]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-parloops.c
Update x32 baseline_symbols.txt
[thirdparty/gcc.git] / gcc / tree-parloops.c
CommitLineData
5f40b3cb 1/* Loop autoparallelization.
e08120b1 2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
c75c517d 3 Free Software Foundation, Inc.
5f40b3cb
ZD
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
5 Zdenek Dvorak <dvorakz@suse.cz>.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
6da7fc87 11Software Foundation; either version 3, or (at your option) any later
5f40b3cb
ZD
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
6da7fc87
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
5f40b3cb
ZD
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
5f40b3cb
ZD
26#include "tree-flow.h"
27#include "cfgloop.h"
5f40b3cb 28#include "tree-data-ref.h"
1bd6497c 29#include "tree-scalar-evolution.h"
cf835838 30#include "gimple-pretty-print.h"
5f40b3cb 31#include "tree-pass.h"
5f40b3cb 32#include "langhooks.h"
a509ebb5 33#include "tree-vectorizer.h"
5f40b3cb
ZD
34
35/* This pass tries to distribute iterations of loops into several threads.
36 The implementation is straightforward -- for each loop we test whether its
37 iterations are independent, and if it is the case (and some additional
38 conditions regarding profitability and correctness are satisfied), we
726a989a
RB
39 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
40 machinery do its job.
b8698a0f 41
5f40b3cb
ZD
42 The most of the complexity is in bringing the code into shape expected
43 by the omp expanders:
726a989a
RB
44 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
45 variable and that the exit test is at the start of the loop body
46 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
5f40b3cb
ZD
47 variables by accesses through pointers, and breaking up ssa chains
48 by storing the values incoming to the parallelized loop to a structure
49 passed to the new function as an argument (something similar is done
50 in omp gimplification, unfortunately only a small part of the code
51 can be shared).
52
53 TODO:
54 -- if there are several parallelizable loops in a function, it may be
55 possible to generate the threads just once (using synchronization to
56 ensure that cross-loop dependences are obeyed).
57 -- handling of common scalar dependence patterns (accumulation, ...)
58 -- handling of non-innermost loops */
59
b8698a0f 60/*
a509ebb5 61 Reduction handling:
8a9ecffd 62 currently we use vect_force_simple_reduction() to detect reduction patterns.
a509ebb5 63 The code transformation will be introduced by an example.
b8698a0f
L
64
65
a509ebb5
RL
66parloop
67{
68 int sum=1;
69
0eb7e7aa 70 for (i = 0; i < N; i++)
a509ebb5
RL
71 {
72 x[i] = i + 3;
73 sum+=x[i];
74 }
75}
76
0eb7e7aa 77gimple-like code:
a509ebb5
RL
78header_bb:
79
0eb7e7aa
RL
80 # sum_29 = PHI <sum_11(5), 1(3)>
81 # i_28 = PHI <i_12(5), 0(3)>
82 D.1795_8 = i_28 + 3;
83 x[i_28] = D.1795_8;
84 sum_11 = D.1795_8 + sum_29;
85 i_12 = i_28 + 1;
86 if (N_6(D) > i_12)
87 goto header_bb;
88
a509ebb5
RL
89
90exit_bb:
91
0eb7e7aa
RL
92 # sum_21 = PHI <sum_11(4)>
93 printf (&"%d"[0], sum_21);
a509ebb5
RL
94
95
96after reduction transformation (only relevant parts):
97
98parloop
99{
100
101....
102
0eb7e7aa 103
fa10beec 104 # Storing the initial value given by the user. #
0eb7e7aa 105
ae0bce62 106 .paral_data_store.32.sum.27 = 1;
b8698a0f
L
107
108 #pragma omp parallel num_threads(4)
a509ebb5 109
0eb7e7aa 110 #pragma omp for schedule(static)
ae0bce62
RL
111
112 # The neutral element corresponding to the particular
113 reduction's operation, e.g. 0 for PLUS_EXPR,
114 1 for MULT_EXPR, etc. replaces the user's initial value. #
115
116 # sum.27_29 = PHI <sum.27_11, 0>
117
0eb7e7aa 118 sum.27_11 = D.1827_8 + sum.27_29;
ae0bce62 119
726a989a 120 GIMPLE_OMP_CONTINUE
a509ebb5 121
0eb7e7aa
RL
122 # Adding this reduction phi is done at create_phi_for_local_result() #
123 # sum.27_56 = PHI <sum.27_11, 0>
726a989a 124 GIMPLE_OMP_RETURN
b8698a0f
L
125
126 # Creating the atomic operation is done at
0eb7e7aa 127 create_call_for_reduction_1() #
a509ebb5 128
0eb7e7aa
RL
129 #pragma omp atomic_load
130 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
131 D.1840_60 = sum.27_56 + D.1839_59;
132 #pragma omp atomic_store (D.1840_60);
b8698a0f 133
726a989a 134 GIMPLE_OMP_RETURN
b8698a0f 135
0eb7e7aa
RL
136 # collecting the result after the join of the threads is done at
137 create_loads_for_reductions().
ae0bce62
RL
138 The value computed by the threads is loaded from the
139 shared struct. #
140
b8698a0f 141
0eb7e7aa 142 .paral_data_load.33_52 = &.paral_data_store.32;
ae0bce62 143 sum_37 = .paral_data_load.33_52->sum.27;
0eb7e7aa
RL
144 sum_43 = D.1795_41 + sum_37;
145
146 exit bb:
147 # sum_21 = PHI <sum_43, sum_26>
148 printf (&"%d"[0], sum_21);
149
150...
151
a509ebb5
RL
152}
153
154*/
155
5f40b3cb
ZD
156/* Minimal number of iterations of a loop that should be executed in each
157 thread. */
158#define MIN_PER_THREAD 100
159
b8698a0f 160/* Element of the hashtable, representing a
a509ebb5
RL
161 reduction in the current loop. */
162struct reduction_info
163{
726a989a
RB
164 gimple reduc_stmt; /* reduction statement. */
165 gimple reduc_phi; /* The phi node defining the reduction. */
166 enum tree_code reduction_code;/* code for the reduction operation. */
5d1fd1de
JJ
167 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
168 result. */
b8698a0f 169 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
a509ebb5 170 of the reduction variable when existing the loop. */
ae0bce62 171 tree initial_value; /* The initial value of the reduction var before entering the loop. */
a509ebb5 172 tree field; /* the name of the field in the parloop data structure intended for reduction. */
a509ebb5 173 tree init; /* reduction initialization value. */
b8698a0f 174 gimple new_phi; /* (helper field) Newly created phi node whose result
a509ebb5
RL
175 will be passed to the atomic operation. Represents
176 the local result each thread computed for the reduction
177 operation. */
178};
179
180/* Equality and hash functions for hashtab code. */
181
182static int
183reduction_info_eq (const void *aa, const void *bb)
184{
185 const struct reduction_info *a = (const struct reduction_info *) aa;
186 const struct reduction_info *b = (const struct reduction_info *) bb;
187
188 return (a->reduc_phi == b->reduc_phi);
189}
190
191static hashval_t
192reduction_info_hash (const void *aa)
193{
194 const struct reduction_info *a = (const struct reduction_info *) aa;
195
5d1fd1de 196 return a->reduc_version;
a509ebb5
RL
197}
198
199static struct reduction_info *
726a989a 200reduction_phi (htab_t reduction_list, gimple phi)
a509ebb5
RL
201{
202 struct reduction_info tmpred, *red;
203
87ebde38 204 if (htab_elements (reduction_list) == 0 || phi == NULL)
a509ebb5
RL
205 return NULL;
206
207 tmpred.reduc_phi = phi;
5d1fd1de 208 tmpred.reduc_version = gimple_uid (phi);
3d9a9f94 209 red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
a509ebb5
RL
210
211 return red;
212}
213
5f40b3cb
ZD
214/* Element of hashtable of names to copy. */
215
216struct name_to_copy_elt
217{
218 unsigned version; /* The version of the name to copy. */
219 tree new_name; /* The new name used in the copy. */
220 tree field; /* The field of the structure used to pass the
221 value. */
222};
223
224/* Equality and hash functions for hashtab code. */
225
226static int
227name_to_copy_elt_eq (const void *aa, const void *bb)
228{
a509ebb5
RL
229 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
230 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
5f40b3cb
ZD
231
232 return a->version == b->version;
233}
234
235static hashval_t
236name_to_copy_elt_hash (const void *aa)
237{
a509ebb5 238 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
5f40b3cb
ZD
239
240 return (hashval_t) a->version;
241}
242
b305e3da
SP
243/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
244 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
245 represents the denominator for every element in the matrix. */
246typedef struct lambda_trans_matrix_s
247{
248 lambda_matrix matrix;
249 int rowsize;
250 int colsize;
251 int denominator;
252} *lambda_trans_matrix;
253#define LTM_MATRIX(T) ((T)->matrix)
254#define LTM_ROWSIZE(T) ((T)->rowsize)
255#define LTM_COLSIZE(T) ((T)->colsize)
256#define LTM_DENOMINATOR(T) ((T)->denominator)
257
258/* Allocate a new transformation matrix. */
259
260static lambda_trans_matrix
261lambda_trans_matrix_new (int colsize, int rowsize,
262 struct obstack * lambda_obstack)
263{
264 lambda_trans_matrix ret;
265
266 ret = (lambda_trans_matrix)
267 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
268 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
269 LTM_ROWSIZE (ret) = rowsize;
270 LTM_COLSIZE (ret) = colsize;
271 LTM_DENOMINATOR (ret) = 1;
272 return ret;
273}
274
275/* Multiply a vector VEC by a matrix MAT.
276 MAT is an M*N matrix, and VEC is a vector with length N. The result
277 is stored in DEST which must be a vector of length M. */
278
279static void
280lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
281 lambda_vector vec, lambda_vector dest)
282{
283 int i, j;
284
285 lambda_vector_clear (dest, m);
286 for (i = 0; i < m; i++)
287 for (j = 0; j < n; j++)
288 dest[i] += matrix[i][j] * vec[j];
289}
290
291/* Return true if TRANS is a legal transformation matrix that respects
292 the dependence vectors in DISTS and DIRS. The conservative answer
293 is false.
294
295 "Wolfe proves that a unimodular transformation represented by the
296 matrix T is legal when applied to a loop nest with a set of
297 lexicographically non-negative distance vectors RDG if and only if
298 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
299 i.e.: if and only if it transforms the lexicographically positive
300 distance vectors to lexicographically positive vectors. Note that
301 a unimodular matrix must transform the zero vector (and only it) to
302 the zero vector." S.Muchnick. */
303
304static bool
305lambda_transform_legal_p (lambda_trans_matrix trans,
306 int nb_loops,
307 VEC (ddr_p, heap) *dependence_relations)
308{
309 unsigned int i, j;
310 lambda_vector distres;
311 struct data_dependence_relation *ddr;
312
313 gcc_assert (LTM_COLSIZE (trans) == nb_loops
314 && LTM_ROWSIZE (trans) == nb_loops);
315
316 /* When there are no dependences, the transformation is correct. */
317 if (VEC_length (ddr_p, dependence_relations) == 0)
318 return true;
319
320 ddr = VEC_index (ddr_p, dependence_relations, 0);
321 if (ddr == NULL)
322 return true;
323
324 /* When there is an unknown relation in the dependence_relations, we
325 know that it is no worth looking at this loop nest: give up. */
326 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
327 return false;
328
329 distres = lambda_vector_new (nb_loops);
330
331 /* For each distance vector in the dependence graph. */
332 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
333 {
334 /* Don't care about relations for which we know that there is no
335 dependence, nor about read-read (aka. output-dependences):
336 these data accesses can happen in any order. */
337 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
338 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
339 continue;
340
341 /* Conservatively answer: "this transformation is not valid". */
342 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
343 return false;
344
345 /* If the dependence could not be captured by a distance vector,
346 conservatively answer that the transform is not valid. */
347 if (DDR_NUM_DIST_VECTS (ddr) == 0)
348 return false;
349
350 /* Compute trans.dist_vect */
351 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
352 {
353 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
354 DDR_DIST_VECT (ddr, j), distres);
355
356 if (!lambda_vector_lexico_pos (distres, nb_loops))
357 return false;
358 }
359 }
360 return true;
361}
08dab97a
RL
362
363/* Data dependency analysis. Returns true if the iterations of LOOP
364 are independent on each other (that is, if we can execute them
365 in parallel). */
5f40b3cb
ZD
366
367static bool
f873b205 368loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
5f40b3cb 369{
01be8516
SP
370 VEC (loop_p, heap) *loop_nest;
371 VEC (ddr_p, heap) *dependence_relations;
726a989a 372 VEC (data_reference_p, heap) *datarefs;
5f40b3cb
ZD
373 lambda_trans_matrix trans;
374 bool ret = false;
5f40b3cb
ZD
375
376 if (dump_file && (dump_flags & TDF_DETAILS))
48710229
RL
377 {
378 fprintf (dump_file, "Considering loop %d\n", loop->num);
379 if (!loop->inner)
380 fprintf (dump_file, "loop is innermost\n");
b8698a0f 381 else
48710229
RL
382 fprintf (dump_file, "loop NOT innermost\n");
383 }
5f40b3cb 384
5f40b3cb
ZD
385 /* Check for problems with dependences. If the loop can be reversed,
386 the iterations are independent. */
387 datarefs = VEC_alloc (data_reference_p, heap, 10);
388 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
01be8516 389 loop_nest = VEC_alloc (loop_p, heap, 3);
9ca3d00e
AB
390 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
391 &dependence_relations))
392 {
393 if (dump_file && (dump_flags & TDF_DETAILS))
394 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
395 ret = false;
396 goto end;
397 }
5f40b3cb
ZD
398 if (dump_file && (dump_flags & TDF_DETAILS))
399 dump_data_dependence_relations (dump_file, dependence_relations);
400
f873b205 401 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
5f40b3cb
ZD
402 LTM_MATRIX (trans)[0][0] = -1;
403
404 if (lambda_transform_legal_p (trans, 1, dependence_relations))
405 {
406 ret = true;
407 if (dump_file && (dump_flags & TDF_DETAILS))
408 fprintf (dump_file, " SUCCESS: may be parallelized\n");
409 }
410 else if (dump_file && (dump_flags & TDF_DETAILS))
a509ebb5
RL
411 fprintf (dump_file,
412 " FAILED: data dependencies exist across iterations\n");
5f40b3cb 413
9ca3d00e 414 end:
01be8516 415 VEC_free (loop_p, heap, loop_nest);
5f40b3cb
ZD
416 free_dependence_relations (dependence_relations);
417 free_data_refs (datarefs);
418
419 return ret;
420}
421
1d4af1e8
SP
422/* Return true when LOOP contains basic blocks marked with the
423 BB_IRREDUCIBLE_LOOP flag. */
424
425static inline bool
426loop_has_blocks_with_irreducible_flag (struct loop *loop)
427{
428 unsigned i;
429 basic_block *bbs = get_loop_body_in_dom_order (loop);
430 bool res = true;
431
432 for (i = 0; i < loop->num_nodes; i++)
433 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
434 goto end;
435
436 res = false;
437 end:
438 free (bbs);
439 return res;
440}
441
8a171a59 442/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
9f9f72aa 443 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
8a171a59 444 to their addresses that can be reused. The address of OBJ is known to
cba1eb61
JJ
445 be invariant in the whole function. Other needed statements are placed
446 right before GSI. */
5f40b3cb
ZD
447
448static tree
cba1eb61
JJ
449take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
450 gimple_stmt_iterator *gsi)
5f40b3cb 451{
8a171a59 452 int uid;
5f40b3cb
ZD
453 void **dslot;
454 struct int_tree_map ielt, *nielt;
726a989a
RB
455 tree *var_p, name, bvar, addr;
456 gimple stmt;
457 gimple_seq stmts;
5f40b3cb 458
8a171a59
ZD
459 /* Since the address of OBJ is invariant, the trees may be shared.
460 Avoid rewriting unrelated parts of the code. */
461 obj = unshare_expr (obj);
462 for (var_p = &obj;
463 handled_component_p (*var_p);
464 var_p = &TREE_OPERAND (*var_p, 0))
465 continue;
8a171a59 466
c9a410f0
RG
467 /* Canonicalize the access to base on a MEM_REF. */
468 if (DECL_P (*var_p))
469 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
470
471 /* Assign a canonical SSA name to the address of the base decl used
472 in the address and share it for all accesses and addresses based
473 on it. */
474 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
5f40b3cb
ZD
475 ielt.uid = uid;
476 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
477 if (!*dslot)
478 {
cba1eb61
JJ
479 if (gsi == NULL)
480 return NULL;
c9a410f0
RG
481 addr = TREE_OPERAND (*var_p, 0);
482 bvar = create_tmp_var (TREE_TYPE (addr),
483 get_name (TREE_OPERAND
484 (TREE_OPERAND (*var_p, 0), 0)));
5f40b3cb 485 add_referenced_var (bvar);
726a989a 486 stmt = gimple_build_assign (bvar, addr);
5f40b3cb 487 name = make_ssa_name (bvar, stmt);
726a989a
RB
488 gimple_assign_set_lhs (stmt, name);
489 gsi_insert_on_edge_immediate (entry, stmt);
5f40b3cb
ZD
490
491 nielt = XNEW (struct int_tree_map);
492 nielt->uid = uid;
493 nielt->to = name;
494 *dslot = nielt;
5f40b3cb 495 }
8a171a59
ZD
496 else
497 name = ((struct int_tree_map *) *dslot)->to;
5f40b3cb 498
c9a410f0
RG
499 /* Express the address in terms of the canonical SSA name. */
500 TREE_OPERAND (*var_p, 0) = name;
cba1eb61
JJ
501 if (gsi == NULL)
502 return build_fold_addr_expr_with_type (obj, type);
503
c9a410f0
RG
504 name = force_gimple_operand (build_addr (obj, current_function_decl),
505 &stmts, true, NULL_TREE);
506 if (!gimple_seq_empty_p (stmts))
cba1eb61 507 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5f40b3cb 508
c9a410f0 509 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
8a171a59 510 {
726a989a 511 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
8a171a59 512 NULL_TREE);
726a989a 513 if (!gimple_seq_empty_p (stmts))
cba1eb61 514 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
8a171a59 515 }
5f40b3cb
ZD
516
517 return name;
518}
519
a509ebb5 520/* Callback for htab_traverse. Create the initialization statement
b8698a0f 521 for reduction described in SLOT, and place it at the preheader of
a509ebb5
RL
522 the loop described in DATA. */
523
524static int
525initialize_reductions (void **slot, void *data)
526{
a509ebb5 527 tree init, c;
a509ebb5
RL
528 tree bvar, type, arg;
529 edge e;
530
3d9a9f94 531 struct reduction_info *const reduc = (struct reduction_info *) *slot;
a509ebb5
RL
532 struct loop *loop = (struct loop *) data;
533
b8698a0f 534 /* Create initialization in preheader:
a509ebb5
RL
535 reduction_variable = initialization value of reduction. */
536
b8698a0f 537 /* In the phi node at the header, replace the argument coming
a509ebb5
RL
538 from the preheader with the reduction initialization value. */
539
540 /* Create a new variable to initialize the reduction. */
541 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
542 bvar = create_tmp_var (type, "reduction");
543 add_referenced_var (bvar);
544
c2255bc4
AH
545 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
546 OMP_CLAUSE_REDUCTION);
a509ebb5 547 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
726a989a 548 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
a509ebb5
RL
549
550 init = omp_reduction_init (c, TREE_TYPE (bvar));
551 reduc->init = init;
552
b8698a0f
L
553 /* Replace the argument representing the initialization value
554 with the initialization value for the reduction (neutral
555 element for the particular operation, e.g. 0 for PLUS_EXPR,
556 1 for MULT_EXPR, etc).
557 Keep the old value in a new variable "reduction_initial",
558 that will be taken in consideration after the parallel
0eb7e7aa 559 computing is done. */
a509ebb5
RL
560
561 e = loop_preheader_edge (loop);
562 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
563 /* Create new variable to hold the initial value. */
a509ebb5 564
a509ebb5 565 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
0eb7e7aa 566 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
ae0bce62 567 reduc->initial_value = arg;
a509ebb5
RL
568 return 1;
569}
5f40b3cb
ZD
570
571struct elv_data
572{
726a989a 573 struct walk_stmt_info info;
9f9f72aa 574 edge entry;
5f40b3cb 575 htab_t decl_address;
cba1eb61 576 gimple_stmt_iterator *gsi;
5f40b3cb 577 bool changed;
cba1eb61 578 bool reset;
5f40b3cb
ZD
579};
580
9f9f72aa
AP
581/* Eliminates references to local variables in *TP out of the single
582 entry single exit region starting at DTA->ENTRY.
583 DECL_ADDRESS contains addresses of the references that had their
584 address taken already. If the expression is changed, CHANGED is
585 set to true. Callback for walk_tree. */
a509ebb5 586
5f40b3cb 587static tree
8a171a59 588eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
5f40b3cb 589{
3d9a9f94 590 struct elv_data *const dta = (struct elv_data *) data;
8a171a59 591 tree t = *tp, var, addr, addr_type, type, obj;
5f40b3cb
ZD
592
593 if (DECL_P (t))
594 {
595 *walk_subtrees = 0;
596
597 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
598 return NULL_TREE;
599
600 type = TREE_TYPE (t);
601 addr_type = build_pointer_type (type);
cba1eb61
JJ
602 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
603 dta->gsi);
604 if (dta->gsi == NULL && addr == NULL_TREE)
605 {
606 dta->reset = true;
607 return NULL_TREE;
608 }
609
70f34814 610 *tp = build_simple_mem_ref (addr);
5f40b3cb
ZD
611
612 dta->changed = true;
613 return NULL_TREE;
614 }
615
616 if (TREE_CODE (t) == ADDR_EXPR)
617 {
8a171a59
ZD
618 /* ADDR_EXPR may appear in two contexts:
619 -- as a gimple operand, when the address taken is a function invariant
620 -- as gimple rhs, when the resulting address in not a function
621 invariant
622 We do not need to do anything special in the latter case (the base of
623 the memory reference whose address is taken may be replaced in the
624 DECL_P case). The former case is more complicated, as we need to
625 ensure that the new address is still a gimple operand. Thus, it
626 is not sufficient to replace just the base of the memory reference --
627 we need to move the whole computation of the address out of the
628 loop. */
629 if (!is_gimple_val (t))
5f40b3cb
ZD
630 return NULL_TREE;
631
632 *walk_subtrees = 0;
8a171a59
ZD
633 obj = TREE_OPERAND (t, 0);
634 var = get_base_address (obj);
635 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
5f40b3cb
ZD
636 return NULL_TREE;
637
638 addr_type = TREE_TYPE (t);
cba1eb61
JJ
639 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
640 dta->gsi);
641 if (dta->gsi == NULL && addr == NULL_TREE)
642 {
643 dta->reset = true;
644 return NULL_TREE;
645 }
5f40b3cb
ZD
646 *tp = addr;
647
648 dta->changed = true;
649 return NULL_TREE;
650 }
651
726a989a 652 if (!EXPR_P (t))
5f40b3cb
ZD
653 *walk_subtrees = 0;
654
655 return NULL_TREE;
656}
657
cba1eb61 658/* Moves the references to local variables in STMT at *GSI out of the single
9f9f72aa
AP
659 entry single exit region starting at ENTRY. DECL_ADDRESS contains
660 addresses of the references that had their address taken
661 already. */
5f40b3cb
ZD
662
663static void
cba1eb61 664eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
5f40b3cb
ZD
665 htab_t decl_address)
666{
667 struct elv_data dta;
cba1eb61 668 gimple stmt = gsi_stmt (*gsi);
5f40b3cb 669
726a989a 670 memset (&dta.info, '\0', sizeof (dta.info));
9f9f72aa 671 dta.entry = entry;
5f40b3cb
ZD
672 dta.decl_address = decl_address;
673 dta.changed = false;
cba1eb61 674 dta.reset = false;
5f40b3cb 675
b5b8b0ac 676 if (gimple_debug_bind_p (stmt))
cba1eb61
JJ
677 {
678 dta.gsi = NULL;
679 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
680 eliminate_local_variables_1, &dta.info, NULL);
681 if (dta.reset)
682 {
683 gimple_debug_bind_reset_value (stmt);
684 dta.changed = true;
685 }
686 }
b5b8b0ac 687 else
cba1eb61
JJ
688 {
689 dta.gsi = gsi;
690 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
691 }
5f40b3cb
ZD
692
693 if (dta.changed)
694 update_stmt (stmt);
695}
696
9f9f72aa
AP
697/* Eliminates the references to local variables from the single entry
698 single exit region between the ENTRY and EXIT edges.
b8698a0f 699
a509ebb5 700 This includes:
b8698a0f
L
701 1) Taking address of a local variable -- these are moved out of the
702 region (and temporary variable is created to hold the address if
a509ebb5 703 necessary).
9f9f72aa 704
5f40b3cb 705 2) Dereferencing a local variable -- these are replaced with indirect
a509ebb5 706 references. */
5f40b3cb
ZD
707
708static void
9f9f72aa 709eliminate_local_variables (edge entry, edge exit)
5f40b3cb 710{
9f9f72aa
AP
711 basic_block bb;
712 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
5f40b3cb 713 unsigned i;
726a989a 714 gimple_stmt_iterator gsi;
cba1eb61 715 bool has_debug_stmt = false;
5f40b3cb
ZD
716 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
717 free);
9f9f72aa
AP
718 basic_block entry_bb = entry->src;
719 basic_block exit_bb = exit->dest;
5f40b3cb 720
9f9f72aa 721 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
5f40b3cb 722
ac47786e 723 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
9f9f72aa 724 if (bb != entry_bb && bb != exit_bb)
726a989a 725 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
ddb555ed
JJ
726 if (is_gimple_debug (gsi_stmt (gsi)))
727 {
728 if (gimple_debug_bind_p (gsi_stmt (gsi)))
729 has_debug_stmt = true;
730 }
cba1eb61
JJ
731 else
732 eliminate_local_variables_stmt (entry, &gsi, decl_address);
733
734 if (has_debug_stmt)
735 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
736 if (bb != entry_bb && bb != exit_bb)
737 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
738 if (gimple_debug_bind_p (gsi_stmt (gsi)))
739 eliminate_local_variables_stmt (entry, &gsi, decl_address);
5f40b3cb
ZD
740
741 htab_delete (decl_address);
9f9f72aa
AP
742 VEC_free (basic_block, heap, body);
743}
744
745/* Returns true if expression EXPR is not defined between ENTRY and
746 EXIT, i.e. if all its operands are defined outside of the region. */
747
748static bool
749expr_invariant_in_region_p (edge entry, edge exit, tree expr)
750{
751 basic_block entry_bb = entry->src;
752 basic_block exit_bb = exit->dest;
753 basic_block def_bb;
9f9f72aa
AP
754
755 if (is_gimple_min_invariant (expr))
756 return true;
757
758 if (TREE_CODE (expr) == SSA_NAME)
759 {
726a989a 760 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
9f9f72aa
AP
761 if (def_bb
762 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
763 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
764 return false;
765
766 return true;
767 }
768
726a989a 769 return false;
5f40b3cb
ZD
770}
771
772/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
773 The copies are stored to NAME_COPIES, if NAME was already duplicated,
774 its duplicate stored in NAME_COPIES is returned.
b8698a0f 775
5f40b3cb
ZD
776 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
777 duplicated, storing the copies in DECL_COPIES. */
778
779static tree
9f9f72aa
AP
780separate_decls_in_region_name (tree name,
781 htab_t name_copies, htab_t decl_copies,
782 bool copy_name_p)
5f40b3cb
ZD
783{
784 tree copy, var, var_copy;
785 unsigned idx, uid, nuid;
786 struct int_tree_map ielt, *nielt;
787 struct name_to_copy_elt elt, *nelt;
788 void **slot, **dslot;
789
790 if (TREE_CODE (name) != SSA_NAME)
791 return name;
792
793 idx = SSA_NAME_VERSION (name);
794 elt.version = idx;
795 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
796 copy_name_p ? INSERT : NO_INSERT);
797 if (slot && *slot)
798 return ((struct name_to_copy_elt *) *slot)->new_name;
799
800 var = SSA_NAME_VAR (name);
801 uid = DECL_UID (var);
802 ielt.uid = uid;
803 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
804 if (!*dslot)
805 {
806 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
36ad7922 807 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
5f40b3cb
ZD
808 add_referenced_var (var_copy);
809 nielt = XNEW (struct int_tree_map);
810 nielt->uid = uid;
811 nielt->to = var_copy;
812 *dslot = nielt;
813
814 /* Ensure that when we meet this decl next time, we won't duplicate
a509ebb5 815 it again. */
5f40b3cb
ZD
816 nuid = DECL_UID (var_copy);
817 ielt.uid = nuid;
818 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
819 gcc_assert (!*dslot);
820 nielt = XNEW (struct int_tree_map);
821 nielt->uid = nuid;
822 nielt->to = var_copy;
823 *dslot = nielt;
824 }
825 else
826 var_copy = ((struct int_tree_map *) *dslot)->to;
827
828 if (copy_name_p)
829 {
726a989a 830 copy = duplicate_ssa_name (name, NULL);
5f40b3cb
ZD
831 nelt = XNEW (struct name_to_copy_elt);
832 nelt->version = idx;
833 nelt->new_name = copy;
834 nelt->field = NULL_TREE;
835 *slot = nelt;
836 }
837 else
838 {
839 gcc_assert (!slot);
840 copy = name;
841 }
842
843 SSA_NAME_VAR (copy) = var_copy;
844 return copy;
845}
846
9f9f72aa
AP
847/* Finds the ssa names used in STMT that are defined outside the
848 region between ENTRY and EXIT and replaces such ssa names with
849 their duplicates. The duplicates are stored to NAME_COPIES. Base
850 decls of all ssa names used in STMT (including those defined in
851 LOOP) are replaced with the new temporary variables; the
852 replacement decls are stored in DECL_COPIES. */
5f40b3cb
ZD
853
854static void
726a989a 855separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
9f9f72aa 856 htab_t name_copies, htab_t decl_copies)
5f40b3cb
ZD
857{
858 use_operand_p use;
859 def_operand_p def;
860 ssa_op_iter oi;
861 tree name, copy;
862 bool copy_name_p;
863
864 mark_virtual_ops_for_renaming (stmt);
865
866 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
a509ebb5
RL
867 {
868 name = DEF_FROM_PTR (def);
869 gcc_assert (TREE_CODE (name) == SSA_NAME);
9f9f72aa
AP
870 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
871 false);
a509ebb5
RL
872 gcc_assert (copy == name);
873 }
5f40b3cb
ZD
874
875 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
a509ebb5
RL
876 {
877 name = USE_FROM_PTR (use);
878 if (TREE_CODE (name) != SSA_NAME)
879 continue;
880
9f9f72aa
AP
881 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
882 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
883 copy_name_p);
a509ebb5
RL
884 SET_USE (use, copy);
885 }
5f40b3cb
ZD
886}
887
b5b8b0ac
AO
888/* Finds the ssa names used in STMT that are defined outside the
889 region between ENTRY and EXIT and replaces such ssa names with
890 their duplicates. The duplicates are stored to NAME_COPIES. Base
891 decls of all ssa names used in STMT (including those defined in
892 LOOP) are replaced with the new temporary variables; the
893 replacement decls are stored in DECL_COPIES. */
894
895static bool
ddb555ed
JJ
896separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
897 htab_t decl_copies)
b5b8b0ac
AO
898{
899 use_operand_p use;
900 ssa_op_iter oi;
901 tree var, name;
902 struct int_tree_map ielt;
903 struct name_to_copy_elt elt;
904 void **slot, **dslot;
905
ddb555ed
JJ
906 if (gimple_debug_bind_p (stmt))
907 var = gimple_debug_bind_get_var (stmt);
908 else if (gimple_debug_source_bind_p (stmt))
909 var = gimple_debug_source_bind_get_var (stmt);
910 else
911 return true;
4f2a9af8
JJ
912 if (TREE_CODE (var) == DEBUG_EXPR_DECL)
913 return true;
b5b8b0ac
AO
914 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
915 ielt.uid = DECL_UID (var);
916 dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
917 if (!dslot)
918 return true;
ddb555ed
JJ
919 if (gimple_debug_bind_p (stmt))
920 gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
921 else if (gimple_debug_source_bind_p (stmt))
922 gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
b5b8b0ac
AO
923
924 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
925 {
926 name = USE_FROM_PTR (use);
927 if (TREE_CODE (name) != SSA_NAME)
928 continue;
929
930 elt.version = SSA_NAME_VERSION (name);
931 slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
932 if (!slot)
933 {
934 gimple_debug_bind_reset_value (stmt);
935 update_stmt (stmt);
936 break;
937 }
938
939 SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
940 }
941
942 return false;
943}
944
0eb7e7aa
RL
945/* Callback for htab_traverse. Adds a field corresponding to the reduction
946 specified in SLOT. The type is passed in DATA. */
947
948static int
949add_field_for_reduction (void **slot, void *data)
a509ebb5 950{
b8698a0f 951
3d9a9f94
KG
952 struct reduction_info *const red = (struct reduction_info *) *slot;
953 tree const type = (tree) data;
726a989a 954 tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
c2255bc4
AH
955 tree field = build_decl (gimple_location (red->reduc_stmt),
956 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
0eb7e7aa
RL
957
958 insert_field_into_struct (type, field);
959
960 red->field = field;
961
962 return 1;
963}
a509ebb5 964
5f40b3cb 965/* Callback for htab_traverse. Adds a field corresponding to a ssa name
b8698a0f 966 described in SLOT. The type is passed in DATA. */
5f40b3cb
ZD
967
968static int
969add_field_for_name (void **slot, void *data)
970{
3d9a9f94
KG
971 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
972 tree type = (tree) data;
5f40b3cb
ZD
973 tree name = ssa_name (elt->version);
974 tree var = SSA_NAME_VAR (name);
c2255bc4
AH
975 tree field = build_decl (DECL_SOURCE_LOCATION (var),
976 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
5f40b3cb
ZD
977
978 insert_field_into_struct (type, field);
979 elt->field = field;
a509ebb5 980
5f40b3cb
ZD
981 return 1;
982}
983
b8698a0f
L
984/* Callback for htab_traverse. A local result is the intermediate result
985 computed by a single
fa10beec 986 thread, or the initial value in case no iteration was executed.
b8698a0f
L
987 This function creates a phi node reflecting these values.
988 The phi's result will be stored in NEW_PHI field of the
989 reduction's data structure. */
a509ebb5
RL
990
991static int
992create_phi_for_local_result (void **slot, void *data)
993{
3d9a9f94
KG
994 struct reduction_info *const reduc = (struct reduction_info *) *slot;
995 const struct loop *const loop = (const struct loop *) data;
a509ebb5 996 edge e;
726a989a 997 gimple new_phi;
a509ebb5
RL
998 basic_block store_bb;
999 tree local_res;
f5045c96 1000 source_location locus;
a509ebb5 1001
b8698a0f
L
1002 /* STORE_BB is the block where the phi
1003 should be stored. It is the destination of the loop exit.
726a989a 1004 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
a509ebb5
RL
1005 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1006
1007 /* STORE_BB has two predecessors. One coming from the loop
1008 (the reduction's result is computed at the loop),
b8698a0f
L
1009 and another coming from a block preceding the loop,
1010 when no iterations
1011 are executed (the initial value should be taken). */
a509ebb5
RL
1012 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1013 e = EDGE_PRED (store_bb, 1);
1014 else
1015 e = EDGE_PRED (store_bb, 0);
726a989a
RB
1016 local_res
1017 = make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
1018 NULL);
f5045c96 1019 locus = gimple_location (reduc->reduc_stmt);
a509ebb5
RL
1020 new_phi = create_phi_node (local_res, store_bb);
1021 SSA_NAME_DEF_STMT (local_res) = new_phi;
f5045c96 1022 add_phi_arg (new_phi, reduc->init, e, locus);
726a989a 1023 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
f5045c96 1024 FALLTHRU_EDGE (loop->latch), locus);
a509ebb5
RL
1025 reduc->new_phi = new_phi;
1026
1027 return 1;
1028}
5f40b3cb
ZD
1029
1030struct clsn_data
1031{
1032 tree store;
1033 tree load;
1034
1035 basic_block store_bb;
1036 basic_block load_bb;
1037};
1038
a509ebb5 1039/* Callback for htab_traverse. Create an atomic instruction for the
b8698a0f 1040 reduction described in SLOT.
a509ebb5
RL
1041 DATA annotates the place in memory the atomic operation relates to,
1042 and the basic block it needs to be generated in. */
1043
1044static int
1045create_call_for_reduction_1 (void **slot, void *data)
1046{
3d9a9f94
KG
1047 struct reduction_info *const reduc = (struct reduction_info *) *slot;
1048 struct clsn_data *const clsn_data = (struct clsn_data *) data;
726a989a 1049 gimple_stmt_iterator gsi;
a509ebb5 1050 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
a509ebb5
RL
1051 tree load_struct;
1052 basic_block bb;
1053 basic_block new_bb;
1054 edge e;
0f900dfa 1055 tree t, addr, ref, x;
726a989a
RB
1056 tree tmp_load, name;
1057 gimple load;
a509ebb5 1058
70f34814 1059 load_struct = build_simple_mem_ref (clsn_data->load);
a509ebb5 1060 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
a509ebb5
RL
1061
1062 addr = build_addr (t, current_function_decl);
1063
1064 /* Create phi node. */
1065 bb = clsn_data->load_bb;
1066
1067 e = split_block (bb, t);
1068 new_bb = e->dest;
1069
1070 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
1071 add_referenced_var (tmp_load);
1072 tmp_load = make_ssa_name (tmp_load, NULL);
726a989a 1073 load = gimple_build_omp_atomic_load (tmp_load, addr);
a509ebb5 1074 SSA_NAME_DEF_STMT (tmp_load) = load;
726a989a
RB
1075 gsi = gsi_start_bb (new_bb);
1076 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
a509ebb5
RL
1077
1078 e = split_block (new_bb, load);
1079 new_bb = e->dest;
726a989a 1080 gsi = gsi_start_bb (new_bb);
a509ebb5 1081 ref = tmp_load;
726a989a
RB
1082 x = fold_build2 (reduc->reduction_code,
1083 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1084 PHI_RESULT (reduc->new_phi));
a509ebb5 1085
726a989a
RB
1086 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1087 GSI_CONTINUE_LINKING);
a509ebb5 1088
726a989a 1089 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
a509ebb5
RL
1090 return 1;
1091}
1092
b8698a0f
L
1093/* Create the atomic operation at the join point of the threads.
1094 REDUCTION_LIST describes the reductions in the LOOP.
1095 LD_ST_DATA describes the shared data structure where
a509ebb5
RL
1096 shared data is stored in and loaded from. */
1097static void
b8698a0f 1098create_call_for_reduction (struct loop *loop, htab_t reduction_list,
a509ebb5
RL
1099 struct clsn_data *ld_st_data)
1100{
1101 htab_traverse (reduction_list, create_phi_for_local_result, loop);
726a989a 1102 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
a509ebb5
RL
1103 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1104 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1105}
1106
ae0bce62
RL
1107/* Callback for htab_traverse. Loads the final reduction value at the
1108 join point of all threads, and inserts it in the right place. */
a509ebb5
RL
1109
1110static int
1111create_loads_for_reductions (void **slot, void *data)
1112{
3d9a9f94
KG
1113 struct reduction_info *const red = (struct reduction_info *) *slot;
1114 struct clsn_data *const clsn_data = (struct clsn_data *) data;
726a989a
RB
1115 gimple stmt;
1116 gimple_stmt_iterator gsi;
1117 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
a509ebb5 1118 tree load_struct;
ae0bce62 1119 tree name;
a509ebb5
RL
1120 tree x;
1121
726a989a 1122 gsi = gsi_after_labels (clsn_data->load_bb);
70f34814 1123 load_struct = build_simple_mem_ref (clsn_data->load);
a509ebb5
RL
1124 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1125 NULL_TREE);
a509ebb5 1126
ae0bce62 1127 x = load_struct;
a509ebb5 1128 name = PHI_RESULT (red->keep_res);
726a989a 1129 stmt = gimple_build_assign (name, x);
a509ebb5
RL
1130 SSA_NAME_DEF_STMT (name) = stmt;
1131
726a989a 1132 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
a509ebb5 1133
726a989a
RB
1134 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1135 !gsi_end_p (gsi); gsi_next (&gsi))
1136 if (gsi_stmt (gsi) == red->keep_res)
1137 {
1138 remove_phi_node (&gsi, false);
1139 return 1;
1140 }
1141 gcc_unreachable ();
a509ebb5
RL
1142}
1143
b8698a0f 1144/* Load the reduction result that was stored in LD_ST_DATA.
a509ebb5 1145 REDUCTION_LIST describes the list of reductions that the
fa10beec 1146 loads should be generated for. */
a509ebb5 1147static void
b8698a0f 1148create_final_loads_for_reduction (htab_t reduction_list,
a509ebb5
RL
1149 struct clsn_data *ld_st_data)
1150{
726a989a 1151 gimple_stmt_iterator gsi;
a509ebb5 1152 tree t;
726a989a 1153 gimple stmt;
a509ebb5 1154
726a989a 1155 gsi = gsi_after_labels (ld_st_data->load_bb);
a509ebb5 1156 t = build_fold_addr_expr (ld_st_data->store);
726a989a 1157 stmt = gimple_build_assign (ld_st_data->load, t);
a509ebb5 1158
726a989a
RB
1159 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1160 SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
a509ebb5
RL
1161
1162 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1163
1164}
1165
0eb7e7aa
RL
1166/* Callback for htab_traverse. Store the neutral value for the
1167 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1168 1 for MULT_EXPR, etc. into the reduction field.
b8698a0f
L
1169 The reduction is specified in SLOT. The store information is
1170 passed in DATA. */
0eb7e7aa
RL
1171
1172static int
1173create_stores_for_reduction (void **slot, void *data)
1174{
3d9a9f94
KG
1175 struct reduction_info *const red = (struct reduction_info *) *slot;
1176 struct clsn_data *const clsn_data = (struct clsn_data *) data;
726a989a
RB
1177 tree t;
1178 gimple stmt;
1179 gimple_stmt_iterator gsi;
1180 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1181
1182 gsi = gsi_last_bb (clsn_data->store_bb);
1183 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1184 stmt = gimple_build_assign (t, red->initial_value);
0eb7e7aa 1185 mark_virtual_ops_for_renaming (stmt);
726a989a 1186 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
0eb7e7aa
RL
1187
1188 return 1;
1189}
1190
a509ebb5
RL
1191/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1192 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1193 specified in SLOT. */
1194
5f40b3cb
ZD
1195static int
1196create_loads_and_stores_for_name (void **slot, void *data)
1197{
3d9a9f94
KG
1198 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1199 struct clsn_data *const clsn_data = (struct clsn_data *) data;
726a989a
RB
1200 tree t;
1201 gimple stmt;
1202 gimple_stmt_iterator gsi;
5f40b3cb 1203 tree type = TREE_TYPE (elt->new_name);
5f40b3cb
ZD
1204 tree load_struct;
1205
726a989a
RB
1206 gsi = gsi_last_bb (clsn_data->store_bb);
1207 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1208 stmt = gimple_build_assign (t, ssa_name (elt->version));
5f40b3cb 1209 mark_virtual_ops_for_renaming (stmt);
726a989a 1210 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb 1211
726a989a 1212 gsi = gsi_last_bb (clsn_data->load_bb);
70f34814 1213 load_struct = build_simple_mem_ref (clsn_data->load);
726a989a
RB
1214 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1215 stmt = gimple_build_assign (elt->new_name, t);
5f40b3cb 1216 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
726a989a 1217 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb
ZD
1218
1219 return 1;
1220}
1221
1222/* Moves all the variables used in LOOP and defined outside of it (including
1223 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1224 name) to a structure created for this purpose. The code
b8698a0f 1225
5f40b3cb
ZD
1226 while (1)
1227 {
1228 use (a);
1229 use (b);
1230 }
1231
1232 is transformed this way:
1233
1234 bb0:
1235 old.a = a;
1236 old.b = b;
1237
1238 bb1:
1239 a' = new->a;
1240 b' = new->b;
1241 while (1)
1242 {
1243 use (a');
1244 use (b');
1245 }
1246
1247 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1248 pointer `new' is intentionally not initialized (the loop will be split to a
1249 separate function later, and `new' will be initialized from its arguments).
a509ebb5 1250 LD_ST_DATA holds information about the shared data structure used to pass
b8698a0f
L
1251 information among the threads. It is initialized here, and
1252 gen_parallel_loop will pass it to create_call_for_reduction that
1253 needs this information. REDUCTION_LIST describes the reductions
a509ebb5 1254 in LOOP. */
5f40b3cb
ZD
1255
1256static void
9f9f72aa 1257separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
b8698a0f 1258 tree *arg_struct, tree *new_arg_struct,
9f9f72aa 1259 struct clsn_data *ld_st_data)
a509ebb5 1260
5f40b3cb 1261{
9f9f72aa 1262 basic_block bb1 = split_edge (entry);
5f40b3cb
ZD
1263 basic_block bb0 = single_pred (bb1);
1264 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1265 name_to_copy_elt_eq, free);
1266 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1267 free);
5f40b3cb 1268 unsigned i;
726a989a
RB
1269 tree type, type_name, nvar;
1270 gimple_stmt_iterator gsi;
5f40b3cb 1271 struct clsn_data clsn_data;
9f9f72aa
AP
1272 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
1273 basic_block bb;
1274 basic_block entry_bb = bb1;
1275 basic_block exit_bb = exit->dest;
b5b8b0ac 1276 bool has_debug_stmt = false;
5f40b3cb 1277
726a989a 1278 entry = single_succ_edge (entry_bb);
9f9f72aa 1279 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
5f40b3cb 1280
ac47786e 1281 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
9f9f72aa 1282 {
b8698a0f 1283 if (bb != entry_bb && bb != exit_bb)
9f9f72aa 1284 {
726a989a
RB
1285 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1286 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1287 name_copies, decl_copies);
1288
1289 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
b5b8b0ac
AO
1290 {
1291 gimple stmt = gsi_stmt (gsi);
1292
1293 if (is_gimple_debug (stmt))
1294 has_debug_stmt = true;
1295 else
1296 separate_decls_in_region_stmt (entry, exit, stmt,
1297 name_copies, decl_copies);
1298 }
9f9f72aa 1299 }
5f40b3cb 1300 }
9f9f72aa 1301
b5b8b0ac
AO
1302 /* Now process debug bind stmts. We must not create decls while
1303 processing debug stmts, so we defer their processing so as to
1304 make sure we will have debug info for as many variables as
1305 possible (all of those that were dealt with in the loop above),
1306 and discard those for which we know there's nothing we can
1307 do. */
1308 if (has_debug_stmt)
ac47786e 1309 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
b5b8b0ac
AO
1310 if (bb != entry_bb && bb != exit_bb)
1311 {
1312 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1313 {
1314 gimple stmt = gsi_stmt (gsi);
1315
ddb555ed 1316 if (is_gimple_debug (stmt))
b5b8b0ac 1317 {
ddb555ed
JJ
1318 if (separate_decls_in_region_debug (stmt, name_copies,
1319 decl_copies))
b5b8b0ac
AO
1320 {
1321 gsi_remove (&gsi, true);
1322 continue;
1323 }
1324 }
1325
1326 gsi_next (&gsi);
1327 }
1328 }
1329
9f9f72aa 1330 VEC_free (basic_block, heap, body);
5f40b3cb 1331
b8698a0f 1332 if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
5f40b3cb
ZD
1333 {
1334 /* It may happen that there is nothing to copy (if there are only
a509ebb5 1335 loop carried and external variables in the loop). */
5f40b3cb
ZD
1336 *arg_struct = NULL;
1337 *new_arg_struct = NULL;
1338 }
1339 else
1340 {
1341 /* Create the type for the structure to store the ssa names to. */
1342 type = lang_hooks.types.make_type (RECORD_TYPE);
9ff70652 1343 type_name = build_decl (UNKNOWN_LOCATION,
c2255bc4 1344 TYPE_DECL, create_tmp_var_name (".paral_data"),
5f40b3cb
ZD
1345 type);
1346 TYPE_NAME (type) = type_name;
1347
0eb7e7aa 1348 htab_traverse (name_copies, add_field_for_name, type);
9f9f72aa 1349 if (reduction_list && htab_elements (reduction_list) > 0)
0eb7e7aa
RL
1350 {
1351 /* Create the fields for reductions. */
1352 htab_traverse (reduction_list, add_field_for_reduction,
1353 type);
1354 }
5f40b3cb 1355 layout_type (type);
b8698a0f 1356
5f40b3cb
ZD
1357 /* Create the loads and stores. */
1358 *arg_struct = create_tmp_var (type, ".paral_data_store");
1359 add_referenced_var (*arg_struct);
1360 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1361 add_referenced_var (nvar);
726a989a 1362 *new_arg_struct = make_ssa_name (nvar, NULL);
5f40b3cb 1363
a509ebb5
RL
1364 ld_st_data->store = *arg_struct;
1365 ld_st_data->load = *new_arg_struct;
1366 ld_st_data->store_bb = bb0;
1367 ld_st_data->load_bb = bb1;
0eb7e7aa 1368
5f40b3cb 1369 htab_traverse (name_copies, create_loads_and_stores_for_name,
a509ebb5
RL
1370 ld_st_data);
1371
ae0bce62
RL
1372 /* Load the calculation from memory (after the join of the threads). */
1373
9f9f72aa 1374 if (reduction_list && htab_elements (reduction_list) > 0)
a509ebb5 1375 {
0eb7e7aa 1376 htab_traverse (reduction_list, create_stores_for_reduction,
b8698a0f 1377 ld_st_data);
726a989a 1378 clsn_data.load = make_ssa_name (nvar, NULL);
9f9f72aa 1379 clsn_data.load_bb = exit->dest;
a509ebb5
RL
1380 clsn_data.store = ld_st_data->store;
1381 create_final_loads_for_reduction (reduction_list, &clsn_data);
1382 }
5f40b3cb
ZD
1383 }
1384
1385 htab_delete (decl_copies);
1386 htab_delete (name_copies);
1387}
1388
1389/* Bitmap containing uids of functions created by parallelization. We cannot
1390 allocate it from the default obstack, as it must live across compilation
1391 of several functions; we make it gc allocated instead. */
1392
1393static GTY(()) bitmap parallelized_functions;
1394
1395/* Returns true if FN was created by create_loop_fn. */
1396
1397static bool
1398parallelized_function_p (tree fn)
1399{
1400 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1401 return false;
1402
1403 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1404}
1405
1406/* Creates and returns an empty function that will receive the body of
1407 a parallelized loop. */
1408
1409static tree
9ff70652 1410create_loop_fn (location_t loc)
5f40b3cb
ZD
1411{
1412 char buf[100];
1413 char *tname;
1414 tree decl, type, name, t;
1415 struct function *act_cfun = cfun;
1416 static unsigned loopfn_num;
1417
1418 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1419 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1420 clean_symbol_name (tname);
1421 name = get_identifier (tname);
1422 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1423
9ff70652 1424 decl = build_decl (loc, FUNCTION_DECL, name, type);
5f40b3cb
ZD
1425 if (!parallelized_functions)
1426 parallelized_functions = BITMAP_GGC_ALLOC ();
1427 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1428
1429 TREE_STATIC (decl) = 1;
1430 TREE_USED (decl) = 1;
1431 DECL_ARTIFICIAL (decl) = 1;
1432 DECL_IGNORED_P (decl) = 0;
1433 TREE_PUBLIC (decl) = 0;
1434 DECL_UNINLINABLE (decl) = 1;
1435 DECL_EXTERNAL (decl) = 0;
1436 DECL_CONTEXT (decl) = NULL_TREE;
1437 DECL_INITIAL (decl) = make_node (BLOCK);
1438
9ff70652 1439 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
5f40b3cb
ZD
1440 DECL_ARTIFICIAL (t) = 1;
1441 DECL_IGNORED_P (t) = 1;
1442 DECL_RESULT (decl) = t;
1443
9ff70652 1444 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
5f40b3cb
ZD
1445 ptr_type_node);
1446 DECL_ARTIFICIAL (t) = 1;
1447 DECL_ARG_TYPE (t) = ptr_type_node;
1448 DECL_CONTEXT (t) = decl;
1449 TREE_USED (t) = 1;
1450 DECL_ARGUMENTS (decl) = t;
1451
182e0d71 1452 allocate_struct_function (decl, false);
5f40b3cb
ZD
1453
1454 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1455 it. */
5576d6f2 1456 set_cfun (act_cfun);
5f40b3cb
ZD
1457
1458 return decl;
1459}
1460
5f40b3cb
ZD
1461/* Moves the exit condition of LOOP to the beginning of its header, and
1462 duplicates the part of the last iteration that gets disabled to the
1463 exit of the loop. NIT is the number of iterations of the loop
1464 (used to initialize the variables in the duplicated part).
b8698a0f 1465
fa10beec 1466 TODO: the common case is that latch of the loop is empty and immediately
5f40b3cb
ZD
1467 follows the loop exit. In this case, it would be better not to copy the
1468 body of the loop, but only move the entry of the loop directly before the
1469 exit check and increase the number of iterations of the loop by one.
b8698a0f 1470 This may need some additional preconditioning in case NIT = ~0.
a509ebb5 1471 REDUCTION_LIST describes the reductions in LOOP. */
5f40b3cb
ZD
1472
1473static void
a509ebb5 1474transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
5f40b3cb
ZD
1475{
1476 basic_block *bbs, *nbbs, ex_bb, orig_header;
1477 unsigned n;
1478 bool ok;
1479 edge exit = single_dom_exit (loop), hpred;
726a989a 1480 tree control, control_name, res, t;
48710229 1481 gimple phi, nphi, cond_stmt, stmt, cond_nit;
726a989a 1482 gimple_stmt_iterator gsi;
48710229 1483 tree nit_1;
12037899
RL
1484 edge exit_1;
1485 tree new_rhs;
5f40b3cb
ZD
1486
1487 split_block_after_labels (loop->header);
1488 orig_header = single_succ (loop->header);
1489 hpred = single_succ_edge (loop->header);
1490
1491 cond_stmt = last_stmt (exit->src);
726a989a
RB
1492 control = gimple_cond_lhs (cond_stmt);
1493 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
5f40b3cb
ZD
1494
1495 /* Make sure that we have phi nodes on exit for all loop header phis
1496 (create_parallel_loop requires that). */
726a989a 1497 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
5f40b3cb 1498 {
726a989a 1499 phi = gsi_stmt (gsi);
5f40b3cb
ZD
1500 res = PHI_RESULT (phi);
1501 t = make_ssa_name (SSA_NAME_VAR (res), phi);
1502 SET_PHI_RESULT (phi, t);
5f40b3cb
ZD
1503 nphi = create_phi_node (res, orig_header);
1504 SSA_NAME_DEF_STMT (res) = nphi;
f5045c96 1505 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
5f40b3cb
ZD
1506
1507 if (res == control)
1508 {
726a989a 1509 gimple_cond_set_lhs (cond_stmt, t);
5f40b3cb
ZD
1510 update_stmt (cond_stmt);
1511 control = t;
1512 }
1513 }
12037899
RL
1514
1515 /* Setting the condition towards peeling the last iteration:
1516 If the block consisting of the exit condition has the latch as
1517 successor, then the body of the loop is executed before
1518 the exit condition is tested. In such case, moving the
1519 condition to the entry, causes that the loop will iterate
1520 one less iteration (which is the wanted outcome, since we
1521 peel out the last iteration). If the body is executed after
1522 the condition, moving the condition to the entry requires
1523 decrementing one iteration. */
1524 exit_1 = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
1525 if (exit_1->dest == loop->latch)
1526 new_rhs = gimple_cond_rhs (cond_stmt);
1527 else
1528 {
1529 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
1530 gimple_cond_rhs (cond_stmt),
1531 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
1532 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
1533 {
1534 basic_block preheader;
1535 gimple_stmt_iterator gsi1;
1536
1537 preheader = loop_preheader_edge(loop)->src;
1538 gsi1 = gsi_after_labels (preheader);
1539 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
1540 NULL_TREE,false,GSI_CONTINUE_LINKING);
1541 }
1542 }
1543 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
1544 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
1545
5f40b3cb 1546 bbs = get_loop_body_in_dom_order (loop);
48710229
RL
1547
1548 for (n = 0; bbs[n] != loop->latch; n++)
5f40b3cb
ZD
1549 continue;
1550 nbbs = XNEWVEC (basic_block, n);
726a989a
RB
1551 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1552 bbs + 1, n, nbbs);
5f40b3cb
ZD
1553 gcc_assert (ok);
1554 free (bbs);
1555 ex_bb = nbbs[0];
1556 free (nbbs);
1557
b8698a0f 1558 /* Other than reductions, the only gimple reg that should be copied
726a989a 1559 out of the loop is the control variable. */
a509ebb5 1560
5f40b3cb 1561 control_name = NULL_TREE;
726a989a 1562 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
5f40b3cb 1563 {
726a989a 1564 phi = gsi_stmt (gsi);
5f40b3cb
ZD
1565 res = PHI_RESULT (phi);
1566 if (!is_gimple_reg (res))
726a989a
RB
1567 {
1568 gsi_next (&gsi);
1569 continue;
1570 }
5f40b3cb 1571
a509ebb5 1572 /* Check if it is a part of reduction. If it is,
b8698a0f
L
1573 keep the phi at the reduction's keep_res field. The
1574 PHI_RESULT of this phi is the resulting value of the reduction
a509ebb5
RL
1575 variable when exiting the loop. */
1576
1577 exit = single_dom_exit (loop);
1578
b8698a0f 1579 if (htab_elements (reduction_list) > 0)
a509ebb5
RL
1580 {
1581 struct reduction_info *red;
1582
1583 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
a509ebb5
RL
1584 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1585 if (red)
726a989a
RB
1586 {
1587 red->keep_res = phi;
1588 gsi_next (&gsi);
1589 continue;
1590 }
a509ebb5 1591 }
726a989a
RB
1592 gcc_assert (control_name == NULL_TREE
1593 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
5f40b3cb 1594 control_name = res;
726a989a 1595 remove_phi_node (&gsi, false);
5f40b3cb
ZD
1596 }
1597 gcc_assert (control_name != NULL_TREE);
5f40b3cb 1598
b8698a0f 1599 /* Initialize the control variable to number of iterations
48710229 1600 according to the rhs of the exit condition. */
726a989a 1601 gsi = gsi_after_labels (ex_bb);
b8698a0f 1602 cond_nit = last_stmt (exit->src);
48710229
RL
1603 nit_1 = gimple_cond_rhs (cond_nit);
1604 nit_1 = force_gimple_operand_gsi (&gsi,
1605 fold_convert (TREE_TYPE (control_name), nit_1),
726a989a 1606 false, NULL_TREE, false, GSI_SAME_STMT);
48710229 1607 stmt = gimple_build_assign (control_name, nit_1);
726a989a
RB
1608 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1609 SSA_NAME_DEF_STMT (control_name) = stmt;
5f40b3cb
ZD
1610}
1611
1612/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
726a989a 1613 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
5f40b3cb
ZD
1614 NEW_DATA is the variable that should be initialized from the argument
1615 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
726a989a 1616 basic block containing GIMPLE_OMP_PARALLEL tree. */
5f40b3cb
ZD
1617
1618static basic_block
1619create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
9ff70652 1620 tree new_data, unsigned n_threads, location_t loc)
5f40b3cb 1621{
726a989a 1622 gimple_stmt_iterator gsi;
5f40b3cb 1623 basic_block bb, paral_bb, for_bb, ex_bb;
0f900dfa 1624 tree t, param;
726a989a
RB
1625 gimple stmt, for_stmt, phi, cond_stmt;
1626 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
5f40b3cb
ZD
1627 edge exit, nexit, guard, end, e;
1628
726a989a 1629 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
5f40b3cb
ZD
1630 bb = loop_preheader_edge (loop)->src;
1631 paral_bb = single_pred (bb);
726a989a 1632 gsi = gsi_last_bb (paral_bb);
5f40b3cb 1633
9ff70652 1634 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
5f40b3cb 1635 OMP_CLAUSE_NUM_THREADS_EXPR (t)
a509ebb5 1636 = build_int_cst (integer_type_node, n_threads);
726a989a 1637 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
9ff70652 1638 gimple_set_location (stmt, loc);
5f40b3cb 1639
726a989a 1640 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb
ZD
1641
1642 /* Initialize NEW_DATA. */
1643 if (data)
1644 {
726a989a
RB
1645 gsi = gsi_after_labels (bb);
1646
1647 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1648 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1649 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1650 SSA_NAME_DEF_STMT (param) = stmt;
1651
1652 stmt = gimple_build_assign (new_data,
1653 fold_convert (TREE_TYPE (new_data), param));
1654 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1655 SSA_NAME_DEF_STMT (new_data) = stmt;
5f40b3cb
ZD
1656 }
1657
726a989a 1658 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
5f40b3cb 1659 bb = split_loop_exit_edge (single_dom_exit (loop));
726a989a 1660 gsi = gsi_last_bb (bb);
9ff70652
JJ
1661 stmt = gimple_build_omp_return (false);
1662 gimple_set_location (stmt, loc);
1663 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb 1664
726a989a 1665 /* Extract data for GIMPLE_OMP_FOR. */
5f40b3cb 1666 gcc_assert (loop->header == single_dom_exit (loop)->src);
726a989a 1667 cond_stmt = last_stmt (loop->header);
5f40b3cb 1668
726a989a 1669 cvar = gimple_cond_lhs (cond_stmt);
5f40b3cb
ZD
1670 cvar_base = SSA_NAME_VAR (cvar);
1671 phi = SSA_NAME_DEF_STMT (cvar);
1672 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
726a989a 1673 initvar = make_ssa_name (cvar_base, NULL);
5f40b3cb
ZD
1674 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1675 initvar);
1676 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1677
1dff453d 1678 gsi = gsi_last_nondebug_bb (loop->latch);
726a989a
RB
1679 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1680 gsi_remove (&gsi, true);
5f40b3cb
ZD
1681
1682 /* Prepare cfg. */
1683 for_bb = split_edge (loop_preheader_edge (loop));
1684 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1685 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1686 gcc_assert (exit == single_dom_exit (loop));
1687
1688 guard = make_edge (for_bb, ex_bb, 0);
1689 single_succ_edge (loop->latch)->flags = 0;
1690 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
726a989a 1691 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
5f40b3cb 1692 {
f5045c96
AM
1693 source_location locus;
1694 tree def;
726a989a 1695 phi = gsi_stmt (gsi);
726a989a 1696 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
f5045c96
AM
1697
1698 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
b8698a0f 1699 locus = gimple_phi_arg_location_from_edge (stmt,
f5045c96
AM
1700 loop_preheader_edge (loop));
1701 add_phi_arg (phi, def, guard, locus);
1702
1703 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1704 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1705 add_phi_arg (phi, def, end, locus);
5f40b3cb
ZD
1706 }
1707 e = redirect_edge_and_branch (exit, nexit->dest);
1708 PENDING_STMT (e) = NULL;
1709
726a989a
RB
1710 /* Emit GIMPLE_OMP_FOR. */
1711 gimple_cond_set_lhs (cond_stmt, cvar_base);
5f40b3cb 1712 type = TREE_TYPE (cvar);
9ff70652 1713 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
5f40b3cb
ZD
1714 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1715
726a989a 1716 for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
9ff70652 1717 gimple_set_location (for_stmt, loc);
726a989a
RB
1718 gimple_omp_for_set_index (for_stmt, 0, initvar);
1719 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1720 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1721 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1722 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1723 cvar_base,
1724 build_int_cst (type, 1)));
1725
1726 gsi = gsi_last_bb (for_bb);
1727 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
5f40b3cb
ZD
1728 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1729
726a989a
RB
1730 /* Emit GIMPLE_OMP_CONTINUE. */
1731 gsi = gsi_last_bb (loop->latch);
1732 stmt = gimple_build_omp_continue (cvar_next, cvar);
9ff70652 1733 gimple_set_location (stmt, loc);
726a989a
RB
1734 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1735 SSA_NAME_DEF_STMT (cvar_next) = stmt;
5f40b3cb 1736
726a989a
RB
1737 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1738 gsi = gsi_last_bb (ex_bb);
9ff70652
JJ
1739 stmt = gimple_build_omp_return (true);
1740 gimple_set_location (stmt, loc);
1741 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
5f40b3cb
ZD
1742
1743 return paral_bb;
1744}
1745
08dab97a
RL
1746/* Generates code to execute the iterations of LOOP in N_THREADS
1747 threads in parallel.
1748
1749 NITER describes number of iterations of LOOP.
fa10beec 1750 REDUCTION_LIST describes the reductions existent in the LOOP. */
5f40b3cb
ZD
1751
1752static void
08dab97a 1753gen_parallel_loop (struct loop *loop, htab_t reduction_list,
a509ebb5 1754 unsigned n_threads, struct tree_niter_desc *niter)
5f40b3cb 1755{
9326236d 1756 loop_iterator li;
5f40b3cb 1757 tree many_iterations_cond, type, nit;
726a989a
RB
1758 tree arg_struct, new_arg_struct;
1759 gimple_seq stmts;
5f40b3cb 1760 basic_block parallel_head;
9f9f72aa 1761 edge entry, exit;
a509ebb5 1762 struct clsn_data clsn_data;
5f40b3cb 1763 unsigned prob;
9ff70652
JJ
1764 location_t loc;
1765 gimple cond_stmt;
5f40b3cb
ZD
1766
1767 /* From
1768
1769 ---------------------------------------------------------------------
1770 loop
1771 {
1772 IV = phi (INIT, IV + STEP)
1773 BODY1;
1774 if (COND)
1775 break;
1776 BODY2;
1777 }
1778 ---------------------------------------------------------------------
1779
1780 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1781 we generate the following code:
1782
1783 ---------------------------------------------------------------------
1784
1785 if (MAY_BE_ZERO
a509ebb5
RL
1786 || NITER < MIN_PER_THREAD * N_THREADS)
1787 goto original;
5f40b3cb
ZD
1788
1789 BODY1;
1790 store all local loop-invariant variables used in body of the loop to DATA.
726a989a 1791 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
5f40b3cb 1792 load the variables from DATA.
726a989a 1793 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
5f40b3cb
ZD
1794 BODY2;
1795 BODY1;
726a989a
RB
1796 GIMPLE_OMP_CONTINUE;
1797 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1798 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
5f40b3cb
ZD
1799 goto end;
1800
1801 original:
1802 loop
1803 {
1804 IV = phi (INIT, IV + STEP)
1805 BODY1;
1806 if (COND)
1807 break;
1808 BODY2;
1809 }
1810
1811 end:
1812
1813 */
1814
1815 /* Create two versions of the loop -- in the old one, we know that the
1816 number of iterations is large enough, and we will transform it into the
1817 loop that will be split to loop_fn, the new one will be used for the
1818 remaining iterations. */
a509ebb5 1819
5f40b3cb
ZD
1820 type = TREE_TYPE (niter->niter);
1821 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1822 NULL_TREE);
1823 if (stmts)
726a989a 1824 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5f40b3cb
ZD
1825
1826 many_iterations_cond =
a509ebb5
RL
1827 fold_build2 (GE_EXPR, boolean_type_node,
1828 nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
5f40b3cb 1829 many_iterations_cond
a509ebb5
RL
1830 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1831 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1832 many_iterations_cond);
5f40b3cb 1833 many_iterations_cond
a509ebb5 1834 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
5f40b3cb 1835 if (stmts)
726a989a 1836 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5f40b3cb
ZD
1837 if (!is_gimple_condexpr (many_iterations_cond))
1838 {
1839 many_iterations_cond
a509ebb5
RL
1840 = force_gimple_operand (many_iterations_cond, &stmts,
1841 true, NULL_TREE);
5f40b3cb 1842 if (stmts)
726a989a 1843 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5f40b3cb
ZD
1844 }
1845
1846 initialize_original_copy_tables ();
1847
1848 /* We assume that the loop usually iterates a lot. */
1849 prob = 4 * REG_BR_PROB_BASE / 5;
0f900dfa
JJ
1850 loop_version (loop, many_iterations_cond, NULL,
1851 prob, prob, REG_BR_PROB_BASE - prob, true);
5f40b3cb
ZD
1852 update_ssa (TODO_update_ssa);
1853 free_original_copy_tables ();
1854
1855 /* Base all the induction variables in LOOP on a single control one. */
c80a5403 1856 canonicalize_loop_ivs (loop, &nit, true);
5f40b3cb
ZD
1857
1858 /* Ensure that the exit condition is the first statement in the loop. */
a509ebb5
RL
1859 transform_to_exit_first_loop (loop, reduction_list, nit);
1860
fa10beec 1861 /* Generate initializations for reductions. */
b8698a0f 1862 if (htab_elements (reduction_list) > 0)
a509ebb5 1863 htab_traverse (reduction_list, initialize_reductions, loop);
5f40b3cb
ZD
1864
1865 /* Eliminate the references to local variables from the loop. */
9f9f72aa
AP
1866 gcc_assert (single_exit (loop));
1867 entry = loop_preheader_edge (loop);
1868 exit = single_dom_exit (loop);
5f40b3cb 1869
9f9f72aa 1870 eliminate_local_variables (entry, exit);
5f40b3cb
ZD
1871 /* In the old loop, move all variables non-local to the loop to a structure
1872 and back, and create separate decls for the variables used in loop. */
b8698a0f 1873 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
9f9f72aa 1874 &new_arg_struct, &clsn_data);
5f40b3cb
ZD
1875
1876 /* Create the parallel constructs. */
9ff70652
JJ
1877 loc = UNKNOWN_LOCATION;
1878 cond_stmt = last_stmt (loop->header);
1879 if (cond_stmt)
1880 loc = gimple_location (cond_stmt);
1881 parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1882 new_arg_struct, n_threads, loc);
b8698a0f 1883 if (htab_elements (reduction_list) > 0)
a509ebb5 1884 create_call_for_reduction (loop, reduction_list, &clsn_data);
5f40b3cb
ZD
1885
1886 scev_reset ();
1887
1888 /* Cancel the loop (it is simpler to do it here rather than to teach the
1889 expander to do it). */
1890 cancel_loop_tree (loop);
1891
92a6bdbd
SP
1892 /* Free loop bound estimations that could contain references to
1893 removed statements. */
1894 FOR_EACH_LOOP (li, loop, 0)
1895 free_numbers_of_iterations_estimates_loop (loop);
1896
5f40b3cb
ZD
1897 /* Expand the parallel constructs. We do it directly here instead of running
1898 a separate expand_omp pass, since it is more efficient, and less likely to
1899 cause troubles with further analyses not being able to deal with the
1900 OMP trees. */
a509ebb5 1901
5f40b3cb
ZD
1902 omp_expand_local (parallel_head);
1903}
1904
9857228c
SP
1905/* Returns true when LOOP contains vector phi nodes. */
1906
1907static bool
726a989a 1908loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
9857228c
SP
1909{
1910 unsigned i;
1911 basic_block *bbs = get_loop_body_in_dom_order (loop);
726a989a 1912 gimple_stmt_iterator gsi;
9857228c 1913 bool res = true;
9857228c
SP
1914
1915 for (i = 0; i < loop->num_nodes; i++)
726a989a
RB
1916 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1917 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
9857228c
SP
1918 goto end;
1919
1920 res = false;
1921 end:
1922 free (bbs);
1923 return res;
1924}
1925
08dab97a
RL
1926/* Create a reduction_info struct, initialize it with REDUC_STMT
1927 and PHI, insert it to the REDUCTION_LIST. */
1928
1929static void
1930build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
1931{
1932 PTR *slot;
1933 struct reduction_info *new_reduction;
1934
1935 gcc_assert (reduc_stmt);
b8698a0f 1936
08dab97a
RL
1937 if (dump_file && (dump_flags & TDF_DETAILS))
1938 {
1939 fprintf (dump_file,
1940 "Detected reduction. reduction stmt is: \n");
1941 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1942 fprintf (dump_file, "\n");
1943 }
b8698a0f 1944
08dab97a 1945 new_reduction = XCNEW (struct reduction_info);
b8698a0f 1946
08dab97a
RL
1947 new_reduction->reduc_stmt = reduc_stmt;
1948 new_reduction->reduc_phi = phi;
5d1fd1de 1949 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
08dab97a
RL
1950 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1951 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
1952 *slot = new_reduction;
1953}
1954
5d1fd1de
JJ
1955/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
1956
1957static int
1958set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
1959{
1960 struct reduction_info *const red = (struct reduction_info *) *slot;
1961 gimple_set_uid (red->reduc_phi, red->reduc_version);
1962 return 1;
1963}
1964
08dab97a
RL
1965/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
1966
1967static void
1968gather_scalar_reductions (loop_p loop, htab_t reduction_list)
1969{
1970 gimple_stmt_iterator gsi;
1971 loop_vec_info simple_loop_info;
1972
1973 vect_dump = NULL;
1974 simple_loop_info = vect_analyze_loop_form (loop);
1975
1976 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1977 {
1978 gimple phi = gsi_stmt (gsi);
1979 affine_iv iv;
1980 tree res = PHI_RESULT (phi);
1981 bool double_reduc;
1982
1983 if (!is_gimple_reg (res))
1984 continue;
1985
1986 if (!simple_iv (loop, loop, res, &iv, true)
1987 && simple_loop_info)
1988 {
8a9ecffd
MM
1989 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
1990 phi, true,
1991 &double_reduc);
48710229 1992 if (reduc_stmt && !double_reduc)
08dab97a
RL
1993 build_new_reduction (reduction_list, reduc_stmt, phi);
1994 }
1995 }
5d1fd1de
JJ
1996 destroy_loop_vec_info (simple_loop_info, true);
1997
1998 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
1999 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2000 only now. */
2001 htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
08dab97a
RL
2002}
2003
2004/* Try to initialize NITER for code generation part. */
2005
2006static bool
2007try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2008{
2009 edge exit = single_dom_exit (loop);
2010
2011 gcc_assert (exit);
2012
2013 /* We need to know # of iterations, and there should be no uses of values
2014 defined inside loop outside of it, unless the values are invariants of
2015 the loop. */
2016 if (!number_of_iterations_exit (loop, exit, niter, false))
2017 {
2018 if (dump_file && (dump_flags & TDF_DETAILS))
2019 fprintf (dump_file, " FAILED: number of iterations not known\n");
2020 return false;
2021 }
2022
2023 return true;
2024}
2025
2026/* Try to initialize REDUCTION_LIST for code generation part.
2027 REDUCTION_LIST describes the reductions. */
2028
2029static bool
2030try_create_reduction_list (loop_p loop, htab_t reduction_list)
2031{
2032 edge exit = single_dom_exit (loop);
2033 gimple_stmt_iterator gsi;
2034
2035 gcc_assert (exit);
2036
2037 gather_scalar_reductions (loop, reduction_list);
2038
b8698a0f 2039
08dab97a
RL
2040 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2041 {
2042 gimple phi = gsi_stmt (gsi);
2043 struct reduction_info *red;
2044 imm_use_iterator imm_iter;
2045 use_operand_p use_p;
2046 gimple reduc_phi;
2047 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2048
2049 if (is_gimple_reg (val))
2050 {
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2052 {
2053 fprintf (dump_file, "phi is ");
2054 print_gimple_stmt (dump_file, phi, 0, 0);
2055 fprintf (dump_file, "arg of phi to exit: value ");
2056 print_generic_expr (dump_file, val, 0);
2057 fprintf (dump_file, " used outside loop\n");
2058 fprintf (dump_file,
2059 " checking if it a part of reduction pattern: \n");
2060 }
2061 if (htab_elements (reduction_list) == 0)
2062 {
2063 if (dump_file && (dump_flags & TDF_DETAILS))
2064 fprintf (dump_file,
2065 " FAILED: it is not a part of reduction.\n");
2066 return false;
2067 }
2068 reduc_phi = NULL;
2069 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2070 {
4942af9b
JJ
2071 if (!gimple_debug_bind_p (USE_STMT (use_p))
2072 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
08dab97a
RL
2073 {
2074 reduc_phi = USE_STMT (use_p);
2075 break;
2076 }
2077 }
2078 red = reduction_phi (reduction_list, reduc_phi);
2079 if (red == NULL)
2080 {
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (dump_file,
2083 " FAILED: it is not a part of reduction.\n");
2084 return false;
2085 }
2086 if (dump_file && (dump_flags & TDF_DETAILS))
2087 {
2088 fprintf (dump_file, "reduction phi is ");
2089 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2090 fprintf (dump_file, "reduction stmt is ");
2091 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2092 }
2093 }
2094 }
2095
2096 /* The iterations of the loop may communicate only through bivs whose
2097 iteration space can be distributed efficiently. */
2098 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2099 {
2100 gimple phi = gsi_stmt (gsi);
2101 tree def = PHI_RESULT (phi);
2102 affine_iv iv;
2103
2104 if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true))
2105 {
2106 struct reduction_info *red;
2107
2108 red = reduction_phi (reduction_list, phi);
2109 if (red == NULL)
2110 {
2111 if (dump_file && (dump_flags & TDF_DETAILS))
2112 fprintf (dump_file,
2113 " FAILED: scalar dependency between iterations\n");
2114 return false;
2115 }
2116 }
2117 }
2118
2119
2120 return true;
2121}
2122
5f40b3cb
ZD
2123/* Detect parallel loops and generate parallel code using libgomp
2124 primitives. Returns true if some loop was parallelized, false
2125 otherwise. */
2126
2127bool
2128parallelize_loops (void)
2129{
2130 unsigned n_threads = flag_tree_parallelize_loops;
2131 bool changed = false;
2132 struct loop *loop;
2133 struct tree_niter_desc niter_desc;
2134 loop_iterator li;
a509ebb5 2135 htab_t reduction_list;
f873b205 2136 struct obstack parloop_obstack;
8adfe01d
RL
2137 HOST_WIDE_INT estimated;
2138 LOC loop_loc;
f873b205 2139
5f40b3cb
ZD
2140 /* Do not parallelize loops in the functions created by parallelization. */
2141 if (parallelized_function_p (cfun->decl))
2142 return false;
8adfe01d
RL
2143 if (cfun->has_nonlocal_label)
2144 return false;
5f40b3cb 2145
f873b205 2146 gcc_obstack_init (&parloop_obstack);
a509ebb5 2147 reduction_list = htab_create (10, reduction_info_hash,
08dab97a 2148 reduction_info_eq, free);
726a989a 2149 init_stmt_vec_info_vec ();
a509ebb5 2150
5f40b3cb
ZD
2151 FOR_EACH_LOOP (li, loop, 0)
2152 {
a509ebb5 2153 htab_empty (reduction_list);
48710229
RL
2154 if (dump_file && (dump_flags & TDF_DETAILS))
2155 {
2156 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2157 if (loop->inner)
2158 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2159 else
2160 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2161 }
b8698a0f 2162
48710229 2163 /* If we use autopar in graphite pass, we use its marked dependency
87d4d0ee
SP
2164 checking results. */
2165 if (flag_loop_parallelize_all && !loop->can_be_parallel)
48710229
RL
2166 {
2167 if (dump_file && (dump_flags & TDF_DETAILS))
2168 fprintf (dump_file, "loop is not parallel according to graphite\n");
87d4d0ee 2169 continue;
48710229 2170 }
87d4d0ee 2171
48710229
RL
2172 if (!single_dom_exit (loop))
2173 {
b8698a0f 2174
48710229
RL
2175 if (dump_file && (dump_flags & TDF_DETAILS))
2176 fprintf (dump_file, "loop is !single_dom_exit\n");
b8698a0f 2177
08dab97a 2178 continue;
48710229 2179 }
08dab97a
RL
2180
2181 if (/* And of course, the loop must be parallelizable. */
2182 !can_duplicate_loop_p (loop)
1d4af1e8 2183 || loop_has_blocks_with_irreducible_flag (loop)
8adfe01d 2184 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
9857228c 2185 /* FIXME: the check for vector phi nodes could be removed. */
31432e21
RG
2186 || loop_has_vector_phi_nodes (loop)
2187 /* FIXME: transform_to_exit_first_loop does not handle not
2188 header-copied loops correctly - see PR46886. */
2189 || !do_while_loop_p (loop))
08dab97a 2190 continue;
b4a9343c 2191 estimated = max_stmt_executions_int (loop, false);
87d4d0ee
SP
2192 /* FIXME: Bypass this check as graphite doesn't update the
2193 count and frequency correctly now. */
2194 if (!flag_loop_parallelize_all
8adfe01d
RL
2195 && ((estimated !=-1
2196 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
87d4d0ee
SP
2197 /* Do not bother with loops in cold areas. */
2198 || optimize_loop_nest_for_size_p (loop)))
08dab97a 2199 continue;
b8698a0f 2200
08dab97a
RL
2201 if (!try_get_loop_niter (loop, &niter_desc))
2202 continue;
2203
2204 if (!try_create_reduction_list (loop, reduction_list))
2205 continue;
2206
f873b205
LB
2207 if (!flag_loop_parallelize_all
2208 && !loop_parallel_p (loop, &parloop_obstack))
5f40b3cb
ZD
2209 continue;
2210
2211 changed = true;
48710229
RL
2212 if (dump_file && (dump_flags & TDF_DETAILS))
2213 {
48710229 2214 if (loop->inner)
8adfe01d 2215 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
48710229 2216 else
8adfe01d
RL
2217 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2218 loop_loc = find_loop_location (loop);
2219 if (loop_loc != UNKNOWN_LOC)
2220 fprintf (dump_file, "\nloop at %s:%d: ",
2221 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
b8698a0f
L
2222 }
2223 gen_parallel_loop (loop, reduction_list,
08dab97a 2224 n_threads, &niter_desc);
5f40b3cb
ZD
2225 verify_flow_info ();
2226 verify_dominators (CDI_DOMINATORS);
2227 verify_loop_structure ();
a3b9e73c 2228 verify_loop_closed_ssa (true);
5f40b3cb
ZD
2229 }
2230
726a989a 2231 free_stmt_vec_info_vec ();
a509ebb5 2232 htab_delete (reduction_list);
f873b205 2233 obstack_free (&parloop_obstack, NULL);
6b8ed145
RG
2234
2235 /* Parallelization will cause new function calls to be inserted through
d086d311
RG
2236 which local variables will escape. Reset the points-to solution
2237 for ESCAPED. */
6b8ed145 2238 if (changed)
d086d311 2239 pt_solution_reset (&cfun->gimple_df->escaped);
6b8ed145 2240
5f40b3cb
ZD
2241 return changed;
2242}
2243
2244#include "gt-tree-parloops.h"