nit = n.
2343 Also may_be_zero handling would need to be adjusted. */
2344
5f40b3cb
ZD
2345 type = TREE_TYPE (niter->niter);
2346 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2347 NULL_TREE);
2348 if (stmts)
726a989a 2349 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5f40b3cb 2350
61d9c527 2351 if (!oacc_kernels_p)
5f40b3cb 2352 {
61d9c527
TV
2353 if (loop->inner)
2354 m_p_thread=2;
2355 else
2356 m_p_thread=MIN_PER_THREAD;
2357
f99c3557 2358 gcc_checking_assert (n_threads != 0);
61d9c527
TV
2359 many_iterations_cond =
2360 fold_build2 (GE_EXPR, boolean_type_node,
a851ce04 2361 nit, build_int_cst (type, m_p_thread * n_threads - 1));
61d9c527 2362
5f40b3cb 2363 many_iterations_cond
61d9c527
TV
2364 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2365 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2366 many_iterations_cond);
2367 many_iterations_cond
2368 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
5f40b3cb 2369 if (stmts)
726a989a 2370 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
61d9c527
TV
2371 if (!is_gimple_condexpr (many_iterations_cond))
2372 {
2373 many_iterations_cond
2374 = force_gimple_operand (many_iterations_cond, &stmts,
2375 true, NULL_TREE);
2376 if (stmts)
2377 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2378 stmts);
2379 }
5f40b3cb 2380
61d9c527 2381 initialize_original_copy_tables ();
5f40b3cb 2382
61d9c527 2383 /* We assume that the loop usually iterates a lot. */
61d9c527 2384 loop_version (loop, many_iterations_cond, NULL,
af2bbc51
JH
2385 profile_probability::likely (),
2386 profile_probability::unlikely (),
2387 profile_probability::likely (),
2388 profile_probability::unlikely (), true);
61d9c527
TV
2389 update_ssa (TODO_update_ssa);
2390 free_original_copy_tables ();
2391 }
5f40b3cb
ZD
2392
2393 /* Base all the induction variables in LOOP on a single control one. */
c80a5403 2394 canonicalize_loop_ivs (loop, &nit, true);
c75c35e0
TV
2395 if (num_phis (loop->header, false) != reduction_list->elements () + 1)
2396 {
2397 /* The call to canonicalize_loop_ivs above failed to "base all the
2398 induction variables in LOOP on a single control one". Do damage
2399 control. */
2400 basic_block preheader = loop_preheader_edge (loop)->src;
2401 basic_block cond_bb = single_pred (preheader);
2402 gcond *cond = as_a <gcond *> (gsi_stmt (gsi_last_bb (cond_bb)));
2403 gimple_cond_make_true (cond);
2404 update_stmt (cond);
2405 /* We've gotten rid of the duplicate loop created by loop_version, but
2406 we can't undo whatever canonicalize_loop_ivs has done.
2407 TODO: Fix this properly by ensuring that the call to
2408 canonicalize_loop_ivs succeeds. */
2409 if (dump_file
2410 && (dump_flags & TDF_DETAILS))
2411 fprintf (dump_file, "canonicalize_loop_ivs failed for loop %d,"
2412 " aborting transformation\n", loop->num);
2413 return;
2414 }
5f40b3cb 2415
7c82d827
TV
2416 /* Ensure that the exit condition is the first statement in the loop.
2417 The common case is that latch of the loop is empty (apart from the
2418 increment) and immediately follows the loop exit test. Attempt to move the
2419 entry of the loop directly before the exit check and increase the number of
2420 iterations of the loop by one. */
a5a57bf3
TV
2421 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2422 {
2423 if (dump_file
2424 && (dump_flags & TDF_DETAILS))
2425 fprintf (dump_file,
2426 "alternative exit-first loop transform succeeded"
2427 " for loop %d\n", loop->num);
2428 }
2429 else
7c82d827 2430 {
61d9c527
TV
2431 if (oacc_kernels_p)
2432 n_threads = 1;
2433
7c82d827
TV
2434 /* Fall back on the method that handles more cases, but duplicates the
2435 loop body: move the exit condition of LOOP to the beginning of its
2436 header, and duplicate the part of the last iteration that gets disabled
2437 to the exit of the loop. */
2438 transform_to_exit_first_loop (loop, reduction_list, nit);
2439 }
a509ebb5 2440
fa10beec 2441 /* Generate initializations for reductions. */
c203e8a7
TS
2442 if (reduction_list->elements () > 0)
2443 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
5f40b3cb
ZD
2444
2445 /* Eliminate the references to local variables from the loop. */
9f9f72aa
AP
2446 gcc_assert (single_exit (loop));
2447 entry = loop_preheader_edge (loop);
2448 exit = single_dom_exit (loop);
5f40b3cb 2449
61d9c527
TV
2450 /* This rewrites the body in terms of new variables. This has already
2451 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2452 if (!oacc_kernels_p)
2453 {
2454 eliminate_local_variables (entry, exit);
2455 /* In the old loop, move all variables non-local to the loop to a
2456 structure and back, and create separate decls for the variables used in
2457 loop. */
2458 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2459 &new_arg_struct, &clsn_data);
2460 }
2461 else
2462 {
2463 arg_struct = NULL_TREE;
2464 new_arg_struct = NULL_TREE;
2465 clsn_data.load = NULL_TREE;
2466 clsn_data.load_bb = exit->dest;
2467 clsn_data.store = NULL_TREE;
2468 clsn_data.store_bb = NULL;
2469 }
5f40b3cb
ZD
2470
2471 /* Create the parallel constructs. */
9ff70652
JJ
2472 loc = UNKNOWN_LOCATION;
2473 cond_stmt = last_stmt (loop->header);
2474 if (cond_stmt)
2475 loc = gimple_location (cond_stmt);
61d9c527
TV
2476 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2477 n_threads, loc, oacc_kernels_p);
c203e8a7 2478 if (reduction_list->elements () > 0)
a509ebb5 2479 create_call_for_reduction (loop, reduction_list, &clsn_data);
5f40b3cb
ZD
2480
2481 scev_reset ();
2482
92a6bdbd
SP
2483 /* Free loop bound estimations that could contain references to
2484 removed statements. */
adb7eaa2 2485 free_numbers_of_iterations_estimates (cfun);
5f40b3cb
ZD
2486}
2487
9857228c
SP
2488/* Returns true when LOOP contains vector phi nodes. */
2489
2490static bool
726a989a 2491loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
9857228c
SP
2492{
2493 unsigned i;
2494 basic_block *bbs = get_loop_body_in_dom_order (loop);
538dd0b7 2495 gphi_iterator gsi;
9857228c 2496 bool res = true;
9857228c
SP
2497
2498 for (i = 0; i < loop->num_nodes; i++)
726a989a 2499 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
538dd0b7 2500 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
9857228c
SP
2501 goto end;
2502
2503 res = false;
2504 end:
2505 free (bbs);
2506 return res;
2507}
2508
08dab97a
RL
2509/* Create a reduction_info struct, initialize it with REDUC_STMT
2510 and PHI, insert it to the REDUCTION_LIST. */
2511
2512static void
c203e8a7 2513build_new_reduction (reduction_info_table_type *reduction_list,
355fe088 2514 gimple *reduc_stmt, gphi *phi)
08dab97a 2515{
4a8fb1a1 2516 reduction_info **slot;
08dab97a 2517 struct reduction_info *new_reduction;
12efb1d7 2518 enum tree_code reduction_code;
08dab97a
RL
2519
2520 gcc_assert (reduc_stmt);
b8698a0f 2521
12efb1d7
TV
2522 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2523 {
2524 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
355fe088 2525 gimple *def1 = SSA_NAME_DEF_STMT (op1);
12efb1d7
TV
2526 reduction_code = gimple_assign_rhs_code (def1);
2527 }
12efb1d7
TV
2528 else
2529 reduction_code = gimple_assign_rhs_code (reduc_stmt);
d0ee55a1
JJ
2530 /* Check for OpenMP supported reduction. */
2531 switch (reduction_code)
2532 {
2533 case PLUS_EXPR:
2534 case MULT_EXPR:
2535 case MAX_EXPR:
2536 case MIN_EXPR:
2537 case BIT_IOR_EXPR:
2538 case BIT_XOR_EXPR:
2539 case BIT_AND_EXPR:
2540 case TRUTH_OR_EXPR:
2541 case TRUTH_XOR_EXPR:
2542 case TRUTH_AND_EXPR:
2543 break;
2544 default:
2545 return;
2546 }
2547
2548 if (dump_file && (dump_flags & TDF_DETAILS))
2549 {
2550 fprintf (dump_file,
2551 "Detected reduction. reduction stmt is:\n");
2552 print_gimple_stmt (dump_file, reduc_stmt, 0);
2553 fprintf (dump_file, "\n");
2554 }
12efb1d7 2555
08dab97a 2556 new_reduction = XCNEW (struct reduction_info);
b8698a0f 2557
08dab97a
RL
2558 new_reduction->reduc_stmt = reduc_stmt;
2559 new_reduction->reduc_phi = phi;
5d1fd1de 2560 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
12efb1d7 2561 new_reduction->reduction_code = reduction_code;
c203e8a7 2562 slot = reduction_list->find_slot (new_reduction, INSERT);
08dab97a
RL
2563 *slot = new_reduction;
2564}
2565
5d1fd1de
JJ
2566/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2567
4a8fb1a1
LC
2568int
2569set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
5d1fd1de 2570{
4a8fb1a1 2571 struct reduction_info *const red = *slot;
5d1fd1de
JJ
2572 gimple_set_uid (red->reduc_phi, red->reduc_version);
2573 return 1;
2574}
2575
32c91dfc 2576/* Return true if the type of reduction performed by STMT_INFO is suitable
b781a135
RS
2577 for this pass. */
2578
2579static bool
32c91dfc 2580valid_reduction_p (stmt_vec_info stmt_info)
b781a135
RS
2581{
2582 /* Parallelization would reassociate the operation, which isn't
2583 allowed for in-order reductions. */
b781a135
RS
2584 vect_reduction_type reduc_type = STMT_VINFO_REDUC_TYPE (stmt_info);
2585 return reduc_type != FOLD_LEFT_REDUCTION;
2586}
2587
08dab97a
RL
2588/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2589
2590static void
c203e8a7 2591gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
08dab97a 2592{
538dd0b7 2593 gphi_iterator gsi;
08dab97a 2594 loop_vec_info simple_loop_info;
846b1a18
JJ
2595 auto_vec<gphi *, 4> double_reduc_phis;
2596 auto_vec<gimple *, 4> double_reduc_stmts;
08dab97a 2597
ca823c85
RB
2598 vec_info_shared shared;
2599 simple_loop_info = vect_analyze_loop_form (loop, &shared);
1e6a7b01 2600 if (simple_loop_info == NULL)
1cabb204 2601 goto gather_done;
08dab97a
RL
2602
2603 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2604 {
538dd0b7 2605 gphi *phi = gsi.phi ();
08dab97a
RL
2606 affine_iv iv;
2607 tree res = PHI_RESULT (phi);
2608 bool double_reduc;
2609
ea057359 2610 if (virtual_operand_p (res))
08dab97a
RL
2611 continue;
2612
1e6a7b01
TV
2613 if (simple_iv (loop, loop, res, &iv, true))
2614 continue;
2615
32c91dfc
RS
2616 stmt_vec_info reduc_stmt_info
2617 = vect_force_simple_reduction (simple_loop_info,
2618 simple_loop_info->lookup_stmt (phi),
1e6a7b01 2619 &double_reduc, true);
32c91dfc 2620 if (!reduc_stmt_info || !valid_reduction_p (reduc_stmt_info))
1e6a7b01
TV
2621 continue;
2622
12efb1d7
TV
2623 if (double_reduc)
2624 {
846b1a18 2625 if (loop->inner->inner != NULL)
12efb1d7
TV
2626 continue;
2627
846b1a18 2628 double_reduc_phis.safe_push (phi);
32c91dfc 2629 double_reduc_stmts.safe_push (reduc_stmt_info->stmt);
846b1a18 2630 continue;
12efb1d7
TV
2631 }
2632
32c91dfc 2633 build_new_reduction (reduction_list, reduc_stmt_info->stmt, phi);
08dab97a 2634 }
2c515559 2635 delete simple_loop_info;
846b1a18
JJ
2636
2637 if (!double_reduc_phis.is_empty ())
2638 {
ca823c85
RB
2639 vec_info_shared shared;
2640 simple_loop_info = vect_analyze_loop_form (loop->inner, &shared);
846b1a18
JJ
2641 if (simple_loop_info)
2642 {
2643 gphi *phi;
2644 unsigned int i;
2645
2646 FOR_EACH_VEC_ELT (double_reduc_phis, i, phi)
2647 {
2648 affine_iv iv;
2649 tree res = PHI_RESULT (phi);
2650 bool double_reduc;
2651
2652 use_operand_p use_p;
2653 gimple *inner_stmt;
2654 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2655 gcc_assert (single_use_p);
2656 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2657 continue;
2658 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2659 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2660 &iv, true))
2661 continue;
2662
32c91dfc
RS
2663 stmt_vec_info inner_phi_info
2664 = simple_loop_info->lookup_stmt (inner_phi);
2665 stmt_vec_info inner_reduc_stmt_info
2666 = vect_force_simple_reduction (simple_loop_info,
2667 inner_phi_info,
1a58f770 2668 &double_reduc, true);
846b1a18 2669 gcc_assert (!double_reduc);
32c91dfc
RS
2670 if (!inner_reduc_stmt_info
2671 || !valid_reduction_p (inner_reduc_stmt_info))
846b1a18
JJ
2672 continue;
2673
2674 build_new_reduction (reduction_list, double_reduc_stmts[i], phi);
2675 }
2c515559 2676 delete simple_loop_info;
846b1a18
JJ
2677 }
2678 }
5d1fd1de 2679
1cabb204 2680 gather_done:
1cabb204
TV
2681 if (reduction_list->elements () == 0)
2682 return;
2683
5d1fd1de 2684 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
6ef709e5 2685 and delete simple_loop_info, we can set gimple_uid of reduc_phi stmts only
fdce493d
TV
2686 now. */
2687 basic_block bb;
2688 FOR_EACH_BB_FN (bb, cfun)
2689 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2690 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
c203e8a7 2691 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
08dab97a
RL
2692}
2693
2694/* Try to initialize NITER for code generation part. */
2695
2696static bool
2697try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2698{
2699 edge exit = single_dom_exit (loop);
2700
2701 gcc_assert (exit);
2702
2703 /* We need to know # of iterations, and there should be no uses of values
2704 defined inside loop outside of it, unless the values are invariants of
2705 the loop. */
2706 if (!number_of_iterations_exit (loop, exit, niter, false))
2707 {
2708 if (dump_file && (dump_flags & TDF_DETAILS))
2709 fprintf (dump_file, " FAILED: number of iterations not known\n");
2710 return false;
2711 }
2712
2713 return true;
2714}
2715
61d9c527
TV
2716/* Return the default def of the first function argument. */
2717
2718static tree
2719get_omp_data_i_param (void)
2720{
2721 tree decl = DECL_ARGUMENTS (cfun->decl);
2722 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2723 return ssa_default_def (cfun, decl);
2724}
2725
2726/* For PHI in loop header of LOOP, look for pattern:
2727
2728 <bb preheader>
2729 .omp_data_i = &.omp_data_arr;
2730 addr = .omp_data_i->sum;
2731 sum_a = *addr;
2732
2733 <bb header>:
2734 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2735
2736 and return addr. Otherwise, return NULL_TREE. */
2737
2738static tree
2739find_reduc_addr (struct loop *loop, gphi *phi)
2740{
2741 edge e = loop_preheader_edge (loop);
2742 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2743 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2744 if (!gimple_assign_single_p (stmt))
2745 return NULL_TREE;
2746 tree memref = gimple_assign_rhs1 (stmt);
2747 if (TREE_CODE (memref) != MEM_REF)
2748 return NULL_TREE;
2749 tree addr = TREE_OPERAND (memref, 0);
2750
2751 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2752 if (!gimple_assign_single_p (stmt2))
2753 return NULL_TREE;
2754 tree compref = gimple_assign_rhs1 (stmt2);
2755 if (TREE_CODE (compref) != COMPONENT_REF)
2756 return NULL_TREE;
2757 tree addr2 = TREE_OPERAND (compref, 0);
2758 if (TREE_CODE (addr2) != MEM_REF)
2759 return NULL_TREE;
2760 addr2 = TREE_OPERAND (addr2, 0);
2761 if (TREE_CODE (addr2) != SSA_NAME
2762 || addr2 != get_omp_data_i_param ())
2763 return NULL_TREE;
2764
2765 return addr;
2766}
2767
08dab97a
RL
2768/* Try to initialize REDUCTION_LIST for code generation part.
2769 REDUCTION_LIST describes the reductions. */
2770
2771static bool
4a8fb1a1 2772try_create_reduction_list (loop_p loop,
61d9c527
TV
2773 reduction_info_table_type *reduction_list,
2774 bool oacc_kernels_p)
08dab97a
RL
2775{
2776 edge exit = single_dom_exit (loop);
538dd0b7 2777 gphi_iterator gsi;
08dab97a
RL
2778
2779 gcc_assert (exit);
2780
f993a853
TV
2781 /* Try to get rid of exit phis. */
2782 final_value_replacement_loop (loop);
2783
08dab97a
RL
2784 gather_scalar_reductions (loop, reduction_list);
2785
b8698a0f 2786
08dab97a
RL
2787 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2788 {
538dd0b7 2789 gphi *phi = gsi.phi ();
08dab97a
RL
2790 struct reduction_info *red;
2791 imm_use_iterator imm_iter;
2792 use_operand_p use_p;
355fe088 2793 gimple *reduc_phi;
08dab97a
RL
2794 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2795
ea057359 2796 if (!virtual_operand_p (val))
08dab97a
RL
2797 {
2798 if (dump_file && (dump_flags & TDF_DETAILS))
2799 {
2800 fprintf (dump_file, "phi is ");
ef6cb4c7 2801 print_gimple_stmt (dump_file, phi, 0);
08dab97a 2802 fprintf (dump_file, "arg of phi to exit: value ");
ef6cb4c7 2803 print_generic_expr (dump_file, val);
08dab97a
RL
2804 fprintf (dump_file, " used outside loop\n");
2805 fprintf (dump_file,
430002b9 2806 " checking if it is part of reduction pattern:\n");
08dab97a 2807 }
c203e8a7 2808 if (reduction_list->elements () == 0)
08dab97a
RL
2809 {
2810 if (dump_file && (dump_flags & TDF_DETAILS))
2811 fprintf (dump_file,
2812 " FAILED: it is not a part of reduction.\n");
2813 return false;
2814 }
2815 reduc_phi = NULL;
2816 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2817 {
4942af9b
JJ
2818 if (!gimple_debug_bind_p (USE_STMT (use_p))
2819 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
08dab97a
RL
2820 {
2821 reduc_phi = USE_STMT (use_p);
2822 break;
2823 }
2824 }
2825 red = reduction_phi (reduction_list, reduc_phi);
2826 if (red == NULL)
2827 {
2828 if (dump_file && (dump_flags & TDF_DETAILS))
2829 fprintf (dump_file,
2830 " FAILED: it is not a part of reduction.\n");
2831 return false;
2832 }
23fab8ae
TV
2833 if (red->keep_res != NULL)
2834 {
2835 if (dump_file && (dump_flags & TDF_DETAILS))
2836 fprintf (dump_file,
2837 " FAILED: reduction has multiple exit phis.\n");
2838 return false;
2839 }
2840 red->keep_res = phi;
08dab97a
RL
2841 if (dump_file && (dump_flags & TDF_DETAILS))
2842 {
2843 fprintf (dump_file, "reduction phi is ");
ef6cb4c7 2844 print_gimple_stmt (dump_file, red->reduc_phi, 0);
08dab97a 2845 fprintf (dump_file, "reduction stmt is ");
ef6cb4c7 2846 print_gimple_stmt (dump_file, red->reduc_stmt, 0);
08dab97a
RL
2847 }
2848 }
2849 }
2850
2851 /* The iterations of the loop may communicate only through bivs whose
2852 iteration space can be distributed efficiently. */
2853 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2854 {
538dd0b7 2855 gphi *phi = gsi.phi ();
08dab97a
RL
2856 tree def = PHI_RESULT (phi);
2857 affine_iv iv;
2858
ea057359 2859 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
08dab97a
RL
2860 {
2861 struct reduction_info *red;
2862
2863 red = reduction_phi (reduction_list, phi);
2864 if (red == NULL)
2865 {
2866 if (dump_file && (dump_flags & TDF_DETAILS))
2867 fprintf (dump_file,
2868 " FAILED: scalar dependency between iterations\n");
2869 return false;
2870 }
2871 }
2872 }
2873
61d9c527
TV
2874 if (oacc_kernels_p)
2875 {
2876 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2877 gsi_next (&gsi))
2878 {
2879 gphi *phi = gsi.phi ();
2880 tree def = PHI_RESULT (phi);
2881 affine_iv iv;
2882
2883 if (!virtual_operand_p (def)
2884 && !simple_iv (loop, loop, def, &iv, true))
2885 {
2886 tree addr = find_reduc_addr (loop, phi);
2887 if (addr == NULL_TREE)
2888 return false;
2889 struct reduction_info *red = reduction_phi (reduction_list, phi);
2890 red->reduc_addr = addr;
2891 }
2892 }
2893 }
08dab97a
RL
2894
2895 return true;
2896}
2897
3907c6cf
TV
2898/* Return true if LOOP contains phis with ADDR_EXPR in args. */
2899
2900static bool
2901loop_has_phi_with_address_arg (struct loop *loop)
2902{
2903 basic_block *bbs = get_loop_body (loop);
2904 bool res = false;
2905
2906 unsigned i, j;
2907 gphi_iterator gsi;
2908 for (i = 0; i < loop->num_nodes; i++)
2909 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2910 {
2911 gphi *phi = gsi.phi ();
2912 for (j = 0; j < gimple_phi_num_args (phi); j++)
2913 {
2914 tree arg = gimple_phi_arg_def (phi, j);
2915 if (TREE_CODE (arg) == ADDR_EXPR)
2916 {
2917 /* This should be handled by eliminate_local_variables, but that
2918 function currently ignores phis. */
2919 res = true;
2920 goto end;
2921 }
2922 }
2923 }
2924 end:
2925 free (bbs);
61d9c527
TV
2926
2927 return res;
2928}
2929
2930/* Return true if memory ref REF (corresponding to the stmt at GSI in
2931 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2932 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2933 store. Ignore conflicts with SKIP_STMT. */
2934
2935static bool
2936ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2937 bool ref_is_store, vec<basic_block> region_bbs,
2938 unsigned int i, gimple *skip_stmt)
2939{
2940 basic_block bb = region_bbs[i];
2941 gsi_next (&gsi);
2942
2943 while (true)
2944 {
2945 for (; !gsi_end_p (gsi);
2946 gsi_next (&gsi))
2947 {
2948 gimple *stmt = gsi_stmt (gsi);
2949 if (stmt == skip_stmt)
2950 {
2951 if (dump_file)
2952 {
2953 fprintf (dump_file, "skipping reduction store: ");
ef6cb4c7 2954 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
2955 }
2956 continue;
2957 }
2958
2959 if (!gimple_vdef (stmt)
2960 && !gimple_vuse (stmt))
2961 continue;
2962
2963 if (gimple_code (stmt) == GIMPLE_RETURN)
2964 continue;
2965
2966 if (ref_is_store)
2967 {
2968 if (ref_maybe_used_by_stmt_p (stmt, ref))
2969 {
2970 if (dump_file)
2971 {
2972 fprintf (dump_file, "Stmt ");
ef6cb4c7 2973 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
2974 }
2975 return true;
2976 }
2977 }
2978 else
2979 {
2980 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2981 {
2982 if (dump_file)
2983 {
2984 fprintf (dump_file, "Stmt ");
ef6cb4c7 2985 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
2986 }
2987 return true;
2988 }
2989 }
2990 }
2991 i++;
2992 if (i == region_bbs.length ())
2993 break;
2994 bb = region_bbs[i];
2995 gsi = gsi_start_bb (bb);
2996 }
2997
2998 return false;
2999}
3000
3001/* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
3002 in parallel with REGION_BBS containing the loop. Return the stores of
3003 reduction results in REDUCTION_STORES. */
3004
3005static bool
3006oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3007 reduction_info_table_type *reduction_list,
3008 bitmap reduction_stores)
3009{
3010 tree omp_data_i = get_omp_data_i_param ();
3011
3012 unsigned i;
3013 basic_block bb;
3014 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3015 {
3016 if (bitmap_bit_p (in_loop_bbs, bb->index))
3017 continue;
3018
3019 gimple_stmt_iterator gsi;
3020 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3021 gsi_next (&gsi))
3022 {
3023 gimple *stmt = gsi_stmt (gsi);
3024 gimple *skip_stmt = NULL;
3025
3026 if (is_gimple_debug (stmt)
3027 || gimple_code (stmt) == GIMPLE_COND)
3028 continue;
3029
3030 ao_ref ref;
3031 bool ref_is_store = false;
3032 if (gimple_assign_load_p (stmt))
3033 {
3034 tree rhs = gimple_assign_rhs1 (stmt);
3035 tree base = get_base_address (rhs);
3036 if (TREE_CODE (base) == MEM_REF
3037 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
3038 continue;
3039
3040 tree lhs = gimple_assign_lhs (stmt);
3041 if (TREE_CODE (lhs) == SSA_NAME
3042 && has_single_use (lhs))
3043 {
3044 use_operand_p use_p;
3045 gimple *use_stmt;
3046 single_imm_use (lhs, &use_p, &use_stmt);
3047 if (gimple_code (use_stmt) == GIMPLE_PHI)
3048 {
3049 struct reduction_info *red;
3050 red = reduction_phi (reduction_list, use_stmt);
3051 tree val = PHI_RESULT (red->keep_res);
3052 if (has_single_use (val))
3053 {
3054 single_imm_use (val, &use_p, &use_stmt);
3055 if (gimple_store_p (use_stmt))
3056 {
3057 unsigned int id
3058 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
3059 bitmap_set_bit (reduction_stores, id);
3060 skip_stmt = use_stmt;
3061 if (dump_file)
3062 {
3063 fprintf (dump_file, "found reduction load: ");
ef6cb4c7 3064 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
3065 }
3066 }
3067 }
3068 }
3069 }
3070
3071 ao_ref_init (&ref, rhs);
3072 }
3073 else if (gimple_store_p (stmt))
3074 {
3075 ao_ref_init (&ref, gimple_assign_lhs (stmt));
3076 ref_is_store = true;
3077 }
3078 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
3079 continue;
3080 else if (!gimple_has_side_effects (stmt)
3081 && !gimple_could_trap_p (stmt)
36bbc05d 3082 && !stmt_could_throw_p (cfun, stmt)
61d9c527
TV
3083 && !gimple_vdef (stmt)
3084 && !gimple_vuse (stmt))
3085 continue;
8e4284d0 3086 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
61d9c527
TV
3087 continue;
3088 else if (gimple_code (stmt) == GIMPLE_RETURN)
3089 continue;
3090 else
3091 {
3092 if (dump_file)
3093 {
3094 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
ef6cb4c7 3095 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
3096 }
3097 return false;
3098 }
3099
3100 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3101 i, skip_stmt))
3102 {
3103 if (dump_file)
3104 {
3105 fprintf (dump_file, "conflicts with entry/exit stmt: ");
ef6cb4c7 3106 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
3107 }
3108 return false;
3109 }
3110 }
3111 }
3112
3113 return true;
3114}
3115
3116/* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3117 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3118 if any changes were made. */
3119
3120static bool
3121oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3122 bitmap reduction_stores)
3123{
3124 tree gang_pos = NULL_TREE;
3125 bool changed = false;
3126
3127 unsigned i;
3128 basic_block bb;
3129 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3130 {
3131 if (bitmap_bit_p (in_loop_bbs, bb->index))
3132 continue;
3133
3134 gimple_stmt_iterator gsi;
3135 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3136 {
3137 gimple *stmt = gsi_stmt (gsi);
3138
3139 if (!gimple_store_p (stmt))
3140 {
3141 /* Update gsi to point to next stmt. */
3142 gsi_next (&gsi);
3143 continue;
3144 }
3145
3146 if (bitmap_bit_p (reduction_stores,
3147 SSA_NAME_VERSION (gimple_vdef (stmt))))
3148 {
3149 if (dump_file)
3150 {
3151 fprintf (dump_file,
3152 "skipped reduction store for single-gang"
3153 " neutering: ");
ef6cb4c7 3154 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
3155 }
3156
3157 /* Update gsi to point to next stmt. */
3158 gsi_next (&gsi);
3159 continue;
3160 }
3161
3162 changed = true;
3163
3164 if (gang_pos == NULL_TREE)
3165 {
3166 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3167 gcall *gang_single
3168 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3169 gang_pos = make_ssa_name (integer_type_node);
3170 gimple_call_set_lhs (gang_single, gang_pos);
3171 gimple_stmt_iterator start
3172 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3173 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3174 gimple_set_vuse (gang_single, vuse);
3175 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3176 }
3177
3178 if (dump_file)
3179 {
3180 fprintf (dump_file,
3181 "found store that needs single-gang neutering: ");
ef6cb4c7 3182 print_gimple_stmt (dump_file, stmt, 0);
61d9c527
TV
3183 }
3184
3185 {
3186 /* Split block before store. */
3187 gimple_stmt_iterator gsi2 = gsi;
3188 gsi_prev (&gsi2);
3189 edge e;
3190 if (gsi_end_p (gsi2))
3191 {
3192 e = split_block_after_labels (bb);
3193 gsi2 = gsi_last_bb (bb);
3194 }
3195 else
3196 e = split_block (bb, gsi_stmt (gsi2));
3197 basic_block bb2 = e->dest;
3198
3199 /* Split block after store. */
3200 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3201 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3202 basic_block bb3 = e2->dest;
3203
3204 gimple *cond
3205 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3206 NULL_TREE, NULL_TREE);
3207 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3208
3209 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
357067f2
JH
3210 /* FIXME: What is the probability? */
3211 e3->probability = profile_probability::guessed_never ();
61d9c527
TV
3212 e->flags = EDGE_TRUE_VALUE;
3213
3214 tree vdef = gimple_vdef (stmt);
3215 tree vuse = gimple_vuse (stmt);
3216
3217 tree phi_res = copy_ssa_name (vdef);
3218 gphi *new_phi = create_phi_node (phi_res, bb3);
3219 replace_uses_by (vdef, phi_res);
3220 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3221 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3222
3223 /* Update gsi to point to next stmt. */
3224 bb = bb3;
3225 gsi = gsi_start_bb (bb);
3226 }
3227 }
3228 }
3229
3230 return changed;
3231}
3232
3233/* Return true if the statements before and after the LOOP can be executed in
3234 parallel with the function containing the loop. Resolve conflicting stores
3235 outside LOOP by guarding them such that only a single gang executes them. */
3236
3237static bool
3238oacc_entry_exit_ok (struct loop *loop,
3239 reduction_info_table_type *reduction_list)
3240{
3241 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3242 vec<basic_block> region_bbs
3243 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3244
3245 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3246 bitmap_clear (in_loop_bbs);
3247 for (unsigned int i = 0; i < loop->num_nodes; i++)
3248 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3249
3250 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3251 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3252 reduction_stores);
3253
3254 if (res)
3255 {
3256 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3257 reduction_stores);
3258 if (changed)
3259 {
3260 free_dominance_info (CDI_DOMINATORS);
3261 calculate_dominance_info (CDI_DOMINATORS);
3262 }
3263 }
3264
4089c340 3265 region_bbs.release ();
61d9c527
TV
3266 free (loop_bbs);
3267
3268 BITMAP_FREE (in_loop_bbs);
3269 BITMAP_FREE (reduction_stores);
3270
3907c6cf
TV
3271 return res;
3272}
3273
5f40b3cb
ZD
3274/* Detect parallel loops and generate parallel code using libgomp
3275 primitives. Returns true if some loop was parallelized, false
3276 otherwise. */
3277
09489eb8 3278static bool
61d9c527 3279parallelize_loops (bool oacc_kernels_p)
5f40b3cb 3280{
f99c3557 3281 unsigned n_threads;
5f40b3cb
ZD
3282 bool changed = false;
3283 struct loop *loop;
e67d7a1e 3284 struct loop *skip_loop = NULL;
5f40b3cb 3285 struct tree_niter_desc niter_desc;
f873b205 3286 struct obstack parloop_obstack;
8adfe01d 3287 HOST_WIDE_INT estimated;
f873b205 3288
5f40b3cb 3289 /* Do not parallelize loops in the functions created by parallelization. */
61d9c527
TV
3290 if (!oacc_kernels_p
3291 && parallelized_function_p (cfun->decl))
5f40b3cb 3292 return false;
61d9c527
TV
3293
3294 /* Do not parallelize loops in offloaded functions. */
3295 if (!oacc_kernels_p
629b3d75 3296 && oacc_get_fn_attrib (cfun->decl) != NULL)
61d9c527
TV
3297 return false;
3298
8adfe01d
RL
3299 if (cfun->has_nonlocal_label)
3300 return false;
5f40b3cb 3301
f99c3557
TS
3302 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3303 the argument to -ftree-parallelize-loops. */
3304 if (oacc_kernels_p)
3305 n_threads = 0;
3306 else
3307 n_threads = flag_tree_parallelize_loops;
3308
f873b205 3309 gcc_obstack_init (&parloop_obstack);
c203e8a7 3310 reduction_info_table_type reduction_list (10);
a509ebb5 3311
61d9c527
TV
3312 calculate_dominance_info (CDI_DOMINATORS);
3313
f0bd40b1 3314 FOR_EACH_LOOP (loop, 0)
5f40b3cb 3315 {
e67d7a1e
TV
3316 if (loop == skip_loop)
3317 {
61d9c527
TV
3318 if (!loop->in_oacc_kernels_region
3319 && dump_file && (dump_flags & TDF_DETAILS))
e67d7a1e
TV
3320 fprintf (dump_file,
3321 "Skipping loop %d as inner loop of parallelized loop\n",
3322 loop->num);
3323
3324 skip_loop = loop->inner;
3325 continue;
3326 }
3327 else
3328 skip_loop = NULL;
3329
4a8fb1a1 3330 reduction_list.empty ();
61d9c527
TV
3331
3332 if (oacc_kernels_p)
3333 {
3334 if (!loop->in_oacc_kernels_region)
3335 continue;
3336
3337 /* Don't try to parallelize inner loops in an oacc kernels region. */
3338 if (loop->inner)
3339 skip_loop = loop->inner;
3340
3341 if (dump_file && (dump_flags & TDF_DETAILS))
3342 fprintf (dump_file,
3343 "Trying loop %d with header bb %d in oacc kernels"
3344 " region\n", loop->num, loop->header->index);
3345 }
3346
48710229
RL
3347 if (dump_file && (dump_flags & TDF_DETAILS))
3348 {
3349 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3350 if (loop->inner)
3351 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3352 else
3353 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3354 }
b8698a0f 3355
48710229
RL
3356 if (!single_dom_exit (loop))
3357 {
b8698a0f 3358
48710229
RL
3359 if (dump_file && (dump_flags & TDF_DETAILS))
3360 fprintf (dump_file, "loop is !single_dom_exit\n");
b8698a0f 3361
08dab97a 3362 continue;
48710229 3363 }
08dab97a
RL
3364
3365 if (/* And of course, the loop must be parallelizable. */
3366 !can_duplicate_loop_p (loop)
1d4af1e8 3367 || loop_has_blocks_with_irreducible_flag (loop)
8adfe01d 3368 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
9857228c 3369 /* FIXME: the check for vector phi nodes could be removed. */
69958396 3370 || loop_has_vector_phi_nodes (loop))
08dab97a 3371 continue;
e5b332cd 3372
a851ce04 3373 estimated = estimated_loop_iterations_int (loop);
e5b332cd 3374 if (estimated == -1)
a851ce04 3375 estimated = get_likely_max_loop_iterations_int (loop);
87d4d0ee 3376 /* FIXME: Bypass this check as graphite doesn't update the
e5b332cd 3377 count and frequency correctly now. */
87d4d0ee 3378 if (!flag_loop_parallelize_all
61d9c527 3379 && !oacc_kernels_p
e5b332cd 3380 && ((estimated != -1
a851ce04
RB
3381 && (estimated
3382 < ((HOST_WIDE_INT) n_threads
3383 * (loop->inner ? 2 : MIN_PER_THREAD) - 1)))
87d4d0ee
SP
3384 /* Do not bother with loops in cold areas. */
3385 || optimize_loop_nest_for_size_p (loop)))
08dab97a 3386 continue;
b8698a0f 3387
08dab97a
RL
3388 if (!try_get_loop_niter (loop, &niter_desc))
3389 continue;
3390
61d9c527 3391 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
08dab97a
RL
3392 continue;
3393
3907c6cf
TV
3394 if (loop_has_phi_with_address_arg (loop))
3395 continue;
3396
a851ce04 3397 if (!loop->can_be_parallel
f873b205 3398 && !loop_parallel_p (loop, &parloop_obstack))
5f40b3cb
ZD
3399 continue;
3400
61d9c527
TV
3401 if (oacc_kernels_p
3402 && !oacc_entry_exit_ok (loop, &reduction_list))
3403 {
3404 if (dump_file)
3405 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3406 continue;
3407 }
3408
5f40b3cb 3409 changed = true;
e67d7a1e 3410 skip_loop = loop->inner;
558b3185 3411
4f5b9c80 3412 dump_user_location_t loop_loc = find_loop_location (loop);
558b3185
RB
3413 if (loop->inner)
3414 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
3415 "parallelizing outer loop %d\n", loop->num);
3416 else
3417 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
3418 "parallelizing inner loop %d\n", loop->num);
61d9c527 3419
c203e8a7 3420 gen_parallel_loop (loop, &reduction_list,
61d9c527 3421 n_threads, &niter_desc, oacc_kernels_p);
5f40b3cb
ZD
3422 }
3423
f873b205 3424 obstack_free (&parloop_obstack, NULL);
6b8ed145
RG
3425
3426 /* Parallelization will cause new function calls to be inserted through
d086d311
RG
3427 which local variables will escape. Reset the points-to solution
3428 for ESCAPED. */
6b8ed145 3429 if (changed)
d086d311 3430 pt_solution_reset (&cfun->gimple_df->escaped);
6b8ed145 3431
5f40b3cb
ZD
3432 return changed;
3433}
3434
c1bf2a39
AM
3435/* Parallelization. */
3436
c1bf2a39
AM
3437namespace {
3438
3439const pass_data pass_data_parallelize_loops =
3440{
3441 GIMPLE_PASS, /* type */
3442 "parloops", /* name */
3443 OPTGROUP_LOOP, /* optinfo_flags */
c1bf2a39
AM
3444 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3445 ( PROP_cfg | PROP_ssa ), /* properties_required */
3446 0, /* properties_provided */
3447 0, /* properties_destroyed */
3448 0, /* todo_flags_start */
3bea341f 3449 0, /* todo_flags_finish */
c1bf2a39
AM
3450};
3451
3452class pass_parallelize_loops : public gimple_opt_pass
3453{
3454public:
3455 pass_parallelize_loops (gcc::context *ctxt)
61d9c527
TV
3456 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3457 oacc_kernels_p (false)
c1bf2a39
AM
3458 {}
3459
3460 /* opt_pass methods: */
f99c3557
TS
3461 virtual bool gate (function *)
3462 {
3463 if (oacc_kernels_p)
3464 return flag_openacc;
3465 else
3466 return flag_tree_parallelize_loops > 1;
3467 }
be55bfe6 3468 virtual unsigned int execute (function *);
61d9c527
TV
3469 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3470 void set_pass_param (unsigned int n, bool param)
3471 {
3472 gcc_assert (n == 0);
3473 oacc_kernels_p = param;
3474 }
c1bf2a39 3475
61d9c527
TV
3476 private:
3477 bool oacc_kernels_p;
c1bf2a39
AM
3478}; // class pass_parallelize_loops
3479
be55bfe6
TS
3480unsigned
3481pass_parallelize_loops::execute (function *fun)
3482{
e9ff08b2
TV
3483 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3484 if (nthreads == NULL_TREE)
3485 return 0;
3486
12db0814
TV
3487 bool in_loop_pipeline = scev_initialized_p ();
3488 if (!in_loop_pipeline)
3489 loop_optimizer_init (LOOPS_NORMAL
3490 | LOOPS_HAVE_RECORDED_EXITS);
3491
3492 if (number_of_loops (fun) <= 1)
3493 return 0;
3494
3495 if (!in_loop_pipeline)
3496 {
3497 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3498 scev_initialize ();
3499 }
3500
3501 unsigned int todo = 0;
61d9c527 3502 if (parallelize_loops (oacc_kernels_p))
18751894
TV
3503 {
3504 fun->curr_properties &= ~(PROP_gimple_eomp);
e67d7a1e 3505
b2b29377 3506 checking_verify_loop_structure ();
e67d7a1e 3507
12db0814
TV
3508 todo |= TODO_update_ssa;
3509 }
3510
3511 if (!in_loop_pipeline)
3512 {
3513 scev_finalize ();
3514 loop_optimizer_finalize ();
18751894
TV
3515 }
3516
12db0814 3517 return todo;
be55bfe6
TS
3518}
3519
c1bf2a39
AM
3520} // anon namespace
3521
3522gimple_opt_pass *
3523make_pass_parallelize_loops (gcc::context *ctxt)
3524{
3525 return new pass_parallelize_loops (ctxt);
3526}