]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-parloops.c
( 5)
[thirdparty/gcc.git] / gcc / tree-parloops.c
CommitLineData
5f40b3cb 1/* Loop autoparallelization.
5576d6f2 2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
5f40b3cb
ZD
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
4 Zdenek Dvorak <dvorakz@suse.cz>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "tree.h"
28#include "rtl.h"
29#include "tree-flow.h"
30#include "cfgloop.h"
31#include "ggc.h"
32#include "tree-data-ref.h"
33#include "diagnostic.h"
34#include "tree-pass.h"
35#include "tree-scalar-evolution.h"
36#include "hashtab.h"
37#include "langhooks.h"
a509ebb5 38#include "tree-vectorizer.h"
5f40b3cb
ZD
39
40/* This pass tries to distribute iterations of loops into several threads.
41 The implementation is straightforward -- for each loop we test whether its
42 iterations are independent, and if it is the case (and some additional
43 conditions regarding profitability and correctness are satisfied), we
44 add OMP_PARALLEL and OMP_FOR codes and let omp expansion machinery do
45 its job.
46
47 The most of the complexity is in bringing the code into shape expected
48 by the omp expanders:
49 -- for OMP_FOR, ensuring that the loop has only one induction variable
50 and that the exit test is at the start of the loop body
51 -- for OMP_PARALLEL, replacing the references to local addressable
52 variables by accesses through pointers, and breaking up ssa chains
53 by storing the values incoming to the parallelized loop to a structure
54 passed to the new function as an argument (something similar is done
55 in omp gimplification, unfortunately only a small part of the code
56 can be shared).
57
58 TODO:
59 -- if there are several parallelizable loops in a function, it may be
60 possible to generate the threads just once (using synchronization to
61 ensure that cross-loop dependences are obeyed).
62 -- handling of common scalar dependence patterns (accumulation, ...)
63 -- handling of non-innermost loops */
64
a509ebb5
RL
65/*
66 Reduction handling:
67 currently we use vect_is_simple_reduction() to detect reduction patterns.
68 The code transformation will be introduced by an example.
69
0eb7e7aa 70
a509ebb5
RL
71parloop
72{
73 int sum=1;
74
0eb7e7aa 75 for (i = 0; i < N; i++)
a509ebb5
RL
76 {
77 x[i] = i + 3;
78 sum+=x[i];
79 }
80}
81
0eb7e7aa 82gimple-like code:
a509ebb5
RL
83header_bb:
84
0eb7e7aa
RL
85 # sum_29 = PHI <sum_11(5), 1(3)>
86 # i_28 = PHI <i_12(5), 0(3)>
87 D.1795_8 = i_28 + 3;
88 x[i_28] = D.1795_8;
89 sum_11 = D.1795_8 + sum_29;
90 i_12 = i_28 + 1;
91 if (N_6(D) > i_12)
92 goto header_bb;
93
a509ebb5
RL
94
95exit_bb:
96
0eb7e7aa
RL
97 # sum_21 = PHI <sum_11(4)>
98 printf (&"%d"[0], sum_21);
a509ebb5
RL
99
100
101after reduction transformation (only relevant parts):
102
103parloop
104{
105
106....
107
0eb7e7aa
RL
108
109 # A new variable is created for each reduction:
110 "reduction_initial" is the initial value given by the user.
111 It is kept and will be used after the parallel computing is done. #
112
113 reduction_initial.24_46 = 1;
a509ebb5 114
0eb7e7aa
RL
115 # Storing the neutral value of the
116 particular reduction's operation, e.g. 0 for PLUS_EXPR,
117 1 for MULT_EXPR, etc. into the reduction field.
118 This is done in create_stores_for_reduction. #
119
120 .paral_data_store.32.sum.27 = 0;
121
122 #pragma omp parallel num_threads(4)
a509ebb5 123
0eb7e7aa
RL
124 #pragma omp for schedule(static)
125 # sum.27_29 = PHI <sum.27_11, 0> # The neutral element replaces
126 the user's inital value. #
127 sum.27_11 = D.1827_8 + sum.27_29;
128 OMP_CONTINUE
a509ebb5 129
0eb7e7aa
RL
130 # Adding this reduction phi is done at create_phi_for_local_result() #
131 # sum.27_56 = PHI <sum.27_11, 0>
132 OMP_RETURN
133
134 # Creating the atomic operation is done at
135 create_call_for_reduction_1() #
a509ebb5 136
0eb7e7aa
RL
137 #pragma omp atomic_load
138 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
139 D.1840_60 = sum.27_56 + D.1839_59;
140 #pragma omp atomic_store (D.1840_60);
a509ebb5 141
0eb7e7aa
RL
142 OMP_RETURN
143
144 # collecting the result after the join of the threads is done at
145 create_loads_for_reductions().
146 a new variable "reduction_final" is created. It calculates the final
147 value from the initial value and the value computed by the threads #
148
149 .paral_data_load.33_52 = &.paral_data_store.32;
150 reduction_final.34_53 = .paral_data_load.33_52->sum.27;
151 sum_37 = reduction_initial.24_46 + reduction_final.34_53;
152 sum_43 = D.1795_41 + sum_37;
153
154 exit bb:
155 # sum_21 = PHI <sum_43, sum_26>
156 printf (&"%d"[0], sum_21);
157
158...
159
a509ebb5
RL
160}
161
162*/
163
5f40b3cb
ZD
164/* Minimal number of iterations of a loop that should be executed in each
165 thread. */
166#define MIN_PER_THREAD 100
167
a509ebb5
RL
168/* Element of the hashtable, representing a
169 reduction in the current loop. */
170struct reduction_info
171{
172 tree reduc_stmt; /* reduction statement. */
173 tree reduc_phi; /* The phi node defining the reduction. */
174 enum tree_code reduction_code; /* code for the reduction operation. */
175 tree keep_res; /* The PHI_RESULT of this phi is the resulting value
176 of the reduction variable when existing the loop. */
177 tree initial_value; /* An ssa name representing a new variable holding
178 the initial value of the reduction var before entering the loop. */
179 tree field; /* the name of the field in the parloop data structure intended for reduction. */
a509ebb5
RL
180 tree init; /* reduction initialization value. */
181 tree new_phi; /* (helper field) Newly created phi node whose result
182 will be passed to the atomic operation. Represents
183 the local result each thread computed for the reduction
184 operation. */
185};
186
187/* Equality and hash functions for hashtab code. */
188
189static int
190reduction_info_eq (const void *aa, const void *bb)
191{
192 const struct reduction_info *a = (const struct reduction_info *) aa;
193 const struct reduction_info *b = (const struct reduction_info *) bb;
194
195 return (a->reduc_phi == b->reduc_phi);
196}
197
198static hashval_t
199reduction_info_hash (const void *aa)
200{
201 const struct reduction_info *a = (const struct reduction_info *) aa;
202
203 return htab_hash_pointer (a->reduc_phi);
204}
205
206static struct reduction_info *
207reduction_phi (htab_t reduction_list, tree phi)
208{
209 struct reduction_info tmpred, *red;
210
211 if (htab_elements (reduction_list) == 0)
212 return NULL;
213
214 tmpred.reduc_phi = phi;
215 red = htab_find (reduction_list, &tmpred);
216
217 return red;
218}
219
5f40b3cb
ZD
220/* Element of hashtable of names to copy. */
221
222struct name_to_copy_elt
223{
224 unsigned version; /* The version of the name to copy. */
225 tree new_name; /* The new name used in the copy. */
226 tree field; /* The field of the structure used to pass the
227 value. */
228};
229
230/* Equality and hash functions for hashtab code. */
231
232static int
233name_to_copy_elt_eq (const void *aa, const void *bb)
234{
a509ebb5
RL
235 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
236 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
5f40b3cb
ZD
237
238 return a->version == b->version;
239}
240
241static hashval_t
242name_to_copy_elt_hash (const void *aa)
243{
a509ebb5 244 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
5f40b3cb
ZD
245
246 return (hashval_t) a->version;
247}
248
249/* Returns true if the iterations of LOOP are independent on each other (that
250 is, if we can execute them in parallel), and if LOOP satisfies other
251 conditions that we need to be able to parallelize it. Description of number
a509ebb5
RL
252 of iterations is stored to NITER. Reduction analysis is done, if
253 reductions are found, they are inserted to the REDUCTION_LIST. */
5f40b3cb
ZD
254
255static bool
a509ebb5 256loop_parallel_p (struct loop *loop, htab_t reduction_list, struct tree_niter_desc *niter)
5f40b3cb
ZD
257{
258 edge exit = single_dom_exit (loop);
a509ebb5
RL
259 VEC (ddr_p, heap) * dependence_relations;
260 VEC (data_reference_p, heap) * datarefs;
5f40b3cb
ZD
261 lambda_trans_matrix trans;
262 bool ret = false;
263 tree phi;
a509ebb5 264 loop_vec_info simple_loop_info;
5f40b3cb
ZD
265
266 /* Only consider innermost loops with just one exit. The innermost-loop
267 restriction is not necessary, but it makes things simpler. */
268 if (loop->inner || !exit)
269 return false;
270
271 if (dump_file && (dump_flags & TDF_DETAILS))
272 fprintf (dump_file, "\nConsidering loop %d\n", loop->num);
273
274 /* We need to know # of iterations, and there should be no uses of values
275 defined inside loop outside of it, unless the values are invariants of
276 the loop. */
277 if (!number_of_iterations_exit (loop, exit, niter, false))
278 {
279 if (dump_file && (dump_flags & TDF_DETAILS))
280 fprintf (dump_file, " FAILED: number of iterations not known\n");
281 return false;
282 }
283
a509ebb5
RL
284 simple_loop_info = vect_analyze_loop_form (loop);
285
286 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
287 {
288 tree reduc_stmt = NULL, operation;
289
290 /* ??? TODO: Change this into a generic function that
291 recognizes reductions. */
292 if (!is_gimple_reg (PHI_RESULT (phi)))
293 continue;
294 if (simple_loop_info)
295 reduc_stmt = vect_is_simple_reduction (simple_loop_info, phi);
296
297 /* Create a reduction_info struct, initialize it and insert it to
298 the reduction list. */
299
300 if (reduc_stmt)
301 {
302 PTR *slot;
303 struct reduction_info *new_reduction;
304
305 if (dump_file && (dump_flags & TDF_DETAILS))
306 {
307 fprintf (dump_file,
308 "Detected reduction. reduction stmt is: \n");
309 print_generic_stmt (dump_file, reduc_stmt, 0);
310 fprintf (dump_file, "\n");
311 }
312
313 new_reduction = XCNEW (struct reduction_info);
314
315 new_reduction->reduc_stmt = reduc_stmt;
316 new_reduction->reduc_phi = phi;
317 operation = GIMPLE_STMT_OPERAND (reduc_stmt, 1);
318 new_reduction->reduction_code = TREE_CODE (operation);
319 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
320 *slot = new_reduction;
321 }
322 }
323
5f40b3cb
ZD
324 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
325 {
a509ebb5
RL
326 struct reduction_info *red;
327 imm_use_iterator imm_iter;
328 use_operand_p use_p;
329 tree reduc_phi;
330
5f40b3cb
ZD
331 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
332
333 if (is_gimple_reg (val))
334 {
335 if (dump_file && (dump_flags & TDF_DETAILS))
a509ebb5
RL
336 {
337 fprintf (dump_file, "phi is ");
338 print_generic_expr (dump_file, phi, 0);
339 fprintf (dump_file, "arg of phi to exit: value ");
340 print_generic_expr (dump_file, val, 0);
341 fprintf (dump_file, " used outside loop\n");
342 fprintf (dump_file,
343 " checking if it a part of reduction pattern: \n");
344 }
345 if (htab_elements (reduction_list) == 0)
346 {
347 if (dump_file && (dump_flags & TDF_DETAILS))
348 fprintf (dump_file,
349 " FAILED: it is not a part of reduction.\n");
350 return false;
351 }
352 reduc_phi = NULL;
353 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
354 {
355 if (flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
356 {
357 reduc_phi = USE_STMT (use_p);
358 break;
359 }
360 }
361 red = reduction_phi (reduction_list, reduc_phi);
362 if (red == NULL)
363 {
364 if (dump_file && (dump_flags & TDF_DETAILS))
365 fprintf (dump_file,
366 " FAILED: it is not a part of reduction.\n");
367 return false;
368 }
369 if (dump_file && (dump_flags & TDF_DETAILS))
370 {
371 fprintf (dump_file, "reduction phi is ");
372 print_generic_expr (dump_file, red->reduc_phi, 0);
373 fprintf (dump_file, "reduction stmt is ");
374 print_generic_expr (dump_file, red->reduc_stmt, 0);
375 }
376
5f40b3cb
ZD
377 }
378 }
379
380 /* The iterations of the loop may communicate only through bivs whose
381 iteration space can be distributed efficiently. */
382 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
383 {
384 tree def = PHI_RESULT (phi);
385 affine_iv iv;
386
a509ebb5 387 if (is_gimple_reg (def) && !simple_iv (loop, phi, def, &iv, true))
5f40b3cb 388 {
a509ebb5
RL
389 struct reduction_info *red;
390
391 red = reduction_phi (reduction_list, phi);
392 if (red == NULL)
393 {
394 if (dump_file && (dump_flags & TDF_DETAILS))
395 fprintf (dump_file,
396 " FAILED: scalar dependency between iterations\n");
397 return false;
398 }
5f40b3cb
ZD
399 }
400 }
401
402 /* We need to version the loop to verify assumptions in runtime. */
403 if (!can_duplicate_loop_p (loop))
404 {
405 if (dump_file && (dump_flags & TDF_DETAILS))
406 fprintf (dump_file, " FAILED: cannot be duplicated\n");
407 return false;
408 }
409
410 /* Check for problems with dependences. If the loop can be reversed,
411 the iterations are independent. */
412 datarefs = VEC_alloc (data_reference_p, heap, 10);
413 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
414 compute_data_dependences_for_loop (loop, true, &datarefs,
415 &dependence_relations);
416 if (dump_file && (dump_flags & TDF_DETAILS))
417 dump_data_dependence_relations (dump_file, dependence_relations);
418
419 trans = lambda_trans_matrix_new (1, 1);
420 LTM_MATRIX (trans)[0][0] = -1;
421
422 if (lambda_transform_legal_p (trans, 1, dependence_relations))
423 {
424 ret = true;
425 if (dump_file && (dump_flags & TDF_DETAILS))
426 fprintf (dump_file, " SUCCESS: may be parallelized\n");
427 }
428 else if (dump_file && (dump_flags & TDF_DETAILS))
a509ebb5
RL
429 fprintf (dump_file,
430 " FAILED: data dependencies exist across iterations\n");
5f40b3cb
ZD
431
432 free_dependence_relations (dependence_relations);
433 free_data_refs (datarefs);
434
435 return ret;
436}
437
438/* Assigns the address of VAR in TYPE to an ssa name, and returns this name.
439 The assignment statement is placed before LOOP. DECL_ADDRESS maps decls
440 to their addresses that can be reused. */
441
442static tree
443take_address_of (tree var, tree type, struct loop *loop, htab_t decl_address)
444{
445 int uid = DECL_UID (var);
446 void **dslot;
447 struct int_tree_map ielt, *nielt;
448 tree name, bvar, stmt;
449 edge entry = loop_preheader_edge (loop);
450
451 ielt.uid = uid;
452 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
453 if (!*dslot)
454 {
455 bvar = create_tmp_var (type, get_name (var));
456 add_referenced_var (bvar);
457 stmt = build_gimple_modify_stmt (bvar,
a509ebb5
RL
458 fold_convert (type,
459 build_addr (var,
460 current_function_decl)));
5f40b3cb
ZD
461 name = make_ssa_name (bvar, stmt);
462 GIMPLE_STMT_OPERAND (stmt, 0) = name;
463 bsi_insert_on_edge_immediate (entry, stmt);
464
465 nielt = XNEW (struct int_tree_map);
466 nielt->uid = uid;
467 nielt->to = name;
468 *dslot = nielt;
469
470 return name;
471 }
472
473 name = ((struct int_tree_map *) *dslot)->to;
474 if (TREE_TYPE (name) == type)
475 return name;
476
477 bvar = SSA_NAME_VAR (name);
a509ebb5 478 stmt = build_gimple_modify_stmt (bvar, fold_convert (type, name));
5f40b3cb
ZD
479 name = make_ssa_name (bvar, stmt);
480 GIMPLE_STMT_OPERAND (stmt, 0) = name;
481 bsi_insert_on_edge_immediate (entry, stmt);
482
483 return name;
484}
485
a509ebb5
RL
486/* Callback for htab_traverse. Create the initialization statement
487 for reduction described in SLOT, and place it at the preheader of
488 the loop described in DATA. */
489
490static int
491initialize_reductions (void **slot, void *data)
492{
0eb7e7aa 493 tree stmt;
a509ebb5 494 tree init, c;
0eb7e7aa 495 tree name1;
a509ebb5
RL
496 tree bvar, type, arg;
497 edge e;
498
499 struct reduction_info *reduc = *slot;
500 struct loop *loop = (struct loop *) data;
501
502 /* Create initialization in preheader:
503 reduction_variable = initialization value of reduction. */
504
505 /* In the phi node at the header, replace the argument coming
506 from the preheader with the reduction initialization value. */
507
508 /* Create a new variable to initialize the reduction. */
509 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
510 bvar = create_tmp_var (type, "reduction");
511 add_referenced_var (bvar);
512
513 c = build_omp_clause (OMP_CLAUSE_REDUCTION);
514 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
515 OMP_CLAUSE_DECL (c) =
516 SSA_NAME_VAR (GIMPLE_STMT_OPERAND (reduc->reduc_stmt, 0));
517
518 init = omp_reduction_init (c, TREE_TYPE (bvar));
519 reduc->init = init;
520
0eb7e7aa
RL
521 /* Replace the argument representing the initialization value
522 with the initialization value for the reduction (neutral
523 element for the particular operation, e.g. 0 for PLUS_EXPR,
524 1 for MULT_EXPR, etc).
525 Keep the old value in a new variable "reduction_initial",
526 that will be taken in consideration after the parallel
527 computing is done. */
a509ebb5
RL
528
529 e = loop_preheader_edge (loop);
530 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
531 /* Create new variable to hold the initial value. */
532 type = TREE_TYPE (bvar);
533 bvar = create_tmp_var (type, "reduction_initial");
534 add_referenced_var (bvar);
535
536 stmt = build_gimple_modify_stmt (bvar, arg);
537 name1 = make_ssa_name (bvar, stmt);
538 GIMPLE_STMT_OPERAND (stmt, 0) = name1;
539 SSA_NAME_DEF_STMT (name1) = stmt;
540
541 bsi_insert_on_edge_immediate (e, stmt);
a509ebb5 542 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
0eb7e7aa 543 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
a509ebb5 544 reduc->initial_value = name1;
a509ebb5
RL
545 return 1;
546}
5f40b3cb
ZD
547
548struct elv_data
549{
550 struct loop *loop;
551 htab_t decl_address;
552 bool changed;
553};
554
a509ebb5
RL
555/* Eliminates references to local variables in *TP out of LOOP. DECL_ADDRESS
556 contains addresses of the references that had their address taken already.
557 If the expression is changed, CHANGED is set to true. Callback for
558 walk_tree. */
559
5f40b3cb 560static tree
a509ebb5 561eliminate_local_variables_1 (tree * tp, int *walk_subtrees, void *data)
5f40b3cb
ZD
562{
563 struct elv_data *dta = data;
564 tree t = *tp, var, addr, addr_type, type;
565
566 if (DECL_P (t))
567 {
568 *walk_subtrees = 0;
569
570 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
571 return NULL_TREE;
572
573 type = TREE_TYPE (t);
574 addr_type = build_pointer_type (type);
575 addr = take_address_of (t, addr_type, dta->loop, dta->decl_address);
576 *tp = build1 (INDIRECT_REF, TREE_TYPE (*tp), addr);
577
578 dta->changed = true;
579 return NULL_TREE;
580 }
581
582 if (TREE_CODE (t) == ADDR_EXPR)
583 {
584 var = TREE_OPERAND (t, 0);
585 if (!DECL_P (var))
586 return NULL_TREE;
587
588 *walk_subtrees = 0;
589 if (!SSA_VAR_P (var) || DECL_EXTERNAL (var))
590 return NULL_TREE;
591
592 addr_type = TREE_TYPE (t);
593 addr = take_address_of (var, addr_type, dta->loop, dta->decl_address);
594 *tp = addr;
595
596 dta->changed = true;
597 return NULL_TREE;
598 }
599
a509ebb5 600 if (!EXPR_P (t) && !GIMPLE_STMT_P (t))
5f40b3cb
ZD
601 *walk_subtrees = 0;
602
603 return NULL_TREE;
604}
605
606/* Moves the references to local variables in STMT from LOOP. DECL_ADDRESS
607 contains addresses for the references for that we have already taken
608 them. */
609
610static void
611eliminate_local_variables_stmt (struct loop *loop, tree stmt,
612 htab_t decl_address)
613{
614 struct elv_data dta;
615
616 dta.loop = loop;
617 dta.decl_address = decl_address;
618 dta.changed = false;
619
620 walk_tree (&stmt, eliminate_local_variables_1, &dta, NULL);
621
622 if (dta.changed)
623 update_stmt (stmt);
624}
625
a509ebb5
RL
626/* Eliminates the references to local variables from LOOP.
627 This includes:
628 1) Taking address of a local variable -- these are moved out of the
629 loop (and temporary variable is created to hold the address if
630 necessary).
5f40b3cb 631 2) Dereferencing a local variable -- these are replaced with indirect
a509ebb5 632 references. */
5f40b3cb
ZD
633
634static void
635eliminate_local_variables (struct loop *loop)
636{
637 basic_block bb, *body = get_loop_body (loop);
638 unsigned i;
639 block_stmt_iterator bsi;
640 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
641 free);
642
643 /* Find and rename the ssa names defined outside of loop. */
644 for (i = 0; i < loop->num_nodes; i++)
645 {
646 bb = body[i];
647
648 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
649 eliminate_local_variables_stmt (loop, bsi_stmt (bsi), decl_address);
650 }
651
652 htab_delete (decl_address);
653}
654
655/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
656 The copies are stored to NAME_COPIES, if NAME was already duplicated,
657 its duplicate stored in NAME_COPIES is returned.
658
659 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
660 duplicated, storing the copies in DECL_COPIES. */
661
662static tree
663separate_decls_in_loop_name (tree name,
664 htab_t name_copies, htab_t decl_copies,
665 bool copy_name_p)
666{
667 tree copy, var, var_copy;
668 unsigned idx, uid, nuid;
669 struct int_tree_map ielt, *nielt;
670 struct name_to_copy_elt elt, *nelt;
671 void **slot, **dslot;
672
673 if (TREE_CODE (name) != SSA_NAME)
674 return name;
675
676 idx = SSA_NAME_VERSION (name);
677 elt.version = idx;
678 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
679 copy_name_p ? INSERT : NO_INSERT);
680 if (slot && *slot)
681 return ((struct name_to_copy_elt *) *slot)->new_name;
682
683 var = SSA_NAME_VAR (name);
684 uid = DECL_UID (var);
685 ielt.uid = uid;
686 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
687 if (!*dslot)
688 {
689 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
690 add_referenced_var (var_copy);
691 nielt = XNEW (struct int_tree_map);
692 nielt->uid = uid;
693 nielt->to = var_copy;
694 *dslot = nielt;
695
696 /* Ensure that when we meet this decl next time, we won't duplicate
a509ebb5 697 it again. */
5f40b3cb
ZD
698 nuid = DECL_UID (var_copy);
699 ielt.uid = nuid;
700 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
701 gcc_assert (!*dslot);
702 nielt = XNEW (struct int_tree_map);
703 nielt->uid = nuid;
704 nielt->to = var_copy;
705 *dslot = nielt;
706 }
707 else
708 var_copy = ((struct int_tree_map *) *dslot)->to;
709
710 if (copy_name_p)
711 {
712 copy = duplicate_ssa_name (name, NULL_TREE);
713 nelt = XNEW (struct name_to_copy_elt);
714 nelt->version = idx;
715 nelt->new_name = copy;
716 nelt->field = NULL_TREE;
717 *slot = nelt;
718 }
719 else
720 {
721 gcc_assert (!slot);
722 copy = name;
723 }
724
725 SSA_NAME_VAR (copy) = var_copy;
726 return copy;
727}
728
729/* Finds the ssa names used in STMT that are defined outside of LOOP and
730 replaces such ssa names with their duplicates. The duplicates are stored to
731 NAME_COPIES. Base decls of all ssa names used in STMT
732 (including those defined in LOOP) are replaced with the new temporary
733 variables; the replacement decls are stored in DECL_COPIES. */
734
735static void
736separate_decls_in_loop_stmt (struct loop *loop, tree stmt,
737 htab_t name_copies, htab_t decl_copies)
738{
739 use_operand_p use;
740 def_operand_p def;
741 ssa_op_iter oi;
742 tree name, copy;
743 bool copy_name_p;
744
745 mark_virtual_ops_for_renaming (stmt);
746
747 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
a509ebb5
RL
748 {
749 name = DEF_FROM_PTR (def);
750 gcc_assert (TREE_CODE (name) == SSA_NAME);
751 copy = separate_decls_in_loop_name (name, name_copies, decl_copies,
752 false);
753 gcc_assert (copy == name);
754 }
5f40b3cb
ZD
755
756 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
a509ebb5
RL
757 {
758 name = USE_FROM_PTR (use);
759 if (TREE_CODE (name) != SSA_NAME)
760 continue;
761
762 copy_name_p = expr_invariant_in_loop_p (loop, name);
763 copy = separate_decls_in_loop_name (name, name_copies, decl_copies,
764 copy_name_p);
765 SET_USE (use, copy);
766 }
5f40b3cb
ZD
767}
768
0eb7e7aa
RL
769/* Callback for htab_traverse. Adds a field corresponding to the reduction
770 specified in SLOT. The type is passed in DATA. */
771
772static int
773add_field_for_reduction (void **slot, void *data)
a509ebb5 774{
0eb7e7aa
RL
775
776 struct reduction_info *red = *slot;
777 tree type = data;
778 tree var = SSA_NAME_VAR (GIMPLE_STMT_OPERAND (red->reduc_stmt, 0));
779 tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
780
781 insert_field_into_struct (type, field);
782
783 red->field = field;
784
785 return 1;
786}
a509ebb5 787
5f40b3cb 788/* Callback for htab_traverse. Adds a field corresponding to a ssa name
0eb7e7aa 789 described in SLOT. The type is passed in DATA. */
5f40b3cb
ZD
790
791static int
792add_field_for_name (void **slot, void *data)
793{
794 struct name_to_copy_elt *elt = *slot;
0eb7e7aa 795 tree type = data;
5f40b3cb
ZD
796 tree name = ssa_name (elt->version);
797 tree var = SSA_NAME_VAR (name);
798 tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
799
800 insert_field_into_struct (type, field);
801 elt->field = field;
a509ebb5 802
5f40b3cb
ZD
803 return 1;
804}
805
a509ebb5
RL
806/* Callback for htab_traverse. A local result is the intermediate result
807 computed by a single
808 thread, or the intial value in case no iteration was executed.
809 This function creates a phi node reflecting these values.
810 The phi's result will be stored in NEW_PHI field of the
811 reduction's data structure. */
812
813static int
814create_phi_for_local_result (void **slot, void *data)
815{
816 struct reduction_info *reduc = *slot;
817 struct loop *loop = data;
818 edge e;
819 tree new_phi;
820 basic_block store_bb;
821 tree local_res;
822
823 /* STORE_BB is the block where the phi
824 should be stored. It is the destination of the loop exit.
825 (Find the fallthru edge from OMP_CONTINUE). */
826 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
827
828 /* STORE_BB has two predecessors. One coming from the loop
829 (the reduction's result is computed at the loop),
830 and another coming from a block preceding the loop,
831 when no iterations
832 are executed (the initial value should be taken). */
833 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
834 e = EDGE_PRED (store_bb, 1);
835 else
836 e = EDGE_PRED (store_bb, 0);
0eb7e7aa 837 local_res = make_ssa_name (SSA_NAME_VAR (GIMPLE_STMT_OPERAND (reduc->reduc_stmt, 0)), NULL_TREE);
a509ebb5
RL
838 new_phi = create_phi_node (local_res, store_bb);
839 SSA_NAME_DEF_STMT (local_res) = new_phi;
840 add_phi_arg (new_phi, reduc->init, e);
841 add_phi_arg (new_phi, GIMPLE_STMT_OPERAND (reduc->reduc_stmt, 0),
842 FALLTHRU_EDGE (loop->latch));
843 reduc->new_phi = new_phi;
844
845 return 1;
846}
5f40b3cb
ZD
847
848struct clsn_data
849{
850 tree store;
851 tree load;
852
853 basic_block store_bb;
854 basic_block load_bb;
855};
856
a509ebb5
RL
857/* Callback for htab_traverse. Create an atomic instruction for the
858 reduction described in SLOT.
859 DATA annotates the place in memory the atomic operation relates to,
860 and the basic block it needs to be generated in. */
861
862static int
863create_call_for_reduction_1 (void **slot, void *data)
864{
865 struct reduction_info *reduc = *slot;
866 struct clsn_data *clsn_data = data;
867 block_stmt_iterator bsi;
868 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
869 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
870 tree load_struct;
871 basic_block bb;
872 basic_block new_bb;
873 edge e;
874 tree t, addr, addr_type, ref, x;
875 tree tmp_load, load, name;
876
877 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
878 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
879 addr_type = build_pointer_type (type);
880
881 addr = build_addr (t, current_function_decl);
882
883 /* Create phi node. */
884 bb = clsn_data->load_bb;
885
886 e = split_block (bb, t);
887 new_bb = e->dest;
888
889 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
890 add_referenced_var (tmp_load);
891 tmp_load = make_ssa_name (tmp_load, NULL);
892 load = build2 (OMP_ATOMIC_LOAD, void_type_node, tmp_load, addr);
893 SSA_NAME_DEF_STMT (tmp_load) = load;
894 bsi = bsi_start (new_bb);
895 bsi_insert_after (&bsi, load, BSI_NEW_STMT);
896
897 e = split_block (new_bb, load);
898 new_bb = e->dest;
899 bsi = bsi_start (new_bb);
900 ref = tmp_load;
901 x =
902 fold_build2 (reduc->reduction_code,
903 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
904 PHI_RESULT (reduc->new_phi));
905
906 name =
907 force_gimple_operand_bsi (&bsi, x, true, NULL_TREE, true,
908 BSI_CONTINUE_LINKING);
909
910 x = build1 (OMP_ATOMIC_STORE, void_type_node, name);
911
912 bsi_insert_after (&bsi, x, BSI_NEW_STMT);
913 return 1;
914}
915
916/* Create the atomic operation at the join point of the threads.
917 REDUCTION_LIST describes the reductions in the LOOP.
918 LD_ST_DATA describes the shared data structure where
919 shared data is stored in and loaded from. */
920static void
921create_call_for_reduction (struct loop *loop, htab_t reduction_list,
922 struct clsn_data *ld_st_data)
923{
924 htab_traverse (reduction_list, create_phi_for_local_result, loop);
925 /* Find the fallthru edge from OMP_CONTINUE. */
926 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
927 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
928}
929
930/* Callback for htab_traverse. Create a new variable that loads the
931 final reduction value at the
932 join point of all threads, adds the initial value the reduction
933 variable had before the parallel computation started, and
934 inserts it in the right place. */
935
936static int
937create_loads_for_reductions (void **slot, void *data)
938{
939 struct reduction_info *red = *slot;
940 struct clsn_data *clsn_data = data;
941 tree stmt;
942 block_stmt_iterator bsi;
0eb7e7aa 943 tree type = TREE_TYPE (GIMPLE_STMT_OPERAND (red->reduc_stmt, 0));
a509ebb5
RL
944 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
945 tree load_struct;
946 tree bvar, name;
947 tree x;
948
949 bsi = bsi_after_labels (clsn_data->load_bb);
950 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
951 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
952 NULL_TREE);
953 bvar = create_tmp_var (type, "reduction_final");
954 add_referenced_var (bvar);
955
956 /* Apply operation between the new variable which is the result
957 of computation all threads, and the initial value which is kept
958 at reduction->inital_value. */
959
960 stmt = build_gimple_modify_stmt (bvar, load_struct);
961 name = make_ssa_name (bvar, stmt);
962 GIMPLE_STMT_OPERAND (stmt, 0) = name;
963 SSA_NAME_DEF_STMT (name) = stmt;
a509ebb5 964 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
a509ebb5
RL
965 x =
966 fold_build2 (red->reduction_code, TREE_TYPE (load_struct),
967 name, red->initial_value);
968 name = PHI_RESULT (red->keep_res);
969 stmt = build_gimple_modify_stmt (name, x);
970 GIMPLE_STMT_OPERAND (stmt, 0) = name;
971 SSA_NAME_DEF_STMT (name) = stmt;
972
973 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
974
975 remove_phi_node (red->keep_res, NULL_TREE, false);
976
977 return 1;
978}
979
980/* Load the reduction result that was stored in LD_ST_DATA.
981 REDUCTION_LIST describes the list of reductions that the
982 loades should be generated for. */
983static void
984create_final_loads_for_reduction (htab_t reduction_list,
985 struct clsn_data *ld_st_data)
986{
987 block_stmt_iterator bsi;
988 tree t;
989
990 bsi = bsi_after_labels (ld_st_data->load_bb);
991 t = build_fold_addr_expr (ld_st_data->store);
992 t =
993 build_gimple_modify_stmt (ld_st_data->load,
994 build_fold_addr_expr (ld_st_data->store));
995
996 bsi_insert_before (&bsi, t, BSI_NEW_STMT);
997 SSA_NAME_DEF_STMT (ld_st_data->load) = t;
998 GIMPLE_STMT_OPERAND (t, 0) = ld_st_data->load;
999
1000 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1001
1002}
1003
0eb7e7aa
RL
1004/* Callback for htab_traverse. Store the neutral value for the
1005 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1006 1 for MULT_EXPR, etc. into the reduction field.
1007 The reduction is specified in SLOT. The store information is
1008 passed in DATA. */
1009
1010static int
1011create_stores_for_reduction (void **slot, void *data)
1012{
1013 struct reduction_info *red = *slot;
1014 struct clsn_data *clsn_data = data;
1015 tree stmt;
1016 block_stmt_iterator bsi;
1017 tree type = TREE_TYPE (GIMPLE_STMT_OPERAND (red->reduc_stmt, 0));
1018
1019 bsi = bsi_last (clsn_data->store_bb);
1020 stmt =
1021 build_gimple_modify_stmt (build3
1022 (COMPONENT_REF, type, clsn_data->store,
1023 red->field, NULL_TREE),
1024 red->init );
1025 mark_virtual_ops_for_renaming (stmt);
1026 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
1027
1028 return 1;
1029}
1030
a509ebb5
RL
1031/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1032 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1033 specified in SLOT. */
1034
5f40b3cb
ZD
1035static int
1036create_loads_and_stores_for_name (void **slot, void *data)
1037{
1038 struct name_to_copy_elt *elt = *slot;
1039 struct clsn_data *clsn_data = data;
1040 tree stmt;
1041 block_stmt_iterator bsi;
1042 tree type = TREE_TYPE (elt->new_name);
1043 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
1044 tree load_struct;
1045
1046 bsi = bsi_last (clsn_data->store_bb);
a509ebb5
RL
1047 stmt =
1048 build_gimple_modify_stmt (build3
1049 (COMPONENT_REF, type, clsn_data->store,
1050 elt->field, NULL_TREE),
1051 ssa_name (elt->version));
5f40b3cb
ZD
1052 mark_virtual_ops_for_renaming (stmt);
1053 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
1054
1055 bsi = bsi_last (clsn_data->load_bb);
1056 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
a509ebb5
RL
1057 stmt = build_gimple_modify_stmt (elt->new_name,
1058 build3 (COMPONENT_REF, type, load_struct,
1059 elt->field, NULL_TREE));
5f40b3cb
ZD
1060 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1061 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
1062
1063 return 1;
1064}
1065
1066/* Moves all the variables used in LOOP and defined outside of it (including
1067 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1068 name) to a structure created for this purpose. The code
1069
1070 while (1)
1071 {
1072 use (a);
1073 use (b);
1074 }
1075
1076 is transformed this way:
1077
1078 bb0:
1079 old.a = a;
1080 old.b = b;
1081
1082 bb1:
1083 a' = new->a;
1084 b' = new->b;
1085 while (1)
1086 {
1087 use (a');
1088 use (b');
1089 }
1090
1091 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1092 pointer `new' is intentionally not initialized (the loop will be split to a
1093 separate function later, and `new' will be initialized from its arguments).
a509ebb5
RL
1094 LD_ST_DATA holds information about the shared data structure used to pass
1095 information among the threads. It is initialized here, and
1096 gen_parallel_loop will pass it to create_call_for_reduction that
1097 needs this information. REDUCTION_LIST describes the reductions
1098 in LOOP. */
5f40b3cb
ZD
1099
1100static void
a509ebb5
RL
1101separate_decls_in_loop (struct loop *loop, htab_t reduction_list,
1102 tree * arg_struct, tree * new_arg_struct,
1103 struct clsn_data *ld_st_data)
1104
5f40b3cb
ZD
1105{
1106 basic_block bb1 = split_edge (loop_preheader_edge (loop));
1107 basic_block bb0 = single_pred (bb1);
1108 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1109 name_to_copy_elt_eq, free);
1110 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1111 free);
1112 basic_block bb, *body = get_loop_body (loop);
1113 unsigned i;
1114 tree phi, type, type_name, nvar;
1115 block_stmt_iterator bsi;
1116 struct clsn_data clsn_data;
1117
1118 /* Find and rename the ssa names defined outside of loop. */
1119 for (i = 0; i < loop->num_nodes; i++)
1120 {
1121 bb = body[i];
1122
1123 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1124 separate_decls_in_loop_stmt (loop, phi, name_copies, decl_copies);
1125
1126 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1127 separate_decls_in_loop_stmt (loop, bsi_stmt (bsi), name_copies,
1128 decl_copies);
1129 }
1130 free (body);
1131
1132 if (htab_elements (name_copies) == 0)
1133 {
1134 /* It may happen that there is nothing to copy (if there are only
a509ebb5 1135 loop carried and external variables in the loop). */
5f40b3cb
ZD
1136 *arg_struct = NULL;
1137 *new_arg_struct = NULL;
1138 }
1139 else
1140 {
1141 /* Create the type for the structure to store the ssa names to. */
1142 type = lang_hooks.types.make_type (RECORD_TYPE);
1143 type_name = build_decl (TYPE_DECL, create_tmp_var_name (".paral_data"),
1144 type);
1145 TYPE_NAME (type) = type_name;
1146
0eb7e7aa
RL
1147 htab_traverse (name_copies, add_field_for_name, type);
1148 if (htab_elements (reduction_list) > 0)
1149 {
1150 /* Create the fields for reductions. */
1151 htab_traverse (reduction_list, add_field_for_reduction,
1152 type);
1153 }
5f40b3cb 1154 layout_type (type);
0eb7e7aa 1155
5f40b3cb
ZD
1156 /* Create the loads and stores. */
1157 *arg_struct = create_tmp_var (type, ".paral_data_store");
1158 add_referenced_var (*arg_struct);
1159 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1160 add_referenced_var (nvar);
1161 *new_arg_struct = make_ssa_name (nvar, NULL_TREE);
1162
a509ebb5
RL
1163 ld_st_data->store = *arg_struct;
1164 ld_st_data->load = *new_arg_struct;
1165 ld_st_data->store_bb = bb0;
1166 ld_st_data->load_bb = bb1;
0eb7e7aa 1167
5f40b3cb 1168 htab_traverse (name_copies, create_loads_and_stores_for_name,
a509ebb5
RL
1169 ld_st_data);
1170
1171 /* Load the calculation from memory into a new
1172 reduction variable (after the join of the threads). */
1173 if (htab_elements (reduction_list) > 0)
1174 {
0eb7e7aa
RL
1175 htab_traverse (reduction_list, create_stores_for_reduction,
1176 ld_st_data);
a509ebb5
RL
1177 clsn_data.load = make_ssa_name (nvar, NULL_TREE);
1178 clsn_data.load_bb = single_dom_exit (loop)->dest;
1179 clsn_data.store = ld_st_data->store;
1180 create_final_loads_for_reduction (reduction_list, &clsn_data);
1181 }
5f40b3cb
ZD
1182 }
1183
1184 htab_delete (decl_copies);
1185 htab_delete (name_copies);
1186}
1187
1188/* Bitmap containing uids of functions created by parallelization. We cannot
1189 allocate it from the default obstack, as it must live across compilation
1190 of several functions; we make it gc allocated instead. */
1191
1192static GTY(()) bitmap parallelized_functions;
1193
1194/* Returns true if FN was created by create_loop_fn. */
1195
1196static bool
1197parallelized_function_p (tree fn)
1198{
1199 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1200 return false;
1201
1202 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1203}
1204
1205/* Creates and returns an empty function that will receive the body of
1206 a parallelized loop. */
1207
1208static tree
1209create_loop_fn (void)
1210{
1211 char buf[100];
1212 char *tname;
1213 tree decl, type, name, t;
1214 struct function *act_cfun = cfun;
1215 static unsigned loopfn_num;
1216
1217 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1218 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1219 clean_symbol_name (tname);
1220 name = get_identifier (tname);
1221 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1222
1223 decl = build_decl (FUNCTION_DECL, name, type);
1224 if (!parallelized_functions)
1225 parallelized_functions = BITMAP_GGC_ALLOC ();
1226 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1227
1228 TREE_STATIC (decl) = 1;
1229 TREE_USED (decl) = 1;
1230 DECL_ARTIFICIAL (decl) = 1;
1231 DECL_IGNORED_P (decl) = 0;
1232 TREE_PUBLIC (decl) = 0;
1233 DECL_UNINLINABLE (decl) = 1;
1234 DECL_EXTERNAL (decl) = 0;
1235 DECL_CONTEXT (decl) = NULL_TREE;
1236 DECL_INITIAL (decl) = make_node (BLOCK);
1237
1238 t = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
1239 DECL_ARTIFICIAL (t) = 1;
1240 DECL_IGNORED_P (t) = 1;
1241 DECL_RESULT (decl) = t;
1242
1243 t = build_decl (PARM_DECL, get_identifier (".paral_data_param"),
1244 ptr_type_node);
1245 DECL_ARTIFICIAL (t) = 1;
1246 DECL_ARG_TYPE (t) = ptr_type_node;
1247 DECL_CONTEXT (t) = decl;
1248 TREE_USED (t) = 1;
1249 DECL_ARGUMENTS (decl) = t;
1250
182e0d71 1251 allocate_struct_function (decl, false);
5f40b3cb
ZD
1252
1253 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1254 it. */
5576d6f2 1255 set_cfun (act_cfun);
5f40b3cb
ZD
1256
1257 return decl;
1258}
1259
1260/* Bases all the induction variables in LOOP on a single induction variable
1261 (unsigned with base 0 and step 1), whose final value is compared with
a509ebb5
RL
1262 NIT. The induction variable is incremented in the loop latch.
1263 REDUCTION_LIST describes the reductions in LOOP. */
5f40b3cb
ZD
1264
1265static void
a509ebb5 1266canonicalize_loop_ivs (struct loop *loop, htab_t reduction_list, tree nit)
5f40b3cb
ZD
1267{
1268 unsigned precision = TYPE_PRECISION (TREE_TYPE (nit));
1269 tree phi, prev, res, type, var_before, val, atype, t, next;
1270 block_stmt_iterator bsi;
1271 bool ok;
1272 affine_iv iv;
1273 edge exit = single_dom_exit (loop);
a509ebb5 1274 struct reduction_info *red;
5f40b3cb
ZD
1275
1276 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
1277 {
1278 res = PHI_RESULT (phi);
1279
a509ebb5 1280 if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision)
5f40b3cb
ZD
1281 precision = TYPE_PRECISION (TREE_TYPE (res));
1282 }
1283
1284 type = lang_hooks.types.type_for_size (precision, 1);
1285
1286 bsi = bsi_last (loop->latch);
1287 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1288 loop, &bsi, true, &var_before, NULL);
1289
1290 bsi = bsi_after_labels (loop->header);
1291 prev = NULL;
1292 for (phi = phi_nodes (loop->header); phi; phi = next)
1293 {
1294 next = PHI_CHAIN (phi);
1295 res = PHI_RESULT (phi);
1296
a509ebb5 1297 if (!is_gimple_reg (res) || res == var_before)
5f40b3cb
ZD
1298 {
1299 prev = phi;
1300 continue;
1301 }
5f40b3cb 1302
a509ebb5
RL
1303 ok = simple_iv (loop, phi, res, &iv, true);
1304 red = reduction_phi (reduction_list, phi);
1305 /* We preserve the reduction phi nodes. */
1306 if (!ok && red)
1307 {
1308 prev = phi;
1309 continue;
1310 }
1311 else
1312 gcc_assert (ok);
5f40b3cb
ZD
1313 remove_phi_node (phi, prev, false);
1314
1315 atype = TREE_TYPE (res);
1316 val = fold_build2 (PLUS_EXPR, atype,
1317 unshare_expr (iv.base),
1318 fold_build2 (MULT_EXPR, atype,
1319 unshare_expr (iv.step),
1320 fold_convert (atype, var_before)));
1321 val = force_gimple_operand_bsi (&bsi, val, false, NULL_TREE, true,
1322 BSI_SAME_STMT);
1323 t = build_gimple_modify_stmt (res, val);
1324 bsi_insert_before (&bsi, t, BSI_SAME_STMT);
1325 SSA_NAME_DEF_STMT (res) = t;
1326 }
1327
1328 t = last_stmt (exit->src);
1329 /* Make the loop exit if the control condition is not satisfied. */
1330 if (exit->flags & EDGE_TRUE_VALUE)
1331 {
1332 edge te, fe;
1333
1334 extract_true_false_edges_from_block (exit->src, &te, &fe);
1335 te->flags = EDGE_FALSE_VALUE;
1336 fe->flags = EDGE_TRUE_VALUE;
1337 }
1338 COND_EXPR_COND (t) = build2 (LT_EXPR, boolean_type_node, var_before, nit);
1339}
1340
1341/* Moves the exit condition of LOOP to the beginning of its header, and
1342 duplicates the part of the last iteration that gets disabled to the
1343 exit of the loop. NIT is the number of iterations of the loop
1344 (used to initialize the variables in the duplicated part).
1345
1346 TODO: the common case is that latch of the loop is empty and immediatelly
1347 follows the loop exit. In this case, it would be better not to copy the
1348 body of the loop, but only move the entry of the loop directly before the
1349 exit check and increase the number of iterations of the loop by one.
a509ebb5
RL
1350 This may need some additional preconditioning in case NIT = ~0.
1351 REDUCTION_LIST describes the reductions in LOOP. */
5f40b3cb
ZD
1352
1353static void
a509ebb5 1354transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
5f40b3cb
ZD
1355{
1356 basic_block *bbs, *nbbs, ex_bb, orig_header;
1357 unsigned n;
1358 bool ok;
1359 edge exit = single_dom_exit (loop), hpred;
1360 tree phi, nphi, cond, control, control_name, res, t, cond_stmt;
1361 block_stmt_iterator bsi;
1362
1363 split_block_after_labels (loop->header);
1364 orig_header = single_succ (loop->header);
1365 hpred = single_succ_edge (loop->header);
1366
1367 cond_stmt = last_stmt (exit->src);
1368 cond = COND_EXPR_COND (cond_stmt);
1369 control = TREE_OPERAND (cond, 0);
1370 gcc_assert (TREE_OPERAND (cond, 1) == nit);
1371
1372 /* Make sure that we have phi nodes on exit for all loop header phis
1373 (create_parallel_loop requires that). */
1374 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
1375 {
1376 res = PHI_RESULT (phi);
1377 t = make_ssa_name (SSA_NAME_VAR (res), phi);
1378 SET_PHI_RESULT (phi, t);
1379
1380 nphi = create_phi_node (res, orig_header);
1381 SSA_NAME_DEF_STMT (res) = nphi;
1382 add_phi_arg (nphi, t, hpred);
1383
1384 if (res == control)
1385 {
1386 TREE_OPERAND (cond, 0) = t;
1387 update_stmt (cond_stmt);
1388 control = t;
1389 }
1390 }
1391
1392 bbs = get_loop_body_in_dom_order (loop);
1393 for (n = 0; bbs[n] != exit->src; n++)
1394 continue;
1395 nbbs = XNEWVEC (basic_block, n);
1396 ok = tree_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1397 bbs + 1, n, nbbs);
1398 gcc_assert (ok);
1399 free (bbs);
1400 ex_bb = nbbs[0];
1401 free (nbbs);
1402
a509ebb5
RL
1403 /* Other than reductions, the only gimple reg that should be copied
1404 out of the loop is the control variable. */
1405
5f40b3cb
ZD
1406 control_name = NULL_TREE;
1407 for (phi = phi_nodes (ex_bb); phi; phi = PHI_CHAIN (phi))
1408 {
1409 res = PHI_RESULT (phi);
1410 if (!is_gimple_reg (res))
1411 continue;
1412
a509ebb5
RL
1413 /* Check if it is a part of reduction. If it is,
1414 keep the phi at the reduction's keep_res field. The
1415 PHI_RESULT of this phi is the resulting value of the reduction
1416 variable when exiting the loop. */
1417
1418 exit = single_dom_exit (loop);
1419
1420 if (htab_elements (reduction_list) > 0)
1421 {
1422 struct reduction_info *red;
1423
1424 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1425
1426 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1427 if (red)
1428 red->keep_res = phi;
1429 }
1430 else
1431 gcc_assert (control_name == NULL_TREE
1432 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
5f40b3cb
ZD
1433 control_name = res;
1434 }
1435 gcc_assert (control_name != NULL_TREE);
1436 phi = SSA_NAME_DEF_STMT (control_name);
1437 remove_phi_node (phi, NULL_TREE, false);
1438
1439 /* Initialize the control variable to NIT. */
1440 bsi = bsi_after_labels (ex_bb);
1441 t = build_gimple_modify_stmt (control_name, nit);
1442 bsi_insert_before (&bsi, t, BSI_NEW_STMT);
1443 SSA_NAME_DEF_STMT (control_name) = t;
1444}
1445
1446/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1447 LOOP_FN and DATA are the arguments of OMP_PARALLEL.
1448 NEW_DATA is the variable that should be initialized from the argument
1449 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1450 basic block containing OMP_PARALLEL tree. */
1451
1452static basic_block
1453create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1454 tree new_data, unsigned n_threads)
1455{
1456 block_stmt_iterator bsi;
1457 basic_block bb, paral_bb, for_bb, ex_bb;
1458 tree t, param, res, for_stmt;
1459 tree cvar, cvar_init, initvar, cvar_next, cvar_base, cond, phi, type;
1460 edge exit, nexit, guard, end, e;
1461
1462 /* Prepare the OMP_PARALLEL statement. */
1463 bb = loop_preheader_edge (loop)->src;
1464 paral_bb = single_pred (bb);
1465 bsi = bsi_last (paral_bb);
1466
1467 t = build_omp_clause (OMP_CLAUSE_NUM_THREADS);
1468 OMP_CLAUSE_NUM_THREADS_EXPR (t)
a509ebb5
RL
1469 = build_int_cst (integer_type_node, n_threads);
1470 t = build4 (OMP_PARALLEL, void_type_node, NULL_TREE, t, loop_fn, data);
5f40b3cb
ZD
1471
1472 bsi_insert_after (&bsi, t, BSI_NEW_STMT);
1473
1474 /* Initialize NEW_DATA. */
1475 if (data)
1476 {
1477 bsi = bsi_after_labels (bb);
1478
1479 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL_TREE);
1480 t = build_gimple_modify_stmt (param, build_fold_addr_expr (data));
1481 bsi_insert_before (&bsi, t, BSI_SAME_STMT);
1482 SSA_NAME_DEF_STMT (param) = t;
1483
1484 t = build_gimple_modify_stmt (new_data,
a509ebb5
RL
1485 fold_convert (TREE_TYPE (new_data),
1486 param));
5f40b3cb
ZD
1487 bsi_insert_before (&bsi, t, BSI_SAME_STMT);
1488 SSA_NAME_DEF_STMT (new_data) = t;
1489 }
1490
1491 /* Emit OMP_RETURN for OMP_PARALLEL. */
1492 bb = split_loop_exit_edge (single_dom_exit (loop));
1493 bsi = bsi_last (bb);
1494 bsi_insert_after (&bsi, make_node (OMP_RETURN), BSI_NEW_STMT);
1495
1496 /* Extract data for OMP_FOR. */
1497 gcc_assert (loop->header == single_dom_exit (loop)->src);
1498 cond = COND_EXPR_COND (last_stmt (loop->header));
1499
1500 cvar = TREE_OPERAND (cond, 0);
1501 cvar_base = SSA_NAME_VAR (cvar);
1502 phi = SSA_NAME_DEF_STMT (cvar);
1503 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1504 initvar = make_ssa_name (cvar_base, NULL_TREE);
1505 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1506 initvar);
1507 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1508
1509 bsi = bsi_last (loop->latch);
1510 gcc_assert (bsi_stmt (bsi) == SSA_NAME_DEF_STMT (cvar_next));
1511 bsi_remove (&bsi, true);
1512
1513 /* Prepare cfg. */
1514 for_bb = split_edge (loop_preheader_edge (loop));
1515 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1516 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1517 gcc_assert (exit == single_dom_exit (loop));
1518
1519 guard = make_edge (for_bb, ex_bb, 0);
1520 single_succ_edge (loop->latch)->flags = 0;
1521 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1522 for (phi = phi_nodes (ex_bb); phi; phi = PHI_CHAIN (phi))
1523 {
1524 res = PHI_RESULT (phi);
1525 gcc_assert (!is_gimple_reg (phi));
1526 t = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1527 add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (t, loop_preheader_edge (loop)),
1528 guard);
1529 add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (t, loop_latch_edge (loop)),
1530 end);
1531 }
1532 e = redirect_edge_and_branch (exit, nexit->dest);
1533 PENDING_STMT (e) = NULL;
1534
1535 /* Emit OMP_FOR. */
1536 TREE_OPERAND (cond, 0) = cvar_base;
1537 type = TREE_TYPE (cvar);
1538 t = build_omp_clause (OMP_CLAUSE_SCHEDULE);
1539 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1540
1541 for_stmt = make_node (OMP_FOR);
1542 TREE_TYPE (for_stmt) = void_type_node;
1543 OMP_FOR_CLAUSES (for_stmt) = t;
1544 OMP_FOR_INIT (for_stmt) = build_gimple_modify_stmt (initvar, cvar_init);
1545 OMP_FOR_COND (for_stmt) = cond;
a509ebb5
RL
1546 OMP_FOR_INCR (for_stmt) = build_gimple_modify_stmt (cvar_base,
1547 build2 (PLUS_EXPR, type,
1548 cvar_base,
1549 build_int_cst
1550 (type, 1)));
5f40b3cb
ZD
1551 OMP_FOR_BODY (for_stmt) = NULL_TREE;
1552 OMP_FOR_PRE_BODY (for_stmt) = NULL_TREE;
1553
1554 bsi = bsi_last (for_bb);
1555 bsi_insert_after (&bsi, for_stmt, BSI_NEW_STMT);
1556 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1557
1558 /* Emit OMP_CONTINUE. */
1559 bsi = bsi_last (loop->latch);
1560 t = build2 (OMP_CONTINUE, void_type_node, cvar_next, cvar);
1561 bsi_insert_after (&bsi, t, BSI_NEW_STMT);
1562 SSA_NAME_DEF_STMT (cvar_next) = t;
1563
1564 /* Emit OMP_RETURN for OMP_FOR. */
1565 bsi = bsi_last (ex_bb);
1566 bsi_insert_after (&bsi, make_node (OMP_RETURN), BSI_NEW_STMT);
1567
1568 return paral_bb;
1569}
1570
1571/* Generates code to execute the iterations of LOOP in N_THREADS threads in
a509ebb5
RL
1572 parallel. NITER describes number of iterations of LOOP.
1573 REDUCTION_LIST describes the reductions existant in the LOOP. */
5f40b3cb
ZD
1574
1575static void
a509ebb5
RL
1576gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1577 unsigned n_threads, struct tree_niter_desc *niter)
5f40b3cb
ZD
1578{
1579 struct loop *nloop;
1580 tree many_iterations_cond, type, nit;
1581 tree stmts, arg_struct, new_arg_struct;
1582 basic_block parallel_head;
a509ebb5 1583 struct clsn_data clsn_data;
5f40b3cb
ZD
1584 unsigned prob;
1585
1586 /* From
1587
1588 ---------------------------------------------------------------------
1589 loop
1590 {
1591 IV = phi (INIT, IV + STEP)
1592 BODY1;
1593 if (COND)
1594 break;
1595 BODY2;
1596 }
1597 ---------------------------------------------------------------------
1598
1599 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1600 we generate the following code:
1601
1602 ---------------------------------------------------------------------
1603
1604 if (MAY_BE_ZERO
a509ebb5
RL
1605 || NITER < MIN_PER_THREAD * N_THREADS)
1606 goto original;
5f40b3cb
ZD
1607
1608 BODY1;
1609 store all local loop-invariant variables used in body of the loop to DATA.
1610 OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1611 load the variables from DATA.
1612 OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1613 BODY2;
1614 BODY1;
1615 OMP_CONTINUE;
a509ebb5
RL
1616 OMP_RETURN -- OMP_FOR
1617 OMP_RETURN -- OMP_PARALLEL
5f40b3cb
ZD
1618 goto end;
1619
1620 original:
1621 loop
1622 {
1623 IV = phi (INIT, IV + STEP)
1624 BODY1;
1625 if (COND)
1626 break;
1627 BODY2;
1628 }
1629
1630 end:
1631
1632 */
1633
1634 /* Create two versions of the loop -- in the old one, we know that the
1635 number of iterations is large enough, and we will transform it into the
1636 loop that will be split to loop_fn, the new one will be used for the
1637 remaining iterations. */
a509ebb5 1638
5f40b3cb
ZD
1639 type = TREE_TYPE (niter->niter);
1640 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1641 NULL_TREE);
1642 if (stmts)
1643 bsi_insert_on_edge_immediate (loop_preheader_edge (loop), stmts);
1644
1645 many_iterations_cond =
a509ebb5
RL
1646 fold_build2 (GE_EXPR, boolean_type_node,
1647 nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
5f40b3cb 1648 many_iterations_cond
a509ebb5
RL
1649 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1650 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1651 many_iterations_cond);
5f40b3cb 1652 many_iterations_cond
a509ebb5 1653 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
5f40b3cb
ZD
1654 if (stmts)
1655 bsi_insert_on_edge_immediate (loop_preheader_edge (loop), stmts);
1656 if (!is_gimple_condexpr (many_iterations_cond))
1657 {
1658 many_iterations_cond
a509ebb5
RL
1659 = force_gimple_operand (many_iterations_cond, &stmts,
1660 true, NULL_TREE);
5f40b3cb
ZD
1661 if (stmts)
1662 bsi_insert_on_edge_immediate (loop_preheader_edge (loop), stmts);
1663 }
1664
1665 initialize_original_copy_tables ();
1666
1667 /* We assume that the loop usually iterates a lot. */
1668 prob = 4 * REG_BR_PROB_BASE / 5;
1669 nloop = loop_version (loop, many_iterations_cond, NULL,
1670 prob, prob, REG_BR_PROB_BASE - prob, true);
1671 update_ssa (TODO_update_ssa);
1672 free_original_copy_tables ();
1673
1674 /* Base all the induction variables in LOOP on a single control one. */
a509ebb5 1675 canonicalize_loop_ivs (loop, reduction_list, nit);
5f40b3cb
ZD
1676
1677 /* Ensure that the exit condition is the first statement in the loop. */
a509ebb5
RL
1678 transform_to_exit_first_loop (loop, reduction_list, nit);
1679
1680
1681 /* Generate intializations for reductions. */
1682
1683 if (htab_elements (reduction_list) > 0)
1684 htab_traverse (reduction_list, initialize_reductions, loop);
5f40b3cb
ZD
1685
1686 /* Eliminate the references to local variables from the loop. */
1687 eliminate_local_variables (loop);
1688
1689 /* In the old loop, move all variables non-local to the loop to a structure
1690 and back, and create separate decls for the variables used in loop. */
a509ebb5 1691 separate_decls_in_loop (loop, reduction_list, &arg_struct, &new_arg_struct, &clsn_data);
5f40b3cb
ZD
1692
1693 /* Create the parallel constructs. */
1694 parallel_head = create_parallel_loop (loop, create_loop_fn (), arg_struct,
1695 new_arg_struct, n_threads);
a509ebb5
RL
1696 if (htab_elements (reduction_list) > 0)
1697 create_call_for_reduction (loop, reduction_list, &clsn_data);
5f40b3cb
ZD
1698
1699 scev_reset ();
1700
1701 /* Cancel the loop (it is simpler to do it here rather than to teach the
1702 expander to do it). */
1703 cancel_loop_tree (loop);
1704
1705 /* Expand the parallel constructs. We do it directly here instead of running
1706 a separate expand_omp pass, since it is more efficient, and less likely to
1707 cause troubles with further analyses not being able to deal with the
1708 OMP trees. */
a509ebb5 1709
5f40b3cb
ZD
1710 omp_expand_local (parallel_head);
1711}
1712
1713/* Detect parallel loops and generate parallel code using libgomp
1714 primitives. Returns true if some loop was parallelized, false
1715 otherwise. */
1716
1717bool
1718parallelize_loops (void)
1719{
1720 unsigned n_threads = flag_tree_parallelize_loops;
1721 bool changed = false;
1722 struct loop *loop;
1723 struct tree_niter_desc niter_desc;
1724 loop_iterator li;
a509ebb5 1725 htab_t reduction_list;
5f40b3cb
ZD
1726
1727 /* Do not parallelize loops in the functions created by parallelization. */
1728 if (parallelized_function_p (cfun->decl))
1729 return false;
1730
a509ebb5
RL
1731 reduction_list = htab_create (10, reduction_info_hash,
1732 reduction_info_eq, free);
1733
5f40b3cb
ZD
1734 FOR_EACH_LOOP (li, loop, 0)
1735 {
a509ebb5 1736 htab_empty (reduction_list);
5f40b3cb
ZD
1737 if (/* Do not bother with loops in cold areas. */
1738 !maybe_hot_bb_p (loop->header)
1739 /* Or loops that roll too little. */
1740 || expected_loop_iterations (loop) <= n_threads
1741 /* And of course, the loop must be parallelizable. */
1742 || !can_duplicate_loop_p (loop)
a509ebb5 1743 || !loop_parallel_p (loop, reduction_list, &niter_desc))
5f40b3cb
ZD
1744 continue;
1745
1746 changed = true;
a509ebb5 1747 gen_parallel_loop (loop, reduction_list, n_threads, &niter_desc);
5f40b3cb
ZD
1748 verify_flow_info ();
1749 verify_dominators (CDI_DOMINATORS);
1750 verify_loop_structure ();
1751 verify_loop_closed_ssa ();
1752 }
1753
a509ebb5 1754 htab_delete (reduction_list);
5f40b3cb
ZD
1755 return changed;
1756}
1757
1758#include "gt-tree-parloops.h"