]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-predcom.c
2012-08-07 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-predcom.c
CommitLineData
ad4a85ad 1/* Predictive commoning.
79216f37 2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
7cf0dbf3 3 Free Software Foundation, Inc.
48e1416a 4
ad4a85ad 5This file is part of GCC.
48e1416a 6
ad4a85ad 7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
8c4c00c1 9Free Software Foundation; either version 3, or (at your option) any
ad4a85ad 10later version.
48e1416a 11
ad4a85ad 12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
48e1416a 16
ad4a85ad 17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
ad4a85ad 20
21/* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
48e1416a 33
ad4a85ad 34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
48e1416a 67
ad4a85ad 68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
48e1416a 80 single root reference of the chain (adjusting their distance
ad4a85ad 81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
9d75589a 103 of a reference reusing its value. Variables R0 up to RN are created,
ad4a85ad 104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
48e1416a 136
ad4a85ad 137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188#include "config.h"
189#include "system.h"
190#include "coretypes.h"
191#include "tm.h"
192#include "tree.h"
193#include "tm_p.h"
194#include "cfgloop.h"
195#include "tree-flow.h"
196#include "ggc.h"
197#include "tree-data-ref.h"
198#include "tree-scalar-evolution.h"
199#include "tree-chrec.h"
200#include "params.h"
ce084dfc 201#include "gimple-pretty-print.h"
ad4a85ad 202#include "tree-pass.h"
203#include "tree-affine.h"
204#include "tree-inline.h"
205
206/* The maximum number of iterations between the considered memory
207 references. */
208
209#define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
48e1416a 210
75a70cf9 211/* Data references (or phi nodes that carry data reference values across
212 loop iterations). */
ad4a85ad 213
26dbec0a 214typedef struct dref_d
ad4a85ad 215{
216 /* The reference itself. */
217 struct data_reference *ref;
218
219 /* The statement in that the reference appears. */
75a70cf9 220 gimple stmt;
221
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi;
ad4a85ad 226
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
229 unsigned distance;
230
231 /* Number of iterations offset from the first reference in the component. */
232 double_int offset;
233
234 /* Number of the reference in a component, in dominance ordering. */
235 unsigned pos;
236
237 /* True if the memory reference is always accessed when the loop is
238 entered. */
239 unsigned always_accessed : 1;
240} *dref;
241
242DEF_VEC_P (dref);
243DEF_VEC_ALLOC_P (dref, heap);
244
245/* Type of the chain of the references. */
246
247enum chain_type
248{
249 /* The addresses of the references in the chain are constant. */
250 CT_INVARIANT,
251
252 /* There are only loads in the chain. */
253 CT_LOAD,
254
255 /* Root of the chain is store, the rest are loads. */
256 CT_STORE_LOAD,
257
258 /* A combination of two chains. */
259 CT_COMBINATION
260};
261
262/* Chains of data references. */
263
264typedef struct chain
265{
266 /* Type of the chain. */
267 enum chain_type type;
268
269 /* For combination chains, the operator and the two chains that are
270 combined, and the type of the result. */
f4e36c33 271 enum tree_code op;
ad4a85ad 272 tree rslt_type;
273 struct chain *ch1, *ch2;
274
275 /* The references in the chain. */
276 VEC(dref,heap) *refs;
277
278 /* The maximum distance of the reference in the chain from the root. */
279 unsigned length;
280
281 /* The variables used to copy the value throughout iterations. */
282 VEC(tree,heap) *vars;
283
284 /* Initializers for the variables. */
285 VEC(tree,heap) *inits;
286
287 /* True if there is a use of a variable with the maximal distance
288 that comes after the root in the loop. */
289 unsigned has_max_use_after : 1;
290
291 /* True if all the memory references in the chain are always accessed. */
292 unsigned all_always_accessed : 1;
293
294 /* True if this chain was combined together with some other chain. */
295 unsigned combined : 1;
296} *chain_p;
297
298DEF_VEC_P (chain_p);
299DEF_VEC_ALLOC_P (chain_p, heap);
300
301/* Describes the knowledge about the step of the memory references in
302 the component. */
303
304enum ref_step_type
305{
306 /* The step is zero. */
307 RS_INVARIANT,
308
309 /* The step is nonzero. */
310 RS_NONZERO,
311
312 /* The step may or may not be nonzero. */
313 RS_ANY
314};
315
316/* Components of the data dependence graph. */
317
318struct component
319{
320 /* The references in the component. */
321 VEC(dref,heap) *refs;
322
323 /* What we know about the step of the references in the component. */
324 enum ref_step_type comp_step;
325
326 /* Next component in the list. */
327 struct component *next;
328};
329
330/* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331
332static bitmap looparound_phis;
333
334/* Cache used by tree_to_aff_combination_expand. */
335
336static struct pointer_map_t *name_expansions;
337
338/* Dumps data reference REF to FILE. */
339
340extern void dump_dref (FILE *, dref);
341void
342dump_dref (FILE *file, dref ref)
343{
344 if (ref->ref)
345 {
346 fprintf (file, " ");
347 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
348 fprintf (file, " (id %u%s)\n", ref->pos,
349 DR_IS_READ (ref->ref) ? "" : ", write");
350
351 fprintf (file, " offset ");
352 dump_double_int (file, ref->offset, false);
353 fprintf (file, "\n");
354
355 fprintf (file, " distance %u\n", ref->distance);
356 }
357 else
358 {
75a70cf9 359 if (gimple_code (ref->stmt) == GIMPLE_PHI)
ad4a85ad 360 fprintf (file, " looparound ref\n");
361 else
362 fprintf (file, " combination ref\n");
363 fprintf (file, " in statement ");
75a70cf9 364 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
ad4a85ad 365 fprintf (file, "\n");
366 fprintf (file, " distance %u\n", ref->distance);
367 }
368
369}
370
371/* Dumps CHAIN to FILE. */
372
373extern void dump_chain (FILE *, chain_p);
374void
375dump_chain (FILE *file, chain_p chain)
376{
377 dref a;
378 const char *chain_type;
379 unsigned i;
380 tree var;
381
382 switch (chain->type)
383 {
384 case CT_INVARIANT:
385 chain_type = "Load motion";
386 break;
387
388 case CT_LOAD:
389 chain_type = "Loads-only";
390 break;
391
392 case CT_STORE_LOAD:
393 chain_type = "Store-loads";
394 break;
395
396 case CT_COMBINATION:
397 chain_type = "Combination";
398 break;
399
400 default:
401 gcc_unreachable ();
402 }
403
404 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
405 chain->combined ? " (combined)" : "");
406 if (chain->type != CT_INVARIANT)
407 fprintf (file, " max distance %u%s\n", chain->length,
408 chain->has_max_use_after ? "" : ", may reuse first");
409
410 if (chain->type == CT_COMBINATION)
411 {
412 fprintf (file, " equal to %p %s %p in type ",
f4e36c33 413 (void *) chain->ch1, op_symbol_code (chain->op),
ad4a85ad 414 (void *) chain->ch2);
415 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
416 fprintf (file, "\n");
417 }
418
419 if (chain->vars)
420 {
421 fprintf (file, " vars");
48148244 422 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
ad4a85ad 423 {
424 fprintf (file, " ");
425 print_generic_expr (file, var, TDF_SLIM);
426 }
427 fprintf (file, "\n");
428 }
429
430 if (chain->inits)
431 {
432 fprintf (file, " inits");
48148244 433 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
ad4a85ad 434 {
435 fprintf (file, " ");
436 print_generic_expr (file, var, TDF_SLIM);
437 }
438 fprintf (file, "\n");
439 }
440
441 fprintf (file, " references:\n");
48148244 442 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
ad4a85ad 443 dump_dref (file, a);
444
445 fprintf (file, "\n");
446}
447
448/* Dumps CHAINS to FILE. */
449
450extern void dump_chains (FILE *, VEC (chain_p, heap) *);
451void
452dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453{
454 chain_p chain;
455 unsigned i;
456
48148244 457 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
ad4a85ad 458 dump_chain (file, chain);
459}
460
461/* Dumps COMP to FILE. */
462
463extern void dump_component (FILE *, struct component *);
464void
465dump_component (FILE *file, struct component *comp)
466{
467 dref a;
468 unsigned i;
469
470 fprintf (file, "Component%s:\n",
471 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
48148244 472 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
ad4a85ad 473 dump_dref (file, a);
474 fprintf (file, "\n");
475}
476
477/* Dumps COMPS to FILE. */
478
479extern void dump_components (FILE *, struct component *);
480void
481dump_components (FILE *file, struct component *comps)
482{
483 struct component *comp;
484
485 for (comp = comps; comp; comp = comp->next)
486 dump_component (file, comp);
487}
488
489/* Frees a chain CHAIN. */
490
491static void
492release_chain (chain_p chain)
493{
494 dref ref;
495 unsigned i;
496
497 if (chain == NULL)
498 return;
499
48148244 500 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
ad4a85ad 501 free (ref);
502
503 VEC_free (dref, heap, chain->refs);
504 VEC_free (tree, heap, chain->vars);
505 VEC_free (tree, heap, chain->inits);
506
507 free (chain);
508}
509
510/* Frees CHAINS. */
511
512static void
513release_chains (VEC (chain_p, heap) *chains)
514{
515 unsigned i;
516 chain_p chain;
517
48148244 518 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
ad4a85ad 519 release_chain (chain);
520 VEC_free (chain_p, heap, chains);
521}
522
523/* Frees a component COMP. */
524
525static void
526release_component (struct component *comp)
527{
528 VEC_free (dref, heap, comp->refs);
529 free (comp);
530}
531
532/* Frees list of components COMPS. */
533
534static void
535release_components (struct component *comps)
536{
537 struct component *act, *next;
538
539 for (act = comps; act; act = next)
540 {
541 next = act->next;
542 release_component (act);
543 }
544}
545
546/* Finds a root of tree given by FATHERS containing A, and performs path
547 shortening. */
548
549static unsigned
550component_of (unsigned fathers[], unsigned a)
551{
552 unsigned root, n;
553
554 for (root = a; root != fathers[root]; root = fathers[root])
555 continue;
556
557 for (; a != root; a = n)
558 {
559 n = fathers[a];
560 fathers[a] = root;
561 }
562
563 return root;
564}
565
566/* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
567 components, A and B are components to merge. */
568
569static void
570merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571{
572 unsigned ca = component_of (fathers, a);
573 unsigned cb = component_of (fathers, b);
574
575 if (ca == cb)
576 return;
577
578 if (sizes[ca] < sizes[cb])
579 {
580 sizes[cb] += sizes[ca];
581 fathers[ca] = cb;
582 }
583 else
584 {
585 sizes[ca] += sizes[cb];
586 fathers[cb] = ca;
587 }
588}
589
590/* Returns true if A is a reference that is suitable for predictive commoning
591 in the innermost loop that contains it. REF_STEP is set according to the
592 step of the reference A. */
593
594static bool
595suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596{
597 tree ref = DR_REF (a), step = DR_STEP (a);
598
599 if (!step
450c0971 600 || TREE_THIS_VOLATILE (ref)
154edec0 601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
ad4a85ad 603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613}
614
615/* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617static void
618aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619{
a0553bff 620 tree type = TREE_TYPE (DR_OFFSET (dr));
ad4a85ad 621 aff_tree delta;
622
a0553bff 623 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
ad4a85ad 624 &name_expansions);
a0553bff 625 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
ad4a85ad 626 aff_combination_add (offset, &delta);
627}
628
629/* Determines number of iterations of the innermost enclosing loop before B
630 refers to exactly the same location as A and stores it to OFF. If A and
631 B do not have the same step, they never meet, or anything else fails,
632 returns false, otherwise returns true. Both A and B are assumed to
633 satisfy suitable_reference_p. */
634
635static bool
636determine_offset (struct data_reference *a, struct data_reference *b,
637 double_int *off)
638{
639 aff_tree diff, baseb, step;
ca4882a2 640 tree typea, typeb;
641
642 /* Check that both the references access the location in the same type. */
643 typea = TREE_TYPE (DR_REF (a));
644 typeb = TREE_TYPE (DR_REF (b));
548044d8 645 if (!useless_type_conversion_p (typeb, typea))
ca4882a2 646 return false;
ad4a85ad 647
648 /* Check whether the base address and the step of both references is the
649 same. */
650 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
651 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
652 return false;
653
654 if (integer_zerop (DR_STEP (a)))
655 {
656 /* If the references have loop invariant address, check that they access
657 exactly the same location. */
658 *off = double_int_zero;
659 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
660 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
661 }
662
663 /* Compare the offsets of the addresses, and check whether the difference
664 is a multiple of step. */
665 aff_combination_dr_offset (a, &diff);
666 aff_combination_dr_offset (b, &baseb);
667 aff_combination_scale (&baseb, double_int_minus_one);
668 aff_combination_add (&diff, &baseb);
669
a0553bff 670 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
ad4a85ad 671 &step, &name_expansions);
672 return aff_combination_constant_multiple_p (&diff, &step, off);
673}
674
675/* Returns the last basic block in LOOP for that we are sure that
676 it is executed whenever the loop is entered. */
677
678static basic_block
679last_always_executed_block (struct loop *loop)
680{
681 unsigned i;
682 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
683 edge ex;
684 basic_block last = loop->latch;
685
48148244 686 FOR_EACH_VEC_ELT (edge, exits, i, ex)
ad4a85ad 687 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
688 VEC_free (edge, heap, exits);
689
690 return last;
691}
692
693/* Splits dependence graph on DATAREFS described by DEPENDS to components. */
694
695static struct component *
696split_data_refs_to_components (struct loop *loop,
697 VEC (data_reference_p, heap) *datarefs,
698 VEC (ddr_p, heap) *depends)
699{
700 unsigned i, n = VEC_length (data_reference_p, datarefs);
701 unsigned ca, ia, ib, bad;
702 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
703 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
704 struct component **comps;
705 struct data_reference *dr, *dra, *drb;
706 struct data_dependence_relation *ddr;
707 struct component *comp_list = NULL, *comp;
708 dref dataref;
709 basic_block last_always_executed = last_always_executed_block (loop);
48e1416a 710
48148244 711 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
ad4a85ad 712 {
713 if (!DR_REF (dr))
714 {
715 /* A fake reference for call or asm_expr that may clobber memory;
716 just fail. */
717 goto end;
718 }
5c205353 719 dr->aux = (void *) (size_t) i;
ad4a85ad 720 comp_father[i] = i;
721 comp_size[i] = 1;
722 }
723
724 /* A component reserved for the "bad" data references. */
725 comp_father[n] = n;
726 comp_size[n] = 1;
727
48148244 728 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
ad4a85ad 729 {
730 enum ref_step_type dummy;
731
732 if (!suitable_reference_p (dr, &dummy))
733 {
5c205353 734 ia = (unsigned) (size_t) dr->aux;
ad4a85ad 735 merge_comps (comp_father, comp_size, n, ia);
736 }
737 }
738
48148244 739 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
ad4a85ad 740 {
741 double_int dummy_off;
742
743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
744 continue;
745
746 dra = DDR_A (ddr);
747 drb = DDR_B (ddr);
5c205353 748 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
749 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
ad4a85ad 750 if (ia == ib)
751 continue;
752
753 bad = component_of (comp_father, n);
754
755 /* If both A and B are reads, we may ignore unsuitable dependences. */
756 if (DR_IS_READ (dra) && DR_IS_READ (drb)
757 && (ia == bad || ib == bad
758 || !determine_offset (dra, drb, &dummy_off)))
759 continue;
48e1416a 760
ad4a85ad 761 merge_comps (comp_father, comp_size, ia, ib);
762 }
763
764 comps = XCNEWVEC (struct component *, n);
765 bad = component_of (comp_father, n);
48148244 766 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
ad4a85ad 767 {
5c205353 768 ia = (unsigned) (size_t) dr->aux;
ad4a85ad 769 ca = component_of (comp_father, ia);
770 if (ca == bad)
771 continue;
772
773 comp = comps[ca];
774 if (!comp)
775 {
776 comp = XCNEW (struct component);
777 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
778 comps[ca] = comp;
779 }
780
26dbec0a 781 dataref = XCNEW (struct dref_d);
ad4a85ad 782 dataref->ref = dr;
783 dataref->stmt = DR_STMT (dr);
784 dataref->offset = double_int_zero;
785 dataref->distance = 0;
786
787 dataref->always_accessed
788 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
75a70cf9 789 gimple_bb (dataref->stmt));
ad4a85ad 790 dataref->pos = VEC_length (dref, comp->refs);
791 VEC_quick_push (dref, comp->refs, dataref);
792 }
793
794 for (i = 0; i < n; i++)
795 {
796 comp = comps[i];
797 if (comp)
798 {
799 comp->next = comp_list;
800 comp_list = comp;
801 }
802 }
803 free (comps);
804
805end:
806 free (comp_father);
807 free (comp_size);
808 return comp_list;
809}
810
811/* Returns true if the component COMP satisfies the conditions
310d2511 812 described in 2) at the beginning of this file. LOOP is the current
ad4a85ad 813 loop. */
48e1416a 814
ad4a85ad 815static bool
816suitable_component_p (struct loop *loop, struct component *comp)
817{
818 unsigned i;
819 dref a, first;
820 basic_block ba, bp = loop->header;
821 bool ok, has_write = false;
822
48148244 823 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
ad4a85ad 824 {
75a70cf9 825 ba = gimple_bb (a->stmt);
ad4a85ad 826
827 if (!just_once_each_iteration_p (loop, ba))
828 return false;
829
830 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
831 bp = ba;
832
9ff25603 833 if (DR_IS_WRITE (a->ref))
ad4a85ad 834 has_write = true;
835 }
836
837 first = VEC_index (dref, comp->refs, 0);
838 ok = suitable_reference_p (first->ref, &comp->comp_step);
839 gcc_assert (ok);
840 first->offset = double_int_zero;
841
842 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
843 {
844 if (!determine_offset (first->ref, a->ref, &a->offset))
845 return false;
846
847#ifdef ENABLE_CHECKING
848 {
849 enum ref_step_type a_step;
850 ok = suitable_reference_p (a->ref, &a_step);
851 gcc_assert (ok && a_step == comp->comp_step);
852 }
853#endif
854 }
855
856 /* If there is a write inside the component, we must know whether the
857 step is nonzero or not -- we would not otherwise be able to recognize
858 whether the value accessed by reads comes from the OFFSET-th iteration
859 or the previous one. */
860 if (has_write && comp->comp_step == RS_ANY)
861 return false;
862
863 return true;
864}
48e1416a 865
ad4a85ad 866/* Check the conditions on references inside each of components COMPS,
867 and remove the unsuitable components from the list. The new list
868 of components is returned. The conditions are described in 2) at
310d2511 869 the beginning of this file. LOOP is the current loop. */
ad4a85ad 870
871static struct component *
872filter_suitable_components (struct loop *loop, struct component *comps)
873{
874 struct component **comp, *act;
875
876 for (comp = &comps; *comp; )
877 {
878 act = *comp;
879 if (suitable_component_p (loop, act))
880 comp = &act->next;
881 else
882 {
19af51e2 883 dref ref;
884 unsigned i;
885
ad4a85ad 886 *comp = act->next;
48148244 887 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
19af51e2 888 free (ref);
ad4a85ad 889 release_component (act);
890 }
891 }
892
893 return comps;
894}
895
896/* Compares two drefs A and B by their offset and position. Callback for
897 qsort. */
898
899static int
900order_drefs (const void *a, const void *b)
901{
45ba1503 902 const dref *const da = (const dref *) a;
903 const dref *const db = (const dref *) b;
ad4a85ad 904 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
905
906 if (offcmp != 0)
907 return offcmp;
908
909 return (*da)->pos - (*db)->pos;
910}
911
912/* Returns root of the CHAIN. */
913
914static inline dref
915get_chain_root (chain_p chain)
916{
917 return VEC_index (dref, chain->refs, 0);
918}
919
920/* Adds REF to the chain CHAIN. */
921
922static void
923add_ref_to_chain (chain_p chain, dref ref)
924{
925 dref root = get_chain_root (chain);
926 double_int dist;
927
928 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
b6cfe28d 929 dist = double_int_sub (ref->offset, root->offset);
ad4a85ad 930 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
19af51e2 931 {
932 free (ref);
933 return;
934 }
ad4a85ad 935 gcc_assert (double_int_fits_in_uhwi_p (dist));
936
937 VEC_safe_push (dref, heap, chain->refs, ref);
938
939 ref->distance = double_int_to_uhwi (dist);
940
941 if (ref->distance >= chain->length)
942 {
943 chain->length = ref->distance;
944 chain->has_max_use_after = false;
945 }
946
947 if (ref->distance == chain->length
948 && ref->pos > root->pos)
949 chain->has_max_use_after = true;
950
951 chain->all_always_accessed &= ref->always_accessed;
952}
953
954/* Returns the chain for invariant component COMP. */
955
956static chain_p
957make_invariant_chain (struct component *comp)
958{
959 chain_p chain = XCNEW (struct chain);
960 unsigned i;
961 dref ref;
962
963 chain->type = CT_INVARIANT;
964
965 chain->all_always_accessed = true;
966
48148244 967 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
ad4a85ad 968 {
969 VEC_safe_push (dref, heap, chain->refs, ref);
970 chain->all_always_accessed &= ref->always_accessed;
971 }
972
973 return chain;
974}
975
976/* Make a new chain rooted at REF. */
977
978static chain_p
979make_rooted_chain (dref ref)
980{
981 chain_p chain = XCNEW (struct chain);
982
983 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
984
985 VEC_safe_push (dref, heap, chain->refs, ref);
986 chain->all_always_accessed = ref->always_accessed;
987
988 ref->distance = 0;
989
990 return chain;
991}
992
993/* Returns true if CHAIN is not trivial. */
994
995static bool
996nontrivial_chain_p (chain_p chain)
997{
998 return chain != NULL && VEC_length (dref, chain->refs) > 1;
999}
1000
1001/* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 is no such name. */
1003
1004static tree
1005name_for_ref (dref ref)
1006{
1007 tree name;
1008
75a70cf9 1009 if (is_gimple_assign (ref->stmt))
ad4a85ad 1010 {
1011 if (!ref->ref || DR_IS_READ (ref->ref))
75a70cf9 1012 name = gimple_assign_lhs (ref->stmt);
ad4a85ad 1013 else
75a70cf9 1014 name = gimple_assign_rhs1 (ref->stmt);
ad4a85ad 1015 }
1016 else
1017 name = PHI_RESULT (ref->stmt);
1018
1019 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1020}
1021
1022/* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1023 iterations of the innermost enclosing loop). */
1024
1025static bool
1026valid_initializer_p (struct data_reference *ref,
1027 unsigned distance, struct data_reference *root)
1028{
1029 aff_tree diff, base, step;
1030 double_int off;
1031
ad4a85ad 1032 /* Both REF and ROOT must be accessing the same object. */
1033 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1034 return false;
1035
1036 /* The initializer is defined outside of loop, hence its address must be
1037 invariant inside the loop. */
1038 gcc_assert (integer_zerop (DR_STEP (ref)));
1039
1040 /* If the address of the reference is invariant, initializer must access
1041 exactly the same location. */
1042 if (integer_zerop (DR_STEP (root)))
1043 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1044 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1045
1046 /* Verify that this index of REF is equal to the root's index at
1047 -DISTANCE-th iteration. */
1048 aff_combination_dr_offset (root, &diff);
1049 aff_combination_dr_offset (ref, &base);
1050 aff_combination_scale (&base, double_int_minus_one);
1051 aff_combination_add (&diff, &base);
1052
a0553bff 1053 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1054 &step, &name_expansions);
ad4a85ad 1055 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1056 return false;
1057
1058 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1059 return false;
1060
1061 return true;
1062}
1063
1064/* Finds looparound phi node of LOOP that copies the value of REF, and if its
1065 initial value is correct (equal to initial value of REF shifted by one
1066 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1067 is the root of the current chain. */
1068
75a70cf9 1069static gimple
ad4a85ad 1070find_looparound_phi (struct loop *loop, dref ref, dref root)
1071{
75a70cf9 1072 tree name, init, init_ref;
1073 gimple phi = NULL, init_stmt;
ad4a85ad 1074 edge latch = loop_latch_edge (loop);
1075 struct data_reference init_dr;
75a70cf9 1076 gimple_stmt_iterator psi;
ad4a85ad 1077
75a70cf9 1078 if (is_gimple_assign (ref->stmt))
ad4a85ad 1079 {
1080 if (DR_IS_READ (ref->ref))
75a70cf9 1081 name = gimple_assign_lhs (ref->stmt);
ad4a85ad 1082 else
75a70cf9 1083 name = gimple_assign_rhs1 (ref->stmt);
ad4a85ad 1084 }
1085 else
1086 name = PHI_RESULT (ref->stmt);
1087 if (!name)
75a70cf9 1088 return NULL;
ad4a85ad 1089
75a70cf9 1090 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1091 {
1092 phi = gsi_stmt (psi);
1093 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1094 break;
1095 }
ad4a85ad 1096
75a70cf9 1097 if (gsi_end_p (psi))
1098 return NULL;
ad4a85ad 1099
1100 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1101 if (TREE_CODE (init) != SSA_NAME)
75a70cf9 1102 return NULL;
ad4a85ad 1103 init_stmt = SSA_NAME_DEF_STMT (init);
75a70cf9 1104 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1105 return NULL;
1106 gcc_assert (gimple_assign_lhs (init_stmt) == init);
ad4a85ad 1107
75a70cf9 1108 init_ref = gimple_assign_rhs1 (init_stmt);
ad4a85ad 1109 if (!REFERENCE_CLASS_P (init_ref)
1110 && !DECL_P (init_ref))
75a70cf9 1111 return NULL;
ad4a85ad 1112
1113 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1114 loop enclosing PHI). */
1115 memset (&init_dr, 0, sizeof (struct data_reference));
1116 DR_REF (&init_dr) = init_ref;
1117 DR_STMT (&init_dr) = phi;
0c257e4c 1118 if (!dr_analyze_innermost (&init_dr, loop))
880734c8 1119 return NULL;
ad4a85ad 1120
1121 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
75a70cf9 1122 return NULL;
ad4a85ad 1123
1124 return phi;
1125}
1126
1127/* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1128
1129static void
75a70cf9 1130insert_looparound_copy (chain_p chain, dref ref, gimple phi)
ad4a85ad 1131{
26dbec0a 1132 dref nw = XCNEW (struct dref_d), aref;
ad4a85ad 1133 unsigned i;
1134
1135 nw->stmt = phi;
1136 nw->distance = ref->distance + 1;
1137 nw->always_accessed = 1;
1138
48148244 1139 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
ad4a85ad 1140 if (aref->distance >= nw->distance)
1141 break;
1142 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1143
1144 if (nw->distance > chain->length)
1145 {
1146 chain->length = nw->distance;
1147 chain->has_max_use_after = false;
1148 }
1149}
1150
1151/* For references in CHAIN that are copied around the LOOP (created previously
1152 by PRE, or by user), add the results of such copies to the chain. This
1153 enables us to remove the copies by unrolling, and may need less registers
1154 (also, it may allow us to combine chains together). */
1155
1156static void
1157add_looparound_copies (struct loop *loop, chain_p chain)
1158{
1159 unsigned i;
1160 dref ref, root = get_chain_root (chain);
75a70cf9 1161 gimple phi;
ad4a85ad 1162
48148244 1163 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
ad4a85ad 1164 {
1165 phi = find_looparound_phi (loop, ref, root);
1166 if (!phi)
1167 continue;
1168
1169 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1170 insert_looparound_copy (chain, ref, phi);
1171 }
1172}
1173
1174/* Find roots of the values and determine distances in the component COMP.
1175 The references are redistributed into CHAINS. LOOP is the current
1176 loop. */
1177
1178static void
1179determine_roots_comp (struct loop *loop,
1180 struct component *comp,
1181 VEC (chain_p, heap) **chains)
1182{
1183 unsigned i;
1184 dref a;
1185 chain_p chain = NULL;
be2e5c02 1186 double_int last_ofs = double_int_zero;
ad4a85ad 1187
1188 /* Invariants are handled specially. */
1189 if (comp->comp_step == RS_INVARIANT)
1190 {
1191 chain = make_invariant_chain (comp);
1192 VEC_safe_push (chain_p, heap, *chains, chain);
1193 return;
1194 }
1195
75510792 1196 VEC_qsort (dref, comp->refs, order_drefs);
ad4a85ad 1197
48148244 1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
ad4a85ad 1199 {
9ff25603 1200 if (!chain || DR_IS_WRITE (a->ref)
be2e5c02 1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
b6cfe28d 1202 double_int_sub (a->offset, last_ofs)) <= 0)
ad4a85ad 1203 {
1204 if (nontrivial_chain_p (chain))
be2e5c02 1205 {
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1208 }
ad4a85ad 1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
be2e5c02 1212 last_ofs = a->offset;
ad4a85ad 1213 continue;
1214 }
1215
1216 add_ref_to_chain (chain, a);
1217 }
1218
1219 if (nontrivial_chain_p (chain))
1220 {
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1223 }
1224 else
1225 release_chain (chain);
1226}
1227
1228/* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1230
1231static void
1232determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1234{
1235 struct component *comp;
1236
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1239}
1240
1241/* Replace the reference in statement STMT with temporary variable
f4e36c33 1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
ad4a85ad 1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1245
1246static void
f4e36c33 1247replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
ad4a85ad 1248{
75a70cf9 1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
ad4a85ad 1252
75a70cf9 1253 if (gimple_code (stmt) == GIMPLE_PHI)
ad4a85ad 1254 {
1255 gcc_assert (!in_lhs && !set);
1256
1257 val = PHI_RESULT (stmt);
75a70cf9 1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
ad4a85ad 1261
75a70cf9 1262 /* Turn the phi node into GIMPLE_ASSIGN. */
f4e36c33 1263 new_stmt = gimple_build_assign (val, new_tree);
75a70cf9 1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
ad4a85ad 1265 return;
1266 }
48e1416a 1267
ad4a85ad 1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
75a70cf9 1270 gcc_assert (is_gimple_assign (stmt));
1271
1272 bsi = gsi_for_stmt (stmt);
ad4a85ad 1273
f4e36c33 1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
ad4a85ad 1275 if (!set)
1276 {
1277 gcc_assert (!in_lhs);
f4e36c33 1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
75a70cf9 1279 stmt = gsi_stmt (bsi);
ad4a85ad 1280 update_stmt (stmt);
1281 return;
1282 }
1283
ad4a85ad 1284 if (in_lhs)
1285 {
75a70cf9 1286 /* We have statement
48e1416a 1287
75a70cf9 1288 OLD = VAL
ad4a85ad 1289
75a70cf9 1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
ad4a85ad 1292
1293 OLD = VAL
1294 NEW = VAL
1295
48e1416a 1296 Otherwise, we are replacing a combination chain,
75a70cf9 1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1299
1300 OLD = VAL
1301 NEW = OLD
1302
1303 */
1304
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1307 {
75a70cf9 1308 val = gimple_assign_rhs1 (stmt);
bbfbb5ba 1309 gcc_assert (gimple_assign_single_p (stmt));
1310 if (TREE_CLOBBER_P (val))
c6dfe037 1311 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
bbfbb5ba 1312 else
1313 gcc_assert (gimple_assign_copy_p (stmt));
75a70cf9 1314 }
ad4a85ad 1315 }
1316 else
1317 {
ad4a85ad 1318 /* VAL = OLD
1319
1320 is transformed to
1321
1322 VAL = OLD
1323 NEW = VAL */
75a70cf9 1324
1325 val = gimple_assign_lhs (stmt);
ad4a85ad 1326 }
1327
f4e36c33 1328 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
75a70cf9 1329 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
ad4a85ad 1330}
1331
1332/* Returns the reference to the address of REF in the ITER-th iteration of
1333 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1334 try to preserve the original shape of the reference (not rewrite it
1335 as an indirect ref to the address), to make tree_could_trap_p in
1336 prepare_initializers_chain return false more often. */
1337
1338static tree
1339ref_at_iteration (struct loop *loop, tree ref, int iter)
1340{
1341 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1342 affine_iv iv;
1343 bool ok;
1344
1345 if (handled_component_p (ref))
1346 {
1347 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1348 if (!op0)
1349 return NULL_TREE;
1350 }
182cf5a9 1351 else if (!INDIRECT_REF_P (ref)
1352 && TREE_CODE (ref) != MEM_REF)
ad4a85ad 1353 return unshare_expr (ref);
1354
5d9de213 1355 if (TREE_CODE (ref) == MEM_REF)
ad4a85ad 1356 {
182cf5a9 1357 ret = unshare_expr (ref);
ad4a85ad 1358 idx = TREE_OPERAND (ref, 0);
1359 idx_p = &TREE_OPERAND (ret, 0);
1360 }
1361 else if (TREE_CODE (ref) == COMPONENT_REF)
1362 {
1363 /* Check that the offset is loop invariant. */
1364 if (TREE_OPERAND (ref, 2)
1365 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1366 return NULL_TREE;
1367
1368 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1369 unshare_expr (TREE_OPERAND (ref, 1)),
1370 unshare_expr (TREE_OPERAND (ref, 2)));
1371 }
1372 else if (TREE_CODE (ref) == ARRAY_REF)
1373 {
1374 /* Check that the lower bound and the step are loop invariant. */
1375 if (TREE_OPERAND (ref, 2)
1376 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1377 return NULL_TREE;
1378 if (TREE_OPERAND (ref, 3)
1379 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1380 return NULL_TREE;
1381
1382 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1383 unshare_expr (TREE_OPERAND (ref, 2)),
1384 unshare_expr (TREE_OPERAND (ref, 3)));
1385 idx = TREE_OPERAND (ref, 1);
1386 idx_p = &TREE_OPERAND (ret, 1);
1387 }
1388 else
1389 return NULL_TREE;
1390
76610704 1391 ok = simple_iv (loop, loop, idx, &iv, true);
ad4a85ad 1392 if (!ok)
1393 return NULL_TREE;
1394 iv.base = expand_simple_operations (iv.base);
1395 if (integer_zerop (iv.step))
1396 *idx_p = unshare_expr (iv.base);
1397 else
1398 {
1399 type = TREE_TYPE (iv.base);
0de36bdb 1400 if (POINTER_TYPE_P (type))
1401 {
1402 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1403 size_int (iter));
2cc66f2a 1404 val = fold_build_pointer_plus (iv.base, val);
0de36bdb 1405 }
1406 else
1407 {
1408 val = fold_build2 (MULT_EXPR, type, iv.step,
1409 build_int_cst_type (type, iter));
1410 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1411 }
ad4a85ad 1412 *idx_p = unshare_expr (val);
1413 }
1414
1415 return ret;
1416}
1417
1418/* Get the initialization expression for the INDEX-th temporary variable
1419 of CHAIN. */
1420
1421static tree
1422get_init_expr (chain_p chain, unsigned index)
1423{
1424 if (chain->type == CT_COMBINATION)
1425 {
1426 tree e1 = get_init_expr (chain->ch1, index);
1427 tree e2 = get_init_expr (chain->ch2, index);
1428
f4e36c33 1429 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
ad4a85ad 1430 }
1431 else
1432 return VEC_index (tree, chain->inits, index);
1433}
1434
a4c3242a 1435/* Returns a new temporary variable used for the I-th variable carrying
1436 value of REF. The variable's uid is marked in TMP_VARS. */
1437
1438static tree
1439predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1440{
1441 tree type = TREE_TYPE (ref);
a4c3242a 1442 /* We never access the components of the temporary variable in predictive
1443 commoning. */
2ac51e48 1444 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
a4c3242a 1445 bitmap_set_bit (tmp_vars, DECL_UID (var));
1446 return var;
1447}
1448
ad4a85ad 1449/* Creates the variables for CHAIN, as well as phi nodes for them and
1450 initialization on entry to LOOP. Uids of the newly created
1451 temporary variables are marked in TMP_VARS. */
1452
1453static void
1454initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1455{
1456 unsigned i;
1457 unsigned n = chain->length;
1458 dref root = get_chain_root (chain);
1459 bool reuse_first = !chain->has_max_use_after;
75a70cf9 1460 tree ref, init, var, next;
1461 gimple phi;
1462 gimple_seq stmts;
ad4a85ad 1463 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1464
1465 /* If N == 0, then all the references are within the single iteration. And
1466 since this is an nonempty chain, reuse_first cannot be true. */
1467 gcc_assert (n > 0 || !reuse_first);
1468
1469 chain->vars = VEC_alloc (tree, heap, n + 1);
1470
1471 if (chain->type == CT_COMBINATION)
75a70cf9 1472 ref = gimple_assign_lhs (root->stmt);
ad4a85ad 1473 else
1474 ref = DR_REF (root->ref);
1475
1476 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1477 {
a4c3242a 1478 var = predcom_tmp_var (ref, i, tmp_vars);
ad4a85ad 1479 VEC_quick_push (tree, chain->vars, var);
1480 }
1481 if (reuse_first)
1482 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
48e1416a 1483
48148244 1484 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
75a70cf9 1485 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
ad4a85ad 1486
1487 for (i = 0; i < n; i++)
1488 {
1489 var = VEC_index (tree, chain->vars, i);
1490 next = VEC_index (tree, chain->vars, i + 1);
1491 init = get_init_expr (chain, i);
1492
1493 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1494 if (stmts)
dd277d48 1495 gsi_insert_seq_on_edge_immediate (entry, stmts);
ad4a85ad 1496
1497 phi = create_phi_node (var, loop->header);
60d535d2 1498 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1499 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
ad4a85ad 1500 }
1501}
1502
1503/* Create the variables and initialization statement for root of chain
1504 CHAIN. Uids of the newly created temporary variables are marked
1505 in TMP_VARS. */
1506
1507static void
1508initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1509{
1510 dref root = get_chain_root (chain);
1511 bool in_lhs = (chain->type == CT_STORE_LOAD
1512 || chain->type == CT_COMBINATION);
1513
1514 initialize_root_vars (loop, chain, tmp_vars);
1515 replace_ref_with (root->stmt,
1516 VEC_index (tree, chain->vars, chain->length),
1517 true, in_lhs);
1518}
1519
1520/* Initializes a variable for load motion for ROOT and prepares phi nodes and
1521 initialization on entry to LOOP if necessary. The ssa name for the variable
1522 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1523 around the loop is created. Uid of the newly created temporary variable
1524 is marked in TMP_VARS. INITS is the list containing the (single)
1525 initializer. */
1526
1527static void
1528initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1529 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1530 bitmap tmp_vars)
1531{
1532 unsigned i;
75a70cf9 1533 tree ref = DR_REF (root->ref), init, var, next;
1534 gimple_seq stmts;
1535 gimple phi;
ad4a85ad 1536 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1537
1538 /* Find the initializer for the variable, and check that it cannot
1539 trap. */
1540 init = VEC_index (tree, inits, 0);
1541
1542 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
a4c3242a 1543 var = predcom_tmp_var (ref, 0, tmp_vars);
ad4a85ad 1544 VEC_quick_push (tree, *vars, var);
1545 if (written)
1546 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
48e1416a 1547
48148244 1548 FOR_EACH_VEC_ELT (tree, *vars, i, var)
75a70cf9 1549 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
ad4a85ad 1550
1551 var = VEC_index (tree, *vars, 0);
48e1416a 1552
ad4a85ad 1553 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1554 if (stmts)
dd277d48 1555 gsi_insert_seq_on_edge_immediate (entry, stmts);
ad4a85ad 1556
1557 if (written)
1558 {
1559 next = VEC_index (tree, *vars, 1);
1560 phi = create_phi_node (var, loop->header);
60d535d2 1561 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1562 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
ad4a85ad 1563 }
1564 else
1565 {
75a70cf9 1566 gimple init_stmt = gimple_build_assign (var, init);
75a70cf9 1567 gsi_insert_on_edge_immediate (entry, init_stmt);
ad4a85ad 1568 }
1569}
1570
1571
1572/* Execute load motion for references in chain CHAIN. Uids of the newly
1573 created temporary variables are marked in TMP_VARS. */
1574
1575static void
1576execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1577{
1578 VEC (tree, heap) *vars;
1579 dref a;
1580 unsigned n_writes = 0, ridx, i;
1581 tree var;
1582
1583 gcc_assert (chain->type == CT_INVARIANT);
1584 gcc_assert (!chain->combined);
48148244 1585 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
9ff25603 1586 if (DR_IS_WRITE (a->ref))
ad4a85ad 1587 n_writes++;
48e1416a 1588
ad4a85ad 1589 /* If there are no reads in the loop, there is nothing to do. */
1590 if (n_writes == VEC_length (dref, chain->refs))
1591 return;
1592
1593 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1594 &vars, chain->inits, tmp_vars);
1595
1596 ridx = 0;
48148244 1597 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
ad4a85ad 1598 {
1599 bool is_read = DR_IS_READ (a->ref);
ad4a85ad 1600
9ff25603 1601 if (DR_IS_WRITE (a->ref))
ad4a85ad 1602 {
1603 n_writes--;
1604 if (n_writes)
1605 {
1606 var = VEC_index (tree, vars, 0);
75a70cf9 1607 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
ad4a85ad 1608 VEC_replace (tree, vars, 0, var);
1609 }
1610 else
1611 ridx = 1;
1612 }
48e1416a 1613
ad4a85ad 1614 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1615 !is_read, !is_read);
1616 }
1617
1618 VEC_free (tree, heap, vars);
1619}
1620
1621/* Returns the single statement in that NAME is used, excepting
1622 the looparound phi nodes contained in one of the chains. If there is no
75a70cf9 1623 such statement, or more statements, NULL is returned. */
ad4a85ad 1624
75a70cf9 1625static gimple
ad4a85ad 1626single_nonlooparound_use (tree name)
1627{
1628 use_operand_p use;
1629 imm_use_iterator it;
75a70cf9 1630 gimple stmt, ret = NULL;
ad4a85ad 1631
1632 FOR_EACH_IMM_USE_FAST (use, it, name)
1633 {
1634 stmt = USE_STMT (use);
1635
75a70cf9 1636 if (gimple_code (stmt) == GIMPLE_PHI)
ad4a85ad 1637 {
1638 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1639 could not be processed anyway, so just fail for them. */
1640 if (bitmap_bit_p (looparound_phis,
1641 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1642 continue;
1643
75a70cf9 1644 return NULL;
ad4a85ad 1645 }
db16e52d 1646 else if (is_gimple_debug (stmt))
1647 continue;
75a70cf9 1648 else if (ret != NULL)
1649 return NULL;
ad4a85ad 1650 else
1651 ret = stmt;
1652 }
1653
1654 return ret;
1655}
1656
1657/* Remove statement STMT, as well as the chain of assignments in that it is
1658 used. */
1659
1660static void
75a70cf9 1661remove_stmt (gimple stmt)
ad4a85ad 1662{
75a70cf9 1663 tree name;
1664 gimple next;
1665 gimple_stmt_iterator psi;
ad4a85ad 1666
75a70cf9 1667 if (gimple_code (stmt) == GIMPLE_PHI)
ad4a85ad 1668 {
1669 name = PHI_RESULT (stmt);
1670 next = single_nonlooparound_use (name);
b6d5efe6 1671 reset_debug_uses (stmt);
75a70cf9 1672 psi = gsi_for_stmt (stmt);
1673 remove_phi_node (&psi, true);
ad4a85ad 1674
1675 if (!next
fb2d5860 1676 || !gimple_assign_ssa_name_copy_p (next)
75a70cf9 1677 || gimple_assign_rhs1 (next) != name)
ad4a85ad 1678 return;
1679
1680 stmt = next;
1681 }
1682
1683 while (1)
1684 {
75a70cf9 1685 gimple_stmt_iterator bsi;
48e1416a 1686
75a70cf9 1687 bsi = gsi_for_stmt (stmt);
ad4a85ad 1688
75a70cf9 1689 name = gimple_assign_lhs (stmt);
ad4a85ad 1690 gcc_assert (TREE_CODE (name) == SSA_NAME);
1691
1692 next = single_nonlooparound_use (name);
b6d5efe6 1693 reset_debug_uses (stmt);
ad4a85ad 1694
e70e8b13 1695 unlink_stmt_vdef (stmt);
75a70cf9 1696 gsi_remove (&bsi, true);
fb2d5860 1697 release_defs (stmt);
ad4a85ad 1698
1699 if (!next
fb2d5860 1700 || !gimple_assign_ssa_name_copy_p (next)
75a70cf9 1701 || gimple_assign_rhs1 (next) != name)
ad4a85ad 1702 return;
1703
1704 stmt = next;
1705 }
1706}
1707
1708/* Perform the predictive commoning optimization for a chain CHAIN.
1709 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1710
1711static void
1712execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1713 bitmap tmp_vars)
1714{
1715 unsigned i;
e70e8b13 1716 dref a;
ad4a85ad 1717 tree var;
1718
1719 if (chain->combined)
1720 {
1721 /* For combined chains, just remove the statements that are used to
1722 compute the values of the expression (except for the root one). */
1723 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1724 remove_stmt (a->stmt);
1725 }
1726 else
1727 {
1728 /* For non-combined chains, set up the variables that hold its value,
1729 and replace the uses of the original references by these
1730 variables. */
ad4a85ad 1731 initialize_root (loop, chain, tmp_vars);
1732 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1733 {
ad4a85ad 1734 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1735 replace_ref_with (a->stmt, var, false, false);
1736 }
1737 }
1738}
1739
1740/* Determines the unroll factor necessary to remove as many temporary variable
1741 copies as possible. CHAINS is the list of chains that will be
1742 optimized. */
1743
1744static unsigned
1745determine_unroll_factor (VEC (chain_p, heap) *chains)
1746{
1747 chain_p chain;
1748 unsigned factor = 1, af, nfactor, i;
1749 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1750
48148244 1751 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
ad4a85ad 1752 {
1753 if (chain->type == CT_INVARIANT || chain->combined)
1754 continue;
1755
1756 /* The best unroll factor for this chain is equal to the number of
1757 temporary variables that we create for it. */
1758 af = chain->length;
1759 if (chain->has_max_use_after)
1760 af++;
1761
1762 nfactor = factor * af / gcd (factor, af);
1763 if (nfactor <= max)
1764 factor = nfactor;
1765 }
1766
1767 return factor;
1768}
1769
1770/* Perform the predictive commoning optimization for CHAINS.
1771 Uids of the newly created temporary variables are marked in TMP_VARS. */
1772
1773static void
1774execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1775 bitmap tmp_vars)
1776{
1777 chain_p chain;
1778 unsigned i;
1779
48148244 1780 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
ad4a85ad 1781 {
1782 if (chain->type == CT_INVARIANT)
1783 execute_load_motion (loop, chain, tmp_vars);
1784 else
1785 execute_pred_commoning_chain (loop, chain, tmp_vars);
1786 }
48e1416a 1787
ad4a85ad 1788 update_ssa (TODO_update_ssa_only_virtuals);
1789}
1790
310d2511 1791/* For each reference in CHAINS, if its defining statement is
75a70cf9 1792 phi node, record the ssa name that is defined by it. */
ad4a85ad 1793
1794static void
1795replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1796{
1797 chain_p chain;
1798 dref a;
1799 unsigned i, j;
1800
48148244 1801 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1802 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
ad4a85ad 1803 {
75a70cf9 1804 if (gimple_code (a->stmt) == GIMPLE_PHI)
1805 {
1806 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1807 a->stmt = NULL;
1808 }
ad4a85ad 1809 }
1810}
1811
75a70cf9 1812/* For each reference in CHAINS, if name_defined_by_phi is not
1813 NULL, use it to set the stmt field. */
ad4a85ad 1814
1815static void
1816replace_names_by_phis (VEC (chain_p, heap) *chains)
1817{
1818 chain_p chain;
1819 dref a;
1820 unsigned i, j;
1821
48148244 1822 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1823 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
75a70cf9 1824 if (a->stmt == NULL)
ad4a85ad 1825 {
75a70cf9 1826 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1827 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1828 a->name_defined_by_phi = NULL_TREE;
ad4a85ad 1829 }
1830}
1831
1832/* Wrapper over execute_pred_commoning, to pass it as a callback
1833 to tree_transform_and_unroll_loop. */
1834
1835struct epcc_data
1836{
1837 VEC (chain_p, heap) *chains;
1838 bitmap tmp_vars;
1839};
1840
1841static void
1842execute_pred_commoning_cbck (struct loop *loop, void *data)
1843{
45ba1503 1844 struct epcc_data *const dta = (struct epcc_data *) data;
ad4a85ad 1845
1846 /* Restore phi nodes that were replaced by ssa names before
1847 tree_transform_and_unroll_loop (see detailed description in
1848 tree_predictive_commoning_loop). */
1849 replace_names_by_phis (dta->chains);
1850 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1851}
1852
ad4a85ad 1853/* Base NAME and all the names in the chain of phi nodes that use it
1854 on variable VAR. The phi nodes are recognized by being in the copies of
1855 the header of the LOOP. */
1856
1857static void
1858base_names_in_chain_on (struct loop *loop, tree name, tree var)
1859{
75a70cf9 1860 gimple stmt, phi;
ad4a85ad 1861 imm_use_iterator iter;
ad4a85ad 1862
3b652cc1 1863 replace_ssa_name_symbol (name, var);
ad4a85ad 1864
1865 while (1)
1866 {
1867 phi = NULL;
1868 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1869 {
75a70cf9 1870 if (gimple_code (stmt) == GIMPLE_PHI
1871 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
ad4a85ad 1872 {
1873 phi = stmt;
1874 BREAK_FROM_IMM_USE_STMT (iter);
1875 }
1876 }
1877 if (!phi)
1878 return;
1879
ad4a85ad 1880 name = PHI_RESULT (phi);
3b652cc1 1881 replace_ssa_name_symbol (name, var);
ad4a85ad 1882 }
1883}
1884
1885/* Given an unrolled LOOP after predictive commoning, remove the
1886 register copies arising from phi nodes by changing the base
1887 variables of SSA names. TMP_VARS is the set of the temporary variables
1888 for those we want to perform this. */
1889
1890static void
1891eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1892{
1893 edge e;
75a70cf9 1894 gimple phi, stmt;
1895 tree name, use, var;
1896 gimple_stmt_iterator psi;
ad4a85ad 1897
1898 e = loop_latch_edge (loop);
75a70cf9 1899 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
ad4a85ad 1900 {
75a70cf9 1901 phi = gsi_stmt (psi);
ad4a85ad 1902 name = PHI_RESULT (phi);
1903 var = SSA_NAME_VAR (name);
1904 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1905 continue;
1906 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1907 gcc_assert (TREE_CODE (use) == SSA_NAME);
1908
1909 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1910 stmt = SSA_NAME_DEF_STMT (use);
75a70cf9 1911 while (gimple_code (stmt) == GIMPLE_PHI
3fa1e4f2 1912 /* In case we could not unroll the loop enough to eliminate
1913 all copies, we may reach the loop header before the defining
1914 statement (in that case, some register copies will be present
1915 in loop latch in the final code, corresponding to the newly
1916 created looparound phi nodes). */
75a70cf9 1917 && gimple_bb (stmt) != loop->header)
ad4a85ad 1918 {
75a70cf9 1919 gcc_assert (single_pred_p (gimple_bb (stmt)));
ad4a85ad 1920 use = PHI_ARG_DEF (stmt, 0);
1921 stmt = SSA_NAME_DEF_STMT (use);
1922 }
1923
1924 base_names_in_chain_on (loop, use, var);
1925 }
1926}
1927
1928/* Returns true if CHAIN is suitable to be combined. */
1929
1930static bool
1931chain_can_be_combined_p (chain_p chain)
1932{
1933 return (!chain->combined
1934 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1935}
1936
1937/* Returns the modify statement that uses NAME. Skips over assignment
1938 statements, NAME is replaced with the actual name used in the returned
1939 statement. */
1940
75a70cf9 1941static gimple
ad4a85ad 1942find_use_stmt (tree *name)
1943{
75a70cf9 1944 gimple stmt;
1945 tree rhs, lhs;
ad4a85ad 1946
1947 /* Skip over assignments. */
1948 while (1)
1949 {
1950 stmt = single_nonlooparound_use (*name);
1951 if (!stmt)
75a70cf9 1952 return NULL;
ad4a85ad 1953
75a70cf9 1954 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1955 return NULL;
ad4a85ad 1956
75a70cf9 1957 lhs = gimple_assign_lhs (stmt);
ad4a85ad 1958 if (TREE_CODE (lhs) != SSA_NAME)
75a70cf9 1959 return NULL;
ad4a85ad 1960
75a70cf9 1961 if (gimple_assign_copy_p (stmt))
1962 {
1963 rhs = gimple_assign_rhs1 (stmt);
1964 if (rhs != *name)
1965 return NULL;
ad4a85ad 1966
75a70cf9 1967 *name = lhs;
1968 }
1969 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1970 == GIMPLE_BINARY_RHS)
1971 return stmt;
1972 else
1973 return NULL;
ad4a85ad 1974 }
ad4a85ad 1975}
1976
1977/* Returns true if we may perform reassociation for operation CODE in TYPE. */
1978
1979static bool
1980may_reassociate_p (tree type, enum tree_code code)
1981{
1982 if (FLOAT_TYPE_P (type)
1983 && !flag_unsafe_math_optimizations)
1984 return false;
1985
1986 return (commutative_tree_code (code)
1987 && associative_tree_code (code));
1988}
1989
1990/* If the operation used in STMT is associative and commutative, go through the
1991 tree of the same operations and returns its root. Distance to the root
1992 is stored in DISTANCE. */
1993
75a70cf9 1994static gimple
1995find_associative_operation_root (gimple stmt, unsigned *distance)
ad4a85ad 1996{
75a70cf9 1997 tree lhs;
1998 gimple next;
1999 enum tree_code code = gimple_assign_rhs_code (stmt);
2000 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
ad4a85ad 2001 unsigned dist = 0;
2002
75a70cf9 2003 if (!may_reassociate_p (type, code))
2004 return NULL;
ad4a85ad 2005
2006 while (1)
2007 {
75a70cf9 2008 lhs = gimple_assign_lhs (stmt);
ad4a85ad 2009 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2010
2011 next = find_use_stmt (&lhs);
75a70cf9 2012 if (!next
2013 || gimple_assign_rhs_code (next) != code)
ad4a85ad 2014 break;
2015
2016 stmt = next;
2017 dist++;
2018 }
2019
2020 if (distance)
2021 *distance = dist;
2022 return stmt;
2023}
2024
2025/* Returns the common statement in that NAME1 and NAME2 have a use. If there
2026 is no such statement, returns NULL_TREE. In case the operation used on
310d2511 2027 NAME1 and NAME2 is associative and commutative, returns the root of the
ad4a85ad 2028 tree formed by this operation instead of the statement that uses NAME1 or
2029 NAME2. */
2030
75a70cf9 2031static gimple
ad4a85ad 2032find_common_use_stmt (tree *name1, tree *name2)
2033{
75a70cf9 2034 gimple stmt1, stmt2;
ad4a85ad 2035
2036 stmt1 = find_use_stmt (name1);
2037 if (!stmt1)
75a70cf9 2038 return NULL;
ad4a85ad 2039
2040 stmt2 = find_use_stmt (name2);
2041 if (!stmt2)
75a70cf9 2042 return NULL;
ad4a85ad 2043
2044 if (stmt1 == stmt2)
2045 return stmt1;
2046
2047 stmt1 = find_associative_operation_root (stmt1, NULL);
2048 if (!stmt1)
75a70cf9 2049 return NULL;
ad4a85ad 2050 stmt2 = find_associative_operation_root (stmt2, NULL);
2051 if (!stmt2)
75a70cf9 2052 return NULL;
ad4a85ad 2053
75a70cf9 2054 return (stmt1 == stmt2 ? stmt1 : NULL);
ad4a85ad 2055}
2056
2057/* Checks whether R1 and R2 are combined together using CODE, with the result
2058 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2059 if it is true. If CODE is ERROR_MARK, set these values instead. */
2060
2061static bool
2062combinable_refs_p (dref r1, dref r2,
2063 enum tree_code *code, bool *swap, tree *rslt_type)
2064{
2065 enum tree_code acode;
2066 bool aswap;
2067 tree atype;
75a70cf9 2068 tree name1, name2;
2069 gimple stmt;
ad4a85ad 2070
2071 name1 = name_for_ref (r1);
2072 name2 = name_for_ref (r2);
2073 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2074
2075 stmt = find_common_use_stmt (&name1, &name2);
2076
2077 if (!stmt)
2078 return false;
2079
75a70cf9 2080 acode = gimple_assign_rhs_code (stmt);
ad4a85ad 2081 aswap = (!commutative_tree_code (acode)
75a70cf9 2082 && gimple_assign_rhs1 (stmt) != name1);
2083 atype = TREE_TYPE (gimple_assign_lhs (stmt));
ad4a85ad 2084
2085 if (*code == ERROR_MARK)
2086 {
2087 *code = acode;
2088 *swap = aswap;
2089 *rslt_type = atype;
2090 return true;
2091 }
2092
2093 return (*code == acode
2094 && *swap == aswap
2095 && *rslt_type == atype);
2096}
2097
2098/* Remove OP from the operation on rhs of STMT, and replace STMT with
2099 an assignment of the remaining operand. */
2100
2101static void
75a70cf9 2102remove_name_from_operation (gimple stmt, tree op)
ad4a85ad 2103{
75a70cf9 2104 tree other_op;
2105 gimple_stmt_iterator si;
ad4a85ad 2106
75a70cf9 2107 gcc_assert (is_gimple_assign (stmt));
ad4a85ad 2108
75a70cf9 2109 if (gimple_assign_rhs1 (stmt) == op)
2110 other_op = gimple_assign_rhs2 (stmt);
ad4a85ad 2111 else
75a70cf9 2112 other_op = gimple_assign_rhs1 (stmt);
2113
2114 si = gsi_for_stmt (stmt);
2115 gimple_assign_set_rhs_from_tree (&si, other_op);
2116
2117 /* We should not have reallocated STMT. */
2118 gcc_assert (gsi_stmt (si) == stmt);
2119
ad4a85ad 2120 update_stmt (stmt);
2121}
2122
2123/* Reassociates the expression in that NAME1 and NAME2 are used so that they
2124 are combined in a single statement, and returns this statement. */
2125
75a70cf9 2126static gimple
ad4a85ad 2127reassociate_to_the_same_stmt (tree name1, tree name2)
2128{
75a70cf9 2129 gimple stmt1, stmt2, root1, root2, s1, s2;
2130 gimple new_stmt, tmp_stmt;
2131 tree new_name, tmp_name, var, r1, r2;
ad4a85ad 2132 unsigned dist1, dist2;
2133 enum tree_code code;
2134 tree type = TREE_TYPE (name1);
75a70cf9 2135 gimple_stmt_iterator bsi;
ad4a85ad 2136
2137 stmt1 = find_use_stmt (&name1);
2138 stmt2 = find_use_stmt (&name2);
2139 root1 = find_associative_operation_root (stmt1, &dist1);
2140 root2 = find_associative_operation_root (stmt2, &dist2);
75a70cf9 2141 code = gimple_assign_rhs_code (stmt1);
ad4a85ad 2142
2143 gcc_assert (root1 && root2 && root1 == root2
75a70cf9 2144 && code == gimple_assign_rhs_code (stmt2));
ad4a85ad 2145
2146 /* Find the root of the nearest expression in that both NAME1 and NAME2
2147 are used. */
2148 r1 = name1;
2149 s1 = stmt1;
2150 r2 = name2;
2151 s2 = stmt2;
2152
2153 while (dist1 > dist2)
2154 {
2155 s1 = find_use_stmt (&r1);
75a70cf9 2156 r1 = gimple_assign_lhs (s1);
ad4a85ad 2157 dist1--;
2158 }
2159 while (dist2 > dist1)
2160 {
2161 s2 = find_use_stmt (&r2);
75a70cf9 2162 r2 = gimple_assign_lhs (s2);
ad4a85ad 2163 dist2--;
2164 }
2165
2166 while (s1 != s2)
2167 {
2168 s1 = find_use_stmt (&r1);
75a70cf9 2169 r1 = gimple_assign_lhs (s1);
ad4a85ad 2170 s2 = find_use_stmt (&r2);
75a70cf9 2171 r2 = gimple_assign_lhs (s2);
ad4a85ad 2172 }
2173
2174 /* Remove NAME1 and NAME2 from the statements in that they are used
2175 currently. */
2176 remove_name_from_operation (stmt1, name1);
2177 remove_name_from_operation (stmt2, name2);
2178
2179 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2180 combine it with the rhs of S1. */
2ac51e48 2181 var = create_tmp_reg (type, "predreastmp");
75a70cf9 2182 new_name = make_ssa_name (var, NULL);
2183 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
ad4a85ad 2184
2ac51e48 2185 var = create_tmp_reg (type, "predreastmp");
75a70cf9 2186 tmp_name = make_ssa_name (var, NULL);
2187
2188 /* Rhs of S1 may now be either a binary expression with operation
2189 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2190 so that name1 or name2 was removed from it). */
2191 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2192 tmp_name,
2193 gimple_assign_rhs1 (s1),
2194 gimple_assign_rhs2 (s1));
2195
2196 bsi = gsi_for_stmt (s1);
2197 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2198 s1 = gsi_stmt (bsi);
ad4a85ad 2199 update_stmt (s1);
2200
75a70cf9 2201 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2202 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
ad4a85ad 2203
2204 return new_stmt;
2205}
2206
2207/* Returns the statement that combines references R1 and R2. In case R1
2208 and R2 are not used in the same statement, but they are used with an
2209 associative and commutative operation in the same expression, reassociate
2210 the expression so that they are used in the same statement. */
2211
75a70cf9 2212static gimple
ad4a85ad 2213stmt_combining_refs (dref r1, dref r2)
2214{
75a70cf9 2215 gimple stmt1, stmt2;
ad4a85ad 2216 tree name1 = name_for_ref (r1);
2217 tree name2 = name_for_ref (r2);
2218
2219 stmt1 = find_use_stmt (&name1);
2220 stmt2 = find_use_stmt (&name2);
2221 if (stmt1 == stmt2)
2222 return stmt1;
2223
2224 return reassociate_to_the_same_stmt (name1, name2);
2225}
2226
2227/* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2228 description of the new chain is returned, otherwise we return NULL. */
2229
2230static chain_p
2231combine_chains (chain_p ch1, chain_p ch2)
2232{
2233 dref r1, r2, nw;
2234 enum tree_code op = ERROR_MARK;
2235 bool swap = false;
2236 chain_p new_chain;
2237 unsigned i;
75a70cf9 2238 gimple root_stmt;
ad4a85ad 2239 tree rslt_type = NULL_TREE;
2240
2241 if (ch1 == ch2)
c84b1d32 2242 return NULL;
ad4a85ad 2243 if (ch1->length != ch2->length)
2244 return NULL;
2245
2246 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2247 return NULL;
2248
2249 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2250 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2251 {
2252 if (r1->distance != r2->distance)
2253 return NULL;
2254
2255 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2256 return NULL;
2257 }
2258
2259 if (swap)
2260 {
2261 chain_p tmp = ch1;
2262 ch1 = ch2;
2263 ch2 = tmp;
2264 }
2265
2266 new_chain = XCNEW (struct chain);
2267 new_chain->type = CT_COMBINATION;
f4e36c33 2268 new_chain->op = op;
ad4a85ad 2269 new_chain->ch1 = ch1;
2270 new_chain->ch2 = ch2;
2271 new_chain->rslt_type = rslt_type;
2272 new_chain->length = ch1->length;
2273
2274 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2275 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2276 {
26dbec0a 2277 nw = XCNEW (struct dref_d);
ad4a85ad 2278 nw->stmt = stmt_combining_refs (r1, r2);
2279 nw->distance = r1->distance;
2280
2281 VEC_safe_push (dref, heap, new_chain->refs, nw);
2282 }
2283
2284 new_chain->has_max_use_after = false;
2285 root_stmt = get_chain_root (new_chain)->stmt;
2286 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2287 {
2288 if (nw->distance == new_chain->length
2289 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2290 {
2291 new_chain->has_max_use_after = true;
2292 break;
2293 }
2294 }
2295
2296 ch1->combined = true;
2297 ch2->combined = true;
2298 return new_chain;
2299}
2300
2301/* Try to combine the CHAINS. */
2302
2303static void
2304try_combine_chains (VEC (chain_p, heap) **chains)
2305{
2306 unsigned i, j;
2307 chain_p ch1, ch2, cch;
2308 VEC (chain_p, heap) *worklist = NULL;
2309
48148244 2310 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
ad4a85ad 2311 if (chain_can_be_combined_p (ch1))
2312 VEC_safe_push (chain_p, heap, worklist, ch1);
2313
2314 while (!VEC_empty (chain_p, worklist))
2315 {
2316 ch1 = VEC_pop (chain_p, worklist);
2317 if (!chain_can_be_combined_p (ch1))
2318 continue;
2319
48148244 2320 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
ad4a85ad 2321 {
2322 if (!chain_can_be_combined_p (ch2))
2323 continue;
2324
2325 cch = combine_chains (ch1, ch2);
2326 if (cch)
2327 {
2328 VEC_safe_push (chain_p, heap, worklist, cch);
2329 VEC_safe_push (chain_p, heap, *chains, cch);
2330 break;
2331 }
2332 }
2333 }
2334}
2335
ad4a85ad 2336/* Prepare initializers for CHAIN in LOOP. Returns false if this is
2337 impossible because one of these initializers may trap, true otherwise. */
2338
2339static bool
2340prepare_initializers_chain (struct loop *loop, chain_p chain)
2341{
2342 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2343 struct data_reference *dr = get_chain_root (chain)->ref;
75a70cf9 2344 tree init;
2345 gimple_seq stmts;
ad4a85ad 2346 dref laref;
2347 edge entry = loop_preheader_edge (loop);
2348
2349 /* Find the initializers for the variables, and check that they cannot
2350 trap. */
2351 chain->inits = VEC_alloc (tree, heap, n);
2352 for (i = 0; i < n; i++)
2353 VEC_quick_push (tree, chain->inits, NULL_TREE);
2354
2355 /* If we have replaced some looparound phi nodes, use their initializers
2356 instead of creating our own. */
48148244 2357 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
ad4a85ad 2358 {
75a70cf9 2359 if (gimple_code (laref->stmt) != GIMPLE_PHI)
ad4a85ad 2360 continue;
2361
2362 gcc_assert (laref->distance > 0);
2363 VEC_replace (tree, chain->inits, n - laref->distance,
2364 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2365 }
2366
2367 for (i = 0; i < n; i++)
2368 {
2369 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2370 continue;
2371
2372 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2373 if (!init)
2374 return false;
48e1416a 2375
ad4a85ad 2376 if (!chain->all_always_accessed && tree_could_trap_p (init))
2377 return false;
2378
2379 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2380 if (stmts)
dd277d48 2381 gsi_insert_seq_on_edge_immediate (entry, stmts);
ad4a85ad 2382
2383 VEC_replace (tree, chain->inits, i, init);
2384 }
2385
2386 return true;
2387}
2388
2389/* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2390 be used because the initializers might trap. */
2391
2392static void
2393prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2394{
2395 chain_p chain;
2396 unsigned i;
2397
2398 for (i = 0; i < VEC_length (chain_p, chains); )
2399 {
2400 chain = VEC_index (chain_p, chains, i);
2401 if (prepare_initializers_chain (loop, chain))
2402 i++;
2403 else
2404 {
2405 release_chain (chain);
2406 VEC_unordered_remove (chain_p, chains, i);
2407 }
2408 }
2409}
2410
2411/* Performs predictive commoning for LOOP. Returns true if LOOP was
2412 unrolled. */
2413
2414static bool
2415tree_predictive_commoning_loop (struct loop *loop)
2416{
a8af2e86 2417 VEC (loop_p, heap) *loop_nest;
ad4a85ad 2418 VEC (data_reference_p, heap) *datarefs;
2419 VEC (ddr_p, heap) *dependences;
2420 struct component *components;
2421 VEC (chain_p, heap) *chains = NULL;
2422 unsigned unroll_factor;
2423 struct tree_niter_desc desc;
2424 bool unroll = false;
2425 edge exit;
2426 bitmap tmp_vars;
2427
2428 if (dump_file && (dump_flags & TDF_DETAILS))
2429 fprintf (dump_file, "Processing loop %d\n", loop->num);
2430
2431 /* Find the data references and split them into components according to their
2432 dependence relations. */
2433 datarefs = VEC_alloc (data_reference_p, heap, 10);
2434 dependences = VEC_alloc (ddr_p, heap, 10);
a8af2e86 2435 loop_nest = VEC_alloc (loop_p, heap, 3);
713f1f14 2436 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2437 &dependences))
2438 {
2439 if (dump_file && (dump_flags & TDF_DETAILS))
2440 fprintf (dump_file, "Cannot analyze data dependencies\n");
2441 VEC_free (loop_p, heap, loop_nest);
2442 free_data_refs (datarefs);
2443 free_dependence_relations (dependences);
2444 return false;
2445 }
2446
ad4a85ad 2447 if (dump_file && (dump_flags & TDF_DETAILS))
2448 dump_data_dependence_relations (dump_file, dependences);
2449
2450 components = split_data_refs_to_components (loop, datarefs, dependences);
a8af2e86 2451 VEC_free (loop_p, heap, loop_nest);
ad4a85ad 2452 free_dependence_relations (dependences);
2453 if (!components)
2454 {
2455 free_data_refs (datarefs);
2456 return false;
2457 }
2458
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 {
2461 fprintf (dump_file, "Initial state:\n\n");
2462 dump_components (dump_file, components);
2463 }
2464
2465 /* Find the suitable components and split them into chains. */
2466 components = filter_suitable_components (loop, components);
2467
2468 tmp_vars = BITMAP_ALLOC (NULL);
2469 looparound_phis = BITMAP_ALLOC (NULL);
2470 determine_roots (loop, components, &chains);
2471 release_components (components);
2472
2473 if (!chains)
2474 {
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2476 fprintf (dump_file,
2477 "Predictive commoning failed: no suitable chains\n");
2478 goto end;
2479 }
2480 prepare_initializers (loop, chains);
2481
2482 /* Try to combine the chains that are always worked with together. */
2483 try_combine_chains (&chains);
2484
2485 if (dump_file && (dump_flags & TDF_DETAILS))
2486 {
2487 fprintf (dump_file, "Before commoning:\n\n");
2488 dump_chains (dump_file, chains);
2489 }
2490
2491 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2492 that its number of iterations is divisible by the factor. */
2493 unroll_factor = determine_unroll_factor (chains);
2494 scev_reset ();
286fa508 2495 unroll = (unroll_factor > 1
2496 && can_unroll_loop_p (loop, unroll_factor, &desc));
ad4a85ad 2497 exit = single_dom_exit (loop);
2498
2499 /* Execute the predictive commoning transformations, and possibly unroll the
2500 loop. */
2501 if (unroll)
2502 {
2503 struct epcc_data dta;
2504
2505 if (dump_file && (dump_flags & TDF_DETAILS))
2506 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2507
2508 dta.chains = chains;
2509 dta.tmp_vars = tmp_vars;
48e1416a 2510
ad4a85ad 2511 update_ssa (TODO_update_ssa_only_virtuals);
2512
2513 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2514 execute_pred_commoning_cbck is called may cause phi nodes to be
2515 reallocated, which is a problem since CHAINS may point to these
2516 statements. To fix this, we store the ssa names defined by the
2517 phi nodes here instead of the phi nodes themselves, and restore
2518 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2519 replace_phis_by_defined_names (chains);
2520
2521 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2522 execute_pred_commoning_cbck, &dta);
2523 eliminate_temp_copies (loop, tmp_vars);
2524 }
2525 else
2526 {
2527 if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file,
2529 "Executing predictive commoning without unrolling.\n");
2530 execute_pred_commoning (loop, chains, tmp_vars);
2531 }
2532
2533end: ;
2534 release_chains (chains);
2535 free_data_refs (datarefs);
2536 BITMAP_FREE (tmp_vars);
2537 BITMAP_FREE (looparound_phis);
2538
2539 free_affine_expand_cache (&name_expansions);
2540
2541 return unroll;
2542}
2543
2544/* Runs predictive commoning. */
2545
eb2a640e 2546unsigned
ad4a85ad 2547tree_predictive_commoning (void)
2548{
2549 bool unrolled = false;
2550 struct loop *loop;
2551 loop_iterator li;
eb2a640e 2552 unsigned ret = 0;
ad4a85ad 2553
2554 initialize_original_copy_tables ();
2555 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
7baffbd3 2556 if (optimize_loop_for_speed_p (loop))
2557 {
2558 unrolled |= tree_predictive_commoning_loop (loop);
2559 }
ad4a85ad 2560
2561 if (unrolled)
2562 {
2563 scev_reset ();
eb2a640e 2564 ret = TODO_cleanup_cfg;
ad4a85ad 2565 }
2566 free_original_copy_tables ();
eb2a640e 2567
2568 return ret;
ad4a85ad 2569}